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EXAMPLES OF EXOTIC MODULI IN LOCAL
CLASSIFICATION OF GOURSAT FLAGS

BY P10OTR MORMUL

Abstract. A distribution D of corank r > 2 on a manifold W is Goursat
when its Lie square [D, D] is a distribution of constant corank r — 1, the
Lie square of [D, D] is of constant corank r — 2 and so on, the ‘2" 'th Lie
power’ of D — of constant corank 1, the ‘2"th Lie power’ of D — the whole
tangent bundle TW.

Local classification of Goursat distributions has been advanced over the
past 20 years, including continuous moduli for » > 8 falling within the
fifth class of a recent geometric systematization [8]. In the note we present
examples of ’exotic’ moduli corresponding to the fourth class in [8], thus
showing that all five possibilities separated in [8] really happen in the Gour-
sat world.

1. Introduction. The note deals with Goursat flags — nested sequences
of r > 2 (flags of length ) distributions in the tangent bundle TW to a (C*,
or real analytic) manifold W of dimension n > r+2, every bigger one being the
Lie square of the preceding and having by one bigger rank. That is, indexing
the members of a flag by their coranks, TW = D° 5> D' 5 D? 5 ... 5 D",
D' =Di 4+ [DI, DI], tkDi=n—j forj=1,2,...,r.
One says also that any flag member save D! is a Goursat distribution. Such a
member clearly determines all members with smaller coranks; D" determines
the whole flag.

The purpose of the note is to give examples of the most complicated local
behaviour - when passing from flags of length » to those of length » + 1 —
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_emanating from a geometric systematization recently proposed in [8]. Mont-
gomery and Zhitomirskii have shedded light on a series of local classifica-
tion results obtained so far for Goursat distributions by separating five dis-
tinctly different cases in the local prolongation from D! > D? o ... 5 D7
to D! > D?> ... 5 D" > Dt In fact, reproducing their notation
and denoting by L(D") the characteristic subdistribution of D" that, for any
Goursat distribution, is of codimension 2 in D", any local symmetry, say
¢, of D" around a point p, ¢,D" = D7, preserves L(D"), hence induces
[d(p)] : D" (p)/L(D")(p) +=. In turn, [dp(p)] clearly induces a projective
automorphism of S*(D7)(p) = P(D"(p)/L(D")(p)) denoted by g¢; automor-
phisms of the real projective line are termed projectivities.

The group of all projectivities g4 obtained in this way is denoted by Ip(D7).
According to Prop. 3 of [8], the orbits of I',(D") acting on S*(D")(p) are in 1-1
correspondence with the equivalence classes of germs of D™! at p such that
the germ of D" is fized. In the sequel we write shortly (when no ambiguity) T
and S1.

The analysis of orbits is done through the fixed points of I'. From the
very nature of Goursat flags it follows that I has always a fixed point L =
L(D"™ Y (p)/L(D")(p) € S*; it has sometimes also a second fixed point M, of
possibly various geometric character. In such a case Montgomery and Zhito-
mirskil denote by o € I' the reflection in the line of one of the fixed points,
along the direction of the other (the order of fixed points does not matter for
this definition). At some other times, when I' = {id }, the whole S! consists
of fixed points. [8] restricts the possibilities of Goursat prolongations to the
five below, not precising which of them occurs for any given germ (D", p) (for
the equivalance class of D" at p, in fact).

L. First possibility: I" has precisely 1 fixed point L. There are two orbits of the
action of ' on S*: L and S*\ {L}.

II. Second possibility: I' has precisely 2 fixed points and T' 2 {id, o }. There
are three orbits: L, M, and S\ {L, M }.

III. Third possibility: I' has precisely 2 fixed points and ¢ ¢ I'. There are four
orbits: L, M, and the two connected components of ST\ { L, M }.

IV. Fourth possibility: I' = {iid, o }. There are infinitely many orbits: L, M,
and pairs { N, o(N)}, Ne S'\{L, M}.

V. Fifth possibility: all points of S! are fixed and ' = {id} (any projectivity
with at least three fixed points is identity).

Examples of situations in the Goursat world illustrating Possibilities I, I,
I, and V exist in the recent literature and are supplied in [8]. It is not so with
a quite exotic Possibility IV. In view of the works [3],[2],[1],[4], it assuredly
does not occur in flags of lengths not greater than 7. We are going to describe
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two fairly different examples of Possibility IV occurring on the circle S*(D7)(p)
for r =8 and r =9, i.e., among Goursat flags of length 9 and 10.!

