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POSITIVENESS OF MIXED CURVATURE AND DIMENSION
OF FOLIATION

BY V.YU. ROVENSKI

Abstract. We prove that if a totally geodesic foliation on a Riemannian
manifold has positive sectional curvature in mixed directions and satisfies
some additional condition containing ”turbulence” and curvature pinching,
then the dimension of a foliation is ”small”. The corollary is a decomposi-
tion theorem for compact foliation with nonnegative mixed curvature. On
the other hand, we construct examples of foliations on even-dimensional
manifolds by closed geodesics, which show that in above results for every
curvature pinching § < 1 we need some additional conditions.

1. Introduction.

1.1.  Since 1970 foliations have played an important role not only in topol-
ogy [1], analysis [2], but also in Riemannian geometry, [3], [4] and [5]. The
relationship between curvature and topology of manifolds plays the key role in
global Riemannian geometry, see [6]. Over the last few years the interest of
geometers in the problems of existence of adapted metrics and foliations (dis-
tributions) on a manifold with additional curvature restrictions has increased
[7]:

FC1: Does there exist a complete Riemannian metric g for a manifold M
with a fixed foliation {L} which induces the given geometrical and curvature
properties of a foliation?

FC2: Does there exist a foliation {L} with given metric and curvature
properties for a fixed complete Riemannian manifold (M,g)? If yes, what is
their classification?

Let M™ be a Riemannian manifold and Ty C TM be a v-dimensional
distribution. Denote by T5 C T'M the distribution on M which is completely
orthogonal to T7, i.e., Ty ®T5 = T M. In the particular case v = 1 we deal with
a line field T, whose integral curves form a 1-dimensional foliation on M. For
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v > 1 the distribution 7} is tangent to the foliation {L} only in the case when
the integrability tensor for T3 is zero. For simplicity, below we assume this
condition, moreover, the leaves { L} are supposed totally geodesic submanifolds
(geodesics in the particular case v = 1).

Note that totally geodesic foliations and Riemannian foliations have the
simplest external geometry of the leaves (respectively, the tangent or orthog-
onal distribution has the zero second fundamental form), are dual in a some
sense, and are investigated in a number of works.

1.2, We shall concentrate in the work on the mixed sectional curvature
Konir of a foliation. For two nonzero vectors z € T1 and y € Ty the sectional
curvature K (z,y) is called mized, it controls the relative behaviour of nearby
leaves. Actually, the geometrical sense of K,,;, follows from the fact that
for a totally geodesic foliation the components of curvature tensor along any
leaf geodesic y(t) C L are contained in the Jacobi equation Y" + R(#)Y = 0
for the induced by a foliation Jacobi tensor Y (t), and the Riccati equation
B’ + B? + R(t) = 0 for the structural tensor B : Ty x Ty — Tb defined by the
rule

(1.1) B(z,y) = (Vyi)", (€T, yeT),

where z C T} is any local extension of z. The relationship between these ten-
sors Y and B is the following: Y’ = B(v/,Y). Note that the equality B = 0
holds iff the distribution 75 = T L' is also tangent to a totally geodesic folia-
tion, and by the de Rham decomposition theorem M is locally a Riemannian
product L x L*. In the case of constant curvature K,,;, the solutions of the
above Jacobi and Riccati ODE are known (and thus the relative behaviour of
geodesics on nearby leaves), see Figure 2.

For Ky = k = const > 0 D.Ferus proved a surprising theorem in 1970
using the Riccati equation with R(t) = kE.

THEOREM 1.1. [8] If a totally geodesic foliation {L} has Kz = k > 0
along a complete leaf Ly, then

(1.2) dim L < p(codim L),
where p(n) — 1 is a number of vector fields on a sphere S™ 1.

In [9] we showed that the estimate (1.2) is
—exact: for all v < p(n): take some neighbourhood of a v-dimensional great
sphere in a (n+ v)-dimensional round sphere is foliated by v-dimensional great
spheres,
- wrong for nonconstant K;, > 0 : in any of projective spaces KP", (n >
2; K = C, H, Ca) there exists a neighbourhood of a closed geodesic which can
be foliated by closed geodesics,



69

~true for ruled submanifolds M™+" with v-dimensional complete rulings {L"}
and K,z > 0 in a round sphere S™.

Thus the following questions are natural.

Which manifolds admit totally geodesic foliations with K, >0 7

What is the structure of such foliations with K,,;; > 0 and large dimension,
in particular, when they split?

These questions are interesting even locally for a foliation by closed geode-
sics, i.e. when dim L = 1 and codim L = odd.

PROBLEM 1.2. Let M = S' x B?™+! be the product of a circle and an
odd-dimensional ball with the product foliation {S' x b}. For what mazimal

S (%, 1) there exists a geodesible metric on M with positive and J-pinched
Kmia:?

Note that Hopf fibrations (of round sphere by closed geodesics) have
codim L = even, dim L =1 and K,,;;, = const > 0. V. Toponogov conjectured
that for a totally geodesic foliation on a compact Riemannian manifold with
K iz > 0 the inequality (1.2) holds.

