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COMPLEX AFFINE TRANSVERSAL BUNDLES FOR

SURFACES IN C4

by Pawe l Witowicz

Abstract. Three different canonical constructions of transversal bundles
for non-degenerate complex surfaces in C4 are presented and different in-
duced connections are obtained. The bundles turn out to be always holo-
morphic, but only one of them is equiaffine.

1. Preliminaries. The purpose of this paper is to study some four di-
mensional submanifolds of eight dimensional space R8. The submanifolds are
endowed with a complex structure which is compatible with the canonical
complex structure in R8, so we treat them as complex surfaces holomorphi-
cally immersed in C4. Canonically determined transversal bundles and in-
duced connections for real surfaces in R4 were obtained in [2] and [4]. An
equiaffine structure for such surfaces was found by Nomizu and Vrancken ([7])
and further investigations showed that the construction leads to some natural
geometric properties which are often generalizations of those well-known in
the codimension-one case ([3]). In this paper we will make the assumptions
suggested in B.Opozda’s papers [8], [9] and obtain three complex transversal
bundle satisfying the conditions proposed in [2], [4] and [7], respectively. More-
over we prove that these bundles are holomorphic. Only the bundle satisfying
Nomizu–Vrancken’s conditions leads to the equiaffine connection.

Let M be a two-dimensional complex submanifold of C4, that is, there
exists an immersion f : M → C4 which is holomorphic. It means that f∗JX =
Jf∗X where J denotes the complex structures on M and in C4. Each tangent
space TxM has a natural structure of a complex vector space with the multipli-
cation by i given by J . Unless otherwise stated the vector fields, connections,
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bilinear and linear forms and functions used in the paper are of class C∞R (see
[8], [9], compare also another approach in [1], [3]). Since this work is only of
the local character and we can identify both the complex structures on M and
C4, we can also identify M , as a complex manifold, with its image in C4.

Let σ denote a transversal complex plane bundle, that is C4 = σx ⊕ TxM
over C. Let ξ1, ξ2 be transversal vector fields that span σ locally. It means
that they are linearly independent over C. If D denotes the standard affine
connection on C4, then we have:

DXY = ∇XY + h1(X,Y )ξ1 + h2(X,Y )ξ2,(1.1)

DXξj = −Sξj
(X) + τ1

j (X)ξ1 + τ2
j (X)ξ2,(1.2)

for j = 1, 2, where the connection ∇ is given by the condition ∇XY ∈ TM
and Sξj

(X) ∈ TM as well. We call the connection ∇ the induced connection
and the surface together with the connection – the induced affine structure.

It is straightforward to prove that ∇ is a torsion-free linear connection
which is compatible with J (it is then called a complex connection). It means
that ∇J = 0, and equivalently that ∇XJY = J∇XY for arbitrary vector fields
X,Y .

From now on we will use the simplified notation Sj instead of Sξj
. We can

also see that both hj are C-valued, C-bilinear 2-forms, Sj are (1,1)-R-linear
tensors and τ j

k are C-valued, R-linear 1-forms (see [6], [8], [9]).
Given ξ1 and ξ2 we also define a complex-valued C-linear skew-symmetric 2-

form θ by θ(X,Y ) = Det[X,Y, ξ1, ξ2], where Det denotes the usual determinant
in C4.

A transversal bundle σ is holomorphic if there is a holomorphic transversal
frame of vector fields that span σ(locally). One can easily observe that this
condition holds if and only if Sj(JX) = JSj(X) and τk

j (JX) = iτk
j (X) for

j, k = 1, 2 (see [8], [9]). Objects satisfying such a property are called complex.
We say that Sj , τk

j and hj are induced by ξ1 and ξ2 and that ∇ is the con-
nection induced by σ. The bundle σ is holomorphic if and only if the induced
connection is also holomorphic.

In the paper we often use holomorphic vector fields and recall (see [5], [6])
that a vector field Y is holomorphic if and only if ∇JXY = J∇XY holds for
an arbitrary vector field X and a complex connection ∇. A connection ∇ is
called holomorphic if for holomorphic vector fields X and Y , ∇XY is also a
holomorphic vector field. For tangent vector fields X,Y, Z – not necessarily
holomorphic – we can obtain the equations of Gauss (1.3), Codazzi ((1.4),
(1.5), (1.6) and (1.7)) and Ricci ((1.8), (1.9), (1.10) and (1.11)), like in real
geometry ([7]):
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R(X,Y )Z = h1(Y, Z)S1X + h2(Y, Z)S2X − h1(X,Z)S1Y − h2(X,Z)S2Y,

(1.3)

(∇Xh
1)(Y, Z) + τ1

1 (X)h1(Y, Z) + τ2
1 (X)h2(Y, Z) is symmetric in X, Y and Z,

(1.4)

(∇Xh
2)(Y, Z) + τ1

2 (X)h1(Y, Z) + τ2
2 (X)h2(Y, Z) is symmetric in X, Y and Z,

(1.5)

(∇XS1)Y − (∇Y S1)X = −τ1
1 (Y )S1X + τ1

1 (X)S1Y − τ1
2 (Y )S2X + τ1

2 (X)S2Y,

(1.6)

(∇XS2)Y − (∇Y S2)X = −τ2
1 (Y )S1X + τ2

1 (X)S1Y − τ2
2 (Y )S2X + τ2

2 (X)S2Y,

(1.7)

h1(X,S1Y )− h1(Y, S1X) = dτ1
1 (X,Y ) + τ1

2 (Y )τ2
1 (X)− τ2

1 (Y )τ1
2 (X),(1.8)

h2(X,S1Y )− h2(Y, S1X) = dτ1
2 (X,Y ) + τ1

1 (Y )τ1
2 (X)− τ1

2 (Y )τ1
1 (X)(1.9)

+ τ1
2 (Y )τ2

2 (X)− τ2
2 (Y )τ1

2 (X),

h2(X,S2Y )− h2(Y, S2X) = dτ2
2 (X,Y ) + τ2

1 (Y )τ1
2 (X)− τ1

2 (Y )τ2
1 (X),(1.10)

h1(X,S2Y )− h1(Y, S2X) = dτ2
1 (X,Y ) + τ1

1 (X)τ2
1 (Y )− τ2

1 (X)τ1
1 (Y )(1.11)

+ τ2
1 (X)τ2

2 (Y )− τ2
2 (X)τ2

1 (Y ).

