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ON THE SET OF HOMOGENEOUS GEODESICS OF A
LEFT-INVARIANT METRIC

BY JANOS SZENTHE

Abstract. We present results concerning the set of homogeneous geodesics
of a left-invariant Riemannian metric on a compact semi-simple Lie group.

If (M, (,)) is a Riemannian manifold its geodesic v: R — M is said to be
homogeneous if there is a 1-parameter group of isometries ®: R x M — M of
the Riemannian manifold such that

V(1) = ®(7,7(0)), T €R

holds; in an alternative terminology v is called a stationary geodesic. The ex-
istence of a homogeneous geodesic in the case of a given 1-parameter isometry
group was established under various assumptions long ago (see e. g. [5], [3]).
On the other hand, as the comprehensive papers by C. S. Gordon, O. Kowalski
and L. Vanhecke show the condition that all the geodesics in a homogeneous
Riemannian manifold are homogeneous is a useful starting point in the classi-
fication of the homogeneous Riemannian manifolds [2], [8]. Accordingly, the
problem of the existence of homogeneous geodesics in homogeneous Riemann-
ian manifolds seems to be an interesting one. Recently several results have
been obtained concerning the above problem. First, it has been shown by
V. V. Kajzer that if G is a Lie group and (, )¢ a left-invariant Riemannian
metric on G, then the Riemannian manifold (G, (,)g) has at least 1 homoge-
neous geodesic [4]. Generalizing this result of Kajzer it has been shown that
if M = G/H is a homogeneous manifold and (,) an invariant metric on G/H,
then the homogeneous Riemannian manifold (G/H, (,)) has at least 1 homo-
geneous geodesic [7]. Furthermore, it has been shown by Kowalski and V1dsek
that the above result is the best one which holds in general, namely they have
produced a construction which yields a homogeneous Riemannian manifold for
each dimension > 4 such that there is only 1 homogeneous geodesic issuing
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from a point [9]. But on the other hand, it has been shown that if G is a
compact semi-simple Lie group of rank > 2 and (,)g is a left-invariant Rie-
mannian metric on G, then the Riemannian manifold (G, (,)s) has infinitely
many homogeneous geodesics issuing from the identity element [10]. In fact,
homogeneous geodesics of a left-invariant Riemannian metric on a compact
connected Lie group has been studied earlier also by V. I. Arnold generalizing
Fuler’s theory of rigid body motion in basically mechanical settings where the
term stationary geodesic was introduced [I]. An extension of results of [10]
to left-invariant Lagrangians over compact connected Lie groups of rank > 2
has been also obtained [11].

Studying the set of homogeneous geodesics of a homogeneous Riemannian
manifold (G/H, (,)) the concept of geodesic vector proved to be convenient
[8]. Namely, let ®: G x (G/H) — G/H be the canonical left-action, g the Lie
algebra of G and Fxp: g — G its exponential map. Put o = H € G/H, fix
a tangent vector v € T,(G/H) — {0} and consider the geodesic v: R — G/H
defined by v = 4(0). It is said that v is a geodesic vector if 7 is a homogeneous
geodesic of (G/H, (,)); in other words if

v(1) = ®(Exp(tX),0), T€R

holds with some X € g. The study of the set of homogeneous geodesics of a
homogenous Riemannian manifold is obviously reducible to the study of the set
of its geodesic vectors. It seems that the set of the geodesic vectors of a homo-
geneous Riemannian manifold does not admit a simple description in general.
Namely, O. Kowalski, S. Nikcevi¢ and Z. V1asek have given several examples
which show that the set of geodesic vectors may have various structures [6].
The results presented below concern the set of geodesic vectors of a homoge-
neous Riemannian manifold (G, (,)q), where G is a compact semi-simple Lie
group and (, )¢ is a left-invariant Riemannian metric on G.

