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Abstract. For y ∈ R and a sequence x = (xn) ∈ `∞ we define the new notion of A-density δA(y)
of indices of those xn’s which are close to y where A is a non-negative regular matrix. We present
connections between A-densities δA(y) of indices of (xn) and the A-limit of (xn). Our main result
states that if the set of limit points of (xn) is countable and δA(y) exists for any y ∈ R where A
is a non-negative regular matrix, then lim

n→∞
(Ax)n =

∑
y∈R

δA(y) · y. which presents a different view of

Osikiewicz Theorem. On the other hand we also show that the Osikiewicz Theorem can be obtained
from the famous Henstock Theorem and finally present an I-analogue of Henstock Theorem for AI-
summability method which has been recently introduced.

1. Introduction

For n,m ∈ N with n < m, let [n,m] denote the set {n, n+ 1, n+ 2, . . . ,m}. Let A ⊂ N. Define

d(A) = lim sup
n→∞

|A ∩ [1, n]|
n

and d(A) = lim inf
n→∞

|A ∩ [1, n]|
n

.

The numbers d(A) and d(A) are called the upper natural density and the lower natural density of
A, respectively. If d(A) = d(A), then this common value is called the natural density of A and we
denote it by d(A). Let Id be the family of all subsets of N which have natural density 0. Then Id is
a proper nontrivial admissible ideal of subsets of N (A family I ⊂ 2N of subsets of a nonempty set
N is said to be an ideal in N if (i) A, B ∈ I implies A ∪ B ∈ I (ii) A ∈ I, B ⊂ A implies B ∈ I.

Further if
⋃
A∈I

A = N which implies that {k} ∈ I for each k ∈ N then I is called admissible or free. I

is proper and non-trivial if N /∈ I and I 6= {∅}). Let (xn) be a sequence of reals. We say that (xn)
tends to y statistically provided

{n : |xn − y| ≥ ε} ∈ Id
for every ε > 0 [5, 20]. A sequence (xn) tends to y in the sense of Cesáro if

lim
n→∞

1

n

n∑
k=1

xk = y.

There is a connection between the Cesáro summability (i.e. the convergence in the sense of Cesáro)
and the statistical convergence. Namely if (xn) ∈ `∞ is statistically convergent to y, then (xn) tends
to y in the sense of Cesáro [20] (Fridy noted that there is an unbounded sequence (xn) which is
statistically convergent to some y but xn tends to ∞ in the sense of Cesáro [10]). It was observed
by Fast that if (xn) is a sequence of nonnegative real numbers statistically convergent to zero, then
(xn) tends to zero in the sense of Cesáro [5]. However, in general this implication is not reversible.
To see this, consider the following simple example. Let xn = a if 3 divides n and put xn = b if 3 does
not divide n, a 6= b. Clearly (xn) tends to (a+ 2b)/3 in the sense of Cesáro, but it is not statistically
convergent. However, we have

lim
n→∞

1

n

n∑
k=1

xk = a · d({n : xn = a}) + b · d({n : xn = b}).
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Osikiewicz developed this idea in [17], where he defined finite and infinite splices. Let E1, . . . , Ek
be a partition of N into k sequences. Let y1, . . . , yk be distinct numbers. Let (xn) be such that

lim
n→∞,n∈Ei

xn = yi.

Then (xn) is called a k-splice. In the same way Osikiewicz defined an infinite splice and he proved
the following.

Theorem 1 (Simplified version of Osikiewicz Theorem [17]). Assume that (xn) is a splice over a
partition {Ei}. Let yi = lim

n→∞,n∈Ei

xn. Assume that d(Ei) exists for each i and∑
i

d(Ei) = 1.

Then

lim
n→∞

1

n

n∑
k=1

xk =
∑
i

yid(Ei).

In fact Osikiewicz considered a more general case, namely matrix summability method and A-
density with the use of infinite matrices A.

If x = (xn) is a sequence and A = (an,k) is a summability matrix, then by Ax we denote the

sequence ((Ax)1, (Ax)2, (Ax)3, . . . ) where (Ax)n =
∞∑
k=1

an,kxk. The matrix A is called regular if

lim
n→∞

xn = L implies lim
n→∞

(Ax)n = L. The well-known Silverman-Töeplitz theorem characterizes

regular matrices in the following way. A matrix A is regular if and only if

(i) lim
n→∞

an,k = 0,

(ii) lim
n→∞

∞∑
k=1

an,k = 1,

(iii) sup
n∈N

∞∑
k=1

|an,k| <∞.

For a non-negative regular matrix A and E ⊂ N, following Freedman and Sember [9], we define
the A-density of E, denoted by δA(E), as follows

δA(E) = lim sup
n→∞

∑
k∈E

an,k = lim sup
n→∞

∞∑
k=1

an,k1E(k) = lim sup
n→∞

(A1E)n,

δA(E) = lim inf
n→∞

∑
k∈E

an,k = lim inf
n→∞

∞∑
k=1

an,k1E(k) = lim inf
n→∞

(A1E)n

where 1E is a 0-1 sequence such that 1E(k) = 1 ⇐⇒ k ∈ E. If δA(E) = δA(E) then we say that the
A-density of E exists and it is denoted by δA(E). Clearly, if A is the Cesaro matrix i.e.

ank =
{ 1

n if n ≥ k
0 otherwise

then δA coincides with the natural density.
Throughout we assume that A is a non-negative regular summability matrix.
We here recall The original Osikiewicz Theorem.

Theorem 2 (Osikiewicz[17]). Assume that A is non-negative regular summability matrix. Assume
that (xn) ∈ `∞ is a splice over a partition {Ei}. Let yi = lim

n→∞,n∈Ei

xn. Assume that δA(Ei) exists

for each i and ∑
i

δA(Ei) = 1.

Then

lim
n→∞

∞∑
k=1

an,kxk =
∑
i

yiδA(Ei).
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In this paper we are interested when the assertion of Osikiewicz Theorem holds. However, we do
not want to assume that the set of indices of a sequence (xn) is divided into appropriate splices. In
our approach we define for a sequence (xn) a density δA(y) of indices of those xn which are close to y
which seems to be a new idea not dealt with so far in the literature. This is a more general approach
than that of Osikiewicz and our treatment is not at all analogous to that of Osikiewicz and involves
essentially new methods of proofs.