For another transversal plane bundle σ̃ and its local basis {ξ̃1, ξ̃2} we have

ξ1 = φξ̃1 + ψξ̃2 + Z1(1.12)

ξ2 = αξ̃1 + βξ̃2 + Z2,(1.13)

where α, β, ψ, φ are local complex-valued C∞R functions on M such that φβ −
αψ 6= 0 and Z1, Z2 are tangent vector fields.

Let ∇̃, S̃j , τ̃k
j and h̃j be the objects induced by ξ̃1 and ξ̃2. Using (1.1),

(1.2), (1.12) and (1.13) we get:

∇̃XY = ∇XY + h1(X,Y )Z1 + h2(X,Y )Z2,(1.14)

h̃1(X,Y ) = φh1(X,Y ) + αh2(X,Y ),(1.15)

h̃2(X,Y ) = ψh1(X,Y ) + βh2(X,Y ).(1.16)

2. The affine metrics. Let u = {X1, X2} be a local frame of class C∞R
on a neighbourhood U of a point p ∈ M . We do not assume that X1, X2

are holomorphic but only linearly independent over C. Define a symmetric
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R-bilinear C-valued form Gu:
Gu(Y, Z) =

1
2

Det[X1, X2, DYX1, DZX2] +
1
2

Det[X1, X2, DZX1, DYX2].
(2.1)

Using a transversal plane bundle spanned by transversal vector fields {ξ1, ξ2}
we can write:

Gu(Y, Z) =

1
2
[X1, X2, ξ1, ξ2] ·

(∣∣∣∣h1(X1, Y ) h1(X2, Z)
h2(X1, Y ) h2(X2, Z)

∣∣∣∣ +
∣∣∣∣h1(X1, Z) h1(X2, Y )
h2(X1, Z) h2(X2, Y )

∣∣∣∣).(2.2)

Thus we can see that Gu is also C-linear, because each hj is C-linear.
We can apply here Lemma 3.1 ([7]). It follows that for another local frame

v ={Y1, Y2} satisfying

Y1 = aX1 + bX2,

Y2 = cX1 + dX2

with ad− bc 6= 0 we have

Gv = (ad− bc)2Gu.

If we define

(2.3) detuh =
∣∣∣∣h(X1, X1) h(X1, X2)
h(X1, X2) h(X2, X2)

∣∣∣∣
where h is a symmetric C-bilinear form, we have

detvh = (ad− bc)2detuh.

Thus we can call a surface non-degenerate if the form Gu is non-degenerate
(which does not depend on the choice of u).

From now on we will assume that the surface is non-degenerate. In a suffi-
ciently small neighbourhood of each point we can define three unique branches
of a C-valued, C-bilinear symmetric form

gu(Y, Z) =
Gu(Y, Z)

(detuGu)
1
3

.

We can easily see, like in the real case, that the set of three branches of gu is
independent of the choice of u. In this way we get locally three complex-valued
metrics which we will denote by g. We will call each of them an affine metric
on the surface M . Notice that if u is a holomorphic tangent frame, the function

M 3 x 7−→ gux(X,Y )

is holomorphic if the vector fields X and Y are holomorphic. It follows from
the definition of Gu and gu. Namely, given a holomorphic vector field X, the
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function x 7−→ X(x) is holomorphic, so is x 7−→ DXY (x) for holomorphic Y .
Gu is defined using the complex determinant in C4, which is a holomorphic
function applied to holomorphic vector fields Y, Z and holomorphic frame u.
Therefore the mapping x 7−→ Gu(x) is also holomorphic. Now the definition
of gu requires only mappings that are also holopmorphic. Using this fact, we
can always find holomorphic orthonormal frames or null frames (relative to g),
starting from arbitrary holomorphic ones.

From now on we will choose an affine metric in a sufficiently small neigh-
bourhood of a given point. For the sake of simplicity and convenience, we will
work with null frames with respect to this affine metric g that is the frames
{X1, X2} satisfying g(X1, X2) = 1 and g(Xj , Xj) = 0 for j = 1, 2. In the
following theorem we associate to each null tangent frame a unique transversal
frame in a given transversal bundle (see [7]).

Theorem 2.1. Let σ be a transversal plane bundle and {X1, X2} be a null
tangent frame. Then there exists a unique local transversal frame {ξ1, ξ2} in σ
such that:

(2.4) Det[X1, X2, ξ1, ξ2] = −2,

and the second fundamental forms have the following matrices in the basis
{X1, X2}:

(2.5) h1 =
[
1 0
0 0

]
, h2 =

[
0 0
0 1

]
.