1. The restricted quadratic form and the existence of geodesic
vectors. Let G be a connected Lie group, g = T.G its Lie algebra, Ad: Gxg —
g the adjoint action, G(X) = {Ad(9)X |g € G} C g the orbit of an element
X € g and Gx < G the isotropy subgroup at X. The set G/Gx of left-
cosets of Gx endowed with its canonical smooth manifold structure admits
the canonical left-action

dx: G x (G/Gx) > (g,CLGx) — (ga)GX S G/GX

which is also smooth. Moreover, a smooth bijection ax: G/Gx — G(X) is
defined by ax: G/Gx 2 aGx — Ad(a)X € G(X) C g which thus yields an
injective immersion into g which is equivariant with respect to the actions ® x
and Ad.
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Now consider a symmetric positive definite bilinear form A: g x g — R,
then A defines a left-invariant Riemannian metric (, )¢ on G by

(u,v)g = A(Tg)\g_lu,Tg)\g_lv), u,v € T,G,

where \g: G — G is the left translation by g € G. There is also the quadratic
form Q: g — R given by Q(X) = A(X, X), X € g and a smooth function

gx: Qoax: G/Gx — R,

which is called the restricted quadratic form on G/Gx. The following result
has been obtained earlier [10]:

PROPOSITION 1.1. Let G be a connected Lie group, A: gx g — R a positive
definite symmetric bilinear form defined on its Lie algebra and (,)q the left-
invariant Riemannian metric defined by A on G. Then U € G(X) C g =T.G
is a geodesic vector if and only if a)_(l(U) € G/Gx is a critical point of the
restricted quadratic form qx = Q o ax.

Essentially the same result was also obtained earlier by Arnold but in the
framework of analytical mechanics [1].

If G is also compact and semi-simple then the manifold G/Gx becomes
compact, and the restricted quadratic form ¢: G/Gx — R has at least two
critical points and consequently infinitely many geodesic vectors X € g =
T.G exist if rank G > 2 holds and these critical points yield infinitely many
homogeneous geodesics emanating from the identity element e € G of the
group [10]. The above result raises the problem of finding more information
about the number and type of the critical points of the restricted quadratic
form gx: G/Gx — R in order to obtain a detailed description of the set of
geodesic vectors and consequently of the set of homogeneous geodesics.

2. The gradient of the restricted quadratic form. Let G be a com-
pact semi-simple Lie group G and K: g x g — R its Cartan-Killing form
which being negative definite yields a euclidean inner product by (,) = —K
on g which in turn canonically induces a Riemannian metric (,)q on g by the
requirement that the canonical isomorphisms

tz:g9—1Tyg, Z€g

are isometries. There is also a unique Riemannian metric (,)x on the homoge-
neous manifold G/Gx which renders the injective immersion ax into (g, (,)g)
isometric.

For U € g consider the corresponding infinitesimal generator U € 7 (G/Gx)
of the canonical action ®x. Since ax is equivariant the following holds

ax(Px(Ezp(tU),9Gx)) = ax(Exp(tU)gGx)
= Ad(Exp(7U),ax(9Gx)) = Ad(Exp(tU))(Ad(g)X), T € R, g € G.
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Differentiating the above equality yields obviously the following one

TaxU(9Gx) = taqgx[U, Ad(g)X].

Consider now the isotropy subalgebra gx < g of the adjoint action at X
and also its orthogonal complement mx C g with respect to (,). Thus the
orthogonal decomposition

g=mx ®gx
yields the following orthogonal decomposition of the tangent space
Tzg=1z(mx) ®1z(9x), Z € 0.

Accordingly, in what follows for a W € Tzg the decomposition W = W' + W"
will be meant to be taken with respect to the above orthogonal direct sum
decomposition. Moreover, since by

TyoG/Gx 2 U(gGx) — chll(g)X oTaxU(9Gx) € M Aq(g) X
a vector space isomorphism is defined, it has an inverse isomorphism

WAd(g)X * Madg)x — TyaxG/Gx
which will be repeatedly applied in what follows.

Now consider a symmetric positive definite bilinear form A: g x g — R,
then a unique vector space automorphism k: g — g is defined by

AX)Y)=(kX)Y), X,Y €g
which is symmetric with respect to (, ). The gradient of the restricted quadratic

form gx with respect to the Riemmanian metric (,)x is given by the next
proposition.

