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Abstract. The paper deals with natural left invariant para-Hermitian
structures on semidirect products of Lie groups. In dimension 4 they are
conformally flat if and only if they are locally conformally para-Kéahlerian.
In higher dimensions this equivalence does not hold.

1. Introduction. In the previous papers [7], [8], we have defined and
studied the so-called natural left invariant para-Hermitian structures (J, g) on
semidirect products of two n-dimensional Lie groups Gg X5 G1. Investigating
curvature properties of these structures, we proved there: (i) if the structure
(J,g) is additionally locally conformally para-Kéhlerian, then the metric g is
conformally flat; and (ii) if (J, g) is para-Kéahlerian, then g is flat ([8], Th. 1).
Examples illustrating these results were constructed, and it was also shown
that the converse to the implication (ii) fails in general at any even dimension
2n > 4.

In the present paper, the investigations of natural left invariant para-
Hermitian structures on semidirect products are continued. The main results
are related to the implication (i). We prove that the converse to (i) is true in
dimension 4. Thus, any natural left invariant para-Hermitian structure on a
semidirect product of two 2-dimensional Lie groups is conformally flat if and
only if it is locally conformally para-Kahlerian. In dimension 6, the converse to
(i) does not hold. Namely, we construct a natural left invariant conformally flat
para-Hermitian structure on a 6-dimensional semidirect product SU(2) x ¢ R3,
which is not locally conformally para-Kahlerian. In dimensions 2n > 8, similar
questions are still unsolved.
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The conformally flat para-Kéhlerian manifolds were studied in [5], where
we described the local structure of such manifolds.

2. Preliminaries. The basic references for this section are the survey
articles [1] and [2]. However, for covenience, we recall the necessary definitions
of main classes of almost para-Hermitian manifolds.

Let M be a connected C'*°-differentiable manifold of even dimension 2n.
The all objects involved on M are of class C* too. By X(M) we denote the
Lie algebra of vector fields on M.

Assume that J is a (1, 1)-tensor field on M such that for each point p € M,
Jg = Id, (the identity operator) and the (41)-eigenspaces TpiM of J, are
both n-dimensional subspaces of the tangent space T,M. J is then said to
be an almost paracomplex structure on M, and the pair (M, J) is called an
almost paracomplex manifold. The manifold M admits an almost paracomplex
structure if and only if there is a G-structure on M with structure group
GL(n,R) x GL(n,R).

For an almost paracomplex manifold (M, J), let N be the so-called Nijen-
huis torsion tensor field of J,

N(X,Y) = [JX,JY] = J[X,JY] - J[JX,Y] + J2[X, Y]

for X,Y € X(M). The structure J and the manifold (M,.J) are said to be
paracomplex if N vanishes identically on M. Thus, (M, J) is paracomplex if
and only if the eigen-distributions T*M : M 5 p — T;tM are both com-
pletely integrable. The paracomplex manifolds can also be characterized by
the existence of an atlas with coordinate maps satisfying the so-called para-
Cauchy-Riemann equations.

Let (M,J) be an almost paracomplex manifold and suppose that ¢ is a
pseudo-Riemannian metric on M for which J is an antiisometry, that is,

(2.1) g(JX,JY) = —g(X,Y)

for X, Y € X(M). Then the pair (J,g) is said to be an almost para-Hermitian
structure on M and the triple (M, J,¢g) an almost para-Hermitian manifold;
and in the case when J is additionally paracomplex, we say that (J,¢) and
(M, J,g) are para-Hermitian. Note that under assumption (2.1), the eigen-
distributions T*M become isotropic.

If (J,g) is an almost para-Hermitian structure on M, then a conformally
deformed metric § = e€*f¢ also satisfies the compatibility condition (2.1), f
being a function on M. Therefore, the pair (J,g) is an almost para-Hermitian
structure on M too.
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~ For an almost para-Hermitian manifold, the fundamental form (2 is defined
by

QUX,Y)=9g(JX,Y)
for X, Y € X(M). The 2-form €2 is in fact an almost symplectic form on M.

