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ON RIEMANNIAN MANIFOLDS WHOSE TANGENT SPHERE

BUNDLES CAN HAVE NONNEGATIVE SECTIONAL

CURVATURE

by Oldřich Kowalski† and Masami Sekizawa†

Abstract. The authors proved a theorem about the sectional curvature of
tangent sphere bundles over locally symmetric Riemannian manifolds (see
Theorem A below). After a slight generalization of this theorem (Theo-
rem 1) we prove several results which give strong support of the conjecture
that the converse of Theorem 1 also holds. The problem still remains open,
in general.

1. Introduction. Let (M, g) be a Riemannian manifold of dimension n ≥
2 and let (TrM, g̃) denote the tangent sphere bundle of radius r > 0 equipped
with the induced Sasaki metric. We have started our study on the geometry
of tangent sphere bundles (TrM, g̃) in [5] with

Theorem A ([5]). Let (M, g), dim M ≥ 2, be either locally symmetric
with positive sectional curvature or locally flat. Then, for each sufficiently small
positive number r, the tangent sphere bundle (TrM, g̃) is a space of nonnegative
sectional curvature.

As a slight generalization of Theorem A we shall show

Theorem 1. Let (M, g), dim M ≥ 3, be a Riemannian locally symmetric
space with nonnegative sectional curvature. Then, for each sufficiently small
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positive number r > 0, the tangent sphere bundle (TrM, g̃) is a space of non-
negative sectional curvature.

Under the hypothesis of Theorem 1, we can see easily from [7, Theorem
3.3] that (TrM, g̃) is never a space of strictly positive sectional curvature. On
the other hand, if (M, g) is a two-dimensional standard sphere, then (TrM, g̃)
is a space of positive sectional curvature according to the criterion by Yampol-
sky [10].

The natural problem now is the question whether the conclusion of Theo-
rem 1 may also hold for Riemannian manifolds which are not locally symmet-
ric. This paper does not definitely solve this problem but it gives some new
evidence that the converse of Theorem 1 might hold, too.

The first step in this direction has been made in [5], where the following
result was proved:

Theorem B ([5]). There exist arbitrarily small perturbations of a spherical
cap of the standard four-sphere with the following property : if (M, g) is such
a perturbation, then (TrM, g̃) admits negative sectional curvatures for every
positive number r.

Here we shall prove the following modification of Theorem B:

Theorem 2. Let (M, g), dim M ≥ 3, be a Riemannian manifold and let
x be a spherical point of M, i.e., such that all sectional curvatures at x are
constant. Moreover, let the covariant derivative (∇R)x of the Riemannian cur-
vature tensor R be nonzero. Then in any tangent sphere bundle (TrM, g̃) over
(M, g) there is a point (x, u), u ∈ Mx, such that the tangent space (TrM)(x,u)

admits a two-plane with negative sectional curvature.

Corollary 3. Let (M, g) be a Riemannian manifold such that the co-
variant derivative ∇R of the Riemannian curvature tensor R is nonzero ev-
erywhere. If, for some radius r > 0, the tangent sphere bundle (TrM, g̃) has
nonnegative sectional curvature, then (M, g) has no spherical points.

We are now looking for the converse to Theorem 1. We shall first present
a “nonstandard” converse of this Theorem.

Proposition 4. Let (M, g), dim M ≥ 3, be a Riemannian manifold with
non-negative sectional curvature and let x ∈ M be a point such that the covari-
ant derivative (∇R)x of the Riemannian curvature tensor R is nonzero. Then
for every sufficiently large radius r, the tangent sphere bundle (TrM, g̃) over
(M, g) contains a point (x, u), u ∈ Mx, such that the tangent space (TrM)(x,u)

admits a two-plane with negative sectional curvature.

Theorem 5. Let (M, g), dim M ≥ 3, be a Riemannian manifold such that,
for all sufficiently large radii r > 0, the tangent sphere bundles (TrM, g̃) over
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(M, g) are spaces of nonnegative sectional curvature. Then the space (M, g) is
locally symmetric.

Finally, we shall prove the true converse of Theorem 1, but still under
an additional assumption. This assumption reads that either dim M = 3, or
dim M > 3 and (M, g) is conformally flat.

