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ON STANFORD'’S QUESTIONS CONCERNING SINGULAR
KNOTS

BY LEONID PLACHTA

Abstract. For each chord diagram D we define the collection £p of knot
diagrams, each respecting D, which represents only a finite set of knots. We
construct an algorithm, defined by a sequence of crossing changes and local
isotopies(the combinations of R1-R5 moves), for reducing any knot diagram
K with the chord diagram D to the one of the collection £p without
increasing the number of crossings in all intermediate knot diagrams. The
last is inspired by Stanford’s Questions 4.3 and 4.4 of [7] which appeared in
his analysis of a new combinatorial algorithm for computing Vassiliev knot
invariants. We also give an upper bound for the number |£p| of different
knots in the collection £p, depending on the order n of the chord diagram
D, and discuss the possibilities to extend some of our results for knots to
the case of spatial graphs.

Introduction. The well-known algorithm for computing the Vassiliev
knot invariants of knots is based on the so-called actuality tables [9]. An
actuality table T' for computing a Vassiliev invariant v of finite order n con-
tains information about the values of v on some distinguished singular knots
of orders < n, chosen in such a way, that for each chord diagram D of order
k,0 < k < n, there exists exactly one singular knot in T respecting D. The
values of v on the knots in an actuality table are to be chosen certainly not
arbitrarily, but in some consistent way satisfying the 4T and 1T relations (4T
relations in the case of framed knots)[7]. It turns out that this information is
sufficient to compute the value of v on an arbitrary knot (singular knot). In [3]
Birman and Lin improved the method of actuality tables, originally suggested
by Vassiliev [9], and outlined how one can determine inductively the space
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. of the Vassiliev invariants of order n by solving the corresponding systems of
linear equations at each inductive step. This method for computation of the
Vassiliev invariants of order < n is rather too complicated for practical goals.
Stanford [7] suggested another method to determine the vector space (actu-
ally the abelian group) of Vassiliev invariants of order < n. Actually he has
refined the method of actuality tables and showed that in order to determine
correctly any Vassiliev invariant v of order n, it suffices to define its values on
the distinguished knots from the actuality table so that v satisfies one 4T and
one 1T relation for each chord diagram D of order < n. His algorithm for the
computation of the values of any Vassiliev invariant v on any knot diagram
K, respecting a chord diagram D, is based on the procedure of reducing K
to a canonical knot which respects the same chord diagram D. The reduction
is performed in two steps. At the first step one chooses an ordered spanning
tree T of the graph of K and pushes it towards the initial vertex of T', using
R1-R5 moves. At the second step the only crossing changes are applied to
the resulting knot diagram. At the first step of reduction of the diagram the
number of crossings in the intermediate knot diagrams can increase. This leads
to some complications in the computing process. Therefore, Stanford [7] has
raised the following two questions.

Question 4.3. Given a chord diagram D, does there exist a finite set of
knots K1, ..., K, cach respecting chord diagram D such that any knot diagram
respecting D can be made isotopic to one of the K; by crossing changes only?

Question 4.4. Given a chord diagram D, does there exist a finite set of
knot diagrams K, ..., K, each respecting D, such that any knot diagram K
with the same chord diagram D can be made isotopic to one of the K; by
crossing changes and local R moves such that no intermediate knot diagram
has more crossings than K7

An affirmative answer to any of the above two questions would allow us,
in principle, to improve the effectiveness of the algorithm for computing the
values of Vassiliev invariants on arbitrary knots. Another problem is how
one can determine correctly the values of a Vassiliev invariant v of order n
on distinguished knot diagrams in practice. One can start from any weight
system w of order n and try to construct a Vassiliev invariant v of order n
so that the weight system associated with v will be w. This can be done
by using the so-called procedure of ”integration” of the given weight system
or, equivalently, by using the construction of the universal Vassiliev invariant
Z (see [4] for analitical approach and [2] for more combinatorial approach
to constructing the universal Vassiliev invariant of knots and links in R?).
Even in the low orders the evaluation of Z is a problem of high computational
complexity. One can also use the procedure of the so-called half-integration —
going from an invariant, whose values on the singular knots with k singularities
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are already determined, to defining its values on (k — 1)-singular knots. Until
now this method turns out to be effective only in particular cases (for even
weight systems) and does not work in general case ([10]). In this paper we will
not touch these problems. Our goal is only to show how one can simplify the
process of computing the values of any Vassiliev invariant v on knots, via the
method of actuality tables, provided the values of v are already defined on the
distinguished knot diagrams in a correct way.

In [6] we state a result, without giving any proof, which can be considered
as an affirmative answer to some version of Question 4.4. This leads to a
modified version of the algorithm for computing the Vassiliev invariants, based
on actuality tables. Here we present the complete proof of this statement
(Theorem 2.1). Our method of transforming any knot diagram K with the
chord diagram D consists in reducing K, by application to K a sequence of
isotopies and crossing changes, to one of the special class £ of knot diagrams,
which represents only a finite number of knot types. All intermediate knot
diagrams which appeared in such process have no more crossings than the input
knot diagram K. The proposed algorithm for reducing the knot diagrams does
not already work, if one requires, in addition, that each local isotopy arising in
the reduction process is to be one of R1-R5 moves (see below). Moreover, we
show that there are infinitely many examples of knot diagrams, each respecting
the same chord diagram D, for which a positive answer to Question 4.4 would
yield actually a positive answer to Question 4.3 inside the given class of knot
diagrams.

On the other hand, we show that, in general, there is no adequate positive
answer to Question 4.3, having given the corresponding examples of knot di-
agrams. We also give some estimates for the number of different knot types
represented by the knot diagrams inside each class £p. Finally, we notice that
the suggested method of reducing any knot diagram to the one of the special
class Lp can be extended to the case of spatial graphs in R? [5]. We also raise
some open questions.

The structure of the paper is the following. In the first section we give
briefly the information about Vassiliev invariants, singular knots, the algorithm
for computation Vassiliev invariants, based on actuality tables and so on. In
the second section we state and prove the main results of the paper. I the
third section we give some estimates for the number of distinct knot types in
Lp and discuss the possibility of extending some of our results to the case of
spatial graphs.

1. Preliminaries. It is known [1] that any knot invariant of order n can
be computed in polynomial time and is polynomially bounded, the polynomials
being of degree n and being considered as functions of the number of crossings
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_in an input knot diagram. Let v be a Vassiliev knot invariant of order n. The
well-known algorithm for computing the values v on any (singular) knot K,
suggested by Vassiliev and improved by Birman and Lin [3], uses essentially
the so-called actuality table for v. Let us describe briefly this algorithm. First
recall some notions.