2. Example for r = 8 with several singular positions in the flag.
The manifold with a distinguished point is (R'!, 0). A Goursat distribution D?
will be given in a Kumpera-Ruiz pseudo-normal form [3] (see also [1]) using
coordinates z', z2,..., 2! on R'!.

The example is a two-step prolongation of either of the couple (x x *) of
non-equivalent Goursat germs of length 7 in Main Theorem in [4]. In members
of that pair Possibility IIT (four orbits) shows up; the two orbits different from
the fixed points are treated in Thm.[32332] in [4]. We prolong through a
position D7(0) chosen in either of those orbits, then take the singular position

(1) D*(0) = L(D®)(0).

We have, therefore, D® under the normal form D® = (w', w?,..., w®)*, where
wh =dz? — 2%dzt, w?=dz® - 2ldz', WP =da! —20det, W' =da® — (1 +
%) dzt, w® = dzt — 27dz8, Wb = dzb — 2%dx", W' = da® — (a + 2%)da7,
w® = dz” — 20d2?

and a@ = 1 (a representative of one orbit consisting of all objects with a > 0)
or a = —1 (a representative of the other orbit — all @ < 0). This parameter
will be fixed in our arguments.

REMARK 1. The fact of prolonging through the singular position (1), in-
stead of other possible positions of D8(0), is important. It will immediately
help in computing, in the next prolongation, the second fixed point M. It is
not that simple with M in the other example in Sec. 3, where we prolong not
through a fixed point position.

A short calculus shows that, independently of a, the circle S'(D®%)(0) is
equal to P(span(dy, 019)).

We compute the fixed points L and M, skipping here and in the sequel
writing ‘span’ and using the square brackets for the points of the projective
line. We start with, existing in any situation, L = [L(D")(0)/L(D?)(0)] =
(010, O11)/(011)] = [O10). Searching for M, we guess it as in [8], using a
standard tool in singularities. In the context of Goursat it works always
after a singular prolongation like the one in (1). After a computation, the
locus, say Sing, of points ¢ € R where D®(q) = L(D%)(q) holds, is just

' We do not know yet whether Possibility IV happens among flags of length 8. In
particular, we do not know if D" — a member of the couple (x * *) discussed below admits
at all a second fixed point on S*(D7)(0). Also, both examples will be in codimension 4.
In codimension 1, by [6], only Possibilities I and II materialize. Does Possibility IV show
already up in codimension 2 or 37
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{z'® = 0}, and we have, defined in invariant terms, a fixed point M =
[D8(0) N TpSing/L(D?)(0)] = [(09, O11)/(011)] = [Be] different from L.

Now our actual prolongation from D® to D? consists in adding one more Pfaf-
fian equation w® = dz'® — (b + 2'1)dz” = 0 depending on a real parameter b,
so that D} = (w',..., w8, w%)L. All points of S! = P(8y, 819) (i.e., possible
positions D} (0)/L(D?)(0)) excepting L are parametrized by b € R. Indeed,
[D}(0)/L(D?)(0)] = [(89 + bB10, 611)/(011)] = [0 + bB1o]. In particular, for
b=0 we get M.

Observe that D? has the following simple symmetry ¢, 2t 2?0 2 =
y ,
(x!, =22, —23, —zt, —2P, 28 —27 —28 29 —z10 U ). The induced pro-

jectivity g4 sends [A0y + B0oyg] to [AJy — Bdig]. One recognizes in it the
reflection o with fixed points [dy] and [0yg]. Therefore,

(2) To(D® > {id, o}.

The symmetry ¢ is not taken at random; preserving D8, it conjugates D9 and
D?, for every b € R. This is a starting observation. In fact, we are going to
%how

THEOREM 1. In the family of germs at 0 € R of KR pseudo-normal
forms Dl? with fized value of a € {—1, 1}, the value |b| is a module of local
smooth, or real analytic, classification.

COROLLARY 1. There is equality in (2) and the prolongation from D? to
D} materializes Possibility IV of Sec. 1: in view of Thm. 1 and the ezistence
of ¢, there is infinitely many two-point orbits of T'o(D?).