Theorem 6. Let (M, g) be a Riemannian manifold such that the conformal
Weyl tensor W vanishes (in particular, let dim M = 3). If the tangent sphere
bundle (TrM, g̃) is a space of nonnegative sectional curvature for some radius
r > 0, then (M, g) is locally symmetric.

From this theorem we shall deduce the following

Corollary 7. Let (M, g) be a Riemannian manifold of dimension n such
that the conformal Weyl tensor W vanishes (in particular, let dim M = 3).
Then the tangent sphere bundle (TrM, g̃) is a space of nonnegative sectional
curvature for all sufficiently small radii r > 0 if, and only if, (M, g) is locally
isometric to one of the following spaces:

Rn, Sn(c), or Sn−1(c)× R1,
where Rn is the Euclidean n-space and Sn(c) is the n-sphere of radius 1/

√
c .

The references in this paper will be limited to a necessary minimum. For
more references concerning related topics, see [1].

2. Tangent sphere bundles — a short review. Let M be a smooth
and connected manifold of dimension n ≥ 2. Then the tangent bundle TM
over M consists of all pairs (x, u), where x is a point of M and u is a vector
from the tangent space Mx of M at x. We denote by p the natural projection
of TM to M defined by p(x, u) = x.

Let g be a Riemannian metric on the manifold M and ∇ its Levi-Civita
connection. Then the tangent space (TM)(x,u) of TM at (x, u) splits into the
horizontal and vertical subspaces H(x,u) and V(x,u) with respect to ∇:

(TM)(x,u) = H(x,u) ⊕ V(x,u).

For a vector X ∈ Mx, the horizontal lift of X to a point (x, u) ∈ TM is the
unique vector Xh ∈ H(x,u) such that p∗X

h = X. The vertical lift of X to
(x, u) is the unique vector Xv ∈ V(x,u) such that Xv(df) = Xf for all smooth
functions f on M . Here we consider a 1-form df on M as a function on TM .
The map X 7−→ Xh is an isomorphism between Mx and H(x,u); and the map
X 7−→ Xv is an isomorphism between Mx and V(x,u). In an obvious way we can
define horizontal and vertical lifts of vector fields on M . These are uniquely
defined vector fields on TM .

For each system of local coordinates (x1, x2, . . . , xn) in M , one defines, in
the standard way, the system of local coordinates (x1, x2, . . . , xn;u1, u2, . . . , un)
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in TM . The canonical vertical vector field on TM is a vector field U defined,
in terms of local coordinates, by U =

∑
i u

i∂/∂ui. Here U does not depend
on the choice of local coordinates and it is defined globally on TM . For a
vector u =

∑
i u

i(∂/∂xi)x ∈ Mx, we see that uh
(x,u) =

∑
i u

i(∂/∂xi)h
(x,u) and

uv
(x,u) =

∑
i u

i(∂/∂xi)v
(x,u) = U(x,u).

The Sasaki metric on the tangent bundle TM of a Riemannian manifold
(M, g) is determined, at each point (x, u) ∈ TM , by the formulas

(2.1)


ḡ(x,u)(Xh, Y h) = gx(X, Y ),

ḡ(x,u)(Xh, Y v) = 0,

ḡ(x,u)(Xv, Y v) = gx(X, Y ),

where X and Y are arbitrary vectors from Mx.
Evidently, we have ḡ(x,u)(Xh,U) = 0 and ḡ(x,u)(Xv,U) = gx(X, u). Let ∇̄ be
the Levi-Civita connection of (TM, ḡ), and let X and Y be vector fields on M ,
then we have at each fixed point (x, u) ∈ TM ,

(2.2)



(∇̄XhY h)(x,u) = (∇XY )h
(x,u) −

1
2

(Rx(X, Y )u)v ,

(∇̄XhY v)(x,u) =
1
2

(Rx(u, Y )X)h + (∇XY )v
(x,u),

(∇̄XvY h)(x,u) =
1
2

(Rx(u, X)Y )h ,

(∇̄XvY v)(x,u) = 0,

where R is the Riemannian curvature tensor of (M, g) defined by R(X, Y ) =
[∇X ,∇Y ]−∇[X,Y ]. As concerns the canonical vertical vector field U , we have

(2.3)


∇̄XhU = 0, ∇̄XvU = Xv,

∇̄UXh = 0, ∇̄UXv = 0,

∇̄UU = U
for each vector field X on M .

