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CHAPTER 10

AND NOW A BRIEF
MESSAGE FROM OUR SPONSOR

artial differential equations have played a decisive role in our investigations
Pever since they were first introduced in Chapter 6 of Volume I. To be sure,
at times we have suppressed the equations themselves in favor of a more geomet-
ric conception involving k-dimensional distributions, and on other occasions we
have instead expressed things in terms of differential forms. But, in one form or
another, the Frobenius Theorem (which represents everything we know about
partial differential equations) was used in discussing Lie groups, ordinary and
affine theory of curves and surfaces in space (where Lie group methods were
used), in all our proofs of the Test Case, in the proof of the Fundamental The-
orem of Surface Theory, and in the generalizations of this theorem which were
given in Chapter 7. The partial differenual equations involved are of the form

i

gix—(xl,...,xm)=fj’(xl,...,xm,al(xl,...,xm),...,a”(xl,...,xm))

J
i=1,...n; j=1,...,m.

Now it’s really rather laughable to call these things partial differential equations
at all. True, we are considering functions o' defined on R”, and therefore
partial derivatives are involved, but the equations do not posit any relationship
between different partial derivatives; this comes out quite clearly in the proof,
where the equations are reduced to ordinary differential equations. The only
reason we get anything interesting at all in this situation is because we are
dealing with a system of equations, and this system is “overdetermined”: there
are more equations (namely mn) than there are unknown functions (namely n).
Our particular overdetermined system happens to be one where it is not too
hard to determine the additional “integrability conditions” which must hold for
the functions fji if the strain of satisfying so many equations is not to hopelessly
overburden the poor functions a’.

With only this superficial knowledge of partial differential equations, one can
make one’s way through a good part of differential geometry (“the good part”,
you may be inclined to say after looking at this chapter). But there are some
topics in differential geometry, to be covered in the next two chapters, where
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a more intimate acquaintance with partial differential equations is required. It
should be said right away, that even in the next two chapters there are only a few
occasions where this knowledge is necessary, and one could easily decide to take
on faith any theorems from this chapter which happen to be quoted later. On
the other hand, many theorems cannot even be stated without some definitions
that arise in the first attempts to understand partial differential equations; these
definitions involve basic facts about the behavior of partial differential equations,
and this behavior is often reflected in geometric phenomena in a surprisingly
nice way.

This chapter is not meant to be a substitute for a course in partial differential
equations; we will try to reach in as short a space as possible those particular
properties of partial differential equations which will be of importance to us in
the next two chapters, even if they are of only secondary importance to analy-
sis. Consequently, we will omit much material that is contained in clementary
courses, and at the same time prove special cases of results which are usually
found only in more advanced treatments, where they are proved in much greater
generality, and with much more effort. (Just to keep the presentation from be-
ing too one-sided, passing mention has sometimes been given to matters which
are of great importance to analysts, but of no importance to us). Since we are
gong to be totally immersed in the study of partial differential equations for
quite a while, we might as well admit it, and henceforth resort to the standard
abbreviation PDE.

A few general considerations might be made before we begin in earnest.
When we consider an ordinary differential equation

u'(x) = f(x,u(x)),

we find that there are solutions « with any desired value for u(x¢). This depen-
dence on the “initial condition” u(xp) usually manifests itself, if we explicitly
solve the equation, by the presence of an arbitrary constant of integration. For
example, the equation

d 1
d_u=_u2 —_:>——u =dv = —-=x+C
dx —u? u

has the “general” solution
) 1
u(x) = \-{-—C
which gives all desired initial conditions u(xg) except u(xp) = 0; for this one
needs the “singular” solution u(x) = 0. Equations of order n, on the other

hand, will involve n constants of integration.



And Now a Brief Message from Our Sponsor 3

When we solve a PDE, we usually obtain arbitrary functions in the answer.
For example, to be as simple-minded about the thing as we can, we note that

the equation
du

dy
has the solutions u(x, y) = A(x); the only restrictions on A are ones which fol-
low from restrictions we might choose to place on u (e.g, that u be differentiable

with respect to x). The equally stupid looking, but actually quite important, sec-
ond order equation

(x,y)=0

0%u
- — O
Ixdy (x,¥)

leads to

d
%(x,y) = a(x),
X

and hence to
u(x,y) = A(x) + B(y), A'(x) = a(x).

Without belaboring the point any further, we simply note that when we look
for precise theorems, we should expect the hypotheses to reflect the presence
of these “arbitrary functions” in the same way that the precise theorem for
ordinary differential equations reflects the presence of arbitrary constants.

1. FIRST ORDER PDE’s

In this section we will consider those equations which involve a function u
on R" and only its first partial derivatives uy,. For simplicity of writing, and
convenience of visualization, we will first deal exclusively with the case of R?,
denoting a typical point of R? by (x, y) and adopting the standard notation

Ux=p, Uy=4q.
By a first order PDE we then mean an equation of the form
F(x, y,u(x, y),ux(x,y),uy(x,y)) =0,
or, to use the standard abbreviated form,
F(x,y,u,p,q)=0.

It will be convenient to denote the various partial derivatives of F by Fx, Fy,
Fu, Fp, and F;. Naturally, the function F: R’ — R shouldn’t be too badly
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behaved; for example, it wouldn’t be very interesting if F were never 0. Just
what hypotheses we really need will come out soon enough. To begin with, we
might imagine that F is differentiable and satisfies Fj, # 0 or Fy # 0, so that by
the implicit function theorem we can solve for p in terms of g, or vice versa. Our
main result is, that we can always completely reduce any first order PDE to a
systern of ordinary differential equations. This holds both in a “practical” and in
a theoretical sense: We can actually write down a system of ordinary differential
equations whose solutions, if we can find them, will give us the solution of our
original problem; and the method by which this is done enables us to state and
prove exact theorems. We will not deal at the very outset with the most general
first order PDE, but will approach it in stages.
We consider first the most general linear first order PDE

9y A(x, Yyux(x, y) + B(x, p)uy(x,y) = C(x, y)u(x, y) + D(x, y).
Usually this 1s simply written

A(x, y)ux + B(x, y)uy = C(x,y)u + D(x, y),
with the arguments (x, y) appearing in 4, B, C, and D just to emphasize that

we are not considering an equation like A(x, y,u(x, y))ux +---
Consider the vector field X on R? defined by

d d
2 X=A—+B—.
@) 0x + ay
The value of X at (xg, yo) is
d d
A(XanO)a_ +B(X05y0)8_ 5
X 1(x0,70) Y 1(x0,50)

using the standard identification of the tangent space R2 (o, yp) With R?, we can
also write

X(xg, yo) = (A(x0, y0), B(x0, }0)).

We will call X the characteristic vector field of equation (1); the integral curves
of this vector field are called the characteristic curves of equation (I). Thus
¢ = (c1,¢2) is a characteristic curve if and only if

d d
®) Y aen. 220 < peay,
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We then have, for any C! function u: R? — R,

du(c() dey (1) de(t)
G = O = b uye) =

= A(c(1)) - ux(c(r)) + Blc(t)) - uy(c(t)).

So any solution u of equation (1) satisfies

dug't(l)) = C(c(0)) - ulc(t)) + D(c(t)) i?lrr‘?:z'characteristic

)

Yor any fixed characteristic curve ¢ + ¢(t), equation (4) is an ordinary differen-
tial equation for the function u o ¢. Consequently, u o ¢ is uniquely determined

characteristic

curve ¢
through (xp, yo)
= c(to)

once u(c(to)) is specified. In other words, once we prescribe a value u(xg, yg) for
a solution u of equation (), the solution u will then be completely determined
along the characteristic curve ¢ through (xg, yo).

Now suppose we have any curve o which cuts a family of characteristic curves.

If we arbitrarily specify the values of u at each point of o, then the solution u
will be determined in a neighborhood of &. Moreover, we ought to be able
to produce this solution u simply by solving equation (4) for each of the char-
acteristic curves through each point of o. Of course, we clearly have to rule
out the possibility that a portion of o itself is a characteristic curve, for then
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we could not arbitrarily specify the values of u along 6. We even have to rule
out the possibility that ¢ is tangent to some integral curve ¢ at some point
(x0, ¥o) = c(to); for in this case, the directional derivative X {(x0, yo)(u) would

X(xo, ¥o)
v

(>0, ¥0)

be determined both by equation (4) and (in a possibly conflicting way) by the
arbitrarily assigned values of u along 6. We must thus assume that the vectors

o'(s) = (' (9),02'(s)  and  (A(0(s), B(o(s))
are always linearly independent. Equivalently, we must require that

o1'(s) A(o(s))
02'(s)  B(o(s))

for all s. In particular, 6’(s) # (0,0) so o is an imbedding. Although we
will later have a much more general result, we summarize this information in a
theorem, in order to get all the details cleaned up before we carry the discussion
any further.

0 £ det ( ) — 01/ (5) B (5)) — 07/ (5) Ao (5))

1. THEOREM. Let A, B, C, and D be C* functions defined in an open set
U c R?, andlet 6: [a,b] — U be a one-one C*k curve such that

01 (s)B(0(s)) # 02'(s)A(0(s)) for all s € [a,b].

Let 2: [a,b] = R be a C¥ function. Then there is a C* function u, defined in
a neighborhood V of o([a, b]), such that u sausfies

(I A-ux+B-uy=C-u+D onV,
with the initial condition
u(o(s)) = u(s) for all s € [a, b].

Moreover, any two functions u with this property agree on a neighborhood of

o([a,b]).
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PROOF. There is a C* map
y:la,b] x (—e,6) = U

such that each curve

1> y(s,1)
is a characteristic curve with
y(s,0) = o(s).
Clearly
0
(5,0 = 0'(5) = (07'(5).07'(+))

9
8_7;(3,0) = (A(a(s)), B(o(s))).

So, by the hypothesis on o, the Jacobian of y at (s,0) 1s always non-singular;
consequently, if ¢ 1s sufficiently small, then y i1s a C k diffeomorphism onto a
neighborhood V of o([a, b]).

By choosing e still smaller, if necessary, we can insure that for each s € {a, b)
there is a C¥ function B;: (—¢,¢) — R satsfying

dt
Bs(0) = u(s)

[this is just the equation (4) which should be satisfied by u o ¢ along the integral
curve ¢ > y(s,1)]. We would actually like to know that B5(7) 1s C k as a function
of s and 7; in other words, if we define B: [a,b] x (—¢,€) — R by

B(s,1) = Bs(1),

then we would like to know that 8 is C*. To prove this, we must consider the
equation “depending on parameters”

{ a(0,s,r) =7 forr e R

{ dps(t) _ C(y(s,1)) - Bs(t) + D(y(s,1))

0
o s,1) = Clys,n) ~a(t,s,1) + D(y (s, 1))
Problem 1.5-5 shows that a is C¥; consequently

ﬁ(S,l) = a(t,s,ﬁ(s))
is also Ck.
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Now the solution u, if it exists, clearly must be the C¥ function
u(x, ) =By~ (x,»)) orequivalenty u(y(s,1) = p(s.0).

To prove that u really is a solution, we note that through any point (x, y) € V
there 1s a characteristic curve t +> y(s,t), and that

du();,(ts’t)) _ d,B‘(I’St,l) = C(y(s,1)) - B(s,t) + D(y(s,1))

=C(y(s,0) - u(y(s,0)) + D(y(s,1)),

while we also have

d d 0
SOOI 5,0 L5, 4y 6,0 - LETO

= ux(y(s,1)) - Ay (5, 1)) +uy(y (s, 1)) - B(y(s,1)),

since ¢ +> Y (s,1) is a characteristic curve. ¢

Notice that Theorem [ involves exactly the sort of “arbitrary function” that
our general considerations would lead us to expect: in a neighborhood of the
“initial curve” o, the solution « is uniquely determined by the “initial condition”
u(o(s)) = u(s). The only requirement is that o be nowhere tangent to a
characteristic curve; we will express this by saying that o is free (sometimes
the term “non-characteristic” is used, but this seems a little misleading). In
general, the problem of finding a solution of a PDE with an appropriate initial
condition is called the “Cauchy problem” for this equation. Thus we have
solved the Cauchy problem for the linear PDE (1) for any initial condition along
any free curve. In particular, we can solve the Cauchy problem along the x-axis
o(s) = (s,0) if the x-axis is free, which is equivalent to the condition that B # 0
along the x-axis. In this case we can use the given equation (1) to solve for u,
in terms of uy along the x-axis:

A C D
Uy = —Eux + Eu + E
If we were interested in the Cauchy problem only along the x-axis, then we
could simply demand this very natural condition in our hypotheses, and not
mention the characteristic curves at all; but the characteristic curves are still
the most important ingredient in the proof, and their generalizations will play
decisive roles in all other equations we discuss.



And Now a Brief Message from Our Sponsor 9

If our initial curve o actually happens to be a characteristic curve (thus failing
in the worst possible way to be free), then we will be unable to solve the Cauchy
problem, and this inability will be manifested in the worst possible way: the
possible initial condition along o is almost uniquely determined—it is deter-
mined by the value at only one point, by the equation (4). On the other hand,
if we are given an initial condition # along o which does satisfy (4), then there
will be infinitely many solutions u with this 1nitial condition; for we can con-
sider any free curve p with p(0) = 6(0), and choose any initial data ¢ along p

p(0) = o(0)

with ¢(0) = #(0). Thus, the characteristic curves are the places where different
solutions agree.

From Theorem | we can see immediately that an arbitrary linear first order
PDE has, in common with the simple-minded equation du/dy = 0, a property
which sharply distinguishes it from an ordinary differential equation

u'(x) = flx,u(x)).

For the ordinary differential equation, any solution u will clearly be at least one
time more differentiable than f is, and if f is analytic, the solution will also be
analytic (Problem 1.6-9). But there are solutions of the equation in Theorem 1
which are only C* (1 </ < 00) even when 4, B, C, D are C* (I < k < w). Tor
we may choose ¢ to be a C¥* curve and # to be a function which is C/, but not
C'*1: then the solution u cannot be C'™*! since its restriction to the C¥ curve o
is not C'*1,

We next consider the most general quasi-linear first order PDE
A(x, y, ulx, y)ux(x, y) + Blx, y,u(x, p)uy(x, y) = Clx, y,u(x, ),
or, more briefly,

A(xa ya u)ux + B(xa ya u)uy - C(xa ya u)~
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The functions A, B, and C are now defined on R3, and we consider the vector
field X i R? defined by

0 0 0
X=4—-—+B—+C—
@) dx * dy * 9z’
This vector field will be called the characteristic vector field of equation (l); the
integral curves of X are called the characteristic curves of equation (1). Thus
¢ = (¢1,¢2,¢3) 1s a characteristic curve if and only if

dei(t) dey (1) des(t)
3) i A(C(1)), P = B(c(1)), PR

= C(c(1)).

The slight discrepancy between this terminology and that adopted in the linear
case 1s easily explained. Notice thatif 4 and B depend only on x and y, then all
characteristic vectors X (xo, yo, Zo) have the same projection on the (x, y)-plane,
namely (A(xg, yo), B(x0, yo)). So the characteristic curves of a linear equation
are really the projections on the (x, y)-plane of the characteristic curves in R3.

For the quasi-linear PDE (1), the characteristic curves in R3 have the follow-
ing significance. Any C! function u: R? — R determines a surface M, =
{(x,y,u(x,y))} C R? and the vector

(Ux(xa y)a “y(xa y)a _1)

1s normal to My, at (x, y,u(x, y)). Equation (1) is therefore equivalent to saying
that X(x, y,u(x, y)) lies in the tangent space of M, at (x,y,u(x, y)). So the

characteristic vectors at the various points of M, give a vector field on M,.
Thus M, is the union of integral curves of this vector field; that is, M, is
the umon of characteristic curves. If we are given an arbitrary initial condi-
tion # along an initial curve o in R, then we ought to be able to construct
a solution u passing through the curve s — (0,(s),02(s),(s)) in R? sim-
ply by taking the union of the characteristic curves through all the points of
this curve. We will clearly have to require that the vectors (6,(s), 02'(s)) and
(A(01(5), 02(5), 1 (s)), B(01(s), 02 (s), u(s))) are lineariy independent for all s.
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7\%

2. THEOREM. Let 4, B, and C be C* functions defined in an open set
U c R Leto: [a,b] > R? be a one-one C* function, and #: [a,b] — R
a C* function such that (o1(s), 02(s),%(s)) € U for all s € [a,b). Suppose
moreover that

61'(s) - B(01(5),02(s),1(s)) # 02'(s) - A(01(s), 02(5), 1 (5)) for all s € [a,b].

Then there is a C* function u, defined in a neighborhood V' of o([a, b]), which
satisfies the equation

(1 A(x, y,0)ux + B(x,y,u)uy = C(x,p,u)  onV,
with the initial condition
u(o(s)) = u(s) for all s € [a,b].

Moreover, any two functions u with this property agree on a neighborhood of

o([a,b)).
PROOF. By Problem 1.5-5 there is a C* function o = (@1, w2, @3) with

a(0,s,r)=r forr e R?

2 ar(t.5,r) = Alatt,5.0)
() 3

_aZ(Ia s,r) = B(a(tasar))

ot

d

&'a}(l‘a S, r) = C(a(tasar))'
Let

B(s,t) = a(t,s,01(s),02(5),1(s)),
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so that B is also C¥. In particular,

B(s,0) = (01(s),02(s), 4(s))

= e, for short

[so for each s, the curve 1 = B(s,1) is a characteristic curve through e]. If we
define
)/(571) = (ﬁl(s7l)7 ﬁ2(57l)) € RZ)

then the Jacobian of y at (s,0) is

ah ap ’ doyy
—a?(s70) ~57(S70) _ (91 (S) —8_1—(0757.)
aﬁz aﬁz f 8012
E(S’O) B_I(S’O) 05'(s) —al—(O’S,O)

61'(5) A(-))
= b
(o;(s) B(e) y (%

and this is non-singular, by hypothesis. So if ¢ is sufficiently small, then y : [a, ]
x (—&,&) — R? is a Ck diffeomorphism onto a neighborhood V of o (fa, b]).

The solution u, if it exists, clearly must be the C k function
u(x,y) = Ba(y~'(x,»)) orequivalenty u(y(s,1)) = B3(s,1).

To prove that u is a solution, we note that for any point (x, y) € V, there is a
characteristic curve ¢ + B(s,?) through (x, y,u(x, y)), and that

du(y(s,t)) _ dBs(s,1)
dt o dr

=C(B(s,1)) by (¥),

while we also have

du(y(s,t))

d d
LR = u(y(s) al,‘(s,z) +uy(y(s,1)) - %(s,z)

d d
P 5,0 4y %250

by definition of y
=ux(y(s,1) - AB(s,1)) +uy(y(s,0)) - B(B(s,1)) by (¥). %

= ux()/(s7l)) )

We will say that the initial curve o is free for the initial condition & when it
satisfies

a'(s) - B(01(5),02(5), 4(5)) # 02'(5) - A(01(5),02(5), (s)).
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Thus we can solve the Cauchy problem for a quasi-linear PDE (1) for any initial
condition along any curve which is free for this initial condition. (In the linear
case things are simpler, since the condition that o be free doesn’t depend on the
initial condition #.)

The worst way in which the inital curve o: [a, b] — R? can fail to be free for
the initial condition # is when o¢”(s) = (01'(s),02’(s)) and (A(01(s), 52(s), u(s)),
B(01(s), 02(5),1u(s))) = (A(e), B(e)) arc everywhere lincarly dependent. In this
case, it is customary to say that o is characteristic for #; this does not mean that o
is a characteristic curve (indeed, o isn’t even a curve in R?). If we assume that o
is an imbedding, then ¢ is characteristic if and only if (A4(e), B(e)) is always a
multiple of the tangent vector ¢’(s); by reparameterizing 0 we can then arrange
that

(A(e), B(e)) = 0”(s).

Then if # is to be the initial condition for a solution u of (1) we must have
C(e) = 01'(s) - ux(0(s)) + 02(s) - uy (0 (s))

d d,
= £u(o(s)) = ?d—su(S).

These equations show that the reparameterized curve s + (01(s), 02(s), u(s))
must be a characteristic curve; equivalently, the original curve s +> (01(s), 02(5),
1(s)) must be a characteristic curve up to reparameterization in order for the
Cauchy problem to be solvable when o is characteristic for 4. If our initial
condition & does have this property, then there will be infinitely many solutions
with this initial condition along 6. The characteristic curves in R* are the
places where the graphs of different solutions intersect; the projections of the
characteristic curves onto R? are the places where different solutions agree.

It should be clear once again that a quasi-linear first order PDE has solutions
which are less differentiable than its coefficients.

We are now ready to consider the most general first order PDE

(1) F(an’a“aP,CI) = F(x,y,u(x,y),ux(x,y),uy(x,y)) = O

This equation can also be reduced to a system of ordinary differential equations,
but in this case the system will involve five functions; the geometric analysis will
be correspondingly more complicated.
At each point (xo, yo, 20) € R3, we can consider the set of all vectors (a,b, —1)
with
F(xo, yo,20,a,b) =0,
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and the corresponding family F (xg, yo, o) of planes perpendicular to such vec-
tors. If u is a solution of (1), and M, is the surface M, = {(x, y,u(x, y))},

then the tangent space of M, at (xo, yo, #(Xo, o)) 1s a member of the family
F (X0, yo, u(xo, yo)). In order to describe this situation more geometrically, we
would like to have a more geometric way of describing the families F (xg, yo, 2o0).
Now the relation

F(xo, Y0, 2z0,a,b) =0

1s one equation in the two unknowns, a and b, so ¥ (x¢, yo, Zo) ought to be a one-
parameter family of planes; this suggests that there is a cone K(xp, Yo, Zo), hav-
ing its vertex at (xo, Yo, Zo), with the property that a plane P is in F (xo, Yo, zo)
if and only if P is tangent to K(xo, Yo, Zo) along a generator of this cone. If we

consider a quasi-linear equation

F(x,y,u, paq) = A(x, Y U) -pt B(-\‘,,V,u) q— C(.\',y,u) =0,
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we immediately see that this is not always so. For in this case, the family
F (xo0, Yo, Zo) consists of planes perpendicular to vectors (a, b, —1) with

a - A(xo, Yo, Zo) + b - B(xo, yo, 20) = C (X0, yo, Z0)-
These planes all contain the characteristic vector
(A(x0, Yo, 20), B(xo, Yo, 20), C(Xo, Yo, 20))-

Thus our “cone” degenerates into a straight line through (xo, yo, zo), pointing
in the direction of the characteristic vector at that point. Clearly things might

S characteristic vector

i

be even messier if the analytic properties of the function F are sufficiently nasty.

Despite these difficulties, we can obtain a great deal of geometric motivation
by temporarily pretending that each family #(xo, Yo, zo) s determined by a
cone K(xg, yo, zo), which happens to degenerate to a straight line in the case
of a quasi-linear equation. This semi-mythical cone is called the Monge cone
at (Xo, Y0,zo). Having accepted this fiction, we can now imagine a field of
cones in R*; a C! function u: R? — R is a solution of equation (1) if and only

W@@
W?<DA
W}<Uéﬁ

if the corresponding surface M, = {(x, ¥, u(x, y))} is tangent to the Monge
cone K(xo, yo, u(xo, yo)) at each point (xg, yo, u(xo, yo)). This gives us a field
of directions at each point of M,, namely the direction which lies along a
generator of the Monge cone at that point. The integral manifolds of this
field of directions could be called the “characteristic curves of the solution u”.
This definition is easily seen to be compatible with the one already given in
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the quasi-linear case, where the Monge cones degenerate to straight lines. For,
these straight lines must be the field of directions for any solution u, and the
“characteristic curves of the solution #” are simply those characteristic curves of
the quasi-linear equation which happen to lie on M,,. Butin the general case, we
cannot write R? as a disjoint union of curves in such a way that each M, is the
union of a certain subset of these curves; we cannot describe the “characteristic
curves of a solution #” at all until we already know u. This might make the
concept seem rather useless, but the requisite supplementary considerations will
appear quite naturally when we seek an analytic description of these geometric
pictures.