PRrROOF OF THEOREM 1. We write X6 = 1+:L and X° = a+2° Suppose
that a local diffeomorphism g = (g!, ¢%,..., g'') : (R, 0) «= conjugates D?
and D?: g.D? = Dg By general considerations related to conjugating by g all
respective members of the two flags as well, we know from the beginning that g
depends only on: z!, 22, 23 when ! < 3, and on 2!, z2,..., 2! when 4 <1 < 11
(the preservation by g of one and the same for both flags L(D8) = (9;1) means
that g%, ..., ¢'° depend only on ', ..., 21°; then one passes to the preservation
by g of L(D7) = (810, O11), etc). On the other hand, it is directly verifiable
that the singular phenomenon DJ(-) = L(D7=2)(-) for j € {3, 5, 6, 8} happens
exactly at points of {2972 = 0}. (For these j’s, in the 1-forms w’ there are
franspositions of indices tha’r are Iesponsible for the respectlve phenomena:
dz! transposed with dz? in w?, dz* transposed with dz® in w® , etc.) Coupling

these facts, we get that
(3) ¢ =dF .0, je{57,8,10}

for certain smooth functions G’ such that G’ |0 # 0. Here and in the sequel
we denote by |0 the evaluation at 0 of no matter how long expression ¢:
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©(0) = ¢ |0; the last inequalities are a consequence of the invertibility of
Dg(0).

Looking at the Pfaffian equations above, we deduce from them that D} =
(011, Y3), where Y, = g+ (b+2'1)019 +210(07 + X0y + 28(06 + 27 (04 + X005 +
z°(01 + 2493 + 238,)))) . Now the fact that g, g2,..., ¢'° do not depend on
z'! implies that Dg(0)811 is a non-zero multiple of ;1. Hence, writing

(4) Dg(z)Ye(z) = f(z) Ye(g(z)) + h(z) O

with certain function coefficients f and h, we obtain f|0 # 0. This basic
information and (4) in general, together with (3), are going to be used many
times; the aim is to deduce that |c| = |¢]|.

In the sequel we shall write simply glk for 8%%1;. For instance, the inequality

g%l[ |0 # 0 will henceforth be denoted g |0 # 0.

Taking (4) at 0, we get Dg(0)(0y + cdio) = f(0)(dg + ¢Bro) + h(0)011.
Comparing the coefficients at dg and 919, we obtain

(5) g510=7110 and cG?lo=¢f|o.

Comparing in (4) the coefficients at 97 and 8s, one sees that they can be divided
sidewise by z'* (not a zero divisor): thanks to (3) for j = 10, the coefficients
at 01, 0z,..., Og on the RHS of (4) are multiplicities of 0. After removing

20 we get
(6) fG' = a function of z', z?,..., 28,
(7) (FG) 7 (#*(0) +gk(a+2%)) =a+¢°;

(¥) in (7) means a certain function whose explicit formula could be written
using (3) for j = 8. Formula (7) evaluated at 0 reads

(8) (fG g8 a0 = a.

Now (6) and (7) imply g% |0 = (fG'°)~1¢% |0 = 1 (by (8)). Hence |0 = 1
by (5). As a byproduct, with g§ |0 = G® |0 ((3) again), we get

(9) G0 = G'°0.

Comparing in (4) the coefficients at J, and then dividing sidewise by z8z0
(it is explicit on the RHS thanks to (3) for j = 8 and 10), one obtains

(10) 9510 = fGYGB |0 = G°G8 0.

At last, the coefficients at 94 and 95 in (4), divided by z7z8z1% (with (3) taken
into account on the RHS’s for j = 7, 8, 10), yield

(11) fGYGG" = a function of z!, 22, ... , z0

7
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(12) (FGUGGT) ™ (2°() + g3 (1 +2°%)) = 1+,

with (x) — a certain function expressable by G° (see (3)). The previous trick
with g° can now be repeated. (12) evaluated at 0 is

(13) (FGOGGT) g5 |0 = 1

while (11) and (12) imply ¢% |0 = (fG™G8G")"1¢% |0 = 1 (by (13)). Now
(10) takes the form

(14) G8GY™ |0 = 1.

Finally, (9) and (14) imply (G'°]0)? = 1, and the second equation in (5) is
reduced to ¢(+1) = é. The proof is finished.

