ON MATRIX SUMMABILITY OF SPLICED SEQUENCES AND A-DENSITY OF
POINTS
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ABSTRACT. For y € R and a sequence z = (z,,) € £*° we define the new notion of A-density da(y)
of indices of those z,’s which are close to y where A is a non-negative regular matrix. We present
connections between A-densities d4(y) of indices of (z,) and the A-limit of (z,). Our main result
states that if the set of limit points of (x,) is countable and d4(y) exists for any y € R where A

is a non-negative regular matrix, then lim (Az), = Y. da(y) - y. which presents a different view of
n—oo yER
Osikiewicz Theorem. On the other hand we also show that the Osikiewicz Theorem can be obtained

from the famous Henstock Theorem and finally present an Z-analogue of Henstock Theorem for AZ-
summability method which has been recently introduced.

1. INTRODUCTION

For n,m € N with n < m, let [n,m] denote the set {n,n+1,n+2,...,m}. Let A C N. Define

d(A) = lim sup AN QL n]] and d(A) = liminf M
n—»00 n n—00 n

The numbers d(A) and d(A) are called the upper natural density and the lower natural density of
A, respectively. If d(A) = d(A), then this common value is called the natural density of A and we
denote it by d(A). Let Z; be the family of all subsets of N which have natural density 0. Then Zj is
a proper nontrivial admissible ideal of subsets of N (A family Z C 2N of subsets of a nonempty set
N is said to be an ideal in N if (i) A, B € 7 implies AUB € Z (ii) A € Z, B C A implies B € 7.
Further if U A = N which implies that {k} € Z for each k € N then Z is called admissible or free. 7

AeT
is proper and non-trivial if N ¢ Z and Z # {0}). Let (x,) be a sequence of reals. We say that (zy,)

tends to y statistically provided
{n:len—yl 2 et €l
for every € > 0 [5, 20]. A sequence (z,,) tends to y in the sense of Ceséro if

N
g e

There is a connection between the Cesdro summability (i.e. the convergence in the sense of Ceséaro)
and the statistical convergence. Namely if (x,) € £*° is statistically convergent to y, then (z,,) tends
to y in the sense of Cesédro [20] (Fridy noted that there is an unbounded sequence (z,) which is
statistically convergent to some y but z, tends to oo in the sense of Ceséro [10]). It was observed
by Fast that if (z,,) is a sequence of nonnegative real numbers statistically convergent to zero, then
() tends to zero in the sense of Ceséro [5]. However, in general this implication is not reversible.
To see this, consider the following simple example. Let z,, = a if 3 divides n and put z,, = b if 3 does
not divide n, a # b. Clearly (x,,) tends to (a4 2b)/3 in the sense of Ceséro, but it is not statistically
convergent. However, we have

1 n
lim — zp=a-d{n:z,=a b-d{n: x, =b}).
T =3 = d({n e = a}) +b-d({n 2 = b)
k=1
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Osikiewicz developed this idea in [17], where he defined finite and infinite splices. Let Ey, ..., Ey
be a partition of N into k sequences. Let y1,. .., yr be distinct numbers. Let (x,) be such that
li =y;.
R
Then (x,) is called a k-splice. In the same way Osikiewicz defined an infinite splice and he proved
the following.

Theorem 1 (Simplified version of Osikiewicz Theorem [17]). Assume that (zy,) is a splice over a
partition {E;}. Let y; = lim  x,. Assume that d(E;) exists for each i and

n—oo0,n€kE;
Z d(E;) =

Then
1l
Hom 5 2w =D ud(E)

In fact Osikiewicz considered a more general case, namely matrix summability method and A-
density with the use of infinite matrices A.
If z = (x,) is a sequence and A = (ap) is a summability matrix, then by Az we denote the

sequence ((Az)1,(Ax)2,(Ax)s,...) where (Azx), = Z an %k The matrix A is called regular if

lim z,, = L implies hm (AZL‘)n = L. The well- known Silverman-Toeplitz theorem characterizes
n—oo

regular matrices in the followmg way. A matrix A is regular if and only if
(i) lim an k=0,

(ii)) lim Zank—l

n— OOk,

(iii) sup Z lan k| < oo.
neN k=1

For a non-negative regular matrix A and F C N, following Freedman and Sember [9], we define
the A-density of E, denoted by d4(FE), as follows

64(E) = limsup Z an = hmsupZan klp(k) = limsup(Alg),,

SA(E) = hnnl)gfz g = 1ﬂgfzankn,§ k) = lim inf(Alp)n
keE
where 1 is a 0-1 sequence such that 1g(k) =1 <= k € E. If 04(E) = §4(F) then we say that the
A-density of E exists and it is denoted by d4(FE). Clearly, if A is the Cesaro matrix i.e.
- { Loifn>k
" 71 0 otherwise
then d4 coincides with the natural density.
Throughout we assume that A is a non-negative regular summability matrix.
We here recall The original Osikiewicz Theorem.