PROPOSITION 2.1. Let G be a compact semi-simple Lie group, A: gxg — R
a positive definite symmetric bilinear form and Q o ax = qx: G/Gx — R for
X € g the corresponding restricted quadratic form. Then its gradient field is
given by

G/Gx 2 gGx — grad qx(9Gx) = 2wx (k(Ad(g) X)) o ax
with respect to the Riemannian metric (,)x where wx and k are the corre-
sponding vector space isomorphisms.
PrROOF. In fact, the gradient of the quadratic form ¢ in the euclidean
vector space (g, (,)) is obviously given by
grad Q(Z) =2kZ, Z € g.
Thus the corresponding gradient field in the Riemannian manifold (g, (,)gq) is
given by
g3 72— 2uzorZ €Tyg.
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For U € m g4y x let U e TyaxG/Gx be the corresponding infinitesimal gen-
erator of ®x, then the following holds
(U,grad qx)x = Uqx = U(Qoax) = (TaxU)Q) o ax
= <TaXU,grad Q)goax = <TaXU, 2t ad(g)x © K(Ad(g)X))g 0 ax
= (TaxU, 2taay) x (K(Ad(g) X)) )g 0 ax

= (U, 2(wadg)x ((Ad(9) X)) ) x.
But then the gradient field of the smooth function gx = @ o ax in the Rie-
mannian manifold (G/Gx, (,)x) is given by
G/Gx 3 gGx — 2waqg)x (K(Ad(9) X)) € Tya,G/Gx

since any element of T,g,G/Gx is obtainable as U(gGx) with a suitable
Uem Ad(g)X - O

COROLLARY 1. Let a left-invariant Riemannian metric be given on a com-
pact semi-simple Lie group by a positive definite symmetric bilinear form A.
Then X € T.G = g is a geodesic vector if and only if

kX € gx

where K is the vectorspace automorphism associated with A and gx < g is the
1sotropy subalgebra.

PRrROOF. The corollary is a direct consequence of propositions[I.1] and
O

COROLLARY 2. Let a left-invariant Riemannian metric be given on a com-
pact semi-simple Lie group G by a symmetric positive definite bilinear form
A. If E € g is an eigenvector of the corresponding symmetric automorphism
k: g — @, then E is a geodesic vector of (,)q.

PRrROOF. Let A € R be the eigenvalue corresponding to the eigenvector E.
Then
kE =)\E € gg

since F¥ € gg. But then the preceding corollary applies. O

In fact, the observation that an eigenvector of k yields a geodesic vector
was the starting point for the results of Kajzer [4].

COROLLARY 3. Let a left-invariant Riemannian metric be given on a com-
pact semi-simple Lie group by a positive definite bilinear form A. Then X € g
is a geodesic vector if and only if

(X, k(mx)) = {0}

where Kk is the automorphism associated with A.



176

PROOF. In fact, kX € gx if and only if (kX, mx) = {0}. Furthermore the
equality
</€X, mx> = <X, H(mx)>

follows from the fact that the automorphism k is symmetric. O

THEOREM 2.2. Let G be a compact semi-simple Lie group endowed with a
left-invariant Riemannian metric (,)c and let h < g be a Cartan subalgebra
of its Lie algebra. Then the set of those elements X € b of the Lie algebra g
which are geodesic vectors of (,)a is either empty or there is a subspace s C b
such that

1. dim s > 1.

2. Fvery element of 5 is a geodesic vector.

3. Fach regular element of h which is a geodesic vector is contained by s.

ProoF. Consider the (,)-orthogonal complement m = h* of the Cartan
subalgebra h in g. Then by

5 =00 (k(m))"

a subspace of the Cartan subalgebra b is defined.
Assume that s # {0} and consider a Y € s—{0} and also the corresponding
isotropy subalgebra gy < g. Then

h<gy

since b is commutative and gy is the maximal algbera formed by elements
commuting with Y. Let my be the (,)-orthogonal complement of gy in g,
then

m DO my

by the preceding observations. But then Y L x(m) and the following holds
{0} = (Y k(m)) = (Y, m) D (KY, my)

which implies that kY € gy. But then by corollary 1 of proposition the
origin oy € G/Gy is a critical point of gy. Therefore Y is a geodesic vector
according to proposition (1.1

Additionally assume that X € b is a regular element of g and also a geodesic
vector. Then gx = h, m = myx and by the above corollary 1 kX € gx.
Therefore the following is obtained

{0} = (kX,mx) = (kX,m) = (X, k(m)).

Consequently X € hN (k(m))* = s as well. O
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3. The Hessian of the restricted quadratic form. As the second step
in studying the critical points of a restricted quadratic form gy the Hessian of
qx is calculated at a critical point.

