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AFFINE SUBMANIFOLDS OF RY OF HIGHER
CODIMENSIONS

BY PAWEL WITOWICZ

Abstract. The definition of the type number of an immersion of any codi-
mension is simplified. An example shows that the type number in the
assumptions of an equivalence theorem cannot be lower than two.

1. Preliminaries. We counsider the notion of the type number of a sub-
manifold of R" of a codimension greater than one ([8], [9]) and give its new
simplified definition. We recall that the notion is a generalization of the rank
of a hypersurface to the case of greater codimension. It is used to formulate
some fundamental theorems in those cases (compare [3], [5], [7], [4]).

We also give some examples including an example showing that the as-
sumptions of an equivalence theorem are all essential.

In the paper we study n-dimensional submanifolds of the standard affine
space R"P where n is greater than one and no conditions are put on the
transversal bundle. The submanifold, M™, is equipped with an affine connec-
tion V. As a submanifold, it is considered together with its immersion f into
R" P which is endowed with its standard flat affine connection D. The im-
mersion is called an affine immersion if the connection V on M™ comes from
the connection D on R™"?. This means that there is a vector bundle ¢ over
M"™ with p-dimensional fibres such that the connection V is the connection
induced on M™ by D with respect to the splitting R"*? = T, M & o, for every
x € M™. 1t is expressed by the Gauss formula

(1.1) Dxf.Y = f(VxY) + h(X,Y),
where h is a symmetric o-valued bilinear form called the second fundamental
form or affine fundamental form.

If o is locally spanned by a frame {{1,&s,...,{y}, we have the equality
h(X,Y) = P | h'(X,Y)&, which defines affine fundamental forms A?, i =
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1,..,p. A choice of the transversal bundle o also induces the shape operator
S as the linear mapping £ — S¢ and the so-called normal connection V+in
o, according to the Weingarten formula

(1.2) Dx& = —fu(SeX) + Vx¢,

where ¢ is a local section of 0. It is easy to see that the mapping X —— S¢.X
also called the shape operator connected with £, is an endomorphism of the
tangent bundle TM™. Let {{1,&2,...,&,} be a transversal frame. We will use the
notation S; instead of Sg,. We can rewrite the Weingarten formula using the
decompositions V£&; = SF_, ]’( )&, defining the normal connection forms TJ’
fori,j =1,...,p. For the objects defined above and a chosen transversal frame
{&,&2,...,&p} the following fundamental equations are satisfied (equations of
Gauss (1.3), Codazzi (1.4), (1.5) and Ricci (1.6):

(13) R(X,Y)Z == Sh,(Y,Z)X - Sh(X,Z)Y

(1.4) Vh(X,Y,Z) is symmetric in X,Y and Z,
(1.5) (VxA)(Y) = (VyA)e(X)

(1.6)

1.6 RH(X,Y)E = h(X,SeY) — h(SeX,Y).

We can rewrite these equations using the expression of A in a given local basis

{517527 "'afp} of o:

(1.3") R(X,Y)Z = i[hi(Y, Z)S;X — h'(X, Z)S;Y]
i=1
P
(1.47) (Vxh)(Y, Z) + ZTg(X)hi(Y, Z) is symmetric in X,Y and Z,
1=1
p
(1.5) (VxS;)Y — (VyS))X =) [rH(X)SY — 7}(Y)SiX]
i=1
(1.6")
W (X, SpY) = b (Y, 8pX) = dr] (X,Y) + Y [F(X)ri(Y) — 7 (V)7i(X)],
=1

for every j,k=1,...,p.

2. The type number and fundamental theorems. We define the type
number of a symmetric, bilinear form on a manifold M™, the type number of its
immersion into R**?, and we formulate an equivalence and existence theorems.
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For a symmetric bilinear mapping o we will always use the same symbol « to
denote the linear mapping u — a(-,u).

DEFINITION 2.1. (compare [8], [9]). Let V, W be vector spaces, dimV > 2,
dimW =pand h: VXV — W be a symmetric bilinear form. Let {ey, ..., ex}
be a basis of spanh = span{h(u,v) : u,v € V} and the forms h* : V x V — R
are defined by the equality & = 3~ h’¢;. The type number of h is the maximal
integer r such that there exist r vectors vq,...,v, € V for which one-forms
R(-, v;) are linearly independent for i=1,....k and j=1,....r.