Proof. Let u ={X1, X2} be a local null frame and {ξ1, ξ2} be a local
transversal frame that spans σ. Let {ξ̃1, ξ̃2} be another transversal frame. It
can be expressed by:

ξ1 = φξ̃1 + ψξ̃2,(2.6)

ξ2 = αξ̃1 + βξ̃2,(2.7)

where φβ−ψα 6= 0. We choose functions φ, ψ, β and α to so that the following
conditions are satisfied (bars will denote the objects induced by {ξ̃1, ξ̃2}):

h̃1(X1, X1) = 1,(2.8)

h̃1(X2, X2) = 0,(2.9)

h̃2(X1, X1) = 0,(2.10)

[X1, X2, ξ̃1, ξ̃2] = −2.(2.11)

Owing to (1.15) and (1.16) this system can be written in the following
equivalent form:
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1 = φh1(X1, X1) + αh2(X1, X1),(2.12)

0 = φh1(X2, X2) + αh2(X2, X2),(2.13)

0 = ψh1(X1, X1) + βh2(X1, X1),(2.14)

[X1, X2, ξ1, ξ2] = −2(φβ − ψα).(2.15)

We look at (2.12) and (2.13) as a system of linear equations with the determi-
nant different from zero, because g(X1, X2) = 1. Thus we obtain

φ =

∣∣∣∣1 h2(X1, X1)
0 h2(X2, X2)

∣∣∣∣∣∣∣∣h1(X1, X1) h2(X1, X1)
h1(X2, X2) h2(X2, X2)

∣∣∣∣ ,

α =

∣∣∣∣h1(X1, X1) 1
h1(X2, X2) 0

∣∣∣∣∣∣∣∣h1(X1, X1) h2(X1, X1)
h1(X2, X2) h2(X2, X2)

∣∣∣∣ .
If we substitute α and φ obtained above to (2.15), then the equations (2.14)
and (2.15) form another system of linear equations. Its determinant is equal
to -2. We also see that the desired condition φβ − ψα 6= 0 is true because
[X1, X2, ξ1, ξ2] 6= 0. {ξ̃1, ξ̃2} are determined uniquely here, because if both
frames {ξ1, ξ2} and {ξ̃1, ξ̃2} satisfy the equations (2.12) up to (2.15), we get
α = ψ = 0 and β = φ = 1. To complete the proof we use the fact that {X1, X2}
is a null frame. From Gu(X1, X1) = 0 we get h̃2(X1, X2) = 0 by definition.
Gu(X2, X2) = 0 gives h̃1(X1, X2)h̃2(X2, X2) = 0 and we also have

1 =
Gu(X1, X2)

(detuGu)
1
3

= h̃2(X2, X2)
1
3 .

Thus

h̃2(X1, X2) = 0,

h̃2(X2, X2) = 1,

h̃1(X1, X2) = 0

which completes the proof.

From now on we will call the frame {ξ1, ξ2} determined by the last theorem
the transversal frame associated to the null tangent frame {X1, X2}. Notice
that if we interchange the fields X1 and X2 in the frame, then the fields ξ1, ξ2
in the associated frame will also interchange.
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The following lemma is straightforward and we omit its proof.

Lemma 2.2. Let {X1, X2} and {X̃1, X̃2} be two tangent null frames. Let
{ξ1, ξ2}and {ξ̃1, ξ̃2} be the associated transversal frames, respectively. Then
there exists a C-valued non-zero function a such that

X̃1 = aX1,(2.16)

X̃2 = a−1X2,(2.17)

ξ̃1 = a2ξ1,(2.18)

ξ̃2 = a−2ξ2,(2.19)

after changing the order of X1 and X2, as well as ξ1 and ξ2, if necessary.
Moreover, if the fields X1 and X2 are holomorphic, then the function a is also
holomorphic.

Assume that an affine metric g is fixed (locally). Now we define locally
a complex valued metric on an arbitrary transversal plane bundle σ. Let
u ={X1, X2} be a null frame and {ξ1, ξ2} – the associated transversal frame in
σ. We define a metric g⊥u on σ by:

g⊥u (ξ1, ξ1) = 0,

g⊥u (ξ1, ξ2) = −2,

g⊥u (ξ2, ξ2) = 0

(2.20)

and extend it to a C-bilinear, symmetric form.

Lemma 2.3. g⊥u is independent of the choice of the tangent frame u.

Proof. Let {ξ1, ξ2} and {ξ̃1, ξ̃2} be two transversal frames (spanning a
transversal bundle σ), associated with null frames {X1, X2} and {Y1, Y2}, re-
spectively, and a the function satisfying Lemma 2.2. Then we have

g⊥u (ξ̃1, ξ̃1) = g⊥u (a2ξk, a
2ξk) = 0 = g⊥v (ξ̃1, ξ̃1),

g⊥u (ξ̃1, ξ̃2) = g⊥u (a2ξk, a
−2ξj) = g⊥u (ξk, ξj) = −2 = g⊥v (ξ̃1, ξ̃2),

g⊥u (ξ̃2, ξ̃2) = g⊥u (a−2ξj , a
−2ξj) = 0 = g⊥v (ξ̃2, ξ̃2),

for certain j, k ∈ {1, 2} such that j 6= k. This completes the proof.

Due to the last lemma we will denote the obtained metric by g⊥.

Lemma 2.4. Let M be a complex surface in C4, {X1, X2} – a null frame
and σ,σ̃ – two transversal plane bundles. If {ξ1, ξ2} and {ξ̃1, ξ̃2} are the
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transversal frames associated with {X1, X2} and spanning σ and σ̃, respec-
tively, then

ξ1 = ξ̃1 + Z1,(2.21)

ξ2 = ξ̃2 + Z2(2.22)

for some tangent vector fields Z1, Z2.

Proof. Let h1, h2 be the second fundamental forms induced by {ξ1, ξ2}
and h̃1, h̃2 – induced by {ξ̃1, ξ̃2}. Then there exist complex valued functions
a, b, c, d and tangent vector fields Z1, Z2 such that

ξ1 = aξ̃1 + bξ̃2 + Z1,

ξ2 = cξ̃1 + dξ̃2 + Z2.