An (almost) para-Hermitian manifold is said to be (almost) para-Kéhlerian
if its fundamental form €2 is closed. Every 2-dimensional almost para-Hermitian
manifold is necessarily para-Kahlerian. An almost para-Hermitian manifold is
para-Kéhlerian if and only if VJ = 0, where V is the Levi-Civita connection of
g. Another characterization of the para-Kahlerian manifolds can be formulated
in the following way [5]: A pseudo-Riemannian manifold M of dimension 2n
is a para-Kahlerian manifold if and only if there are two n-dimensional totally
isotropic and parallel distributions H and V on M such that HNVY = 0.

We say that an almost para-Hermitian (M, J, g) is locally conformally para-
Kéhlerian if for any point p € M there exist a neighborhood U of p and a
function f : U — R such that (U,J,§ = e*/g) is para-Kahlerian. An almost
para-Hermitian manifold (M, J, g) is locally conformally para-Kéahlerian if and
only if it is para-Hermitian and there is a 1-form w on M satisfying the con-
ditions dQ = 2w A Q and dw = 0 [3]. [Note when dim M = 2n > 6, the second
condition dw = 0 follows from the first one d€) = 2w A Q. When dim M = 4,
the condition d2 = 2w A Q is automatically fulfilled with a certain unique
1-form w, however dw # 0 in general. An explicit example of a 4-dimensional
para-Hermitian manifold with dw # 0 can be found in [6].]

3. Semidirect products of Lie groups. Let G = G x; G be a Lie
group which is a semidirect product of two n-dimensional Lie groups Gy and
(G1. This means that the underlying manifold of GG is just the product manifold
Gy x (G1 and there exists a smooth map f : Gy x G; — G such that pg —
f(po,-) is a homomorphism of Gy into the abstract group of automorphisms of
G1 (i.e., Gy acts on Gy by automorphisms) such that the multiplication and
inversion are given in G by

(po,p1)(q0,91) = (Pogo, flag ", 1)),
(po,p1)™" = (o5 Fpo,p7h))

for po,qo0 € Go and p1,¢q1 € G1 (see e.g. [4]). In the case when f(py,-) is the
identity automorphism of G for any pg € Gy, G becomes just the product Lie
group Gy x G.

Denote by go, g1, g, the Lie algebras of Gy, G1, G, respectively. Then g
is the semidirect sum of the Lie algebras go and g;. As the linear space g is
identified with the direct sum of the linear spaces gy and g1, and an element
X € g we shall write as X = Xg+ X1, where Xy € gg and X7 € g;. Moreover,
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if [-,-]o and [-,-]; denote the Lie brackets in gy and gi, respectively, then the
Lie bracket in g is given by

[X0,Y0] = [Xo, Yoo,
(3.1) [Xo0,Y1] = —[V1,X0] = Ax, Y1,
[X17Y1] = [X1,Y1]1

for Xo,Yy € go, X1,Y1 € g1, where A : gy — Der(g;) is a Lie algebra homomor-
phism of g into Der(g;) (the Lie algebra of derivations of g1). This semidirect
sum we shall denote by g = go ©4 g1. In the sequel, for simplicity, instead of
[-,-]o and [-,-]; we shall write just [-,].