How would we go about finding an analytic description of the Monge cone?
The Addendum to Chapter 3 suggests that the Monge cone K(xo, yo, Zo) should
be the “envelope” of the family of planes # (xo, Yo, zo); geometrically, the gen-
erators of K(xq, yo,z¢) should be the limits of the intersections of two planes
of the family F (xo, Yo, Z0), the limit being formed as the two planes approach
each other. Until we explicitly say the opposite, everything we now do will
be based on the assumption that these limits really exist; the ensuing discus-
sion is consequently merely a route to discovery, and does not purport to prove
anything

Let us assume for the moment that the equation

F(xo, Yo, 20,a,b) =0

can be solved for  in terms of a. In other words, assume there is a function ¢
with

(1) F(xo, Yo, 20,a,¢(a)) = 0.
One plane of the family ¥ (xo, yo, zo) may be described by the equation
z — 2o = a(x — xo) + ¢ (a)(y — yo).
A nearby plane may be described by the equation
z —z0 = (a+h)(x — xo) + $la+ h)(y = yo).
The points (x, y,z) in the intersection then satisfy
0= h(x — xo) + [#(a + 1) — ¢(@)](¥ — yo),

and hence

0= (x — xo) + [44)@ ha hz — ¢(a)]

(¥ = yo).
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Therefore points in the limiting intersection ought to satisfy

{ z—zp = a(x — xo) + ¢(a)(y — yo)

(11) 0= (x — x0) + ¢'(@)(y — yo).

On the other hand, equation (1) shows that

d
0= E—F(Xo’ Y0, 20,4a, 9(a))
a

= FP(XOa }’0, 29,4, ¢(a)) + ¢/(a) . Fq(XOa }’0, 29,4, ¢(a))’
and hence

FP(XOa Yo, 20,4, ¢(a))
Fq(-x()a Yo, 20,4, ¢(a)) '

(i) ¢'(@) = -

From (ii) and (1ii) we find that the points (x, y, z) on the Monge cone K(xo, yo, zo)
should satisfy

where a and b are

z —zp = a(x — xo) + b(y — ), numbers such that:

(iv) F(xo, yo, z0,a,b) =0
XX _y—Jo [Fp and F; evaluated at (xo, yo, 20,4, b)].
F, F,

Now consider a solution u of (1), and let
zo = u(xo, y0),  Po=1ux(xo,y0),  qo=uyl(xo, yo).
The tangent plane of M, at (xo, yo, z9) consists of points (x, y, z) satisfying
z — 29 = po(x — Xo) + qo(y — Yo)-

Equations (iv) show that points (x, y, z) which are on both this tangent plane
and the Monge cone K(xg, yo, zo) ought to satisfy

(V) X—Xo:y—yo= Z— 29
Fp Fy pofp +qoFy
[Fp and Fj evaluated at (xg, yo, 2o, Pos o))

Therefore, these points ought to lie along the line through (xo, yo, z0) with
direction

(Fp, Fq, poFp + qo Fy) [Fp and F, evaluated at (xo, yo, zo, Po,qo)].
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We have finally reached the stage where we can make a perfectly sensible
definition, involving no assumptions at all. Let u be a solution of (1), and for a
point (xo, Yo), define zo, po, and qo as before. We then define the characteristic
vector of u at (xo, yo) to be the vector

(2) X(u;x()ay()) = (Fp,an pOFp +q0Fq),

where F, and F, are to be evaluated at (x0, Yo, Zo, Po,qo); this vector is to be
considered as an element of R3(x(),y0,z()). If M, = {(x,y,u(x,))}, then the
tangent plane of M, at (xo, Yo, Zzo) 1 perpendicular to the vector (po,qo,—1).
The vector X (u; xo, yo) clearly has this property, so every characteristic vector
of u is tangent to My, and the set of all characteristic vectors of u forms a vector
field on M. The integral curves of this vector field are called the characteristic
curves of the solution #, and they are clearly curves on M,,.
A characteristic curve ¢ of u is thus a curve in R? satisfying the equations

dei(t)
o =@
dey(t)
(3) dr Fq(®)
d
C;,(l) = ux(c1 (1), c2(t)) - Fp(®) + uy(c1 (1), c2(2)) - Fy(o)
where o = (c1(£), c2(1), c3(2), ux(c1(2), c2(2)), uy (c1 (1), c2(1))).

Now if we assume that u is C2, then we can also obtain equations for the partials
ux(c1 (1), (1)) and u,(c1(£), c2(2)). For equations (3) allow us to write

DO 10,0200 TG 1ty 00 a0 50

(4) = uxx(c1(1),c2()) Fp (o) + uxy(c1 (l),Cz(l))Fq(O)

d
ngz)cﬂ Uy (€1(8),€2(0) Fp(@) + uyy(ci (1), c2(1)) Fy (®).

On the other hand, since u satisfies
F(.\', y’ u(x’ }‘), uX(x’ y), uy(xa y)) = O,
we also have

5 {Fx—l—uxF,,—l—uxpr—l—unyq:O

Fy+uyFy+uxyFp+uybFy =0,
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where all partials of F are evaluated at (x, y, u(x, y), ux(x, y),u,(x, y)). Thus
equations (4) become

%}’“(’” = Fy(e) — ux(@(t), c2(0)) - Fulo)
©)
AW . _Fy(0) — uy(10),0200) - Fulo),

Let us now define a curve I in R by

D T = @020, 6300, ux (010,20, 1y (€1 (1), (1)),
Then equations (3) and (6) may be written
O _ Fyrwy
)
@ 0 r0) - B0 + 150 - BT 0)
O ) -0 B
T~ B C0) - 50 - RO,

Now although the curve T' was defined in terms of a solution u, the final
equations (8) involve only the original equation (I). This will allow us to de-
fine geometrically meaningful objects which do not depend on knowing a solu-
tion u. We may regard a point (xo, yo,Z0,a,b) € R% as a plane in the tangent
space R3(y,. yo.20)» Ramely, as the plane perpendicular to the vector (a, b, —1). A
curve I in R® may then be regarded as a family of planes, the plane at time ¢ be-
ing in the tangent space of R¥at e(r) = (I (1), T2(2), T3(2)); it will be convenient
to refer to this curve ¢ as the base curve of I. An arbitrary curve I is called
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a strip if the tangent vector ¢’(r) of the base curve ¢ always lies in the plane
determined by I" at time 7. This means that

() = (I (1), [2'(1),T5'(¢))  is perpendicular to  ([a(2), [s(2), —1).
So T is a strip if and only if it satisfies the strip condition:

dF;(t) . dI“l(t) drz(l)
T = T4(2) rr + [s(2) P

©)

Notice that any solution of (8) is automatically a strip. A curve I' will be called
a characteristic strip of the PDE (1) if T satisfies (8) and also

(10) F(L(t)) = F(T1(0), T2(0), [3(0), T (1), T's (1)) = 0.

This last restriction is not as stringent as it might first seem, for if T" satisfies (8),
then
dTi (1) dl's(t)
...+ F
dt di

[all partials of F evaluated at ['(1)]
= FyFp+ FyFy+ F; - (C4(t) Fp + Ts(0) Fy)

+ Fp- (—Fx =T4(OF) + Fg - (= F, - Ts() F?)

1 %F(F(t)) = Fx

=0.

So if T satisfies (8) and also satisfies (10) for one ¢, then it satisfies (10) for all 1, and
is consequently a characteristic strip.

Now how are characteristic strips related to solutions? We have seen that
if u is a solution of (1), then M, is the union of certain characteristic curves
[solutions of (3)]. Moreover, if ¢ is a characteristic curve, then the set of tangent
planes of M, along ¢ gives the curve I" of equation (7), which is a characteristic
strip. So M,, is the union of base curves of characteristic strips.

Now suppose that we have an arbitrary curve Z in R3, with base curve o, and
that F(Z(s)) = 0 for all 5. There is a unique solution of (8) through each point
Z(s), and by the remark after equation (11), this solution is a characteristic
strip. We thus obtain a family of characteristic strips I The union of the
corresponding base curves ¢ is a surface M, containing the base curve o. Is
it reasonable to suppose now that  is a solution of (I)? The answer is no, for
there is clearly no hope unless I is also a strip. When this condition is satisfied,
then everything works out. We will prove that if o: [a,b] — R? is a given



And Now a Brief Message from Our Sponsor 21

> T >

curve, i: [a,b] - Risa given function, and p,q: [a,b] — R are two functions
satisfying

(2) F(X(5)) = F(01(5),02(5), 2(5), p(5),4(s5)) = 0,
and the strip condition

di(s) 9
(b) a5 - p(s)

doi(s) o,  doa(s)
ds +4(s) ds

then there is a unique solution u of (1) satisfying
u(o () = d(s), ux(0(s) = p(s), uy(o(s)) = §(s)

[naturally, (b) is a necessary consequence of these equations]. We will clearly
have to assume that o’ (s) is linearly independent of the vector obtained by pro-
Jecting the characteristic vector (2) on the (x, ¥)-plane. In other words, we will

have to require that ¢'(s) and (Fp(X(s)), F4(X(s))) are linearly independent,
or that

(© 01'(5) - Fg(Z(5)) # 02'(5) - Fp(E(s)).

Before we proceed to prove the theorem, we should insert a remark about the
hypotheses, which will involve o, i, p, and § satisfying (a)~(c). At first sight, we
Seem to be contradicting our basic philosophy about first order equations, for
We seem to be saying that we can arbitrarily specify not only the values i of u
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along o, but also the values p and § of u and u, along 6. This is not really the
case, for p and § are practically determined by the equations (a) and (b) which
they must satisfy. This is most apparent when our initial curve ¢ is the x-axis,
o(s) = (s,0). Then equation (b) already determines p. Moreover, condition (c)
says that F; # 0 along {(s, 0,4(s), p(s),§(s))}, so the implicit function theorem
shows that equation (a) can be solved for g(s) in terms of S(s)—there is a
function ¢ with

F(s,0,i(s), B(s), ¢(5(s))) = 0.

Of course, there may be several possible ¢, but once §(0) is determined, there
will be only one continuous choice of ¢ satisfying (a). [In the quasi-linear case,
q(s) will actually be uniquely determined.] It is not hard to see that a similar
situation prevails when o is any curve satisfying (c): we are essentially specifying
only the values # of u along ¢, and then making certain that we have a contin-
uous choice of the limited possibilities for p and §. In order to emphasize this
point we will refer to (i, p, §) as “initial data”, rather than as initial conditions.

3. THEOREM. Let F be a function of class C¥, k > 3, defined in an open sct
U C R’ Leto: [a,b] - R? be a one-one C¥~! function, and let @,p,q: [a,b)
— R be C*~! functions such that for all s € {a, b] we have

(a) Z(s) = (01(5),02(5), é(5), p(5),4(s) € U and  F(E(s)) =0,

du(s) o doi(s) o  doy(s)
b) et ORS PR DR L
() 01'(s) - F4(Z(5)) # 02'(s) - Fp(Z(s)).

Then there is a C*¥~! function u, defined in a neighborhood V of o([a, b)),
which satisfies the equation

F(X, yau(xa }’), ux(x’ y)auy('\‘a }’)) =0 onV
and also
u(o(s)) = ua(s), ux(o(s)) = p(s), uy(o(s)) = q(s), for s € [a, b].

Moreover, any two functions u with this property agree on a neighborhood of

o([a,b)).
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PROOF. As in the proof of Theorems 1 and 2, we use Problem I.5-5 to conclude
that there is a C¥~! function & = (a1, .., &5) with

«(0,5,7) =r for r € R’

a%on(l,s,r) = Fplalt,s, 1))

a%Otz(t,s,r) = Fy(a(t,s,r))

a%aa(t,s,r) =a4(t,s,r) - Fpla(t,s,r)) +as(t,s,r) - Fyla(t,s,r))

a%om(l,s,r) = —Fy(u(t,s,r)) —aa(t,s,r) - Fylal(t,s,r))

a%oq(l,s,r) =—Fy(a(t,s,r)) —as(t,s,r) - Fyalt,s,r)).

Let
B(s,t) = a(t,s,01(s),02(5),u(s), p(s).4(s)),
so that B is also C¥~!. In particular,
B(s,0) = (01(s), 02(s), u(s), p(s),q(s)) = E(s).
If we define
y(s,t) = (Bi(s, 1), Ba(s,1)) € R?,
then the Jacobian of y at (s,0) 1s

3B 3B , doy
~a—s—(s,0) ~al—(s, 0) B o1'(s) W(O’S’ X(s))
36 3B, I
g(s,o) a—l(s,O) 02'(s) W(O’S’ X(s))

o1'(s)  Fp(X(s))
=\ by (%),
02'(s)  Fy(X(s))

and this is non-singular by hypothesis. So if ¢ is sufficiently small, then y : [a, b]
x (—¢&,8) > R¥isa Ck! diffeomorphism onto a neighborhood V of o([a, b]).
The solution u, if it exists, clearly must be the C*~! function

u(x,y) =Pa(y"'(x,y))  orequivalenly  u(y(s,1)) = Bi(s,1).
We claim that

Ux (v (s,1)) = Pals, 1) and uy(y(s,t)) = Bsis,t).
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This will prove that

F(x,y,u(x, ), ux(x,y),uy(x,y)) =0;

for we have already seen (equation 11) that F(a(t,s,r)) is constant for fixed s

and r, while F(a(0, s, Z(s))) = 0 by (a), so that we will have

0= F(a(tasa Z(S))) = F(ﬁ(s’t)) = F(ﬁl(sat)a ﬁZ(Sat)a ﬁ3(sat)a ﬁ4(sat)a ﬁS(Sat))

= F(y(s, 1), u(y(s,1)), ux(y(s,1)), uy (v (s,1))).
To prove the claim, we consider the function

B3 b1 9B
A=—2 By — B —=,
ds ¢ s P

We have
di(s) o . doi(s) o, . doy(s)
A(s,0) = - . _ .
(5,0) s p(s) s q(s) s
=0 by (b).
Moreover,
A _ 0 0B sty PP P
3 9sar ot as ot s "t asar 7O 3sde

~as \ar at
3P4 3p1 4 Bs B2 9Psdf1  IBs B2

ds a1 ds dt Jdr ds Jdr ds
B4 9Bs 9P

d {0B3 9B B2
D )

=0+FP'—+Fq'—+(Fx+Fuﬁ4)—a'S_+(Fy+Fuﬁ5)Eg“

as as

92

by (%) [where all partials of F are evaluated at (s, 1))

b B2 B3
—r P, P2, P P O
8s+yas+u8s+p8s+q8s
983 b B2
‘F"'(W‘*"‘*K‘ﬁfﬁ)

94 aBs

a

= a—(F(ﬁ(S,l))) - F-A
S

= _Fu . Aa
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since we have already seen that F(B(s,1)) = 0. Now for cach fixed s, we have
an ordinary differential equation

aA
— =—F, - A,
at
with the initial condition
A(s,0) = 0,

so the unique solution is A(s,2) = 0. In other words, we have shown that

B3 b1 B2
TR A TS

Also 96 96 28
3 _g,. 201 i
ET Ba T Bs T by ().

On the other hand, differentiating the definition u(y(s,1)) = Bs(s, 1) gives

ad a a
sty B+ 500 P
ad a ad
B o) B s G

These last four equations give two solutions for two linear equations in two
unknowns, whose determinant

o 5
det ds ds
B
ot at

is £ 0 for (s,1) € [a,b] x (—&,¢€). So the two solutions must be the same, 1.e.,

ux()’(s’t))=ﬁ4(s’l) and uy(y(s7t))=,85(syt)7

as desired.

We will say that the initial curve o is free for the initial data u, p,§ when
condition (c) in Theorem 3 is satisfied. Thus we can solve the Cauchy problem
for a first order PDE (1) for any initial strip £ = (01, 02, i, p,q) for which the
initial curve o is free for the initial data @, B, q.
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Again we consider the case where our initial curve ¢ fails to be free for
the initial data @, p,g¢ in the worst possible way, namely when o'(s) and
(Fp(Z(s)), F;(X(s))) are everywhere linearly dependent. Once again we say
that o is characteristic for #, p,§. Assuming that ¢ is an imbedding, we can
reparameterize ¢ so that 6'(s) = (Fp(Z(s)), Fg(Z(s))). This gives us the first
two equations in (8) for the curve (01,02, i, p,q). The third equation of (8) 1s
just the strip condition (b). The argument on pages 18-19 shows that these
three equations imply the last two if there is a solution u of (I) with

u(o(s)) = u(s), ux(0(s)) = pls), uy(a(s))=q(s).

So when ¢ is characteristic, the Cauchy problem is solvable for the initial data
u,p,q along o only if (01,07, i, p,q) is a characteristic strip. When this is the
case, there will be infinitely many solutions with this imitial data along 6. The
base curves of characteristic strips are the intersection curves of the graphs of
different solutions meeting tangentially.

We can now describe the situation for first order PDE’s in n vanables very
easily, without bothering to write down all the results as formal theorems. Con-
sider first the quasi-linear PDE

n
ZAi(xla"'axnau) : “xi = C(xla"'axnau)'
i=1

The characteristic vector field of this equation is the vector field X in R"*!

defined by

X—Zn:A'i+C 9.
_i=1 Y ox; az’

the integral curves of X are the characteristic curves of the equation. As in the
case n = 2, it is clear that if u is a solution of (1), then the hypersurface

n+i
Mll = {(xl""axnau(xla"'axn))} - R
is a union of characteristic curves. Now suppose we are given a one-one map
. n
o:D— R",

where & C R"™! is a compact (n — 1)-dimensional manifold-with-boundary,
and a function #: » — R. We can produce a solution u of (1) with

u(o(s)) = u(s) forall s € D



And Now a Brief Message from Qur Sponsor 27

by taking the union of the characteristic curves through all points (o (s), u(s)) €
R"*!. The proof is exactly analogous to the proof of Theorem 2, except that
we will now require that the matrix

(Dlﬁl(s) coo Dp_101(s) Al(U(S),ﬁ(S)))

Di6n(s) ... Dporon(s) An(o(s),8(s))

be non-singular for all s € O. This means, first of all, that the matrix (D;o;(s))
must have rank # — 1, so that o is an imbedding and o (D) C R” is a hypersur-
face. In addition, the vector (A;(o(s), #(s)),. .., Ax(o(s),(s))) must not lie in
the tangent space of o(D); we express this by saying that the “initial manifold”
o (D) is free for the initial condition # (for linear equations the initial condition 1
is irrelevant). Thus we can solve the Cauchy problem for any initial condition
along an initial (# — 1)-manifold which is free for the initial condition.
Now we consider the general first order PDE

F(xla'"’xnau(xla"'axn)auxl(xla"'axn)a"'auxn(xla"'axn)) =0.
We denote the partals of F by
Fyi, Fu, Fp,.

Consider curves I" in R*"*! satisfying

dT;(r) -
- = Fp, (C(2)) i=1,...,n
dTpi1(1)
%() = ; Ung14i(2) - Fp,(I'(2))
drn_:;:_i(t) - —Fx,(r(t)) = Fn+1+i(t)Fu(F(t)) i=1,...,n.

As before, we easily check that if T satisfies these equations, then F(I'()) is
constant in ¢. A solution I' with F(I'(¢z)) = 0 for all ¢ is called a characteristic
strip. Now suppose we have a one-one map

o:D—-R"
with D C R"™! as before, and functions

ﬁ,pl,...,ﬁn: D - R
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with
F(Z(s)) = F(61(5), ..., 0u(s),0(s), p1(s),..., pu(s)) =0  foralls e D.

Then there is a unique characteristic strip I' through each point Z(s), and the
union of the corresponding base curves is a hypersurface M,. In order for the
function u to be a solution to our PDE we will need two conditions, which
allow us to extend the proof of Theorem 3 essentially without change. First,
the matrix

Dioi(s) ... D,_101(s) FPI(E(S))

D16,(s) ... Dp_104(s) Fp,(E(s))

must be non-singular. Thus 6(D) C R" must be an (n — 1)- -manifold, and
(Fp,(2(5)), ..., Fp,(X(s))) must not liec in its tangent space—once again, we
express this by saying that the initial manifold o (D) is free for the initial data
U, Pls-- s Pn. Second, we must have

In terms of X, this condition reads

n

0Xn11 0X;
demtl Ny
asj lglj n+14i 8S] 9

and is called the strip manifold condition. If we think of a point (Xq,...,Xn, 2,
Pls..., pn) in R¥"H1 as a hyperplane in R"* (. 4, ), namely as the hyper-
plane perpendicular to the vector (P1s---s Pns— 1), then £: D — R may

be regarded as a family of hyperplanes along the (n — 1)-dimensional subman-

ifold o (D). It is easy to see that I satisfies the strip manifold condition if and

only if the tangent space of o(D) at any point o (s) always lies in the hyper-

plane determined by £ at s. We may summarize by saying that we can solve

the Cauchy problem for any strip manifold (o7, . . Oy Uy Py s pn) for which

the initial (n — 1)-dimensional submanifold o(i)) is free for the inital data
p1 senes p .
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2. FREE INITIAL MANIFOLDS
FOR HIGHER ORDER EQUATIONS

In the previous section we found that the characteristic curves or characteristic
strips for first order equations were the clue to solving them, while the free
hypersurfaces were the appropriate initial manifolds for which we could solve
the Cauchy problem. For higher order equations things are not nearly so simple,
but we can at least decide at the outset what the free initial manifolds ought to
be. To do this, we will first consider the special case where the initial manifold
isM={xeR":x,=0} CR".

First a review of the situation for first order equations. For the quasi-linear
equation

n
ZA,'(X},...,X,,,H) cUx; = C(xl,...,x,,,u),
i=1
the manifold M = {x € R" : x, = 0} is free for the initial condition ion M if
and only if
An(xla'"a-xn—laoaa(-xla'"a-xn—l))‘7‘£0 on M

If this condition holds, then in a neighborhood of M we can write our equation
as an equation for uy, in terms of u and the other ux;:

n—1
u _ Ai(Xl,...,Xn,u) C(xl,...,x,,,u)
Xn — X
" P Ap(xy, ..., xn,u) 7 Ap(X1,..., X0, 1)
= f(-xla"'axnauauxla”'auxn_l),

where the function f is defined in a neighborhood of all points
(Xl’ .. a-xn—laoaa(xla ... ,Xn—l), pla LI ] Pn——l)'

On the other hand, if M fails to be free at some point, then our original equation
gives us a relationship between the uy, for i < n, which means that there are
additional conditions which # would have to satisfy for a solution to exist.

For the general first order PDE

F(x,u(x),ux (X),..., ux,(x)) =0 [x = (x1,...,x4)],

the initial data 1, p1, ..., pn must satisfy, using xy._,—; as an abbreviation for
Xls.onyXn=1,

o] e} e}
(@) 0= F(X1..n—1,0,8(xX1 _.n—1); P1(X1..n=1)5- -+ Pu(X1n—1))

ZF(E(S)) S=(xla"'axn—1)a
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as well as the obvious compatibility conditions

% ..