By `∞ we denote the set of all bounded sequences of reals. Fix (xn) ∈ `∞. For y ∈ R let

δA(y) = lim
ε→0+

δA({n : |xn − y| ≤ ε})

and

δA(y) = lim
ε→0+

δA({n : |xn − y| ≤ ε}).

If δA(y) = δA(y), then the common value is denoted by δA(y). Formally we should write δ
(xn)
A (y) but

it would be always clear which sequence (xn) is considered.
The main result of this paper is the following.

Theorem 3. Let x = (xn) ∈ `∞. Suppose that the set of limit points of (xn) is countable and δA(y)
exists for any y ∈ R where A is a non-negative regular matrix. Then

lim
n→∞

(Ax)n =
∑
y∈R

δA(y) · y.

The paper is organized as follows. In Section 2 we show a connection between the A-limit lim
n→∞

(Ax)n

and the A-densities δA(y) of (xn). We consider situation when some A-densities, δA(y) or δA(y), are
positive. In Section 3 we prove that if all densities δA(y) are zero, then the set of limit points of
(xn) is uncountable. In fact we prove a more general statement, namely that if (xn) does not have
any I-limit point for some P -ideal I, then its set of limit points is uncountable. In the process we
also give a characterization of A-statistical cluster points which are not A-statistical limit points of
(xn), in terms of δA(y). In Section 4 we show that a sequence (xn) ∈ `∞ with

∑
y∈R δA(y) = 1 is

an infinite splice for which the assumptions of Osikiewicz Theorem are fulfilled. Finally, combining a
number of the previous results from this paper, we present the proof of Theorem 3. In Section 5, in
another direction we show that the Osikiewicz Thereom [17] is actually a particular case of Henstock
Theorem and it can be easily concluded from it. In the last section of the paper we use the notion of
ideal convergence to generalize the Henstock Theorem for AI-summability method which has been
recently introduced in [19].

2. A-limit for sequences with positive densities δA(y) or δA(y)

Lemma 4. Suppose that δA(y) exists for any y ∈ R. Then the set D = {y ∈ R : δA(y) > 0} is
countable and

∑
y∈D

δA(y) ≤ 1.

Proof. Let (rn) be a strictly monotonically decreasing sequence converging to 1. For m ∈ N let

Dm = {y ∈ R : δA(y) ≥ 1/m}. Let y1, . . . , yl ∈ Dm be distinct. Then for ε = mini 6=j
|yi−yj |

3 > 0 the
sets Ei = {n : |xn − yi| ≤ ε} are pairwise disjoint and δA(Ei) ≥ 1/m. Since A is also regular so we
can choose a n0 such that ∑

k∈Ei

an,k ≥
1

m
and

∞∑
k=1

an,k ≤ rp

for n ≥ n0 and for all i = 1, . . . , l where p is fixed. Since E1, . . . , El are pairwise disjoint, so∑
k∈E1∪E2∪···∪El

an,k =
l∑

j=1

∑
k∈Ej

an,k ≥
l

m
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for n ≥ n0. Therefore we must have l ≤ m[rp] where as usual [rp] denotes the largest positive integer
less or equal to rp. Hence Dm must be finite and also∑

y∈Dm

δA(y) ≤ rp.

Since D1 ⊃ D2 ⊃ D3 . . . and D =
⋃
m
Dm, we obtain∑

y∈D
δA(y) = lim

m→∞

∑
y∈Dm

δA(y) ≤ rp.

Since this is true for every rp and rp → 1 so we must have∑
y∈D

δA(y) ≤ 1.

Clearly D must be countable. �

Lemma 4 would not remain true if one would change δA(y) to δA(y), that is D := {y ∈ R : δA(y) >
0} need not be countable. Note that a point y with δA(y) > 0 is an A-statistical limit point (which
will be proved later).

Proposition 5. There is a bounded sequence (xn) such that δA({y ∈ R : |xn − y| ≤ ε}) = d({y ∈ R :
|xn − y| ≤ ε}) = 1 for any ε > 0 and any y ∈ [0, 1] where A is the Cesaro matrix.

Proof. Let (zn) be a sequence such that its set of limit points equals [0, 1]. One can define (zn) in
such a way that any rational number from [0, 1] appears infinitely many times in the sequence (zn).

Let nk = 10k
2
. Then

|[nk + 1, nk+1]|
nk+1

=
10(k+1)2 − 10k

2 − 1

10(k+1)2
= 1− 1

102k+1
− 1

10(k+1)2
→ 1.

Let B0 = [0, n1] and Bk = [nk + 1, nk+1] for k ≥ 1. Clearly if A consists of infinitely many Bk’s, then
d(A) = 1. Let xn = zk if n ∈ Bk. Let y ∈ [0, 1]. Then for every ε > 0 the set C := {k : |zk − y| < ε}
is infinite. Note that

A := {n : |xn − y| < ε} =
⋃
k∈C

Bk.

Therefore d(A) = 1. �

The next result is a slight improvement of Osikiewicz Theorem. We will show in Section 4 that
the condition

∑
y∈D

δA(y) = 1 implies that the set of indices of (xn) can be divided into appropriate

splices. The method which we use in our proof is similar to that of Osikiewicz, but not analogous as
we use essentially new arguments.

Theorem 6. Suppose that x = (xn) is a bounded sequence, δA(y) exists for every y ∈ R and∑
y∈D

δA(y) = 1. Then

lim
n→∞

(Ax)n =
∑
y∈D

δA(y) · y.

Proof. Since (xn) is bounded, there is M > 0 such that |xn| ≤ M for every n ∈ N. Let D = {yi}i
i.e. yi’s are distinct. Let ε > 0 be given and let r ∈ N be such that

r∑
i=1

δA(yi) > 1 − ε and

∞∑
i=r+1

δA(yi) · yi < ε. Let N ∈ N be such that 1
3 min

1≤i 6=j≤r
|yi − yj | > 1/N and such that the set

Ei := {j : |xj − yi| < 1/N} have the following property

δA(yi) ≤ δA(Ei) ≤ δA(Ei) ≤ δA(yi) +
ε

rM0
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for i = 1, . . . , r where M0 = max{|y1|, |y2|, . . . |yr|}. Note that E1, . . . , Er are pairwise disjoint. Now
choose a m0 ∈ N such that

δA(Ei)−
1

N
<
∑
k∈Ei

an,k < δA(Ei) +
1

N

for every n ≥ m0 and i = 1, . . . , r. Therefore

δA(yi)−
1

N
− ε

rM0
<
∑
k∈Ei

an,k < δA(yi) +
1

N
+

ε

rM0

for every n ≥ m0 and i = 1, . . . , r. Then for n ≥ m0 we have

(Ax)n =

∞∑
k=1

an,kxk ≤
∑
k∈E1

an,k ·
(
y1 +

1

N

)
+ · · ·+

∑
k∈Er

an,k ·
(
yr +

1

N

)
+

∑
k∈(E1∪···∪Er)c

an,k ·M.