PROPOSITION 3.1. Let G be a compact semi-simple Lie group, A: gxg — R
a positive definite bilinear form, X € g such that ox is a critical point of qx.
Then the Hessian Ho q: 1o, (G/Gx) X To (G/Gx) — R is given by
H, q(U,V) = (U,[[V,X],cX] + [X,&]V, X]]) o ax, U,V € my

where U,V € mx and U,V € T(G/Gx) are the associated infinitesimal gen-
erators of the canonical action ®x.

PROOF. In order to calculate the Hessian of gx at the critical point ox
consider U,V € mx and the corresponding infinitesimal generators U, V €
T(G/Gx) of the canonical action ®x. Then

Hoyqx (U(ox), V(ox)) = V(ox)(Ugx)
= }11% %{(ﬁqX)(Exp(TV)Gx) — (Uqx)(Gx)} =

= lim l{((TozXU(E:Ep(TV)GX)Q) oax(FEzp(tV)Gx)

=0T
— (TaxU(Gx)Q) o ax(Gx)}

by the definition of the tangent linear map since gx = ) o ax. But then, by
the already calculated expression of the image of an infinitesimal generator and
its interior product with the field grad @ presented in the proof of proposition
the above expression is equal to the following one:

1
lim —{{ead(mep(rv)x [U, Ad(Bap(TV) X], 2 ad(map(rv)x © K(Ad(Bzp(rV) X))g
—(ex[U, X],2tx 0 KX)g}

— 2 Tim L {([U, Ad(Eap(+V)X], k(Ad(ExprV) X)) — ([U, X], sX)}

T—0 T

_ 2}%“ [Ad(Exp(:V))U -U

k(Ad(Exp(tV)X — /{X>}

= 2{([[V, U], X], s X) + ([U, X], [V, X]) }.

But this was to be proved. Since any element of T,, (G/Gx) is obtainable
through infinitesimal generators of ®, the Hessian is given as above. O

, X, k(Ad(Exp(TV) X))

+([U, X],
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REMARK 1. Let ox € G/Gx be a critical point of qx then the vector space
isomorphism
WX = wWx o ad(X): my — TOXG/GX
pulls back the Hessian H,, qx to a symmetric bilinear form
@xHoy: (U, V) = 2(U, [[V, X], s X] + [X, 5[V, X]])
which is defined on mx.

REMARK 2. The Hessian of the restricted quadratic form as given above is
symmetric at a critical point.

PROOF. Let X € g be such that ox € G/Gx is a critical point of the
restricted quadratic form ¢x. For U,V € mx consider the corresponding infin-
itesimal generators U, V € T(G/Gx) of the canonical left action. Then the
following holdS'

S Hoxa(T, V) = {(U, [V, X], 5 X] + [X, [V, X} o ax
= {([5X, U], IV, X]) + ([U, X 6[V; X))} o ac
= {(X, [U, [V, X]}) + (s[U, XL, [V, X])} 0 g
= {(6X, —[X, [U,V]] = [V, [X, U]} + (V. X], 6[U, X])} o ax
= {([X, X], [U.V]) + {[V, 5X], [U, X]) + (V, [X, 5[, X])} o
= (V. (10, X), 5 X] + [X, [8[U, X])} 0 acx = 5 Hona(V,0)

Since any tangent vector in T, G/Gx is obtainable this way, the assertion
holds. O

PROPOSITION 3.2. Let G be a compact connected semi-simple Lie group, A
a symmetric positive definite bilinear form on g and X € g such that ox is a
critical point of qx. Then ox is a degenerate critical point if and only if there
is a Ve mx — {0} such that

[[V7 X]’ KX] + [X’ K’[Vv XH € gx
where Kk is the symmetric automorphism associated with A.

Proor. In fact, H,,q and wy H,, are degenerate simultaneously. But

wy H,y is degenerate if and only if there is a V' € mx such that for all U € mx

the following holds:
Hoyq(U,V) = (U, [[V, X], kX] + [X, 6]V, X]]) o ax = 0.
But the above equality is valid for each U € my if and only if
[V, X], kX] + [X, 5[V, X]] € gx,

but this is the assertion of the proposition. ]
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COROLLARY 1. Let Let X € g be an element of the Lie algebra such that
ox € G/Gx is a critical point of ¢X. Then ox is a degenerate critical point
if and only if there is a V € gx — {0} such that

[V, X, 6 X] + ([X, &[]V, X]])" = 0
where the component is defined by the orthogonal decomposition g = mx D gx.