(b) a—xj—pj j=1...,n—1

which is what the strip manifold condition on page 28 boils down to in this
case; otherwise expressed, the initial value # of u along M already determines
the values of uy, along M for i < n, so the only other initial data that we need
is a value py of uy, along M satisfying (a), when the pj for j < n are defined
by (b). Now M is free for this initial data if and only 1f

Fp,(X(s)) #0 on M.

In this case, the implicit function theorem tells us that there is a unique func-
tion f defined in a neighborhood of any given

o = (xla'"axn—laoaa(xla'"’xn—l)a [31(x15'"axn—l)a"'a[c;n—l(xla"'axn—l))
such that

F(x,z,p1y..s pu—t, f(X,2, P15 ..., Pn=1)) = 0 in this neighborhood
f(.) = [c))n(xla' i 'axn—l)'

So our PDE is equivalent to the equation
ux,, = f(xla'"axnauauxla"'auxnfl)

expressing Uy, in terms of u and the other uy,. On the other hand, if M 1s
not free at some point, so that Fp, (X(so)) = 0 for some so, then we generally
cannot find any continuous initial data p, satisfying (a).

We will now generalize this discussion to decide when M = {x e R" : x,, = 0}
should be called free for a second order equation. First consider the quasi-linear
second order equation

n
(l> Z Aijux,-x]- = C,

ij=l1

where the functions 4;; and C depend not only on x1, . .., Xa, and u, but also on
the uy,. It seems reasonable that the initial conditions for the Cauchy problem
should be the values @, pi,. .., pn of u and its first derivatives on M. But, as
we have already noted, # already determines the p; for i < n. So the initial
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conditions for the Cauchy problem* should be the values %, p, of u and u xn
along M. Yor the PDE (1) we will define M to be free for the initial conditions
a, 1‘)’,, if (recall that we are using x1. ,—1 as an abbreviation for xi, ..., x,_1)

Ann(Z(8)) = Aun(X1..n—1,0,8(x1_n—1)s P1(X1n1)s - 5 Pu(X1..n—1))
#0 on M,

where 13,- = 0u/9x; for i < n. If this condition holds, then in a neighborhood
of any point of M we can write our equation as an equation for uy, x, in terms
of u, the first partials uy;, and the other second partials uy, ;:

n

Ajj + C
Uxyx, = — § —Ux;x; -
~ Awn 77" Apn
i,j=1
(i, j)#(n,n)
=f(xl,...,x,,,u,ux,,...,uxn,...,ux,.x].,...),

[, /) # (n,m)]
where the function f is defined in a neighborhood of all points
(11,0, 8 (X1 1), Pr Y1 n=1)s s Pr(X1net)s s Pij (K1net)s - -2
Now consider the general second order equation
2) Flx,u(x),...,ux(x),.. Gl (X),...) = 0.

Appropriate initial data will be functions

o

o] o
u, Dpi, Ppij
satisfying

@ 0= FCrin—1,0,8(X1 n=1)s s PiX1nt)s- - s Pij (X1n—1), .. .)
= F(Z(s)),

*To avoid any confusion about the basic philosophy of the Cauchy problem, we em-
Phasize that for a quasi-tinear second order equation, the “initial conditions” &, p, are
completely arbitrary, while for the general first order equation the “initial data” p, must
satisfy (a) on page 29, and are essentially uniquely determined by the value at a sin-

gle point—we have to include 5,, in the initial data just to show which of the possible
solutions of (a) we are considering.
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and
ot .
8—x,- = Pjo J<n
(b) 5e
Di ) . .
= Dij 1 <n,j <n
ax; Pij s

in other words, we really need only #, pa, Pun satisfying (a), when the other P
and p;; are defined by (b). For the PDE (2) we define M to be free for the initial
data i1, P, pnn if

F,, (3(s) #0  on M.

In this case there is a unique function f defined in a neighborhood of any given
point
0= (X1.n—1,0,8(X1n—1)s s Pi(X1on=1)s - - -» pii(X1..n—=1)s---)

[0, j) # (n,n)]
such that

F(x,z,...p,-...p,-j...f(x,z,...p,-...p,-j...)) =0 1n this neighborhood
f(.) = lgnn(xla- s Xn—1)-

So our PDE is equivalent to the equation
Uspxy = X150 Xns Uy oo Uy o Uxxg, oY) [(i, j) # (n,n)]

expressing Ux,x, in terms of u, the paruals ux,, and the other second partial
derivatives Uy, x;.

Now we are ready to decide when an arbitrary (n — 1)-dimensional subman-
ifold M C R" should be called free for a second order PDE. Again we begin
with the quasi-linear equation

n
(1) Y Ajjuxg = C.

i,j=1

It seems reasonable that the initial conditions for the Cauchy problem on M
should be the value & of u on M, together with the normal derivative u’ of u
on M,
u(p + h-vip)) — u(p)

P )

u'(p) = lim
h—0
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where vi M — R”" is the unit normal on M. This normal derivative is the
same as
u/([)) = Vu(mu,

where V denotes the ordinary covariant derivative in R”. From the value # of u
on M we can calculate any directional derivative Vy, u for which X}, is tangent
to M at p. So from 1 and ¥’ we can calculate all directional derivatives Vy,u,
for p € M and Y, e R").

Now choose a diffeomorphism ¢: R* — R” such that ¢(M) C {x € R" :
x" = 0}. We look for a solution of (1) of the form u = @ o ¢. Substituting the

expressions
~ k
Uy; = E :uxk P x
k

Ux;xj = Zux;‘x,¢ x,¢ X; + Zuxk¢ Xixj

k,l

(%)

into (1), we obtain a quasi-linear equation for #,

n
) > Ajjitg; =C.
i,j=1
Prescribing the value # of u on M is equivalent to prescribing the value it of i
on {x € R" : x" = 0}. If we also know ' on M, then we know all directional
derivatives of u on M, and consequently all directional derivatives of # on
{x € R" : x" = 0}; in particular, we know du/dxy. So solving the Cauchy
problem for (1) for the initial conditions #, ' on M i Is equlvalent to solving the
Cauchy problem for (') for given initial conditions u u p,, on {x € R" x" = 0}.
Now we ask: what conditions on (M, 1, u’) will make {x € R" : x" = 0} free
for the initial conditions 5, [j,, for equation (1')? In other words, when will the
coefficient Ay of iy, x, in () be non-zero? From the derivation of equation (')
we see immediately that
Aun =) Aij¢", 9"
i
Since M = (¢")71(0), the vector (@, ...,$",) is a multiple of the normal v
of M (compare pg. I1.113). So for the PDE (1) we define the (n —1)-dimensional
submanifold M C R” to be free for the initial conditions #, 1’ if
ZA,‘]\),'U]'#O on M
Lj

(in order to write this equation out for a point of M, we have to know the
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values of u and the uy, at this point, since these occur as arguments of 4;;; but
we can compute these from the initial values @, u’). If M is free for the initial
conditions #, ', then equation (1) with the initial conditions #,u’ is equivalent
to an equation for a function # expressing #x,x, in terms of #, first partials
of i, and the remaining second partials of #, with imtial conditions giving the
values of & and u, at points (x1,...,Xp—1,0).

Now consider the general second order PDE

2) F(x,u(x), ..., ux;(X), ..., tx;x;(X),...) =0.

Appropriate initial data for the Cauchy problem on an (n — 1)-dimensional
submanifold M C R" will be functions

o] o o
u, pi, Pij,
giving the values of u and its first and second partial derivatives on M. Of

course, the p; can be determined by giving the normal derivative u’ along M,
which can be prescribed arbitrarily. But the p;; must satisfy

(a) 0= F(x,i(x),...,pi(x),..., pij(x),...) =0  forx € M,
as well as certain compatibility conditions; if M is the image of the map
(81, 8n—1) = (01(S1, -+, Su=1)s -+ On(81, ... Sp—1)) € R,

[e) [e] [e] . -
and we regard u, p;, pij as functions of (si,...,Ss—1), then these conditions can
be written as

du

% _ g, doi
aSj - im1 pi aSj

3[)0,' " ° 30,’
ryn ZPU ) aT
]

as;
J i=1

Once again, choose a diffeomorphism ¢: R” — R” such that ¢(M) C {x €
R” : x" = 0}, and consider a solution of (2) of the form u = it o ¢. Equation (2)
is equivalent to a second order PDE for u

21 F(x,i(X), .yt (X), oy g (XD, .. ) = 0,
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and prescribing the functions u, pi, pi j on M is equivalent to prescribing func-
[«) [*) [*)

tions u, pi, pij on {x € R" : x, = 0} which satisfy the conditions (a)
and (b) for the equation (2) on this initial manifold. We want to know when
{x € R" : x, = 0} will be free for this initial data; thus we want to know when

ﬁﬁnn’ evaluated at suitable points, is non-zero. Since we get equation (2') by
substituting (%) into (2), we easily see that

n
- n n
Fﬁnn = Z Fp,‘j¢ x,-¢ Xj*

ij=1
So for the PDE (2) we define M to be free for the initial data #, p;, p;; if

ZFpi;ViVj #0 on M

L

(in order to write this equation out for a point of M we need to know the values
of u,ux;, Ux;x; on M, which are given to us). If M is free for the data i, ﬁi, ﬁij,
then the Cauchy problem for the general second order PDE (2) is equivalent to
the Cauchy problem for an equation for a function i expressing iy, x, in terms
of u, first partials of i, and the remaining second partials of .

As in the case of first order equations we define M to be characteristic for
the initial data #, ﬁi, ﬁij if M fails to be free in the worst possible way, that is,

if
ZFp,','ViVj =0 on M.
L

Since we will never consider PDE’s of order higher than 2, we will not bother
to carry out a similar discussion for these equations. We merely note that with
the appropriate definitions, solving the Cauchy problem for a k** order PDFE,
when the initial manifold is free for the initial data is always equivalent to solving
an equation

ok u

o u
axnk(v\) —f(~\’,U(.X),...,m,...),

in which the order i, of any partial on the right with respect to x, is < k — 1,
with initial conditions for

ok=1y
u(xl,...,x,,_l,O),...,ﬁ(xl,...,xn_l,O).
0xp
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3. SYSTEMS OF FIRST ORDER PDE’s

For an ordinary differential equation
0y u'(x) = fx,u(x)),

we found that the existence of solutions was no harder to prove for the case of
a function u: R — R” than it was for the case of a function u: R — R. So we
could consider (1} to be a system of equations

ui'(x) = file,ur(x), ..., un(x)).
This enabled us to solve an n? order equation
2) u®(x) = fx,ulx),u'(x),...,u"D ),

for equation (2) is equivalent to the system of equations

!’

U =uj

ui' = uy
(3)

Un—z' = Up_
up—1'(x) = flx,u(x),...,up—1(x)).

More precisely, if u satisfies (2), then (u, 2/, .. ., u® 1)y satisfies (3); conversely,
if (u,uy,...,un_1) satisfies (3), then u satisfies (2) [and moreover u; = u(i)].
Since (3) can be solved with any initial conditions (u(xp), . .., Us—1(X0)), equa-
tion (2) can be solved with any initial conditions u(xo), #'(xo), - - -, 1D (x0).

There is no such general theorem about systems of first order PDE’s. If there were,
the study of PDE’s would certainly be much simpler, because, as we will now
point out, the Cauchy problem for any PDE can be reduced to the Cauchy
problem for a system of first order PDE’s. Because of the considerations in
the previous section, we will assume that the partials of u with respect to one
of the variables, which we will call y, are explicitly expressed in terms of the
partials with respect to the other variables, which we will call xy, ..., xp. Thus
we consider the equation

8"14 alu
a}T(.’Cl,...,An,y) == f (X,}',u(.\,y),..., axlil ___axnillayj 300 N
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the partial derivatives appearing on the right are all of order I < k, and the
order j with respect to y is < k — 1.

In the now-standard trick* for this reduction, we might as well allow our
equation to be a system itself; in other words, u can be a vector-valued function.
If we let u; = du/dx; and v = du/3y, then we have

k-2 9
ak—lu ay B ak—zv
gyk—1 — gyk—2 — gyk—2
du
k—1_""
ak—lul _ 9 ax;
yk—1 — gyk-1
k-2
I F1u 9 dy _d =2y
©Ox; Oykl T Bx; 9yk-2 T Qx; dyk—2
gk—1

v
P Sy ulx,p),..0),
with obvious initial conditions for u, uy, ... ,un, v. Notice that the order of all partial
derivatives of u with respect to y on the right is now < k — 2, so that this 1s a system of
order < k —1; conversely, this Cauchy problem for this system of (vector-valued)
functions u,uy, ..., us, v gives us a solution for our original Cauchy problem.
Thus, by repeating this process enough times we finally obtain a system of first
order PDE’s.

As a simple specific example, where the notation will be less abstract, consider
the Cauchy problem for the equation

uyy = f(x7 y,u, uX7uy7uXX7qu)-

We want to introduce u; for du/dx and v for du/dy; for convenience, we will
simply use « for du/dx. Then our Cauchy problem is equivalent to a Cauchy
problem for the first order system

Uy =0

(*) ay

Uy

Ux

f(xy _)‘7 u7a7 UsaX7 UX)'

for (u,a, v).

* From mimeographed notes, J. F. Tréves, Ouvsjannikov theorem and hyperdifferential operators,
Notas Mat. 46 (1968); see L. Nirenberg, An abstract form of the nonlinear Cauchy-Rowalewski
theorem, J. Differential Geometry, 6 (1972), 561-576.
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Yet one further simplification is possible: we can reduce any first order system
uiy = F(x,y,...,uj,...,ujx,...)

to a quasi-linear system. To do this, we simply introduce new functions p’
(representing 0u/dx;) and consider the system

uiy=Fi(x,y,...,uj,...,pj,...)

piy=FiX“|‘ZFiu,-'ujx+ZFipf'pjx-
J J

For the system (), instead of using the p/ notation, let us use*

p for uy
r for oy

s for vy.

Then the Cauchy problem for (*) is equivalent to a Cauchy problem for the
system

uy =0

ay:S

Uy :f(X,y,u,a,U,r,S)
(%)

Py =1y

ry = Sx

sy=fx+fu'p+fa'r+fv's+fr'rx+fx'sx-

4. THE CAUCHY-KOWALEWSKI THEOREM

In this section we will consider the most general system of first order quasi-

linear equations in the variables X1, ..., Xs, ¥, where the partials with respect
to y are expressed in terms of the partials with respect to xi,...,x,. We thus
have N equations for N unknown functions uy, ..., un:
N n
duy B 8u,5
8—y = ZZAW.(.\],...,x,,,y,ul,...,uN) 9
B=1i=1
+ Bo(X1, ..o Xn, VUL, .-, UN).

* For second order equations in 2 variables, the symbols p,q.r, s, are customarily used
for tx, iy, Uxx Uxy tyy.
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[Notice that the symbol Agi(xl, eeesXn, Vs UL, ..., un) 1s really an abbreviation
for p
Aai(xla"'axn’yaul(xla"'axnay)a"'auN(xla" 'axn’y))a

and similarly for B,.] We will prove that this system of equations has a solution
ui,...,un with given initial conditions

ua(xla"'axnao) = Sa(xla"'axn)'

The hitch is that we will have to assume that both the coeflicients Agl-, B, and
the initial conditions &y are real analytic. Recall that a function f: U C R™ - R

is real analytic if it can be expressed as a convergent sum

Z Coy...om (xy — al)al v (Xm — am)am
TVyenny T =
in a neighborhood of each point (ay, ..., an,) In its domain. We will also write

this in the abbreviated form

an(x —a)°.

4. THEOREM (THE CAUCHY-KOWALEWSKITHEOREM). Let &, (0 =
1,..., N)be analytic functions in a neighborhood of (ay, ...,a,) n R”, set by =
Ex(ay,...,ay), and let Agi and By (@, =1,...,N;i = 1,...,n) be analytic
functions in a neighborhood of (ai,...,as,0,by,...,bx) in R¥N*"+1 Then

there are unique analytic functions uy, ..., ux in a neighborhood of (ay,...,an)
in R” satisfying

aﬁ = ZZAgi(xl,...,xn,y,ul,...,uN)gL;
4+ Bo(X1,...sXn, YUty ..., UN)
with the initial conditions
a(x1,...,xn,0) = &Ey(x1,...,Xn).
PROOF. We first make three slight simplifications.

(1) We can assume that all a; = 0. For if we define

Va(X1,. ., Xn, V) = (X1 +ai,...,Xn +an, ),



40 Chapter 10, Section 4

then our equations and initial conditions are equivalent to equations of the same
sort for vy,

dvg
ax,-

N
_:Z Aﬂ(x1+a1,...,x,,+a,,,y,v1,...,vN)

4+ By(xi+ai,...,xXn+an, y,V1,...,UN),
with the initial conditions
Ve(X1,...,Xn,0) =&u(x1+ai,...,xp+ay).
The functions ga(xl, oy Xn) = Eg(x1 +ai,...,Xn+ap) are analytic in a neigh-

borhood of 0 in R”, and the coefficients of the new equation are analytic in a
neighborhood of (0,...,0,0,&(0,...,0),...,én5(0,...,9)) In RN+n+1

(2) We can further assume that the &y are all 0. Tor if we now define
VX1, o Xny V) = Ua(Xt5 s Xy ) = BalX1, -5 Xn),
and for abbreviation set
Co = v + & (x1,...,Xn) k=1,...,N,

then our equations and initial conditions are equivalent to equations of the same
sort for the vy,

dvg

N
av,
o :Z Afi(xl,...,x,,,y,Cl,.. CN) axs
B=1i=1 !

al 9t
[ZZA X1y Xy 1, C1y ..., CN) - ——(Yl,...,x,,)

+ Ba(xla"'axnayacla' "aCN)}a
with the initial conditions
Ve (X1,...,Xn,0) =0.

Notice that the coefficients of the new equation are analytic in a neighborhood
of 0in RN ¥+,
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(3) We can assume finally that the Ag and the By do not depend on y. Tor we can

i

consider the equations in N + 1 unknowns n,uy,...,un,
0
o _
dy
N n
Uy dug
W ZZ a,(xl,.. s Xno T Uly. .. UN) ox;
B=1i=1
+Ba(xl""axnanaula""uN)a
with initial conditions
’I(Xl,'--,xn,o):()
Ug(x1,...,X,,0) =0.
To sum up, we can consider equations
Bua dug
1) = ZZAM(XI,...,x,,,ul,...,uN) I
p=1i=1
4+ Bo(X1, ...y Xn, UL, .., UN)
with initial conditions
2) ug(xt,...,%n,0) =0;

the functions Agi and B, are analytic in a neighborhood of 0 in R¥*" and we
are looking for a solution u in a neighborhood of 0. We expand the analytic
functions Agi and B, around 0 as

B - - § : B
(?)) Aw.(xl,...,x,,,q,...,‘.N)= aai;m
_: :aalat Z
- Opn- T -~ T
(4) Ba(xla"'axnahla"'aﬂN)_§ baal ,,,,, TnisTlyeney tle "'xn n“/ll"'“NN
= E by, e X%,
ag, T

We claim, first of all, that there is at most one analytic solution

(5) Ug(xy,... Xn’J)—ZCaan ,,,,, onp X100 X" yP

g,
= E Caso,pX yp
a,p

X%V ox, STzt
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of (1) and (2). We just have to show that the coefficients ¢4.5,, are completely
determined by those of Agi and B,. From the particular way they are de-
termined, we will then be able to show that the resulting series (5) converges,
thereby also proving existence.

For a given n-tuple 6 = (04, ..., 04), let o + §; be the n-tuple

o+ =(01,...,00+1,...,0p).

Then if the uy are given by (5), we can write

du
axB (xla . axna y) = Z(ol + l)cﬂ;(7+5i,pxayp
i o,p
(©6) S,

W(xl,--.,xn,y) =Y (P + ea p41X° .
ag,p

So if the uq n (5) satisfy (1), then

Z(P + l)ca;a,p+1xayp
g,p

N . "
ZZ{ZaalGr (z Cl;a,pxayp) l ( E CN;a,pryp) }
p=! 9.0 a.p

Y (6i + 1)egiors; pX° yP
a.p

Tl ™~N
+ E ba;a,rxa(E Cl;a,pxayp) (E CN;a,pxayp)
g,7 g,p g,p

Now there 1s no need to become unduly frightened by this expression. After we
expand everything out, we will have an expression of the form

(8) Z(P + Deaso,pt1X° 37 = Z Pog,p(ag;.y o Dsinws Cein,)
o.p o,0,0

= Z Py, pla,b,c) for short,
o,0,p

where each Py, is a polynomial in certain of the al , be,v, and cgy y.

&jip,v
Just which of these appear as arguments of Py ¢,, depends on (o, p); the only

important thing for us to note is that

A) Py, depends only on those cg.y, , with v < p.
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Notice that all the information in equation (1) enters into (8) as the arguments of

the polynomials Py g,,. These polynomials themselves do not depend on the Agi
or Bgy, or on the ¢gy 0

The polynomials Py ¢, are “universal polynomials”

B) depending only on N and n.

Finally, we note that

(C) The coefficients of Py ¢, are non-negative integers.

Now if (8) is to hold for all sufficiently small (xi,...,Xs,y), then we must
have
(9) (p+ Deao,pr1 = .0, 0ld, b,c).

Together with the initial condition (2), which gives us ¢y;6,0 = 0, we can now
calculate all €45, recursively from (9), since (A) shows us that the right side
involves only ¢, » with v < p. This proves uniqueness.

To prove existence, we must show that the series (5) converges, when the
Cas0,p are computed from (9). We will show absolute convergence for sufficiently
small (xi,...,xs, ). This is done by the following trick, called the method of
majorants. Consider another set of equations

ou N ou
() 'f:ZZAS[(XIw~-,xn,u1a~~-,“N)8f
Y B=1i=1 i

+ Bo(X1,. ... Xp, Uy, ... UN)

which “majorizes” (1), that is, which satisfies
n 77
(10) { la&j:u,vl = 9gjiuy

_ for all &, n, j, 1, v.
|b$;u,v| = b&:u,v
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Suppose that equation (1), with the same initial condition (2), has an analytic
solution

(5') ua(xl7---7xn7y)ZZEa;a,pxayp'
a,p

Then we must have
(8,) (p+ 1)Eot;a,p+1 = a,a,p(&aga c),

where, by (B), the Py, are the same universal polynomials as in (8). We claim
that we can then conclude that

(l l) |Ca;a,p| =< Ea;a,p-

The proof is by induction. It is clear for p = 0. Now assume it is true for p.
Then

1

Ca:a,p+1| = p—_l_flpa,a,p(aa b, )l by (8)
1
—— Py g , 161, by (C
§p+1 a.o(lal,1bl,1cl) y (C)
1 -
< P Pog,pla,b,c) by (C) and (10)
= Ea;a,p+1 bY (8,)

This completes the induction proof. But now the convergence of (5'), together
with (11), proves the absolute convergence of (5). So the proof of the theorem will
be complete once we show that some majorant of equation (l) has an analytic
solution. This will be comparatively easy.

