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HOMOTOPY PROPERTIES OF CLOSED SYMPLECTIC
MANIFOLDS

BY ALEKSY TRALLE

Abstract. In this paper we discuss directions of research and some recent
results in the area of symplectic topology, with an emphasis on methods
of homotopy theory applied to closed symplectic manifolds. We describe
basic open problems and possible ways of attacking them, in the framework
of rational homotopy theory, symplectic fibrations, Lie group actions and
Lefschetz fibrations. Also we prove some new results about symplectic
blow-ups and symplectic G-manifolds with hamiltonian action of G.

1. INTRODUCTION

This paper is based on a mini-course given by the author during the confer-
ence “Geometry and Topology of Manifolds” held in Krynica Gérska in April,
1999. The article is intended to serve the dual role of an exposition and a
research paper. Our objective is to give a picture of an area of symplectic
topology which is primarily concerned with the homotopy properties of closed
symplectic manifolds.

In the last decades a new and intriguing subject of symplectic topology
has emerged as a beautiful mixture of geometry, topology and analysis. The
(non) existence of symplectic structures is a global property of manifolds and,
therefore, the methods of algebraic topology play an essential role in this area.

In this paper, we stress the role of homotopy theory in the whole subject.
Our main concern is a general picture rather than a detailed exposition of
particular results. Also, we pay a special attention to open problems. For these
reasons as well as for the sake of brevity we don’t discuss examples referring to
other sources. We assume that the reader is aware of the basics of symplectic
geometry [24] and algebraic topology and, in particular, of rational homotopy
theory [12, 15, 22, 29, 32].
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The paper is organized as follows. In Section 2 we recall several topological
notions which we use in the article. In Section 3 the basic problems of ‘sym-
plectic homotopy’ are described. In Section 4 we discuss Lefschetz fibrations
and possible applications of Donaldson’s results to symplectic homotopy. Sec-
tion 5 is devoted to the rational homotopy properties of symplectic blow-ups.
We treat this topic in detail and give complete proofs. We prove that, roughly
speaking, the non-formality is preserved under the symplectic blow-up con-
struction. This fact has applications to symplectic topology. Section 6 deals
with various aspects of homotopy properties of closed symplectic manifolds
endowed with symplectic (hamiltonian) actions of compact Lie groups.

Acknowledgment. The author expesses his sincere thanks to the Or-
ganizers of the Conference, Jan Kubarski and Robert Wolak for their kind
invitation to give this course and for a nice and creative atmosphere during
the meeting.

2. PRELIMINARIES ON SOME TOPOLOGICAL INVARIANTS

In the paper, we consider (closed) symplectic manifolds, i.e. pairs (M?", w),
where M?" is a 2n-dimensional manifold and w a non-degenerate closed 2-form.
One can easily check using the Stokes formula that the de Rham cohomology
class [w] of w is not zero up to the n-th power: [w]"™ # 0. Hence, we get a
first homotopic property of closed symplectic manifolds: their de Rham coho-
mology algebras are c-symplectic. By definition, a graded commutative finite-
dimensional algebra H = EB%QOH ' is c-symplectic, if there exists w € H? such
that w™ # 0. Until now, it is not known if there are other strictly homotopy
properties dependent on the existence of symplectic structures. A lot of efforts
has been put in looking for such properties in the framework of rational homo-
topy theory. The present paper also deals with rational homotopy properties,
therefore, we give a very short account of some notions from this theory.

Recall that to every topological space X there is associated a differential
graded commutative algebra (M x,d) which is a homotopy invariant called the
minimal model of X. We don’t write the formal definition of My referring to
(12, 13, 29, 32]. In the sequel, we will call Mx the Sullivan minimal model,
since there is another approach to rational homotopy theory via the theory of
differential graded Lie algebras developed by Quillen [2, 29]. This approach
is relatively less known to mathematicians working in symplectic geometry.
However, we believe that it will play an important role in future (see Section
3). Again, we omit detailed explanations referring to [2, 20, 29]. We only
mention that to each simply connected topological space X we can assign in
an invariant way a free differential graded Lie algebra (IL(X),0) as follows.
Consider the co-algebra structure on the homology H.(X) and generate a free
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graded Lie algebra L(s 'H,(X)) over the vector space s~ ' H,(X), where s~
denotes the desuspension. Then the structure of the differential algebra is
given by the formula

(s le) = — Z(—l)'ci[{sﬁlci, sflcj] ~3 Z[S‘lci,s"lcj].,

1<j 1
if the co-algebra structure on H,(X) is given by

Alc)=c®1+1®c+ Z{c,- ®cj+ (~1)‘CiHCf|cj ®cit+ Zci ® ¢;.
1<j 1
In the sequel we will call L(X) the Quillen minimal model of X.
The next important rational homotopy property is formality. By definition,
a space X is formal, if there exists a quasi-isomorphism (i.e. a morphism
inducing isomorphism on the cohomology level)

p: My — (H(Mx),0)

that is, we consider H*(Mx) as a differential graded Lie algebra with zero
differential. Clearly, it is a homotopy property of X. It is shared by all Kdahler
manifolds. Section 5 of the present paper deals with this property in case of
symplectic manifolds. Note that formality can be reformulated in the language
of Quillen models (see [20]).

Finally, we introduce the notion of the hard Lefschetz property. Let M be
any c-symplectic manifold. Then, the de Rham cohomology algebra is written
as H*(M) = @?QOHi and there exists w € H? such that w" # 0. We say that
M satisfies the hard Lefschetz property if the linear maps

. ppn—k k _ K,
Ly HF — H" L x(z) = "z

are isomorphisms for all 0 < k < n. This property is shared by all Kahler
manifolds.

