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TENSORIAL VERSION OF THE CALCULUS OF VARIATIONS

by Biagio C. Casciaro and Jerzy J. Konderak

Abstract. We study the tensorial Euler-Lagrange equations and the ten-
sorial Noether equations. ‘The sufficient conditions’ are obtained in a co-
variant form and by covariant steps for Variational Problems of any di-
mension. The obtained integro-differential equations can be applied to
constrained and lower rank variational problems.

1. Introduction

This paper is a continuation of the papers [2, 3], where we give a tensorial,
global and covariant version of the Calculus of Variations. In the seventies and
eighties, many papers where published on this subjetct, and the problem is
now considered solved; but there are at least five good reasons which support
the point of view considered here.

In order to explain these reasons, we need the general scheme in which we
shall work. We consider three C∞-differentiable manifolds S, M and N , and
fix a suitable tensor field g of type (2,2) on the Cartesian product M ×N . We
also fix a family (fs)s∈S of C∞-differentiable mappings fs : M → N , depending
differentially on s ∈ S, and a family (Ωs)s∈S of n-dimensional submanifolds
with boundary of M , depending differentially on s ∈ S, and having a regular
enough boundary ∂Ωs. Finally, M is supposed to be orientable and a volume
form dv is fixed on it. By this scheme, both the Euler–Lagrange equation
and the Noether equation can be obtained from the total differential dρ of the
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action functional ρ : S → R defined by:

ρ(s) =
∫

Ωs

g

(
∂Xfs

∂x
,
∂Xfs

∂x

)
dv.

In fact, when a suitable expression of dρ is obtained (cf. section 6.1), the
Noether theorem follows by requiring that (dρ)s0 , being s0 ∈ S and (fs)s∈S

suitably chosen (cf. section 6.3); while the same requirement, when S coincides
with an open interval ] − ε, ε[ of R, with ε > 0, and on S the standard chart
(S, id) is fixed, gives the Euler–Lagrange equation, being s0 = 0 in this case
(cf. section 6.2).

Apparently, this case is simpler than the problems considered in the previ-
ously quoted papers. It is not the case, since in a future paper we are able to
prove that any variational problem of the first order can be suitably reduced to
the case considered here. We consider this approach to the problem, because
it simplifies the matters, it allows a better understanding of the involved cal-
culations and it also allows us to obtain remarkable applications without the
use of long calculations.

We suppose that all the geometric objects involved are C∞-differentiable,
for the sake of simplicity. We can always lower the degree of differentiability
and find its standard lower bound by standard methods, cf. [25, 21], without
this bound the methods and problems are quite different, cf. [8].

Now we are ready to turn to our reasons. The first reason is historical in
nature. In fact, in most papers published on the subject, e.g. cf. [1, 27, 13]
and others, the authors determine the bundles in which the standard geomet-
ric objects used in the Calculus of Variations are globally defined (generally
jet-bundles and affine bundles), instead of finding covariant tensorial objects
associated with the considered problem. We do not think this solution was
what the mathematicians of the past had in mind when they considered the
problem of covariance and globalization. Almost certainly, they were think-
ing of tensor fields and covariant derivative, and in this paper we use them
exclusively. In other words we completely restore the correspondence between
Euclidean spaces and differentiable manifolds in the Calculus of Variations, by
determining the rules by which ‘partial derivatives’ can be replaced by ‘covari-
ant derivatives’.

The second reason is the extreme simplicity of the method, which, as just
said, consists in the extension of the formal derivatives of the involved geomet-
ric objects to connections. This seems to be a fair task in itself, since, roughly
speaking, the set of partial derivatives is nothing but the covariant differential
with respect to the standard connection of the Euclidean space.

In order to compute dρ we fix three connections ∇̃, ∇1 and∇2 on S, M and
N , respectively and consider the connection ∇ = ∇̃×∇1×∇2 on the Cartesian
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product S ×M × N . The connection ∇ determines the covariant differential
∇H for any tensor field H ∈ Ir

s (S×M ×N) of type (r, s). Then ∇H allows to
obtain the covariant derivative ∇TH of H with respect to any tensor field T ∈
I1

k(S×M×N), by the obvious construction. These kinds of covariant derivative
were proposed by E. Bompiani as locally defined geometric objects and studied
by O.M. Amici and one of the authors, cf. [2, 3], as global covariant derivatives
(in more general case which can be also used for the Calculus of Variations).
It is immediately evident that these covariant derivatives obey the same rules
as the standard covariant derivatives, with the exception of a minor change in
the Leibniz rule. This exception disappears when the local expression of ∇TH
is considered (cf. section 3). Among the rules satisfied by these covariant
derivatives, the possibility of restricting them to the closed submanifolds of
S × M × N plays an important role. In fact, one can use it in order to
consider the geometric objects tangent to the family (fs) as tensor fields of
type (1.1), defined on the graph Gf of the mapping f : S ×M → N obtained
by putting f(s, x) = fs(x), for each (s, x) ∈ S × M (cf. section 2). Then
the differential operator induced by on Gf by ∇ via the previous definition
of covariant derivative allows us to compute the covariant derivatives of the
‘tangent’ (1,1) tensor fields and the derivatives of any tensor fields with respect
to them. These results correspond to the possibility of computing all the
necessary ‘formal derivatives’ of the functions h(s, x) = g

(∂Xfs
∂x ,

∂Xfs
∂x

)
x

and of

the vector field X(s, x) = g
(∂Xfs

∂s ,
∂Xfs
∂x

)
x

defined on Gf .
The only reason for us to use local coordinates is the previously quoted

diversity of the Leibnitz rule, which requires the use of some permutation
morphisms, cf. [2, 3].

The third reason is a practical one. In fact, it is evident that in the case
S =]− ε, ε[ the obtained first variation is exactly the classical one. Moreover,
the second variation of ρ can be easily computed, cf. [2, 3].

The fourth reason is our attempt to free the Calculus of Variation from its
dependence from the geometry of M and N (from the classical point of view, it
depends on the Euclidean geometry via the classical derivative and the volume
form). One can suppose that these geometries are determined by ∇1, dv and
∇2, respectively, so that if ∇̆1, dv̆ and ∇̆2 determine different geometries on
M and N , the tensor field Π = ∇ − ∇̆, being ∇̆ = ∇̃ × ∇̆1 × ∇̆2 and the
function k : M → R defined by dv = kdv̆, play the same role as the one
of the functions which determine the local change of frames. Moreover, from
this point of view, our method allows one to compute in an extremely simple
way all the quantities related to any Variational Problem directly by means
of connections and volume forms, previously fixed, Legendre transformations
and symplectic form included. Hence, the natural question which arises here
is why so much effort and so much time was spent solving so trivial problem.
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Recall that the problem was posed by Einstein in the terms for the action of the
Hilbert integral, cf. [24], and that the classical Calculus of Variations quitted
to play a central role, because of its supposed lack of covariance, until the
jet–bundles techniques were developed. We collect all the needed definitions
and their properties we are going to use in sections 2, 3, 4 and 5, in order to
give them a unitary and tensorial formulation; while section 6 is devoted to
the Euler–Lagrange equation and to the Noether Theorem.