Since A is regular, we can choose a m1 ≥ m0 such that for all n ≥ m1

∞∑
k=1

an,k < 1 + ε.

Now observe that

1 + ε >
∞∑
k=1

an,k =
∑

k∈E1∪···∪Er

an,k +
∑

k∈(E1∪···∪Er)c

an,k

where from above we have∑
k∈E1∪···∪Er

an,k =

r∑
j=1

∑
k∈(Ej

an,k >

r∑
j=1

δA(yj)−
r

N
− ε

M0
> 1− r

N
− (1 +

1

M0
) · ε.

Therefore for n ≥ m0 we have

(Ax)n ≤
∑
k∈E1

an,k ·
(
y1 +

1

N

)
+ · · ·+

∑
k∈Er

an,k ·
(
yr +

1

N

)
+
Mr

N
+ (2 +

1

M0
)Mε

and analogously

(Ax)n ≥
∑
k∈E1

an,k ·
(
y1 −

1

N

)
+ · · ·+

∑
k∈Er

an,k ·
(
yr −

1

N

)
− Mr

N
− (2 +

1

M0
)Mε.

Hence for n ≥ m0 ∣∣∣∣∣(Ax)n −
∑
i

δA(yi) · yi

∣∣∣∣∣ ≤
∣∣∣∣∣(Ax)n −

r∑
i=1

δA(yi) · yi

∣∣∣∣∣+ ε

≤
r∑
i=1

∣∣∣∣∣∣
∑
k∈Ei

an,k ·
(
yi ±

1

N

)
− δA(yi) · yi

∣∣∣∣∣∣+
Mr

N
+ (2M +

M

M0
+ 1)ε

≤
r∑
i=1

∣∣∣∣∣∣
( ∑
k∈Ei

an,k − δA(yi)
)
·
(
yi ±

1

N

)∣∣∣∣∣∣+
r

N
+
Mr

N
+ (2M +

M

M0
+ 1)ε

≤
( 1

N
+

ε

rM0

)
· r · (M0 +

1

N
) +

r

N
+
Mr

N
+ (2M +

M

M0
+ 1)ε

Since N can be chosen arbitrarily large, we obtain∣∣∣∣∣(Ax)n −
∑
i

δA(yi) · yi

∣∣∣∣∣ ≤ (2M +
M

M0
+ 2)ε

for every ε > 0. Therefore lim
m→∞

(Ax)n =
∑
i
δA(yi) · yi. �

Proposition 7. Assume that x = (xn) is bounded. If δA(y) = 1, then y is a limit point of the
sequence

(
(Ax)n

)
.
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Proof. Since (xn) is bounded, there is M > 0 such that |xn| ≤M for every n ∈ N. Let y ∈ R be such
that δA(y) = 1. Let N ∈ N. Let EN = {j ∈ N : |xj − y| < 1/P} where P = P (N) > N is such that

1 ≤ δA(EN ) ≤ 1 + 1
2N . Then there is kN ≥ N such that∑

k∈EN

akN ,k > δA(EN )− 1

2N
≥ 1− 1

2N

and also from regularity of A
∞∑
k=1

akN ,k < 1 +
1

N
.

Then we have∑
k∈EN

akN ,k ·
(
y − 1

N

)
−
∑
k/∈EN

akN ,k ·M ≤
∞∑
k=1

akN ,k · xk ≤
∑
k∈EN

akN ,k ·
(
y +

1

N

)
+
∑
k/∈EN

akN ,k ·M.

Hence

|(Ax)kN − y| = |
∞∑
k=1

akN ,k − y| ≤ (
1

N
+

1

N2
) +

∑
k/∈EN

akN ,k · (M + |y|) +
|y|
N

≤
( 1

2N
+

1

N

)
· (M + |y|) +

|y|+ 1

N
+

1

N2
.

Therefore
lim
N→∞

(Ax)kN = y.

�

Immediately we obtain the following.

Corollary 8. Let (xn) be a bounded sequence. Suppose that there are y and z (y 6= z) with δA(y) =
δA(z) = 1. Then the A limit

lim
n→∞

(Ax)n

does not exist.

It turns out that we cannot weaken the Corollary 8 assuming that δA(y), δA(z) > r for some
r ∈ (0, 1).

Proposition 9. Let t ∈ N, r, s ∈ [1, 2t − 1] and L ∈ R. Let y, z ∈ R with y 6= z. Then there is a
sequence (xn) such that d(y) = r/2t, d(z) = s/2t (i.e. when we are taking the limit with respect to
Cesaro matrix) and

lim
n→∞

1

n

n∑
i=1

xi = L.

Proof. Let y′ and z′ be such that yr/2t + y′(1 − r)/2t = zs/2t + z′(1 − s)/2t = L. Define nk
as follows. Let n0 = 0 and nk = 2t10k

2
, k ∈ N. Let Bk = [nk−1 + 1, nk], k ∈ N. Note that

|Bk| = 2t(10k
2 − 10(k−1)2). Let Ak ⊂ Bk be defined as follows

A2k =
10(2k)

2−10(2k−1)2⋃
m=1

[n2k−1 + 1 +m2t, n2k−1 + 1 +m2t + r]

and

A2k+1 =

10(2k+1)2−10(2k)
2⋃

m=1

[n2k + 1 +m2t, n2k + 1 +m2t + s].