3. BASIC PROBLEMS IN SYMPLECTIC HOMOTOPY

One of the first applications of homotopy theory to symplectic geometry is
due to Thurston [31], who solved the following problem (attributed to Wein-
stein): Are there symplectic non-Kahler closed manifolds? The solution given
in [31] was based on the following homotopic property of Kéahler manifolds:
they have even odd-dimensional Betti numbers. It was shown in [31] that
there exists a manifold (which is called now the Kodaira-Thurston manifold)
which is symplectic and has the first Betti number b; = 3. As a consequence,
such manifold cannot admit Kahler structures for homotopic reasons. This
observation resulted in a large number of publications exploring the subject
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- ‘symplectic versus Kahler’. The status of this area of research is summarized
in [32].

Motivated by research in this area as well as in other directions of sym-
plectic topology, many authors asked the following question: Are there specific
homotopic properties (invariants) of closed symplectic manifolds? This prob-
lem is still open and seems to be very difficult to solve. However, it seems
that the recent breakthrough made by Donaldson [6] as well as the efforts of
many mathematicians in analyzing topological properties of closed symplectic
manifolds will lead to essential progress in the nearest future.

Obviously, any closed symplectic manifold has the property that the top
power of the cohomology class of the symplectic form is non-zero. Hence
manifolds violating this property have no symplectic structures. The most
general conjecture in ‘symplectic homotopy’ is the Thurston conjecture: Any c-
symplectic finite dimensional graded commutative algebra H = ®2" H" with the
Poincaré duality is a cohomology algebra of some closed symplectic manifold:

H*(M,R) = H.

Note that the real difficulty in the proof (or disproof) of the conjecture lies in
the fact that there is no method of verifying the non-degeneracy of a differ-
ential 2-form on a closed manifold corresponding to [w] € H. Hence, it looks
more promising to analyze various homotopic properties of closed symplectic
manifolds obtained by some ‘canonical’ procedures from the known symplectic
manifolds, e.g. ‘symplectic surgery’ [7, 10]. This is not very easy, however,
the first attempts have been made recently by David Gay [7] and Paul Biran
[3].

The conjecture of Thurston was relaxed by Sullivan [28] : Are there topo-
logical properties or invariants of closed symplectic manifolds which ensure the
existence of symplectic structures? In particular, Sullivan asked if the emis-
tence of symplectic structure can be read off the minimal model of the given
manifold?

The problems mentioned above are very general and difficult to solve, how-
ever, they have been stimulating a large number of research papers devoted to
topology (homotopy) of symplectic manifolds. We would describe the known
results in the area as results of the period of ‘collecting information’, the break-
through ahead.

Keeping in mind our main conjectures and questions we can formulate
several ‘restricted’ problems whose solution will hopefully help to settle our
basic problems. To start with, note that Kahler manifolds have many ho-
motopic properties which distinguish them from merely symplectic. We men-
tion here formality, the hard Lefschetz property, even odd-dimensional Betti
numbers, dd®-lemma [13], vanishing Massey products. We know already (see
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[1, 5, 27, 32] and Section 4) that all these properties are in general vio-
lated by symplectic manifolds (although in the simply-connected case this was
proved very recently [1, 27]). However, it is important to learn: what are the
relations between the above mentioned properties in case of closed symplectic
manifolds? For example, there are two (contradicting) conjectures.

(1) (Merkulov [25]) Any closed symplectic manifold with the hard Lefschetz
property is formal,

(2) There are closed symplectic manifolds with the hard Lefschetz property
but non-formal.

Note that Greg Lupton [20] constructed an example of c-symplectic closed
manifold which is not formal but which satisfies the hard Lefschetz property.
This suggests the second conjecture, although his method does not allow to
prove that his manifold is true symplectic. It is worth mentioning that in
Merkulov’s paper the multiplication structure of the de Rham algebra is not
analyzed, so the ‘formality’ considered by the author of [25] is not the standard
formality introduced in Section 2.

In [6] Donaldson has proved that any closed symplectic manifold after a
blow-up along certain symplectic submanifold admits a structure of the Lef-
schetz fibration. Hence, in view of the questions, posed above, we can formulate
the following problem

Describe homotopy properties of Lefschetz fibrations, and in particular,
their Quillen (or Sullivan) models.

Finally, we should mention an intriguing area of research related to sym-
plectic group actions. This subject has its origin in a beautiful theorem of
Ginzburg and Kirwan [8, 17] that any symplectic closed manifold endowed
with a hamiltonian action of a compact Lie group has the property that the
Leray-Serre spectral sequence of the Borel fibration

M — EG xg M — BG

degenerates. Clearly, this is a homotopic characterization of the hamilton-
ian group action. It is natural to ask if there are other homotopy properties
characterizing symplectic or hamiltonian group actions.

4. LEFSCHETZ FIBRATIONS AND SYMPLECTIC SURGERY

Let M be a smooth manifold of dimension 2n+2,n > 0 and let f : M — S?
be a smooth surjective mapping with a finite number of critical points. We will
identify S? with the extended complex plane C U {oco}. If z € S? is a regular
value of f, then f~'(z) is called the regular fiber of f.

DEFINITION. The smooth mapping f : M — S? is called a Lefschetz fi-
bration if each critical point p of f admits a coordinate neighbourhood with
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complex valued coordinates (wi, ..., wn41) consistent with the given orienta-
tion of M, and if f(p) has a complex coordinate z, consistent with the given
orientation of S?, then, locally, f has the form

flw) = 29 +w? + ... +w721+1.