But first, let us observe that our equations and formulas have an unusual
feature. This depends on our choices and not on our methods. In fact, we add
the function ν which is generally not used. Moreover we use completely general
connections, since our purpose is to show that the determination of the prop-
erties of the variational problem does not depend on the connection itself, as
is generally thought, cf. e.g. [17, 18] for the Riemannian variational problem
and [26] for the Finslerian case. The use of torsion–free connections drasti-
cally simplifies formulae. We also stop the determination of whole equation
at the level of an integro-differential equation, because the theory of ‘equiva-
lent integrals’ is not trivial for dimM > 1 (see, e.g., [3], where the relations
between this problem and suitable cohomological groups of the Vinogradov
type are proved) even if g has maximal rank and there are no constrains. In
particular this observation is also true for the ‘Noether preserved currents’
when the group of infinitesimal isometrics is fixed. Then it seems likely that
there is the necessity of a tensorial theory of ‘equivalent integrals’. We also use
one variation (fs) of the function fs0 . These possibilities result from the fact
that our point of view simplifies all the calculations involved in the subject,
hence we can take into account more aspects of the theory of the Calculus
of Variations. As an example, from our point of view it is also evident that
Euler–Lagrange equations and Noether equations have the same origin. We
can also restore the old definition of invariant Lagrangian. In recent years, the
requirement for the Lagrangians to be invariant under some subgroup of the
group of diffeomorphisms of M or N has been used more frequently because of
physical motivations. The old definition requires the invariance with respect
to subgroups of diffeomorphisms of M × N , cf. [14]. Furthermore, the old
definition contains a mistake. We show it by an example and give the correct
definition.

The last reason is that our method encompasses the jet bundle method and
can be extended to more general differential operators. In fact, in our paper we
use globally defined linear connections only to simplify the language, but linear
connection can be replaced by any family of local connection. As an example,
by taking in each chart of M the linear connection induced by the standard
connection on Rm, one obtains the theories based on jet-bundles. One can also
use a linear connection of the first order and type ((h, h′), (k, k′)), cf. [2], in
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such a way the Euler–Lagrange equation is determined by tensor fields of an
arbitrary order, etc.

We conclude observing that in order to avoid quite a long list, references
relate to the papers and books directly herein quoted only, and by a short
recapitulation of the results contained therein.

In section 2, we study some properties of the graph Gf of a map f : M →
N . In section 3, the properties of the used covariant derivative are introduced.
In section 4 properties related to the volume forms are collected. In section 5
we consider the Jacobian function which is induced by a diffeomorphism. With
this Jacobian we associate some tensor fields to obtain the Reynolds transport
theorem in a covariant form, cf. [27]. The results related to the Calculus of
Variations are contained in section 6. It is well known that the calculations
needed in the case considered here are quite long. Hence we do not include ap-
plications of the technique presented here. We shall present some applications
and examples in our forthcoming paper, cf. [9].

2. Differential structures induced on a graph of a map

2.1. Decomposition of tensors. Let Mm, Nn be differentiable mani-
folds of dimension m and n, respectively. In the present paper, differentiability
of manifolds and maps will always mean of C∞–differentiability. Let (U, φ) be
a chart on M . Then we put φ = (x1, . . . , xm). Similarly by (V, ψ) we shall
denote a chart on N where ψ = (y1, . . . , yn). The indices i, j will vary from 1
to m and α, β will vary from 1 to n. On the Cartesian product of manifolds
M × N , there exists a canonical structure of the diffrentiable manifold with
the charts defined as (U × V, ϕ × ψ). We shall use all the standard notations
of this case.

Let p1 : M × N → M and p2 : M × N → N be the canonical projection
on the first and the second factor of the Cartesian product, respectively. Let
X1 be the set of sections of the pull-back bundle (p1)−1TM and X1 be the
set of sections of the pull-back bundle (p2)−1TN . The spaces X1, X2 may be
regarded as C∞(M ×N)-submodules of X (M ×N) and we have the following
isomorphism of C∞(M×N)-modules X (M×N) ∼= X1⊕X2 . The decomposition
of the tangent bundle of M ×N induces the decomposition of the 1-forms on
M ×N . Hence we have I0

1 (M ×N) = I0
1,1 ⊕ I0

1,2 where I0
1,1 is the set of the

sections of the pull-back bundle p−1
1 (T ∗M) and I0

1,2 is the set of sections of the
pull-back bundle p−1

2 (T ∗N).
By Ip

q (M × N) we shall denote the space of tensors of the type (p, q) on
M × N . Using the decomposition of T (M × N) and T ∗(M × N), we may
decompose the tensor algebra over manifold M × N into the direct sum of
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subbundles. We are interested in the following subspaces of T 1
1 (M ×N):

P1 ∈ P1(x,y)(M ×N) ⇐⇒ P1 = P i
1j

∂

∂xi
⊗ dxj(2.1)

P2 ∈ P2(x,y)(M ×N) ⇐⇒ P2 = Pα
2j

∂

∂yα
⊗ dxj(2.2)

with the obvious meaning of the symbols used.
We shall denote by P1(M ×N), P2(M ×N) and P (M ×N) the subbundle

of T 1
1 (M ×N) having as a fiber over (x, y) ∈M ×N the direct sum of the real

vector space P1(x,y)(M ×N) , P2(x,y)(M ×N) and

P(x,y)(M ×N) = P1(x,y)(M ×N)⊕ P2(x,y)(M ×N)

respectively. Moreover we denote by P1(M ×N) , P2(M ×N) and P(M ×N)
the C∞(M ×N)-module of the sections on the previous respective bundle.

Let us consider the splitting of I2
2 (M ×N). We are particularly interested

in the tensors of the type (2, 2), which may be expressed as follows:

g = gij
αβ

∂

∂xi
⊗ ∂

∂xj
⊗ dyα ⊗ dyβ , gij

αβ = gji
βα.(2.3)

2.2. Tensors on a graph. Let f : M → N be a differentiable map.
The graph Gf =

{
(x, y) ∈ M × N |f(x) = y

}
of f is a regular differentiable

submanifold of M ×N of the dimension m.
There are the following natural maps: f̃ : M 3 x 7→ (x, f(x)) ∈ Gf and

f̂ : Gf 3 (x, f(x)) 7→ x ∈ M . Using f̃ and f̂ as identification maps and
the standard notation, a simple calculus in local coordinates shows that the
elements

∂

∂xi
+ (∂if

α)
∂

∂yα
and dxi

for all i = 1, . . . ,m being ∂if
α = ∂Xfa

∂xi , determine a local base of T(x,f(x))Gf

and T ∗(x,f(x))Gf , respectively.

It is also trivial that the family (∂Xfα

∂xi )ϕ(x) has the same transforma-
tion rules with respect to the change of the coordinates as the elements of
P2(x,f(x))(M ×N) restricted to the graph Gf . Hence it follows that(∂Xf

∂x

)
x

:=
(
∂if

α
)
ϕ(x)

( ∂

∂yα

)
f(x)

⊗ (dxi)x ∈ P2(x,f(x))(M ×N)

for all x ∈ U ∩ f−1(V ) , when U ∩ f−1(V ) is not empty, defines globally a
tensor field on Gf which belongs to P2(Gf ).