Theorem 2 (Osikiewicz[17]). Assume that A is non-negative regular summability matriz. Assume
that (x,) € € is a splice over a partition {E;}. Let y; = lim  x,. Assume that dao(E;) exists

n—oo,nek;
> oalE) =

for each i and

Then

oo
Jim > anpre =Y viba(E)
k=1 i
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In this paper we are interested when the assertion of Osikiewicz Theorem holds. However, we do
not want to assume that the set of indices of a sequence (z,,) is divided into appropriate splices. In
our approach we define for a sequence (x,,) a density d4(y) of indices of those x;,, which are close to y
which seems to be a new idea not dealt with so far in the literature. This is a more general approach
than that of Osikiewicz and our treatment is not at all analogous to that of Osikiewicz and involves
essentially new methods of proofs.

By ¢>° we denote the set of all bounded sequences of reals. Fix (z,) € £>°. For y € R let

daly) = lim da({n: |z, —yl < e})

and
5ay) = lim Sa({n: |z, — | <)),

e—0t
If 4(y) = da(y), then the common value is denoted by §4(y). Formally we should write 51(5")(34) but
it would be always clear which sequence () is considered.
The main result of this paper is the following.

Theorem 3. Let v = (zy,) € £>°. Suppose that the set of limit points of (xy,) is countable and d4(y)
exists for any y € R where A is a non-negative regular matrixz. Then

lim (Ax) ”_26‘4

TL—>OO
yEeR

The paper is organized as follows. In Section 2 we show a connection between the A-limit lim (Az),
n—oo

and the A-densities §4(y) of (z,,). We consider situation when some A-densities, §4(y) or §4(y), are
positive. In Section 3 we prove that if all densities d4(y) are zero, then the set of limit points of
() is uncountable. In fact we prove a more general statement, namely that if (z,) does not have
any Z-limit point for some P-ideal Z, then its set of limit points is uncountable. In the process we
also give a characterization of A-statistical cluster points which are not A-statistical limit points of
(7,,), in terms of d4(y). In Section 4 we show that a sequence (z,) € £>° with > yer0a(y) = 11s
an infinite splice for which the assumptions of Osikiewicz Theorem are fulfilled. Finally, combining a
number of the previous results from this paper, we present the proof of Theorem 3. In Section 5, in
another direction we show that the Osikiewicz Thereom [17] is actually a particular case of Henstock
Theorem and it can be easily concluded from it. In the last section of the paper we use the notion of
ideal convergence to generalize the Henstock Theorem for AZ-summability method which has been
recently introduced in [19].

2. A-LIMIT FOR SEQUENCES WITH POSITIVE DENSITIES 64(y) OR 64(y)

Lemma 4. Suppose that 04(y) exists for any y € R. Then the set D = {y € R : da(y) > 0} is

countable and > da(y) < 1.
yeD

Proof. Let (r,) be a strictly monotonically decreasing sequence converging to 1. For m € N let

Dp,={y€eR:04(y) >1/m}. Let y1,...,y1 € Dy, be distinct. Then for ¢ = mm# lvi— y]‘ > 0 the
sets B; = {n : |z, — y;| < e} are pairwise disjoint and 04 (£;) > 1/m. Since A is also regular SO we
can choose a ng such that

Zank > % and Zank <7
keE;
for n > ng and for all ¢ = 1,...,] where p is fixed. Since E1, ..., E; are pairwise disjoint, so

l
DRI B Pre

kEElUEQU"'UEl jZIkEE]'
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for n > ng. Therefore we must have [ < m|rp] where as usual [r,] denotes the largest positive integer
less or equal to r,. Hence D,, must be finite and also

Z 5A(y) < Tp-
yEDm
Since D1 D D9 D D3 ... and D = |J D,,, we obtain

> daly) = im > daly) <7y

Since this is true for every 7, and r, — 1 so we must have
> daly) < 1.
yeD
Clearly D must be countable. O
Lemma 4 would not remain true if one would change d4(y) to d4(y), that is D := {y € R: da(y) >

0} need not be countable. Note that a point y with d4(y) > 0 is an A-statistical limit point (which
will be proved later).

Proposition 5. There is a bounded sequence () such that o({y € R : |z, —y| <e}) =d({y € R:
|zn, —y| <e}) =1 for any e > 0 and any y € [0,1] where A is the Cesaro matriz.

Proof. Let (z,) be a sequence such that its set of limit points equals [0,1]. One can define (z,) in
such a way that any rational number from [0, 1] appears infinitely many times in the sequence (zy).
Let ng = 10%*. Then
g+ 1, ]| 105+D —10%° —1 1 1

Nht1 10(k+1)? =1- 102k+1  1o(k+1)2 -1

Let By = [0,n1] and By = [ng + 1,ng4q] for k > 1. Clearly if A consists of infinitely many By’s, then
d(A) =1. Let @, = 2 if n € By. Let y € [0,1]. Then for every € > 0 the set C :={k : |z, —y| < e}
is infinite. Note that
A={n:|z, -yl <e}= U By,
keC

Therefore d(A) = 1. O

The next result is a slight improvement of Osikiewicz Theorem. We will show in Section 4 that

the condition > d4(y) = 1 implies that the set of indices of (z,) can be divided into appropriate
yeD
splices. The method which we use in our proof is similar to that of Osikiewicz, but not analogous as

we use essentially new arguments.