We know by (1.15) and (1.16) that

h̃1 = ah1 + ch2,

h̃2 = bh1 + dh2.

Substituting (X1, X1) and (X2, X2) in the last two equalities we get

a = 1, b = 0, c = 0, d = 1.

3. The construction of the unique equiaffine transversal bundle.
In this section we will always assume that g is a fixed affine metric in a neigh-
bourhood of a point x0 ∈ M . We introduce here a complex valued, skew-
symmetric C bilinear 2-form ωg, defined up to the sign in the following way.
For a g-null frame {X1, X2} we set ωg(X1, X2) = 1. In the paper we will
consider the condition ∇ωg = 0 which is independent of the sign of ωg. We
shall call a transversal bundle satisfying this condition an equiaffine transversal
bundle. In the following we will determine a unique equiaffine bundle adding
one more condition as it was done in the real case and prove that that bundle
is holomorphic. First we give some conditions which are equivalent to the fact
that a bundle is equiaffine. In the following lemma ∇ will denote the connec-
tion induced by a given transversal bundle σ and τk

j – 1-forms induced by a
fixed transversal frame.

Lemma 3.1. Let σ be a transversal bundle over the complex surface M in
C4. Then the following conditions are equivalent:

1) σ is an equiaffine bundle;
2) τ1

1 + τ2
2 = 0 for τk

j induced by any transversal g⊥-null frame;
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3) for any holomorphic tangent null frame {X1, X2} and associated null
transversal frame {ξ1, ξ2} (as determined by Theorem 2.1) the following
equations hold:

(∇g)(X1, X2, X1) = 0,(3.1)

(∇g)(X2, X1, X2) = 0.(3.2)

Proof. First we prove the equivalence between 1) and 3). Let {X1, X2}
be a null holomorphic tangent frame. We introduce functions a1 up to a8 such
that:

∇X1X1 = a1X1 + a2X2,

∇X1X2 = a3X1 + a4X2,

∇X2X1 = a5X1 + a6X2,

∇X2X2 = a7X1 + a8X2.

(3.3)

The condition ∇ωg = 0 is equivalent to

∇ωg(X1, X1, X2) = 0,

∇ωg(X2, X1, X2) = 0

and, after applying (3.3), to

ωg(∇X1X1, X2) + ωg(X1,∇X1X2) = 0,

ωg(∇X2X1, X2) + ωg(X1,∇X2X2) = 0.

This gives immediately

a1 + a4 = 0,(3.4)

a5 + a8 = 0.(3.5)

On the other hand the equations (3.1) and (3.2) are also equivalent to (3.4)
and (3.5). Next we shall prove the equivalence between 1) and 2). It is easy
to verify that a g⊥-null transversal frame is associated to exactly one g-null
tangent frame. We can thus say that they are associated to each other. Take a
g⊥-null frame {ξ1, ξ2} spanning σ, and the associated tangent frame {X1, X2}.
We have θ(X1, X2) = [X1, X2, ξ1, ξ2] = −2, so θ = −2ωg up to the sign.

Since the determinant is parallel with respect to the connection D, we have

0 =DX [X1, X2, ξ1, ξ2]− [DXX1, X2, ξ1, ξ2]− [X1, DXX2, ξ1, ξ2]

− [X1, X2, DXξ1, ξ2]− [X1, X2, ξ1, DXξ2],

where X is an arbitrary vector field on M . Due to (1.1) and (2.2), the last
equality is equivalent to the following ones:

− [∇XX1, X2, ξ1, ξ2]− [X1,∇XX2, ξ1, ξ2]

− [X1, X2, τ
1
1 (X)ξ1, ξ2]− [X1, X2, ξ1, τ

2
2 (X)ξ2] = 0
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and
(∇Xθ)(X1, X2) + 2(τ1

1 (X) + τ2
2 (X)) = 0.

But the condition ∇ωg = 0 is equivalent to ∇θ = 0. Thus the last equality is
equivalent to

(∇Xωg)(X1, X2)− (τ1
1 (X) + τ2

2 (X)) = 0.
This gives the equivalence between 1) and 2) and completes the proof of the
lemma.

Let ∇⊥ denote the normal connection induced on a transversal bundle
σ such that ∇⊥Xξ is the transversal component of DXξ. We are going to
consider the tensor ∇⊥g⊥(X, ξ, η) where X is a tangent vector field and ξ, η
– transversal ones. Notice that ∇⊥g⊥ is 3-linear over the module of complex-
valued functions, if X, ξ and η are holomorphic.

Definition 3.2. Let σ be an equiaffine transversal bundle. We say that
∇⊥g⊥ is symmetric if there is a null holomorphic tangent frame u ={X1, X2}
such that the following equalities hold for the associated transversal frame
{ξ1, ξ2}:

∇⊥g⊥(X1, ξ2, ξ1) +∇⊥g⊥(X2, ξ1, ξ1) = 0,(3.6)

∇⊥g⊥(X1, ξ2, ξ2) +∇⊥g⊥(X2, ξ1, ξ2) = 0.(3.7)

We shall show that if equations (3.6) and (3.7) hold for a frame u then
they hold for every null holomorphic frame v. We need the following lemma.