Let KM be the Kronecker tensor field on M . Analogously, we can consider
the tensor field Pf := KM + ∂Xf

∂x ∈ P(Gf ) has the following local expression

(2.4) Pf = δi
j

( ∂

∂xi
+ ∂if

α ∂

∂yα

)
⊗ dxj .



153

The transformation laws of g allow us to consider the map g(∂Xf

∂x ,
∂Xf

∂x ) : Gf →
R such that g(∂Xf

∂x ,
∂Xf

∂x )(x,f(x)) = gij
αβ(x,f(x))(∂if

α)x(∂jf
β)x. Suppose that a

volume form dv is given on M . Then the tensor g defines a natural functional
on the space of differentiable mappings from M to N . Namely we have:

EΩ,g(f) :=
∫
Ω

g

(
∂Xf

∂x
,
∂Xf

∂x

)
dv

where Ω is a subset of M such that the integral is well-defined. Generally
we shall suppose that Ω is a compact domain. The quantity EΩ,g(f) shall be
called the energy of f in Ω with respect to g.

Now we consider a further C∞-differentiable manifold S with the dimS =
r. Let (W, τ) be a local chart on S and let τ = (s1, . . . , sr). Moreover we
suppose that A,B, . . . run from 1 to r. Let f : M ×S → N be a differentiable
mapping. Then using a similar procedure as before we get the following tensors
∂Xf

∂x = (∂if
α) ∂

∂yα ⊗dxi and ∂Xf

∂s = (∂Af
α) ∂

∂yα ⊗dsA with the obvious meaning
of the used symbols. For these tensors the previous considerations hold. Let
KS be the Kronecker tensor of S. Then we define two tensor fields on Gf in
the following way: P 1

f := KM + ∂Xf

∂x , P 2
f := KS + ∂Xf

∂s .

3. Connections on a graph of a map

3.1. Bompiani’s operators. Let ∇1,∇2 be two connections on M and
N respectively, having Γ1i

jk and Γ2α
βγ as respective Christoffel symbols. We

consider the canonically induced connection ∇ = ∇1 × ∇2 on M × N . Let
P ∈ I1

1 (M ×N) and T ∈ Ip
q (M ×N). Then a generalized covariant derivative

is defined in the following way:

(3.1) ∇PT = C1
p+1

(
(∇T )⊗ P

)
,

cf. [2]. It is possible to consider more general operators of the above type. Such
operators were introduced by Bompiani. Properties of such operators were
studied in [2]. For applications of these operators to variational problems, see
[25, 5.120, p.291]. Here we consider only the one defined by (3.1) for the sake
of brevity. Let us consider P ∈ P(M×N), Q ∈ P2(M×N) and g ∈ I2

2 (M×N)
verifying (2.3).

Observation 3.1. By using the local expression of the covariant differen-
tial with respect to ∇ in the natural chart (U × V, ϕ× ψ) and by (2.1), (2.2),
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(2.3) and (3.1) we get:

∇PQ = (P 1j
r ∂jQ

α
t + P 2β

r ∂βQ
α
t + P 2β

r Γ2α
βγQ

γ
t − P 1j

r Γ1k
jtQ

α
k )

∂

∂yα
⊗(3.2)

⊗dxt ⊗ dxr

∇P g =
(
P 1r

k ∂rg
ij
αβ + P 1r

k Γ1i
rtg

tj
αβ + P 1r

k Γ1j
rtg

it
αβ + P 2γ

k ∂γg
ij
αβ(3.3)

− P 2γ
k Γ2σ

γαg
ij
σβ − P 2γ

k Γ2σ
γβg

ij
ασ

) ∂

∂xi
⊗ ∂

∂xj
⊗ dyα ⊗ dyβ ⊗ dxk.

Remark 3.1. The operator (3.1) needs a permutation diffeomorphism in
order to preserve the derivation rules with respect to the tensor product, cf. [2].
For the sake of brevity we here prefer to describe this morphism implicitly by
writing the local expressions of the derivatives as in Observation 3.1.

3.2. Local expressions. Let us consider S as in section 2.2. Suppose
that a connection ∇̃ is given on S, with Christoffel symbols Γ̃A

BC . Then, on
M × S, we can consider the connection ∇̌ = ∇1 × ∇̃, and on M × S ×N , the
connection ∇ = ∇1×∇̃×∇2. Let f : M×S → N be a differentiable mapping.
Then from Observation 3.1 follows:

Observation 3.2. Under the above assumptions, with respect to the ca-
nonical chart (U ×W × V, ϕ× τ × ψ) the following holds

∇P 1
f
P 2

f =
[
∂2

iAf
α + Γ2α

βγ∂if
β∂Af

γ
] ∂

∂yα
⊗ dsA ⊗ dxi

∇P 2
f
P 1

f =
[
∂2

iAf
α + Γ2α

βγ∂Af
β∂if

γ
] ∂

∂yα
⊗ dxi ⊗ dsA

∇P 1
f
P 1

f =
[
∂2

ijf
α + Γ2α

βγ∂jf
α∂if

β − Γ1t
ij∂tf

α
] ∂

∂yα
⊗ dxi ⊗ dxj .

Let σ : I1
2 (M × S × N) → I1

2 (M × S × N) be a C∞(M × S × N)-linear
map such that σ( ∂

∂yα ⊗ dsA ⊗ dxi) := ∂
∂yα ⊗ dxi ⊗ dsA, σ( ∂

∂yα ⊗ dxi ⊗ dsA) :=
∂

∂yα ⊗ dsA ⊗ dxi for i = 1, . . . ,m, A = 1, . . . , r and σ fixes the remaining
elements of the local base. Then we can define the torsion of the previous
differential operators by

T̃ (P 1
f , P

2
f ) := ∇P 1

f
P 2

f − σ(∇P 2
f
P 1

f ) = T 2α
βγ ∂if

β∂Af
γ ∂

∂yα
⊗ dxi ⊗ dsA

= T 2(
∂Xf

∂x
,
∂Xf

∂s
)

where T 2 is the torsion tensor field of ∇2, and the used contractions are given
by the local expression. Then we consider ∇P 1

f
g and ∇P 2

f
g where g is defined

by (2.3). From Observation 3.1 there follows
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Observation 3.3. We have

∇P 2
f
g = (∂Af

γ∂γg
ij
αβ − ∂Af

γΓ2σ
γαg

ij
σβ − ∂Af

γΓ2σ
γβg

ij
ασ)

∂

∂xi
⊗ ∂

∂xj
⊗

⊗dyα ⊗ dyβ ⊗ dsA

∇P 1
f
g = (∂kg

ij
αβ + Γ1i

ktg
tj
αβ + Γ1j

ktg
it
αβ + ∂kf

γ∂γg
ij
αβ − ∂kf

γΓ2σ
γαg

ij
σβ

− ∂kf
γΓ2σ

γβg
ij
ασ)

∂

∂xi
⊗ ∂

∂xj
⊗ dyα ⊗ dyβ ⊗ dxk.