For some r > 0, the power series (3) converges for the point (x,z) with all
xj = z¢ = r. Then the terms

B O +-+IN

aai;a,tr

in this infinite sum must approach 0, and consequently are surely bounded:
there is some M with
B M

|aai;a,t

< -
poittin

for all o, 7. Yor r small enough and M large enough, this equation holds for
each @, < N and i < n. Similarly, we can assume that we have the same
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estimate for each |by. ¢|. We thus also have the weaker estimates

M o1+ +1V7)!

rortedy gt !

|a?

ai;a,t|7 lba;a,t| <

So if we take &gi,a . and Ba;a,t to be the expression on the right side of this

inequality, then equation (I') majorizes equation (1), and we just have to show
that the solution of (1') with the initial condition (2) 1s analytic. Since

Z&gi;a,tx"zt = lea;a,tx"zt
0,1 0,1
X\ (z\* (o1 + -+ TN)!
=My () 6) Tt
g, T

op!---Tn!
_ M
- (x1 +---+zn)°
r
we are dealing with the equations
N n
Ouy M dug
e +1
dy (x1+"'+uN)(ZZ 9xi )
[ L N\ EAR v N g
r

Ugp(X1,...,Xn,0)=0.
Since the equations for the different u, are all the same, and since the x; enter

only in the combination X = x| + - -- + X,, it seems reasonable to look for a
solution with all

Ua(x1y. oy Xn, ) =Ux1 + -+ x0,3) = U(X, ).

This gives us the single equation

U M L
oy | _X+NU e

r
U(X,0) = 0.

This is a first order equation, and hence one which, in theory, we can deal with.
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The simplest thing, at the moment, is just to check that

r=X Vo -X)?-2Nn+)Mry
(n+1)N Nn+1)
is the desired solution, and that it is analytic in a neighborhood of 0. <

U(X,y) =

Although the Cauchy-Kowalewski Theorem is the most general result in the
theory of PDE’s, its usefulness is greatly restricted by the fact that both the
coefficients and the initial conditions must be real analytic. We would naturally like
to know whether these hypotheses are somehow dictated by the very nature of
the problem, or whether they represent merely a defect in our method of proof.
[One source of difficulty may be the fact that in one respect the theorem proves
too much, since it is formulated for an arbitrary system of first order quasi-linear
equations. Although it would be nice to solve any such system, this problem
does not bear directly on the problem of solving a single higher order PDE,
because only very special sorts of systems of first order equations are derived
from higher order equations; given an arbitrary system of first order equations
with initial conditions, we generally cannot find a single higher order equation
with initial conditions that is equivalent to it.]

The necessity of having analytic coefficients in the Cauchy-Kowalewski Theorem
is demonstrated by the famous example of Hans Lewy [1],

dug du, duy auz

e = Tt 2%y —— — 22X — —
8x1 8x2 2 8x3 XI f ( )
du, du, duy duy
= 2 — — 2Xp—.
8x1 8x2 +ex 8x3 2 8x3

If f is C*® but not analytic, then this system has no solutions at all (let alone
solutions with arbitrary initial conditions). By the way, this system can be
considered as the following single equation for the complex-valued function
u=uy+iuy:
S +2i(x +1x2)—— = f(x3).
8\1 ax X2

There are also cases where analytic initial condztzons are necessary, for we will
soon see that there are simple PDE’s, with analytic coeflicients, that cannot have
solutions with given initial conditions unless these conditions are analytic. So in
a certain respect the Cauchy-Kowalewski theorem gives the best possible result
in these cases. On the other hand, it turns out that the Cauchy problem isn’t
even the one which we want to pose for these equations. Moreover, there is a
wide class of equations where the Cauchy problem is a natural one, but where
analyticity is much too severe a restriction.
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5. CLASSIFICATION OF SECOND ORDER PDE’s

In our first forage into the unchartered lands of higher order PDE’s, it is
natural that we first restrict our attention to those of second order:

du 9%u
F xl,...,x,,,u(xl,...,x,,),——(xl,...,x,,),...,———2(x1,...,x,,) =
ax; dax,
As a matter of fact, we will never get anywhere beyond this. Moreover, we will
deal almost exclusively with equations in only two variables,
2 2

d“u d“u %u
F(x y,u(x, y) (x J) (V y) ( y) (x y) (x y))

or in abbreviated form
F(x,y,u,p,q,r,5,1) =0.

Even nowadays there are certain phenomena about second order PDE’s which
are much more completely understood in the two variable case than in higher
dimensions, but the particular results that we are after can all be handled in a
uniform way that works in all dimensions. However, a whole book would be
required in order to reach them. So we will instead use quite classical methods
to analyze second order PDE’s in just 2 variables. Fortunately, the 2 variable
case happens to be just the one we are interested in.

We begin by singling out the semi-linear equations

(I) 0=a(x, y)uxx + 2b(x, Vuxy + clx, Yuyy + SOy, u,uy, uy)

= L(u) + f.
For such an equation, L(u) is called the “principal part”, and we will often
denote the remaining part, involving only lower order derivatives, by “ ”

There is a classification for these equations which is closely related to the clas-
sification of algebraic equations of the form

=ax? +2bxy + 032 = ((x,y), () - (42)),

with a, b, ¢ not all 0. We briefly remind the reader how this classification goes (it
is essentially the same as the classification of points on a surface in Chapter 2).
We choose two orthonormal eigenvectors X1, X; € R? for the symmetric matrix

(Z ?) , with corresponding eigenvalues A1, A2. Then

(X5 + 9o, @X1 + X (90)) = 0 X1 + VX, oM X + ¥ha )
= e + Ay,
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So if we use ¢ and ¥ as new coordinates for R2, our equation becomes
z =Mo" + Ayl

We can express this statement a little more precisely in terms of the linear
transformation S = (¢, ¥): R?2 — R? defined by

S(X1) =(1,0), S(X2) =(0,1).
Since
S(x, ) = (@(x,¥), ¥ (x,¥)) = ¢(x, p)S(X1) + ¥ (x, ¥)S(X2),

the functions ¢ and V¥ are just the coordinates of (x,y) with respect to X
and X>:

(x, ) = ¢(x, Y) X1 + ¥ (x, p) X2,

So we obtain

(I ax? +2bxy + cy?
= (o G- (52)
= (p0e X1 + Y0 0Ky B DX+ VDX - (40))
= (p(x,y) X1 + ¥ (x, p) X2, &(x, )M X1 + ¥ (x, y)A2X2)
= hlp(x, »)I* + Ay (x, 2.

These algebraic manipulations are often expressed slightly differently. We
can write equation (II) as

b A0
eon(§ (7)o ()82
A0

where t denotes the transpose. If Q is the matrix of the linear transformation S,
then we can write

w3 )

‘) =[x, 1) 0] (AO' fz) [(x.3) - OFf

)
—(ny) [Q(AOI fz)Q‘](j,) for all (x, 1),
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which implies that

(1) (‘; [z)=Q(AO‘ koz)Q‘.

It is not hard to see exactly what the matrix Q is. Since S™! takes (1,0) to X;
and (0, 1) to X3, its matrix has Xy and X as its two columns,

Q7! = (XY XY,

Moreover, since X; and X, are orthonormal, we have @71 (Q )t = I. So

-1t Xl)
0= =(}):

Since Q7! = Q% we can also write (III) as
)\,1 0 _ tf da b
G o)-e( 2o

The reduction (II) [or its equivalent (IV)] shows that the equations z = ax? +
2bxy + cy? fall into three classes:

Elliptic Case: ac —b* > 0; equivalently, Ay and A, have the same sign
Hyperbolic Case: ac — b* < 0; equivalently, A; and A, have opposite signs
Parabolic Case: ac—b>=0: A =0or i, =0.

We introduce a similar classification for semi-linear PDE’s
@ a(x, Y)uxx +2b(x, y)uxy +c(x, y)uyy +--- =0.

If ag, by, co are the values of the functions a, b, ¢ at (xg, yo), then we say that
equation (I) is

elliptic at (xo, o) if  agce — bg? > 0
hyperbolic at (xp, yo) if aoco— bo? < 0
parabolic at (xo, yo) if aoco — bo? =0

(but not all of ag, by, co are 0).
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Naturally we say that equation (I) is elliptic in an open set U if it is ellipuc at
each point (x, y) € U, etc. The simplest examples of equations of these three
types are the “normal forms”

(E) Uxx +Uyy +---=0

(H) Uxx —Uyy +---=0

P) Uxx +---=0.

As always, ... ” denotes terms which do not involve any second derivatives.
There is in addition an alternative normal form in the hyperbolic case,

(H') Uxy +---=0

(corresponding to the possibility of writing the equation for a hyperbola in the
form xy = 1).

We would like to see if equation (I) can be reduced to a normal form by
writing it in terms of a function v defined by

V) u(x,y) = v(@(x, ), ¥ (x,)));
here (¢, %) is supposed to be a differentiable map from R? to R? with differen-
tiable inverse. Denoting a typical point in the domain of v by (§,7), and the
partials of v by vg and vy, we compute that
Ux = Vg +UpVx, Uy = Vgby +n¥y
and then that
Uxx = U§§¢’x2 + 2ugndx¥x + Urm‘/fx2 + -

(V1) Uxy = VeePx Py + U‘;‘n((px‘/fy +hy¥x) + U ¥y + -+
Uyy = U$$¢y2 + 2vgny ¥y + Urm‘/fyz +--

113 "

where again denotes terms which do not involve any second deriva-

tives. [Naturally, if the derivatives of u are evaluated at (x, y), then the deriva-
tives of ¢ and V¥ are evaluated at (x,y), while those for v are evaluated at
(¢(x,»),¥(x,y)).] From this we easily see that

AUy + 2buxy + cuyy = avge + 2Bvey + yUgy + - -

where
o = agy’ + 2bgxd, + c¢,?
B =apx¥x +b(dxV¥y + Py¥x) + chyyry

y = av + 2V, ¥, + oy,
or equivalently

(5 2)-(5 2)G O w)

VI




And Now a Brief Message from Our Sponsor 51

Notice that the last part of (VII) shows that
(VIIL) ay ~ B = (ac — ) (@xVy — dy¥)’;

therefore the type of the equation for v 1s always the same as the type for u.
In one case, purely algebraic manipulations will reduce our equation to nor-
mal form:

5. PROPOSITION. Suppose that the equation
@ uxx + bty + cyy +--- =0

has constant coefficients a, b, ¢ in the principal part. Then there is a non-singular
linear transformation (¢, ¥): R? — R? having the property that if v is defined
by

V) u(x,y) =v(@(x, ), ¥(x, ),

then u satisfies (I) if and only if v satisfies a certain equation of the form (E),
(H), or (P). In the hyperbolic case, we can also find (¢, ¥) so that u satisfies (I)
if and only if v satisfies a certain equation of the form (H').

PROOF. Equation (IV) shows that we can choose a constant matrix Q =

(¢x Vx ) so that

by ¥y
(g 5) _ (AOI A02) in equation (VII).

Since det Q # 0, the linear transformation (¢, ¥) is non-singular. If we define v
by (V), then (VII) shows that equation (I) for u is equivalent to the equation

(1) A]U;g-i-)\zvrm-i-'”:o
for v. If we make a further change of coordinates by defining

v(p,0) = v(rp,so) F, § constants,

then
~ 2 - 2
Vpp =" Vgg and Ugg = S Upy.

So we can also arrange for A; and A to be £1 in (1). Then we have equations
equivalent to (E), (H), or (P) [we may have to interchange the names of & and 7].
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The form (H') is obtained by analogy with the fact that the equation x2 —

y2 = 1 becomes 47 = 1 when we perform the substitution X = %(x + y),
y= %(x — »). We define

@ w(p,a>=u(”+" "“’).

2 0 2
Then
1 1

Wy = Evg + EU"

1/1 1 1/1 1 1
Woo = 5 | Ve — 5V%n +5 S Ung = 3 lm ZZ(USS"UM)'

So an equation of the form (H) for v is equivalent to one of the form H)

for w. &

The same method that was used in this proof will clearly enable us to reduce
the general semi-linear equation (I) to an equation which has the normal form
at one point (xo, yo). But to obtain the normal form in a whole neighborhood,
we have to work much harder. We consider the elliptic case first.

6. THEOREM. Suppose that the equation
(I) a(xay)uxx+2b(xay)uxy+C(xay)uyy+"'=O

is elliptic in a neighborhood of (xo, yo). Then there is a differentiable map
(¢, V) from a neighborhood of (xo, yo) into R?, with differentiable inverse,
having the property that if v is defined by

V) u(x, y) = v(p(x, y), ¥(x, 1)),

then u satisfies (I) if and only if v satisfies a certain equation in the normal
form (E).

PROOF. Tt obviously suffices to find (¢, ) so that in equation (VII) we have
a =y and B = 0. So it suffices to find (¢, ) with

(1) adx + by d, + cd,? = ay® + 2bYx ¥y + ey’
(2) adxPx +b(¢’x‘/fy +¢’y‘/fx)+c¢’yw,v =0,
and ¢, ¥, — ¢, ¥ # 0 at (xo, ¥o). This is precisely the problem of introducing

isothermal coordinates for the metric @ dx ®@dx +b[dx®dy +dy@dx]+c dy ®dy,
which we solved in Addendum | to Chapter 9. %



And Now a Brief Message from Our Sponsor 53

In our proof of the existence of isothermal coordinates, we showed that (1)
and (2) are equivalent to the “Beltrami equations”

_ byx +cyy _ayx + by,

Vac —b? ’ vac—b?

Note that if (a) is to hold, then we must have

(b) d (M)_FE(M):O’ W = Vac — b2.

ax w ay w

(a) bx ¢y =

Conversely, if (b) holds for some ¢, then there is ¥ satisfying (a); moreover, the
Jacobian of (¢, V) is

1
Py — Py¥x = — W(wpﬁ + 2b¢x by + c)?),

which is non-zero if (¢x, ¢y ) # (0,0). So solving (a) 1s equivalent to solving (b),
which is 1tself elliptic [with the very same principal part as (I)]. Had we not
already solved equation (a), we would be 1n the embarrassing position of needing
to know that elliptic equations have solutions before we could reduce them to
normal form.

In the hyperbolic case, the same line of reasoning leads us into precisely this
difficulty, and thus requires results from section 7. However, there is also an
elementary argument.

7. THEOREM. Suppose that the equation
@ a(x, Yuxx +2bCx, Y)uxy + c(x, puyy +--- =0

1s hyperbolic at (xo, o). Then there is a differentiable map (¢, ¥) from a neigh-
borhood of (xp, yo) into R%, with differentiable inverse, having the property that
if v is defined by

V) u(x,y) = v(p(x, y),¥(x,y)),

then u satisfies (I) if and only if v satisfies a certain equation in the normal
form (H). The same result holds for a certain equation in the normal form (H').

FIRST PROOF. We claim, first, that we can assume that ¢o = ¢(xo, yo) # 0.
For suppose that ¢ = 0. Choose (¢,V¥) to be a linear transformation with

matrix (i (1)) . Then at (xo, yo) the coefficients «, B,y of the equation for v
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are, by (VII),

o ﬁ _ 1 0 aop b() 1 A _ ( ap )\a() + b()
By AL bo 0 0 1/ Aag + bo )\za() +2xbo )
Since we must have ag # 0 or by # 0, we can certainly choose A with Aag +

2Abg # 0.
So we assume that ¢(xg, yo) # 0. To achieve the normal form (H), it now

clearly suffices to choose (¢, ) so that in equation (VII) we have « = —y and
B = 0. Solving as before, we end up with the system of equations
byrx + ¢y
b = A2
Vb? —ac
an + b‘/fy

b=

“ac
or equivalently
b Vb2 —ac
¢’y = - z(px + _C—‘/fx

b* —ac b
Yy = ———6¢x — ~V¥x.
C c
Section 7 shows that we can solve this (“hyperbolic”) system.
To obtain the normal form (H'), we start with v satisfying an equation of the

normal form (H),

Vgg — Upp - =0,
and define
p+o p—o
2 ,0) = , .
(2) w(p,o) v( 5 5 )

As in the proof of Proposition 5, we find that w satisfies an equation of the
normal form (H').

SECOND PROOF. We can instead try for the normal form (H') directly; the
normal form (H) is then obtained by the same change of coordinates used in (2),
which is equal to its own inverse, up to a factor of 2. So it suffices to find (¢, ¥)
so that in equation (VII) we have @ = y = 0; thus we need

{ agy’ +2bgxdy + ¢y =0

]
Y ayy? +2bYxyr, + eyt =0
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and
(2) Oy — ¢y‘/fx # 0.

As in the previous proof, we can assume that ¢(xo, yo) # 0. If there is any hope
of solving (1) and (2), we clearly must have ¢, ¥x # 0. This suggests that we

look at the equations
)-(2)
a + 2b (_ + C —_— = 0
¢x ¢x

(1) 2
a+2b (%//j—i) +c(%) =0

¢y ¥y
2 — F .
) . # e
Clearly (I') and (2) imply (1) and (2). Now ac — b? < 0, so the equation
3) a(x,y) + 2b(x, y)p +c(x, ppu? =0 c(x,y) #0

always has two distinct, real roots, p(x, y) and p2(x, y), varying continuously
with (x, y). So we just have to find ¢ and ¥ satisfying

¢y — t1dx =0 ®x # 0 at (xo, o)
Yy — U2 =0 Yx # 0 at (xo, yo),

in order for (1') and (2') to hold. But the two equations in (4) are each linear first
order PDE’s, and the line y = yj is free, for any given initial conditions ¢ (x, yo)
and ¥ (x, yp); in particular, we can assure that &y (x0, ¥0), ¥y (x0, ¥o) # 0. %

(4)

Finally, there is no problem in the parabolic case.

8. THEOREM. Suppose that the equation
@ a(X, Y)xx + 2b(x, Y)uxy + (X, Yuyy +--- =0

1s parabolic in a neighborhood of (xg, y0). Then there is a differentiable map
(¢,¥) from a neighborhood of (xg, yo) into R?, with differentiable inverse,
having the property that if v is defined by

V) u(x, y) = v(@(x,y), ¥(x, y)),

then u satisfies (I) if and only if v satisfies a certain equation in the normal
form P).



56 Chapter 10, Section 5

PROOEF. It obviously suffices to find (¢, V) with ¢x¥), — ¢y¥x # 0 s0 that in
equation (VII) we have y = 0. For then 8 must be 0 by (VIII), while the last
part of (VII) shows that o cannot be zero. We thus want

1) ayt + 2bY, + eyt = 0.

We obviously must have a(xo, yo) # 0 or ¢(xo, Yo) # 0, say the latter. It suffices
to find ¥ with ¥, (xo, yo) # 0 and

2
19 a+2b (%) +c (%) =0

in a neighborhood of (xg, yo); for we can then take ¢(x, y) = x, and (¢xVy —
dy¥x) (X0, Yo) = ¥, (x0, yo) # 0. But equation (1'y is simply equivalent to

%/ljl = —g or cYx = —by,.

This is a first order linear PDE, and the line y = yy is free near (xq, yo), since
¢(xo0, yo) # 0. So we can find a solution with arbitrary values of ¥ (x, yo) for x
near xo, in particular with ¥ (xo, o) # 0.

If c(xo, yo) =0, we look at ¥, /¥, instead.

There is an especially important characterization of elliptic semi-linear PDE’s
(I) a(x, y)uxx +2b(x’y)uxy+C(x’y)uyy+"'=0’

which is the basis for extending the definition of ellipticity to more general
equations. Consider an initial curve ¢ in R2. According to the definitions of
section 2, when we are considering the PDE (I), the curve ¢ is free if and only if

avi?® + 2bvyvy + cvy? #0 onc¢

(the initial conditions are irrelevant in the semi-linear case). Now if ac —b% >0,
then the equation
0= ar? +2bAp + cu?

has no real roots at all, except A = u = 0. So if (I) is elliptic, then any initial
curve ¢ is free for any initial conditions. On the other hand, if (I) is hyperbolic,
then there is a 2-parameter family of characteristic curves which fail to be free
at all points.
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For a general second order equation
) F(x,y,u, p,q,r,5,1) =0,
we define a given solution u to be elliptic if
4F, F, — F2 >0
at all points
(6, ¥, u(X, ) ux (X, ), Uy (X, V), Uxx (X, V), Uxy(X, ), yy(X, ).
In this case, any mitial curve ¢ is free for the imtial data
ule, Uy, lc, Uxix;lC.

We define a given solution u to be hyperbolic or parabolic in the obvious anal-
ogous way. Notice that for a given PDE which is not semi-linear, and even for
a quasi-linear PDE, there may be solutions which are elliptic and also solutions
which are hyperbolic or parabolic. The simplest example is the equation

Uxx +U-Uyy, =0.

The solution u = 1 is elliptic, and the solution u = —1 is hyperbolic. This may
seem like a ridiculous distinction, but, as we shall learn in sections 8 and 9,
solutions near 1 will have entirely different properties from solutions near —1.
A more natural example is the equation

(1- uxz)uxx —2uxuylxy + (1 — “yz)“yy =0,

which occurs in gas dynamics. The solution u is elliptic if and only if u,? +
u,? < 1. Such solutions represent “subsonic” flow, while hyperbolic solutions
represent “supersonic” flow. Thus we see that the terms elliptic, hyperbolic,
and parabolic, do not make sense for the general second order equation; these
terms apply to solutions of the equation, rather than to the equation itself. On
the other hand, it clearly makes sense to apply the terms elliptic, hyperbolic,
and parabolic to given initial data along a given initial curve.

It is important to observe that the type of a solution remains the same under a
change of variable, just as in the semi-linear case. Suppose that u is a solution of

) F(x,y,u,p,q,r,5,1) =0,

and that we write

V) u(x, y) = v(d(x, ), ¥(x,))
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for a diffeomorphism (¢, ¥). Using equations (VI), we see that v satisfies an
equation

@) G(X, ¥, V, Vg, Un, Vg, Vg, Upp) = 0
where G has the form

G(_,rs,t)=F(_,r',s,t)

for
r = gxlr + 2P + Yt
s' = eyt + (PxWy + Py Wx)s + Yx ¥yt
t' = ¢y + 20,y + ¥y

Hence

G, = Fr¢’x2 + Fipxpy + Ft¢y2’ etc.,

and we find that
(5 2 =(5 o) (G 0 )
16, G Vs W) \iF FEJ\¢y ¥/
Therefore
GG — 3G2 = (Fr Fo = L FP) - by — dy¥x)

Consequently, u is an elliptic or hyperbolic solution of (1) if and only if v 1s an
elliptic or hyperbolic solution of (2).

A few remarks might be made concerning the definitions in higher dimensions
(which we do not actually use). A sermi-linear PDE

n
Z aij(xl’---’xn)“xix,- +f(xly---’xn’“7---’“xi’---) =0
ij=1

is called elliptic at a point X = (X1, ., Xn) if the matrix (a;;(x)) is definite, and
elliptic in a region if it is elliptic at each point of the region. For an elliptic semi-
linear PDE, any initial manifold will be free. We can define several different
sorts of hyperbolicity and parabolicity, depending on the rank and signaturc
of this matrix when it is not definite. Proposition 5 generalizes; if the a;; are
constants then our equation is equivalent to a normal form

oz + - Uxpxy = Uxppixey — 0~ Uxgx T =0
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But Theorems 6—8 do not generalize; there are too many conditions to be
satisfied by the diffeomorphism which changes u to v. We can also define when
" a given solution u of the general second order PDE is elliptic, in a fairly obvious
way that is left to the reader.

The fact that any initial curve for an elliptic semi-linear second order equa-
tion in 2 variables is free, while a hyperbolic semi-linear equation always has
initial curves which are characteristic, certainly suggests that elliptic and hy-
perbolic equations might have quite different properties. But some of the most
important reasons for this classification of second order equations come from
physics, which provides the motivation for many of the basic problems about
them. So we will first make a brief excursion into this forbidding domain.