Lemma 3.3. Let ∇ and ∇⊥ be the connections induced by an equiaffine
transversal plane bundle σ. ∇⊥g⊥ is symmetric if and only if there is a holo-
morphic null frame {X1, X2} satisfying the following equations:

(∇g)(X1, X1, X1) = 0,(3.8)

(∇g)(X2, X2, X2) = 0.(3.9)

Proof. Let equations hold for a tangent frame {X1, X2}. Let functions aj

be like in (3.3) for {X1, X2}. Let {ξ1, ξ2} be the transversal frame associated
to {X1, X2}. Putting (X1, X2, X1) and (X1, X2, X2) to the Codazzi equations
(1.5) and (1.4), respectively, we obtain

a2 = −τ1
2 (X2),

a7 = −τ2
1 (X1),

where τk
j are induced by {ξ1, ξ2}. From (3.6) and (3.7) we get

−g⊥(∇⊥X1
ξ2, ξ1)− g⊥(ξ2,∇⊥X1

ξ1)− 2g⊥(∇⊥X2
ξ1, ξ1) = 0,

−g⊥(∇⊥X2
ξ1, ξ1)− g⊥(ξ2,∇⊥X2

ξ1)− 2g⊥(∇⊥X1
ξ2, ξ2) = 0,
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which is equivalent to

2τ2
2 (X1) + 2τ1

1 (X1) + 4τ1
2 (X2) = 0,

2τ2
2 (X2) + 2τ1

1 (X2) + 4τ2
1 (X1) = 0.

Since ∇ comes from an equiaffine transversal bundle, τ1
1 + τ2

2 = 0 and we get

τ1
2 (X2) = τ2

1 (X1) = 0.

We then make the following computations

(∇g)(X1, X1, X1) = −2g(∇X1X1, X1) = −2a2 = 2τ1
2 (X2),

(∇g)(X2, X2, X2) = −2g(∇X2X2, X2) = −2a7 = 2τ2
1 (X1),

which complete the proof of the lemma.

We finally prove that the notion of symmetry of ∇⊥g⊥ does not depend
on the choice of a tangent null frame {X1, X2}.

Lemma 3.4. The tensor ∇⊥g⊥ is symmetric if and only if equations (3.6)
and (3.7) are true for an arbitrary null holomorphic tangent frame {X1, X2}
and the associated frame {ξ1, ξ2}.

Proof. Let {X1, X2} and {Y1, Y2} be two null holomorphic tangent
frames, {ξ1, ξ2} and {η1, η2} the corresponding transversal frames spanning an
equiaffine bundle σ. Let equations (3.6) and (3.7) hold for {X1, X2}. Then by
Lemma 3.3 equations (3.8) and (3.9) are also true. We will show that they are
true for {Y1, Y2}. Using Lemma 2.2, we have

∇g(Y1, Y1, Y1) = ∇g(aXj , aXj , aXj) = a3∇g(Xj , Xj , Xj) = 0,

∇g(Y2, Y2, Y2) = ∇g(a−1Xk, a
−1Xk, a

−1Xk) = a−3∇g(Xk, Xk, Xk) = 0,

for some j, k ∈ {1, 2} such that j 6= k. The above equalities are true, because
∇g is 3-linear over complex-valued functions if it acts on holomorphic vector
fields. This completes the proof.

We shall prove a theorem about the existence of a unique transversal bundle
over M .

Theorem 3.5. There is a unique equiaffine transversal bundle σ over a
complex, non-degenerate surface M in C4 with symmetric ∇⊥g⊥, where g⊥ is
an arbitrary transversal metric.

Proof. Let σ̃ be an arbitrary transversal bundle. Take {X1, X2} – a null
holomorphic tangent frame and {ξ̃1, ξ̃2} – the associated transversal frame.
Then, by Lemma 2.4, for another transversal bundle σ we have

ξ1 = ξ̃1 + Z1,

ξ2 = ξ̃2 + Z2,



236

where {ξ1, ξ2} is the transversal frame associated with {X1, X2} in σ and Z1, Z2

are tangent vector fields which we can decompose as follows:

Z1 = aX1 + bX2,(3.10)

Z2 = cX1 + dX2.(3.11)

By Lemma 3.1 and Lemma 3.2 (3), σ satisfies the requirements of the theorem
if and only if

∇g(X1, X2, X1) = 0,

∇g(X2, X1, X2) = 0,

∇g(X1, X1, X1) = 0,

∇g(X2, X2, X2) = 0,

(3.12)

where ∇ is induced by σ. By (1.14), this is equivalent to

− g(∇̃X1X2, X1)− g(X2, ∇̃X1X1) + g(X2, Z1) = 0,

− g(∇̃X2X1, X2)− g(X1, ∇̃X2X2) + g(X1, Z2) = 0,

− 2g(∇̃X1X1, X1) + 2g(Z1, X1) = 0,

− 2g(∇̃X2X2, X2) + 2g(Z2, X2) = 0,

where ∇̃ is the connection induced by σ̃. Since {X1, X2} is a null frame with
respect to the metric g, we compute the functions a, b, c, d using (3.10) and
(3.11) as follows:

∇̃g(X1, X2, X1) = −a,

∇̃g(X2, X1, X2) = −d,

∇̃g(X1, X1, X1) = −2b,

∇̃g(X2, X2, X2) = −2c.

(3.13)

Thus we have determined the bundle σ uniquely, because if σ̃ satisfies (3.12)
for ∇̃, then a = b = c = d = 0, which implies Z1 = Z2 = 0 and, in consequence,
σ = σ̃. It is also easy to verify that the bundle σ does not depend on the choice
of an affine metric g. The proof is now complete.

We will call the bundle satisfying the above theorem the affine normal
bundle induced by a given immersion.

Corollary 3.6. A transversal bundle σ is the affine normal bundle if
and only if the equations (3.12) hold, where ∇ is the connection induced by σ,
{X1, X2} – a holomorphic null tangent frame and g – an affine metric on the
surface.
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Using Lemma 3.1 and the proof of Lemma 3.3 we get the following

Corollary 3.7. Let σ be a transversal bundle, {X1, X2} – a holomorphic
null tangent frame and {ξ1, ξ2} – the associated transversal frame. σ is the
affine normal bundle if and only if

τ1
1 + τ2

2 = 0,

τ2
1 (X1) = 0,

τ1
2 (X2) = 0.