Now, we are ready to define (xn). Let xn = y if n ∈ A2k, xn = y′ if n ∈ B2k \A2k, xn = z if n ∈ A2k+1

and xn = z′ if n ∈ B2k+1 \A2k−1. Note that

d(y) = d
( ∞⋃
k=1

A2k

)
=

r

2t
, d(y′) = d

( ∞⋃
k=1

B2k \A2k

)
= 1− r

2t
,
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d(z) = d
( ∞⋃
k=0

A2k+1

)
=

s

2t
and d(z′) = d

( ∞⋃
k=0

B2k+1 \A2k+1

)
= 1− s

2t
.

Note that for any k ∈ N and m = 1, . . . , 10(2k)2 − 10(2k−1)2 we have

n2k−1+1+(m+1)2t∑
i=n2k−1+1+m2t

xi = ry + (1− r)y′ = 2tL.

Similarly, for any k ∈ N and m = 1, . . . , 10(2k+1)2 − 10(2k)2 we have

n2k+1+(m+1)2t∑
i=n2k+1+m2t

xi = sz + (1− s)z′ = 2tL.

From this we obtain that

lim
n→∞

1

n

n∑
i=1

xi = L.

�

One can improve Proposition 9 assuming that d(y) and d(z) are arbitrary numbers from (0, 1) not
necessarily with finite dyadic expansion.

3. Relation between A-statistical limit points and points having positive A-density

We first recall some basic facts about ideal convergence which will be used in this section as also
in the last section. Let I be a proper nontrivial admissible ideal in N and let (xn) ∈ `∞. We say
that a sequence (xn) of real numbers tends to y with respect to I provided {n : |xn − y| ≥ ε} ∈ I
for every ε > 0, in symbols y = I − lim

n→∞
xn. It is well-known that if I is maximal and (xn) ∈ `∞,

then I − lim
n→∞

xn exists [14]. A point y is called I-cluster point of (xn) if {n : |xn − y| ≤ ε} /∈ I
for every ε > 0. We say that y is an I-limit point of (xn) if there is a set B ⊂ N, B /∈ I such that
lim
n∈B

xn = y [14]. Since I contains all singletons, clearly I-limit points are I-cluster points. Id-cluster

points and Id-limit points are called statistical cluster points and statistical limit points, respectively
(see [11]) while IA-cluster points and IA-limit points are called A-statistical cluster points and A-
statistical limit points, respectively where IA = {B ⊂ N : δA(B) = 0} forms an admissible ideal in
N. Characterizations of the sets of I-cluster points and I-limit points can found in [3, 15, 14]. Let
Ifin be the ideal of finite subsets of N. The classical Bolzano–Weierstrass Theorem says that every
sequence (xn) ∈ `∞ possesses a limit point, that is an Ifin-limit point.

We start with the following example.

Proposition 10. There is (xn) such that d(y) = 0 for all y ∈ R and (xn) is Cesáro summable.

Proof. Define (xn) in the following way

( 0, 1︸︷︷︸
B1

, 0, 1,
1

2︸ ︷︷ ︸
B2

, 0, 1,
1

4
,
3

4
,
1

2︸ ︷︷ ︸
B3

, 0, 1,
1

8
,
7

8
,
2

8
,
6

8
,
3

8
,
5

8
,
4

8︸ ︷︷ ︸
B4

, . . . )

which consists of blocks B1, B2, . . . . For k and m = 0, 1, . . . , 2k − 1 let A = {n : m
2k
≤ xn ≤ m+1

2k
}.

Then |A ∩Bn| = 2n−k + 1 for each n ≥ k. Hence d(A) = 1
2k

. Therefore d(y) = 0 for y ∈ [0, 1]. �

Note that the set of limit points of (xn) defined in the proof of Proposition 10 equals [0, 1], and
therefore is uncountable. This is a consequence of the assumption that d(y) = 0 for every y, or the
fact that (xn) does not have any statistical limit point. The next two results are proved in the more
general settings of ideals. We will prove that if (xn) does not have any I-limit point, for some ideal
I with a special property, then its set of limit points is uncountable.
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Lemma 11. Let I be an ideal of subsets of N. Assume that X := {n : xn ∈ [a, b]} /∈ I. Suppose that

{n : a ≤ xn ≤ t− ε} ∈ I or {n : t+ ε ≤ xn ≤ b} ∈ I

for any t ∈ (a, b) and any ε > 0 such that ε < min{t − a, b − t}. Then there is y ∈ [a, b] such that
{n : |xn − y| ≥ ε} ∈ I for every ε > 0.

Proof. Suppose that for any y ∈ [a, b] there is εy > 0 with {n : |xn − y| ≥ εy} /∈ I. Since [a, b] is
compact, there are a ≤ y1 < y2 < · · · < yk ≤ b such that {(yi − εi, yi + εi) : i = 1, . . . , k} is an open
cover of [a, b], where εi = εyi . We may assume that none element of this cover contains over element
of this subcover. Let Ai = {n : |xn − yi| < εi}. Note that A1 ∪ · · · ∪Ak = X and therefore there is i
with Ai /∈ I. Since X \Ai /∈ I, there is j 6= i such that Aj \Ai /∈ I.

Assume that i < j. Since yi < yj and (yj − εj , yj + εj) is not contained in (yi − εi, yi + εi), then
yi + εi < yj + εj . Let t = yi + εi. There is εt > 0 with B := {n : |xn − t| ≥ εt} /∈ I. Consider two
cases.
Case 1. If there is ε > 0 such that B′ := {n : |xn−t| < ε} ∈ I, then Ai\B′ /∈ I and Aj \(Ai∪B′) /∈ I.
Hence

{n : a ≤ xn ≤ t− εt} /∈ I and {n : t+ εt ≤ xn ≤ b} /∈ I.
Case 2. If {n : |xn − t| < ε} /∈ I for any ε > 0, then {n : |xn − t| < εt/2} /∈ I. Since B /∈ I, we have
either {n : a ≤ xn ≤ t− εt} /∈ I or {n : t+ εt ≤ xn ≤ b} /∈ I. Assume that {n : a ≤ xn ≤ t− εt} /∈ I.
Then {

n : a ≤ xn ≤ (t− 3

4
εt)−

1

4
εt

}
/∈ I and

{
n : (t− 3

4
εt) +

1

4
εt ≤ xn ≤ b

}
/∈ I.