Let r be a positive number. Then the tangent sphere bundle of radius
r over a Riemannian manifold (M, g) is the hypersurface TrM = {(x, u) ∈
TM | gx(u, u) = r2}. The canonical vertical vector field U is normal to TrM in
(TM, ḡ) at each point (x, u) ∈ TrM . Also, ḡ(U ,U) = r2 along TrM . For any
vector field X tangent to M , the horizontal lift Xh is always tangent to TrM
at each point (x, u) ∈ TrM . Yet, in general, the vertical lift Xv is not tangent
to TrM at (x, u). The tangential lift of X (see [1]) is a vector field Xt tangent
to TrM and defined by

Xt = Xv − 1
r2

ḡ(Xv,U)U .
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Thus, at each point (x, u) ∈ TrM , we have

Xt
(x,u) = Xv

(x,u) −
1
r2

gx(X, u)U(x,u).

Now we endow the hypersurface TrM⊂(TM, ḡ) with the induced Riemann-
ian metric g̃, which is uniquely determined by the formulas

(2.4)


g̃(Xh, Y h) = ḡ(Xh, Y h),

g̃(Xh, Y t) = 0,

g̃(Xt, Y t) = ḡ(Xv, Y v)− 1
r2

ḡ(Xv,U)ḡ(Y v,U),

where X and Y are arbitrary vector fields on M . In the following we shall use
the symbol 〈·, ·〉 for the scalar product gx on Mx. Then (2.4) can be rewritten,
at each fixed point (x, u) ∈ TrM , in the form

(2.5)


g̃(x,u)(X

h, Y h) = 〈X, Y 〉,

g̃(x,u)(X
h, Y t) = 0,

g̃(x,u)(X
t, Y t) = 〈X, Y 〉 − 1

r2
〈X, u〉〈Y, u〉,

where X and Y are arbitrary vectors from Mx.
We notice that ut

(x,u) = 0 for (x, u) ∈ TrM and hence the tangent space
(TrM)(x,u) coincides with the set {Xh + Y t|X ∈ Mx, Y ∈ {u}⊥ ⊂ Mx}.

In [5] all basic formulas for the curvature operators on the tangent sphere
bundle TrM have been derived by calculating first the shape operator and then
using the Gauss equation. We shall not reproduce them here.

It is obvious that each tangent two-plane P̃ ⊂ (TrM)(x,u) is spanned by an
orthonormal basis of the form {X h

1 +Y t
1 , X h

2 +Y t
2 }. For such a basis we have

‖Xi‖2 + ‖Yi‖2 = 1, i = 1, 2, and 〈X1, X2〉 + 〈Y1, Y2〉 = 0. Moreover, we can
assume 〈X1, X2〉 = 〈Y1, Y2〉 = 0. This can be realized easily by a convenient
rotation of the given basis. As usual, Y1 and Y2 are supposed to be orthogonal
to u. From the formulas for the curvature operators one obtains as in [5] the
following formula for the sectional curvature of the two-plane P̃ :

K̃(P̃ ) = 〈Rx(X1, X2)X2, X1〉+ 3〈Rx(X1, X2)Y2, Y1〉+
1
r2
‖Y1‖2‖Y2‖2

− 3
4
‖Rx(X1, X2)u‖2 +

1
4
‖Rx(u, Y2)X1‖2 +

1
4
‖Rx(u, Y1)X2‖2

+
1
2
〈Rx(u, Y1)X2, Rx(u, Y2)X1〉 − 〈Rx(u, Y1)X1, Rx(u, Y2)X2〉

+ 〈(∇X1R)x(u, Y2)X2, X1〉+ 〈(∇X2R)x(u, Y1)X1, X2〉.

