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ON AUTOMORPHISMS OF A JACOBI MANIFOLD

BY TOMASZ RYBICKI

Abstract. Jacobi manifolds generalize both the symplectic and contact
manifolds. Groups of automorphisms of a Jacobi manifold are studied. It
is shown that some of them determine the smooth and geometric structures.

1. Introduction. The notion of Jacobi manifolds has been introduced
by A.Lichnerowicz in [6]. Our aim is to show that some groups of automor-
phisms associated with a Jacobi manifold determine the smooth and geometric
structure of the manifold itself. Let us begin with basic definitions.

A Jacobi structure on a manifold M is a pair (A, F) where A is a 2-vector
field on M, E is a vector field on M, and the equalities

(1.1) [A,A] =2ENA, LpgA= [E,A] =0

are satisfied. Here [.,.] is the Schouten-Nijenhuis bracket ([4]), and L is the
Lie derivative. The manifold M equipped with a Jacobi structure is called a
Jacobi manifold. The Jacobi bracket is then defined by

(1.2) {u,v} = A(du,dv) + uE(v) —vE(u), foru,ve C®°(M,R).

It is visible that the bracket {.,.} is skew-symmetric. It satisfies the Jacobi
indentity iff (1.1) is fulfilled. Furthermore, we have the locality condition

supp{u,v} C (supp(u) N supp(v)).
Therefore the space C*°(M,R) endowed with the Jacobi bracket becomes a
local Lie algebra in the sense of Kirillov (cf. [4]). Conversely, any structure
of a local Lie algebra on C*°(M, R) uniquely determines a Jacobi structure on
M.
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If E = 0 then the bracket {.,.} becomes a derivation on each argument and
defines a Poisson structure on M. Equivalently, a Poisson structure is defined
by a 2-vector field A fulfilling [A,A] = 0, and the pair (M,A) is a Poisson
manifold.

We have the bundle homomorphism associated with A

ACT*M - TM, <o, 8>=Aaw,p),

where of = Al(a), for any o, € T*M. The distribution generated by
ANT:M) and E,, x € M, integrates to a generalized foliation (cf. [4], [9]).
This foliation is called characteristic and denoted by F = F(A, E). It is well-
known that the Jacobi structure induces a locally conformal symplectic (resp.
contact) structure on each leaf of F(A, E) of even (resp. odd) dimension. Thus
Jacobi manifolds generalize both the symplectic and contact manifolds.

The motivation for this note comes from the Erlangen Program in its mod-
ern version: the automorphism group of a geometric structure essentially de-
termines the geometric structure itself. The group of all diffeomorphisms of a
smooth manifold has been studied by R.Filipkiewicz in [3] but, contrary to the
unimodular and symplectic case (cf.[1]), the techniques used there cannot be
extended to Jacobi manifolds. The first reason is that the perfectness theorem
is not known in this case. The second one is that the method from [1, 3]
does not work in the case of the nontransitive groups of diffeomorphisms. Our
argument follows a scheme invented in [7, 8] and used in [10]. To apply this
scheme we make some observations on automorphisms of a Jacobi manifold. In
particular, we use the canonical coordinates of a Jacobi structure which have
been introduced about 1990, cf.[2].

Notice that in the context of applications of Jacobi manifolds to Mechanics
Theorem 1 may be viewed as stating that a phase-space is uniquely defined by
the group of its symmetries.

2. The main result. Let us begin with definitions concerning automor-
phisms. To any function u € C*®°(M,R) one assigns the vector field H(u) given
by '

H(u) = A¥(du) +uFE = [A,u] + uE,
which is called the hamiltonian vector field associated with u. In particular,
H(1) = E. It can be shown, cf. [2], that the mapping u — H(u) is a Lie
algebra homomorphism with respect to the Jacobi bracket (1.2) and the usual
bracket of vector fields. Let L*(M) = L*(M,A,E) = imH denote the Lie
algebra of hamiltonian vector fields.

Now let a € C*°(M,R) be nowhere zero. It is visible that the expression

1
{u,v}e = —{au,av}, wu,v € C*(M,R),
a
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defines the bracket of a new Jacobi structure which is conformally equivalent to
the initial one. Namely, the 2-vector field A? and the vector field E2 of the new
structure are given by A = aA and E* = H(a) = [A, a]+aE. Furthermore, the
hamiltonian vector field H®(u) satisfies H*(u) = H(au) for all u € C°(M, R).
Consequently the characteristic foliation is an invariant of the conformal class
of a Jacobi structure. We will write (M, A, E) ~ (M, A’, E') if there is a such
that A" = A, and E' = E,,.