We also consider the mapping g(∂Xf

∂x ,
∂Xf

∂x ) : Gf → R defined as a family
of maps

{
g(∂Xf

∂x ,
∂Xf

∂x )x

}
x∈M

from S into R such that

g

(
∂Xf

∂x
,
∂Xf

∂x

)
x

(s) = g

(
∂Xf

∂x
,
∂Xf

∂x

)
(x,f(x,s))

for all s ∈ S. Hence we obtain a family of 1-forms onM depending differentiably
on x ∈M , by considering the total differential of g(∂Xf

∂x ,
∂Xf

∂x )x for each x ∈M .
We denote this family by dSg(∂Xf

∂x ,
∂Xf

∂x ). Then from Observations 3.2 and 3.3
we get

dSg(
∂Xf

∂x
,
∂Xf

∂x
) = (∇P 2

f
g)(

∂Xf

∂x
,
∂Xf

∂x
) + 2g(

∂Xf

∂x
,∇P 2

f
P 1

f )(3.4)

where the obvious contractions are used. Analogously, from Observations 3.2
and 3.3, by a simple computation, we obtain:

(∇P 1
f
g)

(∂Xf

∂s
,
∂Xf

∂x

)
+ g

(
∇P 1

f
P 2

f ,
∂Xf

∂x

)
+ g

(∂Xf

∂s
,∇P 1

f
P 1

f

)
=

[
∂k

(
gij
αβ

∂Xfα

∂sA

∂Xfβ

∂xj

)
+ gtj

αβ

∂Xfα

∂sA

∂Xfβ

∂xj
Γ1i

kt

]
∂

∂xi
⊗ dxk ⊗ dsA

= ∇
[
g
(∂Xf

∂s
,
∂Xf

∂x

)]
where instead of introducing the list of contractions and permutations which
we have used, cf. [2], we prefer to calculate the local expressions. Let C denote
the contraction of ∂

∂xi with dxi; then the above equation becomes

dSg(
∂Xf

∂x
,
∂Xf

∂x
) = (∇P 2

f
g)(

∂Xf

∂x
,
∂Xf

∂x
) + 2g(

∂Xf

∂x
, T 2(

∂Xf

∂s
,
∂Xf

∂x
))

+2C
(
∇g(

∂Xf

∂s
,
∂Xf

∂x
))− 2C((∇P 1

f
g)(

∂Xf

∂s
,
∂Xf

∂x
)
)

− 2Cg(
∂Xf

∂s
,∇P 1

f
P 1

f ).

In what follows, C will not be written. In the last equation the follow-
ing observation was used: from the local point of view, when we contract
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gij
αβ

∂Xfα

∂xi
∂

∂xj ⊗ dyβ with (∇P 1
f
P 2

f )β
jA

∂
∂yβ ⊗ dxj ⊗ dsA, in order to obtain a 1-

form we have only the choice gij
αβ

∂Xfα

∂xi (∇P 1
f
P 2

f )β
jAds

A, independently of the

position of dsA in the tensorial product. Consequently, we can delete the
isomorphism σ.

4. Volume forms

4.1. Densities 1. We suppose M orientable and consider a volume ele-
ment dv on M . Let (U,ϕ) be a chart on M then

dv = λdx1 ∧ · · · ∧ dxm(4.1)

where λ : U → R+ is a scalar density (we consider oriented charts only). We
recall that the charts (U ′, ϕ′) of M such that dv = dx′1 ∧ · · · ∧ dx′m determine
an atlas of M , cf. [23, p.195]. The charts of this atlas will be called charts
adapted to the volume form dv. Let (U,ϕ) and (U ′, ϕ′) be two charts on M ,
with ϕ = (x1, . . . , xn) and ϕ′ = (x′1, . . . , x′n). By considering the n×nmatrices
Θ = (Θh

h′) = (∂X
xh

∂x′h
′ ) we have

(4.2) ∂k det Θ = Θh
h′Θ

h′
hk

where Θh
h′ is the algebraic complement of Θh′

h in Θ. Hence, ∂k log det Θ =
Θ′h

h′ ·Θh′
hk. Moreover, putting dv = λ′dx′1 ∧ · · · ∧ dx′m we get

λ′(x) = λ(x) det(Θ−1(x)) for each x ∈ U ∩ U ′.(4.3)

We recall that dv determines a bijection between C∞(M) and ∧n(M) such that
C∞(M) 3 ξ → ξdv ∈ ∧n(M). Moreover, dv induces a C∞(M)-isomorphism of
modules X (M) and ∧n−1(M) such that

iv : X (M) 3 X 7→ iXdv ∈ ∧n−1(M),

cf. [18]. Suppose that (U,ϕ) is a chart on M , not necessary adapted to the
volume form. Then for X = Xi ∂

∂xi we can put

div(X) := d
(
iv(X)

)
=

(
∂iX

i +Xi∂i log λ
)
dv(4.4)

where the last identity follows from simple computations.

Corollary 4.1. If (U,ϕ) is an adapted chart for the volume form dv then
div(X) = ∂iX

idv, cf. [23, p.195].

Let X ∈ I1
1 (M × S) and let us suppose X = Xi

A
∂

∂xi ⊗ dsA, with respect to
the chart (U ×W,ϕ× τ), cf. section 2.2. Then one can consider

iv(X) :=
n∑

i=1

(−1)i−1Xi
Aλdx

1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn ⊗ dsA.
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The changes of charts affect the components of X like

X ′i′
A′(x, s) = Xi

A(x, s)Θi′
i (x)(

∂XsA

∂s′A
′ )s.

Hence we can put

div(X) :=
( ∂

∂xi
(Xi

A) +Xi
A

∂

∂xi
(log λ)

)
dv ⊗ dsA.

Moreover, if (U,ϕ) is a chart adapted to the volume form dv, then div(X) =
( ∂

∂xi (Xi
A))dv ⊗ dsA.

4.2. Densities 2. Let D(M) denote the set of all connections on M .
Hence there exists a map Cv : D(M) → I0

1 (M) defined locally in the following
way: if (U,ϕ) is a chart on M and ∇ is a connection with Christoffel symbols
Γi

jk then

Cv(∇) := (Γi
ik − ∂k log λ)dxk(4.5)

where (4.1) is used. Suppose that (U ′, ϕ′) is another chart on M such that
U ′∩U 6= ∅ and Γ′i

′

j′k′ are the Christoffel symbols induced by the chart (U ′, ϕ′).
Then using (4.2) and the natural relations between the Christoffel symbols of
∇ with respect to the above charts, it is easily seen that Cv(∇) is a globally
defined 1-form on M . Moreover, it follows from (4.5) that if (U,ϕ) is an
adapted chart then ωk = Γi

ik.
We suppose that dv is the volume element associated with a pseudo-

Riemannian metric g. In such a case λ = |det(gij)|1/2 where (gij) are compo-
nents of the metric g with respect to a chart (U,ϕ). Let ∇ be the Levi-Civita
connection of g. Since we have the following explicit identity for Christoffel
symbols of the pseudo-Riemannian connection, we may compute

Γi
ik =

1
2
git

(
∂igtk + ∂kgti − ∂tgki

)
=

1
2
∂k log

(
|det(g)|

)
.(4.6)

where, abusing language, we denote the n × n matrix (gij) by g. Then we
apply (4.6) and obtain ωk = 0 for k = 1, . . . ,m. Hence:

Corollary 4.2. If ∇ is a Levi-Civita connection and dv is the volume
element of the same pseudo-Riemannian metric then: Cv(∇) = 0, cf. [25,
p.380, (3.2)].

