HOMOGENEOUS GEODESICS OF LEFT-INVARIANT METRICS

BY JÁNOS SZENTHE

Abstract. It is shown that there are infinitely many homogeneous geodesics issuing from the identity element of a compact connected semi-simple Lie group in case of any left-invariant Riemannian metric provided that the group is of rank greater than 1.

A geodesic $\gamma: \mathbf{R} \to M$ of a Riemannian manifold (M, <, >) is said to be homogeneous if there is a 1-parameter group of isometries $\Phi_{\tau}: M \to M$, $\tau \in \mathbf{R}$ such that γ is an orbit of Φ ; more precisely, if $\gamma(\tau) = \Phi_{\tau}(\gamma(0))$, $\tau \in \mathbf{R}$ holds. The concept of homogeneous geodesic plays a basic role in the theory of homogeneous Riemannian manifolds; namely, the assumption that all the geodesics of a homogeneous Riemannian manifold are homogeneous proved to be useful in their classification theory [1], [3]. On the existence of homogeneous geodesics there is a result obtained by V. V. Kajzer [2] stating that in the case of a connected Lie group and a left-invariant Riemannian metric <, > on it, the Riemannian manifold (G, <, >) has at least one homogeneous geodesic issuing from the identity element. It is shown below that if the Lie group G is also compact semi-simple and of $rank \geq 2$ then there are infinitely many homogeneous geodesics issuing from the identity element in the case of any left-invariant Riemannian metric.

DEFINITION. Let G be a connected Lie group, $\mathbf{g} = T_e G$ its Lie algebra identified with the tangent space at the identity element, $B: \mathbf{g} \times \mathbf{g} \to \mathbf{R}$ a euclidean inner product, i.e., a positive definite symmetric bilinear form and <, > the left-invariant Riemannian metric induced by B on G. A tangent vector $X \in T_eG - \{0\}$ is said to be a geodesic vector if the 1-parameter subgroup $\tau \mapsto Exp(\tau X), \tau \in \mathbf{R}$, is a geodesic of <, >. The geodesic defined by a geodesic vector is obviously a homogeneous one. Conversely, let γ be a geodesic with

 $\gamma(0) = g$ which is homogeneous with respect to a 1-parameter group of left-translations, namely

$$\gamma(\tau) = Exp(\tau Y)g, \ \tau \in \mathbf{R},$$

then a homogeneous geodesic $\tilde{\gamma}$ is given by

$$\tilde{\gamma}(\tau) = \mathcal{L}_g^{-1} \circ \gamma(\tau) = \mathcal{L}_g^{-1} \circ \mathcal{R}_g \circ Exp(\tau Y)$$
$$= Exp(Ad(g^{-1})\tau Y) \cdot e = Exp(Ad(g^{-1})\tau Y)\tilde{\gamma}(0),$$

which means that $X = Ad(g^{-1})Y$ is a geodesic vector.

The following *lemma* has been applied in several papers, its subsequent simple proof is presented for convenience here.

LEMMA. Let G be a connected Lie group, B a euclidean inner product on its Lie algebra \mathbf{g} and <,> the left-invariant Riemannian metric induced on G by B. Then $X \in \mathbf{g} - \{0\}$ is a geodesic vector if and only if B(X, [Z, X]) = 0 holds for $Z \in \mathbf{g}$.

PROOF. Consider the Levi-Cività covariant derivation ∇ defined by <,> which is obviously left-invariant. If $X \in \mathbf{g} - \{0\}$ then let $\bar{X}: G \to TG$ be the left-invariant vector field defined by $\bar{X}(e) = X$. Then X is a geodesic vector if and only if $(\nabla_{\bar{X}}\bar{X})(e) = 0$; in other words, $<\nabla_{\bar{X}}\bar{X}, \bar{U}>|_e=0$ is valid in case of any left-invariant field \bar{U} . But by Koszul's formula the following holds:

$$\begin{split} 2 < \nabla_{\bar{X}} \bar{X}, \bar{U} > &= \bar{X} < \bar{X}, \bar{U} > + \bar{X} < \bar{U}, \bar{X} > -\bar{U} < \bar{X}, \bar{X} > \\ &- < \bar{X}, [\bar{X}, \bar{U}] > + < \bar{X}, [\bar{U}, \bar{X}] > + < \bar{U}, [\bar{X}, \bar{X}] > \\ &= 2 < \bar{X}, [\bar{U}, \bar{X}] >, \end{split}$$

since the functions $<\bar{X},\bar{U}>, <\bar{X},\bar{X}>$ are constant. Therefore the following is obtained

$$<\nabla_{\bar{X}}\bar{X},\bar{U}>|_{e}=<\bar{X},[\bar{U},\bar{X}]>|_{e}=B(X,[U,X]).$$

Consequently the assertion of the lemma follows.

The following *corollary* is a simple consequence of the preceding *lemma* by polarization and an application of *Schur's lemma*.

COROLLARY. Let G be a connected compact simple Lie group and K: $\mathbf{g} \times \mathbf{g} \to \mathbf{R}$ the negative of the Cartan-Killing form of \mathbf{g} . Let B be a euclidean inner product on \mathbf{g} and <,> the left-invariant Riemannian metric induced by it. Then all the geodesics of <,> are homogeneous if and only if $B=\lambda$ K for some $\lambda \in \mathbf{R}^+$.

DEFINITION. Let G be a connected Lie group and B a euclidean inner product on its Lie algebra \mathbf{g} then a quadratic form $Q: \mathbf{g} \to \mathbf{R}$ is defined by $Q(X) = B(X, X), X \in \mathbf{g}$. Consider now the adjoint action $Ad: G \times \mathbf{g} \to \mathbf{g}$ and the orbit $G(U) \subset \mathbf{g}$ of an element $U \in \mathbf{g}$. The corresponding isotropy subgroup $G_U < G$ being closed, the canonical smooth manifold structure of the coset space G/G_U exists, the canonical left-action $\Lambda: G \times (G/G_U) \to G/G_U$ is smooth and also the canonical equivariant bijection $G/G_U \to G(U)$ is smooth and yields an equivariant injective immersion $\rho: G/G_U \to G(U) \subset \mathbf{g}$. The smooth function $q = Q \circ \rho: G/G_U \to \mathbf{R}$ will be called the pull-back of quadratic form Q.

PROPOSITION. Let G be a connected Lie group and B a euclidean inner product on its Lie algebra \mathbf{g} . For $X \in \mathbf{g} - \{0\}$ let $U \in \mathbf{g}$ be such that $X \in G(U)$ for the corresponding adjoint orbit and let $gG_U \in G/G_U$ be the unique coset with $\rho(gG_U) = X$. Then X is a geodesic vector if and only if gG_U is a critical point of $q = Q \circ \rho$ the pull-back of the quadratic form Q.

PROOF. The coset gG_U is a critical point of q if and only if vq=0 for $v\in T_{gG_U}(G/G_U)$. But as G/G_U is homogeneous, for each v there is a $Z\in \mathbf{g}$ such that $v=\tilde{Z}(gG_U)$ where $\tilde{Z}:G/G_U\to T(G/GU)$ is the infinitesimal generator of the action Λ corresponding to Z. Consider also the infinitesimal generator $\hat{Z}:\mathbf{g}\to T\mathbf{g}$ of the adjoint action corresponding to Z. Since the injective immersion ρ is equivariant with respect to the actions Λ and Ad the following holds: $\hat{Z}\circ \rho=T\rho\circ \tilde{Z}$. But then the following is valid:

$$vq = \tilde{Z}q|_{gG_U} = \tilde{Z}(Q \circ \rho)|_{gG_U} = (T\rho\tilde{Z})|_{gG_U}Q$$
$$= \frac{d}{d\tau}(B(Ad(Exp \ \tau Z)X, Ad(Exp \ \tau Z)X))|_{\tau=0} = 2B([Z, X], X).$$

Since the map $\mathbf{g} \ni Z \mapsto \tilde{Z}(gG_U) \in T_{gG_U}(G/G_U)$ is an epimorphism, the assertion of the proposition follows.