Let L(M) = L(M,A, E) be the Lie algebra of all conformal Jacobi infin-
itesimal automorphisms. That is X € L(M) iff there is v € C°(M,R) such
that

(2.1) LxA=uA, LxE=I[Au]+uE.

We write L*(M) for the subalgebra of L(M) consisting of elements tangent to
F.

PROPOSITION 1. L*(M) is a Lie subalgebra of L*(M).

In fact, if X = H(v) then X satisfies (2.1) with u = —dv(E).

We say that X € L(M) is strict whenever u = 0 in (2.1). Notice that a
strict infinitesimal automorphism need not be tangent to F. It follows from the
definition that a hamiltonian vector fields is not strict unless Fu = 0. Thus,
contrary to the Poisson case, strict i.a. play a minor role.

A smooth mapping f : (Mi,A1,E;) — (Ma, Ay, E3) is called a Jacobi
morphism if

{uo fivo f}i ={u,v}a0f forany u,v € C®(M,).
The following is easy to check.

PROPOSITION 2. The following statements are equivalent:

(1) ¢ is a Jacobi morphism;

(2) psH(uo @) = H(u), Vu € C°(My);

(8) puB1 = Ao, ¢.Ey = Ey (in particular, Ay and E; are related by ¢ to
AQ and Eg)

But in the theory of Jacobi manifolds conformal Jacobi morphisms are
more important. A smooth map ¢ : (M, A1, E1) — (Ms, As, E3) is conformal
Jacobi morphism if

(MlnAlaEl) ~ (Mla ¢)*A27 d)*E?)

Let G(M) = G(M, A, E) stand for the group of all conformal Jacobi automor-
phisms of (M, A, E), and let @C(M) be its subgroup of compactly supported
elements. (As usual the subscript "¢” indicates the subspace of compactly
supported elements.) Next by G(M) (resp. G*(M)) we denote the subgroup
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.of G(M) generated by all exp(X) where X € LY(M) (resp. L*(M)) and X is

complete.

THEOREM 1. Let (M;, A;, E;) (i = 1,2) be a Jacobi manifold with no leaves
of dimension 0. Let G(M;) be one of the four groups G(M;), Go(M;), G*(M;),
G*(M;). If there exists a group isomorphism ® of G(M)) onto G(Ms) then
there exists a unique diffeomorphism ¢ of My onto My such that ®(f) = ¢ o
fo¢p™t for any f € G(My). Moreover, ¢ is a conformal Jacobi morphism.

REMARK. We do not know whether G'(M) is equal to the identity compo-
nent of the subgroup of G(M ) of all diffeomorphisms preserving the leaves of
F. Another question is whether any diffeomorphism of M which can be joined
to id by a hamiltonian isotopy belongs to G*(M). In the symplectic case the
answer is affirmative but it depends on difficult simplicity theorems and the
existence of the flux homomorphism (cf.[1]). We believe that Theorem 1 is
true for G(M), but our techniques are not sufficient to show this.

3. Pseudo-n-transitivity of Automorphism Groups. Let G(M) C
Diff> (M) be any diffeomorphism group. By an isotopy in G(M) we mean any
family {fi}ter with f; € G(M) such that the map (¢,2) — fi(z) is smooth.
Next, G(M)q denotes the subgroup of all f € G(M) such that there is a smooth
diffeotopy {fi}ter with f; = id for t < 0 and f; = f for ¢t > 1. Notice that
G(M)y is the connected component of id if G(M) is locally contractible.

Observe that G(M)y = G(M),G*(M)y = G*(M), and the same for com-
pactly supported subgroups.

Let A be an arbitrary set of isotopies, and let A* be the totality of diffeo-
morphisms 1 such that ) = ¢(t,.) for some ¢ € A, t € R. Next A denotes the
set consisting of all local diffeomorphisms being finite compositions of elements
from A* or (A*)~! = {47! : 1) € A*}, and of the identity. For p € M we let

A(p) be the vector subspace of T, M generated by

{d(v) : ¢ € A, (q) = p,v € A(g)},

where A(q) is spanned by all d(—itd)(t, q)|t=0, ¢ € A. The orbits of A determine
uniquely an equivalence relation on M, and its equivalence classes are called
accessible sets. More precisely, we have

THEOREM 2. (P.Stefan [12].) Every accessible set of A admits a (unique)
smooth structure of a connected weakly tmbedded submanifold of M, and the
accessible sets form a generalized foliation F = F(A). PFurthermore, A(p) is
the tangent distribution at p of the foliation F(A).