1.3.  In the work we prove Theorem 2.3 that if a totally geodesic foliation
on a Riemannian manifold has positive sectional curvature in mixed directions
and satisfies some additional condition containing turbulence and curvature
pinching, then the dimension of a foliation is "small”| i.e., inequality (1.2)
holds. The corollary is a decomposition Theorem 2.5 for compact foliation
with nonnegative mixed curvature. On the other hand, in Theorem 2.6
we construct examples of foliations on even-dimensional manifolds by closed
geodesics, which show that in the above results for every curvature pinching
4 < 1 we need some additional conditions.

2. Main results.

2.1. Main notations and the statement of results. Along any leaf geodesic
v C M the structural tensor B(t) := B(Y,*) of a foliation, defined in (1.1),
satisfies the Riccati ODE

(2.1) B+B>+R,(t)=0, (tel),
where R, := R(¥,-)7 is the Jacobi operator.

DEFINITION 2.1. A vector field y : v — Ty(7y) along the unit speed leaf
geodesic v C M is called L-parallel if the following first order ODE holds, see
(10],

(2.2) y=B(1,9).
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A smooth (1, 1)-tensor field Y : To(y) — To(v) is called L-parallel Jacobi
tensor if the following first order ODE holds

(2.3) Y = B(%,Y).

Note that L-parallel vector field y(t) along the leaf geodesic v C M never
vanishes and, and in view of (2.1)-(2.2) satisfies the Jacobi ODE

(2.4) i+ Ryy =0.

Hence, L-parallel fields form linear subspace among all Jacobi fields along
7. The condition (2.3) is satisfied precisely when the action of Y on linearly
independent parallel sections of T5(7y) gives rise to linearly independent I-
parallel (Jacobi) vector fields.

DEFINITION 2.2. The turbulence of the foliation along the leaf geodesic
(a rotation component of the tensor B) is defined by the formula

(2.5) a(y) = sup{(B(V,v),2) 1y, 2 € Ta(v), y L2, |yl = 2| = 1},

(see [11], [12] for Riemannian submersions and Riemannian foliations). The
turbulence a(L) of the foliation along a leaf L is defined by an analogous for-
mula

a(L) = sup{(B(z,y),2) : y Lz |z|= |yl =]z] = 1}.

Note that the equality a(L) = 0 for all L means that B(z,y) = A\(z)y, in
this case the orthogonal distribution T is tangent to an umbilic foliation.

Let p(n) — 1 be the number of continuous pointwise linearly independent
vector fields on the (n—1)-dimensional sphere; see Table 1, names known from
topology. We write n as a product of odd number and a power of 2

n = (odd) 2%*¢, (b>0,0<c<3).
Then p(n) = 8b + 2¢, and the following inequality holds:
p(n) <2logon+2<n.

Since p(odd) = 1, then dim7y in Theorem 1.1 by D.Ferus is even.

9 11 13 15 17 19 21 23 25 27 29
13 1 8 1 3 1 7 1 3 1

Table 1. The values of function p(n) — 1

n—1 |1 3 5
1 31

7
p(n) —1 7

In the following Theorem that generalizes the Theorem 1.1 by D. Ferus,
the condition for the curvature is given along a sheaf of leaf geodesics.
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~ THEOREM 2.3. Suppose {L} be a totally geodesic foliation and there exists
such point m € M that along any leaf geodesic vy : [0, 2=] — M, (v(0) = m)

vk
we have inequalities
(26) k2 Z K(’Y’a?/) Z kl > 07 (y € TQ(V))a
ky a(v)?
(2.7) (1-— k—) max{ , 1} <0.337
2

where k = kl;kg. Then the inequality dim L < p(codim L) holds.

REMARK 2.4. From (2.7) follows lg—; > 0.663, but the coefficient in (2.7) is
obtained by the method of the proof and perhaps may be improved.

IpEA OF PROOF OF THEOREM 2.3.
Step 1. D. Ferus [8] showed that the inequality (1.2) follows from the property
for every x # 0 the operator B(z,*) does not have eigenvectors.
Step 2. Suppose the opposite, i.e., B(zg,y9) = Ayo holds for some unit
vectors zg € T1(m), yo € Ta(m) and the real number A < 0. The ”ez-
tremal ” leaf geodesic v : [0, %] — M, (¥(0) = z¢) and the L-parallel Ja-
cobi field y(t) along v with the initial value y(0) = yo play the key role in
the proof. We docompo%e the vector field onto standard and ”"small” terms

y(t) = (cos(ff sm ff)) yo + u(t), where u(0) = u/(0) = 0. Note
that for ky = ky we have u(t) = 0 and hence the L-parallel Jacobi vector field
y(t) vanishes at the point ¢y = arcctg(—%)/\/g. The proof of Theorem 1.1
by D. Ferus is based on this contradiction. In the case ky > ki we prove that
under assumption (2.7) (actually, for § > 0.5821) the function

ly(t)] — the length of L — parallel vector field y(t)

has a local minimum at some point ¢, € (0 see Figure 3.