The most important for us information about Lefschetz fibrations is that
they have a handlebody decomposition which is not very difficult to describe.
Namely, we know that any Morse function F' : M — R determines a handle-
body decomposition of M [18]. For any Lefschetz fibration f : M — S? we
assume that the regular fiber is X and has dimension 2n and that 0 and co are
regular values of f. Then we define F' : M — RU oo by F(p) = |f(p)|2. One
can check that outside of f~1(0)U f~!(oc0), F has only non-degenerate critical
points, each of index n + 1. Hence, if one knows the handlebody decomposi-
tion of X, one can describe the handlebody decomposition of M (see [16] for
details).

The recent result of Donaldson relates Lefschetz fibrations and symplectic
manifolds as follows.

THEOREM 4.1. [6] If (M, w) is a symplectic manifold with [w] integral, then
there exists a codimension 2 symplectic submanifold B C M such that the sym-
plectic blow-up M of M along B admits a structure of the Lefschetz fibration.

REMARK. Note that we don’t introduce the defintion of the symplectic
blow-up here, since we treat it in detail in the next section.

Now, let us speculate a bit about possible relations of this result with
the main problems of symplectic homotopy. Since the Lefschetz fibrations
have a ‘controllable’ handlebody decomposition, there is a hope to describe
the rational homotopy invariants of such decompositions using Quillen models
[29]. The advantage of using the Quillen models comes from the fact that it
is possible to use them to calculate models of homotopy pushouts [2]. Since
the handlebody decomposition can be considered from the homotopic point of
view as a pushout, there is a hope to get new homotopic information about the
Lefschetz fibrations. Combining this with the information about the blow-ups
(see the next section) one may hope to obtain new homotopic results about
symplectic manifolds. However, we stress that this is a mere speculation and
we are not precise here.

In relation with the handlebody decompositions of symplectic manifolds,
one can go in the ‘reversed’ direction and try to build symplectic manifolds
using the procedure of attaching handles. The main problem here is: can
one do it symplectically? In dimension 4, there is an answer to this question
obtained recently by David Gay in his Ph. D. Thesis [7].
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5. BLow-uprs

The purpose of this section is to analyze the formality of a symplectic blow-
up. Let X be the result of the symplectic blow-up of a symplectic compact
manifold X along a symplectic submanifold M. We are interested in describing
relations between rational homotopy properties of X and those of X and M.
In general it seems to be rather difficult to handle this problem, however,
the ‘“first step’ obstructions to formality, namely, the triple Massey products
appear to behave ‘well’ enough. The main results of the paper show that the
triple Massey products in both H*(X) and H*(M) survive under the blow-up
construction, and this gives many of examples of compact symplectic non-
formal (and, hence, non-Kéhler) manifolds. There are many examples of non-
simply connected symplectic compact non-Kéhler manifolds [5, 32], but until
recently there were no examples in the simply-connected world (cf. [32]). The
first example of this type was obtained recently by Babenko and Taimanov
[1]. The present section contains results which essentially give ‘qualitative’
description of the whole problem. The proofs of our results appear to be
a modification of Gitler’s description of the multiplication structure of the
cohomology of a complex blow-up [9].

The proofs of Theorems 5.1 and 5.2 below are based on the use of Thom
spaces. The basic references to this subject are [4, 26]. If £k : M — X is
an embedding with the normal bundle N, then the tubular neighbourhood
theorem yields inclusions

M—N—=X
Let T'(IN) denotes the Thom space of the vector bundle N. Define the Browder-
Novikov map

t: X — T(N)
as follows. Shrink X — N to a point and get a map ¢ to the one-point com-
pactification of N, i.e. to the Thom space T'(N).

Results on formality of symplectic blow-ups.

THEOREM 5.1. Let X be any compact symplectic manifold whose minimal
model has non-vanishing triple Massey products. Then, its blow-up along any
symplectic compact submanifold M is non-formal.

THEOREM 5.2. Let X be the symplectic blow-up of X along a symplectic
submanifold M of codimension 2k, k > 3. If the minimal model of M has
non-vanishing triple Massey products, X s non-formal.

REMARK. In this section we give only the proofs of the theorems. Us-
ing these results and the Gromov-Tischler embedding theorem [14, 30], it is
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.possible to construct a lot of examples of simply connected closed symplectic
non-formal manifolds (cf. [1, 27]).

Massey products and formality. In our paper we use only one ob-
struction to formality, namely, triple Massey products. Since this obstruction
is essential in our considerations, we give details of it. Thus, let (A,d) be any
differential graded algebra. Let [u],[v],[w] € H*(A) be cohomology classes
satisfying the equalities

[u][v] = [v][w] = 0.
Consider the corresponding conditions on the cochain level:
dr = wv, dy=vw.
One can check that the cochain
wy + oz, 7= (—1)%90y
is in fact a cocycle.

DEFINITION. The set of all cohomology classes which can be constructed
in this way is called the triple Massey product of [u], [v], [w]. This set is denoted

by
([ul, [v], [w]).

Therefore,
([u], [v], [w]) = {[uy + vz], where u,v,z,y vary over the choices }

This means that u,v vary over the choices of cocycles representing the same
cohomology classes and z, y over the choices which satisfy dz = uv, dy = vw.