The following theorem shows that the unique transversal bundle has to be
holomorphic. This fact is analogous to the codimension-one case.

Theorem 3.8. The equiaffine normal bundle over a complex surface in C4

is holomorphic.

Proof. We choose a holomorphic null tangent frame{X1, X2}. Let {ξ1, ξ2}
be the associated normal frame in the normal bundle σ. We prove that the
forms τ j

k and the shape operators induced by the normal bundle are complex
(compare the introduction). From the Codazzi equation (1.4) (where X is an
arbitrary vector field) we get the following equations:

− 2h1(∇XX1, X1) + τ1
1 (X)

= X1

(
h1(X,X1)

)
− h1(∇X1X,X1)− h1(X,∇X1X1)

+ τ1
1 (X1)h1(X,X1) + τ2

1 (X1)h2(X,X1)

(3.14)

and

− 2h1(∇JXX1, X1) + τ1
1 (JX)

= X1

(
h1(JX,X1)

)
− h1(∇X1JX,X1)− h1(JX,∇X1X1)

+ τ1
1 (X1)h1(JX,X1) + τ2

1 (X1)h2(JX,X1),

(3.15)

which is equivalent to

− 2ih1(∇XX1, X1) + τ1
1 (JX)

= i
[
X1

(
h1(X,X1)

)]
− ih1(∇X1X,X1)− ih1(X,∇X1X1)

+ iτ1
1 (X1)h1(X,X1) + iτ2

1 (X1)h2(X,X1),

(3.16)

because ∇ is a complex connection, X1 is holomorphic and hj are C-bilinear.
Multiplying the equation (3.14) by i and comparing with (3.16) we obtain

τ1
1 (JX) = iτ1

1 (X).
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Using the Codazzi equations (1.4) and (1.5) in an analogous way we prove
similarly that

τk
j (JX) = iτk

j (X)
for j, k ∈ {1.2}. Using this fact and the fact that [JX, Y ] = J [X,Y ] for
holomorphic Y we can observe that

(3.17) idτk
j (X,Y )− dτk

j (JX, Y ) =
1
2
(
iXτk

j (Y )− (JX)τk
j (Y )

)
for arbitrary X and holomorphic Y . In the following only the vector field Y
is holomorphic. Adding up the Ricci equations (1.8) and (1.10) and using the
fact that τ1

1 + τ2
2 = 0, we obtain

h1(X,S1Y )− h1(Y, S1X) + h2(X,S2Y )− h2(Y, S2X)

= τ1
2 (Y )τ2

1 (X)− τ2
1 (Y )τ1

2 (X) + τ2
1 (Y )τ1

2 (X)− τ1
2 (Y )τ2

1 (X) = 0.
(3.18)

Putting JX instead of X in this equation and comparing the result with (3.18)
multiplied by i we get

(3.19) h1(Y, S1(JX)− JS1X) + h2(Y, S2(JX)− JS2X) = 0.

Putting Y = X1 in (3.19), we obtain

h1(X1, S1(JX)− JS1X) = 0,

which gives

(3.20) S1(JX)− JS1X = α(X)X2

for some α(X) ∈ C. Putting Y = X2 in the equation (3.19), we get

h2(X2, S2(JX)− JS2X) = 0

and, in consequence,

(3.21) S2(JX)− JS2X = β(X)X1

for β(X) ∈ C. We now use the Ricci equation (1.9) and apply (3.17):

h2(JX, S1Y )− h2(Y, S1(JX))− ih2(X,S1Y ) + ih2(Y, S1X)

=
1
2
(
iXτ1

2 (Y )− (JX)τ1
2 (Y )

)
.

Putting Y = X2 in this equation yields

h2(X2, S1(JX)− JS1X) = 0,

whence α(X) = 0. Similarly, applying the Ricci equation (1.11) we get

h1(X1, S2(JX)− JS2X) = 0,

whence β(X) = 0. Thus both S1 and S2 are complex. This completes the
proof.
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Remark. We could prove the last theorem more easily, using the construc-
tion of the associated normal frame (Lemma 2.2). Here we wanted to use only
the conditions imposed on the affine normal bundle, as in Theorem 3.5.

Theorem 3.9. Assume that there is an equiaffine plane bundle σ̃ such that
∇̃g is totally symmetric. Then

1) the normal bundle σ satisfies the condition ∇g = 0;
2) σ = σ̃ if and only if ∇̃g = 0.

Proof. Let u ={X1, X2} be a holomorphic null frame. Let {ξ1, ξ2} and
{ξ̃1, ξ̃2} be the corresponding transversal frames that span σ and σ̃, respec-
tively. Let also

ξ1 = ξ̃1 + Z1,

ξ2 = ξ̃2 + Z2.

We have

∇g(X1, X2, X2) = −2g(∇X1X2, X2)

=− 2g(∇̃X1X2 + h̃1(X1, X2)Z1 + h̃2(X1, X2)Z2, X2)

=∇̃g(X1, X2, X2) = ∇̃g(X2, X1, X2)

=− 2g(∇̃X2X1 + h̃1(X2, X1)Z1 + h̃2(X2, X1)Z2, X1)

=− 2g(∇X2X1, X2) = ∇g(X2, X1, X2) = 0

due to the properties of σ (Corollary 3.6). In the analogous way we obtain
∇g(X2, X1, X1) = 0. Taking into account also (3.12) we can see that ∇g = 0.
Then it suffices to prove the ‘if’ part of the second assertion. Let σ̃ satisfy
∇̃g = 0. But, in particular, it satisfies (3.12) then, so it coincides with the
affine normal bundle σ. It completes the proof of the lemma.