�

For any nonempty set A, we will denote by A<N the family of all finite sequences of elements of A.
For any finite sequence s = (s1, . . . , sn) ∈ A<N and a ∈ A by ŝ a we denote a concatenation of s and a,
i.e. ŝ a = (s1, . . . , sn, a). By |s| we denote the length of s. If α ∈ AN, then let α|n = (α(1), . . . , α(n))
and α|0 = ∅, where ∅ stands for empty sequence.

We will also need the following facts: An ideal I of N is called a P -ideal if for any sequences of
sets (Dn) from I there is another sequence of sets (Cn) in I such that Dn M Cn is finite for every n
and

⋃
nCn ∈ I. Equivalently if for each sequence (An) of sets from I there exists A∞ ∈ I such that

An \A∞ is finite for all n ∈ N. If I is a P -ideal then a sequence (xn) is I-convergent to x if and only
if there is a M ∈ F(I) (where F(I) = {B ⊂ N : Bc ∈ I} is the dual filter) such that (xn)n∈M is
usually convergent to x (see [14]).

A function ϕ : 2N → [0,∞] is called a submeasure if ϕ(E) ≤ ϕ(E ∪ F ) ≤ ϕ(E) + ϕ(F ) for any
E,F ∈ 2N. A submeasure ϕ is called lower semicontinuous if lim

m→∞
ϕ(E ∩ [1,m]) = ϕ(E). By Exh(ϕ)

denote the set of all E ⊂ N with lim
m→∞

ϕ(E \ [1,m]) = 0. The celebrated Solecki’s characterization

[21] states that an ideal I is an analytic P -ideal if and only if it is of the form Exh(ϕ) for some lower
semicontinuous submeasure ϕ on N.

The following result seems to be a mathematical folklore but we present its short proof for sake of
completeness.

Proposition 12. Let A be a non-negative regular matrix. Then IA is a P -ideal.

Proof. Let ϕA(E) = supn∈N
∑

k∈E an,k. We need to show that ϕ is a lower semicontinuous submeasure
on N and Exh(ϕ) = IA. Clearly ϕA is monotonous and subadditive. We will show that it is lower
semicontinuous. Fix E ⊂ N. Let s := ϕA(E) = supn∈N

∑
k∈E an,k and let ε > 0. We can find n ∈ N

such that
∑

k∈E an,k > s− ε/2. Then there is m ∈ N with

s− ε = s− ε/2− ε/2 <
∑

k∈E,k≤m
an,k ≤ sup

n∈N

∑
k∈E,k≤m

an,k = ϕA(E ∩ [1,m]).

Since the sequence (ϕA(E ∩ [1,m])) is non-decreasing, then lim
m→∞

ϕA(E ∩ [1,m]) = ϕA(E).

Assume that δA(E) = 0. Let ε > 0. There is n0 such that
∑

k∈E an,k < ε for n ≥ n0. Since∑
k∈E an,k is convergent for any n < n0, there is m such that

∑
k∈E,k>m an,k < ε for n < n0.
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Consequently

ϕA(E \ [1,m]) = sup
n∈N

∑
k∈E,k>m

an,k < ε.

Hence IA ⊂ Exh(ϕA).
Assume now that lim

m→∞
ϕA(E \ [1,m]) = 0. Let ε > 0. There is m ∈ N such that

∑
k∈E,k>m an,k <

ε/2 for every n ∈ N. Since lim
n→∞

an,k = 0 for every n ∈ N, there is n0 such that an,k < ε/(2m)

for n ≥ n0 and k ≤ m. Therefore
∑

k∈E an,k < ε for n ≥ n0. That means that δA(E) = 0. Thus
IA ⊃ Exh(ϕA). �

Proposition 13. Let I be a P -ideal. Assume that (xn) ∈ `∞ does not have any I-limit points. Then
the set of limit points of (xn), i.e. the set

{y ∈ R : xnk
→ y for some increasing sequence (nk) of natural numbers},

is uncountable and closed.

Proof. Let I∅ = [a, b] be such that (xn) ⊂ [a, b]. Then there are t ∈ (a, b) and ε > 0 such that

{n : a ≤ xn ≤ t− ε} /∈ I and {n : t+ ε ≤ xn ≤ b} /∈ I.
If there are not such t and ε, then by Lemma 11 there is y ∈ [a, b] such that {n : |xn− y| ≥ ε} ∈ I for
every ε > 0. This means that (xn) is I convergent to y. Since I is a P -ideal, so y is an I-limit point
of (xn) which yields a contradiction. Let I(0) = [a, t− ε] and I(1) = [t+ ε, b]. Proceeding inductively

we define a family {Is : s ∈ N<N} of nontrivial compact intervals such that

(i) Isˆi ⊂ Is for i = 0, 1 and s ∈ N<N;
(ii) {n : xn ∈ Is} /∈ I for s ∈ N<N.

Note that for any α ∈ {0, 1}N and any k ∈ N there are infinitely many xn’s with xn ∈ Iα|k. Therefore

there is xα ∈
⋂
k Iα|k which is a limit point of (xn). Note that xα 6= xβ for distinct α, β ∈ {0, 1}N.

Therefore the set of limit points of (xn) is uncountable. Note that the set of limit points of (xn) is
always closed. �

Using the same reasoning one can prove a slightly stronger assertion, which will be used in the
sequel.

Corollary 14. Let [a, b] be a fixed interval and I be a P -ideal. Assume that {n : xn ∈ [a, b]} /∈ I and
any point y ∈ (a, b) is not an I-limit point of (xn). Then the set of limit points of (xn) in [a, b], i.e.
the set

{y ∈ (a, b) : xnk
→ y for some increasing sequence (nk) of natural numbers},

is uncountable and closed.

The next Corollary is a counterpart of Bolzano–Weierstrass Theorem for I-limit points.

Corollary 15. Let (xn) ∈ `∞. Assume that the set of limit points of (xn) is countable. Then the
sequence (xn) has at least one I-limit for every P -ideal I.

Filipów, Mrożek, Rec law and Szuca have introduced in [6] the notion of Bolzano–Weierstrass
property (in short BW property) for ideals defined on N. An ideal I satisfies BW if for any bounded
sequence (xn) there is a set of indexes E ⊂ N such that (xn)n∈E is I|E-convergent where I|E =
{X ∩ E : X ∈ I}. It was mentioned in [6] that the density zero ideal does not satisfy BW. Very
probably none ideal of the form IA satisfy BW. For other Bolzano–Weierstrass properties of ideals
we refer the reader to [6].