Note again that the triple Massey product is a set and there is an indeter-
minacy in the choice of the corresponding cohomology classes. This caution
will be important in our considerations. However, this indeterminacy can be
completely described. Namely, when defined, ([u], [v], [w]) is an element of the
cohomology ring

H*(4)/([a), [¢)

where ([u],[w]) € H*(A) denotes the ideal in H*(A) generated by [u] and
[w]. This can be proved very easily by calculating the difference between
cohomology classes representing the triple Massey product and determined by
different, choices of u,v,w,z,y. Also, one may consult [32] and [22, p. 289].
The most important observation for us is that any two cohomology classes
representing the same Massey product differ by an element from ([u],[w]) C
H*(A).

Triple Massey products give an obstruction to formality: if (Mx, H*(X))
has non-trivial Massey products, X is non-formal. The proof of this can be
found in [32].
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~ Symplectic blow-up. Let us begin with a symplectic submanifold
M?=k) c X?" with normal bundle v : E — M. We choose v to be w-
orthogonal to TM C TX. Therefore, we assume that the fiber of v is C¥ and
the structure group of the associated principal frame bundle is U(k), i.e.
Ukk)— P — M.
Consider also the canonical line bundle
L— CP*' L={(z])eCt xCP| zel}
Note that U(k) acts on C¥ and CP*¥~! by the same rule z — Az, [z] — [Az].
Hence, we may form the bundles
L—-E—-M, CP'S MM
with the total spaces
E:le](k) L, M:PXU(k)CPkil,
respectively. ~
Also E becomes a line bundle over M:
E:PXU(,C)L——)MZPXU(]C)CPIC_I, [p,(z,l)]—)[p,l]

where the square brackets stand for equivalence classes with respect to the
U(k)-action, p € P,(z,1) € L,1 € CP*~'. Note also that M is by definition
the projectivized normal bundle associated to v.

Define the map

$:E— B, ¢(p, (1)) =p,]

and consider the sets Ey = E—{the zero section} and Ey = E—{the zero section}.
Also, M and M can be embedded into E and F as the zero sections of the
vector bundles

E—M, E— M,
respectively.
These embedings can be described explicitly:

m(p) = [p,0, [p,1] = [p,(0,1)]
for m : E — M (one checks immediately that everything is well-defined). Now,
recall the construction of the symplectic blow-up of a symplectic manifold

X along a symplectic submanifold M. Take the normal bundle v and the
corresponding disc bundle

V - M.

According to the tubular neighbourhood theorem,

VewcX
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_for tubular neighbourhood W > M of M in X. Set
V=¢"Y(V)CE
and note that ¢ is a diffeomorphism on Ey, i.e.
(/)‘E.O : EO —_— EO‘
The latter can be seen from the representations

By ={lp,(zD)], z#0,z€l}, Eo={lp,2], z+#0}

and the definition of ¢. In particular, VN Ey = V N Ey, and since V N Ey does
not contain M realized as the zero section, we get

v = ov.
DEFINITION. The blow-up X of X along M is the smooth manifold
=W u,, 7,
where the identification of points is given by
OV = 9V = oW.

The role of this construction is that it yields new symplectic manifolds:
any symplectic blow-up again carries a symplectic structure [24].
In the sequel we will need one additional observation that

V = {[p, (z,1)], lz| <1} = P xyqy D

where D is the usual complex blow-up of a disc. Now, one can define a projec-
tion X — X separately on V as a restriction of ¢ and on X — W as identity.
This projection will be also denoted by ¢.

One can see that there is a natural map

kiM—X=(X-W)u,,V
defined by

k(lp,1) = [p,(0,0] €V C X
We claim that the diagram ]

Mt x

Ll

MLX

is commutative (note that we interpret M as an image of the zero section of
E). Indeed, the point [p,I] € M is embedded into X as [p, (0,1)]. Therefore,
#([p, (0,1)]) = [p,0]. The latter can be identified with a point in the zero
section of F, i.e., with a point in M.

Finally, we have come to
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PROPOSITION 5.3. There exists a commutative diagram

M N » X —L T(N)
I N
M y N X — 7(V)

PROOF. We have just proved the commutativity of the first two squares.

The remaining squares are commutative because of the general property of
Thom spaces: we consider the normal bundles N and N of embeddings

M X, MoX.

and embed M and M as zero sections, N and N according to the tubular
neighbourhood theorem, then the map between the normal bundles is induced
by ¢ and hence ¢ is the corresponding map of one-point compactifications.
Note that we have more, namely, N is identified with E (it is by definition)
and N is identified with E considered as a line bundle over M. Indeed, one
can write an obvious inclusion M — V and recall the representation of V =
{Ip,(z,1)], |z| <1} € X diffeomorphic to the tubular neighbourhood of M
in X. Since V (open) is obviously diffeomorphic to E, the result follows. Note
that we did not change notation for the ‘open’ bundle {[p, (z,1)], |z] < 1}
corresponding to V. O

The following results are direct corollaries of [9] and Proposition 5.3.

THEOREM 5.4. We have a short exact sequence
0 —— HYT(N)) —%— HYX)® HU(T(N)) —2— HIX) —— 0

a(y) = (t'y,¢*y), Blz,2) = ¢’z — iz
The sequence 1s not multiplicative.

In the sequel we denote the Thom class of the vector bundle N by U. Note
that U € H2(T(N)). Tt is known that t*(U) = ¢, where ( is identified with the
Fuler class of the vector bundle N (consigered now as a real 2-bundle over M).

Consider the usual cup-product H*(T'(N)) @ H*(M) — H*(T:(N)), and the
Thom isomorphism determined by it, i.e. HP(M) — HP2(T(N)),v — U U .