(2.6)
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Now, there are orthonormal pairs {X̂1, X̂2} and {Ŷ1, Ŷ2}, and angles α, β ∈
[0, π/2] such that {

X1 = cos α X̂1, Y1 = sinα Ŷ1;

X2 = cos β X̂2, Y2 = sinβ Ŷ2.

We also put û = u/‖u‖ = u/r. This notation will be used in the sequel.

3. The proof of main results.

Proof of Theorem 1. Because (M, g) is locally isometric to a globally
symmetric space and because the statement of the Theorem is purely local,
we can assume that (M, g) itself is globally symmetric and simply connected.
Then we have the de Rham decomposition

(M, g) = (M0, g0)× (M1, g1)× · · · × (Ms, gs),

where (M0, g0) is the Euclidean part and all (Mi, gi) for i = 1, 2, . . . , s are
irreducible symmetric spaces of compact type.

Fix a point x = (x0, x1, . . . xs) ∈ M and denote by Ni = Mi ×
{(x0, . . . , x̂i, . . . , xs)}, i = 0, 1, . . . , s, the corresponding leaf in M , where the
symbol x̂i indicates that the component xi is omitted. Let us recall that, if
U, V and W are vectors tangent to the leaves Ni at x, and if at least two of
them are tangent to different leaves, then Rx(U, V )W = 0. Also recall that if
W is tangent to some leaf Nj , j = 1, 2, . . . , s, then, for any choice of tangent
vectors U and V at x, the vector Rx(U, V )W is either a null vector or it is
tangent to the leaf Nj , as well. Finally, recall that the tangent spaces to the
leaves form an orthogonal decomposition of the tangent space Mx.

Now, consider an orthonormal pair {X̂1, X̂2} in Mx. If both X̂1 and X̂2 are
tangent to N0, then we see at once from formula (2.6) that K̃(P̃ ) ≥ 0 for any
two-plane P̃ defined in the last part of Section 2. If X̂1 and X̂2 are tangent to an
irreducible factor Ni, i = 1, 2, . . . , s, then we have K(X̂1 ∧ X̂2) ≥ δi > 0 where
δi is the minimum of sectional curvature on (Mi, gi). Now we can use the same
argument as in the proof of Theorem 4 in [5] (i.e., Theorem A in this paper) to
show that K̃(P̃ ) ≥ 0 holds for every choice of an orthonormal triplet {Ŷ1, Ŷ2, û}
in Mx and for all radii r > 0 such that r ≤ ri, where ri > 0 depends only on
the geometry of (M, g). Finally, let X̂1 and X̂2 be tangent to two different
leaves Ni and Nj , i 6= j; then Rx(X̂1, X̂2) = 0. Moreover Rx(U, V )X1 and
Rx(U, V )X2 are tangent to the leaves Ni and Nj , respectively, for any choice
of U, V ∈ Mx. Hence, for every choice of an orthonormal triplet {Ŷ1, Ŷ2, û} in
Mx, the right-hand side of formula (2.6) reduces to three terms, which are all
nonnegative.

This completes the proof.



251

We start the proof of Theorem 2 with an algebraic lemma:

Lemma 8. Let x be a fixed point of a Riemannian manifold (M, g).
Then either there is an orthonormal triplet {X, Y, Z} of Mx such that
〈(∇XR)x(X, Y )Y, Z〉 6= 0 or (∇R)x = 0 identically.

Proof. Let us denote, for the sake of brevity, 〈(∇XR)x(Y, Z)U, V 〉 by
B(Y, Z, U, V ;X).

Suppose that

(3.1) B(X, Y, Y, Z;X) = 0

for all orthonormal triplets {X, Y, Z}. Then the second Bianchi identity applied
to the last three arguments gives

(3.2) B(X, Y, Y,X;Z) = 0

for all orthonormal triplets {X, Y, Z}.
Further, we get

(3.3) B(X, Y, U, Z;X) = 0

for each orthonormal quadruplet {X, Y, Z, U}. Indeed, we have

B(X, Y + U, Y + U,Z;X) = 0.

Also because B(X, Y, Y, Z;X) = 0 and B(X, U,U, Z;X) = 0, we get

B(X, Y, U, Z;X) + B(X, U, Y, Z;X) = 0.