Now let G(M) be a locally contractible group of diffeomorphisms. One
considers the set of all isotopies lying in G(M), denoted by Ag. It is then
easily observed that the accessible sets of Ag coincide with the orbits of the
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group G(M)o. In case of G(M) and G*(M) the orbits are the leaves of the
characteristic foliation.

DEFINITION 1. G(M) satisfies (L)-condition (locality) if for any open rel-
atively compact U,V C M with U C V, and a smooth diffeotopy {f;} in G (M)
with fo = id, there exist € > 0 and a smooth diffeotopy {g;} such that g, = f;
on U for |t| < €, and supp(gr) C V.

DEFINITION 2. A diffeomorphism group G(M) is pseudo-n-transitive if for
any two n-tuples of pairwise distinct points (p1,... ,pn) and (q1,... ,q,) of M
such that p;, ¢; belong to the same orbit of G(M)( and each orbit of dimension
< 1 contains at most one p; there exists f € G(M) satisfying f(p;) = ¢, 1 =
1,...,n.

Notice that this definition coincides with the n-transitivity (i.e. T'(n)-
property in [3, 7]) if G(M)y acts transitively. That is, the pseudo-n-transitivity
is the n-transitivity along leaves. The following theorem, which generalizes a
theorem of Boothby, connects the two concepts.

THEOREM 3. Let G(M) C Diff®(M) satisfy the (L)-condition. Then
G(M) is pseudo-n-transitive for each m > 1. In particular, G(M) is n-
transitive provided G(M)g s transitive.

For the proof see [9]. Notice that Theorem 3 still holds in the C"-smooth
and real analytic categories. However, the formulation of the (L)-condition
must be changed in the real-analytic case.

COROLLARY 1. Let (M, A, E) be a Jacobi manifold. Then G%(M) (and a
fortiori G*(M), G.(M), G(M)) is pseudo-n-transitive for each n > 1.

This is so since the group in question satisfies the (L)-condition (see the
proof of Proposition 4 below).

4. Splitting theorems. Let us recall the concept of homogeneous Poisson
manifold. This is a Poisson manifold (M, A) equipped with a vector field Z,
called a vector field of homotheties, such that

[Z,A] = —A.

This concept plays a clue role in the theory of Jacobi manifolds. Namely, any
submanifold of codimension 1 in (M, A) which is transversal to Z possesses
an induced Jacobi structure, and each Jacobi structure can be obtained in
this way. On the other hand, any submanifold of codimension 1 in a Jacobi
manifold (M, A, F') transversal to E admits an induced structure of a homoge-
neous Poisson manifold, and, again, each homogeneous Poisson structure can
be obtained in such a way.
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Now we turn our attention to the local description of Jacobi manifolds,
which will be useful for our purpose. In full generality this description has
been given for the first time in [2]. According to the dimension of leaves one
has two splitting theorems.

We begin with standard structures on R™. If n = 2p we write

PV S 0 o, N~ O
2p = z; g N ag Cw = Zx Ortp
1=
Likewise, for n = 2p + 1 we set

0
Eopt1 = 970" Aopi1 = Eopi1 A Zop + Mgy
Now let (M, A, E) be a Jacobi manifold of dimension n.

THEOREM 4. Suppose xo € M lies on a leaf L of even dimension 2p. Then
there is a neighborhood W of xy which is identified, up to a conformal Jacobi
diffeomorphism ¢, with the product Uy, x N of an open neighborhood of 0 in
R? and a Jacobi manifold (N, Ay, Ex) of dimension n — 2p. The restrictions
AngxN and EU2P><N of A and E to Uy, x N assumes the form

Avp,xn = Aop + AN — Zop N Ey,  Ey,, xn = En.

The diffeomorphism ¢ sends xzo to (0,Zo) and LNW to Uy, X {To}, and the
Jacobr structure on N has rank 0 at .