3. Example for » = 9 with just one singular position in the flag.
In the second example r = 9, the underlying manifold is (R'2, 0), D? =
(wh, W2, ..., W), where
wl =de? —23det, W? =drd —2tds', WP =dz' —2Odzt, Wt =d2® —28dz?,
W’ = drb — 27dz?, Wb = da” — 2%z, W = d2® — (1 + 2V)dzt, Wb =
dz® — 2'%z*, W% =d2'% — (a + 2')dz?
and a = 1, or else a = —1, is a parameter fixed in the whole section. This
is another KR normal form whose real meaning will gradually become clear.
This time D%(0) is not a fixed point position (¢f. Rem.1); ¢ = 0 in w® would
give such a position; another such position would be given by a different ninth
Pfaffian equation dz* — z''dz'® = 0 added to the preceding eight equations.
Prolonging not through a fixed point, it is all the more surprising that at
the next prolongation we are bound to have two fixed points, and even more
— IV possibility. The outcome of that next prolongation depends, as in the
previous example in Sec. 2, on a real parameter b: D% = (w!,..., & w!0)+
wl® = dzt! — (b + 2'?)dz?. We write explicitly its vector field generators,
D% = (19, V3), using T for transpose:

5 ,3,.5 4.5

VD = [m,xx,ac:n,l,xﬁ,a:7

28 1429, 2% a + 2!, b+ 22, 0] .

THEOREM 2. In the family of germs at 0 € R'? of Goursat distributions
D} with fized value of a € {—1, 1}, the value |b| is a module of local smooth,
or real analytic, classification.

In the proof, we will try to conjugate D!? to DY by a diffeomorphism
g: (R'%,0) <, g.D0 = D10 g = (g%, ¢%,..., g'?). Let us concentrate for
a while on the one before last member of the flags, D° (common for both
flags). Tt does not depend on z'2, L(D%) = (812), and (¢,..., g'!) is a sym-

metry of DY considered on RM (z!, ..., z'') (¢,..., ¢'! do not depend on z'2,
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similarly as in Sec. 2). Such a symmetry has much in common with the conju-
gacies of (w!, ..., w®, da” — (1+28)da?, d2® — 2%dz?, dz® — (a+ 2'9)dz?) and
(Wh ... WP, de” = (14 28)dat, da® — 2%dz?, dz® — (@ + 2'0)dz?) in R ana-
lyzed in detail in [5], Thm. 3. Presently there is a longer sequence of Pfaffian
equations after w? with no constants in them (now w?*, w®, W% then w?, W),
but apart from that the differences are only secondary. The conclusion in
[5] was that a and @ were necessarily of the same sign, and equal to 0 only
simultaneously. Putting a = a there, the conclusions concerning any conjugat-
ing diffeomorphism (in fact — symmetry then) keep holding. In the present
work we take from the beginning a = 1 (or a = —1) in both flags, and draw
conclusions concerning g',..., g'' very much similar to those in [5]. (Saying
differently, we could prove a theorem generalizing [5], but our present objec-
tive is different — we are doing one Goursat prolongation ‘beyond’ Thm. 3 in
[5]. In view of the remark terminating [5], this cannot be understood literally.
A longer sequence of Pfaffian equations without constants is put forward to
make all this work, cf. [6], Obs.4.2.) It is not all — there is also g'? - but it
is a lot. We will give all steps important in calculations, underlining technical
differences with [5], but skipping the calculations themselves.

PROOF OF THEOREM 2. We start as in the proof of Thm. 1, noting the
existence of certain functions f and h, f |0 # 0, such that

(15) Dg(z)Ye(z) = f(2) Ye(g(2)) + h(z) dr2,

and knowing beforehand that the function coordinates g', g2, g> depend only
on ', 22, 23 and that, for 4 <[ < 12, the function g' depends on z!, 22, .., z'.
Comparing coefficients at 0; in (15), we will say: taking the scalar equation
“I7 of (15).

Evaluating at 0 the scalar equation ”11” of (15), we obtain
(16) g4 +95 +agip+cgii|0 = ¢f]0.
ProposITION 1. gt + gl +aglh |0 = 0.

A sketch of the proof of this proposition is given in Sec. 5.

How to compute git |0 ? g'! can be expressed from the scalar equation 710"

of (15) in terms of ¢'® and f, and f - obtainable from the equation 74"
of (15) — depends only on z!,..., 25 Jointly, g'} |0 = F1g%%10. 61910 is
easily computable and equals =1 |0 (the exact analogue of Claim in [5]). So,
assuming Prop. 1, (16) boils down to

(17) cf7210 = &f 0.
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-How to grasp the value f|0 7 With a fixed in Thm.2, there is not much
choice for that value. Let us evaluate at 0 the equation ”10” of (15):

(18) g5 +9% +agp|0 = af|0.
PROPOSITION 2. g0 +g¥ |0 = 0.