If we apply the first Bianchi identity to the first three arguments in the second
term, we get, by the standard symmetries of B, that

(3.4) 2B(X, Y, U, Z;X) = B(U, Y, X, Z;X).

After the transposition between Y and Z we get, by the symmetry of B, that

2B(U, Y, X, Z;X) = B(X, Y, U, Z;X).

Hence and from (3.4) we get

(3.5) B(U, Y, X, Z;X) = B(X, Y, U, Z;X) = 0,

which is equivalent to (3.3).
Now, from (3.2) we get B(X, Y +U, Y +U,X;Z) = 0 and, by the standard

symmetries of B, we get finally

(3.6) B(X, Y, U, X;Z) = 0

for each orthonormal quadruplet {X, Y, Z, U}.
Let us consider now an orthonormal quintuplet {X, Y, Z, U, V }. First we

have from (3.3) that B(X + V,U, Y, Z;X + V ) = 0 and then

B(X, U, Y, Z;V ) + B(V,U, Y, Z;X) = 0,
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which can be rewritten as

B(X, U, Y, Z;V ) + B(Y, Z, V, U ;X) = 0.

Applying the second Bianchi identity to the second term, we obtain

2B(X, U, Y, Z;V ) = B(Y, Z, X, V ;U).

After the transposition between U and V we hence get

2B(X, V, Y, Z;U) = B(Y, Z, X,U ;V ),

and from the last two equalities we have

B(X, V, Y, Z;U) = B(Y, Z, X,U ;V ) = 0.

Finally, we obtain

(3.7) B(X, Y, Z, U ;V ) = 0

for any orthonormal quintuplet {X, Y, Z, U, V }.
It remains to show that

B(X, Y,X, Y ;X) = 0

holds for any orthonormal pair {X, Y }. First, from (3.2) we obtain, for each
orthonormal triplet {X, Y, U} and for each α,

B(sinα X + cos α U, Y, sinα X + cos α U, Y ; cos α X − sinα U) = 0,

which implies, due to (3.1) and (3.2),

(3.8) cos α sin2 α B(X, Y,X, Y ;X)− cos2 α sinα B(U, Y, U, Y ;U) = 0.

Now the conclusion follows from (3.8).
This shows that B is a null tensor.

The proofs of Theorem 2 and of Proposition 4 generalize the idea from the
proof of Theorem B. First we set as follows: Because (∇R)x is nonzero, then
according to the Lemma 8 there is an orthonormal triplet {Z1, Z2, Z3} in the
tangent space Mx such that b = 〈(∇Z1R)x(Z2, Z3)Z2, Z1〉 > 0. We put

X1 = Z1, Y1 = 0, X2 = cos β Z2, Y2 = − sin β Z3, u = rZ2,

and consider the point (x, u) ∈ TrM , where r > 0 and β ∈ (0, π/2) are not
specified yet. Further, we put c = K(Z1 ∧ Z2) > 0. In the proofs we shall
estimate the values of the sectional curvature K̃(P̃ ) of the tangent two-plane
P̃ spanned by X1

h and X2
h + Y2

t in (TrM)(x,u).

Proof of Theorem 2. Since x ∈ M is a spherical point, we have
‖Rx(X1, X2)u‖ = cr cos β and Rx(u, Y2)X1 = 0. Thus, from (2.6), we obtain

K̃(P̃ ) = cos β
(
c cos β − 3

4
c2r2 cos β − br sinβ

)
,
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which becomes negative for β ∈ (0, π/2) tending to π/2.

Proof of Proposition 4. We write Rx(Z1, Z2)Z2 = cZ1 + W , where
W ∈ Mx is orthogonal to Z1. Hence, putting C = ‖Rx(Z1, Z2)Z2‖, we get
C ≥ c > 0. Put D = ‖Rx(Z2, Z3)Z1‖ ≥ 0. Now, from (2.6), we obtain

K̃(P̃ ) = r sinβ
(1

4
rD2 sinβ − b cos β

)
+ cos2 β

(
c− 3

4
C2r2

)
.