¥
3 WL
Step 3. Further we observe that the function

V(t) — the area of a parallelogram on the vectors y(t), y'(t)
varies "slowly” along the geodesic . (This function is constant in the case
ko = ki). From these we shall obtain a contradiction, because the function

V(t) can not increase from zero value V(0) to "large” value V(¢,) on the
interval with length ¢,, bounded above by % O

From Theorem 2.3 we obtain (as in [13]) a number of corollaries with metric
decomposition of compact foliations and ruled submanifolds with K,,;; > 0.
We give one such result without proof.

THEOREM 2.5. (decomposition). Suppose {L} be a compact (i.e., with
compact leaves) totally geodesic foliation on a Riemannian manifold M with
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‘the conditions
(2.6") ke > K(z,y) > k1 >0, (xeTL, yeTLY),
(2.7 (ko — k1) max{a(Lg)?, k} > 0.337 kko,

where k = %, Lo is some leaf. If dim L > p(codim L), then ki = ko = 0
and M is locally isometric to the product L x L+,

The Hopf fibrations serve as examples of foliations on odd-dimensional Rie-
mannian manifolds by closed geodesics {L = S'} with constant positive K,z
The Problem 1.2 of the existence of even-dimensional Riemannian manifold
foliated on closed geodesics with (§ ~ 1)-pinched positive K, is important
in view of Theorems 2.3 and 2.5 where the foliations with nonnegative K,,;,
are studied under some additional assumptions. The Theorem 2.6 below gives
the positive answer on the above problem for any § € (0,1).

THEOREM 2.6. a) For any ¢ € (0,1) there exists a Riemannian manifold

M2 where n > 1_—‘/%, with the fibration on closed geodesics {L = S'} and

with positive §-pinched Koz .

REMARK 2.7. In the proof of the Theorem 2.6 we construct a metric on the
product M = S! x B?™*! with the following properties a) (;%)2 < Ky <1,
b) the length of circles (closed geodesics) I(L) = 2n(n + 1) — oco. Our
hypothesis is that Theorem 2.6 holds when § — 1 and n is fixed. b) Theorem
2.6 is local in the sense of directions transversal to the leaf L = S!, and the
problem of the existence of analogue geodesic foliation on compact Riemannian

manifold M?"*2 is open.

2.2. Proof of Theorem 2.3. The following comparison Lemma is used for
estimating the length of an L-parallel field in terms of mixed sectional curvature
pinching.

LEMMA 2.8. Lety(t) = Y (t)+u(t) C R™ be the solution of the Jacobi ODE

(2.8) Y+ Rty =0, (0<t< :/%),

where Y () = y(0) cos(vVkt) + &\/%) sin(vkt). Then

2.9) utt) =~ [ —?M’;%‘i)lwu(s)w(s))da
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where D(t) = R(t) — kE and f(t) = (R(t) — kE)Y (t). In particular, if the
norm ||[D(t)]| < e < &, then

2.10 u(t £ VEIY (s)] sin(VE(t — s)) ds
B0 i [ VRY s )

PROOF. Step 1. Denote z(t) = y/(t) and Vkv = «'. Then 2’ = —R(t)y
and Vkv' = —R(t)u — f(t). We rewrite the given Jacobi ODE (2.8) using the

matrices

e =) 4= (5 070 = (o siorve):

as the first order ODE with a constant matrix vkA
2.12 w =VEAw+F,  (0<t< =)
(2.12) 0<t< \/E)
Note that w(0) = 0 in view of u(0) = «/(0) = 0. Using the formula for a
solution of a linear ODE (2.12) we obtain the integral equality
t

(2.13) w(t) = / exp(VE(t — s)A)F(s) ds.

0
It is easy to calculate that

_( cos(VE(t—s))E  sin(VE(t — s)E
exp(VE(t — s)A) = <_ sin(VE(t — s))E  cos(VE(t — S))E)
and then
_ 1 [sin(VE(t — 8))(D(t)u + f(t))
exp(\/E(t —s)A)F(s) = ﬁﬁ (cos(\/ﬁ(t —s))(D(t)u+ f(ﬂ)) .

So, from (2.13) we deduce the integral expression (2.9) for the vector-function

u(t).

Step 2. We now estimate the norm |u|(t) := sup{|u(s)| : s < t}

) <5 [ VEQY (5)]+ (o)) sin( V(e — 5)) ds <
0
£ t £
E/ VEY (5)| sin(VE(t — s)) ds + (1 - cos(\/Et)) ~lul (o),
ie., |ul(t) (1 - (1 — cos(Vkt) ) > <z fo VE|Y ()| sin(VE(t — s)) ds, which is

equivalent to the inequality
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U c \/_Y 1n\//; —s5))ds .
S ) / Y ()] sin(Vi(s — 5))

0

PRrROOF OF THEOREM 2.3.
Step 1. We now prove that for every z # 0 the operator B(z, ) does not
have eigenvectors, because from this property follows the inequality (1.2). Let
p € M be an arbitrary point and {e;} C T3 (p) be any base. Then the following
dim L continuous vector fields {w;}

w;i(y) = Blei,y) — (Blei, v),y)y,

are tangent to the unit sphere S¥mL=1 < Ty(p). If these vector fields are
linearly dependent at some point y € S@mLl=l je S Nw;(y) = 0, for
some real numbers {A;} then the equality B(D, Aie;,y) = D, Mi(B (e“ v), )y
holds which is impossible by our assumption. But if {w;} are dim L continu-
ous pointwise linearly independent vector fields on (codim L — 1)-dimensional
sphere, then dim L < p(codim L).