Note that if I is maximal and y is an I-cluster point of (xn), then y is an I-limit of (xn).
Fridy observed in [11] that statistical limit points of a sequence are its statistical cluster points,

and there is a sequence (xn) such that 0 is statistical cluster point of (xn) but 0 is not a statistical
limit point of (xn). Below we present a characterization of A-statistical limit points in terms of points
with positive A-density. But before that we prove the following lemma which helps us to characterize
those A-statistical cluster points of a sequence which are its A-statistical limit points.
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Lemma 16. Let r ∈ (0, 1), r1 ≥ r2 ≥ r3 ≥ . . . , lim
n→∞

rn = r and let (En) be a decreasing sequence of

subsets of N.

(i) If δA(En) = rn, n ∈ N, then there is a subset E of N with δA(E) = r and such that E ⊂∗ En,

n ∈ N, i.e. En \ E is finite for every n ∈ N. Moreover, if δA(En)→ r, then δA(E) = r.
(ii) If δA(En) = rn, n ∈ N, then there is a subset E of N with δA(E) = r and such that E ⊂∗ En,

n ∈ N.

Proof. (i) Let (pn) be an increasing sequence of natural numbers such that
∑
k∈En

aj,k > rn −
1

3n
for

every j ≥ pn. For each n ∈ N now choose mn > pn such that
∑

k∈En∩[1,mn]

aj,k > rn−
1

3n
− 1

3n
> rn−

1

n

for all j, pn ≤ j ≤ pn+1. Thus we have two increasing sequences of natural numbers (pn) and (mn)
such that ∀ j ∈ [pn, pn+1] we have ∑

k∈En∩[1,mn]

aj,k > rn −
1

n
.

Put E =
∞⋃
n=1

En ∩ [1,mn+1]. Take pn ≤ j < pn+1. Then

∑
k∈E

aj,k ≥
∑

k∈En∩[1,mn]

aj,k > rn −
1

n
.

Thus lim inf
n→∞

∑
k∈E

an,k ≥ r which means that δA(E) ≥ r. Since E1 ⊃ E2 ⊃ E3 ⊃ . . . , so
∞⋃
n=j

En ∩

[1,mn+1] ⊂ Ej and Ej \E ⊂
j−1⋃
n=1

En∩[1,mn+1]. Therefore E ⊂∗ Ej and consequently δA(E) ≤ δA(Ej)

and δA(E) ≤ δA(Ej). Hence δA(E) = r and if δA(En)→ r, then δA(E) = r.
(ii) As before we can choose two increasing sequences of natural numbers (pn) and (mn) such that∑

k∈En∩[1,mn]

apn,k > rn −
1

n

for every n. Put E =
∞⋃
n=1

En ∩ [1,mn+1]. Then

∑
k∈E

apn+1,k ≥
∑

k∈En∩[1,mn+1]

apn+1,k > rn+1 −
1

n+ 1
.

Thus δA(E) = r and E ⊂∗ En ∀ n ∈ N. �

We now have the following characterization of A-statistical limit points.

Theorem 17. Let (xn) ∈ `∞. A point y ∈ R is an A-statistical limit point of (xn) if and only if
δA(y) > 0. Moreover if δA(y) > 0, then there is E ⊂ N with δA(E) = δA(y) and lim

n∈E
xn = y.

Proof. Assume that δA(y) = 0 and suppose that y is an A-statistical limit point of (xn). Then there is
E ⊂ N such that δA(E) > 0 and lim

n∈E
xn = y. Note that E ⊂∗ {j : |xj−y| ≤ ε} for every ε > 0. Hence

δA(E) ≤ δA({j : |xj − y| ≤ ε}) for every ε > 0. Therefore δA(E) = 0 which yields a contradiction.

Assume that δA(y) > 0. Let En = {j : |xj − y| ≤ 1/n}. Then (En) is a decreasing sequence with

δA(En) → δA(y). By Lemma 16 there is E ⊂∗ En, n ∈ N, with δA(E) = δA(y). Since almost all
elements of E are contained in En, then clearly lim

j→∞,j∈E
xj = y. Hence y is an A-statistical limit

point of (xn).
The last part of the assertion follows in a similar way. �
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As a corollary we obtain a characterization of those A-statistical cluster points which are not
A-statistical limit points.

Corollary 18. Let (xn) ∈ `∞. A point y ∈ R is an A-statistical cluster point of (xn) and it is not
an A-statistical limit point if and only if

• δA({j : |xj − y| ≤ 1/n}) > 0 for every n;

• δA(y) = lim
n→∞

δA({j : |xj − y| ≤ 1/n}) = 0.

4. When a sequence is a splice and the proof of the main result

In this section we show how to divide the set of indices of a sequence (xn) to obtain a partition
{Ei} such that (xn) becomes a splice.

Proposition 19. Let (xn) ∈ `∞. Assume that there exist distinct real numbers y1, . . . , ym with

δA(yi) > 0 ∀i such that
m∑
i=1

δA(yi) = 1. Then there exists a partition E1, . . . Em, Em+1 such that

δA(Ei) = δA(yi), for i = 1, . . . ,m, δA(Em+1) = 0 and lim
n∈Ei

xn = yi.

Proof. By Theorem 17 there are E′1, . . . , E
′
m with lim

n∈E′i
xn = yi. Let ε = min{|yi − yj |/3 : i, j =

1, . . . ,m, i 6= j}. Put Ei = {n : |xn − yi| ≤ ε} ∩ E′i, i = 1, . . . ,m. Clearly δA(Ei) = δA(yi),

Em+1 = N \
m⋃
i=1

Ei has A-density zero, E1, . . . Em, Em+1 are pairwise disjoint, and lim
n∈Ei

xn = yi. �

Consider the following example. Let E1, . . . , Ek, Ek+1 be such that δA(E1) + · · · + δA(Ek) = 1,
δA(Ek+1) = 0 and Ek+1 is infinite. Define (xn) in the following way. Put xn = i if n ∈ Ei, i = 1, . . . , k
and (xn)n∈Ek+1

be dense in the unit interval [0, 1]. For a such sequence (xn) we can apply Theorem
6. It turns out that the Osikiewicz Theorem also can be applied in this situation. To do this we need
a partition of Ek+1 into infinitely many infinite subsets F1, F2, . . . such that lim

n∈Fk

xk exists and apply

the following Proposition 20.