The second term is zero for C = 0 and every r > 0; and it is nonpositive for
C > 0 and for every r ≥ 2

√
c /
√

3 C. Let us fix a number r > 0 for which this
second term is nonpositive. The first term is then negative for all β ∈ (0, π/2)
such that ctg β > (1/4)rD2/b. Thus a two-plane at (x, u) ∈ TrM with negative
sectional curvature exists.

Proof of Corollary 5. Because (TrM, g̃) is a space of nonnegative sec-
tional curvature, we see that, putting Y1 = Y2 = 0 in (2.6), (M, g) is also a
space of nonnegative sectional curvature. Hence, by Proposition 4, (M, g) is
locally symmetric.

The proof of Theorem 6 is based on the following two lemmas. The first
one is obvious:

Lemma 9. Let (M, g), dim M ≥ 3, be a Riemannian manifold such that
the conformal Weyl tensor W vanishes. Let {E1, E2, . . . , En} be a basis of Mx

which diagonalizes the Ricci tensor Ricx. Then Rx(Ei, Ej)Ek = 0 for every
triplet of distinct indices {i, j, k}.

Lemma 10. Let x be a fixed point of a Riemannian manifold (M, g),
dim M ≥ 3, such that the conformal Weyl tensor W vanishes and let
〈(∇XR)x(X, Z)Y, Z〉 = 0 holds whenever {X, Y, Z} is an orthonormal triplet
in Mx such that Rx(X, Y )Z = 0. Then (∇R)x = 0 identically.

Proof. We again denote 〈(∇XR)x(Y, Z)U, V 〉 by B(Y, Z, U, V ;X). We
also denote by {E1, E2, . . . , En} a basis of Mx which diagonalizes the Ricci
tensor Ricx.

First, by Lemma 9 and by the assumption of Lemma 10, we have

B(Ei, Ek, Ej , Ek;Ei) = 0

for each triplet of distinct indices {i, j, k}. Next we have, according to Lemma 9,

Rx(sinα Ei + cos α Ej , cos α Ei − sinα Ej)Ek = 0

for each triplet of distinct indices {i, j, k} and each α. Hence we get

B(sinα Ei + cos α Ej , Ek, cos α Ei − sinα Ej , Ek; sinα Ei + cos α Ej) = 0

for each α. Now, we have

B(Ej , Ek, Ei, Ek;Ej) = 0 and B(Ei, Ek, Ej , Ek;Ei) = 0.



254

From the second Bianchi identity we also have

B(Ei, Ek, Ei, Ek;Ej) = B(Ej , Ek, Ej , Ek;Ei) = 0.

Now, a simple computation gives

sin2 α cos α B(Ei, Ek, Ei, Ek;Ei)− sinα cos2 α B(Ej , Ek, Ej , Ek;Ej) = 0

for each α and hence B(Ei, Ek, Ei, Ek;Ei) = B(Ej , Ek, Ej , Ek;Ej) = 0. This
means that B(Ei, Ej , Ei, Ej ;Ei) = 0 for each pair of indices i and j.

Further, if dim M ≥ 4 and i, j, k, l are distinct indices, we have

Rx(Ei, Ej)(Ek + El) = 0

and hence
B(Ei, Ek + El, Ej , Ek + El;Ei) = 0.

This implies

B(Ei, Ek, Ej , El;Ei) + B(Ei, El, Ej , Ek;Ei) = 0,

and applying the first Bianchi identity to the middle arguments in the second
term, we easily obtain

2B(Ei, Ek, Ej , El;Ei) = B(Ei, Ej , Ek, El;Ei).

Interchanging the indices j and k, we get an analogous equality and hence
we conclude that B(Ei, Ej , Ek, El;Ei) = 0 for each distinct indices i, j, k, l.
Applying the second Bianchi identity to the last three arguments and using
also the standard symmetries, we obtain

(3.9) B(Ek, Ei, Ej , Ei;El) + B(El, Ei, Ei, Ej ;Ek) = 0.

Now, because Rx(Ek + El, Ej)Ei = 0 holds for all distinct i, j, k, l, we ob-
tain B(Ek + El, Ei, Ej , Ei;Ek + El) = 0. Omitting the terms which vanish
identically, we get

(3.10) B(Ek, Ei, Ej , Ei;El) + B(El, Ei, Ej , Ei;Ek) = 0.