Theorem 6. Suppose that x = (x,) is a bounded sequence, d4(y) exists for every y € R and
> da(y) =1. Then
yeD

lim (Az), = 3" 0a(y) v

n— o0
yeD
Proof. Since (z,,) is bounded, there is M > 0 such that |z,| < M for every n € N. Let D = {y;};

i.e. y;’s are distinct. Let & > 0 be given and let » € N be such that > da(y;) > 1 — ¢ and
i=1

o0

> 0a(yi) -y < e. Let N € N be such that £ min [y; — y;| > 1/N and such that the set
i=r+1 1<i#j<r
E; :={j:|z; —yi| <1/N} have the following property

—_— 3
N < N < N\ < )
(5A(y1) < 5A(Ez) < 6A(Ez) < 5A(yl) + Mo
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for i = 1,...,r where My = max{|yi1|, |y2|,. .- |yr|}. Note that Fy,..., E, are pairwise disjoint. Now
choose a mg € N such that

(57 - — < Zank < 5A
keE;
for every n > mg and ¢ = 1,...,r. Therefore
1

1) - —— ) =

aly) = rMO <kZEank: < A(yz)+N+ Mo
for every n > mo and i =1,...,r. Then for n > my we have

1
Axn—zankxk<zank <y17L > +Zank ( )+ Z an,k'M~
keF, k:E(E'lU“-UE,»)c

Since A is regular, we can choose a mq > mg such that for all n > my

o0
Za"’k <l+e.
k=1

Now observe that

oo
1+e> Za”7k = Z ank + Z Qn, k
k=1

k€E1U--UE, ke(E1U---UE,)e
where from above we have

€ T 1
5 Zzanpz(m_N_MO>1_N_<1+M>.E.
ke E1U---UE, Jj=lke(E
Therefore for n > mg we have
<Y ane (m+ ) + Y ok (e + 1>+@+(2+L)M5
n > n,k Y1 nk * N MO
keF keE;

and analogously

1 1 Mr 1
(Alf)n > Zan,k' (yl_ﬁ> + -+ Zan,k' (yr_N) _W_(2+MO)M€'
keEq keE,

Hence for n > my

- Z5A(yz‘) Y

SZ Zan’k-(yi:l:i>*5,4(yz) Yi +MW+(2M+%+1)

, N M
=1 kEEz
1 r Mr M
=1 keE;
1 1 T Mr M
— ) - (M —4+—4+C2M+—+1
<N+rM) r Mo+ ) gty HCM A e e
Since N can be chosen arbitrarily large, we obtain
M
- ZM%) i < (M + e +2)e
for every ¢ > 0. Therefore lim (Az), = Z 0a(Yi) - vi- O

m—r0o0

Proposition 7. Assume that x = (z,,) is bounded. If 6o(y) = 1, then y is a limit point of the
sequence ((Az)y).
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Proof. Since (z,,) is bounded, there is M > 0 such that |z,| < M for every n € N. Let y € R be such
that 04(y) =1. Let N € N. Let Exy = {j € N: |z; —y| < 1/P} where P = P(N) > N is such that
1<64(En) <1+ ﬁ Then there is ky > N such that

1 1

Z akN,k>a(EN)_ﬁ Zl—ﬁ
keEn

and also from regularity of A

S 1
ZakN’k <14 —.
k=1 N

Then we have

gy k- (Y — = gy M < ) agy kT < agn k- (Y+ =)+ g k- M.
> i (v ) - 2 > > e (vt ) + 2

k€eENn k¢ENn k€EN k¢ENn
Hence
|yl
(A —y|—\2a;m, (5 + 72) gEjk M+ )+ 2
N

11 yl+1 1
< AM _
<2N+N> M+ + =5+ 52

lim (Az)gy = y.

N—oo

Therefore

Immediately we obtain the following.

Corollary 8. Let (x,) be a bounded sequence. Suppose that there are y and z (y # z) with d4(y) =
04(z) = 1. Then the A limit
lim (Ax),

n—oo
does not exist.

It turns out that we cannot weaken the Corollary 8 assuming that §4(y),64(2) > r for some
€(0,1).

Proposition 9. Lett € N, r,s € [1,gt —1] and L € R. Let y,z € R with y # z. Then there is a
sequence () such that d(y) = r/2¢, d(z) = s/2! (i.e. when we are taking the limit with respect to
Cesaro matriz) and

1 n
o 2 =L
1=

Proof. Let y' and 2’ be such that yr/2" + ¢/(1 — r)/2" = 2s/2' + 2/(1 — s)/2" = L. Define ny
as follows. Let ng = 0 and nj, = 2010, k € N. Let By = [nj_1 + 1,n4], k € N. Note that
|By| = 2(10" — 10*=D%). Let Aj, C By be defined as follows

10(2k)2 710(21@71)2

Ao, = U [nop—1 + 1 +m2', ngp_1 + 1+ m2' +7]
m=1
and
10@2k+1)2 _1g(2k)?
Aopyr = U [nor + 1 +m2% nop, + 14+ m2" + s].
m=1

Now, we are ready to define (z,,). Let x, =y if n € Aok, 2, =y if n € Bop \ Aok, py = zif n € Agpiq
and x, = 2’ if n € Boyy1 \ Aok_1. Note that

dy)=d<[jx42k)=;, d <UB2k\A2k> ;7
k=1
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a(z) = 3( U A2k+1) = % and E(Z,) = E( U BQk+1 \A2k+1> =1- i
k= k=

Note that for any k€ Nand m=1,..., 10(20)? — 102k=1? e have

nok—1+1+(m+1)2°

Z z;=ry+ (1 —r)y =2'L.
i=ngg_1+1+m2t

Similarly, for any k € N and m = 1,...,10*+D* — 102k we have

nok+1+(m+1)2¢
Z z;=sz+ (1 —s) =2'L.
1=nop+1+m2t

From this we obtain that
n

.1
Jm o 2 wi= L
1=
O

One can improve Proposition 9 assuming that d(y) and d(z) are arbitrary numbers from (0, 1) not
necessarily with finite dyadic expansion.