6. THE PROTOTYPICAL PDE’s OF PHYSICS

We are going to begin by deriving certain classical PDE’s which describe
important (somewhat idealized) physical situations. The word “derive” had
better be taken with a hefty grain of salt, however. What I have really tried
to do is give plausible reasons why the physical situations should be governed
by those PDE’s which the physicists have agreed upon. I've never really been
able to understand which parts of the standard derivations are supposed to
be obvious, which are mathematically simplifying assumptions, which steps are
supposed to correspond to empirically discovered physical laws, or even what
all the words are supposed to mean.

The first idealized physical situation which we want to describe is a vibrating
string which is not acted upon by any outside forces. We naturally consider this
string to be 1-dimensional, and we will assume that the motion actually takes
place in a plane. We may regard our string as being either of finite length with
fixed endpoints, or of infinite length. The first possibility corresponds to a string
stretched between two prongs, while the second is a more idealized conception.
We will let u(x,?) denote the height of the string above (x,0) at time ¢.

- \/v\ N \/lum
e i
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In order to apply the laws of mechanics to the string, we will first regard
it as a discrete collection of point masses, whose x-coordinates are all some
small distance h apart. In the course of time, the k" particle moves up and

down (but not sideways); its height above the x-axis at time ¢ will be denoted
by u(xg,t). The only forces acting are the “tension” forces between pairs of
particles; physically these come about because the motion of the string involves
slight changes in the distances between molecules, to which the intermolecular
forces are extremely sensitive. We will assume that each particle 1s acted upon

/\
A 6 \

F,

Xk—1 Xk Xk+1 Xk+2

only by the particle immediately to its left and right. It is thus influenced by
two forces, Fi(xg,t) and F_j(xg,?), which are vectors pointing along the line
from it to its neighboring particles. These vectors make angles of 6;(xx, ) and
6_1(xk, 1) with the horizontal rays pointing right and left from the position of the
particle. Assuming that our particles all have mass m, we use the law F = ma
to obtain the following equation for the vertical motion u(xy,t) of our particle:

(@ m - up(xp, 1) = [Fi(xp, )] - sinby (e, 1) — [ Foa(xp, 1) - sin 1 (X, 7).
Since the particle does not move sideways, we also have

(b) 0 = | Fi(xk, )] - cosby(xk, 1) — | Fo1(Xk, 1) - cos 01 (x, ).
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~ We clearly have

h
VI + (g, 1) — ulxe, 1)}

cosO1(xy,1) =

1 ul(xgy,t) —ul(xg,t
o where Dy = (Xk1,2) — ulxg, )

© N ,/1+Dk2’ h ’

H(Xk+1,t) - H(Xk,t)

hv/ 14 Dk2

sin &y (xg,t) =

Noting that 6_1(xg, 1) = 61(xk_1,1), we find that (a)—(c) lead to

(d) m - u”(Xk,t)

. ) cos O (xy,1)
= . - 0 D o)
|F1(Xk7t)| [Slnel(xk’t) s I(Xk’ ) COSQ—I(XIUZ)

u(Xgyr,t) —u(xg, 1)  ulxg,t) —ulxe—1,t) 1+ Dg_12
= | Fi(xk, )| - -

hv1+ D2 Wit De2 1+ D2

_ R, 1) '[“(Xk+1’t)+“(xk—1’t) —2u(xk,t)}

V14 Di? h

This is a system of differential equations for the (possibly infinitely many) func-
tions u(xy,t). It depends, of course, on knowing Fj, which would depend on
the particular molecular forces involved. Leaving aside that objection for the
moment, we now seek a PDE which will describe a uniform string, not a dis-
crete collection. To obtain this, we want to let the number of particles increase,
by decreasing h. Of course, we also want to change m in the process, so as not
to have an infinitely heavy string at the end. On a piece of thread of length 1,
there will be about 1/ A particles, with a total mass of m/h. So we keep m/ h
equal to a constant p, the density. We will also assume that Fy approaches a
function T, the tension of the string (it measures with how much force the string
will snap apart if it is cut at some point). Now it is well-known (use Taylor’s
theorem for a proof) that :

p SR+ S =) = 2f () _
11m =

h—0 h?

f(x).
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So if we divide equation (d) by 4, and then take the limit as A — 0, we find that

u(x,t) should satisfy
T

Pllyy = ———— lixx.
V14 uy?

Quite apart from the fact that we don’t know how to find 7, this equation
suffers the defect of being non-linear. We can simplify things by restricting our-

selves to the case of small vibrations; then T is practically constant, and v'1 + ux?
is practically 1. We have thus completed our devious path to the 1-dimensional
“wave equation”

Uxx = PUtr.

Since p > 0, a simple change of coordinates always gives us the equation
Uxx = Uyt

This equation also describes sound waves in a long thin pipe; in this case, u(x, )

€ 7

X

represents the density of the air at distance x and time ¢. The 2-dimensional
wave equation

Uxx +Uyy = Uy

will describe the motion of a vibrating membrane, while the 3-dimensional wave
equation
Uxx tTUypy +Uzz = Uy

will describe sound waves, as well as certain phenomena involving electromag-
netic waves. For our purposes, the 1-dimensional wave equation will be quite
adequate.

The second idealized physical situation which we want to describe is the tem-
perature distribution within a material body. It is important here to distinguish
between the temperature and the heat energy of a body. The temperature of a
body, which is operationally defined by putting it in contact with a thermome-
ter, is the average kinetic energy of its molecules. We define the temperature
u(x, y,z) of a body B at the point (x, y,z) to be the limit of the temperatures
of small parts of B which contain (x, y,z). Naturally this doesn’t really make
much sense for a physical body made of molecules, so we must deal with an
idealized situation when we consider temperature to be a function u defined on
a certain subset B C R’.
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Heat energy is something different. It takes a certain amount of energy to
produce a unit increase in temperature within a unit amount of matter. How
much energy depends on the particular kind of matter we have. There are two
reasons for this. First of all, the molecules in two different kinds of matter have
different weights, so different amounts of energy will be required to increase the
average kinetic energy of the same number of molecules by the same amount.
In perfect gases, this is the only influencing factor. In other cases, the strength of
the intermolecular forces will also influence how much energy has to be put in to
increase the average kinetic energy. The specific heat or heat capacitance C of
a piece of matter is the amount of energy required to increase the temperature
of a unit mass by a unit amount; we will consider only bodies with uniform
specific heat. If u(x, y,z) is the temperature at (x, y,z) of an object B with
specific heat C and density p, then the total heat energy of B is

(a) heat energy = Cp/ udV.
B

The basic experimental fact about heat is that when two bodies of different
temperature are placed next to each other, the temperature of the hotter one
decreases while the temperature of the cooler one increases, and the rate of
change of temperature is proportional to the difference. So if we have two
bodies which at each time 7 have uniform temperatures T;(¢) and T5(¢), then

%Tl (t) = (constant) - (T1(t) — T»(¢)).

This constant will depend on the amount of surface area which the two bodies
have in common, as well as on the nature of the material of which they are
made. The simplest case to consider is that of a single piece of matter B with

—
i

two parts, By and B;, initially at different temperatures, 77 and 7. Of course,
the two parts will not continue to have uniform temperatures, but at least we
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can say that

o Ti(t) = (constant) - A - (T1(t) — T2(1)),

=0

where A is the area between them. By changing the constant, we can also write
this as

d
(b) 7

yr CoTi(t) =k - A-(T1(t) — Ta2(2))

t=0

for some constant k. This constant « is called the heat conductivity of the
matter in question, since it measures the rate at which heat energy is transferred.
Roughly speaking, « must depend on the way the molecules are arranged; this
arrangement will somehow determine to what extent faster moving molecules
can influence slower moving ones.

Now let us consider a body B C R? with uniform density p, specific heat C,
and heat conductivity k, but with temperature u(x, y,z,?) varying both with
position and time. What will be the analogue of equation (b)? The left side
of (b) represents the rate of change of the heat energy of the part of B with
temperature Tj. So for any subset M C B, equation (a) suggests that the
analogue of the left side of (b) is

(L) iCp/ udV:Cp/ urdv.
dt M M

Let us suppose that M C B is a 3-dimensional manifold-with-boundary, and

that v is the outward unit normal on M. If X is the vector field

[X depends on ¢],

0
X =gradu = (8u du -ﬁ)

dx’ 9y’ 0z
then for fixed 7 the function —(X,v) measures how fast the temperature is

decreasing as we cross 9M from the inside to the outside; roughly speaking it
measures the difference T; — T» on the two sides of dM. So the analogue of
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the right side of (b) 1s

— —(X dA = X,v)YdA.
®) () [ ~txov) KfaM< )

Setting (L) = (R), we are led to the equation

(©) Cpru,dV=KfaM<X,v)dA.

We could also obtain equation (c) by breaking M up into small cubes, each of
which may be regarded as having constant temperature, and applying (b) to
cach cube; the term on the right of (b) is to be replaced by a sum over the faces
of the cube.

Now applying the Divergence Theorem (Problem 1.9-13), we are led from
equation (c) to

(d) Cpf u,dV:K/ divXdV
M M

=K/ Uxx T Uyy + Uz dV.
M

Since this is supposed to hold for all M, the integrands must be equal, and we
obtain the 3-dimensional “heat equation”

K

—C_p Auxx + Uyy + Uzz) = Uy,

Of course, we usually replace the positive constant k/Cp by 1. The 1-dimen-
sional heat equation

Uxx = Uy

describes temperature distribution in a long thin rod, while the 2-dimensional
heat equation

Uxx +Uyy = Uy

describes temperature distribution in a thin plate.

We obtain a very special equation when we seek the “steady state” tempera-
ture distribution of a body. This is the temperature distribution it has when the
temperature is not varying with time. For example, if we keep both ends of a bar
at fixed temperatures by attaching them to “heat reservoirs”, mechanisms which
maintain a fixed temperature at a point, then the temperature distribution will
rapidly approach a linear function between these two values. To find the steady
State temperature distribution, we just set #, = 0 in the heat equation. Thus in



66 Chapter 10, Section 6

the 1-dimensional case we obtain simply #xx = 0, whose solutions are simply
linear functions on R. In the 2- and 3-dimensional cases, we obtain

Uxx +Uyy =0 2-dimensional Laplace equation

Uxx +Uyy +Uzz =0 3-dimensional Laplace equation.

Among these important equations of mathematical physics, we find represen-
tatives of each of the three types of second order PDE’s. In particular, for two
variables we have the following standard examples:

Elliptic equations

Uxx +Uyy =0 the 2-dimensional Laplace equation
Hyperbolic equations
Uxx —Uyy =0 the 1-dimensional wave equation

The equation uxx(x, ) = 0 is a parabolic equation in 2 variables, but obviously
a little too simple to be very representative. The standard representative is

Parabolic equations

Uxx = Uy the 1-dimensional heat equation

Parabolic equations are often slighted in introductory treatments of PDE’s, and
they will suffer the same treatment in our hands—we will never look at them
again. We therefore say good-bye to the heat equation, and consider only the
special case of Laplace’s equation.

Now let us see what sort of mathematical questions these physical situations
suggest. Consider first the 1-dimensional wave equation, which we will write
as tyy — Uy = 0, to remind us that it describes a process involving time. In
such processes, it is naturally of interest to predict what will happen later from
a knowledge of what is happening now. It seems perfectly reasonable to hope
that we can predict the motion of a string in terms of its initial position and
initial velocity,

u(x,0), u:(x,0).
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Moreover, there seems to be no reason why we should have to limit ourselves to
analytic initial conditions. For example, if we “pluck” a string, then the simplest
description involves an initial condition u(x, 0) which is not even differentiable

S

everywhere. This example suggests that for Ayperbolic equations the Cauchy
problem 1s the right one to pose, and that we should not have to restrict ourselves
to analytic initial data (which is all we can treat when we rely on the Cauchy-
Kowalewski Theorem).

Another mathematical problem is suggested by the fact that in actuality vi-
brating strings are always secured at two ends. Given two functions ¢, ¥ : [0, L]
— R with

¢(0) =¢(L)=0
Y (©0) =y(L)=0,
we can ask for a solution u of the 1-dimensional wave equation with
u(x,0) = ¢(x) 0<x<L
ur(x,0) = ¥ (x) 0<x<L

u(0,t) = u(L,t)=0 for all ¢.

This is an example of an “initial-boundary value” problem; although such prob-
lems are also quite important, we will not consider them at all.
Quite different questions are suggested by Laplace’s equation

Uxx +Uyy +Uz;; =0.

Here time is not involved at all; the equation describes the steady state heat
distribution of some object B € R*. The Cauchy problem for this equation
would correspond to the physical problem of predicting the temperature every-
where in B from a knowledge of its values along some plane in B, together with
knowledge of its derivative in the perpendicular direction. Now this is hardly
a reasonable problem, since 1t isn’t very easy to measure the temperature at
various points inside a solid object. This is the sort of information we would

ﬁuand Uy

given here
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like to predict. The sort of thing we can measure is the temperature along the
boundary. Similarly, for a region B in R?, we would like to ﬁnd the solutions u
of the 2-dimensional Laplace equation

2 T ay?

2y 0%u —0 /\‘m

which has given values along the boundary of B. A problem of this sort is called
a Dirichlet problem. The physics seems to suggest that for elliptic equations it
is the Dirichlet problem rather than the Cauchy problem which should be of
interest.

Now let us see how these physical speculations correspond to mathematical
reality.

The 1-dimensional wave equation

(h Uxxy —Uyy =0

is admirably suited to illustrate the general behavior of hyperbolic equations,
because the most general solution of (1) can be written down completely. The
trick for doing this is simply to use the alternative standard form for a hyperbolic
equation. We define v by

@ m-u(S;” 5'2"’)

ulx,y)=v(ix+y,x —y).
Then equation (1) for u gives
(3) vgn = 0.

At the very beginning of this chapter we mentioned that the general solution of
equation (3) is
v(gm) = f(§) +g).
So the general solution of (1) 1s
(4) u(x.¥) = v(x + 3, ¥ — 3)
= flx+y)+gx—1).
If we think of our equation in terms of position x and time ¢,
Uxx — U =0,

then the solution
ulx, )= f(x+1+glx—1
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represents the sum of two “waves”, the first moving to the left as ¢ increases,
the second moving to the right.

—_—) —

=20

f=1 /\J

=2 /\

1=3 . /\/\
— —_—

t=4

Using the representation (4) for the solution u of (1), it is easy to find solutions
with given initial conditions

(5) H(X,O) =¢(X)
uy(xao) = w(X)
Clearly we must have
6) fx) + g(x) = p(x)
flx) = g'(x) = ¥r(x),

and therefore

F1(x) +g'(x) = ¢'(x)
S1(x) = g'(x) =¥ (x),
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which implies

Fix) = ¢'(x) 42- 1//(X), 2(x) = ¢'(x) —2- 1//(X).
This means that we must have
0 fe =224 f Yo ds+Cr, g(x) = M——f Y(s)ds+Ca
for certain constants Cy, Cy; and to satisfy (6) we must have C; = —C3. Using (4)

we then find that ¥ must be

DX+ ) +olx — ) f"”
*3 2

®) u(x,y) = ¥ (s)ds.

2 -y
It is clear, moreover, that this u is a solution of equation (l), with initial condi-
tions (5).

Notice that the boundary values ¢, ¥ enter into the solution in quite a differ-
ent way than for first order PDE’s. If u is a solution of

F(X’yauap’q) :O

with initial data #, p,q along a free curve o, then the value u(x, y) of u at
a particular point (x,y) depends on the value of the initial data at one point
(X, 7) on o, namely the intersection of ¢ with the base curve of the characteris-
tic strip through (x, y,u(x, y), ux(x, y),uy(x, y)). Changing the initial data on
an interval which does not contain (X, y) will not change the value of the solu-
tion u at (x, y). But in the solution (8) of the 1-dimensional wave equation (1),
we need to know the values of ¢ and ¥ on the whole interval [x — y, x + y] (or
[x 4+ y,x — y]if y < 0). This interval is therefore called the “domain of depen-

dence” of the point (x, y). Conversely, if we are given initial conditions ¢, ¥
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defined only on an interval [a, b], then equation (8) defines 4 only on the set 4
of all points (x, y) whose domain of dependence is contained in [a, b]. Notice

that 4 is bounded by the curves through a and b which are characteristic for
the PDE (1).

Naturally, we might ask about solutions of (1) along free curves other than the
x-axis. In section 8 we will consider this question for even more general hy-
perbolic equations. If the 1-dimensional wave equation is indeed representative
of general hyperbolic equations, then we should be able to solve the Cauchy
problem for any hyperbolic equation, along any free curve, and without any
assumptions about analyticity of the initial conditions.

The situation is completely different for the 2-dimensional Laplace equation

9 Uxx +Uuyy =0.

Solutions of this equation are called harmonic functions (on R?), and, as we have
pointed out in Chapter 9, their study is closely related to the theory of complex
analytic functions. In a simply-connected open subset of R?, every harmonic
function u is the real part of a complex analytic function u +iv; and conversely,
the real part of a complex analytic function is always harmonic. This means,
n particular, that every solution of (9) is automatically real analytic on R2. So
we cannot hope to solve equation (9) with initial conditions

10 u(x,0) = ¢(x)
y (x,0) = Y (x)

%n a neighborhood of the x-axis unless ¢ and ¥ are real analytic.* Moreover,
ff ¢ and ¥ are real analytic, then the problem of finding a solution of (9) with
mitial conditions (10) is essentially trivial. We note that if u +iv is analytic, then

*However, there may be solutions in the upper or lower half-plane,
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the Cauchy-Riemann equations give vy = —u,. So the initial conditions allow
us to determine v, along the x-axis, and therefore determine v up to a constant
along the x-axis. So the complex analytic function u +iv is determined up to
an imaginary constant on the x-axis, which means that u +iv is determined up
to an imaginary constant on the plane.

These remarks really amount to a restatement of the fact, already observed
in the proof of the Cauchy-Kowalewski Theorem, that for analytic equations
with analytic data, the coefficients of the presumptive analytic solution are easily
determined. It is perhaps of interest to note that we can formally solve (9) by
analogy with the wave equation (1). If we formally define

0 £ )
20 2

(11 v(&,n):u( u(x,y) =v(x +iy,x —iy),

then equation (9) becomes vg, = 0, which leads us to

v, n) = f&)+gm)
u(x,y) = f(x +iy) +glx —iy).

Taking into account the initial conditions (10), we are led to the formal solution

(12) u(x,y) Y(z)dz.

dx +iy) +op(x—iy) 1 [
- 2 +5f

x~-iy

If ¢ and ¥ are real analytic, and hence have complex analytic extensions, then
this formula makes sense— the integral may be taken along any path from x —iy
to x+iy. Because ¢ and ¥ are real on the real axis, the function u is real-valued,
and is easily seen to satisfy (9) and (10).

Our physical considerations suggest that we should be able to solve the Dirich-
let problem for (9): given a function f: 3B — R on the boundary of a region
B C R%, we ought to be able to find a solution u of (9) with u = f on 9B. In
complex analysis courses it is shown that this is indeed the case.

7. HYPERBOLIC SYSTEMS IN TWO VARIABLES

In this section we will consider first order quasi-linear systems in two variables.
Our initial manifolds for the Cauchy problem will therefore be curves in R2,
and we are naturally only interested in initial data for which the imtal curve
is firee. So without loss of generality, we assume that our initial curve is an
interval [a, b] of the x-axis, and that our quasi-linear system of n equations
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for n unknown functions #!: R> — R is of the form

n
wh(x,y) =Y aij(x, y,u' (x, ), ., u"(x, ) - ul(x, )
j=1

+bi(x,}’,u1(x,y),---un(x,y))-

We will often consider u = (u',...,u") to be a column vector, just so that we
can multiply on the left by a matrix. Then we can write our system as

uy(x,y) = Alx, y,u(x,y)) - ux(x,y) + b(x, y,u(x, y))

where A4 is an n x n matrix of functions, and b is a column vector. More briefly,
we have the system

uy=A-ux+b>.

This system is called hyperbolic for given initial conditions u =@, ..,a"
on an interval [a,b] of the x-axis if A4 is diagonalizable in a neighborhood
of all points (x,0,1(x)) for x € [a,b]; more precisely, 1t is C k hyperbolic if
there is a C¥ matrix T such that TAT ™! is diagonalizable [this more precise
formulation is necessary, because even if 4 is C¥ and always diagonalizable,
it may not be possible to choose the diagonalizing matrix T to be C*]. The
basic result is that a quasi-linear system with hyperbolic initial conditions has a
solution with these initial conditions; in the next section we will apply this to a
single second order equation.

In order to explain the main points of the argument, we will first sketch how
the proof would go in the “semi-linear” case,

(a) uy(x,}’)=A(X,}’)ux(x,}’)+b(x,y,u(x,J’)),

where 4 does not depend on u (although b might). Let T be the matrix which
diagonalizes A, and define v = (v!,...,v") by

u(.\’, ,}) = T(xs }) . U(.\', .y)a

so that
Uy = Txv + Ty, uy=Tyv+Tuv,.

Substituting into (a), we obtain

Tyv+ Tvy = ATxv+ AT v, + b,
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SO
(b) v, = (TT'AT)vx + (T ' AT v + T7'6 — T7'Tyw)
=Cuvy +d.

Clearly u satisfies (a) with initial conditions # if and only if v satisfies (b) with
initial conditions
B(x) =T~ '(x,0) - u(x).

So we might as well assume that we have the equation

) uy = Cuy +d,

A(x, y) 0
Clx,y) = ( )
0 A(x, y)

is a diagonal matrix. Thus our equation reads

where the matrix

(1 A (x, p) -l +ul, = d(x,y,ul(x,p),...,u"(x,y)).

The vector field '
Xi(x,p) = (=A'(x, ), 1)

is called the i characteristic vector field of equation (I'), and the integral curves
of X; are the i™ family of characteristic curves. We might as well consider
only characteristic curves of the form 7 + (c(t),1). If u is a solution of (1" and
t + (c(1),1) is a characteristic curve of the jth family, then

(2) g;ui(c(t),t) = —Ai(e(), 1) - ul (c(t), 1) + i (c(1),1)
=d'(c(1),t,u(c(1),1)).
Consequently,
» . n »
(3) u' (c(n),n) = u'(c(0),0) +/0 d'(c(1),t,ulc(t), 1)) dr.

In particular, let 1 + (c'(&,n),1) be the characteristic curve of the jth family
which satishies

() (&, m(n) =&.
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t=n
e, m~ &, n)

a t=0 b

If ¢/ (£,1)(0) € [a, b], then equations (3) and (4) give

6) €)= F (e E ) + /0 dH e (&, m)0), 1, u(cH (€, )0, 1)) dr.

Conversely, if u satisfies (5) in a region obtained by following all characteristic
curves from [a, b] x {0} for a certain time interval in either direction, then u
will be a solution of (I') with initial conditions # on [a,b] x {0}. Equation (5)
is something hke the integral equation which we solved in Chapter 1.5, when
we proved that differential equations have solutions, but it is more complicated,
because the different components of u are integrated over different curves. Nev-
ertheless, it can be solved 1n essentially the same way. We define an operator S
which takes u to the n-tuple of functions Su given by

. . . r] . . .
(Su)(E,m) = #(c (& )(0)) + /0 dH e &, M), 1, 1 (€ )0, 1)) dir.