Now we come back to the general case when ∇ is an arbitrary connection.
Let X be a vector field on M . Then, denoted by C the obvious contraction
and by using (4.4) and (4.5), we have: C(∇X)dv = d

(
iv(X)

)
+

(
Cv∇

)
(X)dv.
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In particular, if dv is a volume element associated with a pseudo-Riemannian
metric g and ∇ is the Levi-Civita connection of g then

C
(
∇X

)
dv = div(X).(4.7)

Then we consider the manifold S and we use the same conventions and nota-
tions as in section 2.2. Let (ωx)x∈M be a family of 1-forms on S depending
differentiably on x ∈ M . Moreover let us suppose that ω(x,s) = ωA(x,s)ds

A for
each x ∈M and s ∈W . Then we consider 1-form β defined on S by the local
expression βs = βA(s)dsA with

βA(s) =
∫
Ω

ωA(x,s)dv

for A = 1, . . . , r. In fact, the change of charts of S involves functions which
are constant with respect to x. Hence we put

β :=
∫
Ω

ωxdv(4.8)

Let F : M × S → R be a differentiable mapping; then for each x ∈M we may
consider the function Fx : S → R defined by Fx(s) = F (x, s). In the following,
we denote by dSF the family of 1-forms {dFx}x∈M . By (4.8) we may put∫

Ω

dSFdv :=
∫
Ω

dFxdv.(4.9)

It results in
d

∫
Ω

Fdv =
∫
Ω

dSFdv

for the well-known theorem of integration on manifolds, cf. [22].
Let N be a third manifold and let us denote by ∇ the connection on

M × S × N considered in section 3.2. Let X ∈ I1
1 (M × S × N) and let us

suppose X = Xi
A

∂
∂xi ⊗dsA on the domain of the chart (U ×W ×V, ϕ× τ ×ψ).

By computing the local expression one gets C(∇X) = ( ∂
∂xj (Xj

A)+Γ1j
jkX

k
A)dsA.

Consequently by (4.7) we obtain

C(∇X)dv = div(X) + (Cv∇1)(X)dv.(4.10)

Hence by using the Stokes theorem, cf. [22], it follows that if Ω is a compact
submanifold of M with a boundary and having the maximal dimension, then∫

Ω

C
(
∇X

)
dv =

∫
∂Ω

iv(X) +
∫
Ω

Cv

(
∇

)
(X)dv.

We conclude with the following observation. Let g be any pseudo-Riemannian
metric having local components gij . Then there exists a function σ : M → R



159

having local expression σ = λ2/|det(gij)|. Consequently we can consider the
differentiable function σ̃ = σ1/n : M → R and the pseudo-Riemannian metric
g̃ = σ̃g. Then it follows that |det(g̃ij)|1/2 = λ. Consequently dv is the volume
form of g̃. Then if ∇ is the Levi-Civita connection of g̃ it results Cv(∇) = 0.

5. Integration on manifolds

5.1. Jacobian function. Let h : M → N be a differentiable map, let
(U,ϕ) and (V, ψ) be two charts of M and N , respectively, such that U ∩
h−1(V ) 6= ∅. We set(

Th
)
(x) = (

∂Xh

∂x
)x

(
∂ih

α
)
x

( ∂

∂yα

)
h(x)

⊗
(
dxi

)
x
.

We suppose that dim(M) = dim(N) = n. Hence the indices of the charts vary
over the same set of numbers. Therefore it make sense to define Jacobian

Jh(x) = det
(
∂jh

i
)
x
.(5.1)

We assume also that the volume form dv on M is given, with local expression
given by (4.1). On N , there is given a volume form dw such that dw|V =
λ̃dy1 ∧ · · · ∧ dyn. We put

J̃h(x) :=
1

λ(x)
Jh(x)λ̃(h(x))(5.2)

for all x ∈ U ∩ h−1(V ). By using (4.3) and the transformation laws of Jh,
it follows that the function J̃h is defined globally on Gh. The function J̃h is
called the Jacobian function, cf. [23, p.196, Def.22].

Let us suppose that h is a diffeomorphism and let Ω be a compact subman-
ifold of M with boundary and dim Ω = m. Suppose also that F : h(Ω) → R
is a differentiable map. Then by using the formula for the change of variables
under the integral and standard arguments, cf. [22], we get∫

h(Ω)

F (y)dw =
∫
Ω

(F ◦ h)(x)J̃h(x)dv.(5.3)

Let us consider the inverse map h−1 : N → M . It is clear that the graph
of the map h is canonically diffeomorphic to the graph of the map h−1. The
diffeomorphism is given by (x, h(x)) → (h(x), x). Hence the tensor of type
(1, 1) T (h−1) defined on the graph of the map h−1 defines the tensor of the
same type on the graph of Gh as follows(

T−1h
)
x

:=
(
∂j(h−1)i

)
h(x)

( ∂

∂xi

)
x
⊗

(
dyj

)
h(x)

.
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Let x ∈ h−1
(
h(U)∩ V

)
= U ∩ h−1(V ). Then we consider the matrix

(
(∂jh

i)x

)
for i, j = 1, . . . , n and by Ai

j(x) we denote the algebraic complement of the
element (∂jh

i)x of this matrix. Now we put

Ãi
j(x) :=

1
λ(x)

λ̃(h(x))Ai
j(x).(5.4)

Therefore the following holds

Ãi
j(x) = J̃h(x)

(
∂i(h−1)j

)
h(x)

.(5.5)

Hence it follows that it makes sense to consider the following tensor field

Ã(x) = Ãi
j(x)

( ∂

∂xi

)
x
⊗

(
dyj

)
h(x)

for all x ∈ U ∩ h−1(V ) which is defined globally on Gf . In fact, by (5.5) the
following relation holds: Ã = J̃h · T−1h. Moreover it results

C1
2 (Ã⊗ Th) = J̃h ·KM .(5.6)

5.2. Stokes theorem. Let S be C∞-differentiable manifold and let us use
all the definitions and notations of section 2.2. Moreover suppose that (hs)s∈S

is a family of diffeomorphisms onto hs : M → N which depends differentiably
on s ∈ S. Finally we assume that there are given two volume forms dv on M
and dw on N . Since hs is a diffeomorphism onto for all s ∈ S, we may define
on N the tensor fields

Vs(y) = Xs

(
h−1

s (y)
)

=
(∂Xh

∂s

)
(h−1

s (y),s)
(5.7)

for all y ∈ N and s ∈ S. We also consider the differentiable function J̃h :
M × S → R defined by: J̃h(x, s) = J̃hs(x) for all (x, s) ∈ M × S. Then using
(4.1), (5.2), (5.4) and (5.6) one obtains(

dS J̃h

)
(h−1

s (y),s)
= J̃hs

(
h−1

s (y)
)[
d
(
iw(Vs)

)]∗
y

(5.8)

where (d
(
iw(Vs)

)
y
)∗ is the 1-form along the canonical projection pr2 : N×S →

S such that d
(
iw(Vs)

)
= dw ⊗ [d(iw(Vs))]∗. We need a generalization of the

transport Reynolds theorem, cf. [27]. For that purpose we put Ωs = hs(Ω) for
any s ∈ S. Let Fs : Ωs → R be a family of maps depending differentiably on
the parameter s ∈ S. The following identity is easily computable in a local
coordinate system:

dS
(
Fs ◦ hs

)
x

=
(
dSFs

)
hs(x)

+ (dFs)hs(x)(Xs(x)).
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Then from (4.9), (5.7) and (5.8) it follows that:

d

∫
Ωs

Fsdw =
∫
Ωs

dSFsdw +
∫
Ωs

(dFs)(Vs)dw +
∫
Ωs

Fsdiw(Vs).