3. RELATION BETWEEN A-STATISTICAL LIMIT POINTS AND POINTS HAVING POSITIVE A-DENSITY

We first recall some basic facts about ideal convergence which will be used in this section as also
in the last section. Let Z be a proper nontrivial admissible ideal in N and let (x,) € ¢>°. We say
that a sequence (z,,) of real numbers tends to y with respect to Z provided {n : |z, —y| > e} €T
for every € > 0, in symbols y = Z — lim x,. It is well-known that if Z is maximal and (x,) € £°°,

n—oo
then Z — li_)rn x, exists [14]. A point y is called Z-cluster point of (z,) if {n : |z, —y| < e} ¢ T
n—,oo

for every € > 0. We say that y is an Z-limit point of (x,) if there is a set B C N, B ¢ Z such that
lir% xn, =y [14]. Since Z contains all singletons, clearly Z-limit points are Z-cluster points. Zs-cluster
ne

points and Z;-limit points are called statistical cluster points and statistical limit points, respectively
(see [11]) while Z4-cluster points and Z4-limit points are called A-statistical cluster points and A-
statistical limit points, respectively where Z4 = {B C N : d4(B) = 0} forms an admissible ideal in
N. Characterizations of the sets of Z-cluster points and Z-limit points can found in [3, 15, 14]. Let
Zgn be the ideal of finite subsets of N. The classical Bolzano—Weierstrass Theorem says that every
sequence (z,,) € £*° possesses a limit point, that is an Zg,-limit point.

We start with the following example.

Proposition 10. There is (xy,) such that d(y) =0 for all y € R and (z,,) is Cesdro summable.

Proof. Define (x,,) in the following way

1 1 31 1726354
(07170715750717777777071)7)777575777777 )
~— 2 4°4° 2 8§88 8 8 8 88
B ~
Bs B3 By
which consists of blocks By, Bs,.... For k and m = 0,1,...,2¥ —11let A = {n: o <y < ”;tl}
Then |AN By| = 2"% + 1 for each n > k. Hence d(A) = 2% Therefore d(y) = 0 for y € [0,1]. O

Note that the set of limit points of (x,) defined in the proof of Proposition 10 equals [0, 1], and
therefore is uncountable. This is a consequence of the assumption that d(y) = 0 for every y, or the
fact that (z,,) does not have any statistical limit point. The next two results are proved in the more
general settings of ideals. We will prove that if (x,) does not have any Z-limit point, for some ideal
7 with a special property, then its set of limit points is uncountable.
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Lemma 11. Let Z be an ideal of subsets of N. Assume that X := {n : x,, € [a,b]} ¢ Z. Suppose that
{nra<z,<t—e}eZor{n:t+e<uz,<blel

for any t € (a,b) and any € > 0 such that ¢ < min{t — a,b —t}. Then there is y € [a,b] such that
{n:|z, —y| >e} €T for every e > 0.

Proof. Suppose that for any y € [a,b] there is e, > 0 with {n : |z, —y| > ¢,} ¢ Z. Since [a,b] is
compact, there are a < y; < y2 < -+ < yx < b such that {(y; —e;,y; +¢&;) :i=1,...,k} is an open
cover of [a,b], where ¢; = £,,. We may assume that none element of this cover contains over element
of this subcover. Let A; = {n: |z, — yi| < &;}. Note that A; U---U A = X and therefore there is i
with A; ¢ Z. Since X \ A; ¢ 7, there is j # i such that A; \ A; ¢ 7.

Assume that i < j. Since y; < y; and (y; — €;,y; + €;) is not contained in (y; — €;,y; + €;), then
yi +ei <yj+e;. Let t =y; +¢e;. There is e, > 0 with B := {n : |z, —t| > &} ¢ Z. Consider two
cases.

Case 1. If there is ¢ > 0 such that B' := {n : |z, —t| < e} € Z, then A;\ B’ ¢ T and A;\(A,UB’) ¢ T.
Hence
{nia<z,<t—eg}¢Zand {n:t+e <z, <b} ¢TI

Case 2. If {n: |z, —t| <e} ¢ T for any € > 0, then {n: |z, —t| < /2} ¢ Z. Since B ¢ T, we have
either {n:a<ax, <t—eg}¢Zor{n:t+e <z, <b} ¢Z. Assumethat {n:a <z, <t—g} ¢Z.
Then

1 1
{n:aﬁxng(t—iat)—45t}g_fIand {n:(t—iet)+45t§xn§b}¢z.

g

For any nonempty set A, we will denote by A<N the family of all finite sequences of elements of A.
For any finite sequence s = (s1,...,s,) € A<N and a € A by s’a we denote a concatenation of s and a,
i.e. s’a = (s1,...,5n,a). By |s| we denote the length of s. If a € AN, then let ajn = (a(1),...,a(n))
and |0 = (), where () stands for empty sequence.