4. Other canonically determined transversal bundles. In this sec-
tion we adopt the constructions of Burstin, Mayer and Klingenberg to the
complex case (see [2], [4]).

Let M be a nondegenerate complex surface in C4 and g be an affine metric
defined locally on M . Let σ be a complex transversal bundle over M with the
induced connection ∇. If ∇̂ defines the Levi-Civita connection for g, then we
define a tensor K by the formula:

(4.1) K(X,Y ) = ∇XY − ∇̂XY,

which is symmetric because both connections are torsion-free. We see that the
connection ∇̂ is independent of the choice of an affine metric g, then so is K.
Let {X1, X2} be a null holomorphic frame on M and {ξ1, ξ2} – the associated
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transversal frame in σ. The Laplacian of the immersion x of the surface is now
given by the following formula:

(4.2) ∆gx = DX1X2 +DX2X1 − ∇̂X1X2 − ∇̂X2X1.

Using the Gauss formula and the tensor K as well as the form of hj , we see that
∆gx = 2K(X1, X2). For another affine metric ḡ = cg, we have ∆ḡx = c2∆gx.

We define a tensor η over R, as follows:

(4.3) η(X,Y ) = DXY − ∇̂XY − 1
2
g(X,Y )∆gx.

Let σ be a transversal bundle. Using K and a given transversal frame {ξ1, ξ2},
we write

(4.4) η(X,Y ) = K(X,Y ) + h1(X,Y )ξ1 + h2(X,Y )ξ2 −
1
2
g(X,Y )∆gx.

We can see that η is also a tensor over C. Since η(X1, X2) = 0, where {X1, X2}
is the frame associated with {ξ1, ξ2}, the image of η is spanned by two vectors
η(X1, X1) and η(X2, X2). Moreover we notice that it does not depend on the
choice of an affine metric g. We define the Burstin-Mayer transversal bundle
as the transversal bundle spanned by the image of the tensor η. We denote it
by σBM . Notice that if we use a frame of σBM in formula (4.4), we get

(4.5) ∇XY = ∇̂XY +
1
2
g(X,Y )∆gx,

taking its tangent component and considering (4.1), where ∇ denotes the con-
nection induced by the bundle σBM . It is a holomorphic connection because
∇̂ is holomorphic and the Laplacian is also a holomorphic vector field.

The following theorem shows when the Burstin–Mayer bundle is equiaffine.

Theorem 4.1. Let ∇ be the connection induced by the transversal bundle
σBM , ∇̂ – the Levi-Civita connection for an affine metric g and ωg – the
complex volume element for g. Then the following conditions are equivalent:

1) ∇ = ∇̂;
2) ∇ωg = 0;
3) ∆gx = 0.

Proof. Equation (4.5) shows that 1) and 3) are equivalent. Condition 1)
implies that ∇g = 0, whence ∇ωg = 0 by its definition. Assume now that
∇ωg = 0 and we will use the notation KXY instead of K(X,Y ). We have thus
KXωg = 0. But by equation (4.5) KXY = 1

2g(X,Y )∆gx, which implies

(KXωg)(Y, Z) =Xωg(Y, Z)−Xωg(Y, Z)− ωg(KXY, Z)− ωg(Y,KXZ)

=
1
2
g(X,Y )ωg(∆gx,Z)− 1

2
g(X,Z)ωg(∆gx, Y ).

(4.6)
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Taking a null frame {X1, X2}, put X = Z = Xj , Y = Xk in (4.6), where
j, k ∈ {1, 2} and j 6= k. We get ωg(∆gx,Xj) = 0 for j = 1, 2, but this means
that ∆gx = 0. The proof is then completed.

In the following we present the next construction following an idea of Klin-
genberg ([4]). We fix a transversal bundle σ and its local frame {ξ1, ξ2}. Then
the cubic forms C1 and C2 are defined in the following way:

(4.7) Cj(X,Y, Z) = (∇Xh
j)(Y, Z) + τ1

j (X)h1(Y, Z) + τ2
j (X)h2(Y, Z),

where hj and τk
j are induced by the frame {ξ1, ξ2}.

Let {X1, X2} be a null frame on M . We will show that there is exactly one
transversal bundle σ such that the following equations are satisfied:

C1(X1, X1, X1) = 0,

C1(X1, X2, X2) = 0,

C2(X2, X2, X2) = 0,

C2(X2, X1, X1) = 0,

(4.8)

where the cubic forms are defined with respect to the frame associated to
{X1, X2}. First we notice that the above equations do not depend on the
choice of an affine metric. Then we show that on an arbitrary nondegenerate
surface there exists a desired bundle.

Lemma 4.2. Let {X1, X2} be a null frame on M . Then there exists exactly
one transversal bundle σ such that equations (4.8) are satisfied, where the cubic
forms are induced by the frame associated to {X1, X2} in σ.