PROOF. In fact, the condition of the preceding proposition is satisfied if
and only if there is a V' € mx — {0} such that the following holds

0= ([[V,X],KX] + [X7K[V>XH)/ = [[V7X]’K“X] + ([XvH[V>XH),

since kX € gx by corollary 1 of proposition and then [[V, X],kX] € mx.
O

COROLLARY 2. Let X € g be such that ox a critical point of qx. Then ox
is degenerate if and only if there is a V € mx — {0} such that

[KX’ V] - (R[Xv V])/ =0,
where mx C g is the (,)-orthogonal complement of gx .

PROOF. By the preceding proposition ox is a degenerate critical point of
gx if and only if there is a V € mx — {0} such that

[V, X], e X] + [X, 5[V, X]] € gx.
By the Jacobi identity the preceding relation is equivalent to the following one:
[Xa [K’Xa VH + [‘/a [X’ /{XH + [Xa K[V7 XH € gx-

But the fact that ox is a critical point of ¢x implies by the corollary 1 of
Proposition that kX € gx and therefore [X,xX] = 0. Therefore the
preceding condition is equivalent to the following one

(X, [ X, V] — k[X,V]] € gx.
But then the following holds:
(X, [6X, V] = (6[X, V])] = [X, [£X, V] = (5[X, V] = (5[ X, V])")]

= [X7 [HXa V] - ’%[Xv VH €gx.
Yet [k X, V] € mx, (k[X,V]) € mx imply [X, [rX,V]— (k[X,V])] € mx. But
then
[X7 [’%X7 V] - (’%[X7 V])/} =0
is valid. Therefore [xX,V]— (k[X,V]) € gx follows by a basic property of gx.
Thus [X, V] — (k[X,V]) € mx Ngx = {0} is obtained. O
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THEOREM 3.3. Let a left-invariant Riemannian metric be given on a com-
pact semi-simple Lie group G by a positive definite symmetric bilinear form
A: g xg— R such that the eigenspaces of the corresponding symmetric auto-
morphism k are 1-dimensional. If E € g is an eigenvector of k with maximal
eigenvalue, then the corresponding op € G/Gpg is a non-degenerate critical

point of qE.

PROOF. The point o € G/Gg is a critical point of ¢r in consequence of
corollary 2 of proposition[2.1l Moreover, og is degenerate critical point by the
preceding corollary if and only if there is a V € mg — {0} such that

[kE, V] + (k[E,V]) = 0.

Let now A € R be the maximal eigenvalue of x corresponding to E. Then the
preceding equality is equivalent to the following one:

NE, V] + (k[E,V]) = 0.

Here [E,V] # 0, since V € mg — {0}.

First consider the case when (k[E,V])" = k[E,V] holds. Then the above
equality is valid if and only if [E, V] is an eigenvector of x with eigenvalue .
But E_L[E,V]. Therefore the above equality holds if and only if the eigenspace
of A corresponding to A has dimension > 2; but this contradicts the assumption
that all eigenspaces are 1-dimensional.

Secondly consider the case when (k[E,V]) # k[E,V] is valid. Then the
equality

(RIE,V]) = [KE,V] = A[E, V]
is equivalent to the orthogonal decomposition
K[E,V] = \E,V]+ (k[E,V])"

with non-zero terms on the left side. But this decomposition is equivalent to
the inequality

[&[E, V]I > A[E, V]]]
which contradicts the assumption that A is positive definite and A is the max-
imal eigenvalue of k. O

COROLLARY. Let G be a compact connected semi-simple Lie group with a
left-invariant Riemannian metric (,)q defined by a positive definite symmetric
bilinear form A: g x g — R such that the corresponding symmetric automor-
phism k: g — g has only 1-dimensional eigenspaces. If E is an eigenvector of
the mazximal eigenvalue, then it is a geodesic vector which is isolated in the set
of geodesic vectors on the orbit G(E) C g under the adjoint action.

PROOF. A direct consequence of corollary 1 to proposition [2.1] and of the
preceding theorem. O
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