Since iw is a C∞(N)-isomorphism of modules, Fsiw(Vs) = iw(Fs(Vs)) and from
the Leibniz rule of dw we may conclude the following observation.

Observation 5.1. We have the following identity:

d

∫
Ωs

Fsdw =
∫
Ωs

dSFsdw +
∫
Ωs

diw(FsVs) =
∫
Ωs

dSFsdw +
∫

∂Ωs

Fsiw(Vs).

We need to explain the integral
∫
∂Ωs

Fsiw(Vs) in Observation 5.1. For
this purpose we shall consider manifolds M,N of dimension m and m − 1
respectively. We assume that dv, dw are two volume forms on M and N .
Suppose that X is a vector field on N . Then there is defined a (m − 1)-form
iw(X). Let h : M → N be a differentiable map. Then we have the induced
map h∗ : ∧(N) → ∧(M) which is a morphism of vector bundles. Hence
h∗

(
iw(X)

)
∈ ∧(M), and

h∗(dy1 ∧ · · · ∧ d̂yα ∧ · · · ∧ dym) = Jh,αdx
1 ∧ · · · ∧ dxm−1

where Jh,α is the determinant of the matrix obtained from the Jacobian matrix
of h by eliminating α–th column. Hence we get the following local identity

h∗
(
iw(X)

)
= (−1)α−1XαJh,αλ̃

(
h(x)

)
dx1 ∧ · · · ∧ dxm−1.(5.9)

We suppose that a compact submanifold Ω with boundary of N is given and
there exists a submanifold Ω′ on M such that h(Ω′) = ∂Ω. Then for a given
F : N → R, we define∫

∂Ω

F iw(X) :=
∫
Ω′

(
F ◦ h

)
h∗

(
iw(X)

)
.

We define Jh,X := (−1)α−1XαJh,α and observe that

Jh,X = det



X1 . . . . . . Xm

∂Xh1

∂x1 . . . . . .
∂Xh1

∂xm−1

...
...

...
...

∂Xhm

∂x1 . . . . . .
∂Xh1

∂xm−1

 .

Hence from (5.9) we get h∗
(
iw(X)

)
= (1/λ)Jh,X λ̃ ◦ hdv. This implies that

J̃h,X(x) :=
1

λ(x)
Jh,X(x)λ̃

(
h(x)

)
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is a well-defined global map on M . In fact, h∗
(
iw(X)

)
and dv are both defined

globally and we have h∗
(
iw(X)

)
= J̃h,Xdv. In the rest of this section we assume

that: h : M × [0, s1] → N is a differentiable map such that h|M×]0,s1] is a
diffeomorphism onto h(M × [0, s1]) which is a submanifold of N . In this case,
cf. (5.7), Vs is defined on h(M × {s}) = Ms for each s ∈ [0, s1] and it gives
the tangent vector to the curve γp : [0, s1] → N defined as γp(s) = h(p, s)
for each p ∈ M . Hence from (5.1), (5.2) and (5.7) we get that Jhs,Vs = Jh

and J̃hs,Vs = J̃h, where J̃h denotes the Jacobian function of h calculated with
respect to the volume elements dw on N and dv ∧ ds on M × [0, s1].

Let F : h(Ω× [0, s1]) → R be a differentiable map. We put Fs = F |h(Ω×{s})
then

s1∫
0

( ∫
hs(Ω)

Fs ◦ iw(Vs)
)
ds =

s1∫
0

(∫
Ω

Fs ◦ hsJ̃hs,Vsdv

)
ds

=
∫

Ω×[0,s1]

F ◦ hJ̃hdw ∧ ds

=
∫

h(Ω×[0,s1])

Fdw.

The last equality in the identities above is not directly true because h is not a
diffeomorphism. However from (5.3) there follows that such equality holds for
each domain of the type Ω × [ε, s1] where ε ∈]0, s1]. Hence our identity may
be obtained in the limit when ε tends to zero.

6. Conditions for minimum and Noether theorem

6.1. Intermediate identity. Let M and N be two differentiable mani-
folds of dimension m and n respectively. Let Ω be a compact submanifold of
dimension m with a boundary. We assume that a tensor field g ∈ I2

2 (M ×N)
is given, verifying (2.3). Let S be an r-dimensional differentiable manifold.
Suppose also that fs : M → N is a family of differentiable maps depending
differentiably on s ∈ S and hs : M → M is a family of diffeomorphisms de-
pending differentiably on s ∈ S. Moreover, let us consider a differentiable
function ν : R → R. Then we put

ρ(s) = EΩs,g,ν(fs) =
∫
Ωs

ν
(
g(
∂Xfs

∂x
,
∂Xfs

∂x
)
)
dv(6.1)

where Ωs = hs(Ω), with Ω a compact submanifold of M with a boundary of
maximum dimension. We need to compute dρ. At first we denote by ρ◦s :
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M → R the function defined by ρ◦s(x) = g(x,fs(x))

((∂Xfs
∂x

)
x
,
(∂Xfs

∂x

)
x

)
, and by

ν̇ : R → R, the first derivative of ν. Then from Observation 5.1 and (6.1) it
follows that:

(6.2) dρ =
∫
Ωs

ν̇(ρ◦s)
(
dSg(

∂Xfs

∂x
,
∂Xfs

∂x
)
)
dv +

∫
Ωs

div
(
ν(g(

∂Xfs

∂x
,
∂Xfs

∂x
))Vs

)
where the notations of section 5.2 are used. Moreover by an analogous com-
putation as for (3.4) we get

(6.3) dν̇(ρ◦s) = ν̈(ρ◦s)(∇P 1
f
g)(

∂Xfs

∂x
,
∂Xfs

∂x
) + 2ν̈(ρ◦s)g(

∂Xfs

∂x
,∇P 1

f
P 1

f )

where ν̈ is the second derivative of ν. Finally, using the linearity of dv, the
Leibniz rule (6.3), (3.5) and (4.10) we may conclude the following observation
concering (6.2)

Observation 6.1. The following holds true

dρ =
∫
Ωs

ν̇(ρ◦s)(∇P 2
f
g)(

∂Xfs

∂x
,
∂Xfs

∂x
)dv − 2

∫
Ωs

ν̇(ρ◦s)(∇P 1
f
g)(

∂Xfs

∂s
,
∂Xfs

∂x
)dv

− 2
∫
Ωs

ν̈(ρ◦s)
(
(∇P 1

f
g)(

∂Xfs

∂x
,
∂Xfs

∂x
)
)
g(
∂Xfs

∂s
,
∂Xfs

∂x
)dv

+2
∫
Ωs

ν̇(ρ◦s)(Cv∇1)g(
∂Xfs

∂s
,
∂Xfs

∂x
)dv

+2
∫
Ωs

ν̇(ρ◦s)g(
∂Xfs

∂x
, T 2(

∂Xfs

∂s
,
∂Xfs

∂x
))dv

− 2
∫
Ωs

ν̇(ρ◦s)g(
∂Xfs

∂s
,∇P 1

f
P 1

f )dv

− 4
∫
Ωs

ν̈(ρ◦s)
(
g(
∂Xfs

∂x
,
∂Xfs

∂s
)
)(
g(
∂Xfs

∂x
,∇P 1

fs
P 1

fs
)
)
dv

+ 2
∫
Ωs

div
[
ν̇(ρ◦s)g(

∂Xfs

∂s
,
∂Xfs

∂x

)]
+ 2

∫
Ωs

div
(
ν(ρ◦s)Vs

)
.