By a singular knot we mean an immersion of the oriented circle in R which
is allowed to have a finite number of transverse self-intersections. The singular
knots in R*.are considered up to the equivalence relation determined by the
“rigid-vertex” isotopy [3, 7]. We shall work rather with knot diagrams than
with knots (singular knots) in R3. A knot diagram K is an immersion i: S' —
R? which has only transverse double points as its singularities. Moreover, some
of double points are marked as vertices and a choice of over/under is made at
each of the other double points, called the crossings. Any knot diagram, as
generic curve in R?, is oriented. Knot diagrams, usually, are considered up
to equivalence relation, the isotopy, determined by local moves R1-R5 [7] (see
Figure 1).

Fi1GURE 1
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This equivalence relation for knot diagrams corresponds to the "rigid-
vertex” isotopy of knots in R®. We define the order of a knot diagram K
as the number of singular points in K. To each knot diagram K of order n
there corresponds a chord diagram Dg with n chords and with oriented circle
C (we shall say also that K respects Dg). The chord diagram Dy describes
the cyclic order in which the vertices of K are encountered, when traveling
along the oriented knot diagram K [3]. The number of chords in any chord
diagram D is called the order of D. It follows from the definition of the chord
diagram corresponding to a knot diagram that the equivalent knot diagrams
have the same chord diagrams. Notice that any knot diagram K (or, corre-
spondently, a singular knot in R?) can be considered as an oriented 4-valent
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topological graph (1-CW-complex) G, the vertices of G being the vertices
of K and the oriented edges of G being the oriented paths of K joining its
vertices. G is called the underlying graph of the knot diagram K or of the
chord diagram of K. The local subsegments of a knot diagram K are called
the strands of K. Since the knot diagrams we regard are oriented, each strand
of any knot diagram is oriented in the natural way. Each vertex u of a knot
diagram K has two strands, say z* and yT, coming out u, and two strands
z~ and y~, going to u, so that, when traveling along K, we meet them in the
order ...,z7,z", ...,y ,yT,.... Fix the couterclockwise orientation on the
plane R?. This gives one of the two following orientations (the cyclic orders
of the strands) at u: 7y Tz Ty~ or z7y 2Ty T. Note that the local move R5,
applied to a knot diagram K in the neighbouhood of u, changes the orientation
at the vertex wu.

Fix a field F'. Denote by K the set of singular knots. A functionv: K — F
is said to be a Vassiliev invariant, if it is isotopy invariant of knots (knot
diagrams) and satisfies the following two axioms:

Al v(K;) —v(K_) = v(Kx); here Ky, K_ and K are three knot dia-
grams, the same outside some open disc, inside of which they look in standard
way, as over-crossing, under-crossing and singularity of the knot diagram (see
Figure 2);

A2. There exists an integer n such that v(K) = 0 for any knot diagram
K with more than n singularities; The smallest such non-negative integer n is
called the order of v.

AR

By a crossing change in a knot diagram K we mean a move which changes
any over-crossing of K for under-crossing or conversely.

Let v be a Vassiliev knot invariant of order < n. Suppose that for each
chord diagram D of order < n we fix a knot diagram K respecting D, and
suppose that we know all the values v(Kp). This information is called an
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actuality table for v. Vassiliev’s algorithm for computing v on an arbitrary
knot diagram K looks as follows:

Find the knot diagram Kp in the actuality table with the same chord
diagram D as K. We can express, using the axiom A.1, the value v(K)—v(Kp)
as the signed sum of the values of v on the knot diagrams encounterd in the
sequence of crossing changes and local moves to pass from K to Kp. Since
these all have one more vertices than K, the process finishes, thanks to the
axiom A.2.

Stanford [7] has given a more explicit version of Vassiliev’s algorithm. This
algorithm, when applied to any knot diagram K respecting a given chord
diagram D, always yields, via local R moves and crossing changes, the same
up to isotopy output diagram. This gives the canonical way for the choice of
the distinguished knot diagram Kp for every chord diagram D. Moreover, the
last circumstance allows to compute inductively, in the way defined above, the
value v(K') for any knot diagram K, if an actuality table is given. However, the
intermidiate knot diagrams arising in the process, when going from K to Kp,
can increase the number of crossings. This makes the process of computing the
values v(K) somewhat complicated. To avoid this Stanford in [7] has raised
Question 4.4 formulated above.

Here we give an affirmative answer to Question 4.4, formulated in a slightly
weaker form. Its modified version allows at each intermediate step of reduction,
besides crossing changes, the application of the so-called local isotopies each
of which is a combination of R1-R5 moves inside some region of the plane.
Regarding the complexity of computing the Vassiliev invariants, the latter
looks as being not too considerable weakening, because Vassiliev invariants are
the isotopy invariants of knots.

To establish our result we proceed as follows. First we define, for every
chord diagram D of order n, a special class Lp of knot diagrams L, each
respecting D and satisfying the following properties:

a) no edge e of L, L € Lp, has in R? self-intersections (for exception,

maybe, its initial and terminal vertices);

b) for any pair of distinct edges e and f in L, the edge e intersects the
internal part of f , i.e. f with its endpoints removed, at most at one
point, i.e. e and f give at most one crossing of L;

c) L respects the chord diagram D;

d) the edge set of the graph G admits a colouring ¢ by the numbers
1,...,2n, so that if c¢(e) > ¢(f), then e is over f at each crossing of L
formed by these two edges.

Here under a colouring of a knot diagram K of order n we mean a function
c,c: BE(K) — {1,...,2n}, defined on the set E(K) of oriented edges of K,
which satisfies the following condition: if e follows just after f, where e, f €
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E(K), then c(e) = ¢(f) + 1 (mod 2n). Notice that all knot diagrams L € Lp
have the same underlying oriented graphs G which can differ from each other
only by the orientations at the vertices. A colouring ¢ of the edges of K is called
perfect if it satisfies the above condition d). Next, we shall show that each knot
diagram K with the chord diagram D can be transformed to one of the family
Lp by applying to K a sequence of crossing changes and the so-called local
isotopies, each being a composition of R1-R4 moves, so that no intermediate
knot diagram has more crossings than K. At the second step of our proof,
with each coloured knot diagram L € Lp we associate a coloured rotation
graph H, adding to L new vertices (the crossings of L) and subdividing the
edges of L by the crossings of L. The rotation system on Hy, is determined by
the given natural embedding of its underlying graph into the plane. All the
faces of this embedding are 2-cells, besides one, whick is outer. Notice that
the isotopy of R? produces on the set of knot diagrams an equivalence relation
more strong than one produced by local R moves (we shall call it the strong
equivalence relation on (colored)knot diagrams). It turns out that any two
strongly equivalent coloured knot diagrams K, L € Lp have the equivalent (in
the usual sense) coloured rotation graphs Hy, Hy,. Finally, we note that for a
given chord diagram D there exists only a finite number of equivalence classes
of coloured rotation graphs associated with the elements of Lp.