Step 2. Suppose the opposite, i.e. there exist unit vectors 2y € Ti(p), yo €
Ty(p) and a real number A < 0 with the property B(zg,y0) = Ayg. Let
~(t) : [0, %] — M, (7'(0) = z¢) be a leaf geodesic, y(t) : v — To(y) be
an L-parallel vector field along the geodesic v containing the vector yg. Note
that the JELCObl ODE y” + R(t)y = 0 holds with ||R(t) — kE|| < £25% where
y'=Vyy, ' = Vy(Vyy).

Step 3. We now prove that the area of a parallelogram V (¢) in T2 (y(¢)), whose
sides are vectors y(t), v/(t), satisfies to inequality

(2.14) vyl < (k - ’“) (o).

2
In view of (2.8) the derivative of the function V2 = 32(y)? — (y,y')?
!

(v, 9) (y,9)
By using linear combinations of columns in this 2 x 2-determinant, we obtain
(2.15) (V3 = =2(R(t)y, vy = —2(R(t)y,y')y*,

where .7. denotes the orthogonal to vector y(¢) component. Since

(2.16) (V) =20V (1), V() = ly(t)] -1y (1),



then from (2.15) follows that |V (¢)'| < ]R( Jy(t)]-]y(¢)|. Thus we obtain (2.14)
with the help of

R0 < R0 ~ kW) < (255 ol

Step 4. Suppose that the first local minimum ¢,, of a function |y(¢)| for £ > 0

™

belongs to the interval (0, ﬁ] and let ¢ = y(t;,). We consider (in this step)
the opposite parameterization of the geodesic v with parameter s = ¢, — ¢,

ie. v(0) = q, y(tm) = p. Since ¥(0) is also a local minimum of the function
ly(s)]?, then

y'(0) Ly(0), (y,)" >0
and from (2.8) and the equality $(y,y)” = (y,y") + (v, ') we get
(2.17) V(0) = [/ (0)] - [y(0)] = v/k1ly(0
Moreover (y'(q),y'(q)) = (B(v,y(q)),¥y'(q)) , ie.
ly'(q)] @) ()
<8 ( ’ Iy(q)l> "y (q)]

Write the vector ﬁeld y(s) in the form y(s) = Y1(s) + ui(s), where Yi(s) =
y(0) cos(Vks) + v Sln(\@s) is the standard component. In view of Lemma

2.8 with e = k22k1 we have

)| < a(y).

L=[y(p)| < Y1(tm)| + [u1(tm)] < maX{ 1}| (g)l-

(l +(1— cos(\/Etm ek kl > ,
cos(\/—f Yk — k1) + 2k

i.e. the inequality

COS(\/Etm)(k'Q - k)]) + 2k

a(v) )
kQ + ]4?1

i

From the eigenvector condition B(zg,yo) = Ayo it follows that V(¢,) = 0.
Thus in view of (2.14) and the estimate |y(s)] < 1 for 0 < s < t,,, we obtain
the inequality

tm ko — k tm o — k
V(0) g/ V(5)lds < 22 1/ 1y (s)2ds < (’*2 . “) b
0 0

(2.18) ly(q)| >

/ max{
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_From these and (2.17), (2.18), in view of cos(7 + 70) > cos(r + %) we obtain
the inequality

(2.19)
s 1496 2
(§+T> (1=9) <cos(7+%)(1—6)+25> max {— 1} 2 V21 +3),

where 7 = \/E(tm — 1), 0 = ]l:—;, T0 = \/Eto = arcctg(—%) € (0, %]
Step 5. We now go back to the initial parameterization of v and consider the

problem, when the function |y(¢)| has a local minimum in interval (0, %}

The vector field y(t) can be written in form y(¢) = Y (¢) + u(t), where
t € [to, 2tg] and

Y () = (cos(\/Et) + % sin(\/El‘)) Yo = %(E\—(;%t;)—t))yo.

ka—ki1
2

In view of Lemma 2.8 with ¢ = , we have

(2.20)  |u(®)] <

ko — ky
(cos(Vkt) (ky — k1) + 2k1) sin(vVEto) / VEsin(V(E = ) sin(VRlto — s]) ds

With the help of a trigonometry identity

cos(VE(t — tg)) — cos(VE(t + tg — 25))
2 9

£ =sin(VE(t - s)) sin(VE(ty — s)) =
and abbreviations

7=Vt —ty), 70 = Vkty, S =sin, C = cos,
we transform the integral in the RHS of (2.20):

to
(/ fds -/to fds) T()*—T)C(T)—FZS(T)—%S(T*{-ZTQ).
Since
10, T € [0, g], 0—172>0, C(r) >0, SCro+7)>S(r+7)=-5(7),

the function I(t) has the largest upper value for 7o = %

9 +S(’I’), I(to)