We will also need the following facts: An ideal Z of N is called a P-ideal if for any sequences of
sets (Dy,) from Z there is another sequence of sets (Cy,) in Z such that D, A C,, is finite for every n
and |J,, Cn, € Z. Equivalently if for each sequence (A;,) of sets from Z there exists Ao, € Z such that
Ay \ Ao is finite for all n € N. If 7 is a P-ideal then a sequence (x,) is Z-convergent to z if and only
if there is a M € F(Z) (where F(Z) = {B C N: B¢ € Z} is the dual filter) such that (x,)nens is
usually convergent to z (see [14]).

A function ¢ : 2N — [0, 0] is called a submeasure if (E) < ¢(E U F) < o(E) + ¢(F) for any
E,F € 2V, A submeasure ¢ is called lower semicontinuous if n%gnoo e(EN[l,m]) = ¢(F). By Exh(y)

denote the set of all E C N with li_I)n @(E \ [1,m]) = 0. The celebrated Solecki’s characterization

[21] states that an ideal Z is an analytic P-ideal if and only if it is of the form Exh(y) for some lower
semicontinuous submeasure ¢ on N.

The following result seems to be a mathematical folklore but we present its short proof for sake of
completeness.

Proposition 12. Let A be a non-negative reqular matrixz. Then L4 is a P-ideal.

Proof. Let 9 4(E) = supPpen D ker Ank- We need to show that ¢ is a lower semicontinuous submeasure
on N and Exh(p) = Z4. Clearly ¢4 is monotonous and subadditive. We will show that it is lower
semicontinuous. Fix £ C N. Let s := @4(E) = sup,en D _pep @nk and let € > 0. We can find n € N
such that >, pani > s — /2. Then there is m € N with

s—e=s—¢/2—¢/2< Z ap ) < SUp Z ani = pa(ENI[,m]).
keE k<m nEN e B k<m
Since the sequence (p4(E N [1,m])) is non-decreasing, then lim @a(EN[1,m]) = pa(E).
m—r0o0

Assume that d4(E) = 0. Let € > 0. There is ng such that ), pa,r < € for n > ng. Since
Y kep Gnk is convergent for any n < ng, there is m such that ZkEE,k>m ank < € for n < ng.
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Consequently

wa(E\ [1,m]) = sup Z an i <E€.
nE€N e E k>m
Hence Z4 C Exh(pa).
Assume now that lim pa(E\ [1,m]) = 0. Let € > 0. There is m € N such that ), p o, an <
m—0oQ ’

£/2 for every n € N. Since nlg]g() an = 0 for every n € N, there is ng such that a,; < ¢/(2m)

for n > ng and k < m. Therefore ), _pa,r < € for n > ng. That means that 04(E) = 0. Thus
Za D Exh(pa). O

Proposition 13. Let Z be a P-ideal. Assume that (x,) € €°° does not have any Z-limit points. Then
the set of limit points of (xy,), i.e. the set

{y e R:x,, —y for some increasing sequence (ny) of natural numbers},

1s uncountable and closed.

Proof. Let Iy = [a, b] be such that (z,,) C [a,b]. Then there are ¢t € (a,b) and ¢ > 0 such that
{n:a<z,<t—c}¢Zand{n:t+e<ux,<b}¢ZT.

If there are not such ¢ and ¢, then by Lemma 11 there is y € [a, b] such that {n : |z, —y| > €} € Z for
every € > 0. This means that (x,) is Z convergent to y. Since Z is a P-ideal, so y is an Z-limit point
of (z,) which yields a contradiction. Let I(gy = [a,t —¢] and I(}) = [t + ¢, b]. Proceeding inductively
we define a family {I, : s € N<N} of nontrivial compact intervals such that

(i) Iy C Is for i = 0,1 and s € N<N;

(i) {n:mz, € I} ¢ T for s € N<N,
Note that for any o € {0, 1} and any k € N there are infinitely many z,,’s with x,, € Ioi,- Therefore
there is x4 € [}, Lo Which is a limit point of (x,). Note that z, # zp for distinct o, 8 € {0, 1N,
Therefore the set of limit points of (z,,) is uncountable. Note that the set of limit points of (x,,) is
always closed. O

Using the same reasoning one can prove a slightly stronger assertion, which will be used in the
sequel.

Corollary 14. Let [a,b] be a fized interval and I be a P-ideal. Assume that {n : z,, € [a,b]} ¢ Z and
any point y € (a,b) is not an Z-limit point of (xy,). Then the set of limit points of (z,) in [a,b], i.e.
the set

{y € (a,b) : zp,, = y for some increasing sequence (ny) of natural numbers},

18 uncountable and closed.
The next Corollary is a counterpart of Bolzano—Weierstrass Theorem for Z-limit points.

Corollary 15. Let (zy,) € €>°. Assume that the set of limit points of (xy) is countable. Then the
sequence (x,,) has at least one Z-limit for every P-ideal T.

Filipéw, Mrozek, Recltaw and Szuca have introduced in [6] the notion of Bolzano—Weierstrass
property (in short BW property) for ideals defined on N. An ideal Z satisfies BW if for any bounded
sequence (z,,) there is a set of indexes E C N such that (z,)nep is Z|E-convergent where Z|F =
{XNE:X e€Z}. It was mentioned in [6] that the density zero ideal does not satisfy BW. Very
probably none ideal of the form Z4 satisfy BW. For other Bolzano—Weierstrass properties of ideals
we refer the reader to [6].