Then we show that on a suitable complete space of functions the operator S is
a contraction, so that it has a fixed point.
When we look at the quasi-linear system

(1) uJ’(x7 y) = A(x7 Y, u(x7 y)) : ux(x! y) + b(x7 y7u(x7 y))7

we run into a problem at the very first step. For the matrix T which diagonal-
1zes A will depend on u. If we set

T (x, y,u(x,y)) j
Tho= =5 ~ Rt 2 Tum

aT(x, y,u(x,y)) j
— 3}. = Ty"‘ZTufujn
J

[Ty

then the substitution u(x, y) = T(x, 3, u(x, y)) - v(x, ») leads to equation (b)
again, except that now Ty and T, are replaced by [T], and [T],, which in-
Volve u; so we do not even obtain an equation for v. We can reduce our system
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to one in diagonal form by means of a somewhat more complicated substitu-
tion; however, it will be necessary to assume that the matrix A(x, y,u(x, y))
in (1) is invertible [in a neighborhood of the points (x, 0, #(x))].

Suppose we have u satisfying (1), and T'(x, y, u) diagonalizes A(x, y, u) for all
(x, y,u) in a neighborhood of the points (x, 0, #(x)). Define v by

2) uy,=Tv (e, uy(x,y) = T(x, y,u(x,y)) - vix,y)).
Then

3) Tv=Au,+b

(4) ux = A" (Tv —b).

Differentiating (3) with respect to y, we obtain
Tvy + [T]yv = Auxy + [A]yux + [b],
= A(Tv)x + [A]yux +[b], Dby (2)
= A[T]xv + AT v, + [A]yux + [b],,
SO
vy = (T7'UAT vy + T7'A[T v + T Alyux + T[], — T[T, 0.

Writing out [T]x, [A4],, ..., substituting for the u, from (2) and for the uy
from (4), we obtain

5) vy = (TTUAT)v, + T_IA[TX +) T{A7 (Tv— b)}j]v
j

+ 77! [Ay +y Au;(Tv)j]A_l(Tv —b)
J

+77! [by + Zb,,,-(Tu)f] -77! [Ty +y T,,f(TU)j]U-
j J

If w is the column vector u!,...,u",v!,...,v", then equations (2) and (5) to-

gether can be written in the form
wy, =Cwy+d
where C is diagonal. We have the nitial conditions
6 w0 = , P o)
T71(x.0,u(x)) - [A(x,0,4(x)) - 7' (x) + b(x,0,1(x))]
Note that if 4, b and u are C?, and 4 is C? diagonalizable, then C and d

are C'; if the initial condition # is C2, then the initial condition for w is C!.
Conversely, we have
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9 LEMMA. Let w = (ul,...,u”,vl,...,v”) be a C! solution of the system
2), (5) with C! coefficients C and d and C! initial conditions (6). Then u
satisfies ¥, = Auy + b (and is C2).

PROOF. Substituting (2) into the last three terms of (5), multiplying by T, and
rearranging, we find that

(7 Tvy+[T]yv—[b],

= AT v, + A[Tx + Z Tuj{A_l(TU — b)}f]v + [A]yA—l(Tv —b).
J

Equation (2) implies that u, has a continuous partial derivative with respect to x.
Hence, by a theorem of calculus, u, has a continuous first partial derivative with
respect to y and uyy, = u,x. Thus

8) Uxy =Uyx = (TU)x = Tvx + [T]xv.

Define
s=A"YTv=b)—u,.

Then s has a continuous first partial derivative with respect to y, and
sy =[A7"(Tv=b) + A" (Tvy + [T1yv — [b],) — ty
= —A7'AL AT (Tv = b) + A7 (T vy + [T]yv — [bly) — xy
= A7 [Al(s + ux) + A7 (Tvy + [T1yv — [b]y) — tis,.
Multiplying by 4 we have
Asy = —[A]ys — [Alyux + (Tvy + [T1yv — [bly) — Auiyy
+ AT vy + A[Tx + Z T, {A (Tv - b)}’}v +[A],A"(Tv—b)
7
— A(Tvx + [T]xv) by (7) and (8)
= —[Alys — [A]uy + A[Tx +) Tus’+> Tu,-ug;]v
J J
+ [Aly(s +ux) — A[T]xv

=4 (}Z Tu,-sj)v.
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Thus _
Sy = Z(Tu,-s])v.

J
For fixed x, this is a system of ordinary differential equations. But the initial
conditions (6) show that s/ (x,0) = 0. So by uniqueness of solutions, we have
s = 0, which means that

Au, +b=Tv
=uy  by(2)

Since v is C!, the partial derivative uy, = Tv is C'; hence uy = A7 (uy — b) is
also C'. Thus u is C2. &

Because of Lemma 9, we now restrict our attention to equations
uy(x,y) = C(x, y,u(x, y)) - ux(x, ) +d(x, y,ulx, y))

where C(x, y, z) is a diagonal n x n matrix in a neighborhood of the points
(x,0,2(x)). One further simplification is possible. Introduce two new un-
knowns #"*1, 4"*2 and consider the equations
uy(x,y) = C™ ' (x, ), u"™2(x, p),ulx, ¥)) - ux(x, y)
+d@" (x, ), u"A(x, p), ulx, y))

u}“ (x,»))=0

utt(x,y) =1
with the initial conditions

u(x,0) = u(x)
" (x,0) = x

u"t2(x,0) = 0.

A solution u, u™*!, 42 of this system clearly gives a solution # of the original
equation, with the initial conditions #(x,0) = 1. So we might as well consider
an equation of the form

0 uy(x, y) = Clu(x, »)) - ux(x, y) + d(u(x, y)),
with initial conditions

(lo) . u(x,0) = u(x),
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)\1

where the matrix C = (
0

. ) is a diagonal matrix in a neighborhood of
)\n

the points u(x).

Our procedure for solving equation (1) 1s somewhat more involved than the
procedure outlined in the semi-linear case since C now depends on u. For any
function u, we define the i® family of characteristic curves of u to be the curves
t — (c(t),1) with

X0 e, 0.
Let ¢/ (u; €, n) satisfy this equation and the initial condition

cHusE,m(n) =&

As before, we find that if u 1s a solution of (1), with initial conditions (lg), then

. . . n . .
@ uwam=&mﬂmamw»+l;ww«%mammJ»m.

And, conversely, if u satisfies (2), then u will satisty (1), with initial conditions (1g).
We are thus led to define an operator S which takes u to the n-tuple of functions
Su given by

. L. no
wmwam=ﬁmﬂmamw»+l;ww«%mammJ»m.

The problem is to show that on a suitable complete metric space of functions,
the operator S is a contraction,; its fixed point will then be a solution of our
equation. The proof is carried out in detail in Courant and Lax [1]. It involves
a series of estimates that only an analyst could love, and there doesn’t seem to
be much point reproducing it here, since the paper is readily accessible, and
the sane differential geometer would probably skip it anyway. We would simply
like to give a precise statement. Let K be a constant such that all |A/| < K on
a region containing [a,b] x {0}. We consider the region A(8) in R? bounded
by the lines

y =35, y=—8 slope—l/k\
1 5

1
y=gb-a, y= —x-a

>

<

) b

a

ik

1 1
y=—ple=b), y=x=b)

slope 1/k

(then the characteristic curves of a function u will have slopes which are larger
.than the slopes of the sides of A(8); so if a characteristic curve begins in A(§),
1t will stay in A(8) until it hits the x-axis).
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10. THEOREM. Consider a system, with initial conditions,

uy = Aux +b

ux(x,0) a(x) x € [a,b],

such that either

(1) the system is semi-linear, 4, b, and # have continuous partial derivatives
satisfying a Lipschitz condition, and A is diagonalizable by a matrix T
with the same property

or

(2) the system is quasi-linear, 4 is invertible, 4, b, and u# have continuous
second partial derivatives satisfying a Lipschitz condition, and 4 is diag-
onalizable by a matrix T with the same property.

Then for sufficiently small § > 0 (which depends on the constants in the Lip-
schitz conditions), there is a unique solution of the system in the region A(é).
In case (1), the solution u has continuous partial derivatives satistying a Lip-
schitz condition, and in case (2), the solution u# has continuous second partial
derivatives satisfying a Lipschitz condition.

We are stating this particular theorem simply because it is the most accessible
in the literature. Other approaches allow all sorts of improvements. First of all,
the differentiability requirements can be weakened. Second of all, the matrix 4
need not be invertible even in the quasi-linear case—but then the approach has
to be changed considerably. More important, we would like to know that the
solutions have a high degree of differentiability if the coefficients and initial con-
ditions do. The proof of this requires considerations like those which are used
to prove that the solutions of an ordinary differential equation are differentiable
in the initial conditions, considerations which we already omitted in Volume 1.
We would also like to consider systems depending on parameters, and show
that the solutions are differentiable in the parameters; in section 9 we will use
this fact. As in the case of ordinary differential equations, differentiability in
the parameters is not very hard, and readers may work this out for themselves,
guided by Problem I.5-5.

Despite the somewhat unsatisfactory state in which this section ends, I hope
the reader will feel fairly convinced that hyperbolic systems have solutions. In
the next two sections we will use this fact to show the enormous difference
between hyperbolic and elliptic solutions of second order equations.
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8. HYPERBOLIC SECOND ORDER
EQUATIONS IN TWO VARIABLES

Consider a second order equation
1)) 0= F(x,y,u,ux, Uy, tixx,Uxy,Uyy) = F(x,y,u,p,q,r,s,1),

an initial curve, and hyperbolic initial data along this curve such that the curve is
free for the initial data. As we saw in section 2, by introducing a diffeomorphism
of the plane, we can assume that the initial curve is a segment [a, b] of the x-axis.
The initial data then amount to functions

i g, 1
on [a, b] satisfying
(Io) 0= F(x,0,i(x), ' (x),§(x), 1" (x),§'(x),£(x)),

and the 1nitial data will still be hyperbolic,
F* —4F, F, >0,
as we remarked in section 5. Setting
o (x) = (3,0, d(x), &' (x), G (x), 4"(x), ' (x). £ (x)),
the requirement that the initial curve [a, ] x {0} be free means that
0 # Fr(a(x)), for x € [a, b].

We claim that we can also assume that 0 # F,(a(x)). The reason for this is
that F, = 0 precisely when the direction of the y-axis is characteristic, and we
can always avoid this by an appropriate transformation of the plane. In detail
(compare page 53), define a new function v by

u(x,y) =v(x +4iy,»),

where A is a constant. Note that the map (x, y) +> (x+21y, y) takes the segment
[a,b] of the x-axis into itself, Now

Ux = Ux; Uy = Avx + vy [all partials of u evaluated
Uxx = Uxx at (x, }‘),
Uxy = AUxx + Uxy all partials of v evaluated

Uyy = A Uxx + 2h0xy + 1)) at (x + Ay, )]
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So equation (1) is equivalent to the equation

0= F(x — )"ya VsV, Ux, Avx + Uy, Uxx, Avxx + Uxy, )\zvxx + 2)\ny + Uyy)

[all functions v, ... , vy, evaluated at (x, y)].
This can be written
0=G(x,y,V, Ux, Uy, Uxxs Vxy, Uyy),
where G has the form

G(__,r,s,t) = F(—,r,Ar +5,A%r +2ks +1).

Then we have (leaving out the arguments for convenience)
G, = Fr + AFs + A*F,.

By choosing A sufficiently large we can insure that G,(a(x)) # 0 for all x €
[a,b]. So we can assume that Fr(a(x)), Fr(a(x)) # 0 for x € [a,b].

One way of treating equation (I) would be to first reduce it to an equivalent
one by the considerations of section 2. Since F; # 0, there Is a funcdon f,
defined in a neighborhood of all points

B(x) = (x,0,1(x),4'(x),§(x), 4" (x),4'(x)),

such that
(@) | i(x) = f(B(x))
(b) F(X,y,“,P,q,r,s,f(x,y,U,P,q,",S))=0-

So equation (1) is equivalent to the equation
(I/) Uyy = f(xa Y, U,Ux, Uy, Uxx, uxy)'
Differentiating (b) with respect to r and s we obtain

0=Fr+thr
0=FS+F1fg,

so we have

F,#0 = f, #0
F —4F, F, >0 = f>+4f, >0
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(the latter is nothing more than the condition that the solution u of the equation
f(x,y,u,p,q,r,5) —t =0 be hyperbolic).

In section 3 we showed that the Cauchy problem for equation (I') is equivalent
to a Cauchy problem for the system

u,=v
oy =3
v, = f(x,y,u,a,v,r,s)
* Py = Uy
ry = Sx

Sy:fx+ﬁ4'P+fa'r+fv's+fr'rx+fx'sx-

Setting ¢ = (4, «, v, p,r,s), we can write this system as

= 0 0 0
O 0 0 1
0 fr S

¢y = Apx + where A

The eigenvalues of the matrix

=0 7

are the roots of A2 — f;A — f, = 0, namely

LEVL 4,
; :

These roots are real and distinct, since fi> +4f, > 0, and they are # 0, since
Jr #0. So A’ is diagonalizable, and consequently A is. Theorem 10 then tells
us that we can solve the system (*) with the appropriate initial conditions; hence
we can solve the original equation (1) with the given hyperbolic initial conditions.
The only slight problem is that Theorem 10 was stated only for non-singular 4
(although, as we mentioned, this requirement is not really necessary). We will
therefore give another approach, based on the work of H. Lewy [4], which uses
Theorem 10 only as stated, and we will work directly with equation (I), rather
than (I}, without assuming that the initial curve is a segment of the x-axis. The
new considerations which we will introduce are not only interesting in their own
right, but will also be used in the next section.
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We are thus considering the second order equation
(I) 0 = F(xa yauaHXauy,uxx,uxyauyy) = F(x’ y’ua paqarasal))
together with an initial curve ¢ = (¢1,¢2): [a,b] — R? along with initial data
o o o o o9 . .
i, p,q,r,s,t: [a,b] = R satisfying

(I-1) 0 = F(e1(1), e2(1), #(2), B(), §(0), £ (1), 8(1), 1(1))
= F(C(tr)), say.

In addition, the initial data must satisfy (compare page 34)

dil _ der  odex
dt_pdt qdr

dp oda od
_p:r_1+ c2

dt dt s;,?
dq° odC] odCz

=s— +1

dt  dt | dt
The fact that the initial data is hyperbolic is expressed by the inequality
(1-3) FZ2 —4F,F, >0  forall C(1).
In section 2 we wrote the condition that ¢ be free as
F,vl2 + Fyvivp + F,vz2 #0

where (v1,v,) is a normal at ¢(r) [and Fy, Fy, F; are evaluated at C(r)]. If
(X,Y) is tangent to ¢ at 7, then the normal is a multiple of (¥, —X), so we can
also write this condition as

(1-4) F,Y?— F,XY + F,X*#0.
By contrast, the characteristic directions are just those (X,Y) satisfying
(I-C) F, Y- F,XY + F,X*=0.

Arguments similar to the one given at the beginning of this section show that
without loss of generality we can assume that we have F,, F; # 0 at all C(1).
Now in a neighborhood U C R?® of {C(1)} where we have

F? —4F,F, >0
Fr, Ft #0
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we can find two continuous everywhere unequal real-valued functions py, pa
which are solutions of

(a) Fp*— Fop+ F =0.

The condition F, # 0 guarantees that we have a genuine quadratic equation.
The condition F; # 0 insures that py, p2 # 0, which will be important later on.

Now suppose that we actually have a solution u of (I). Let V C R? be
{(x,y) : (x,y,u(x,J’),ux(X,J’),-u) € u} For R; = pi(x’y’u(xay)a”')a
the two vectors (1, Ry) and (1, R3) are linearly independent at each point of V
[and equation (I-C) shows that they are always characteristic]. We can now use
Proposition 1.5-19 to choose an open set ' W C R2, with standard coordinates
(&,7m), say, and a diffeomorphism ¢ : 'W — 'V such that

(1) the parameter curves of ¢ are always characteristic, that is, their tangent
vectors are multiples of (1, Ry) or (1, Ry),

(i) ¢(&,8) =c(§) for & € [a,b].

Let x and y denote the compositions x o ¢ and y o ¢, for the standard co-
ordinate system (x, y) on V. Thus, x and y are just the component functions
of ¢. Similarly, let u = uoc¢, p= po¢p = uyo¢, etc. For brevity,if g: W - R
we will use g’ to denote the partial derivative dg/9€, and g* to denote dg/dn.
Condition (1) on our map ¢ means that
(+1) prx =y =0
(+2) p2x' — y' =0,

where p; actually means the function whose value at (£, ) is

Pild (&, n),u(@(§,m), ux (@& ), ...) = pi(x(&,n), y&, ), uE, n), pE&n),...).

We also have the general equations

(x3) u —px' —qy =0
(x4) p—rx' —sy =0
(x5) q —sx' —ty =0.

We obtain further equations as follows. When u is a solution of (I) we have

oF (x,y,u(x,y),...)
0=
ox
:Fx+Fu'ux+Fp'Px+Fq"Ix
+F ooty + Fy-sx+ Fr-ix
=Frrx+Fx-sx+Frote+---,
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where Fx, Fu, Fp, ... are evaluated at (x, y,u(x,¥),...). Composing with @,
we can write

(A) 0=Fr'(rx°¢)+Fs'(sx°¢)+Ft'(tx°¢)+{F}x’
where {Fiy =Fx+ Fu-p+F,-q+ Fy-r,

all partials of F being evaluated at (x, y,u, p,...).
On the other hand, we always have

r=(rxop) - x' +(ryod) -y
s'=(sxo0@) X' +(sy00) ),

and thus, using equality of mixed partials,

rl=(rx°¢)'xl+(sxo¢)'yl

B
(B) S =(sx09) X +(txod)-y.

We can write equations (A) and (B) together in matrix form as

x y 0 rx o v
(&) 0 x y | |sxod )= s/
F, F, F teod —{F}y
Now
X y 0
det| 0 x y |=&)F-xyF+ (y')?F,
F, F, F; s s
=& (Fr—pmFs+p°F) by ()
=0, since p; is a solution of (a).
Consequently

x y o0
rank| 0 x' y | =2
F, F, F

Moreover, the last column of the matrix
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is a linear combination of the first three columns, namely the linear combina-
tion (rx o @,5x o @, tx o @), by equation (C), so this matrix also has rank < 2.
Consequently, the determinant of every 3 x 3 submatrix vanishes. In particular,
x 0 ¥
0 = det 0 y/ s — _y/Frr/ _ x'F,s' _ x'{F}xy';

Fr FI _{F}x

!

using (1) this can be written as follows (note that we don’t substitute for the
second y'):

(x6) o1 For' + Fis' +{F},y' =0.
Similarly, we have the following equation, which we will number as
(x8) 2 For' + Fis' +{F},y' =0

Exactly the same manipulations may be carried out by differentiating with
respect to y, instead of x. We have the equation

0:Fr'(ryo¢)+Fs'(Syo¢)+Ft'(tyo¢)+{F}y3
together with

sl:(ry°¢)'xl+(syo¢)'yl
t'=(syo0¢)-x' +(ty00) ),

which we can write as

xX y 0 ryod s
0 x’ yl . Sy l¢] ¢ = tl
F, F, F tyod ~{F}y
So, as before, we have
() pFrs' + Fit' 4+ (F}yy =0

(as well as an equation involving ‘).
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We have thus selected 8 equations satisfied by the 8 functions x, y, u, p,q.r.s,t
when u is a solution of (I):

(x]) prx' =y =0

(x2) p2x' =y =0

(x3) u —px' —qy' =0

(x4) p—rx' —sy =0

(*5) g —sx'—ty' =0

(x6) prEt + Fys' + (Fx + Fyp + Fpr + Fgs)y' =0
(x7) p1Fys + Fit' + (Fy + Fuq + Fps + Fgt)y' =0
(8) P2 For' + Fis'+ (Fx + Fyp + Fpr + Fys)y' =0.
We have

x(£.8) = x(@(&,8) = x(c(§)) = c1(8),
and similarly for y. And if u has the initial data for (I), then

u(€.£) = u(Pp(£,£)) = u(c(§)) = u(f),

and similarly for p.q, ... . Thus, along the line segment S = {(§,§) :a <§ < b}
the solutions x, y,u, ... of (xI)=(x8) have the imtial conditions

(6.8 =),  yEE =)
u(E, &) = 1(§)

pEE) = p&), q(E.8) =)

r(EE)=FR(E), s(£.8) =3(), 18 =1

(*o0)

The beauty of this particular set of 8 equations is the fact that they auto-
matically lead to solutions of equation (I). More precisely, consider 8 functions
x,y.u,..., t satisfying the system (), with the initial conditions (o). We are de-
noting the 8 unknowns of our system by x, y,u, ..., t simply for convenmence —
we are not assuming that Diu = p, etc.

11. LEMMA. Let ¢, & 3.4.7.8.7: [a.b] — R satisfy (I-1)~(I-4). Suppose that
X.y.u.p.q.r.s.t satisfy the system (x), with the initial conditions (o). Then
(x.y) is a coordinate system in a neighborhood of the diagonal line segment
S ={(£.8) :a <& <b}. and wo (x.y)"! is a solution of the PDE (I) with the
initial conditions #. p, .7, §.7 on the curve .
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PROOF. Equations (x1) and (x2) show that (x', y') and (x", ") are characteristic
directions, while ¢ is never characteristic by (I-4). In particular, ¢’(£) is not a
multiple of (x', y')(§,§) or (x', p")(§,£).

Our initial conditions on x and y give

xl(éaé) + x\(éaé) = Cll(é)
Y'EE) 4 Y(EE = (%)

If we had x'(£,£) = 0 then we would also have y'(€,&) = 0 by (1), which would

make (x', y' )&, &) = ¢'(£), which we have just noted is not possible. Similarly,
we cannot have x'(£,£) = 0. Thus, the map

o6&, ) =x&,n),yEn)

has Jacobian matirx

with determinant
x'x" - (o2 — p1) #0 atall points of S.

So ¢ = (x, y) is a coordinate system in a neighborhood of the compact set S.
We next claim that we have

(1) 0=F(~\’,y,”,P,‘1a",S,f) [: F(X(E,U),Y(E,’I),”(E,U),---)]-

To prove this, we add p; times equation (x7) to (x6), and replace y’ in equation
(x6) by p1x’ [using (x1)]; we thus obtain

P12 Fys' + p1Fet’ + pi(Fy + Fuq + Fps + Fgt)y'
+o1For' + Fos' + p1(Fx + Fup+ Fpr + Fqs)x' =0.

The coefficient of s’ is
o Fy + Fy = o Fs,
so after dividing by p; # 0 we obtain

0= F,r'+ Fss' + Fit' + (Fx + Fup + Fpr + Fgs)x'
+ (Fy + Fuq + Fps + F4t)y'.
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Making use of (x3)(x5) we then have

0= Fo¥' + Fys' + Fot' + Fxx' + Fyy + Fuu' + Fpp' + Fuf
= F.

On the other hand, since @, p.§,... are assumed to satisfy (I-2), the initial
conditions (%) insure that F = 0 on the diagonal line segment S. Therefore
we have F = 0 in a whole neighborhood of this interval.

To prove that u o ¢ ' = uo(x,y)”! is a solution to the equation (I) it thus
suffices to prove that

pod ' =Diuo¢™"), qo¢p ' =Dyuos™)
ro¢~' =Di(pod"), sop ' =Dy(pod”"), to¢p ' =Digod™).