% (since 7 =0).
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Consequently, (assuming § = k—l)

(1 —9)
lu(to)| < ; '

(C(T +710)(1 —6) +26)S(70)
Note that |Y (¢)| = ;((;)) and Y(ty) = 0. Since |y|'(0) = X < 0, and in the
case of equality A = 0 from (2.27) it follows that |y|”(0) < 0, then the function
ly(t)| decreases for small values ¢ > 0. Thus for the property that the function
ly(t)| has a local minimum at some ¢,, € (0,] it is sufficient to require that

ly(to)| < ly(t)], ie.

lu(to)] + lu(t)] < [Y'(2)]-
The last inequality (in view of the above estimates) is reduced to

T C(r) 1-4§
(Z”?”T) 2 +S(T)> Clrrm-o+26 =27

that is equivalent to

25(7)

0>1- :
TG-S B0 En)s)

+
For 7 € [0, %] and 7 € [0, 3] we have C (79 + 7) > —S(7) and hence the last
inequality follows from

25(7)
(2.21 §>1-— .
| PG -G+ B +5m)S()

Remember that from (2.7) it follows that § > 0.663. With the help of a
computer we deduce for all 7 € [0.533, 7] the inequality, see Figure 4,

25(7)
flr):= > 0.337
( T4 (2 7)€ 1 (34 8(r))S(7)

Le. for § > 0.663 the function |y(t)| has a local minimum at t,, € [0, (5 +

0.533)/Vk].
But for § € [0.663,1] and 7 = 0.533 the inequality
T 146 2
2.22 337 =
(2.22) 0.33 (2+r)<0(%+T)(1_6)+25) < V261 10)

follows from the inequality (where we substituted cos(% + 0.533) ~ —0.508 )

2.508 5 — 0.508
(2.23) g(5) = (—1T> V26(1 +6) > 0.337 (= +o 533) ~ 0.709 .
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.Since the function gw is increasing, then also function g(d) is increasing

for § > . From the calculation g(0.663) > 0.71 we see that (2.23) and also

(2.22) are satisfied for § > 0.663. From (2.22) and (2.19) the inequality follows,
which contradicts (2.7). O

2.3. Proof of Theorem 2.6. The Theorem 2.6 follows from Lemmas 2.9 and
2.10 below.

LEMMA 2.9. Let the symmetric matriz R(t) and the nondegenerate matriz
Y (t) have the order nxn and are T-periodic, and the Jacobi equation is satisfied

Y(t) + R(t)-Y(t) =0, 0<t<T).
Then there exists Riemannian metric on the product M™1 = St x B™(r) of
the circle S* and n-dimensional ball B™(r) of radius r with the following prop-
erties:
a) the closed curves {7,(t) = (t,Y (t)2)}.cpn(r) are the geodesics,
b) the components of mized sectional curvature R(*,%,)Y, along v,(t) are ex-
pressed by the formula R(z,7,)% = R(t)z, (2 L),
c) the Jacobi tensor of the foliation {v,} has the form Y (t) for some parallel
orthonormal base along ~,.

PROOF. Together with the coordinate system t = 29,2 = (21,...,2,) of
the direct product we consider on M™*! the adapted coordinates t = yy,y =
(y1,---,yn), with the following relation z = Y (¢)y. For the adapted coordi-
nates the curves {v,} are the coordinate lines {y = const}. The property a)
means that the following Christoffel symbols vanish

(2.24) e (t,y) =0, (0 <i<n).

In view of the formulas, which express the Christoffel symbols through the
coefficients of the metric {g;;(¢,y)} and their derivatives [6]

(2.25) 2 9ukTS; = Gy + Gki — Gisik »
S

we obtain from (2.24) the equalities
(226) Joo,i (tv 7/) = 2907,',0 (t, y) ('L > 0)

In view of (2.26) for ¢« = 0, the coeflicient go,(t,y) does not depend on ¢.
Also we need the following "initial” conditions along v,:

(2.27) 90i (1,0) = 65, (i >0),

(2.28) g (10)= (YO -Y() - (521,
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‘The conditions (2.27)-(28) mean that the coordinate vector fields along ~, in
the product coordinates (t,z) are orthonormal. Since the matrix B(t) :=
Y (t) - Y1(¢) must correspond to the structural tensor of foliation {7.} along
Yo in the product coordinate system (¢, z), we need the following properties for
the matrix [',(t,0) := {T'%. (¢,0)} in the adapted coordinates (,1):

(2.29) To(t,0) =Y L(t)- B(t)- Y(t) = Y~ (1) - Y (¢).

We write the formulas (2.25), which relate the metric with the above Christoffel
symbols, in the form comfortable for our purposes

(2.30) 2> g4 (£,0) - T3 (£,0) = gijoo (£,0) = gjo,i (£,0) = gioy (£,0).