2. Proof of the main results. Let e be an edge of a knot diagram K.
The edge e can be considered as the image of an arc J = [a,b] C S! under an
immersion ¢, e = ¢(J), where ¢(S!) = K. We shall say that | = o[c,d] C J,
is an inner loop of e, if [¢,d] C (a,b) and ¢(c) = ¢(d). An inner loop [ of e is
called maximal, if there is no inner loop I’ of e, such that [ C I’ and I’ # [. The
operation of removing an inner loop [ from the edge e consists in replacing the
edge ¢/ = ¢(J) by the edge ¢’ = p(J — (¢,d)), where [ = ¢[c, d]. Clearly, given
an edge e of a knot diagram K, one can choose a collection L, = {l1,...,l;}
of maximal loops of e, where I; = y[a;,b;] and [a;, b;] N [a;,b;] = 0 if @ # 7,
such that after removing all them from e, the resulting edge ¢’ of the new knot
diagram will be either a simple path, or a simple closed curve in R?. We shall
call such L. the complete collection of loops for e. Notice that for some edges
[ of K the collection Ly can be empty.

Before proving the main result we need to introduce some new notion.
Suppose the edges of K are enumerated, say e1,es,...,ez,. Let e; and e; be
any two edges of the knot diagram K without inner loops and let u and '
be the vertices of K, incident to e;, and let v and v’ be the vertices of K,
incident to e; (the possibility that some of the vertices u,u',v,v" coincide is
not excluded). Let wi, ..., w be all the crossings of K which are the common
points of curves e; and e;. Suppose k > 1. The set We, 0. = {wy,...,wy}
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_decomposes the edge e; into the arcs fi,..., fr+1 and decomposes the edge e;
into the arcs f1,..., fi ;. Choose among f1,..., fry1 the internal arcs of ¢;, i.e.
the arcs which do not contain the points v and v'. Without loss of generality,
we may assume that fi,..., fy_1 are the internal arcs of ¢; and f],..., fioy
are the internal arcs of e;. The internal arcs of e; and e; bound in R? a finite
number of compact regions, say R',..., RP, so that the oriented circuit of the
boundary of each region R! is an alterning sequence of some internal arcs of e;
and ej, [ = 1,...,p. The interior of each R' in R? is an open 2-cell which does

p
not contain any poins of internal arcs of ¢; and e;. The set F; = {J R! is called
I=1
the covering region of the isotopy of the edge e; with respect to the edge e;

(or the covering region for the pair {e;,e;}) and the regions R' are called the
components of the covering region. Denote by ; ; the set of all components
of the covering region F; ; for the pair {e;,e;} of K. Note that for each i and
Jy ¢ # J, we have F;; = F;; and F;j = Fj;;. There are among R' ¢ Fi;
the components which are bounded by only two arcs, one being an internal
arc of e; and another being an internal arc of e;. Set the index of each such
component be equal to 1. Any component R! € Fi ; of index 1 bounded by the
two arcs e} and e}, e C ei, e C ej, has one of two types, a and b, indicated in
Figure 3a and 3b respectively.

FIGURE 3

A component R* € Fi; of index 1 is called minimal, if there is no other
component R’ of index 1 in any of the collections Fy j so that R’ C R*. Let
Rk € Fij be any component of index 1. Let 9R* = I, Ul; be the decomposition
of the boundary of R¥ into two arcs /; and lj, where I; C e; and I C ¢;. Denote
by s; and s;j the numbers of double points (crossings) of K which lie on I; and
lj respectively. The number s,;(R¥) = s; — s; will be called the defect of the



49

component R¥ € Fi ;. Notice that the defect of the same component R¥ in the
collection Fj; is Sji(Rk) =5 — 8 = —si]-(Rk). If We,e; =0 or ‘Wei,ejl =1,
we set [ j = (). In this case the collection F; j is the empty set.

A component R of the covering region for a pair {e;,e;} of the edges of K
is called essential, if its interior in R? contains the vertices of K. Otherwise R
is called non-essential.

THEOREM 2.1. Each knot diagram K respecting the chord diagram D of
order m can be reduced by crossing changes and combinations of local moves
R1-R4 to one of the collection Lp, so that no intermediate knot diagram has
more crossings than K.

PROOF. Let K be any knot diagram which respects D. We can assume,
without loss of generality, that each edge of K has no inner loop. Indeed,
if some edges of K have inner loops then, using the crossing changes, we
can "lift” all the maximal loops of the complete collections corresponding to
such the edges over the knot diagram, make them unknotted and unlinked
and remove them from the new knot diagram Kj. The last procedure can be
performed consequently, using local isotopies (some combinations of R1-R4
moves) applied to the intermediate knot diagrams. Every such local isotopy
deletes one inner loop of the complete collection for some edge of K, so that
the number of crossings in the intermediate knot diagrams can only decrease
(see below for the detailed description of such type moves applied, however,
in somewhat different situation). Clearly, the resulting knot diagram respects
the chord diagram D.

Let K be any knot diagram which has no inner loops and respects the
chord diagram D and let uq,...,u, be the vertices of K. Choose an oriented
edge of G coming from the vertex u; and denote it by e;. Let us enumerate
all the edges of G as they appear, when traveling along K, starting from
ep: e1,...,exy. Thisis actually a colouring ¢ of the edges of K with ¢(e;) =
i,1 =1,...,2n. Apply to K crossing changes to make of K a new knot diagram
K' which respects D and satisfies the following property. For any distinct
numbers 4, j the following holds. If the edge e; intersects the internal part
of the edge e; at the double points (crossings) pi,...,p,m of K’ then e; is
over e; at each of such crossings ps,s = 1,...,m. Notice that K’ inherits
the colouring of its edges from the colouring of the corresponding edges of
K. With this colouring, K’ will be always a perfectly coloured diagram. If
K' satisfies additionally the condition b) of the definition of the collection
Lp, then K' € Lp and we have nothing to do with K’. Suppose K’ does
not satisfy the property b). This means that at least one of the collections
Fsts 8,6 < 2n, is non-empty set. Now we want to apply to K’ a sequence
T; of local moves R1-R4 (a combination of local moves R1-R4) and crossing
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_changes to transform K’ into a new knot diagram K which respects D and has
fewer crossings than K'. Let us consider in the collections F; ; with F; ; # (0
all the minimal components of index 1 (here we should point out that at least
one such component exists). Choose among them a component with maximal
value of |s;;], the module of defect, and denote it by RE. We may assume, for
instance, that RF € Fi; and s = s1; < 0. First consider the case, when RF is
a component of type a. Let 9RF = I} Ul; be the corresponding decomposition
of the boundary of R* into two arcs [ and [;, where [1 is an internal arc of
e1 and [; is an internal arc of e;, and iy N{; = {wy,we}, where w; and we
are two crossings of K'. Consider a bigger arc [} in e; which is the closed
e-neighbourhood of /; in e; with small ¢, so that lé contains the same double
points of K’ as [;. Let ¢; and ¢ be the endpoints of the arc I]. The first step
of reducing the knot diagram K’ consists in replacing the arc I} of ¢; by an arc
I, which is "parallel” to e; and satisfies the following properties:

a): l; is contained in a d-neighbourhood of [} for some small §;

b): I; has the same endpoints as I

C): l~i Nep = 0.