Formula in Observation 6.1 is the required intermediate one. We conclude
this part of our paper with some remarks about the function ν.

Remark 6.1. Let M = [a, b] ⊂ R. One may choose g(∂Xfs
∂x ,

∂Xfs
∂x

)
to

be constant with respect to x, by parameterizing fs by the arc–length and
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considering only regular curves. Consequently ν : R → R may be chosen to be
the identity map, being the critical points of EΩ,g,ν independent from ν.

Remark 6.2. If dimM > 1 then it is impossible to say whether fs may
be chosen in such a way that g(∂Xfs

∂x ,
∂Xfs
∂x ) depends on x ∈M or not. Such a

possibility depends on the topology of M and on the degree of differentiability
of the variational problem. Hence, ν can play an important rule as in the case
ν(t) = |t|

1
2 , for any t ∈ R.

Remark 6.3. The obstructions to choose ρ◦ independent of x ∈ M are
topological. In the classical case these obstructions on M do not exist. In this
case, it is usually assumed that M is an m-dimensional cube (in any case M
has a ‘simple’ topology).

6.2. Euler–Lagrange equation. Now we suppose that S =]−ε, ε[, with
ε a real positive number. We also fix the canonical atlas {(]− ε, ε[, id)} where
id : S → S is the identity map. In this case the 1-form dρ in Observation 6.1
becomes a function by skipping ds in its local expression with respect to the
fixed chart. Consequently, we denote this function by d

dsρ. We also suppose
that Ωs = Ω for each s ∈ S and that the identity map idM : M →M coincides
with hs for each s ∈]− ε, ε[. Hence the tensor field Vs defined by (5.7) is zero.
Consequently it results that

∫
Ωs

div(ν(ρ◦s)Vs) = 0.(6.4)

We also suppose that the family (fs)s∈]−ε,ε[ has the property fs|∂Ωs = ϕ,

for each s ∈] − ε, ε[. Then, ∂Xfs
∂s is identically zero on the boundary ∂Ω.

Consequently it results that

∫
Ωs

div
(
ν̇(ρ◦s)g(

∂Xfs

∂s
,
∂Xfs

∂x
) =

∫
∂Ω

iv
(
ν̇(ρ◦s)g(

∂Xfs

∂s
,
∂Xfs

∂x
)
)

= 0.

Finally we observe that if the mapping f0 : M → N is a local minimum for
the functional EΩs,g,ν then ρ has a local minimum at s = 0. Hence under the
above assumptions we have the following theorem.
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Theorem 6.1 (Euler–Lagrange). If (∂sEΩs,g,ν(f0))s=0 = 0, then

0 =
∫
Ω

ν̇(ρ◦0)(∇PZ
g)(

∂Xf0

∂x
,
∂Xf0

∂x
)dv − 2

∫
Ω

ν̇(ρ◦0)(∇Pf
g)(Z,

∂Xf0

∂x
)dv

− 2
∫
Ω

ν̈(ρ◦0)(∇Pf0
g)(

∂Xf0

∂x
,
∂Xf0

∂x
)g(Z,

∂Xf0

∂x
)dv

+ 2
∫
Ω

ν̇(ρ◦0)(Cv∇1)g(Z,
∂Xf0

∂x
)dv + 2

∫
Ω

ν̇(ρ◦0)g(
∂Xf0

∂x
, T (Z,

∂Xf0

∂x
))dv

− 2
∫
Ω

ν̇(ρ◦0)g(Z,∇Pf0
Pf0)dv − 4

∫
Ω

ν̈(ρ◦0)g(Z,
∂Xf0

∂x
)g(

∂Xf0

∂x
,∇Pf0

Pf0)dv

(6.5)

where Z = (∂Xfs
∂s )s=0 is the vector field defined on Gf0 obtained by dropping ds

in the local expression of ∂Xfs
∂s with respect to the fixed chart and P 2

Z := ∂
∂s +Z.

Moreover we also used the identity Pf0 = P 1
fs
|s=0.

The above equation appears longer than the usual Euler–Lagrange equa-
tion, but it depends on our choices and not on our methods, as we stated in
the introduction. Here are some remarks concerning Theorem 6.1.

Remark 6.4. If ∇2 is a torsion-free connection, then T 2(∂Xf0
∂s ,

∂Xf0
∂x ) = 0.

Moreover dv may be obtained from a pseudo-Riemannian metric and we may
choose a ∇1 to be the Levi-Civita connection of this metric. Then Cv(∇1) = 0.
We prefer to choose∇1 and∇2 completely arbitrary to show that the properties
of the solution of the variational problem are independent of both connections
(compare with the Riemannian case and the Finslerian case, e.g. [18, 20, 26]).

Remark 6.5. We use one variation only of the function under considera-
tion, because we think about an application to the degenerate case (the rank of
g not maximum) and to the constrained case. Consequently we cannot delete
the integration symbols. Moreover we cannot delete the integral symbols be-
cause the theory of ‘equivalent integrals’ is not trivial for m > 1 , cf. [25].

Remark 6.6. We may choose ν as the identity map: then ν̇(ρ◦0) = 1 and
ν̈(ρ◦0) = 0. We prefer a different choice because of Remark 6.1.

Remark 6.7. When the choices in (6.4), (6.5) and (6.6) are made in the
most favorable way (as in the classical case happens) and the non-triviality of
‘equivalent integrals’ is forgotten then the equation in Theorem 6.1 becomes
2∇Pf

(
g(∂Xf

∂x )
)
− (∇g)∂Xf

∂x = 0 where f = f0.

Remark 6.8. If ∇1 and ∇2 may be chosen to be the local connections
induced by ϕ and ψ on U and W by the Euclidean connections of Rm and
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Rn, respectively, then Remark 6.7 gives exactly the classical Euler–Lagrange
equation and has a local meaning only. Its global meaning can be restored
by using the second order jet–bundle of M × N . Hence, our general theory
encompasses jet–bundles theory (at least in the second order case) as we stated
in the Introduction.

Remark 6.9. We also observe that when M = R, the tensor field ∂Xf

∂x can
be replaced by the vector field obtained by deleting dx in the local expression
of ∂Xf

∂x with respect to the chart (R, id). Moreover the connection ∇1 may
be replaced by the standard derivative on R. In this case the covariance with
respect to the charts of M is lost as in the Riemannian case.