THEOREM 5.5. The multiplication rule in the cohomology of the symplectic
blow-up X of X along M 1is given as follows. In the direct sum of vector spaces

HY(X) 2= ¢"H* (X) @y H* (M)[C)/ (" —er¢" 4+ (1) T epma (o (= 1) p)
one multiplies elements as indicated below:
(i) in H*(X), in accordance with the multiplication rule in H*(X),
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(it) in H*(M)[C]/(¢F = erdF~t + 4 (= D)FLep_1 ) = H*(M)[C)/T by
[u¢?] - [¢] = (U U P ) - (U U (M)
(iii) for ¢*u € H*(X) and [v(P] € H*(M)[C]/I, by the formula
¢"u - [v(?] = [k uv(?]
where k* : H*(X) — H*(M) is induced by the embedding k.
PROOF OF THEOREMS 5.4 AND 5.5. Consider, first, the manifolds
X=X -—WUpw W and X = 'XTWUW 1%

together with the accompanying homology ladder of Mayer-Vietoris sequences
(with integral coefficients)

v —— H(X =W)® H(V) —— Hy(
! | l

H

!

) e H1_1(a‘~/) R
) —_— Hihl(aW) EE—

iwl(X—W)@Hi_l(V) —_— ...

! !

Hi_l(X - W) @ Hz_l(W) —_ ...
Recall that, if Z is an oriented m-manifold with boundary dZ, then there is a
natural isomorphism

Hp(2,07) = Hy_1(02) = Z.

This isomorphism implies that the inclusion 0Z — Z induces the zero map
Hy,—1(0Z) — Hy—1(Z). Thus, in the Mayer-Vietoris ladder above we have

0 — Hop(X) —— Z y 0
| | =l |
0 —— Hop(X) —— Z > 0

Therefore, we have proved that the blow-up projection ¢ is an isomorphism in
2n-homology over Z:

¢u : Hon(X) —— Hyn(X)

Of course, this is also true for cohomology and this has the effect that the

induced map on cohomology ¢* : H*(X) — H*(X) is injective. To see this,
suppose that ¢*(a) = 0 for « € H’(X). By Poincaré duality, there exists a
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B € H*™I(X) with a U8 the (cohomology) fundamental class v € H n(x).
But then, the isomorphism above gives a contradiction

0# ¢*(v)
= ¢"(a) U 9" (B)
=0U¢*(B)
=0.
Hence we have proved the following three facts:

(i) ¢* is injective in cohomology and preserves orientation;
(ii) ¢ : X = X is a degree one map (by definition);
(iii) the long exact cohomology sequence associated to the inclusion of X
into the mapping cylinder of ¢ : X — X yields a short exact sequence
of graded vector spaces

0 — H*X) -2 H*(X) —— H'X,X) —— 0 (3%

The last group denotes the cohomology of the pair (Mg, X), where M,

is the mapping cylinder of ¢.
Use the excision property

H*(Y -U,B-U) = H*(Y,B)
(recall that U is an open set in Y whose closure U is contained in the interior
of B). Take
Y=X, B=X, U=X-M=X— M.
Then
H*(X,X)=H"(X — (X - M),X — (X — M)) = H*(M, M) (% * %)

Having all this in mind we can proceed as follows. By (i), ¢ is a degree one
map and, therefore, one can define the Gysin map

fle HY(X) » H(X), [X]nflZ=f.(X]NnZ)

(where N denotes the cap-product and [X] and [X] denote the fundamental
homology classes. One can easily check that f!is a left invertible of f*: f!f* =
idg+(x) and hence

H*(X) = f*H*(X) & (Ker f!).
This check-up is made, e.g., in [9]. Indeed, one can notice that

(X]n f1f*z = (K] N f2) = fX] Nz = [X)Na

as required. In the same vein, one can prove the following relation. O
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LEMMA 5.6. For any y € (Ker f!) and z € H*(X)
yU frz-€ Ker fl.
PROOF. See [9]. O

Now, to proceed further, we need the diagram of spaces given by Proposition
3.5. Consider the decompositions

X=(X-M)UN, (X-M)NN=N-M
X=(X-M)UN, (X-M)NN=N_-Y

They satisfy the excision property and therefore one can write the Mayer-
Vietoris sequences

L HYN M) —2 g9(X) L HY(N) e HU(X - ) —"

[ =] o Fos|
L —— HUYN - M) —% HY(X) —L HYN)® HI(X - M) ——
HY(N — M) —— ...

Al
HYN -M) —— ..
where ff and fi are isomorphisms, ¢* and f* are monomorphisms. Indeed,
f{ and f3 are induced by diffeomorphisms X — M — X — M and N - M —

N — M. Note that the latter manifolds are diffeomorphic, since Ey and Ej are
diffeomorphic. Then it follows that

X-M=X-W)Uy,y V-M)=(X-W)Ugy (V-M)=X - M

and the diffeomorphism follows from the fact that V-M=V-M. As fas as
f* is concerned, one can notice that M is a projectivized normal bundle over
M and hence

H (M) = H (M)[Q)/1, I=("~ad®™"+.(-Dfe)

where cy, ..., ¢k denote the Chern classes of N. This is known and we refer to
[32]. Also, f* is the same as injection

g : H*(M) — H*(M) = H(M)[¢)/I.
Also, as a map in the Mayer-Vietoris sequence, i* = ~(5T s ), wherejf :
H*(X) — H*(N) = H*(M) is induced by inclusion N — X and J3 : H*(X) —
H*(X — M) is induced by X — M — X.
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~ LEMMA 5.7. The map 7* in the Mayer-Vietoris diagram above induces an
1somorphism

Ker ¢! = H*(M)/g*H*(M).

