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HOMOGENEOUS GEODESICS OF LEFT-INVARIANT
METRICS

BY JANOS SZENTHE

Abstract. It is shown that there are infinitely many homogeneous geode-
sics issuing from the identity element of a compact connected semi-simple
Lie group in case of any left-invariant Riemannian metric provided that the
group is of rank greater than 1.

A geodesic v : R = M of a Riemannian manifold (M, <,>) is said to be
homogeneous if there is a 1-parameter group of isometries @, : M — M, 7 € R
such that + is an orbit of ®; more precisely, if y(7) = ®,(v(0)), 7 € R
holds. The concept of homogeneous geodesic plays a basic role in the theory
of homogeneous Riemannian manifolds; namely, the assumption that all the
geodesics of a homogeneous Riemannian manifold are homogeneous proved to
be useful in their classification theory [1], [3]. On the existence of homogeneous
geodesics there is a result obtained by V. V. Kajzer [2] stating that in the case
of a connected Lie group and a left-invariant Riemannian metric <,> on it,
the Riemannian manifold (G, <,>) has at least one homogeneous geodesic
issuing from the identity element. It is shown below that if the Lie group G
is also compact semi-simple and of rank > 2 then there are infinitely many
homogeneous geodesics issuing from the identity element in the case of any
left-invariant Riemannian metric.

DEFINITION. Let G be a connected Lie group, g = T.G its Lie algebra
identified with the tangent space at the identity element, B : g x g = R
a euclidean inner product, i.e., a positive definite symmetric bilinear form
and <, > the left-invariant Riemannian metric induced by B on G. A tangent
vector X € T,G—{0} is said to be a geodesic vector if the 1-parameter subgroup
7+ Ezp(rX), 7 € R, is a geodesic of <, >. The geodesic defined by a geodesic
vector is obviously a homogeneous one. Conversely, let v be a geodesic with
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~(0) = g which is homogeneous with respect to a l1-parameter group of left-
translations, namely

v(1) = Exzp(tY)g, 7 € R,

then a homogeneous geodesic 7 is given by

(1) =Ly o y(r) = £ 0 Ry 0 Bap(rY)
= Bap(Ad(g~")7Y) - e = Exp(Ad(g~")rY)7(0)

)

which means that X = Ad(g™!)Y is a geodesic vector.

The following lemma has been applied in several papers, its subsequent
simple proof is presented for convenience here.

LEMMA. Let G be a connected Lie group, B a euclidean inner product on
its Lie algebra g and <, > the left-invariant Riemannian metric induced on G
by B. Then X € g — {0} is a geodesic vector if and only if B(X,[Z,X]) = 0
holds for Z € g.

Proor. Consider the Levi-Civita covariant derivation V defined by <, >
which is obviously left-invariant. If X € g — {0} then let X : G — T'G be the
left-invariant vector field defined by X (e) = X. Then X is a geodesic vector if
and only if (V¢ X)(e) = 0; in other words, < V£X,U > |, = 0 is valid in case
of any left-invariant field U. But by Koszul’s formula the following holds:

2< VX, U>=X< X, U>+X<U,X>-U<X,X>
- <X,[X,U]>+<X,[U,X]>+<U,[X,X]>
=2< X,[U,X] >,

since the functions < X,U >, < X, X > are constant. Therefore the following
is obtained

<VxX,U>|.=<X,[U,X] > | = B(X,[U, X]).
Consequently the assertion of the lemma follows. 0

The following corollary is a simple consequence of the preceding lemma by
polarization and an application of Schur’s lemma.

COROLLARY. Let G be a connected compact simple Lie group and K :
g x g = R the negative of the Cartan-Killing form of g. Let B be a cuclidean
inner product on g and <,> the left-invariant Riemannian metric induced by
it. Then all the geodesics of <, > are homogeneous if and only if B = X K for
some A € RT.
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DEFINITION. Let G be a connected Lie group and B a euclidean inner
product on its Lie algebra g then a quadratic form @ : g — R is defined by
Q(X) = B(X,X), X € g. Consider now the adjoint action Ad : Gxg — g and
the orbit G(U) C g of an element U € g. The corresponding isotropy subgroup
Gy < G being closed, the canonical smooth manifold structure of the coset
space G/Gy exists, the canonical left-action A : G x (G/Gy) — G/Gy is
smooth and also the canonical equivariant bijection G/Gy — G(U) is smooth
and yields an equivariant injective immersion p : G/Gy — G(U) C g. The
smooth function ¢ = Qop : G/Gy — R will be called the pull-back of quadratic
form Q.