Therefore, in the new knot diagram all the edges €;,j # ¢, are the same as
in K', while ¢; = (e; — ;) U l;. This procedure can be performed consecutively.
First we apply crossing changes to the double points of K’ lying on I/ in order
to lift the arc [} over the remaining part of K'. After that we apply to the
new knot diagram K| in appropriate neighbourhood A" of R¥ in R? a sequence
of R1-R4 moves (a combination of R1-R4 moves) in order to push the arc I/
along RF out the arc [; (see Figure 4).

FIGURE 4

In the resulting knot diagram K/ the deformed arc I; has the same endpoins
as [;. Finally, we apply to the double points of K} lying on l~Z the crossings
changes, if needed, in order to preserve the levels of the edges of the resulting
knot diagram K according to their colours, where the colouring of the edges of
K is inherited from the colouring of K'. Notice that if K’ has d crossings, then
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the intermediate knot diagrams K/, K} and K have, respectively, d, d—s; 1 —2
and d — s; 1 — 2 crossings. It is easy to see that if R* is non-essential, we can
accomplish all the above elementary local moves R1-R4, when going from K/
to K3, without increasing, with respect to K’, the numbers of crossings in all
intermediate knot diagrams. If R¥ is essential, the last remark, in general, is
not true (see Figure 7 and the discussion below).

The case when RF is of type b can be regarded in the similar way as before.
First, we apply to K’ in the neibourhood of R¥, if needed, the crossing changes.
Then we apply to the resulting knot diagram K| in some neighbourhood N
of R* an appropriate combination of R1-R4 moves (local isotopy), so that the
new knot diagram K7 has no more crossings than K. In the neighbourhood
N the knot diagram K} looks like in Figure 5.

FIGURE 5

Finally, we apply to K the crossing changes, if needed, as before. The
colouring of the edges of the obtained knot diagram K is inherited from the
colouring of K'. Notice that the number of crossings in the resulting knot
diagram K is less than in K’ by 2+ s;1, when R¥ is of type a, and by 1+ s;1,
when RF is of type b, where $i1 > 0. It is clear that K respects the chord
diagram D. Notice also that for the new knot diagram K, all the covering
regions Fj,],j # 1, and the corresponding collections ]:"j’l,j # 1, remain the
same as for K', while |F; || = | Fial =2 or |Fiq| = |75 — 1. We now proceed
by induction on the number of crossings in the input knot diagram K’ (or
the total number of components of the covering regions for K'). Proceeding
at each inductive step in such a way as before, we may achieve that for the
resulting knot diagram L each collection F;; of components of the covering
region F; ; will be the empty set, 7,5 = 1,...,2n. Otherwise, let us consider
in L a non-empty collection Fj j+ of components. We may choose in Firji a
minimal component R of index 1 with the maximal defect and apply to it the
reducing procedure described above, with respect to R, after which we shall
obtain a knot diagram with fewer crossings than in L. Thus, the final knot
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. diagram L respects D and satisfies the property b) of the definition of the
collection Lp. The colouring of the edges of L is inherited from the colouring
of the previous intermediate knot diagrams which appeared in the process of
reduction. Our choice of the crossing changes at each inductive step assures
that the colourings of the intermediate knot diagrams are perfect. Finally, we
note that the suggested procedure of reducing the knot diagrams does not lead
to the appearence of any inner loops in the intermediate knot diagrams. Thus
L € Lp. This completes the proof. 0

REMARK 2.1. Notice that the equivalence (isotopy) class of the resulting
knot diagram L depends, in general, on the choice of a minimal component
of the covering region RF at each inductive step of the reduction process and
depends also on the colouring of edges of the input knot diagram K. We have
also to point out that our manipulations with knot diagrams, performed in
the course of the reduction, differ from the procedure of reducing the knot
diagrams, provided by Stanford’s algorithm.

REMARK 2.2. Notice that the graph of any knot diagram of order n has
exactly 2n edges. Theorem 2.1 now implies that any knot diagram L € Lp
has no more than C3, = n(2n — 1) crossings.

For a given chord diagram D denote by Cp the subcollection of the col-
lection Lp consisting of coloured knot diagrams with only positively oriented
vertices.

THEOREM 2.2. Let K be any coloured knot diagram having cr(K) cross-
ings and respecting a chord diagram D of order n > 0. Then K can be reduced
by sequence of crossing changes and combinations of moves R1-R5 (local iso-
topies) to one of the collection Cp, so that the number of crossings of each
intermediate diagram is no more than max{cr(K),n(2n — 1) + 2}.

PROOF. Let K be any coloured knot diagram respecting a chord diagram
D of order n and having cr(K) crossings. Let Uiy ey, k< m,, be all
the vertices of K having the negative orientations (with respect to the given
colouring of K). Apply to K the reducing algorithm given by the proof of
Theorem 2.1 to obtain a coloured knot diagram K’ € Lp. Since the reduction
process given by the algorithm does not change the colouring of the graph of K
and does not use R5 move, the orientations at all vertices of K’ are the same as
the ones of K. Thus wu;, is a negatively oriented vertex of K'. It follows from
Remark 2.2 that the number of crossings of K’ is < n(2n—1). Apply to K an R5
move in a small neighbourhood of u;,. Then the resulting knot diagram K; has
no more than n(2n — 1) + 2 crossings. Applying to K the reducing algorithm
again, we shall obtain a knot diagram K having no more than n(2n — 1)
crossings and exactly k — 1 negatively oriented vertices w,, ..., u;, . Using the
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induction on the number k of negatively oriented vertices and proceeding at
each inductive step 7 in the same way as before, we shall obtain a sequence ¢
of perfectly coloured knot diagrams K = Ky,...,Ki,...,K2,..., K so that
cach K; € Lp, every intermediate knot diagram of the sequence ¢ has no more
than max{n(2n — 1) +2,cr(K)} crossings and all vertices of K} are positively
oriented, 1.e. Kj € Cp. Notice also that all knot diagrams of the sequence ¢
respect the chord diagram D and the colouring of them is inherited from the
colouring of K. This completes the proof. O

It is of interest to know whether Theorems 2.1 and 2.2 can be strengthened
in the form given by the original formulation of Question 4.4. In other words,
does Theorem 2.1 (Theorem 2.2) still hold, if we require that each ” combination
of moves R1-R4 (R1-R5)”, as it defined in the statement of the theorem, is
to be one of the moves R1-R4 (R1-R5 respectively)? The following examples
show that, in general, this is not true.