PROOF. The proof follows from diagram chasing. Indeed, consider the
following algebraic situation. Let

Aty p_*yc_P.p

[ ] ] ]
y A Mg Lo P, p

be a commutative diagram in which horizontal rows are exact. Assume that
¢ and 7n are isomorphisms and that ip and ic are monomorphisms. Then
B/ig(B1) = C/ic(C1). The proof is accomplished as follows. By exactness,
Imp = Kera and Im iy = Ker ;. Obviously, ip(Impq) C Imp. Also, from
the commutativity of the first square and injectivity of 5 the converse inclusion
follows, which gives

Imp =ip(Imu) = Kera =ig(Keray).
The latter implies also the inclusion
Kera C ip(By).

Consider the decomposition B = ig(B;) @ W. Note that a|w is injective.
From the commutativity of the middle square we get ic(Im ;) = a(ig(B1))
which implies a(ig(B1)) C ic(Cy). The latter yields a well-defined map

a:W =2B/ig(B1) = C/Zc(Cl)
This map is injective. Indeed, assume that a(w) € ic(Ci). Then, a(w) =
ic(c1). By exactness, fa(w) =0 = fic(c1) =0 = [1(c1) =0, since 7 is
an isomorphism. Again, by exactness, ¢; = a1(b;). Hence,
a(w) =ic(ai1(b)) = alipg(b1)) = a(w —ip(h)) =0.
Therefore
w — iB(bl) € Kera C ’iB(Bl)

which is a contradiction. Hence, & is injective.

To prove the surjectivity of &, one must consider the ‘next’ square in the

given diagram:

4
ﬂ\D H\B"‘

icT Ta iBJ

+
o, 2, p M, B

1R
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Let c € C. Then B(c) =d € D and d = 7(d;). Consider ig+ (] (dy)). Assume

‘that uf(di) # 0. Then ig+(uf(d1)) # 0. But igepf(dy) = pty(d) =
pt(d) = ptB(c) = 0, because of the exactness. Hence, uf (d)) =0 = d; €
Kerpuf = di = fBi(c1). Therefore, d = n(d;) = nB(c1) = Pic(cy). Finally,

Blc—ic(c1)) =0 = c—ic(er) € Ima
which implies the surjectivity of & Lemma 5.7 is proved. U

Combining all the results above together, we get an additive decomposition of

H*(X).

Now the proof of Theorem 5.4 goes exactly as the proof of the analogous
theorem for complex blow-ups in [9].

Now we begin the proof of Theorem 5.5. Property (i) in the formulation
of Theorem 5.5 is obvious. To prove (ii), note that the isomorphism Ker ¢! =
H*(M)/g* H*(M) was induced by the map j* (and, hence, by 7%, since the form
of the commutative diagram and the fact that in the proof W was arbitrary).
The latter can be identified with k* (since N is homotopy equivalent to M ).
It means that we have a sequence

HYT(N)) —“— H*(X) - H*(M) —— H*(M)/g* H* (M)
(with 7 being the natural projection) which identifies Ker¢! with
H*(M)/g* H*(M). Note that #* and k* are multiplicative, but 7 is not.

Now we are using Thom spaces. Since E = N is a line bundle with the

Euler class ¢, we can use the following fact proved in [26]:

B (U) = ¢

where U is the Thom class of the line bundle N. From the usual properties of
the cup product

k(U U CPy) = B (U)CPy = ¢y
Therefore, for k*t* : H*(T(N) — H*(M)/g* H*(M) determined by k** and
the canonical projection
K8 (U UCPy) = (P

and this proves (ii).

To prove (iil), we note that we must find the result of the multiplication
¢*z - z, where z € H*(X) corresponds to some [y¢?] € H*(M)/g*H*(M) by
the map mk*. By Lemma 6.5, since z € Ker ¢!, ¢*z - z € Ker ¢!. Therefore, the
result of multiplication of ¢*z and z again can be described as the image 7k*.
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.Therefore

T (¢ 2) = n(B(¢5 - 2) = 7(g" Kz - K (2)) = n(g"K z - yCP) = W ayc?),

This yields the necessary identification.

Proof of Theorem 5.1. Recall that we need to prove the following.
Any compact symplectic blow-up X of X along M is non-formal, if X has
non-vanishing triple Massey products.

PROOF. By Theorem 5.5,
HY(X) = H'(X) @ H*(M)[C)/ (=" = e1Ck — 1+ o+ (=1)F L1 + (~1)ey)

with the multiplication rules determined by £* and k*. The property of this
multiplication, which we need, can be reformulated as follows:

HY(X) = ¢"H*(X) ®ys W

where
¢ (z) - w=w" €W, forany ze H*(X),weW.

Now denote (A4,d4) = App(X) and (B,dp) = Apr(X) and consider the fol-
lowing algebraic situation. Let (A,d4) and (B, dp) be differential graded alge-
bras such that there exists a DGA-morphism v : (4,d4) — (B,dp) inducing
monomorphism in cohomology

')/* : H*(A) mono H* (B)
Assume that

H*(B) =~v"H*(A) @,, W
and

Yla] - w=w" €W, forany [a] € H*(4),w € W.
Then the minimal model (Mp,dp) of B inherits non-vanishing triple Massey
products of (May,d4). We are going to show that any non-trivial Massey
product in H*(A) determines a non-trivial Massey product in H*(B). Note
that in general this is not the case, since the indeterminancy in the definition
of the cohomology classes representing Massey products. But the restrictions
on H*(B) force this indeterminancy to be ‘the right one’. So let [a], [b], [] be
cohomology classes such that [a][b] = [b][c] = 0 and choose a representative
cocycle in M 4
u=ay+zc, 6sz=ab, Oy = bc.