Proof. Let σ, σ̃ be two arbitrary transversal bundles and {ξ1, ξ2}, {ξ̃1, ξ̃2}
– their frames associated to {X1, X2}. By Lemma 2.4 there are such tangent
vector fields Z1 and Z2 that ξ1 = ξ̃1 + Z1 and ξ2 = ξ̃2 + Z2. Using formulas
(1.15) and (1.16) we get h̃j = hj for j = 1, 2. Comparing DXξj with DX ξ̃j , we
obtain

τk
j (X) = τ̃k

j (X) + h̃j(X,Zk)

for all j, k. The cubic forms induced by {ξ1, ξ2} and {ξ̃1, ξ̃2} are related in the
following way:

C̃j(Xj , Xj , Xj) = Cj(Xj , Xj , Xj)− hj(Xj , Zj),

C̃j(Xj , Xk, Xk) = Cj(Xj , Xk, Xk)− hj(Xj , Zk),
(4.9)
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where j, k = 1, 2 and j 6= k. If Z1 = aX1 + bX2 and Z2 = cX1 + dX2, then
equations (4.9) give:

C̃1(X1, X1, X1) + a = C1(X1, X1, X1),

C̃1(X1, X2, X2) + c = C1(X1, X2, X2),

C̃2(X2, X2, X2) + d = C2(X2, X2, X2),

C̃2(X2, X1, X1) + b = C2(X2, X1, X1).

Having the bundle σ̃, choose functions a, b, c, d such that the right hand sides
of the above equations vanish. We see that the bundle σ satisfying these
conditions is unique. This completes the proof of the lemma.

Since the fundamental forms are C-linear and the cubic forms are sym-
metric in each two arguments, the cubic forms are also complex tensors. We
prove that the transversal bundle constructed in the previous lemma does not
depend on the choice of a null frame {X1, X2}.

Lemma 4.3. Let {X1, X2},{X̃1, X̃2}be two tangent null frames and {ξ1, ξ2},
{ξ̃1, ξ̃2} be the associated transversal frames in the same transversal bundle σ.
If equations (4.8) are true for X1, X2 and the cubic forms induced by {ξ1, ξ2},
then they are true for {X̃1, X̃2} and the cubic forms induced by {ξ̃1, ξ̃2}. Thus
both tangent frames induce the same transversal bundle because of the unque-
ness in Lemma 4.2.

Proof. The null frames are related by X̃1 = γX1, X̃2 = γ−1X2 whereas
the associated transversal frame satisfy the relations ξ̃1 = γ2ξ1 and ξ̃2 = γ−2ξ2,
where γ is a function. Formulas (1.15) and (1.16) imply that h̃1 = γ−2h1 and
h̃2 = γ2h2. ComputingDX ξ̃1 andDX(γ2ξ1) we get τ̃1

1 (X) = τ1
1 (X)+2γ−1X(γ)

and τ̃1
2 (X) = γ4τ1

2 (X). Analogously, we get τ̃2
1 (X) = γ−4τ2

1 (X) and τ̃2
2 (X) =

τ2
2 (X)− 2γ−1X(γ). Having ∇̃ = ∇, we obtain

C̃1 = γ−2C1,

C̃2 = γ2C2.

Now we easily check that equations (4.8) are satisfied for C̃j andXj for j = 1, 2.
The proof is completed.

The last two lemmas allow us to define the Klingenberg transversal bundle
as the bundle satisfying Lemma 4.2 for any null frame {X1, X2}. We will
denote this bundle by σK .

Theorem 4.4. Let ∇ denote the connection induced on a nondegenerate
complex surface M in C4 by the Klingenberg transversal bundle σK . Consider
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the following conditions:
1) ∇ωg = 0;
2) ∇g = 0;
3) ∆gx = 0.

Then 1) implies 2) and 2) implies 3). Moreover, condition 2) implies that
σK = σBM .

Proof. First we prove the implication 1) to 2). Take a null frame {X1, X2}
and the associated transversal frame {ξ1, ξ2}. Let functions a1, ..., a8 satisfy
the equalities (3.3) with respect to ∇ and {X1, X2}. By Lemma 3.1 and its
proof we get that a1 + a4 = 0, a5 + a8 = 0 and τ1

1 + τ2
2 = 0. Equations (4.8)

give

−2a1 + τ1
1 (X1) = 0,

τ2
1 (X1) = 0,

−2a8 + τ2
2 (X2) = 0,

τ1
2 (X2) = 0.

Symmetry of the cubic forms leads to the following implications:
C1(X2, X1, X2) = 0 implies a7 = 0,
C2(X1, X2, X1) = 0 implies a2 = 0,
C1(X1, X2, X1) = C1(X2, X1, X1) implies −a3 = −2a5 + τ1

1 (X2),
C2(X2, X1, X2) = C2(X1, X2, X2) implies −a6 = −2a4 + τ2

2 (X1).
Combining the obtained equations, we get a3 = a6 = 0.

Since the bundle is equiaffine, equations (3.1) and (3.2) are satisfied. The proof
of Lemma 3.3 shows that a2 = a7 = 0 imply equations ∇g(X1, X1, X1) = 0
and ∇g(X2, X2, X2) = 0. Moreover we have ∇g(X2, X1, X1) = −2a6 = 0 and
∇g(X1, X2, X2) = −2a3 = 0. Thus ∇g = 0.

We then prove the implication from 2) to 3). Since ∇g = 0 means that
∇ = ∇̂, and further, K = 0, we immediately obtain ∆gx = 0.

To prove the last statement assume that ∇g = 0. Rewrite the definition
of the tensor η, using σK as the transversal bundle. Then we have η(X,Y ) =
h1(X,Y )ξ1 + h2(X,Y )ξ2, whence σBM ⊂ σK which also implies the equality
between the two bundles. The proof of the theorem has been completed.

We see that the bundle σK is holomorphic because we can take a holomor-
phic transversal bundle and holomorphic null frames in its construction done
in the proof of Lemma. As a result we get a holomorhic transversal frame
spanning σK .

At the end we remark that there are nondegenerate surfaces that do not
satisfy the condition ∆gx = 0. The surface x(u, v) = (u, u3, uv, uv2) is an
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example. Thus the Klingenberg equiaffine transversal bundle does not exist on
every nondegenerate complex surface in C4.
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