Example 2.1. We present in Figure 6 an example of a coloured knot diagram
K, so that any application of R1-R4 moves lead to increasing the number of
crossings in the resulting knot diagram. Let us make some explanations to this
example. Here R' and R? denote the two minimal components of index 1 of
the covering region Fi 4. R! is bounded by the two arcs &; and é4 of the edges
e1 and ey, respectively. Similarly, R? is bounded by the arcs €] and €/, of the
edges e; and e4. For the components R', R? we have si4(R!) = s14(R?) = 0.
The edge e; of the knot diagram K turns around the vertices v and w [ times,
where the natural number [ is chosen arbitrarily. Therefore the pairs of edges
es, eq and ey, e4 yield both 4/ crossings. Starting from the edge e; and traveling
along the oriented knot K;, we have the following sequence g of its edges (for
simplicity, some of them are omitted here):

€1,...,€2,€3,...,€10,€9,€115--.,€125.-.,€13,...,€14,-..,€4,...,€15, €16,

€7, €8, €18, €6, €5,€17,€1-

Clearly, changing [ > 0 arbitrarily, we shall obtain the sequence
Ky,...,K;, ... of knot diagrams each respecting the same chord diagram D.
For [ > the order of D, to make of K, by using only the crossing changes
and R1-R5 moves, a knot diagram with fewer crossings, we need to perform,
after some changes of crossings, an isotopy with respect to the component R!
or the component R?. But we see from the figure that it is impossible to make
the isotopy, which pushes €| or €; out of the edge eq by a sequence of R1-R5
moves so that no intermediate knot diagram has more crossings that K.

Example 2.2. We depict in Figure 7 the piece of a knot diagram L. Here R
denotes the minimal component of index 1 of the covering region F » which is
bounded by the arcs €] and €}, of the edges e; and e;. We have sj5(R) = 0. In
order to decrease the number of crossings of L and ”"delete” the covering region
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R, we have first to make some crossing changes and then to isotopy €| or ¢
along R, i.e to push e out of € in the same fashion as in the proof of Theorem
2.1. Let ¢ = q1, 49, ...,qn be any sequence of local moves R1-R4 (the move R5
is here irrelevant) which gives, taken together, such an isotopy along R. It is
easy to see from the picture in Figure 7 that some intermediate knot diagrams
appearing in the process will have more crossing changes that the input knot
diagram L. The reason is the same as in the case of Example 2.1 - starting
from the given knot diagram, one may apply to L in the e-neighbourhood of
R only "one-side” local moves R1-R4 which increase the number of crossings.

REMARK 2.3.  Theorem 2.1 remains true, if we replace in its statement
"the combinations of the moves R1-R4” for "the moves R1-R4” and allow
some little increase of the number of crossings in the intermediate knot dia-
grams. Similarly, Theorem 2.2 remains true, if we replace in the statement
"the combinations of the moves R1-R5” for "the moves R1-R5” and allow
to increase slightly the number of crossing changes in the intermediate knot
diagrams. The increase depends each time on the configuration of the faces
formed by the knot diagram in R? and involved in the component R, along
which an isotopy is established. For the minimal component R of index 1
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FIGURE 7

shown in the Figure 7 the increase of the number of crossings does not exceed
2. Therefore each time, when isotopying a knot diagram K with d crossings
along any minimal component R of index 1 by a sequence of R1-R5 moves, the
number of crossings in intermediate knot diagrams can first increase slightly,
after which it decreases to a number d — 1 or d — 2.

REMARK 2.4. Let us turn to the knot diagrams K, from Example 2.1.
Each K; respects the chord diagram D. Suppose there is a finite set of knot
diagrams Ly,..., Ly each with chord diagram D such that any knot diagram
with the same chord diagram can be reduced to one of L; by crossing changes
and the local moves R1-R5 without increasing the number of crossings in all
mtermediate diagrams. If [ is enough large, the only possibility to reduce K to
one of L; without increasing the crossings at all intermediate steps is to make
crossing changes in Kj in such a way (if such exists), so that the resulting knot
diagram will become isotopic to one of the set Ly, ..., L.

The following example shows that the answer to Stanford’s Question 4.3
is, in general, negative.

Ezample 2.5. Let us consider the piece of a knot diagram K;,l =1,...,
m,..., shown in Figure 8.

Here the four edges ej, ez, e3,e4 of the knot diagram are coloured by the
colours 1, 2, 3 and 4 respectively. The colouring of the edges K is irrelevant.
In the disc D; C R? the pieces of the edges ey, e3 and ey, as the curves in R?,
are determined by the pieces of Archimedean spirals ry = P, r3 = ¢ and
T4 = “T4¢) coming from the point u;, with ¢ > 0, where ay, a3 and a4 are three
small positive numbers such that ay < ag < a4. In the disc Dy € R2 — D; the
edges es, ez and ey look like inside the disc Dy, i.e. as the spirals coming from
the point uz. The edge e; is an interval of the line joining u; to uy. Define K to
be the collection of all knot diagrams obtained from K by all possible crossing
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changes. Notice that for each number [ all knot diagrams of the collection £p
respect the same chord diagram D of order 2, D being a unique non-trivial
chord diagram of order 2 with the two non-parallel chords. Suppose there exists
a finite set of knot diagrams Ly, ..., L,, each respecting D, which satisfies the
conditions specified by Question 4.3. Denote by cr(L;) the number of crossings
in the knot diagram L;,7 = 1,...,n. Set d = max{cr(L;),i = 1,...,n}. Let
us consider any knot diagram K with [ > d. By the assumption, K; can be
made isotopic to one of the L;, say L;, by crossing changes only. Let K] be
the knot diagram obtained from K; by applying to it the appropriate crossing
changes. Now the idea to get the contradiction is the following. Since K]
has much more crossings than L;, the only way to isotopy K | to Lj is first
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to deform slightly each of the edges es, e3,e4 inside the disc D; and then to
remove, by using R1-R5 moves, the inner loops of them appeared after the
first step. As for the edge ez, the last can be made only if e; is either over or
under the edges e, e3, e4 of K inside the disc D;. Assume ey is over the other
edges. Applying to the edge e3 of K| and the resulting knot diagram the same
arguments as just for ez, we see that eg should be under the other edges of K|
inside the disc D;. Then the edge e4 would be over the edge ez and under the
edge ey of Kj. The last condition however make it impossible to arrange an
1sotopy of ey inside D, which would lead to essential decreasing the number
of crossings formed by e4 with the other edges of the resulting knot diagram.
Notice that our definition of the knot diagram K inside the disc D, provides
that we cannot arrange the required isotopy in another way.