This is a direct analogue of Basic Lemma in [5]. A sketch of the proof of
Prop. 2 is given in Sec. 4.

Assuming Prop.2, (18) becomes f~1 |0 = f |0, meaning f |0 = +1. Now
(17) says that ¢ = £ ¢. The proof is finished.

Thm. 2 is the last word for the family D}° b € R, because there exists a
symmetry of D%, ®, sending D}° to D9 for every b. Indeed, ®(z!, 22,..., z'?)
= (—z!, —2?, 23, —2*, 25, —25, 27, —2® 29 —210 211 —212) does all that.
How does the induced projectivity go € T'o(D?) act on S*(D%)(0) = P (04 +
Jg+adhg, 811) ? It sends [Aau +B(84—|—(98+CL810)] to [A811~B(84+8g+a810)],
hence it is the reflection o with fixed points [011] and [04+0s+adio]. The first of
these points is the well known L = [L(D?)(0)/L(D®)(0)] = [(011, &12)/(012)] =
[011]. The second is M = [D{%(0)/L(D°)(0)] obtained for the value b = 0.
And indeed, for this value of b, in view of Thm. 2, the respective orbit in S?
is just one point. This is clear only after Thm.2; before it the second fixed
point is not visible, although it exists. By the same theorem, and thanks to
®, for all non-zero values of b (i.e., in the remaining part of S* save L) the
orbits are two-point. One meets again Possibility IV. We repeat: this time the
second fixed point M is poorly explained geometrically — just the vanishing of
a certain parameter in a family of KR pseudo-normal forms.

REMARK 2. The example in this section contributes to the question put
forward at the end of [6]. The family D{°, it is - in the language of [6] — the
situation £ = 0, 7 = 3, and 7 = 3. From a theory developed there it follows
that the interesting distances (from the first non-zero constant) are then 2, 3,
and 8. ¢! = a is at distance 2 from the first non-zero ¢ = 1, ¢'2 = b is at
distance 3 from ¢°. It appears that not entire ¢?, but only |c'?|, is an invariant
of the local classification of Goursat.

4. Sketch of proof of Proposition 2. Mimicking the proof of Basic
Lemma in [5], we note in the first turn that now g, being a symmetry of D?,
preserves ¢ =1 and ¢!'® = 0, that is

(19) 94+9510=1/10
(the scalar equation ”8” of (15) taken at 0), and
(20) gi+9510=0
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(the equation ”9” of (15) taken at 0). Constantly using (15), we gradually
express relations (19) and (20) in terms of f and: ¢8, then ¢, then ¢5, then
g° which already is special. Those reductions are a particular advantage of
KR pseudo-normal forms, regarding coordinate functions (of any conjugat-
ing diffeomorphism) corresponding to non-singular positions in the flags being
conjugated.

As for ¢°, from geometric considerations ¢5 = 25 G(zl, ..., z%) for certain
function G (cf. (3); presently in the flag only D3(0) is at the singular position).
In what concerns (19), it quickly reduces to

(21) G|0=f*0
(cf. [5],(f)). Concerning (20), it assumes, gradually, the forms:
—fa+97+2% 0 = 0,
—3fa+ 195 +3fglr 0 = 0,
—6fa+ 5+ 47 % [0=0,

(22) —2fs+ f3G4|0=0

(an analogue of (d) in [5]). Passing to the main quantity g'0 + g0, we
express it gradually in terms of f and: ¢% then ¢®, then g7, then g% then G,
using on way the intermediate identities leading from (20) to (22):

g +9% 0= f g% + 9% + 20% +9%s) |0,
9% + 9% 10=F"2(3g% + g% + 3% — faa +3¢%5) 10,
95 + 98 10 = f (497 + g% + 69747 — 47 faa — 3(f4)%) |0,
95 +9% [0 =5F"*(20%¢ + 9% — 2% fas — 37 (f4)%) |0,
9% + 98 10=5F""(3F ' Gaa — 4f* fas — 97 (1)) |0.