COROLLARY 2. Under the above assumption there is a chart (2, 2, 2%) at
zo with 1 <A p<p, p=p+p, 2p+1=<a,b<n, such that the only possible
nonzero components are E®, AV = A = 1, A% gpd AN = A =
—2*E®. Moreover, E* and A% are independent of z*, z# and vanish at zg.

Next we consider the case of odd dimension.

THEOREM 5. Assume that xg lies on a leaf L of dimension 2p + 1. Then
there is a neighborhood W of xo which s identified, up to a Jacobi diffeomor-
phism ¢, with the product Uspiy X N of an open neighborhood of 0 in R?PT!
and a homogeneous Poisson manifold (N,Ay,Zy) of dimension n — 2p — 1.
The restrictions AU2P+1><N and Ev,yiixn of A and E to Uspy1 x N have the
form

Ay, xN =Agpp1 + An + Eopii AZn, By, xv = Eopi.

The diffeomorphism ¢ sends zq to (0,Zg) and LNW to Ugpy1 X {Zo}, and the
Poisson structure on N has rank 0 at Zg.

COROLLARY 3. There ezists a chart (20,2}, 2%, 2%) at zg with 1 < A<
D, b =pn+p, 2p+1<ab < n—1, such that the only possible nonzero
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components are B0 = 1, AM = —AM = —1 A% AN = _A0N —z*, and
A% = — A Moreover, A’ and A% are independent of z°, 2>, 2" and vanish
at xzg.

If f € G(M), Fix(f) denotes the set of fixed points, {z € M : f(z) = z}.
The following will be useful in the sequel.

PROPOSITION 3. For any sufficiently small neighborhood V' of o € M
there is f € G7(M) such that Fix(f) N Ly, = (Lyy — U) U {zo} for some open
ball U with U C V. Here Ly, is the leaf passing through xg.

PrOOF. We consider two cases with respect to the dimension of L,,. Let
(2, 2P, 2% with 1 < \p <p, i=p+p, 2p+1 < a < n, be a chart at z,
having all the properties from Corollary 2. In this chart let » > 0 be such that
the B(0,r) is in the chart domain. Choose a smooth a : R — [0, 1] such that
a(0) =1, a(§) =0 for [{| > 7, and o/ (§) = 0 iff £ = 0 or [¢] > L. We define

u(zt, ... 2") = al(zh)? + - + (2%)?).
Likewise for a chart (20 2* 2% 2%) at zo with 1 < \p < p, &b = p + p,
2p+1<a<n-—1, from Corollary 3 we put
w(z?, ..., 2" ) = (2% + -+ (2%)?).
Then f = exp(X), where X = H(u) = (du)? +uE, verifies the claim. We check
this in the second case which is less immediate.

First observe that in the chart domain the leaf L, is given by z® = 0 for
any a > 2p. By definition H(u) can be expressed as follows

N,
H(w) = (u(@) +o/(2) Y (2Y)?) 55
A=1
+ () Zm’_\% + (292 — :r’\)%

It is clear that H(u)(z) = 0 if z = z¢ or |z| > §. Now if |z| < L and z # =z,

one has 2% # 0 or there is A such that z* # 0 or z* # 0. 2 is the coefficient of

% In the case 2> = 0 and 2 # 0 the coefficient of % is nonzero. Finally, if

all z*, 2# are zero then the coefficient of % is nonzero. Therefore H(u)(z) # 0

for z € B(0, %), = # o, as required. O
5. Further properties of automorphism groups.

DEFINITION 3. (Fragmentation property) For any finite family of open
balls {U;} and any h € G(M)g such that supp(h) C | U; there exists a decom-
position i = hso... 0 hy such that supp(h;) C Uy fori=1,... ,s.
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PROPOSITION 4. Let (M, A, E) be a Jacobi manifold. Then G*(M) fulfills
the fragmentation property.

PROOF. Choose a new family of open balls, {V;}3_,, satisfying supp(f) C
Vi U...UV; and which is starwise finer than {U;}]_,: Vj Jistar(V}) C Uyy.
Any element of G*(M) is a finite composition of diffeomorphisms of the form
g = exp(X) where X € L*(M). Now it is easily seen from the definition that
one may have X = X; +--- + X, where X; € L*(M) and supp X; C V;. Set
fo=1id and f; = exp(X; +--- + X;) for j > 1. We get

g=Jfi=gso-0g where g =f50f7}
We have also
supp(g;) = supp(fj o f;_) C star(V;) C Uy,
as required. O
PRrOPOSITION 5. (1) If z,y € X NU,% € F,U being an open ball, then
there is g € G*(M)o with supp(g) C U such that g(z) = y.