We don’t write the right signs here, since it does not influence the argument.
Since we have assumed that there exists a non-trivial Massey product, this
means that one can choose u in a way to get

[u] & ([a], [c]) € H™(4).
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- Now consider the map ¥ induced by v : A — B with v* = 4*, ie. ¥ : M4 —
Mp. Then the cohomology class

Vlul = 7a)3(y) + 703 (2)] € v H (A4)

represents some Massey product of the pair (Mg, H*(B)). In general, as we
have already noticed, this cohomology class may represent a vanishing Massey
product in H*(B). However, in our case we can perform the following argu-
ment. Assume that *[u] = (¥*[a], ¥*[b],4*[c]) = 0. Then, by definition,

Y*u] € (¥*[a],¥*[c]) € H*(B).
Hence
¥ [u]l = 4"[al0 + 4" [c]n, 6,n € H*(B).

Because of the assumptions on the multiplication in H*(B), one can write

Y [u] = A a] (Y (z1) + wi) + A [ (Y (z2) + w2)

where

0 =5"(x1) +wi, n=4"(x2)+ws, =z € H(XA), w,eW.

Therefore

Vlul = 4"aly" (1) + 77[c]y" (z2) + (3 lalwr + 57 [c]we)

with the last bracket belonging to W, because of our assumptions. However,
since H*(B) is a direct sum of v*H*(A) and W, the last bracket must be zero
and we have obtained an equality

Y u] = ¥ [al¥" (z1) + 77 (cld" (22)

which can be transferred to H*(A), but in H*(A) such equality is impossible.
To complete the proof of the first part of Theorem 1.5, it is enough to
specialize A and B as was indicated above, as a de Rham polynomial algebras
of X and X.
Thus, we have proved that non-vanishing triple Massey products survive
under blow-ups along any submanifold. O

Proof of Theorem 5.2. Recall that we need to prove the following state-
ment.
Let X be the symplectic blow-up of X along a symplectic submanifold M of
codimension 2k, k > 3. If (Mp;, H*(M)) has non-vanishing triple Massey

products, the same is valid for (M3, H*(X)).

PROOF. The proof of this theorem follows from Lemmas 5.8 and 5.9 below.
0
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LEMMA 5.8. Let M denote the projectivization of the complex vector bundle
E > M of rank k. If k > 3, the non-zero Massey triple products in H*(M)
determine non-zero Massey triple products in H*(M).

PROOF. It is not difficult to show using the theory of KS-extensions [15],
that
My = (M ® A(C,y), D)
D¢ =0, Dy= =" A () oG (=D, (¢ =2, Jy] = 2k-1
where ¢; € My represent the rational Chern classes ¢;(E) via isomorphism
H*(Myr) = H*(M). (alternatively, one look at the proof of the Lupton-Oprea
theorem in [21], or at the proof given in [1]). Let [a],[b],[c] € H*(M) denote
cohomology classes determining some Massey triple product, i.e.
[a][b] = [b][c] = 0.

Assume that ([al, [0], [c]) # 0, i.e. there exists at least one cocycle

ay + rc, dr=ab, dy=bc
such that

lay + 2] & ([al, [c]) € H"(M).
Consider the cohomology classes

()¢, PIC [JC € H™ (M),

Note that H*(M) = H*(M) ® R[¢]/I, where I = (¢ —¢;¢F 1+ .+ (=1)key),
which shows that the multiplication rule in H*(M) is the ‘natural’ one and that
these cohomology classes are non-zero. Also, obviously, [a]C-[b]¢ = [b]¢-[¢]¢ =0
and the triple Massey product

([a]¢, [b)], [cIC)

is well defined. Assume that it is zero. Then, any cohomology class represent-
ing it must belong to the ideal ([a¢,[c]¢) € H*(M). However, consider the
cocycle

a(y¢?) + (2¢?)eC
representing the above Massey product. We get
[a¢ (y¢?) + (2¢)eC] = [ay + z¢* =
[a) (a1 + ol + ... + P +
[ (Br + B2l + o+ BT

which implies that [ay + cz]¢® = [a]as(3 + [c]B3¢? and the rest of the brackets
is zero. Since (,...,*! yield no relations, the coefficients must be equal and
[ay + cz] € ([a],[c]) C H*(M), a contradiction. O
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The next lemma is completely algebraic.

LEMMA 5.9. Let f: A — B be a DGA-morphism. Assume that [by], [ba], [bs] €
H*(B) are cohomology classes determining a triple Massey product ([by], [b], [b3]).
Assume that there exist cohomology classes [a1], [ag],[a3] € H*(A) such that

[a1][a2] = laz]las] = 0

(2) £*[ai) = ] for all
If ([b1], [b2], [bs]) # 0, then ([ad], [az], [as]) # 0.

PROOF. It is necessary to prove that there exists at least one cocycle, say,
v € Z(A) representing ([a1], [a2], [as]) such that [v] & ([a1],[a3]). Assume that
[v] € ([a1], [a3]) for any v. Note that f*[v] represents (obviously), the triple
Massey product

(f*ladl, f¥[az], f¥[as]) = ([b1], [b2], [bs)).