To extend the above example to the case of the other chord diagrams,
we could insert in the disc Dy an appropriate part of a knot diagram, more
complicated than in the previous case, and leave the part of K inside D,
without changing.

3. Estimates and generalization to spatial graphs. Below under an
open face of the embedding ¢: G — M of a graph G into a closed surface M
we understand any connected component of the space M — (G). With each
knot diagram K € Lp we associate a coloured oriented rotation graph Hp.
As a rotation graph Hp is uniquely determined by a 2-cell embedding of its
underlying graph Hp into the plane with fixed counterclockwise orientation
on it. Let us recall the definition of a rotation graph (see [8] for details). Let
H be a non-oriented finite graph, which is allowed to have self-adjacencies and
multiple edges (1-CW-complex). With each non-oriented edge é of H one can
associate in an obvious way the two oriented edges with opposite orientations.
By a local rotation at the vertex v of H we understand a cyclic permutation
of oriented edges of H coming from v. The rotation system R on H is a choice
of a local rotation at each vertex of H. The rotation graph is a pair (H,R),
where H is a non-oriented graph and R is a rotation system on it. By the
Heffter-Edmonds theorem [8], to each rotation graph (H, R) there corresponds
a 2-cell embedding of H into a closed oriented surface M and, conversely, any
2-cell embedding of the graph H into a closed oriented surface M induces a
rotation graph (H, R), so that the above correspondences are one-to-one and
each other’s inverse [8]. When defining a rotation system R on an oriented
graph G, we forget the given orientation of its edges. Each rotation system R
on a graph G produces a collection {C; }cs of oriented walks in G corresponding
to the oriented circuits of the boundaries of the faces of the 2-cell embedding of
G into M induced by R. If M is a sphere, we can distinguish one of such walks
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_C;. This gives an embedding of G into the plane R?, where C; corresponds to
the circuit of the outer face of this embedding.

Let K € Lp be any coloured knot diagram respecting the chord diagram
D of order n. Define the rotation coloured graph Hy associated with K as
follows. The vertex set Vi, of Hg is the set of all double points of K (i.e., the
vertices and crossings of K). The edge set Ep,. of Hy is the set of all strands
f of K with the endpoints in V, such that no other double points of K lie
on f. The orientations of the edges of Hy are induced by the orientations of
the corresponding edges of K. An obvious incident structure is defined in Hy.
Therefore, as a 1-CW-complex, H is an oriented plane graph which coincides
with K as set in R?. Notice that all open faces of the natural embedding of
Hy into the plane are 2-cells, except for one which is outer. The colour of each
edge f of Hg is induced by the colour ¢ of the edge e; in K which contains f as
its subset. Since H is defined as a plane 1-CW-complex, it may be considered
as a coloured rotation graph with the distinguished walk C corresponding to
the outer face of the embedding. Notice that Hg is 4-valent graph and for
each v € Vi, we have deg, (v) = deg_(v) = 2. The vertices of K will be
called the distinguished vertices of Hy. Notice that K induces also in Hy
an oriented Euler circuit E. Let u be any non-distinguished vertex of Hy (a
crossing of K). Then for any edge f4 of Hi coming out u there exists exactly
one edge, say f_, going in u and having the same colour as fy. Denote by e
and e_ another pair of oriented edges of Hg, incident to u, and having the
same colours. Then a cyclic sequence of oriented edges, incident to «, which
is given by the local rotation at u, looks as e_, f_,ey, f+ or f_ e | fi e;.
Notice that ey meets just after e_ and f, meets just after f_, when traveling
along the oriented Euler circuit E. Fix the counterclockwise orientation in the
plane R?.

Two coloured rotation graphs Hyx and H, of the knot diagrams K and L,
respectively, are called 1somorphlc if there exists an isomorphism g: Hie > H L
of their underlying orgraphs Hy and Hj, which preserves the colours of the
edges, and preserves the local rotations at all vertices, and sends the distin-
guished vertices of Hg onto the distinguished vertices of Hy, and the distin-
guished walk of Hg onto the distinguished walk of H;. Denote by Hyg the
same rotation graph as Hy only with its distinguished walk forgotten.

THEOREM 3.1. Any two coloured knot diagrams K,L € Lp are strongly
equivalent if and only if the corresponding coloured rotation graphs Hy and
Hy are isomorphic.

Proor. It follows directly from the definition of a strong equivalence
(strong isotopy) of knot diagrams and the definition of a coloured rotation
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graph associated with a coloured knot diagram that any two strongly equiva-
lent coloured knot diagrams have the isomorphic coloured rotation graphs.
Conversely, let K, L € Lp be any two coloured knot diagrams such that Hy
is 1somorphic to Hy, and let g: Hg — H/, be the corresponding isomorphism
of coloured rotation graphs Hy and Hy. First notice that all the faces of
the embedding of Hx in R? but one which is outer are 2-cells. The same is
valid for the embedding of Hy, in R?. Furthermore, g can be considered as the
homeomorphism of 1-CW-complexes. It follows from the definition of ¢ and
from the above remark that g can be extended to a homeomorphism g, §: R? —
R? which preserves the counterclockwise orientation in R2. Therefore, there
exists an isotopy of R?, the final homeomorphism of which is g. This gives the
strong equivalence of the coloured knot diagrams K and L. 0

Two perfectly coloured knot diagrams K, L € Lp will be called equivalent if
there exists an isotopy between the knot diagrams K and L which preserves the
colouring of the diagrams. Denote by p(D) the number of different equivalence
classes of perfectly coloured knot diagrams of the collection £ and denote by
|Lp| the number of different knot types in £p.