Since for each Xy € go, Ax, is a derivation of g;, we have

(32) AX() [Yla Zl] = [AX()}/h Zl] + [Yla AXOZI]

for Y1,Z; € g1; and since the mapping go 3 Xo — Ax, € Der(g;) is a Lie
algebra homomorphism,

(3.3) Ao v 21 = AxoAvy Z1 — Ayy Axy 71

for Xo,Yy € gop and Z; € g1.
Define a left invariant almost. paracomplex structure J on G by assuming

Jlgo =—1Id ’907 JIBI =1d |91'

By (3.1), the eigen-distributions T~ = gy and T = g; are both completely
integrable, so that J is in fact paracomplex. Now take an arbitrary left invari-
ant pseudo-Riemannian metric g of signature (n,n) on G for which gg and g;
are both isotropic, i.e., g(Xg,Yp) = 0 for Xy,Yy € go, and g(X1,Y1) = 0 for
X1,Y1 € g1. Under these assumptions, for X = Xo+ X1, Y =Yy + Y, € g =
g0 ®4 g1, we have

9(JX,JY) = — g(Xo,Y1) — 9(X1,Yp) = —g(X,Y).

Consequently, the pair (J, g) is a left invariant para-Hermitian structure on G
(cf. [7], [8]).

In the sequel, we will consider only the structures (J, g) defined as above,
and we will call such a structure a natural left invariant para-Hermitian struc-
ture on the semidirect product G = Gg Xy G1. Moreover, if it is not otherwise
stated, Xo,Yp,... and X1,Y;,... will always denote arbitrary elements of g
and g1, respectively. Meanwhile, XY, ... will be arbitrary elements of g.

By the above definition, the fundamental 2-form 2 of (J, g) is given by

0(Xy,Yy) = 0,
(34) Q(X(),Yl) = —Q(Yl,Xo) = —g(Xo,Yl),
Q(Xluyi) 0.

Il
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The para-Hermitian metric g enables us to define, for any X, € g, in some
sense “conjugate” linear endomorphism A%, of the linear space gy by assuming

(35) g(Af'\’OYOaZl) :g(AX()ZlaYO)'

Of course, the mapping Xy — Ag{o is a linear mapping from gq into the space
of the linear endomorphisms of g.
With the help of A°, we can formulate the following theorems:

THEOREM 1 ([7], Th. 3.2). A natural para-Hermitian structure (J,g) on a
semidirect product of Lie groups G = Go x ¢ G is para-Kdhlerian if and only
if g1 15 Abelian and

(3.6) [Xo, Yo] = — A%, Yo + AS, Xo.
THEOREM 2 ([7], Th. 3.3). A natural para-Hermitian structure (J,g) on a

semidirect product of Lie groups G = Go x s Gy is locally conformally para-
Kahlerian if and only if there exists a left invariant 1-form w on G such that

(3.7) [Xo, Yo] = — A, Yo + Af, Xo — 2w(X0) g + 2w(Yp) X,
(3.8) (X1,Y1]) = — 20(X1)V) + 2w(¥]) X,

(3.9) w([Xo, Yo) = 0,

(3.10) w(Ax,Y:) = 0.

In Theorem 2, form w is just the form fulfilling the conditions dQ = 2w A
and dw = 0. Moreover, relations (3.7), (3.8) correspond to the condition
dQ = 2w A Q; and relations (3.9), (3.10) correspond to the condition dw = 0.
Therefore, (i) in the case when dim G > 6, conditions (3.9), (3.10) follow from
(3.7), (3.8); and (ii) in the case when dim G = 4, conditions (3.7), (3.8) are
fulfilled automatically with some unique left invariant 1-form w, so we have
only to assume that this form satisfies (3.9), (3.10).

4. Main results. Let (J,g) be a natural para-Hermitian structure on a
semidirect product of Lie groups G = G x s G;. As in the previous section,
by g0, 81, 8 = go X4 g1 we denote the Lie algebras of Gy, G, G, respectively.

Moreover, we assume that dimGy = dimG; = 2. Thus, there are left
invariant 1-forms o¢ and o1 on go and g;, respectively, such that

(4.1) [Xo,Yo] = ~O’0(X0)Yb + Jo(YQ)Xo for Xo,Y; € do,
(4.2) (X1,Y1] = —o(X)Yi+01(Y1)X; for X,V €gi.