Equations (3.9) and (3.10) now imply that B(Ei, Ej , Ei, Ek;El) = 0 for all
distinct i, j, k, l.

Let now dim M ≥ 5 and let i, j, k, l, m be five distinct indices. Because

Rx(Ei + Em, Ej)(Ek + El) = 0,

we get
B(Ei + Em, Ek + El, Ej , Ek + El;Ei + Em) = 0.

Omitting the terms which vanish according to the previous equalities, we get

B(Ei, Ek, Ej , El;Em) + B(Ei, El, Ej , Ek;Em)

+ B(Em, Ek, Ej , El;Ei) + B(Em, El, Ej , Ek;Ei) = 0.
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Now, applying the first Bianchi identity to the middle arguments in the second
and the last term, we get

2B(Ei, Ek, Ej , El;Em)−B(Ei, Ej , Ek, El;Em)

+ 2B(Em, Ek, Ej , El;Ei)−B(Em, Ej , Ek, El;Ei) = 0.
(3.11)

Interchanging the indices j and k, we hence get
2B(Ei, Ej , Ek, El;Em)−B(Ei, Ek, Ej , El;Em)

+ 2B(Em, Ej , Ek, El;Ei)−B(Em, Ek, Ej , El;Ei) = 0.
(3.12)

Now, adding twice the second equality (3.12) to the first equality (3.11), we
get by the standard symmetry of B:

B(Ek, El, Ei, Ej ;Em) + B(Ek, El, Em, Ej ;Ei) = 0.

Applying the second Bianchi identity to the last three arguments in the second
term, we get

2B(Ek, El, Ei, Ej ;Em)−B(Ek, El, Ei, Em;Ej) = 0.

Interchanging the indices j and m, we obtain a new equality and then we
finally get

B(Ek, El, Ei, Ej ;Em) = B(Ek, El, Ei, Em;Ej) = 0.

From all this we may conclude that B(Ei, Ej , Ek, El;Em) = 0 for any
indices i, j, k, l, m and hence B = 0, as required.

Proof of Theorem 6. Let us suppose that the space (M, g) is not lo-
cally symmetric. Then, at some point x ∈ M we have (∇R)x 6= 0. Accord-
ing to Lemma 10, there is an orthonormal triplet {Z1, Z2, Z3} in Mx such
that 〈(∇Z1R)x(Z1, Z2)Z2, Z3)〉 > 0 and, at the same time, Rx(Z1, Z2)Z3 = 0.
Then, using the same procedure as in the proof of Theorem 2, we find for every
r > 0 a tangent two-plane of TrM with negative sectional curvature, which is
a contradiction.

In the proof of Corollary 7 we shall use the following theorem by Takagi [9].

Theorem C ([9]). Let (M, g) be a connected conformally flat Riemannian
homogeneous manifold of dimension n. Then (M, g) is locally isometric to

Mn(c), or M s(c)×Mn−s(−c) (2 ≤ s ≤ n− 2), or Mn−1(c)× R1,

where Mn(c) is an n-dimensional space of constant curvature c 6= 0 and R1 is
the Euclidean 1-space.

Proof of Corollary 7. If (TrM, g̃) is a space of nonnegative sectional
curvature for every sufficiently small radius r > 0, then, by Theorem 6, (M, g)
is locally symmetric and hence locally isometric to a symmetric space, which
is globally homogeneous. Hence, for n > 3, the result follows from Theorem C.
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For n = 3, the only simply connected symmetric spaces with nonnegative
sectional curvature are R3, S3(c) and S2(c)× R1.

The “only if” part follows from Theorem 1.
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186 75 Praha 8, Czech Republic
e-mail : kowalski@karlin.mff.cuni.cz

Masami Sekizawa
Tokyo Gakugei University
Koganei-shi Nukuikita-machi 4-1-1
Tokyo 184-8501, Japan
e-mail : sekizawa@u-gakugei.ac.jp

mailto:kowalski@karlin.mff.cuni.cz
mailto:sekizawa@u-gakugei.ac.jp

	1. Introduction
	2. Tangent sphere bundles --- a short review
	3. The proof of main results
	References