Let L € Lp be any perfectly coloured knot diagram. Denote by uy, ..., u,
the distinguished vertices (i.e. corresponding to the vertices of L) of L and
let wy,...,ws,s < n(2n — 1), be all the non-distinguished vertices of Hy, i.e.
corresponding to the crossings of L. For each vertex a of H; one can choose
an open disc neighbourhood V, of a in R?, so that H;, NV, looks as in Figure
9a, where €], e}, e) and e; are the coloured strands of L with the colours 7, j, k
and [, respectively. If a is a distinguished vertex of Hy, then j = i + 1 and
l =k + 1, otherwise (i.e. when a corresponds to a crossing of LYk=1li=j
and 1 # k. We shall call the local picture of the graph Hp at the vertex a, as
shown in Figure 9a, the coloured reper of Hy, at a. Each coloured (oriented)
reper Ry, of Hyp at the vertex w corresponding to a crossing of L can be
encoded by the (ordered) pair (7, k), where i and k are the two colours of the
strands of R, as depicted in Figure 9b. Any coloured reper R, of H; at the
vertex a 1s determined uniquely by the coloured rotation graph Hy. The reper
R, 1s called positively oriented, if i < k, otherwise R, is negatively oriented.
The planar coloured orgraph Hj, can be thought of as made of its coloured
oriented repers R, by joining their oriented strands of the same colour each to
another in the following way. Let 7,i < 2n, be any colour and let u and % be
the two distinguished vertices of L such that R, contains the output strand
and Rj contains the input strand with the same colour i. Let wy, ... ,wp be
the non-distinguished vertices of Hj, as they appear, when traveling along
the oriented edge e; of L of the colour 7. This determines a sequence ¢; of
repers, corresponding to the colour 4,q; = Ry, Ry, ... s Ru,,, Rg. Notice that
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the collection R of all repers of Hy, taken together with the sequences ¢;,1 =

1,...,2n, determines uniquely up to isomorphism the coloured rotation graph
Hp.
FIGURE 9
A \
e, ﬂ k
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€
a b

THEOREM 3.2. Let D be any chord diagram of order n > 0. Then |Lp| <
2n- 2 SRV Oy 20 sl

PROOF. By the definition of p(D), we have |Lp| < p(D). By the definition
of the strong equivalence of the coloured knot diagrams, the number p(D)
does not exceed the number of equivalence classes of perfectly coloured knot
diagrams via the strong equivalence of such diagrams. Let K, L € Lp be any
two coloured knot diagrams and let Hx and Hy, be the coloured rotation graphs
associated with them. Suppose Hx = Hy. Recall that the certain equivalence
relation on the set of coloured knot diagrams is defined by local moves R1-
R5 and that the strong equivalence of coloured knot diagrams implies the
certain equivalence of them. Therefore, the equality Hx = Hp implies the
(certain) equivalence of the coloured knot diagrams K and L. It follows now
from Theorem 3.1 and the above reasoning that the number p(D) does not
exceed the number of different up to isomorphism (non-distinguished)rotation
coloured graphs of the collection {Hy}rep. Let L € Lp be any perfectly
coloured knot diagram. It follows from Remark 2.2 that the corresponding
orgraph H;, has no more than n+n(2n—1) = 2n? vertices. Let us consider Hy,
as made of its coloured repers R, by gluing them one to another according to
the colours of the strands involved. Let uy,. .., u, be the distinguished vertices
of L and let wy,...,ws,s < n(2n — 1), be all the non-distinguished vertices
of Hy. Denote by g; the sequence of coloured repers of Hy, corresponding to
the colour 7,7 = 1,...,2n. For a given chord diagram D of order n , there are
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no more than 2n possibilities (corresponding to the colourings of L) to choose
the different collections {R;,,...,R; } of (non-oriented) coloured repers at
the distinguished vertices of Hy. For each vertex u;,7 = 1,...,n, we have the
two possible orientations at it. Taking into account the above observations, we
conclude that there are no more than 2n-2" different collections {R,,,, ..., Ry, }
of oriented coloured repers of Hy at all distinguished vertices of Hj. Define
Mp to be the set of all (2n x 2n)-matrices M = (m;;) satisfying the following
properties:

1): each entry m;; of M is 0 or 1;
2): if my; =1, thenmy; =0, 4,5 =1,...,2n;
3): my =0 foreach 1 =1,....2n.

The set Cp, of the crossings of any perfectly coloured knot diagram Lp (and
so the set of the coloured repers of Hy at the non-distinguished vertices) is
determined uniquely by the matrix M € Mp in an obvios way. Simply recall
that each reper Ry, of Hj at a non-distinguished vertex w of Hy, is encoded by
a pair (7,7),7 # j. Therefore the equality m;; = 1 in M, corresponds to the
fact that Hy, contains the reper Ry, = (7,7) for some non-distingiuished vertex
w of Hy. Keeping in mind the above correspondence between all possible
collections Cy, of coloured repers and the matrices of the collection Mp, we
can evaluate the number of distinct collections C, which one can obtain within
the collection Lp of coloured knot diagrams.

Let M% denote the subset of Mp consisting of upper-triangle matrices.
For each 5,5 < 0 < n(2n — 1), set M5, = {M € Mp|M has precisely s non-
zero entries }. It is easy to see that the set MY, N MS$, consists of C}i(zn—l)
elements. It follows that the set M?, consists of C{;(zn~1) - 2° elements. Any
matrix M € M3, determines uniquely in an obvious way a 2n-partition s =
ki + -+ kop of the number s, where k; is the total number of 1 in 5th row and
1th column of M,0 < k; < 5,4 =1,...,2n. Recall that k; is just the number
of crossings in L lying on the edge e; with the colour 5. Let s = k; + -+ - + ko,
be the 2n-partition of s, determined by a matrix M € M$,. For a given knot
diagram L € Lp there are ki!... ky,!(we set 0! = 1) different ways to arrange
the orders on k; crossings on the edge e;, on ko crossings on the edge e,, ...
, and on kg, crossings on the edge ey,. Notice that for each i, = 1,...,2n,
the choice of any such order determines 2n sequences qi, ..., ga, of repers, as
defined above. Taking into accout the above reasonings and estimates, we
conclude that there are totally no more than

n(2n—1)

on - 2" Z Z i .. kop!

s=0 MeMs,
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different coloured rotation graphs in the collection {H|L € Lp}, where the
second sum in the above expression is taken over all matrices M of the collec-
tion M7, each M inducing a 2n-partition s = k; + -+ + kg, of the number
5,0 < s <n(2n—1). Let s = ky + --- + ko, be any 2n-partition of s. Since
k1! .. kan! < s!, we get the following upper bound for the number |Lp]:

n(2n—1)
Lol <p(D)<2n-2%- N Clppqy 20l
s=0

This completes the proof of the theorem. O

REMARK 3.1. Define L, to be the subset of Lp consisting of all coloured
knot diagrams with only the positively oriented vertices. Reasoning similarly
as in the proof of Theorem 3.2, we can get an upper bound for the number of
|L'p| of different knot types in £',. In this case we take into account only the
positive orientation at each vertex of a coloured knot diagram. This leads to
a slightly better estimate for the number |£';|, but we do not give it here.