Definition 6.1. We say that a mapping f : M → N is a Z-weak critical
point of EΩ,g,ν if f verifies the equation in Theorem 6.1 for a vector field Z
defined on the graph Gf of f .

6.3. Noether equation. Let 4 : M × N → M × N be a differentiable
mapping. Then we put

41 = pr1 ◦ 4 : M ×N → N and 42 = pr2 ◦ 4 : M ×N → N

where pr1 and pr2 are the canonical projections on the first and second factor
of the Cartesian product, respectively. Let f1, f2 : M → N be differentiable
mapping.

Definition 6.2. We say that f2 is 4–related to f1 iff
1. f2(41(x, f1(x)) = 42(x, f1(x)) for all x ∈M
2. The mapping ∧ : M → N defined by ∧(x) = 41(x, f1(x)) for each
x ∈M is a diffeomorphism from M into M . This map is not necessarily
onto.

We would like to make an observation which is natural but we have not
been able to find it in the literature.

Observation 6.2. Suppose that M = N . We consider the following dif-
feomorphism 4 : M×N →M×N such that 4(x, y) = (y, x). If the mappings
f1, f2 : M →M are 4-related then

f2(41(x, f1(x)) = 42(x, f1(x)).(6.6)

We observe also that (6.6) is equivalent to the property that f2(f1(x)) = x for
all x ∈ M . Hence under the above assumptions we get that f1 : M → M is a
diffeomorphism and the second condition of Definition 6.2 follows from the first
one since ∧(x) = f1(x) for all x ∈ M . As a consequence, f1 has a 4–related
map f2 iff f1 is a diffeomorphism. Hence, even when 4 is a diffeomorphism
we can get differentiable mappings f1 : M → N having no 4-related maps
f2 : M → N .
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Let 4 : M ×N × S →M ×N be a differentiable map. For each s ∈ S we
consider the differentiable map 4s : M ×N → M ×N defined by 4s(x, y) =
4(x, y, s) for each (x, y) ∈M ×N . Let f : M → N be a map.

Definition 6.3. We say that f is (4, S)-regular iff for each s ∈ S there
exists a map fs : M → N which is 4s-related to f and which depends dif-
ferentiably on s ∈ S. In such a case the map f̂ : M × S → N defined by
f̂(x, s) = fs(x) is called (4, S)-variation of f .

Suppose that conditions of Definitions 6.2 and 6.3 are satisfied. Then we
put Ωs = ∧s(Ω). The family (Ωs)s∈S will be called (4, S, f)-variation of Ω.
Finally we say that g is (4, ν, ϕ)-invariant in f relatively to Ω iff

EΩs,fs,ν = EΩs,f,ν +
∫
Ωs

ϕ(x, fs(x), s)dv(6.7)

where ϕ : M × N × S → R is a differentiable function such that ϕ̃ : S → R
defined by

ϕ̃(s) :=
∫
Ωs

ϕ(x, fs(x), s)dv

verifies the property

(dϕ̃)s =
∫
Ωs

div
(
ϕ(x, fs(x), s)Vs

)
for all s ∈ S where Vs is defined by (5.8) using the diffeomorphism ∧s for each
s ∈ S; ϕ is called the gauge function, cf. [31]. With this type of generalization
the Noether theorem takes the following form.

Theorem 6.2 (Noether). Property (6.7) implies

dEΩs,g,ν(fs) =
∫
Ωs

div
(
ϕ(x, fs(x), s)Vs

)
.(6.8)

The Noether equation is obtained simply by computation by (6.4) of the
left hand side of (6.8) for the above particular case and the replacement of Ωs

by Ω using (5.3).
Before we proceed, we shall make the following observation.

Observation 6.3. Through all this paper we prefer to work on the most
general case, expecting that this will help us to better understand the com-
ponents which enter our problem. However this is not the case now because
considering the most general case is almost equivalent to multiplying the terms
of the right hand side of (6.8), and nothing more.
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Hence we suppose that there exists s0 ∈ S such that 4s0 is the identity
mapping. Then we get that fs0 = f , ∧s0 = id : M → M , Ωs0 = Ω where id is
the identity map. Moreover a simple computation gives

(
∂Xfs0

∂x
)s0 =

∂Xf

∂x
(6.9) (

(
∂Xfs

∂s
)x

)
|s0 =

(
(
∂X∧2

s

∂s
)(x,f(x))

)
(x,f(x))

+
(
(
∂Xf

∂x
)x(

∂X∧−1
s

∂s
)x

)
s0

.(6.10)

Furthermore from the second condition of Definition 6.2 it follows that(
(
∂X∧−1

x

∂x
)x

)
s0

= −
(
(
∂X41

s

∂s
)(x,f(x))

)
s0

.

Hence (6.10) becomes

(6.11)
(
(
∂Xfs

∂s
)x

)
s0

=
[
(
∂X42

s

∂s
)(x,f(x)) − (

∂Xf

∂x
)x(

∂X41
s

∂s
)(x,f(x))

]
s0

=: η(x)

which is a tensor field along f . Applying (6.4), (6.9) and (6.11) we get that
for s = s0 identity (6.8) becomes.

Observation 6.4.∫
Ω

ν̇(ρ)(∇P 2
η
g)(

∂Xf

∂x
,
∂Xf

∂x
)dv − 2

∫
Ω

ν̇(ρ)(∇P 1
f
g)(η,

∂Xf

∂x
)dv

− 2
∫
Ω

ν̈(ρ)(∇P 1
f
g)(

∂Xf

∂x
,
∂Xf

∂x
)g(η,

∂Xf

∂x
)dv

+2
∫
Ω

ν̇(ρ)(Cv∇1)g(η,
∂Xf

∂x
)dv + 2

∫
Ω

ν̇(ρ)g(
∂Xf

∂x
, T 2(η,

∂Xf

∂x
))dv

− 2
∫
Ω

ν̇(ρ)g(η,∇P 1
f
P 1

f )dv − 4
∫
Ω

ν̈(ρ)g(η,
∂Xf

∂x
)g(

∂Xf

∂x
,∇P 1

f
P 1

f )dv

+2
∫
Ω

div
(
ν̇(ρ)g(η,

∂Xf

∂x
)
)

+ 2
∫
Ω

div
(
ν(ρ)Vs0

)
=

∫
Ω

div
(
ϕ(x, f(x)s0)Vso

)
where

ρ(x) = g(x,f(x))

(
(
∂Xf

∂x
)x, (

∂Xf

∂x
)x

)
for all x ∈M .

The equation in the Observation 6.4 is called Noether equation.
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Remark 6.10. Suppose that S is an r-dimensional Lie group and 4 :
M×M×S →M×N is an action of S on M×N such that ν = id and s0 = 1S

i.e. the unity of S. If each f : M → N is 4-regular then Observation 6.4
is exactly the generalization given by H. Rund, cf. [25, p.294] of the Noether
equation written in the covariant way. The original formulation of this equation
is obtained by taking ϕ = 0. Moreover suppose that Obseravation 6.4 holds
for each ‘critical point’ of EΩ,g,ν which is to be 4-regular. A critical point
means here Z-critical for each Z coming from the set of homotopic variations
admissible for the variational problem (we recall that in the classical problem
one considers all homotopic variations). One obtains the so called ‘conservation
laws on shell’, cf. [12].
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