PROPOSITION. Let G be a connected Lie group and B a euclidean inner
product on its Lie algebra g. For X € g—{0} let U € g be such that X € G(U)
for the corresponding adjoint orbit and let gGy € G/Gy be the unique coset
with p(gGy) = X. Then X is a geodesic vector if and only if gGy is a critical
point of g = @Q o p the pull-back of the quadratic form Q.

PRrROOF. The coset gGy is a critical point of ¢ if and only if vg = 0 for
v E Tch(G/GU) But as G//Gy is homogeneous, for each v there is a Z € g
such that v = Z(gGy) where Z : G/Gy — T(G/GU) is the infinitesimal
generator of the action A corresponding to Z. Consider also the infinitesimal
generator Z g — Tg of the adjoint action corresponding to Z. Since the
injective immersion p is equivariant with respect to the actions A and Ad the
following holds: Zop=Tpo Z. But then the following is valid:

vg = ZQ‘!]GU = Z(Qo p)‘gGU = (sz)lgGyQ
= di(B(Ad(Emp 7Z)X,Ad(Exp 72)X))|,=0 = 2B([Z, X], X).
-
Since the map g 3 Z — Z(gGy) € Ty, (G/Gy) is an epimorphism, the
assertion of the proposition follows. O

THEOREM. Let G be a compact connected semi-simple Lie group and B a
euclidean inner product on its Lie algebra g. Then each orbit of the adjoint
action Ad : G x g — g contains at least two geodesic vectors.

ProoF. Consider an orbit G(U) of the adjoint action, the corresponding
coset manifold G/Gy and the injective immersion p : G/Gy — g. Then the
pull-back g of the quadratic form @ has at least 2 critical points since G /Gy
is compact. O

In the next corollary two geodesics are considered different if their images
are different.
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COROLLARY. Let G be a compact connected semi-simple Lie group of rank
> 2 and B a euclidean inner product on its Lie algebra. Then the left-invariant
Riemannian metric <,> induced by B on G has infinitely many homogenecous
geodesics issuing from the identily element.

PROOF. As two geodesics are considered different if they have different im-
ages, two geodesic vetors X,Y € g— {0} yield different homogeneous geodesics
issuing from the identity element if and only if thereisno A € R with Y = A\ X.
Consequently it is sufficient to show that a K-sphere of g contains infinitely
many geodesic vectors, where K is the negative of the Cartan-Killing form.
Therefore by the preceding theorem it is enough to see that a K-sphere in-
cludes infinitely many orbits of the adjoint action. But since

codim G(U) =dim g —dim G(U) = dim g — (dim g — dim Gy)
=dim Gy > rank G > 2,

the number of adjoint orbits included in a K-sphere cannot be finite. O

REMARK. If a compact connected semi-simple Lie group G has rank 1
then there are left-invariant Riemanniann metrics on G which have only a
finite number of homogeneous geodesics issuing from the identity element.

PROOF. Consider an arbitrary euclidean inner product B on g. Then
there is a K-symmetric vector space automorphism « : g — g such that
B(U,V) = K(xkU,V), U,V € g holds. But then

B(X,[Z,X]) = K(kX,[Z,X]) = K([X,rkX],Z2), X,Z € g.

Consequently, X is a geodesic vector if and only if [X,xX] = 0. In other
words, X is a geodesic vector if and only if kX € gx where gx < g is the Lie
subalgebra corresponding to the isotropy subgroup Gx < G. Since gy is the
union of those Cartan subalgebras which contain X, if rank G = 1 then gy is
the 1-dimensional subalgebra spanned by X. But then X is a geodesic vector
if and only if kX = AX for some A € R, in other words if and only if X is an
eigenvector of . If B is chosen so that all the eigenvalues of x are different
then a K-sphere can contain only a finite number of eigenvectors. |

The idea to consider the K-symmetric automorphism in case of a semi-
simple Lie group is due to Kajzer and his argument yields the existence of at
least ™m homogeneous geodesics issuing from the identity element in case of an
m-dimensional semi-simple Lie group; although, this is not explicitely stated
in his paper.
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