Note that if Z is maximal and y is an Z-cluster point of (x,), then y is an Z-limit of (x,).

Fridy observed in [11] that statistical limit points of a sequence are its statistical cluster points,
and there is a sequence (z,,) such that 0 is statistical cluster point of (x,) but 0 is not a statistical
limit point of (x,,). Below we present a characterization of A-statistical limit points in terms of points
with positive A-density. But before that we prove the following lemma which helps us to characterize
those A-statistical cluster points of a sequence which are its A-statistical limit points.
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Lemma 16. Let r € (0,1), 11 > 1o > 13> ..., nl;rgo rn =1 and let (Ey) be a decreasing sequence of
subsets of N.
(i) If 04(Ey) = 1y, n € N, then there is a subset E of N with §o(E) = r and such that E C* E,,
n ;N, i.e. B, \ E is finite for every n € N. Moreover, zfi(En) — r, then §o(E) = .
(i) If da(En) = 1n, n € N, then there is a subset E of N with 4(E) = r and such that E C* E,,
n € N.

1
Proof. (i) Let (p,) be an increasing sequence of natural numbers such that E Ak > Tp — 3 for
n
keEny

1 1 1
every j > pn. For each n € N now choose m,, > p,, such that Z R 3 3 > 1, — -
keE,N[1,my]

for all j,pn < j < ppt1. Thus we have two increasing sequences of natural numbers (p,) and (my,)
such that V j € [py, pnt1] we have
1
Z Ajk > Tp — —.
n

kEEnm[l,mn}

oo
Put E= |J E,NI[1,mu41]. Take p, < j < ppt1. Then

n=1
Zajk> Z ajk>rnfl.
k= ; n
keE keEL,N[1,my]
e.)
Thus limianan’k > 1 which means that d4(F) > r. Since Fy D Fy D E3 D ..., s0 | E, N

n—oo I -
keE n=j

j—1
[1,mp41] C Ej and E;\E C U1 E,N[1,mp41]. Therefore E C* E; and consequently 04(E) < da(E;)
n=
and 64(E) < 64(E;). Hence §4(E) =r and if §4(E,) — r, then §4(E) = r.
(ii) As before we can choose two increasing sequences of natural numbers (p,) and (m,,) such that

Z Ap, .k > Tn — %

k‘EEnﬂ[l,’l’ﬂn]

[e.e]
for every n. Put E = |J E, N[l,mp41]. Then

n=1
1
Zapn+1,k > Z Appy1k = Tl — m
kEE k€ En[1,mp 1]
Thus §4(E) =r and E C* E, V n € N. O

We now have the following characterization of A-statistical limit points.

Theorem 17. Let (z,) € £*°. A point y € R is an A-statistical limit point of (zy) if and only if
04(y) > 0. Moreover if 64(y) > 0, then there is E C N with §4(E) = da(y) and lir%xn =y.
ne

Proof. Assume that 04(y) = 0 and suppose that y is an A-statistical limit point of (x,,). Then there is
E C N such that 64(E) > 0 and lir%xn =y. Note that E C* {j : |x; —y| < e} for every ¢ > 0. Hence
ne

0a(E) <da({j:|zj —y| <e}) for every € > 0. Therefore §4(E) = 0 which yields a contradiction.
Assume that 64(y) > 0. Let E, = {j : |z; —y| < 1/n}. Then (E,) is a decreasing sequence with
0a(En) — 64(y). By Lemma 16 there is E C* E,, n € N, with §4(F) = §4(y). Since almost all

elements of E are contained in E,, then clearly lim T =V Hence y is an A-statistical limit
J—00,j€

point of (z;,).
The last part of the assertion follows in a similar way. O
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As a corollary we obtain a characterization of those A-statistical cluster points which are not
A-statistical limit points.

Corollary 18. Let (x,) € £°. A point y € R is an A-statistical cluster point of (x,) and it is not
an A-statistical limit point if and only if

o oa({j:|xj — Kié 1/n}) > 0 for every n;
o 6a(y) = lim da({j ¢ [2; — 3] < 1/n}) = 0.

4. WHEN A SEQUENCE IS A SPLICE AND THE PROOF OF THE MAIN RESULT

In this section we show how to divide the set of indices of a sequence (z,,) to obtain a partition
{E;} such that (x,) becomes a splice.

Proposition 19. Let (x,) € (>°. Assume that there exist distinct real numbers yi,...,Ym with

m
d4(yi) > 0 Vi such that Y. 54(y;) = 1. Then there exists a partition Ei,...Ep, Eyni1 such that
i=1

0A(E;) =06a(yi), fori= 1,—.. ,m, 04(Emt1) =0 and lirg_ T = Yi.

nekl;
Proof. By Theorem 17 there are Ff,...,E;, with lim z, = y;. Let ¢ = min{|y; — y;|/3 : 1,j =
nek;

L...,myi # j}. Put B = {n : |xy —y| < e} NE, i=1,...,m. Clearly da(E;) = da(vi),
En+1 =N\ | E; has A-density zero, E1, ... E,,, Eyyq1 are pairwise disjoint, and lirg Tp =y O
=1 nek;

Consider the following example. Let Ej,..., Ey, Ex11 be such that d4(E1) + -+ + da(E) = 1,
04A(Fk+1) = 0 and Ej4q is infinite. Define (z,,) in the following way. Put z, =iifn € E;,i=1,...,k
and (o5 )neE,,, be dense in the unit interval [0, 1]. For a such sequence (x,) we can apply Theorem
6. It turns out that the Osikiewicz Theorem also can be applied in this situation. To do this we need

a partition of Ejy; into infinitely many infinite subsets F, Fs, ... such that lir;} x) exists and apply
nely

the following Proposition 20.