(i) For any x € M and for any g € G(M) such that g(z) = z there exists
h € GX(M) such that h = g on a neighbourhood of x.

PRrOOF. (i) This is a consequence of the locality (Def.1).
(i1) Suppose g = exp(X) such that X € L(M). We make use of the equality

X|U = [A!U,’IUU} +wy E

for some smooth wy defined on U. By multiplying wy by a smooth function
o with @ = 1 near p and suppa C U, the property follows. O

6. The proof of Theorem 1. The proof consists in applying a main re-
sult of [11] (the proof is essentially in [8]). First we recall our ”axiomatization”
which describes what kind of automorphism groups can determine the under-
lying geometric structure. Plausibly our axioms are "only” local but it seems
that such a local approach is appropriate in case of diffeomorphism groups.

AXIOM 1. is just the fragmentation property (Def.3).

It is fulfilled by G*(M). It can be checked that this is sufficient in the proof
of Theorem 1.

AXioMm 2. For any € M and a sufficiently small open ball U with the
center at x there exists f € G(M), with Fix(f) = (M —U)U{z}. In addition,
for any © € U, U open, there is f € G(U), such that f(z) # x.

Observe that the second assertion follows from the (L)-property (Def.1) for
G*(M).
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. AxioMm 2. For any sufficiently small neighborhood V of © € M there is
[ € Gi(M) such that Fix(f) N Ly = (Ly —U)U{z} for some open ball U with
U C V. Here Ly is the leaf passing through z.

This axiom is satisfied due to Proposition 1 and, a fortiori, Axiom 2 holds
true for transitive Jacobi structures.

AxioM 3. G(M)g acts 3-transitively on M.
AxioMm 3. G(M) is pseudo-3-transitive.

Again this is fulfilled by Corollary 1.

Theorems of Whittaker-Filipkiewicz type are ”integral” counterparts of
Pursell-Shanks type theorems. The theorem of Pursell-Shanks states that the
Lie algebra of vector fields of a manifold M determines completely the smooth
structure of M itself. Several generalizations concerning various geometric
structures are also true. Our next AXIOM 4 requires the existence of a Pursell-
Shanks type theorem. This is the case of Jacobi structures due to J. Grabowski
[5].

The set of all isotopies of a diffeomorphism group G(M) defines a gener-
alized foliation F (Theorem 2). We impose further axioms to deal with the
nontransitivity.

AXioMm 5. F has no leaves of dimension 0, that is G(M)q fizes no points.
AXIOM 6. G(M) preserves the leaves of F.
Observe that this is true for G(M)g, and that G(M) preserves F, cf.[12].

Axiom 7. If x,y € LNU,L € F,U being an open ball, then there is
g € G(M)o with supp(g) C U such that g(z) = y.

The following two last axioms are connected with the case of noncompact
manifolds.

Axiom 8. For any x € M and for any g € G(M) such that g(x) = z there
ezists h € G.(M) such that h = g on a neighbourhood of .

Axiom 9. If {U;} is a pairwise disjoint locally finite family of open balls
and g; € G(M) with supp(g;) C U;, then g = [[g; € G(M), where []g; = g;
on U; for any i, and [[g; =id on M —JU;.

Note that in the infinitesimal case this condition is contained in the defi-
nition of a so-called quasi-foliation.

In the case of Jacobi structures and the groups of Theorem 1 Axioms 6
and 9 follows from the definition, Axiom 5 by assumption, and Axioms 7 and
8 by Proposition 5. Now we can recall the main result of [11] which implies
Theorem 1.
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THEOREM 6. Let (M;, ), © = 1,2, be a geometric structure such that

its group of automorphisms G(M;, ;) satisfies either Azioms 1,2 and 3, or
Azioms 1,2°,8°,5,6 and 7, and M; is compact, or Axioms 1,2°,3°,5,6,7,8 and 9.
Then if there is a group isomorphism ® : G(M;, 1) — G(Mas, as) then there
is a unique C®-diffeomorphism ¢ : My — My such that ®(f) = ¢fo~! for
each f € G(My,a1). Moreover, it preserves o; whenever Aziom 4 holds.

10.

11.

12.
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