Note also that, by the assumption,
STl € (flaa], frlas]) = ([ba], [bs]) € H™(B). (*)

However, any two cohomology classes representing the given triple Massey
product, differ by an element in ([b;], [b3]) (by definition). Since ([b;], [bo], [b3]) #
0, there exists [u] € H*(B) such that [u] represents the above Massey product

and does not belong to the ideal generated by [b1] and [b3]. By the previous
remark

frv] = [u] + afb1] + B[bs]

which together with (%) yields a contradiction. Lemma is proved. O

Let’s consider X, X and M as in the assumptions of the Theorem. Let
[b1], [b2], [b3] € H*(M ) be cohomology classes representing non-zero triple Massey
product. By Lemma 5.8,

([b1]¢, [b2]C, [b3]C) # 0
is a non-zero triple Massey product in H*(M). Consider cohomology classes
[a] = (O U b)), ] =T (U U], [as] =1"(U U [bs]) € H(X).
From the standard properties of cup-products
[a1]laz] = & (U U [ba]) - (U U [ba]) = (U2 U ([ba][b2]) =
[az][as] = £ (U U [ba]) - (U U [bs]) = (U U ([D2][ba D)~
[as],[as]) € H*(X). Consider

which yields the triple Massey product ([a1],
k* . H*(X) — H*(M) and evaluate it on [a;]. It will give

J
K la] = KT (U U b)) = [bild.
]

Applying Lemma 5.9 to k* and ([a1], [ag], [as]), one completes the whole proof.
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6. HOMOTOPY PROPERTIES OF SYMPLECTIC (G-MANIFOLDS

This section is devoted to homotopy properties of symplectic manifolds
(M,w) endowed with an action of a Lie group G preserving the given symplec-
tic form. It appeares that the existence of a compact Lie group of symplec-
tomorphisms forces some restrictions on the topology of such manifold. The
‘tendency’ is that larger symmetry groups of symplectic form force the topol-
ogy of M to be ‘closer’ to the topology of Kihler manifolds (see [33]). If the
action is hamiltonian, the restrictions are stronger.

Topology of closed hamiltonian G-manifolds. Let us start with a
symplectic G-manifold (M,w). For any smooth function H : M — R on a
symplectic manifold (M, w) the vector field Xp : M — T M determined by the
identity

W(Xpg)w=dH
is called a hamiltonian vector field. If we are given a G-action, i.e. a homo-
morphism G — Symp(M,w), there exists a homomorphism on the Lie algebra
level
gﬁX(Mvw)a f—?Xﬁ
defined by

d
(Xe)p = ahzo exp(t€) -p, p€ M.

DEFINITION. We say that the action of G is weakly hamiltonian, if each
vector field X¢ is hamiltonian. The action is hamiltonian, if it is weakly hamil-
tonian and the correspondence

§ — H¢, where i(X¢)w = dH;
determines a Lie algebra homomorphism
g = C™(M)
with respect to the Poisson structure on C*°(M).

The role of hamiltonian actions in symplectic topology is explained in [24].
For us, however, the most important fact is that hamiltonian G-actions are
related to the moment map

w:M—g*.
By definition, a moment map is any map as above satisfying the property that
the relation
He(p) = (p(p), &)
defines a Lie algebra homomorphism ¢ — H¢. Here (-, ) is the pairing between
g and g*. In fact, the existence of a moment map provides a link to the
topology of M through the ‘generalized’” Morse theory. Namely, pu determines
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the function f(p) = |u(p)|? which, (although not Morse in the classical sense),
'yields some ‘controllable’ stratification of M and gives some information about
the cohomology of M as well as the degeneration of the Leray-Serre spectral
sequence and some ‘formality-like’ properties. These results are contained in
the works of Ginzburg [8], Kirwan [17], Goresky-Kottwitz-MacPherson and
others [11].

As an example we describe one particular problem in this area.

Cohomogeneity 1 symplectic manifolds. A G-manifold M is called of
cohomogeneity 1, if the G-action has an orbit of cohomogeneity 1. Cohomo-
geneity 1 manifolds constitute an important class of manifolds for geometry,
since they are not homogeneous but only ‘one-step’ removed from the homoge-
neous case and, therefore, allow testing various geometric conjectures via the
Lie group techniques. In particular, it is natural to analyze the topology of
closed symplectic (hamiltonian) cohomogeneity 1 manifolds. In [19] the au-
thor started this analysis. Since all closed symplectic homogencous spaces are
Kébhler (see [32]), they are also formal. Hence the problem: Are cohomogene-
ity 1 closed symplectic (hamiltonian) G-manifolds formal? We present a result
which shows that at least the first obstruction to formality vanishes in this
case.

THEOREM 6.1. Any closed symplectic G-manifold with a hamiltonian ac-
tion of a compact Lie group G of cohomogeneity 1 has vanishing all triple
Massey products.

ProOF. It was proved in [19] that any such manifold is

(1) either a CP"-bundle over a co-adjoint orbit G /Gy
(2) or a symplectic blow-down of fiber bundle (1) along two singular sym-
plectic orbits.

It is known that any rational CP™-bundle is formal if and only if the base is
formal [21, 32]. Since the base G/G¢ is symplectic and homogeneous, it is
formal, which implies the formality of M in case (1).
Now, in the second case, the vanishing of the triple Massey products follows
from Theorem 1.5 of the present article. O
Groups of symplectomorphisms and symplectic fibrations.
We complete this Section with a recent result of McDuff [23], which suggests
that there may exist new phenomena of topological nature related to hamil-
tonian group actions.

THEOREM 6.2. [23] Let M — P — S? be any symplectic fibration. Then
the Leray-Serre spectral sequence of this fibration degenerates.
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McDuff conjectured that this theorem holds for any symplectic base B un-

der the additional assumption that the fibration is hamiltonian (i.e. the struc-
ture group of the fibration consists of hamiltonian symplectomorphisms). The
proof of this theorem uses the hard machinery of pseudoholomorphic curves
and quantum cohomology, but the result itself is completely homotopic, and
this fact suggests further analysis.
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