Let w be the left invariant 1-form in g satisfying the condition dQ = 2w A Q.
Thus, the form w fulfils (3.7) and (3.8). As we have already mentioned, such

a form always exists and it is unique. However, the form w is not closed
in general. Essentially, in this section we shall prove that if the metric ¢ is
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. conformally flat, then w is closed and consequently the structure (J, g) is locally
conformally para-Kahlerian.
Let (Ey, Ey, E53, E4) denote an arbitrary basis in g which is adapted to the
structure (J,g). This means that (E;, Ey) is a basis of gg and (E3, Ey) is a
basis of g; such that

Q(EaaEﬁ) :g(Ea’aEﬁ’) :O, g(EaaEﬁ’) :5(1[3’7
JE, = —E,, JEy = Ey.

In this section, the Greek indices take on values 1,2; and o = a+21if1 < o < 2.
Suppose

On :UO(Ea)a Jo :Ul(Ea’)7
We :w(E )7 We! :w(E ’);

e Ey = ZAaﬂ,EX
A4 Eg= Z A)4E).
A

By virtue of (3.5), the components of the operators A® and A are related by
Al 5= Aﬁ Therefore, we can write

(4.3) Ap,Eg =Y AS\Ey.
A

LEMMA 1. With respect to an adapted basis, the components of A and o
satisfy the following relations

(4.4) S alion = o
A
(4.5) Galfy — ophiy = Y (45043, — AAY,).
A

PrOOF. Using (4.3) and (4.2), from (3.2) with Xo = E,, Y1 = Eg, Z1 =
E., we find that

(ZA \ox ) By = (ZAMUN)E[;, =0,

which is implies (4.4). In a similar way, using (4.3) and (4.1), from (3.3) with
Xo = Eqy, Yo = Eg, Z1 = E, we obtain (4.5). O
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LEMMA 2. With respect to an adapted basis, the components of the form
w can be expressed as follows

1 1
(4.6) wa = oa+3 3 (Aha—4k),
X
1
(4.7) Wo' = 0

PROOF. With respect to an adapted basis, conditions (3.7) and (3.8) can
be rewritten in the following form

—aadg + 050l = — Agﬁ + A}, — Zwadg + 2wgdg,
—Ual(sg: + Ugl(sz: = — 2wa/6g: + QWﬂIJZ:.

By applying suitable contractions, the above relations enable us to express the
components of w with the help of the structure constants, as it is given in (4.6)
and (4.7). O

LEMMA 3. The natural left invariant para-Hermitian structure (J,g) is lo-
cally conformally para-Kahlerian if and only if

(4.8) 00y (A§[j - A},A) ey (Aj\\a . AQA) = 0.
A A

PROOF. As we already know, the structure (J,g) is locally conformally
para-Kahlerian if and only if dw = 0; cf. Theorem 2. Therefore, we compute
the components dw(£;, E;). At first, by (4.1) and (4.6), we have

2dw(Ey, Eg) = —w([Bqa, Egl) = —w(—04Es+ 03E,) = TaWpg — 03Wa
1

- L () X (- 1))
A A

Next, using relations [E,, Eg] = Ap, Eg, (4.3), (4.7) and (4.4), we find
2dw(Eo, Ep) = —w([Es, Eg)) = —w(Ap, Eg)

— _ZAQA“)X = —% Za,\/Ag)\ = 0.
A A

Finally, in view of (4.2) and (4.7), we obtain
Zdw(Ea/,Eg/) = —w([Ea/,Eg/]) = —w(—aarEﬂ/ +op Ey)

= OgWg —ogwy = 0.

By virtue of the above, the assertion of our lemma follows. O
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Now, we prove the main result of the present paper. As it was mentioned in
the introduction, if a natural left invariant para-Hermitian structure is locally
conformally para-Kéhlerian, then it is conformally flat. So we need only to
prove the converse to the above. However, as one can easily remark, our proof
is self-contained.