We will show that the RHS of (2.30) does not depend on ¢t. To prove this we
first calculate that the matrix C := Y ' (¢) - Y(t) — Y T(¢) - Y(¢) is constant,
since its derivative with respect to ¢ vanishes:

C=..Y"(t) YW +YT(t) Y&) =Y T(@t) Y(t) -
(—=R(@)-Y(#)"-Y()=Y(®)" - (—R(t) - Y(f))
—Y(#)" - R(t)-Y(#)+Y(6)" - R(t)- Y (t) = 0.

(

Then we put C := Y 7 (0)-Y (0) =Y T (0)-Y(0). In view of (2.28) the derivatives
of the coefficients of the metric g;;, (¢,0) form the following matrix

YT YR) =Y"@t)-YO) +YT(t)-Yt) =2Y () - Y(t)+ C,
and, in view of (2.28) and (2.29), the functions 23" gs; (¢,0)-I'%; (¢,0) are the
elements of the matrix
2 (1) - V(1) - (Y7 (t) - V(1) =2V T (2) - Y (1).

Hence the RHS of (2.30) represents the coefficients of the constant matrix —C,
and does not depend on t. Moreover, the matrix C is skew-symmetric. Since
(2.30) was reduced to the equalities

(2.31) 9jo,i (£,0) = gio,j (¢,0) = —Cij,
0, J<u . :
we can assume  go,j (t,y) := .~ .. We integrate these expressions
Oij, 7>
and, in view of (2.27), have
(2.32) 9io (t, ) Ecz]yja (1>1).
3>

Let substitute (2.32) into (2.26), then in view of (2.27) we obtain that the
functions go, (¢, y) are constant and equal to 1. The condition (2.27), obviously,
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_holds. Finally, in view of (2.28), we can define the other coefficients by the
formula

(2.33) gy (ty) = (YO - Y®) . (5>,

)

For sufficiently small r > 0 the metric {g;; (¢,y)} on M"™*! is positive. Note,
that the property b) follows from the formulas (2.29) and the property c)
follows from the formulas (2.28). O

LEMMA 2.10. For any n € N there exists the matriz Z, ,11(t,s) of the
order (2n + 1) x (2n + 1) with the elements

Lo Jak cos(%) + bjk sm( ), j<mn,

ik ajk cos(;4y) +bjesin(iy), n+1<j<2n+1,
with the property det Z, n41(t,s) = cos(t — s). In particular, the determinant
of the matriz Yon11(t) 1= Zp ny1(¢,t) is identically 1.

PROOF. Step 1. The structure of the matrix Z, ,1(¢,s) is given for n
odd and n even on Table 2. Consider the case of odd n. Note, that z21,1 =
cos(L), zip41 = —sin(%) and in both cases of n the quadratic matrices A;
and As have even order. Let the matrix A1 be obtained from A; (with the size
n—1) by deleting the last column and completing with the column {zj1}e<j<n
inside of its first column. Analogously, let the matrix A, be obtained from Ay
(with the size n + 1) by replacing of its first column by the column {2;,};5n.
For shortened notations let

t S

. . S
Cp = COS —, Sp :=8in—, Cpiq:= COS Spy] i= sin .
n’ n’ + n+1° "t n-+1

The elements of initial n rows of the matrix Z, ,,11(t,s) are linear combina-
tions of ¢y, sy, and the elements in the other (lower) n + 1 rows are linear
combinations of ¢, 11, sp+1. Obviously, we have, see the Table 2,

det Zy, ny1(t,8) = cp det Ay - det Ay + s, det /11 -det As.

To deduce the equality det Z,, ;,1(t,s) = cos(t) - cos(s) + sin(t) - sin(s) we will
provide (in steps 2-4) the following equalities

det A1 =cos(t)/cy, det Ay = cos(s),
det A} =sin(t)/sp, det Ay = sin(s).
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N 0O sy Cn | -0 —Sn
22,1 22,1 |
Ay o) o0 A, ol o

Zn,1 Zn+1,1]

Zntln Zn+2,n+1

O A, 0 A,
22n+1,n 22n+1,n+1
n odd n even

Table 2. The matrix Z, ,11(t,s)
Step 2. We separate the real and imaginary parts in Moivre’s formula
, ;o — k ik -k
cos(mz) +isin(mx) = (cosz + 1sinx) Zz CE cos™ () - sin®(z)

and find the polynomials p,,(a,b), gm(a,b) of degree m
pmla,b) = a™ — C2a™2? + Cha™ b — €S ™65 +
gm(a,b) = ChLa™ b — C3,a™ 303 + C2 a™ 580 + ...,

ey

with the following properties
cos(t) =pn(cn, sn), sin(t) = gn(cn, sn),
COS(S) :pn+l(cn+1a 5n+1); Sin(s) = qTL+1(CTL+17 5n+l)-

It is easy to check that the roots of the polynomial p,(\, 1) are the following

Ai = cot( (ZHU), where 4 = 1..n, and the roots of the polynomial g, (), 1) are
Ai = cot(Z), where i = 1..n.