Note that, with our standard notation 3/3x and 9/dy for the coordinate system
(x, y) we have

du _
Di(wogp™") = PP op”!, etc,

so what we have to show amounts to

_au _au
p_’axa q—ay
) SN R

dx dy dy

By our usual chain rule, we have, for any function a,

?ﬁ_aa 8$+8a B_n
dx  0& dx dn ox
do  da 8$+§gérl
dy 9t oy on dy

or, with our abbreviations,

o 0
ox ax " dx
d

_a:a/.ﬁ_ka\..a_n'

dy dy dy
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The partials 3§/dx, ... are given by

(ag/ax ag/ay)_(x' x‘)“_ I (y‘
on/dx dn/dy)  \y Xyt —xy \ -y

Thus
da B a/y\ —a'y

g - x/y\ __x\y/’

which can be written as

(2)

y\al _ yla\ —

Now equations (x6) and (x8) can be

F,, F
¥+ =5+ Fx +
y

xl

do  —o'x'+o'x

5 - x/y\_s\y/ .

o
___(x\y/ - x/y\)
y
o
_(y\x/ _ y/x\)'
dax
written in the form

Fup+ Fpr+ Fgs =0

F, F,
—r+ 7ﬁs‘+ Fy+ Fup+ Fpr + Fys =0.
Hence F F F F
T =5 = 4 s
x y x y
Using (2), this equation can be written
ar [y as (x' x
(3) Fr'a"—(—,——\)-i-Fta— ———=]=0
y\x x x\y y
But
X x 1 F
y oy me F
so from (3) we obtain the preliminary result
@ ar s
dy  ox’
Next note that we have
dp , p :
= =x'+ =y by the ch 1
P 3xx+8yy y the chain rule
p =rx'+sy by (x4),

91



92 Chapter 10, Section 8

so that

]

On the other hand, the initial conditions (xg) give

dp d
d_é_%p(é’é)

_dp d ap d
= a(é’é)d_éx(é’é) + 8—y—(é’é)d§y(é’é)

P ]
- a_p(é,é)c.’(é) + -g(é,é)c’z’(é),
X dy

while the conditions (I-2) imply that

d Q
d_g’ = r(£,E)c) (€) + s(E, )2 (8),

so that

0

d
(6) e/ (E) - [r - —a” ] (£,8) = c2/ () - [s _ P ] (£,£).
x dy

Equations (5) and (6) together give

ap
(d(é) cz’(é)) ["a](é’é’

x'(£,8) y'(§8) _p
[s ay](é,é)

Since ¢’ is not a multiple of x', "), as we observed at the beginning of the
y k) g g
proof, it follows that we must have

d d
r(E£E) = ﬁ(s,sx s(£.8) = a—i(s,s»

So, if we set
P=p —rx'—sy

then P(€.£) = 0. Noreover,

P/ — p/\ _ r/x\ _ s/y\ _ rx/\ _ s},/\‘
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while equation (x4) gives
0= p/\ — 'y = s\y' " Syl\,
So we have

Pl — r\xl _ rlx\ + s\yl _ sly\

(g )@y -a) e
=0 by (4).
Consequently, we have
™ 0=P=p —rx' —sy

in a neighborhood of S. From (x4) and (7) we have
8 x\pl . x/p\ — s(x\y/ . x/y\)
© Yo —yp =rx - yx).
So (2) gives

d d
9) -
0x ay

Similarly, set
U=u—px' —qy
Q=¢q —sx'—1ty.

Then we have

U — u/\ - plx\ _ qu\ _ pxl\ - qyl\,

and

0=u"—p'x' —¢'y — px"—qy"  from (x3),
and thus
(10) U'=-p'x' —¢'y' + px' + 4y

= —s(x'y —x'p) — g’y + 45 by (8)

— (q\—Sx\—ty\)yl—(ql—le—ty/)y\

= Q) by (x3).

93
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Likewise,

Q/ = —s'x' — t/y\ +5'% + t\y/
ot 0s
= (a - 5) (x'y' —x'y") by (2).
Now (1) implies, using (9), that

aF

0=
ox

du dq ar as at
=F F,— + F, F,—+F,—+F,— + F,—
x+ u8x+ L q8x+ r8x+ x8x+ “ox’

with a similar equation for dF/dy. Subtract the first of these equations from (x6)
and the second from (x7), multiply the resulting equations by x* and y', respec-
tively, and add them. Taking into account (4), we obtain finally

at  0s aq Ju
F(L _ZVesFr (L -s)x+F(=-p)x
’(ax ay)x + "(ax s)x + “(ax p)x
x' (dt Os dq du
R E BNy F (L )y +F{——¢q)y =0
'V(&r %)y4_q(%7 )y+ "QU q)y
Thus we have

F,
— Q'+ F,Q+FU=0
y
U' =9y
Along each line parallel to the &-axis, this is simply a system of ordinary differ-

ential equations for U and Q. Since U = Q = 0 on the diagonal segment S,
we find that U = Q = 0 in a neighborhood of S. As before,

du du
U=0and (x3) = p:$’ qz_ay’
oq oq

Q =0and (x5) = s=30 t—f)_;;’

and this completes the proof. ¢
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Now we want to know whether the system (%) does in fact have a solution
with the initial conditions (o). We introduce the rotated coordinates (i, v) by

n==&+n
v=_§& —n.

Then the segment S = {(§,§) : a < § < b} corresponds to the segment [2a, 2b]
of the u-axis, and

,_ 90 0
au av
o9 3
ou v’
Denoting x, y,u,...,t by ¢1,...,¢s, our equations (x1)—(x8) can be written as

the following matrix equation, in which each row of the matrix @ on the right
is simply —1 times the corresponding row of the matrix on the left, except for
rows 2 and 8, which are equal to +1 times the corresponding row [these rows
correspond to equations (¥2) and (x8) involving ‘]:

o -1 000 0 0 07 [d¢1/0u - 3y /v T
p2 —1 000 0 0 0 32/ dpa /O
—p —q 1 00 0 0 0 d¢3/3u 3 /O
—r -5 010 0 0 0 39/ | _ | B0usdv
s -t 001 0 0 0 d¢s/dp s /v
0 {Fix 0 0 0 mF, F 0 dge/dp d¢e/dv
0 {F}, 0 0 0 0 pFr F | |d¢y/du d¢pr /v

L 0 {F}, 0 0 0 p;F, F 01 Logg/du L d¢g/dv

The determinant of the matrix on the left is easily seen to be
L1 Fr FI 0

(p2—p)det| 0 o F F | =(p2—p1))2F F*+£0.
102Fr Ft 0

Writing our equation for short as
P w = Q. by,

we have Q- Dp
=DP,

Where D is the diagonal matrix with —1’s on all diagonals except for +1’s at
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positions (2, 2) and (8,8). So we can write our equation as

¢v=

Il

Since 71D P is diagonalizable, Theorem 10 shows that we can solve the sys-
tem () uniquely with the inital conditions (xg). So Lemma 11 shows that our
original PDE (I) has a solution with the given initial conditions. We summarize
this result in

12. THEOREM. Consider a second order equation
F(xa ya U, Ux, uya Uxx, uxya “yy) = 05

an nitial curve, and hyperbolic initial data along this curve satisfying (I-1)
and (I-2), such that the curve is free for the initial data. Suppose that the initial
curve, initial data, and F have continuous third partial derivatives satisfying
a Lipschitz condition. Then in a neighborhood of this initial curve there is a
unique solution with this initial data having continuous second partial deriva-
tives satisfying a Lipschitz condition.

Actually, the hypotheses could be weakened considerably here (partly by
weakening the hypotheses in Theorem 10, and even more so by using other
methods), but we will not worry about this. More important, we would like to
know that the solution u# has a high order of differentiability if F, the initial
curve, and the initial data do, but we must be content with merely asserting
this, since we did not prove this for Theorem 10. One thing is clear, however.
Even if F and the initial curve are highly differentiable, or even analytic, there
may be solutions # which are far less differentiable. In fact, if we have any
hyperbolic initial data, then nearby inital data will also be hyperbolic. We can
choose this nearby data to be only C?3, and then our solution is at most C3. As
we will see in the next section, this is in marked contrast to the situation for
elliptic solutions.

We briefly indicate the situation for the case where our initial curve is every-
where characteristic for the initial data. Assuming, as at the beginning of this
section, that the initial curve is a segment [a, b] of the x-axis, the initial data
amount to functions

gt
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on [a, b] satistying

(Io) 0= F(x,0,8(x),1"(x),§(x), #"(x),§'(x), 7(x)),
except that now we have

Ic) 0= F(x,0,u(x),d'(x),§(x),i"(x),§'(x),7(x)).
Differentiating (Ig) and using (I¢y), we find that we must have
(+) Fol"" + Fo§" + (Fx + Full + Fpit” + F,d') =0,

and conversely, if (*+) and (Ig) are satisfied, and (Ip) holds at one point (xg,0),
then it holds everywhere on [a, b]. By choosing a free curve y and initial data
such that y(0) = (xp,0) and the initial data for y agrees with our initial data
along [a, b] at the point (xg,0), we can then find a solution having this initial
data everywhere on the characteristic curve [a, b].

One particular case will be very important in Chapter 12. We consider an
equation

1) 0= F(x,y,pq,r,s,1) = A(rt —s*) + Br + Cs + Dt + E
= (Ar + D)t + (Br + Cs + E — As?),

where 4,..., E depend only on x, y, p, ¢, so that our equation is linear in
r, s, t, and rt — 52 Such equations are called “Monge-Ampére equations”,
and they are the kind we will always encounter. A calculation, using (VI) on
page 50, shows that our equation remains a Monge-Ampére equation when we
compose with a diffeomorphism of the plane.

Suppose that along the x-axis we have picked 17 and § as the first two functions
for our initial data. We can already see if the x-axis is characteristic, because
the condition for this is

(2) 0=F1=AV+D,

which only involves &, p = 7/, and ¢ on the x-axis. If equation (2) holds, then
there is no hope of selecting 7 to complete our initial data unless we also have

3) 0= Br —Cs+ E — As?

along the x-axis. On the other hand, if this equation holds, then any choice
o . . . -

of 7 will make £, §, 7 satisfy (1), so if & and § satisfy (2) and (3), we can find

solutions of (1) with initial data #, g, 1 for arbitrary functions 1.
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9. ELLIPTIC SOLUTIONS OF SECOND ORDER
EQUATIONS IN TWO VARIABLES

The most important topic in the study of elliptic equations is the Dirichlet
problem, and if this were a book on PDE’s, it would be inexcusable not to devote
a great deal of time to this subject. But we won’t say another word about it.
Instead, we will consider another aspect of elliptic equations, which often isn’t
even mentioned in a first course in PDE’s. We have already noted that every
solution of #xx +uyy = 0 is automatically analytic. In this section we will prove
that every elliptic solution of any second order equation F(x, y,u, p,q,r,s, )=
0 is likewise analytic, provided of course that F is an analytic function of its
arguments. This theorem holds for elliptic solutions of second order PDE’s in
any number of variables, but the proof we will give works only in the two variable
case. This deficiency (which doesn’t bother us, since we are interested only in
the two variable case) is more than compensated for by its conceptual simplicity.
Moreover, the proof, from H. Lewy [5], has one truly beautiful feature—there
isn’t a single inequality in it.

Since the details of the proof become somewhat complicated, it will probably
help to first examine a special case. Consider the equation

Uxx +Uyy = S, y,u,p,q),

where f is a real analytic function of its arguments. We will show that u can
be extended to a complex analytic function from C? to C; consequently ¥ must
be real analytic.

We recall first that if

a(x,y) = p(x,y) +iy(x,y)
for real-valued B, y, then the Cauchy-Riemann equations for o are
Bx=vy,  By=-¥x
these two equations are equivalent to the single equation
(1) oy = —iay.
We will rewrite our equation for u as
(2) Usixi T Uy = Sx05L014, ,9).

We denote the two coordinates in R? by xi, ¥y so that we can consider R? C C?,
where C? has coordinates x = x; +ix2, y = y; + iy2. Thus we think of u as



And Now a Brigf Message from Our Sponsor 99

a function such that u(xy,0, y1,0) is defined. We first want to find a complex-
valued extension u(x1,0, y1, y2) of u which is complex analytic in y; + iy,.
Equation (1) shows that our desired extension should satisfy

(3) Uxyx) — Uyyy, = [(X1, p1 +iva,u,uy, —iuy,)

at all ponts (x1,0, y1, y,). For each fixed y;, consider equation (3) in the
(x1, y2)-plane, with the initial conditions

(4) u(x1,0, y1,0) = the original u(xy,0, y;,0)
(O)  uy,(x1,0,1,0) =i -uy (x1,0, y1,0), for the original u(xy,0, yi, 0).

Equation (3) is hyperbolic. Actually this statement is misleading, for the right
side of (3) i1s already complex-valued, so we have to allow the solution u to
be complex-valued; thus we have to consider (3) as an equation for the real
and imaginary parts of u. However, if we replace (3) by a system of quasi-
linear equations, and make a new system by looking at the real and imaginary
parts of all the functions in the old system, then the new system will in fact be
hyperbolic. The reader may check this (we will write things out explicitly later
on, for the general case). Then Theorem 10 shows* that we really can solve (3)
with 1nitial conditions (4) and (5).
Differentiating (5) gives

Uyyp) = lllyy,  at (x1,0,1,0),
while subtracting (3) from (2) gives
Upiy, +Uy,y, =0 at (x,0, y1,0).
From these two equations we have
(6) Uyyy, = 1Uy y, at (x1,0, y1,0).
Equations (5) and (6) can also be written

uy, +iuy, =0

) ) . at (x1,0, 1,0).
r(“yn +iuy,) =0
2

*If we use the system of equations derived in the previous section, then Theorem 10
suffices. If we use the system of equations derived in section 3, then we would need the
stronger form of Theorem 10 which allows the matrix A4 to be singular.
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On the other hand, we can also obtain an equation for @ = uy, + iuy,. To
equation (3) we apply the operator V. = 3/dy; + id/dyz; in the notation of
Addendum 1 to Chapter 9, %Vu would be written u. Then we have

Wxix) — Wysys = V{lx x; = Uyay,)

= fiVy+ fuVu+ fpV(ux) —ifgViuy,)
stnce [ is analytic (compare pg. 1V.320)
=0+ fuw + fpwx, —ifq@y,.

This is a hyperbolic system for w. Thus (7) implies that @ = 0, by uniqueness
of solutions. Hence

(8) Uy, (x1,0, y1, y2) + iUy, (x1,0, y1, y2) = 0.

Now we will extend u to R*. We do this by considering the equation
9) Uy y, — Uxsxy = f(X1 +iX2, YU, —lUxq, Uy, );
here x; and y, are the parameters. We use the initial conditions

(10) u(xy,0, y1, y2) = the u(xy,0, y1, y2) already obtained

(ll) “xz(xl,(),yl,yz):i'“x.(xl,(),yl,yz),
for the u(xy,0, y, y2) already obtained.

Again we obtain a hyperbolic system, so we can solve (9), with the mitial con-
ditions (10) and (11).
Differentiating (11) gives
Hy x> = {Ux x at (x1.0, vy, v2),
while differentiating (8) with respect to vy and y2, and then subtracting, gives
Uyiy + Uy, =0 at (x1.0, vy, 12).
Finally, subtracting (3) from (9) gives
Upyyy + Upsys — Uxyxg — Uxoxy = 0 at (x1,0, vy, 2).
From these three equations we obtain

(12) Uysx, = iUx xs at (x1.0, vy, 12).
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Equations (1) and (12) can be written
Uy, +itiy, =0

(13) 9 , at (x1,0, y1, 32).
T‘Q(u,{l +iuy,) =0

As before, we can also derive an equation for uy, + iuy, and conclude that we
must have uy, +iuy, = 0 everywhere. Similarly, we prove that u,, + iuy, =0
everywhere. Hence u is complex analytic, and the real-valued solution of the
original equation uxx +uyy = f(x, y,u, p,q) 1s real analytic.

Now we are ready to tackle the general case. We consider an elliptic solution u
of a general second order equation
O = F(x,y,u’”x,”y,”xx,“xy’”yy) - F(xay,H,P,‘[,r,S,t)-
For convenience, we will often speak as if’ # were defined on all of R2, although
actually the arguments are entirely local. Ellipticity of ¥ means that
0<4F, F, — F
[where F,, Fy, F; are evaluated at (x, y,u(x, y),...,uyy(x, y))], so that, in par-

ticular, F,, F; # 0. Let pj,p2 be the two continuous everywhere unequal
complex-valued functions which are solutions of

F, — Fyp+ F,p* =0,

and let
"= i + o i
ox ay
‘= i + 02 9 .
ox ay
Then we automatically have
p1x' =y =0
pax' — 3 =0.

Together with the considerations of the previous section we obtain eight equa-
tions

8
D ae’ =0 i=1...6
(*) j=1

8

D aygt =0  i=7s8,

j=

where @,....,¢q stand for x, y,u,....7, and the a;; are now complex-valued
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functions of ¢,,...,¢s. Since F is assumed analytic in all its arguments, the
functions a;; are complex analytic in some region of C? containing the set R C C?
where they are defined. We can arrange our equations as in the previous section,
with the matrix (a;;) being the matrix # on page 95.

It will be convenient to use &, &, m, n2 as coordinates on R*. Thus we
regard the ¢; as functions with ¢;(£1,0,m,0) defined; in particular, we have

x(£1,0,m,0) = ¢,(£1,0,m,0) = &,

y(€1,0,1m,0) = $5(61,0,m,0) = m.
The operators ' and * in the (&1, m)-plane = the (x, y)-plane are then given by
0 0

= — 4+ o —
98, £

/

(*1)

We consider the functions a;; as already extended to complex analytic functions
of their eight arguments in a suitable region of C2. Now for fixed m, consider

equations (¥) as equations in the (£, n2)-plane, with the operations ’ and * now
being defined by

, d 4 d
0&, a2
d d

——
& 9n
This is equivalent to taking p1 = 1 and p» = —1. So we can write our equations

as the matrix equation on page 95, with py =1 and p; = —1.
Setting

(*2)

\

¢ = Y1 +iv2
¢y =3 +ivs ¥; real-valued,

and writing our equations in terms of the ¥, we obtain a matrix equation

P'wYIz:Q'w&’

with
Q = DP,
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where D is obtained from D simply by writing each row twice. So by Theo-
rem 10, we can solve (x), with * and ' given by (x;); as our initial conditions we
just choose
¢j ({"1, 0, 771,0) = the original ¢j (El, 0, N, 0).
Similarly, we now extend the functions ¢;(§,0,7,12) to R* by fixing &

and 12, and considering equations () in the (&2, n1)-plane, with the operations ’
and ' now defined by

9 9
& Ay
(x3) Lo L
_3§2 3'71'

Among the extended functions ¢;, we have “x” = ¢, and “y” = ¢,. Since the
¢; arc now complex-valued, we have four real-valued functions on R* defined
by

x =x1 +ixz, y=y+iy.
We claim that xi, x2, y1, 2 1s a coordinate system in a neighborhood of any
point in the (&, n1)-plane. To prove this, we have to compute the Jacobian of

(x1,X2, ¥1, y2). First of all, since xi, X3, y1, y2 are simply &;,&5, 91,72 on the
(61, m)-plane, at the point in question we have

Wy o W
0 08, 38, 08| 08,

P _ o 2

an an an I

To compute other derivatives, we first write the two complex-conjugate roots
p1,p2 of Fy — Fsp+ Frp? =0 as

p1 =01 +ioy, p2 =01 —i0y, o2 #0.

The equations ' — pix’ = 0 and y' — pax* = 0, with the two different meanings
(*2) and (x3) for " and ', give the following equations [after making use of (1)]:

dy d d: d:
i+iﬁ—(ol+ioz)(1+l+fﬁ) —0
an2 an2 an, ana
2 a1 + 9y2 ( i52) ( - dx, N ,8,\-2) 0
9. l— — (0 — 10 - -_— | — =
a2 I : 2 Iz I
ayr |, .0y2 . (8x1 .3-\‘2)
—+i=——-1—-(o1+io)\ s~ +i=—]=0
3 T A T T
3 dy dy dx ax
1 .0)2 , X1 X2
3%, +,3§2 + (o1 102)( +i ) 0

0&; 0%,
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Subtracting the first equation of (2) from the second gives

) dx 0x ax; . dxp; O]
201 + 2o | —+i— ) = — it =i
n I dm o2

ax dx o
L) 201

= =0, _— = .
an2 i 02
Then we get
oy 0y (012 + 072
N2 (o1 +iow) (1 +iﬂ) _ o 02
anz  Om o 02
Wi _, A _o’tor
I Om o2
Similarly, from (3) we get
242 (8x1+_8x2) 0 — 8x1+_8xz i
10 -_— I — = _— | — = —
AR 3, | 0 o
N ax; —0 dx) _ 1
& & o
and then 9 9 : ‘
Y1 ] . ! .0
el AR =2
&2 +,3§2 + o +,02)02 ,02
W o
&, T3 or

So at the point in question, the matrix of derivatives of xy, x2, ¥1, y2 with respect
to &,82,m1,m2 18

XXz N 2

& 1 0 0 0

1 L 0 a1

) ;
m 0 0 1 0

o1 o12+0>?

n2 0 a2 0 (o5

The determinant equals 1, so (X1, X2, ¥1, 12) 1s mdeed a coordinate svstem.
Now all partials 9/0&;. ... , 3/dnz can be written as certain linear combina-
tions of 3/9xy. ..., d/dv2. So we can also write

A AP S NP (i+,-_3,)+,) (i+,i)
R TR P TR TR T I ATy A
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Now the equation 3’ — p1x" = 0, where " has the significance (x;), gives

(§) (8-1- a)( +iy2) (8-1- a)(\’ +ix3) =0
—_— _— ! ) — —_— —_— R X = V.
6) o8, T on, M) = g o) 2

But d/9x; +i9/0x; gives zero when applied to x; 4ix; (or any analytic function
of x1,x2), and similarly for 3/dy; + id/dy2. So when we replace the operator
9/0& + 3/9n2 in equation (6) by its expression in (3) we end up with

By —p14; =0.
Note that if we had 4, = 0, then the operator (5) would not be real unless

Cy = Dy = 0, which is impossible, since 9/3&; # —3/3dn2. So Ay # 0. Thus we

have

) ] + ]
& o
] ] ] ] ] ]
=A;— Ai—+C | —+i— Di{\ —+i—
18)(1_1_'01 18y1+ 1((’)xl_‘_laxz)_’_ 1(8y1+,8y2)’
and similarly
] ]
8 ——+—
® & In
= Ay— + mA +C( +'a)+ (a+
2ox, P27 2\ox o oy "o )
] ]
& oy
E 4 pE +G( +:a)+H(a+'a)
= Py, TR N\ o \aw o
] ]
(10) — +
)352 an
] d d d ] ]
=Ey—t ppEr +Go | i |+ Hy [ o + i
28.\‘1 T 28_\'1 + 62 (8.\"1 +,8.\"2) + M (8)‘1 +,3}'2)’
where Ay, A3, E1, E; # 0. All quantities Ay, ..., H, are simply linear com-

binations of the derivatives of xj, X3, ¥1, 2 with respect to &,&,m,1n2. For
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example, we obviously have

d d d d
lCl:(B_&+8—r)2)x2’ 1D1=(8—E1+577;)y2’
d d d ad
lC2=(—£+a—r’2)X2, lD2=(_E+$)y2,
iG1=(i——a—)x2, l'H1=(i— ? )yz,
0  Im 0  Im
iGy = (i-i-i) X2, iH, = (i-i-i) V2.
95 Im a5 am

In particular, at a point in the (&, n1)-plane we have, from the entries of the
matrix (4),

2 2
. o1 . 01"+ 02
iC=—, iDj = ———,
02 02
2 2
. (o8] i 01°+ 0>
iCy=—, iD= ———,
O O
(11) 2 2
. 01
lGl = lHl =
0?2 (op)
. 01
iGy = —, iH, = —
02 02

Notice that up till now we have used only the two simplest equations of (x).
We will now use the whole set. In the initial plane, the equations (%) hold in
three different forms, corresponding to the three meanings of the operators ’
and ', namely

SR a0 S
) ©Axg Yoy ) & I ) & on
‘=_§_+p2.§._ ‘=_i+i ‘=i+i'

0x1 i & dn &  am

From the equations with (x2) we have, making use of (7) and (11),

d
12 ij|4 A
(12) Za][ 15 +P1 i

o1 d .0 o’ +o0° (9 0
+ ios (ﬂl— + la_xz) + ioy (8y1 3)’2)]4)] -
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fori =1,...,6. From the equations with (*1), we have, after multiplying by Ay,

d d
(13) ;a,-j [Ala +p1Ala:|¢j =0

for i =1,...,6. Subtracting (13) from (12) gives

o (0 3N o+’ 3 3
(14 ;a,,[g(a—x—lﬂa—h)Jr i, (3714”@)]4)’_0'

If we do the same thing for i = 7,8, except multiply by 4, instead of A4y, we
find that (14) holds also for i = 7,8. Since det(a;;) # 0, it follows that

o1 ] . d 0'12+0'22 ( ] .0 ) .
R — —_ —_ =0 =1,...,8.
(15) [02 (8x1 +18x2) + 02 iy +layz ¢ / ’

Similarly, if we start from the equations with (*3), and then subtract the equa-
tions with (%), multiplied by Ey and E,, we find that

1 d d o1 d d
16) |- ti— )+ 2 (il )¢ =0 =1 . s
19 [02 (8x1 +laxz)+02 (8y1 +layz):|¢] /

Yor each particular ¢;, equations (15) and (16) give two equations for ¢j, and
since
a1 01’40y’
det("2 o2 )=—1¢o,
1 o1
02 o2

d d d d
17 (8x1 +18x2)¢] and (8y1 +13J12)¢]

Thus, we see that the Cauchy-Riemann equations for ¢; hold in the plane
X2 =y, =0.