THEOREM 3. Let (J,g) be a natural left invariant para-Hermitian structure
on a 4-dimensional semidirect product of Lie groups G X s Gy. Then the para-
Hermitian metric g is conformally flat if and only if the structure (J,g) is
locally conformally para-Kdahlerian.

PRrOOF. The proof is completely technical. Namely, we compute the com-,
ponents of the Weyl conformal curvature tensor and show that they vanish if
and only if the structure (J, g) is locally conformally para-Kahlerian.

For the Riemann curvature tensor R, the Ricci curvature tensor g, and the
scalar curvature 7, we apply the following conventions

R(X)Y) = [Vx,Vy]=Vixy)
R(X,Y,ZW) = g(R(X,Y)Z,W),
oY,Z) = Trace{X —» R(X,Y)Z},
7 = Trace,p,
V being the Levi-Civita connection of the Riemannian metric. Denote by R,
and g;;, respectively, the components of tensors R and o with respect to an

adapted basis.
At first, we derive the Levi-Civita connection

Ve, Es = %Z (— oalp + 0s6p — Ads — Ay) En,
A
Ve Ey = % > " (op8) — oxd8) Ey
A
+ % > (AD, + A5, — 0368 + 048)) B,
A
Ve Eg = -12—2 Uaféé —axég)E,\
A
+ —;— Z (- Ay + A5 — ox0P + oﬁéé)EN,
A
Ve, Eg = % (— 0w} +0g8))En.

A
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Raﬁ’ye = 07
1
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1
Rogrer = 3D (Apy + A36) (ASa + A0n) = 7 (AA + A%,) (455 + 45))
A

1 (> €
- Zda Z (Aéw + A:r\ﬂ)” + Z‘sﬂ Z (Ag'y + A:v\a)af\
X

A
1

1 1 1
Rapye = 153 Z AlgoN — Z‘sg Z Aspox + Zég Z AlaO¥

—~ —55 ZAMUX mﬁ — 8557) Zam,

— ZJ%UQU'Y' 45a0'ﬂ0'5/ + 4(5 ooy + 4(5 0a0¢t,
1
Ropryer = —56 ZAMUX Zé,e ZAiaa,\f — 56355 ZU,\UX
A A

+ Z‘Sfxavaﬂ’ + 45700‘06/,

1 "y 1.,
Raﬂ”y’s’ = Zéagﬁlae'_zéaaﬁ'UVI’
Ralﬂl,ylgl = 0

In the above, we have also applied relation (4.4).
Consequently, the components of the Ricci tensor are

1

1 1
— 5 (A5, + A5p)0a + 5 (A5, + ASa)os + 705000y —

1
Zégaﬂow

1
o8y = 2 Z (A?iv + Aéﬂ) (Al)tu + AZA) - 5 Z (Aﬁ'y + Aéu) (Al;ﬁ + AZA)

)\711 A,p.

3
—§Z(A +A’Yﬂ)o-/\+ O'ﬁz AA’Y+A )

1
+ 072 A ﬁ+Aﬂ)‘ 20507,

1
08y = 5 E A’)y\ﬂa)\/ + -2—53 E Al;“o',\/ - 5g E o Oy + iagdryl,
A A, A

1
oy = 50807
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‘and the scalar curvature is
T = 3(2 Af\tuo,\r — ZO’)\U)\I).
ALl A

Finally, having the above formulas and knowing that the coefficients Afj
and o; must satisfy relations (4.4) and (4.5), we compute the components of
the Weyl conformal curvature tensor W, which are given by

1 T
Whijk = Rhijx — §(Qhk9ij — Onjgik + Gnk0ij — 9n;0ik) + E(ghkgij — Ghjgik)-

After certain long but standard calculations, we obtain
Wio13 = W, _1 Al — Al A% — A?
1213 = Wiggq = 4(( 21 12)o1 + (43, 12)02),

and Wh;j, = 0 in other cases. This fact and Lemma 3 enable as to conclude
that W = 0 if and only if (J, g) is locally conformally para-Kihlerian. O

5. A 6-dimensional example. In this section, we construct an example
of a 6-dimensional left invariant conformally flat para-Hermitian structure,
which is not locally conformally para-Kahlerian. This will be a natural left
invariant para-Hermitian structure on a semidirect product SU(2) x s R3.