The above definition is independent of a choice of a basis of W ([8]). We
also can see that the forms h' are always linearly independent. We state a
modified definition of the type number of an immersion from [8].

DEFINITION 2.2. Let f : M™ — R"P be an immersion, o - an arbitrary
transversal bundle, and % - induced affine fundamental form according to (1.1).
Then the type number of f at the point z is the type number of h as the
mapping T, M"™ x T,M™ — o,.

The type number of an immersion is independent of a choice of o ([8]). Tt
is a generalization of the rank of a hypersurface in affine geometry ([8]).
We recall the following equivalence theorem ([8]):

THEOREM 2.3. Let f,f : (M™ V) — (R*™ D) be affine immersions
where D is the standard flat connection in R"P. Suppose that the following
conditions hold:

1) the type number of f is greater than one at every point x in M™.

2) There exists an isomorphism F : 0 — & of vector bundles over M™such
that F o h = h.

3) dim Oy is constant on M™.

Then there ezists a unique B € A(n + p,R) such that f = Bo f, where
A(n + p,R) denotes the group of all affine transformations of R*7.

THEOREM 2.4. Let M™be an n-dimensional simply connected manifold with
a torsion-free connection V. Let o be a vector bundle over M™, h - a (0,2)-
symmetric o-valued tensor field on M™and S¢ - a (1,1)-tensor field on M™ for
any section & of 0. Let VX be a linear connection in o. Assume that the fol-
lowing conditions are satisfied:
1) the type number of h is greater than 2 for every x € M™.

2) (Vh)(X,Y,Z) = (Vh)(Y, X, Z) for any vector fields X,Y, Z.
3) the Gauss equation (1.8) holds;
Then there exists an affine immersion f : M™ — R*** (where k is the fibre
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-dimension of o) such that h is its second fundamental form, S¢ - the shape
operator and V- - the normal connection. Moreover, the immersion is unique
up to affine transformations.

We give an example showing that there exist immersions of type number
greater than two.

ExAMPLE 2.5. Let z(uq,...,ug) = (u1, ..., ug, %u%+%u%+%u§, U Ug +UgUs +
usug), where each u; > 0, be a local immersion RS — R®. Let a transversal
bundle ¢ be the bundle spanned by e7,es € R®. Let X j = Ty, form a basis of
the tangent bundle for j = 1,...,6. Computing Dx; Xy = Ty, for j,k =1,...,6
we obtain the affine fundamental forms A', h? which we write in the matrix
form:

[1 0 0 0 0 O]
010000
gl 001000
000O0O0O
000O0O0O
0 000 0 0]
0 0 0 1 0 0]
000010
p2_ |00 0001
100000
010000
001000

We can easily see that the one-forms hi(-,Xj) for s = 1,2 and 5 = 1,2,3
are linearly independent which is described by the three first columns of the
matrices. Thus the type number of the immersion z is maximal and equal to
three.

The following example shows that the assumed restriction on type number
in Theorem 2.3 cannot be decreased.

EXAMPLE 2.6. We have two immersions z and 7 of surfaces into R* given
as follows:

z(u,v) = (u,v, iu ,51}2),

Z(u,v) = (sinh(u), cosh(u), sinh(v), cosh(v)).
We take the transversal bundles to these surfaces generated by the

fields & = (0,0,1,0), & = (0,0,0,1) and & .= (sinh(u),cosh(u),0,0), & =
(0,0, sinh(v), cosh(v)), respectively. We take the bases of the tangent bundles
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given by X7 = z,, X2 = z, and X, = Ty, X, = Ty, respectively. According to
these bases, the affine fundamental forms have the following matrices:

hlziljlz [1 0}

0 0
2_"’2_00
oo ]

which induces the natural isomorphism F' of the transversal bundles. We can
now see that the type numbers of both immersions are equal to one. Computing
the fundamental forms we obtain that both connections induced on the surfaces
are flat. Now we consider the shape operators, after differentiating &;,§;,

i,j = 1,2. We can see that S vanishes identically. The components of S have
the following matrix forms in the basis X1, X».

= _[ro
55:[0 o]

~ 00
SEZ - [0 1]

Thus we can see that the immersions are not equivalent in the sense of Theorem
2.3 because the shape operators are not isomorphic.
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