PROPOSITION 2.11. For any polynomial Py, ()\) of degree m there exists the
constant matriz Dy, of order mxm, whose characteristic polynomial det(D,,—

A+ I) is ().

PROOF OF PROPOSITION 2.11. Consider the factoring of P, ()\) over the
field R onto (linear and quadratic) multiplierb aqsuming for simplicity the
absence of multiple roots, Py (\) = [],(ta — ) - TIg((As = A) - (Ag — 1)),

where A\g = ug +14vg, and let Dg = (Zﬁ UUB ) be the matrices of the order
B B
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. 2 x 2. Then the block-diagonal matrix D,, = [...puqa,...Dg,...] have the
property which we wish. O

In view of Proposition 2.11, we can take the matrices A;, Ay with the

properties ¢, det A; = cos(t), det Ay = cos(s). Namely let A; = s,, - D,, 1 —
¢y In—1, where the characteristic polynomial of the matrix Dy,_1 is p, (A, 1) /X,
and let Ay = sp41 - Dyy1 — cng1 - Iny1, where the characteristic polynomial
of the matrix Dy is ppy1(A,1). Note that Ay, Ay are the block-diagonal
matrices, all their blocks have the size 2 x 2.
Step 3. We now deduce the equalities s, det A; = sin(t), det Ay = sin(s).
Note that the determinants of the matrices Ay, Ay keep their values, if we
replace some zero elements in the right side of blocks by arbitrary real numbers.
Obviously, the determinant of the matrix A, is the linear function of variables
{@jn, bjn}j=nt1.2nt1. We collect the coefficients at the monomials (c,4 ) -
(5741)" 1% where k = 0...n + 1, in the equation det Ay = Gnt1(Cnt1s Sna1)
and obtain the system of n+ 1 equations with 2n — 2 variables {ajn, bjn}t. We
do not show here that under the replacing of some elements of As keeping its
block-triangle form, this linear system would remain compatible. Its arbitrary
solution {a;n, bj,} (which was calculated using the package M APLE in the
examples with n = 3,4 and 5 below) defines the desired matrix As.

Analogously, we obtain for Ay the compatible system of n + 2 equations
with 2n + 2 variables {a; 1, b;1};=2.n. Its arbitrary solution (calculated using
MAPLE in the examples with n = 3,4 and 5 below) defines the desired matrix
A

So for odd n the matrix Z, ,11(f,s) with the determinant cos(t — s) is
constructed. The case of even n is analogous. O

Note that the matrix Yo,11(t) 1= Z, n41(t, t) satisfies the Jacobi ODE

Yont1(t) + Rony1 - Yonia (t) = 0,

where the curvature matrix Ron; is diagonal with elements 1

nZ

and ﬁ on
its diagonal. Hence 6 = (;ﬁ—l)2 — 0o when n — oo.

EXAMPLE 2.12. For n = 1 the matrix Z;2(f,s) and matrices Y3(t) =
Z19(t,t), Bs(t) = Y3(t)" - (Y3(t))~! realize the example with § = 0.25 and
correspond to the foliation by closed geodesics of some open domain in the

complex projective plane C'P?

(2.34)
cos(t)  2sin(t) 0 0 —2sin(4) —2cos(%)
Zia=1 o sin(3) cos(3) |, B3 =|—3sin(%) —% sin(t) —3 cos(t)
sin(§) —cos(3) —sin(35) scos(L)  —7 cos(t) 5 sin(t)
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Consider some more examples, where for simplicity we denote by

t t
Cy :=cos(=), Sy :=sin(—).
n n
EXAMPLE 2.13. The following matrix Ys(t) := Zs3(t,t) was derived us-
ing the package DERIV E independently from the proof of Lemma 2.10, it
provides 0 = 4/9 ~ 0.44

o S3 —C3 o 0
Sy Cs o 3C3 o
Ys(t) =1 C3 3S3 o Sz o
o o —25 Cy S
00 0 Sy Oy

The following matrices were constructed using M APLE by the scheme in
the proof of Lemma 2.10.

EXAMPLE 2.14. The following matrix Y7(t) := Z34(¢,t) provides § = % ~
0.56

C3 —53 0

0 0 0 0
S3 C3 353 0 0 0 0
3C3 53 C3 0 0 0 0
Yet)=1] o o 0 Cy+ 8y =28 0 0
0 0 0 Cy Cy— Sy 0 204
0o 0 0 0 0 Cs+ Sy 254
0 o Csi— 84 0 0 Cy Cy— Sy
EXAMPLE 2.15. The following matrix Yo(t) := Zss5(t,t) provides
§ =18 ~0.64
Cs o 0 0 0 S5 0 0 0
-18 Cs o o Ss 0 0 0 0
0 o Cs S5 0 0 0 0 0
1555 Cs 5S5 Cs5  5Ss 0 0 0 0
Yo(t) = | =5Cs S5 o S5 Cs 0 0 0 0
0 o 0 0 0 Cy+Sy =25, 0 0
0 0o 0 0 0 Cy  Cy—8y 0 204
0 o 0 o0 0 0 0 Cy+S51 254
0 o o o S1—0C4 0 0 Cy  Cy4— 54

In view of the small size of the page we can not place here the matrix
Y11(t) := Zs56(t,t) of the order 11 x 11, which realizes the case § = %2 ~ 0.7,
etc. We also do not give here the matrices Boy11(t) = Yont1(t) - (Yoni1(2)) 7t
where n = 2,3,4....