Proposition 20. Let (x,) € (°°. Assume that there exist distinct real numbers y1,ya2, ... such that
[o.¢]
0a(y;) >0Viand > 04(y;) = 1. Then there exists a partition E1, Ea, ... such that 04(E;) = da(yi),
i=1
1=1,2,... and lim z, = vy;.
nek;

Proof. By Theorem 17 there are Ej, Ey,... with lim z, = y;. Note that E; N E} is finite if i # j.
nek]

m—1 m—1
Define Ej, Ey, ... in the following way. Let EY = E|, EI! = E/ \ ‘UI E!, k> 2. Since E/, N 'Ul E!
1= =

is finite, then d4(E))) = 04(E],) = 6a(ym), m € N. Let E =N\ |J EJ,. If E is finite, then put
m=1

E, = EUE{ and E,, = E]/,, m > 2. If the set F is infinite, then enumerate it as {ni,ng,...} and

put E,, = E! U{ny}. Clearly h%l Tr, = Ym.- O
netim

Consider the following example. Let Fy, F», ... be a partition of N such that 54 (F;) = 1/2¢,i € N.
Define a new partition F1, Es,... as follows. Let F} = {ay : k € N}. Put Ex = Fy4q1 U {ar}. Then
(o) (o)

U Ex =Nbut > 04(Ex) = 1/2. The next lemma shows how to find a nice refinement of partitions
k=1

k=1
of N.

[e.e]
Lemma 21. Assume that {E, : n = 1,2,...} is a partition of N such that Y 04(Ey,) < 1. Then
n=1

there is a partition {F, :n=0,1,2,...} of N such that
(i) F, C Ey;
(i) 0a(Fn) =0a(En);
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(iii) 64(Fp) = 1 — fl Sa(Ep).

Proof. Let (e,) be a strictly decreasing sequence of positive real numbers with 1i_>m en = 0. We define
n—oo
inductively a strictly increasing sequence (my,) of natural numbers such that
> ajr > 1— (d(B1) +d(Bs) + -+ d(Eyp)) — en
ke[mp—1,7]\(F1UE2U---UEy,)

o0 n

for every j > m,. Let Fy = |J ([mn,l,mnﬂ] \ U EZ) where my = 0. Let m,, < j < myu41. Then
n=1 i=1
> ajx > > ajr > 1— (d(Ey) + d(Ey) + -+ d(Ey)) — en.
keFy k€[mp—1,7]\(E1UE2U---UEy,)

Therefore 64(Fo) > 1— > 0a(Ey). Let F,, = E, \ Fy for every n € N. Note that Fy N E, is finite
n=1
V n € N. Therefore §4(F,) = d4(E,). Since Fy = N\ |J F,, then d4(Fy) <1— Y 64(E,). Hence
n=1 n=1
04(Fp) =1— Z 0A(Ey). O
n=1

The next theorem gives a sufficient condition for a sequence (z,) to have > d(y) = 1 for some
yeD
countable set D.

Theorem 22. Let (x,) € £>°. Suppose that the set of limit points of (z,) is countable and §4(y)
exists for any y € R. Then
> daly) =1,

yeD

where D = {y € R:4(y) > 0}.

Proof. Suppose that
> daly) < 1.
yeD

Then by Corollary 14 the set D is non-empty. By Lemma 4 the set D is countable. Enumerate D as

{y1,92,...}. By Proposition 20 there is a partition {Fy : k = 1,2,...} of N such that d(E}) = d(yx)

and limy, o0 nek, Tn = Y. By Lemma 21 there is a partition {F}, : K =0, 1,2, ... } such that Fy, C E,
o

0a(Fk) = 04(Ey) and d4(Fo) =1— > 04(F}). Since d4(y) = 0 for every y ¢ D, then by Proposition
k=1

13 applied to the sequence (zp)ner, and to the ideal Za|p, = {ENFy: E € Z4}, we obtain that the

sequence (Tp)ner, has uncountably many limit points which contradicts the assumption. O

Finally note that combining Theorem 6 and Theorem 22 we obtain Theorem 3.

5. A DIFFERENT VIEW OF OSIKIEWICZ THEOREM
We first recall the following result of Henstock.

Theorem 23 (Henstock [12]). Let (z,,) € {>°. Assume that A is non-negative reqular summability
matriz. Assume that G(t) = d4({n : ©, < t}) exists for every t € R. Then

o

nh};ozanﬂk = /Ooth(t).

k=1 -

We now show that The Osikiewicz Theorem (Theorem 2) follows easily from Theorem 23. The
original Osikiewicz proof is relatively long but it is not based on Theorem 23.
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Proof. At first we will show that G(t) = da({n € N : z,, < t}) exists for every t € R. Fix ¢ > 0. Let
k

k € N be such that Y 04(F;) > 1—¢. Let t € R\ {y1,...,yr}. We may assume that y; < ys <--- <
i=1

Y. Then for any ¢ thereis j =1,...,k — 1 such that y; <t <yj—1 or t <y or t > y. Assume that

y; <t <yj-1.
Put § 4(F) = liminf > an ) and 04(F) =limsup Y. ank. Then d,({n: z, <t}) > d(Ey)+---+
N0 nek n—00 nckE B
d(Ej) and 64({n: z, <t}) <1—d(Ej41)—---—d(Eg). Thus d4({n: 2, <t})—5,({n: 2, <t}) <e.