REMARK 3.2. The above estimate for the number |£p] is certainly far from
being satisfactory. First we should note that some coloured rotation graphs
obtained by gluing the corresponding collections of repers, as in the proof
of Theorem 3.2, may represent not planar graphs, i.e. they can determine
the surfaces of genus > 0. Let G be a coloured graph respecting the chord
diagram D with the choice of an orientation at each of its vertices u;,i =
I....,n. Let R = {Ry,,..., Ry, } be the corresponding collection of oriented
coloured repers. Choose any matrix M € M3,. The latter determines a 2n-
partition of the number s,s = k; + - - - + ko, and the corresponding collections
Ri1,...,Ray of oriented repers, where [R;| = k;,7 = 1,...,2n. For each i fix an
order p; in R;. The tuple < G; M;p1, ... pa, > determines, as in the proof of
Theorem 3.1, a coloured rotation graph H. Call a tuple < G; M; p1, ..., pop >
admissible, if it determines a planar coloured rotation graph H. Clearly, if such
a rotation coloured graph has genus > 0, it cannot belong to the collection £p.
Finally, among the different (non-isomorphic) rotation graphs of the collection
{HL|L € Lp} there are such which represent the equivalent coloured knots
LecLlp.

In [6] we describe briefly a possible modified algorithm for computing Vas-
siliev’s invariants of knots, which is based on reducing of knot diagrams with
the chord diagram D to the ones of the family £Lp. As the estimate for the
number |Lp| we have obtained is far from being good, the possible practi-
cal applications of this algorithm depends strongly on solving the following
problems:
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Question 8.1. Can one obtain from Lp, by applying to the knot diagrams
L € Lp the moves under the conditions of Theorems 2.1 and 2.2, the subset
Lp C Lp, which represents the class of knots considerably smaller than £p?

Problem 3.2. [6] Find within the class £p a smaller subclass £/, of knot
diagrams which represent the same knot types as the ones of Lp.

Problem 3.5. Find a criterion for a given tuple < G; M; py,...,pop > to
be admissible.

Problem 3.4. Find an effective criterion for checking whether any two
different rotation graphs of the collection {Hy, € Lp} represent the equivalent
coloured knots.

Ezample 3.1. To see on how much the upper bound for the number |Lp],
given by Theorem 3.2, differ from the real value of |Lp|, let us consider a
chord diagram D of order 2 with the two non-parallel chords. Keeping in mind
the notices of Remark 3.2, it is not difficult to check directly that |[Lp| < 52.
Notice also that for n = 2 the number s of crossings in any knot diagram
K € Lp can never reach the value n(2n —1) = 6. We suggest that the same is
true for all n > 2.

Finally, we shall discuss the possibilities of extending some of the above
results on singular knots to the case of spatial graphs in R®. Our definition of
a spatial graph is due to J. Murakami [5].

Let V be a set of 2-discs and ¢ be a set of edges homeomorphic to [0, 1]
in S3. Each edge has an orientation induced by the orientation of [0,1]. The
endpoints of an edge corresponding to 0 and 1 are called the initial point and
the terminal point of the edge, respectively. The pair ' = (V,¢) is called an
oriented spatial graph if it satisfies the following conditions. The discs in V
are mutually disjoint and the edges in ¢ are mutually disjoint. Moreover, the
discs in V and the interiors of the edges in ¢ are also mutually disjoint. All
the endpoints of edges in ¢ lie in the boundaries of discs in V. Spatial graphs
are considered up to equivalence. Two spatial graphs I' and I are called
equivalent if there is an isotopy of S® which sends I" to IV. We deal rather
with diagrams of spatial graphs. A diagram of a spatial graph is defined in
the same way as in the case of (singular)knots and links. By a colouring of the
diagram I' of a spatial graph we shall mean any enumeration of the edges of
its underlying graph, so that the different edges have different colours from 1
to m (in opposite to the colourings of the edges of knot diagrams), where m is
the number of edges of G. A colouring ¢ of the diagram of a spatial graph is
called perfect provided it satisfies the following condition: if c¢(e) > ¢(f) then
the edge e is over the edge f at each crossing of the edges e and f. To each
isotopy of spatial graphs in S® there corresponds the equivalence relation on
the set of diagrams of graphs generated by the local moves R1-R5, defined in
the same way as for the diagrams of singular knots (see [5]).
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With each diagram G of a spatial graph I’ we associate two rotation graphs,
"Hg and H¢. The rotation graph H¢ has its underlying graph the same as G.
The rotation system at each vertex u of it is determined by the cyclic order of
the edges of G, incident to u, with respect to the counterclockwise orientation
in the plane. The rotation graph Hg of a diagram G of spatial graph is
invariant under the moves R1-R4, while R5 move changes the orientation at
the corresponding vertex of H¢g to the opposite one. The coloured rotation
graph Hg associated with a coloured diagram G of spatial graph is defined in
the same way as the coloured rotation graph of a coloured knot diagram (see
above). The vertices of G are the distinguished vertices of Hs. A rotation
graph Hg is actually an invariant of the strong isotopy of a diagram G of
spatial graph. Let H be any rotation graph and let Py be the set of diagrams
of spatial graphs with underlying rotation graph H. Denote by £y the set of
diagrams G of spatial graphs which satisfy the following conditions:

1): no edge of G has inner loops;

:2): for any pair of edges e and f, e can intersect the interior of f and f
can intersect the interior of e at least at one (internal) point;

3): the rotation graph H¢ is isomorphic to H;

4): G admits a perfect colouring.

REMARK 3.3. Looking carefuly through the proof of Theorem 2.1, it is not
difficult to see that we can apply to any diagram G € Py the same reduction
procedure as for the diagrams of singular knots. The resulting diagram of a
spatial graph will be a coloured diagram of the collection £,. This procedure
consists actually in applying to G some sequence of combinations of local moves
R1-R4 and crossing changes. In this case we define the notions of covering re-
gion, the component of a covering region, the defect of the component of index
1 and so on, in the same fashion as in the case of knot diagrams. This pro-
vides that our reduction procedure (which is of inductive character, as before)
does not lead to an increase of the number of the crossings in all intermediate
diagrams of spatial graphs. Therefore, an analogue of Theorem 2.1 for spatial
graphs can be obtained in this way. If we allow, in addition, the application of
R5 move to the diagrams of spatial graphs, we can reduce each input diagram
to the one of a little smaller subset of L. To get an estimate for |Ly], the
number of different up to isotopy spatial graphs represented by the diagrams
of the collection L4, we can follow the method of the proof of Theorem 3.2,
slightly changing it in the part, where we consider the distinguished vertices
of the rotation graph Hg of a diagram G of spatial graph, but we shall not
develop this point here.
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