Let (E1, I, E3) be a basis in gg = su(2) and (Fy, Es, Eg) an arbitrary basis
in g; = R? such that

(5.1) [Er, o] = Ej, [E2, B3] = By, [E3, Er] = En,

(5.2) [E4, E5] = [Es, Eg] = [Es, E4] = 0.

Define a Lie algebra homomorphism A : su(2) — Der(R?) by assuming
Ap By =0, Ap, Es = Eg, Ap Bs = —Es,

(5.3) Agp,Ey = —Fg, Ap,Es =0, Ap,Es = Ey,
AE3E4 = E5; AE3E5 = *E4, AE';EG =0.

(one can easily verify that A in fact satisfies conditions (3.2) and (3.3)).

Let g = su ®4 R® be the semidirect sum of the Lie algebras su(2) and
R3; and let G = SU(2) x; R® be the semidirect product of the Lie groups
corresponding to that algebra. In virtue of (5.1), (5.2) and (5.3), the Lie
brackets in g are given by

[E1, By] = Es, (Eo, B3] = Ey, [E3, Ey] = Eo,
[El,E4] =0, [El,Eg,] = F, [El,E(;] = —Fs,
(5.4) [Eo, E4] = —F, [Eq, E5] =0, [E9, Eg] = E4,
[E3, E4] = Es, [E3, E5) = —Exy, [E3, Es] = 0,
[E4, E5] =0, [Es, E6] =0, [E@, E4] = 0.
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Let (J,g) be the natural para-Hermitian structure on G for which
JE, = —E,, JEy = By,
(5.5) 9(Ea, Bg) = 9(Bor, Eg) =0,  g(Ea, Eg) = dag,
where o/ =a+3, 0/ =0+3,1<0a,8<3.
Using Theorem 2, we shall see that (.J,g) is not locally conformally para-

Kahlerian. Indeed, with the help of (3.5) and (5.3), we can see that the con-
jugate operator A° must be given by

A% By =0, Ao By = —By, A By =By,
(56) ACE‘2E1 = E'37 A%QEQ = 0, A%2E3 = ——Eh
A By =—Ep,  AS Ey=Ey,  AY By =0,

Suppose that our structure fulfils (3.7) with a certain 1-form w. This for
X() - El, YO = EQ giVGS
[El, EQ] = — CElEg + A%]2E1 - 2w(E1)E2 + Qw(Eg)El,
or by (5.6)
E3 == 2E3 - 20.)(E1)E2 + Qw(EQ)El.
But this is an obvious contradiction.

Now, we compute the conformal curvature tensor. At first, in view of (5.4)
and (5.5), the Levi-Civita connection of g is given by

Ve, = -V, = B,

Vg B3 =—-VgE = —%Ez,

Vg, B2 =-Vg,E = %Ea,

Ve, Be = —VgE; = VgE3=—-VgFEy = —;—E4,
Ve Be =—VgEy = VgE3=-VgFE = —%Es,
Ve Bs=-Ve,Bi = VB =-VeB = B

otherwise Vg, E; = 0. Therefore, the nonzero components of the Riemann
curvature tensor are related to

1
Ri215 = —R1224 = Ri316 = —Ri334 = Ra2326 = —Rasss = e

Further, for the Ricci curvature tensor, we have

011 = 022 = 033 = 1,
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-otherwise p;; = 0; and the scalar curvature 7 = 0. In view of the above, it is a
straighforward verification that the components Wy, ;i of the Weyl conformal
curvature tensor vanish identically. Thus, g is conformally flat.
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