Proposition 20. Let (xn) ∈ `∞. Assume that there exist distinct real numbers y1, y2, . . . such that

δA(yi) > 0 ∀i and
∞∑
i=1

δA(yi) = 1. Then there exists a partition E1, E2, . . . such that δA(Ei) = δA(yi),

i = 1, 2, . . . and lim
n∈Ei

xn = yi.

Proof. By Theorem 17 there are E′1, E
′
2, . . . with lim

n∈E′i
xn = yi. Note that E′i ∩ E′j is finite if i 6= j.

Define E1, E2, . . . in the following way. Let E′′1 = E′1, E′′m = E′m \
m−1⋃
i=1

E′i, k ≥ 2. Since E′m ∩
m−1⋃
i=1

E′i

is finite, then δA(E′′m) = δA(E′m) = δA(ym), m ∈ N. Let E = N \
∞⋃
m=1

E′m. If E is finite, then put

E1 = E ∪ E′′1 and Em = E′′m, m ≥ 2. If the set E is infinite, then enumerate it as {n1, n2, . . . } and
put Em = E′′m ∪ {nm}. Clearly lim

n∈Em

xn = ym. �

Consider the following example. Let F1, F2, . . . be a partition of N such that δA(Fi) = 1/2i, i ∈ N.
Define a new partition E1, E2, . . . as follows. Let F1 = {ak : k ∈ N}. Put Ek = Fk+1 ∪ {ak}. Then
∞⋃
k=1

Ek = N but
∞∑
k=1

δA(Ek) = 1/2. The next lemma shows how to find a nice refinement of partitions

of N.

Lemma 21. Assume that {En : n = 1, 2, . . . } is a partition of N such that
∞∑
n=1

δA(En) < 1. Then

there is a partition {Fn : n = 0, 1, 2, . . . } of N such that

(i) Fn ⊂ En;
(ii) δA(Fn) = δA(En);
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(iii) δA(F0) = 1−
∞∑
n=1

δA(En).

Proof. Let (εn) be a strictly decreasing sequence of positive real numbers with lim
n→∞

εn = 0. We define

inductively a strictly increasing sequence (mn) of natural numbers such that∑
k∈[mn−1,j]\(E1∪E2∪···∪En)

aj,k ≥ 1− (d(E1) + d(E2) + · · ·+ d(En))− εn

for every j ≥ mn. Let F0 =
∞⋃
n=1

(
[mn−1,mn+1] \

n⋃
i=1

Ei
)

where m0 = 0. Let mn ≤ j < mn+1. Then∑
k∈F0

aj,k ≥
∑

k∈[mn−1,j]\(E1∪E2∪···∪En)

aj,k ≥ 1− (d(E1) + d(E2) + · · ·+ d(En))− εn.

Therefore δA(F0) ≥ 1 −
∞∑
n=1

δA(En). Let Fn = En \ F0 for every n ∈ N. Note that F0 ∩ En is finite

∀ n ∈ N. Therefore δA(Fn) = δA(En). Since F0 = N \
∞⋃
n=1

Fn, then δA(F0) ≤ 1 −
∞∑
n=1

δA(En). Hence

δA(F0) = 1−
∞∑
n=1

δA(En). �

The next theorem gives a sufficient condition for a sequence (xn) to have
∑
y∈D

d(y) = 1 for some

countable set D.

Theorem 22. Let (xn) ∈ `∞. Suppose that the set of limit points of (xn) is countable and δA(y)
exists for any y ∈ R. Then ∑

y∈D
δA(y) = 1,

where D = {y ∈ R : δA(y) > 0}.

Proof. Suppose that ∑
y∈D

δA(y) < 1.

Then by Corollary 14 the set D is non-empty. By Lemma 4 the set D is countable. Enumerate D as
{y1, y2, . . . }. By Proposition 20 there is a partition {Ek : k = 1, 2, . . . } of N such that d(Ek) = d(yk)
and limn→∞,n∈Ek

xn = yk. By Lemma 21 there is a partition {Fk : k = 0, 1, 2, . . . } such that Fk ⊂ Ek,

δA(Fk) = δA(Ek) and δA(F0) = 1−
∞∑
k=1

δA(Fk). Since δA(y) = 0 for every y /∈ D, then by Proposition

13 applied to the sequence (xn)n∈F0 and to the ideal IA|F0 = {E ∩ F0 : E ∈ IA}, we obtain that the
sequence (xn)n∈F0 has uncountably many limit points which contradicts the assumption. �

Finally note that combining Theorem 6 and Theorem 22 we obtain Theorem 3.

5. A different view of Osikiewicz Theorem

We first recall the following result of Henstock.

Theorem 23 (Henstock [12]). Let (xn) ∈ `∞. Assume that A is non-negative regular summability
matrix. Assume that G(t) = δA({n : xn ≤ t}) exists for every t ∈ R. Then

lim
n→∞

∞∑
k=1

an,kxk =

∫ ∞
−∞

tdG(t).

We now show that The Osikiewicz Theorem (Theorem 2) follows easily from Theorem 23. The
original Osikiewicz proof is relatively long but it is not based on Theorem 23.
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Proof. At first we will show that G(t) = δA({n ∈ N : xn ≤ t}) exists for every t ∈ R. Fix ε > 0. Let

k ∈ N be such that
k∑
i=1

δA(Ei) > 1− ε. Let t ∈ R \ {y1, . . . , yk}. We may assume that y1 < y2 < · · · <

yk. Then for any t there is j = 1, . . . , k − 1 such that yj < t < yj−1 or t < y1 or t > yk. Assume that
yj < t < yj−1.

Put δA(E) = lim inf
n→∞

∑
n∈E

an,k and δA(E) = lim sup
n→∞

∑
n∈E

an,k. Then δA({n : xn ≤ t}) ≥ d(E1) + · · ·+

d(Ej) and δA({n : xn ≤ t}) ≤ 1−d(Ej+1)−· · ·−d(Ek). Thus δA({n : xn ≤ t})−δA({n : xn ≤ t}) ≤ ε.
Therefore δA({n : xn ≤ t}) exists for every t ∈ R.