Therefore da({n : x, < t}) exists for every t € R.
o0
To prove that [ tdG(t) = > y;04(E;) we need to show that lier G(t) — lim G(t) = d4(FE;). In
- % t—y; t—y,

o0
fact it is enough to show that lim G(¢) — lim G(t) > da(E;) since lim G(t) =1, . lim G(t)=0,G
——00

t—y t—y; t—00
is non-decreasing and »_ d4(E;) = 1.

7
_ For any £ > 0 we have E; \EF.C{n:yi—e <z, <y; +¢} where F; is a finite subset of N. Thus
da{n 1 yi—e <z, <yi+e}) > da(E;) for any € > 0. Note that da({n:yi —e <z, <y +¢}) =
Glyi+e)—Glyi—e)=0a({n:yi —e <z, <y +¢}). Thus hm G(t) — lim G(t) > da(Es). O

t%yZ t—y;

6. A GENERALIZATION OF THE HENSTOCK THEOREM

In this section our main goal is to generalize the Henstock theorem. Instead of the limit lim 220:1 Qp Tk
n—oo

in the matrix summability method, we will consider an ideal limit Z— lim Y, a, xzx which is called
n—oo

AT-summability method which has been very recently introduced by Savas, Das and Dutta [19] (one
can see [18] for more related works). )

After the study of the notion of Z-convergence by Kostyrko, Saldt, and Wilczyriski [14] (which is
a natural generalization of the usual convergence and the statistical convergence) a lot progress was
done in recent years in applications of Z-convergence in analysis (see [1], [6], [7], [8], [16], [13], [2] and
[4])-

Let Z be an ideal on N. For a non-negative regular matrix A and a set £ C N, we define the
T-extension of d4 by

T—04(E) =1~ lim >
nek

Note that if Z is maximal, then Z — §4(F) is well-defined for any E C N.

The following propostion is an ideal counterpart of a known result.

Proposition 24. Let Z be an ideal and let f : R — R be a continuous function. Assume that
F,Fy, Fy, ... are non-decreasing functions such that F,(t) tends to F(t) with respect to T for every
point t of continuity of F'. Then

/ FOAF®) =T~ tim [ F@)dF).
Proof. Let € > 0. There is M > 0 with | [ f(¢)dF( f f(t)dF(t)| < e/4. Let p > 0 be such that

—0o0

for any partition P = {—-M =z < x1 < -+ < Ty, = M} of [—M, M] with mesh less than p we have

’/f t)dE(t fo% (%‘—1))‘ < e/4.

Fix a partition P = {-M =29 < 21 < -+ < &y, = M} of [-M, M] with mesh less than p. We
may assume that every z; is a continuity point of F. Since F(x;) =Z — lim F,(x;), then 4; = {n:
n—oo
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|F(2;) — F(x;)| > ¢/(4mK)} € T where K = sup{|f(z)|: « € [-M,M]}. Let E = EgUE U---UE,,.
Then for any n € N\ E we have |F(z;) — F,(z;)| < ¢/(4mK). Therefore for such n,

if(éﬂi)(F(xz‘)— F(xi-1) Zf (@) (Fo (i) — Fu(zio1))| =
=1

| zm; F)(F () = Fale) - if@»(Fuu) - Fa(win)| < /2
Finally
| / FaF( Z £ (Fu(as) = Fu(ei)| < ¢
for any n € N\ E. The result follows. 0

Let (x1) be a sequence of real numbers. Let G,, : R — [0, 1] be given by

t) = Z an,kﬂ[xk,oo) (t)
k=1

Lemma 25. Lett € R and let Z be an ideal. Assume that s =17 — le Gn(t). Thens =T —04({n €
N:xz, <t}).

Proof. By E denote the set of those k’s such that x; <t¢. Then

Gn((xk)at) = Z an,k]]-[g;k,oo)(t) = Z Qnp, k-
k=1 keE

Since s = Z— lim Gy((7x),t), then Z— lim Y, pa,r =T —34(F). From the uniqueness of Z-limit,
we obtain s =Z —d4({n € N: z,, <t}). O

Let G((x),t) = T — le Gn((zg),t) for t € R. Modifying, if necessary, G at some points of

discontinuity of G, we may assume that G is a distribution function. For a non-negative regular
summability matrix A we consider the AZ-summability method as follows

— lim E Qp Tk
n—oo

Now, using Proposition 24 and essentially the same method as in the previous section, we can prove
a Henstock-type formula for the AZ-summability method.

Theorem 26. Let Z be an ideal, let A be a non-negative regular summability matriz and (x,) € €.
Then

_n]g{.lozan kTL —/ th((.’L’k),t),

provided the T-limit exists.
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