THEOREM. Let G be a compact connected semi-simple Lie group and B a euclidean inner product on its Lie algebra \mathbf{g} . Then each orbit of the adjoint action $Ad: G \times \mathbf{g} \to \mathbf{g}$ contains at least two geodesic vectors.

PROOF. Consider an orbit G(U) of the adjoint action, the corresponding coset manifold G/G_U and the injective immersion $\rho: G/G_U \to \mathbf{g}$. Then the pull-back q of the quadratic form Q has at least 2 critical points since G/G_U is compact.

In the next corollary two geodesics are considered different if their images are different.

COROLLARY. Let G be a compact connected semi-simple Lie group of rank ≥ 2 and B a euclidean inner product on its Lie algebra. Then the left-invariant Riemannian metric <, > induced by B on G has infinitely many homogeneous geodesics issuing from the identity element.

PROOF. As two geodesics are considered different if they have different images, two geodesic vetors $X, Y \in \mathbf{g} - \{0\}$ yield different homogeneous geodesics issuing from the identity element if and only if there is no $\lambda \in \mathbf{R}$ with $Y = \lambda X$. Consequently it is sufficient to show that a K-sphere of \mathbf{g} contains infinitely many geodesic vectors, where K is the negative of the Cartan-Killing form. Therefore by the preceding theorem it is enough to see that a K-sphere includes infinitely many orbits of the adjoint action. But since

$$codim \ G(U) = dim \ \mathbf{g} - dim \ G(U) = dim \ \mathbf{g} - (dim \ \mathbf{g} - dim \ G_U)$$

= $dim \ G_U > rank \ G > 2$,

the number of adjoint orbits included in a K-sphere cannot be finite. \square

Remark. If a compact connected semi-simple Lie group G has rank 1 then there are left-invariant Riemanniann metrics on G which have only a finite number of homogeneous geodesics issuing from the identity element.

PROOF. Consider an arbitrary euclidean inner product B on \mathbf{g} . Then there is a K-symmetric vector space automorphism $\kappa: \mathbf{g} \to \mathbf{g}$ such that $B(U,V) = K(\kappa U,V), \ U,V \in \mathbf{g}$ holds. But then

$$B(X,[Z,X]) = K(\kappa X,[Z,X]) = K([X,\kappa X],Z), \ X,Z \in \mathbf{g}.$$

Consequently, X is a geodesic vector if and only if $[X, \kappa X] = 0$. In other words, X is a geodesic vector if and only if $\kappa X \in \mathbf{g}_X$ where $\mathbf{g}_X < \mathbf{g}$ is the Lie subalgebra corresponding to the isotropy subgroup $G_X < G$. Since \mathbf{g}_X is the union of those Cartan subalgebras which contain X, if $rank \ G = 1$ then \mathbf{g}_X is the 1-dimensional subalgebra spanned by X. But then X is a geodesic vector if and only if $\kappa X = \lambda X$ for some $\lambda \in \mathbf{R}$, in other words if and only if X is an eigenvector of κ . If B is chosen so that all the eigenvalues of κ are different then a K-sphere can contain only a finite number of eigenvectors.

The idea to consider the K-symmetric automorphism in case of a semi-simple Lie group is due to Kajzer and his argument yields the existence of at least m homogeneous geodesics issuing from the identity element in case of an m-dimensional semi-simple Lie group; although, this is not explicitly stated in his paper.

References

- 1. Gordon, C. S., Homogeneous Riemannian manifolds whose geodesics are orbits, Topics in Geometry, in Memory of Joseph D'Atri, 1996, 155-174.
- Kajzer, V. V., Conjugate points of left-invariant metrics on Lie groups, Sov. Math. 34 (1990), 32-44; translation from Izv. Vyssh. Uchebn. Zaved. Math. 342 (1990), 27-37.
- 3. Kowalski O., Vanhecke L., Homogeneous Riemannian manifolds with homogeneous geodesics, Bull. Un. Mat. Ital. 5 (1991), 189–246.

Received November 29, 1999

Department of Geometry, Eötvös Loránd University, Kecskeméti u. 10-12, H-1053 Budapest, Hungary e-mail: szenthe@ludens.elte.hu