?
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‘ Author conjectures that the above matrix solutions of the Riccati and
Jacobi equations can be deformed (keeping the dimension of matrix) in the
direction of increasing of the curvature pinching. The deformation B(t) + X (t)
of the solution B(t) of the Riccati equation B’ 4+ B? + R(t) = 0 satisfies the
Riccati equation (B + X)' + (B + X)? + (R + D) = 0 with curvature matrix
R(t) + D(t). Thus we have the equality X'+ BX + XB 4+ X? = —D.
Since D(t) is a symmetric matrix, then the "admissible” variation X (t) satisfies
some conditions, which we do not write here. For example, consider n = 3 and
the solution (2.34) of the Riccati equation with diagonal matrix R = [1, 1, il
and assume

We obtained using M APLE the following nonlinear system of ODE of ”ad-
missible” variation {z;(¢)}, (1 < i < 9) (providing the symmetry conditions
for D(t)):

(2.35)
( ) t 5) t t 5 t
T) = — 5 sin(—z—)xg, ~5 cos(§)$6 - 2COS(§)LL‘8 b sin(i)zl +
TaTg + 5 sin(t)zq + 3 cos(t)x7 — x4T1 — T5T4 — TeT7,
5 . .t 5 t ) t 1
< Th = — %sm(ﬁ)xgj b cos(§)$9 ~ 3 cos(i)ml + 3 cos(t)zq —
t
5 sin(t)z7 — 3 Sin(g).’bg — T7%] — TeL4 — LTy — TYT4 — T9T7,
.t ) t t .t
Ty =3 8111(5)1‘3 ~ 5 cos(i)mg - 2cos(§)m4 + z413 + 251n(§)$7 -
T7T9 — Xgxs — T9I§.

Suppose that the three functions are constant z4(t) = z4, 27(t) = 27, 23(t) =
zg. Then the system (2.35) is linear with respect to functions z1 (¢), z2(¢), z3(t)
z5(t), w6(t), To(t) and its solution (obtained with MAPLE) is the following:

?

z2(t) :%((—5:59(1:) — 524(1)) cos(%) + cos(t)z4 + (55 (t) — ) sin(—;—) _

221 (t)xr — 2x6(t) T4 — 22874 — 279 (t)T7 — sin(t)z7)/zg,
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23(t) =((—20z5z6(t) — dizs — 2026 (t) 22 + 1022 — 1623 — 402421 (t)z7 —
t
40249 (t)z7) cos(g) + (—25z419(t) + 25728 + 4TiT7 + dT7Tl —

25
2521 (t)xa + 25z6(t)z7) cos(t) + (—7$8 — 1022 — 1022 —

t 25

%Elmﬁ(t)) : sin(i) sin(t) + - T4 cos(t) sin(t) + (—10z4x7 —
40z426(t)z7 — 202371 (t) + 2079 (t) 23 — 2021 (1) 22 — 202279 (¢) —
125 125 .t 125
—x1(t) — ——m9(t) — 40z72834) sin(=) + (———z1(t) —

2 2 2 2

25 t
120 zg9(t)) cos(t) sin(ﬁ) + 82429 (t) 1§ — 8742279 (t) — 8x422x1(t) —

le(t)uxg - 8$6(t)x7:1:§ — 25z (t)xy — 8x2m7m6(t) —~

252419(t) — 8x3x7T8 — 25L708 — 25z6(t)z7 + (—50z1(t)z7 — 102874 +
25
dr4xi — dzgz? — 5029 (t)x7 — 5026 (t)24) Sin(t) — 5 &7 sin(t)?)/
t
(zg(—25 cos(t) + 40 sin()as + 873 — 8z3 + 25)).

t
z5(t) =((—10z324 + 54 — 2021 (t)z7 — 2026 (t)T4 — 2029 (t)27) cos(i) +

25
(——Exg(t) + 4z427) cos(t) + (—5z7 — 10z728 — 20z (t)T4 —

202 (£)27) sin(%) - %zg(t) 9521 (t) — a1 ()2l — daday (1) —

25
47339(t) — 4773824 + 429 (t) 22 — 82476(t)T7 + (—73:8 — 25x6(t) +

. 25 t 25
2} — 23) sin(®))/(~ 55 cos(t) +20sin(2)zs + 42 — 42 + =),

Author hopes that there exists the control by admissible functions (),
zo(t), z3(t), z5(t), z6(t), T9(t) and constants x4, z7, zs for some § > %.
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Ficure 1. Foliation

RI/

FIGURE 2. Behaviour of geodesics (Jacobi fields) for Ky, = const
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FIGURE 3. Behaviour of L-parallel field y(t) along “extremal” geodesic
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