G4 |0 can be eliminated from this expression, because the equation 717 of
(15), after dividing it sidewise by z°, says that

(23) fG is an affine function of z*,
implying that (fG)44 |0 = 0. The result is
9% + g8 |0=—3577%(ffas +3(f2)*) 0

(an analogue of [5], (13)). Now, exactly as in [5], ff4 |0 = 3(f4)%10, and
eventually

(24) g +g¥ 10 =223 0.
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1 .2
(cf. [5],(14)). Writing ¢* = f?Gg = ggz1;2j3gig((flzi’i?)§ (the equations
71" and ”3” of (15) after getting rid of z°), f |0 = |0 2 f110=— 2 D0,
G4 |0 = 3%2 |0, still exactly as in [5], Rem.2.
The gist is to obtain a formula for G4 |0 similar to (22), yet with another
coefficient. Remembering that fG |0 = C'|0, (21) means B° [0 = C®|0 (cf.
(5], (2) ) and the computation in [5] can be mimicked with the exponent at f |0

raised from 2 to 3: s
3¢2 10 = —3(Z)" (—222) |0. That is to say,

(25) Gal0=— 274 0.

(22) and (25) taken together imply f4 |0 = 0. Now Prop. 2 follows from (24).

REMARK 3. f4]0 = 0 means D |0 = 0. Because f = g% + 2°(x) (the
equation "4” of (15)), the higher derivatives of f with respect to z* at 0 are

the respective derivatives with respect to z* at 0 of g4 = (—g—fg—fq%. They

all vanish since D |0 always enters them as a factor; for instance, fyq|0 =
2 .

94 |0 = 655 10 ([5], Rem. 2 vi)).

On the other hand, G4 |0 vanishes by (25). Inductively, in view of (23), all

higher derivatives of G with respect to z* also vanish at 0. These facts will be

useful in the next section.

5. Sketch of proof of Proposition 1. It will appear in the outcome

that all summands g'! |0, ¢4 |0, and g%} |0 vanish.
When — constantly using (15) — expressing these summands by f and: ¢'°
g°,...,¢% G, we keep remember that the same powerful tool (15) implies that
(1 =6,...,10) is affine with respect to z!, hence gl” vanishes identically.
This kills many terms in sometimes long expressions obtained on way. Yet not
all of them; certain essential terms for a time being, persist
Take the s1mplest summand g}4 |0 When expressed by ¢'° and f, speaking
only about essential terms, terms g} 4 10 10 and g% |0 show up. These expressed
by ¢° cause the apparition of g%4 |0 and g% |0, whereas f4 |0 = 0 (Sec. 4) and
f?10 = 1 (the known consequence of PIOp 2, see Sec. 3) simplify the ovelall
expressmn So reducing down, we get g%} |0 expressed by g%, |0 and ¢& |0,
hence by g%; |0 and G4 |0, hence by G4 |O which is zero (Rem. 3).
As for the more involved summands in Prop. 1, we give the intermediate results
of the similar reduction made possible by (15). Skipping also glsq 10 10 that will
have been reduced (in two more steps) to g&g = 0, we obtain

g +9% |0=f"" (g% +29%% + g5 +9%) |0.

% At this moment f |0 is not known. Only having Prop. 2 proved we know that f |0 = %1.
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At the next step we skip g%gq |0 being a derivative of TR
94 + 9% 10 = g% + 39%s + 39%ss + 39% + 39%s +9%10.
Keeping skipping the derivatives of g%;, we get
9% +g% 0=
7 (90 + 498 + 69%7 + 120575 + 495 + 4985 + 395, + g3) 0.

Taking into account that ¢7 is a combination of 29, 2% and 27 (the equation
76”7 of (15) ) and that the derivatives of g%, obviously vanish, we obtain

9% +9% 0= 9'i444a + 1097447 + 109746 + 10g%; -+ 5975 0.

During the next reduction we will use the fact that ¢% is a combination of 27

and 2°. In fact, the equation ”5” of (15) says that

(26) 9° =71 (") (%) + 2°G4 + 25(G + £°G5))
By (26), 9510, 95410, and ¢%,4444 |0 vanish, and eventually
g4 +9% 10 = f7(20g%446 + 159%s5) |0.

Approaching the end, observe that, by (26), g% 10 = (F7'G)aua |0 and
9%5 10 = (f71G4)4a |0. These quantities vanish in view of Rem. 3. Prop. 1
is proved.
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