To prove that
∞∫
−∞

tdG(t) =
∑
i
yiδA(Ei) we need to show that lim

t→y+i
G(t) − lim

t→y−i
G(t) = δA(Ei). In

fact it is enough to show that lim
t→y+i

G(t)− lim
t→y−i

G(t) ≥ δA(Ei) since lim
t→∞

G(t) = 1, lim
t→−∞

G(t) = 0, G

is non-decreasing and
∑
i
δA(Ei) = 1.

For any ε > 0 we have Ei \ Fε ⊂ {n : yi − ε < xn < yi + ε} where Fε is a finite subset of N. Thus
δA({n : yi − ε < xn < yi + ε}) ≥ δA(Ei) for any ε > 0. Note that δA({n : yi − ε < xn < yi + ε}) =
G(yi + ε)−G(yi − ε) = δA({n : yi − ε < xn < yi + ε}). Thus lim

t→y+i
G(t)− lim

t→y−i
G(t) ≥ δA(Ei). �

6. A generalization of the Henstock theorem

In this section our main goal is to generalize the Henstock theorem. Instead of the limit lim
n→∞

∑∞
k=1 an,kxk

in the matrix summability method, we will consider an ideal limit I− lim
n→∞

∑∞
k=1 an,kxk which is called

AI-summability method which has been very recently introduced by Savas, Das and Dutta [19] (one
can see [18] for more related works).

After the study of the notion of I-convergence by Kostyrko, Šalát, and Wilczyński [14] (which is
a natural generalization of the usual convergence and the statistical convergence) a lot progress was
done in recent years in applications of I-convergence in analysis (see [1], [6], [7], [8], [16], [13], [2] and
[4]).

Let I be an ideal on N. For a non-negative regular matrix A and a set E ⊂ N, we define the
I-extension of δA by

I − δA(E) = I − lim
n→∞

∑
n∈E

an,k.

Note that if I is maximal, then I − δA(E) is well-defined for any E ⊂ N.
The following propostion is an ideal counterpart of a known result.

Proposition 24. Let I be an ideal and let f : R → R be a continuous function. Assume that
F, F1, F2, . . . are non-decreasing functions such that Fn(t) tends to F (t) with respect to I for every
point t of continuity of F . Then

∞∫
−∞

f(t)dF (t) = I − lim
n→∞

∞∫
−∞

f(t)dFn(t).

Proof. Let ε > 0. There is M > 0 with |
∞∫
−∞

f(t)dF (t)−
M∫
−M

f(t)dF (t)| < ε/4. Let ρ > 0 be such that

for any partition P = {−M = x0 < x1 < · · · < xm = M} of [−M,M ] with mesh less than ρ we have∣∣∣ ∞∫
−∞

f(t)dF (t)−
m∑
i=1

f(xi)(F (xi)− F (xi−1))
∣∣∣ < ε/4.

Fix a partition P = {−M = x0 < x1 < · · · < xm = M} of [−M,M ] with mesh less than ρ. We
may assume that every xi is a continuity point of F . Since F (xi) = I − lim

n→∞
Fn(xi), then Ai = {n :
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|F (xi)−Fn(xi)| ≥ ε/(4mK)} ∈ I where K = sup{|f(x)| : x ∈ [−M,M ]}. Let E = E0∪E1∪· · ·∪Em.
Then for any n ∈ N \ E we have |F (xi)− Fn(xi)| < ε/(4mK). Therefore for such n,∣∣∣ m∑

i=1

f(xi)(F (xi)− F (xi−1))−
m∑
i=1

f(xi)(Fn(xi)− Fn(xi−1))
∣∣∣ =

∣∣∣ m∑
i=1

f(xi)(F (xi)− Fn(xi))−
m∑
i=1

f(xi)(F (xi−1)− Fn(xi−1))
∣∣∣ ≤ ε/2.

Finally ∣∣∣ ∞∫
−∞

f(t)dF (t)−
m∑
i=1

f(xi)(Fn(xi)− Fn(xi−1))
∣∣∣ ≤ ε

for any n ∈ N \ E. The result follows. �

Let (xk) be a sequence of real numbers. Let Gn : R→ [0, 1] be given by

Gn((xk), t) =
∞∑
k=1

an,k1[xk,∞)(t).

Lemma 25. Let t ∈ R and let I be an ideal. Assume that s = I − lim
n→∞

Gn(t). Then s = I − δA({n ∈
N : xn ≤ t}).

Proof. By E denote the set of those k’s such that xk ≤ t. Then

Gn((xk), t) =
∞∑
k=1

an,k1[xk,∞)(t) =
∑
k∈E

an,k.

Since s = I− lim
n→∞

Gn((xk), t), then I− lim
n→∞

∑
k∈E an,k = I−δA(E). From the uniqueness of I-limit,

we obtain s = I − δA({n ∈ N : xn ≤ t}). �

Let G((xk), t) = I − lim
n→∞

Gn((xk), t) for t ∈ R. Modifying, if necessary, G at some points of

discontinuity of G, we may assume that G is a distribution function. For a non-negative regular
summability matrix A we consider the AI-summability method as follows

I − lim
n→∞

∞∑
k=1

an,kxk.

Now, using Proposition 24 and essentially the same method as in the previous section, we can prove
a Henstock-type formula for the AI-summability method.

Theorem 26. Let I be an ideal, let A be a non-negative regular summability matrix and (xn) ∈ `∞.
Then

I − lim
n→∞

∞∑
k=1

an,kxk =

∫ ∞
−∞

tdG((xk), t),

provided the I-limit exists.

References

[1] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions,
J. Math. Anal. Appl. 328 (1) (2007), 715–729.

[2] A. Bartoszewicz, S. G la̧b, A. Wachowicz, Remarks on ideal boundedness, convergence and variation of sequences.
J. Math. Anal. Appl. 375 (2011), no. 2, 431–435.

[3] P. Das, Some further results on ideal convergence in topological spaces, Topology Appl., 159 (2012), 2621–2625.
[4] A. Faisant, G. Grekos, V. Toma, On the statistical variation of sequences, J. Math. Anal. Appl., 306 (2) (2005)

432–439.
[5] H. Fast, Sur la convergence statistique. Colloq. Math. 2 (1951), 241–244 (1952).
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[13] J. Jasiński, I. Rec law, On spaces with the ideal convergence property, Colloq. Math., 111 (1) (2008), 43–50
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