Now we want to show that the Cauchy-Riemann equations hold for the Vi, 7
variables. Let

we must have

d .0 d .0

Ve = —_— vV, = — —
* 8x1+18x2’ Y 8y1+18y2

We denote the partials of the functions a;; with respect to their 8 variables by
30:‘;‘/34)1, etc. Because the a;; are analytic, we have

8a,~ 8a,~
Viaij =3 LV, Vyay =Y Ly,
0 — Oy
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Consider the first 6 equations (%), with " and ' given by (x2); after division by 4,
they can be written

¢ d 3 G D _ L
;ai,-A—l_;a,-j a—m+pla—ﬂ+A—lvx+A—lvy ;=0 i=1,..,6.

Apply Vi to this equation. Since we have

& D, a¢] 3,01
+(Vx1—4_1)'vx¢’k+( A) V¢’] 12

1 & Dy do; 8,01
:A—l(vx¢j)/+(vx74‘l)'vx¢j+( A )V ¢]+—]Z Vidr,
we obtain an equation of the form

(18) Zaij(vx¢j)/+2(bijvx¢j +¢ijVy9;) =0 i=1,...,6.
J J

Treating the equations for i = 7,8 similarly, except dividing by A2, we obtain

(19) Zaij(vx¢j)\+2(bijvx¢j +cijVypj)=0 i=78.
Jj J

Applying V,, similarly to these same equations, we obtain

(20) Za,-,-(Vy¢,-)’+ Z(d,-jvx¢j +e,-,-Vy¢>,-) =0 i=1,...,6
J J

Q) > ay (V) + D (dijVadj +ei Vo) =0 i=T.8.
J J

Equations (18)—(21) are 16 equations for 16 complex-valued functions Vi ¢;.
Vy ¢;. The matrix of the system is

((Uik) 0 )
0 (aik) )
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So we easily see that the corresponding system of 32 equations for 32 real-
valued functions is hyperbolic. But we know from (17) that V,¢; = V,¢; =0
for n2 = 0. By uniqueness of solutions, it follows that Vi¢; = V,¢; for all
61,0,m,m2).

In exactly the same way, we show finally that Vy¢; = V,¢; = 0 for all
(&1,&2,m,m2). Thus all extended ¢;, in particular u = ¢4, are complex analytic.
So the original real solution # of our equation is real analytic.

In this proof we need the ¢; to have continuous second partial derivatives
satisfying a Lipschitz condition (so that the V, ¢;, V, ¢; in the last step will have
continuous partials satisfying a Lipschitz condition). Thus we require # to have
continuous fourth partial derivatives satisfying a Lipschitz condition. Actually,
the result holds even if u is C*, but that information comes out of other proofs
(it might also be derivable from the present proof with enough extra work).
We will merely state this stronger result in the summary of all the work of this
section:

13. THEOREM. If u is a C? elliptic solution of the equation
F(x,y,u,ux, Uy, Uxx,Uxy,Uyy) =0,

where F 1s a real analytic function of its 8 arguments, then u is real analytic.
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ADDENDUM 1

DIFFERENTIAL SYSTEMS;
THE CARTAN-KAHLER THEOREM

Suppose we are given everywhere linearly independent 1-forms oy, ..., o
on an n-manifold M. The Frobenius integrability theorem, in the differenual
form version (Proposition 1.7-14), tells us when every point p € M lies in some
(n — 1)-dimensional manifold N C M such that all w; restricted to N are zero:
this happens if and only if each dwj is in the ideal generated by the {w;}. Our
proof rested on the observation that the dw; have this property if and only
if the (n — I)-dimensional distribution A = (", kerw; has the property that
[X, Y] belongs to A whenever X and Y do. On the other hand, simple direct
considerations could have shown us that the condition on the dwj is certainly
necessary. For suppose that N C M is an (n—/)-dimensional submanifold of M
on which all w; vanish (i.e., i*w;j = 0, where i: N — M is the inclusion map).
Then the dwj also vanish on N, since

i*(dw;) = d(i*w;) = 0.

But the 2-forms w; A wy also vanish on N, and because the ; are everywhere
lincarly independent, at each point p € N the {w;j(p) A wr(p)} already span
the set of all elements of ©2(M)) which vanish on Np. Thus dwj(p) must be
a linear combination of the {w;(p) A wr(p)}.

We could also have given a direct proof that this necessary condition is suf-
ficient, without appealing to the first version of the Frobenius integrability the-
orem. We will briefly outline this proof, for it not only shows just how the
condition on the dw; is related to the classical integrability criterion, but it 1s
also similar in approach to the proof of the main theorem which we will be
proving later.

For convenience we sct k = n — [, and number our forms as wgy1, ... , Wn-
Since the result is essentially local, we can assume that M = R”", that the point
p € M in question is 0 € R”, and, by changing our axes if necessary, that

dx!, ..., dx* wg41.. .., o span (R")*. This means that near 0 we can write
k n
(I dx”* =2Ahpd,\‘h + Z B,pw, p=k+1,... .1
h=1 r=k+1

Now take d of equation (1), and consider the coefficient of a term dxi A dxt
(i < j < k). when the right side is expressed in terms of the 2-forms

dx* Adx),  dxXP Awp, o A ws,
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which are linearly independent near 0. When we write dw, in this way, the
coefficients of dx' A dx/ must vanish, since by hypothesis dw, is in the ideal
generated by the w,. So we obtain

k
0 = coefficient of dx’ A dx/ in Y " dAp, A dx"
h=1

k n
= coefficient of dx’ A dx’ in Z Z

dA
' dx® A dx
XG
h=10=1

d
04y, 0dy,
T oxi dxJ

k n k
. , dA
+ coefficient of dx’ A dx’ in Z Z Z a—};pAw dx* A dx"
X
h=1a=k+1 =1

by (1)

and thus, finally,

@ 0= Mo _ 34 04, X”: ip ,

= n - o — a-
ax? ax’ ax? axo
o=k+1 o=k+1

But now the classical integrability result (Theorem I.6-1) shows that we can find

functions f**1, ..., " in a neighborhood of 0 in R¥ such that
afr
(3) m(xl""’xk) = Ahp(xla"'axka fk+1('x1"'"Xk)""’fn(xl""’xk))'

Equation (3) is precisely the condition that the @, vanish on the submanifold
{0, X, R ey, X)), S (X xk))), so the proof is complete.
Now we want to consider a more general question. Suppose we are given an
ideal 4 of differential forms on M, not necessarily generated by 1-forms, which
satisfies dd C J. When is there a submanifold N € M such that all forms
of 4 vanish on M? We warn right away that everything is going to be much
more complicated. The basic information regarding this situation is contained
n the Cartan-Kahler theorem (first proved by Cartan when 4 is generated by
I-forms and 2-forms, and then generalized by Kihler). We will never use this
result, except to give an alternative proof of a theorem, in the Addendum to
Chapter 11, but I felt that it should be included here, not only because it is an
application of the Cauchy-Kowalewski theorem, but also because it plays such
a crucial role in the work of . Cartan. It enables one to say, in a sense that will



112 Chapter 10, Addendum 1

be clarified later on, “how many” different submanifolds of R” satisfy a given
geometric condition, e.g., the condition that H is constant [here we are consid-
ering the local theory of submanifolds, without any completeness requirements|;
numerous such examples are worked out in E. Cartan {2}. The Cartan-Kéhler
theorem may be thought of as a result about integrability conditions for systemns
of partial differential equations, of a more complex type than (3). Nevertheless,
the systems to be considered are still very special, since they come from dif-
ferential forms—one could compare this situation with the Poincaré Lemma,
which also involves integrability conditions of a very special sort.

Before we can state the Cartan-Kihler theorem, some preliminary defmtions
will be required. First we want to be more precise about ideals of differenual
forms. Let Q%(M) be the vector space of all k-forms on M. Then the direct
sum Q(M) = QO(M)S---dQ" (M) is aring under A. For any ideal d C Q2(M),
we set 4 = 4NQK(M). We will consider only ideals 4 which are homogeneous,
meaning that

d=do® 1D D dn.

Thus, for example, if 4 contains @y + @2 where w; is a 1-form and w; is a
2-form, then 4 must contain w; and @, (so 4 could not be the ideal generated
by w; + wy). For a homogeneous ideal d 1t 1s certainly clear what we mean by
the condition dd C d: for each k-form w € d, the (k + 1)-form dw must also
be in 4. A homogeneous ideal with this property is called a differential ideal,
or sometimes a differential system. For the present we will assume that our
differential system 4 does not contain functions, 1.e., that do = 0.

Let 4 be any homogencous ideal with do = 0 (not necessarily satisfying
dd C 4). An I-dimensional submanifold N C M, with inclusion map i: N —
M is called an integral submanifold of  if i*w = 0 for all forms € 4. It 1
casy to see that, because 4 is an ideal, this condition holds if i*w = 0 for all
forms w € ;. It is also easy to see that if  is generated by a set of elements S,
then it suffices to have i*w =0 for all @ € S of degree < /. In order to analyze
integral submanifolds of 4, we consider the possible tangent spaces for them.
An [-dimensional subspace W C M, of M, is called an (/-dimensional) integral
element of J if all w(p) are zero when restricted to W, for all w € d; again, 1t
suffices to have this for all @ € 4, or for all @ of degree </ in a generaung
set S. Notice that a subspace of an integral element is also an integral element.
We will also allow the 0-dimensional subspace of M, which we will identify
with p. Itis always an integral element, since we are assuming that Jg = 0.

When the ideal 4 is generated by 1-forms, we must assume, for the Frobenius
integrability theorem, that locally 4 is generated by a fixed number of linearly
independent 1-forms. The analogous requirements for an arbitrary differential
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system 4 are more involved. Let W C M), be a k-dimensional integral element,
and let Xi,..., Xi be any basis. We define the “polar space”

EW)={Xe M, :w(p)(Xi,..., Xk, X)=0forall w € d; 11}

[For k = 0, this means that E(p) = {X € M, : w(p)(X) =0forall w € 41}
This defimition 1s clearly independent of the basis Xi,..., X, and we have
W C €(W). Using the fact that d 1s an ideal, we easily see that for all X € §(W)
and all A < k we have

o(p)(Xi,..., X, X)=0 forall w € dp44.

This means that for every X € (W) which is not in W, the space W @ R- X 1s
an extension of W to a (k + 1)-dimensional integral element; conversely, any
(k + I)-dimensional integral element extending W is of this form. We will also
find 1t useful to consider explicitly the ordered bases (Xj,..., Xx) of integral
elements. Let

M ={(p, X1,..., Xe) : X1,..., Xy span a
k-dimensional mtegral element of M}
CMxTM x---xTM.

For each (p, X1,..., Xx) € My, we define

E(p, X1,..., Xk)
={XeM,:0(p)Xi,..., Xk, X)=0forall w € dp 41}
= & (k-dimensional integral element spanned by Xi,..., X;).

We now define regular integral elements inductively as follows. The point p
1s a regular 0-dimensional integral element if dim & (p’) = dim &,(p) for all p’
In a neighborhood of p. A k-dimensional mtegral element W is regular if

(a) W contains a (k — 1)-dimensional regular mtegral element,

(b) dim &4 (W') = dim &.1(W) for all k-dimensional mtegral elements
W' n a neighborhood of W.

In order to talk about a neighborhood of W. we have to specify the topol-
0gy involved. The k-dimensional integral elements are topologized as a sub-
set of the set of all k-dimensional subspaces of all My; locally this looks like
R™ x (k-dimensional subspaces of R"), and we use the obvious topology on
k-dimensional subspaces of R" (described in detail in Chapter 13, section 2).
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Equivalently, W is regular if it has some basis Xi,..., X such that for each
h < k we have dim &4 ((p', X'1,..., Xs) = dim &,41(p, X1,..., Xy) for all
(p,X",...,X'y) E M ina neighborhood of (p, Xi,..., Xa). Notice that the
definition does not preclude the possibility that the regular k-dimensional inte-
gral element W contains a (k — 1)-dimensional integral element which is not
regular. That is why our second criterion for regularity merely requires the ex-
istence of some basis (X, ..., Xx) with the requisite property—there may also
be bases which do not have this property. A basis (X, ..., Xi) which does have
the required property will be called good.
For a k-dimensional integral element W, consider the codimension

k1 (W) =n — dim Ex1 (W);
similarly, for (p, X1,..., Xi) € Mg, set
cka1(p Xty Xi) =n —dim Eg 1 (p, Xu, .., Xi)-

Clearly cg 41 (W) is the maximum number of (k+1)-forms oM, 0P e dpy
such that the ¢4 (W) linear functions

Y o 0@ (p)Xy,..., X Y) YeM,  ((Xi,...,X;) abasis of W)

are linearly independent. It follows that the function W — ¢x41 (W) 1s lower
semi-continuous on the set of all k-dimensional integral elements {that is, the
value of this function may be greater than ¢ 1 (W) arbitrarily close to W, but
it cannot be less than ¢g41(W) arbitrarily close to W]. Consequently, the func-
tion W +> dim 841 (W) is upper semi-continuous. It follows easily that condi-
tion (b) holds on an open dense subset of the set of all k-dimensional integral
clements. It certainly holds if dim &.1(W) has the minimum possible value.
[In particular, condition (b) holds if dim 8x41(W) = 0, in which case there is
no (k + 1)-dimensional integral element containing W.] It is easy to sce that
if M is a connected analytic manifold, and we consider only analytic forms, then
condition (b) is equivalent to dim €41 (W) having the minimum possible value.

The appropriateness of the regularity condition is attested to by the following

14. LEMMA. Let 4 be a homogeneous ideal with do = O. If Xy,..., X, €
M, is a good basis for a regular k-dimensional integral element of d, and
Xi+1 € Eq1(p, Xy, ..., Xi) is linearly independent of Xi,..., Xi, then near
(p, X1, ... Xics1), the set Mgy is a submanifold of M x TM x --- x TM, of
dimension

nik +2) —ci(p) — c2(p, X1) — -+ — g1 (P> X1y oo, Xie).
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PROOF. We can assume that M = R”. Recall that for ¥ € R”, we let Y, =
(¢,Y) be the corresponding tangent vector € R",. Choose Ay,..., Ay with
X;i = (A,')p. Set

Mirr ={(@. Y1, Yer) € RHD (g (Y)g o, (Yewr)g € Mii ).

Then My 4, is the image of quﬂ under an imbedding R"*+2) _ R” x TR" x
.-+ x TR", so it suffices to prove that My is a manifold. We will use induction

on k, the case k = 0 being easy. So suppose that My C R*®*+1) is known to be
a submanifold, of dimension

() dim My, = n(h+1) —c1(p) — - — cn(p, X1y .., Xn_1).

For convenience, set
Chtt = Chy1 (P X1s. .o, Xp).

Choose cpyy (h+ 1)-forms oV, 0@, . ¢ dp+1 such that the ¢4 linear func-
tions

(%) Y > 0@ (p)(Xi,..., Xk, Yyp)

are linearly independent. We adopt the convention that if ¢, Y;,..., Y44 € R,
then

0@(g,Y1,... . ¥ps1)  denotes @@ (@)((N)gs--.» (Yni1)g)-

Thus we can consider »@ as a function on R*#+2 _ Since Xi,..., X 1s a good
basis, we know that for (g, Y;,...,Yy) € My close to (p, A1, ..., Ap), the linear
functions

Y > 0@ (g, Y1,...,YY)

already span the set of linear functions
Y = w(g,Y,...,YY) forall w € dpyy.

This means that near (p, Ay, ..., Ax), the set thﬂ is precisely the set of
q.Y1,..., Y, Ysyy) such that

{(q,Yth)Gth
w(a)(q7Y]7"'7Yh7Yh+1)=0 a=1,...,€h+1.

Thus, if we define _
F: Mh x R" — RCh'H
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by

F(q7 Yly' - '7Yh7 Yh+1)
= (@M, Y1, Y Yie1), 0P (@, Y1, Vi Yagt)s ),

then ﬂhﬂ 1s just F~Y0) near (p, Ay,..., Ap, Ap41). Let Zy,.. ., Z, denote the

Rn

Rn(h+l)

\A;;h

last 7 basis vectors of R*®#+2 Then the linear independence of the functions (¥)
shows that the vectors

Fe ((Z)(p, Ay Aran) € (RTH1)g

are linearly independent. Thus Fy has rank cp4q at (p, A1, ..., Ap, Ap41). So
in a neighborhood of (p, A1,..., A, Apy1) the set

Myi1 = F710) C My, x R
is a manifold, of dimension

dim My = dim(My x R") — cpp1

—nth+2)—ci(p)— - —cu(p, X1, .., Xnt) — Chyrs by (1),

Our goal is to show that if our ideal d is a differential system (dd C d), then, at
least in the analytic case, a k-dimensional integral element at p which contains
a (k — 1)-dimensional regular integral element (but which need not be regular
itself). is the tangent space at p of some k-dimensional integral submanifold
of 4. We will derive this result as a corollary of a more precise one, which
tells when a k-dimensional integral submanifold of 4 can be extended to a
(k + 1)-dimensional integral submanifold.

Suppose W C M, is a k-dimensional regular integral element of 4 which
is the tangent space at p of some k-dimensional integral submanitold N of J.
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Suppose that dim &g (W) > k, so that there is a vector X ¢ Er+1(W) which
is not in W; then W @ R-X is a (k 4+ 1)-dimensional integral element. We
will show that there is a (k 4 1)-dimensional integral manifold N’ > N whose
tangent space at p 1s W @& R-X. We can also say precisely how many such
integral manifolds N’ there are. To do this, we choose a submanifold P of M
of dimension

dim P =k + 1 + cpyr (W),

such that
(a) PON
(b) PoNnEpy(W)y=WoR-X.

We will show that near p there is an (essentially unique) (k + 1)-dimensional
integral submanifold N’ of d with NC N'C Pand N, =W &R X.

E1(W)

Z T o
[l
v O

| g

All such submanifolds P can be described locally as follows. Choose Z ¢ M,
with & (W) @ Z = M, so that

dmZ =n— dim 8k+1(W) = Ck+1 (W)
Then W @ R- X @ Z has dimension

</ Y

dm(WeR-X @ Z) =k + 1+ cpypy (W).

—
— e
//

ZOWOHR-X
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Also choose U € M, with W @R-X ® U = &1 (W), so that
dimU =dim & (W) —k — 1.

Then P can be written as the graph of a function from W @ R-X & Z to U.
In classical terminology, the submanifolds P, and hence the desired integral
manifolds N’, “depend on dim Eg41 (W) — k — 1 arbitrary functions of k + 1+
Ck4+1(W) variables”.

To prove that N’ exists, we can assume without loss of generality that M =
R”, with p = 0 € R", and that

(e1)o, . - -, (ex)o is a good basis for W
X 1s (ex+1)o
Er4+1(W) is spanned by (e1)o, . - ., (ex)o, (€k+1)o, - -5 (e1)o
Z is spanned by (e741)o, - - -, (€én)o
U is spanned by (ex+2)0, - - -, (€1)o.

By Theorem I.2-10(2), we can assume, by composing R” with a diffeomorphism,
that

1) P={(x',. ., x* 0, 0xt XM
Let N be

N = {(xl,...,xk,fk+1(x1,...,xk),...,f,,(xl,...,xk))},
for certain functions fi41,--., fa with
(2) Dify =0 i=1,..,k; t=k+1,...,n.
In order to have P > N we must have

k+1

ky = y

f‘l(+l ('\‘1" .. "Y
fk+2(.\‘1, ..... X k):---:fl(xl,...,.\‘k):O
fv(xl,...,_\‘k)=,\"’ v=I[+41,...,n

Now the map

(L xM e (T Sim(xt, 6y, o xt — f,,(xl,...,xk))
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has Jacobian matrix equal to the identity at 0, by (2); so by another application
of Theorem 1.2-10(2) we can assume that

3) N={x"...,x%0,...,0)}.

The required N’ must be of the form

4 N = {(xl,...,xk'H,O,...,0,g1+1(x1,...,xk+1),
..,g,,(xl,...,xk"'l))},

where the functions g, satisfy

) g x50=0 v=I+1,...,n

If
w = Z Wiy ..ig dxi' VANV dxik+'
By <eee<igy
is any (k + 1)-form, then o restricted to N’ is zero if and only if the coefficient
of dx' A -+ Adx**V is zero when we replace

Wiy.ig g DY
(xR Y s (X R0, 0, g (XYL xR,
..,g,,(xl,...,xk‘“))
dx’ by 0 J=k+2,....1
by 3 g
X yi=1 o X v=1I{+1,...,n.

Thus w restricted to N is zero if and only if
Y

n
1 k+1 1 k+1
Z wl2...p}t(x ""ax 305"'505gl+1(x yeeesX + )a
n=Il+1

og
k+1 u
X )) Ixk+1

e Zn(xy, ...

= certain terms involving the 8gp/8xh, h<k.

We can write this as

n
)3 g
1 k+1 n
(6) st C}L(x geees X ,gl+1a---,gn)' 8Xk+1
d
= 1 k+1 gp
_D(X,...,X ,...,gp,...,w,...)

[all g, and dg,/dx" evaluated at (x',..., x**1)],
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where

7)) Culx',.. X g, gn)

= wlz,,,pu(xl,...,xk+1,0,...,0,g1+1,...,g,,).
Choose n — I (k + 1)-forms
0" € dig
so that, with the conventions of the proof of Lemma 14, the n—/ linear functions
Y > o 0,e1,...,e,Y)
are linearly independent. This means that

0#det(a)(")(O,el,...,ek,eu)) [+1=<pu,v<n

So if we write ) as

oW = Z wlgl‘")"ikﬂ dx"U A oo AdxE
iy <'"<ik+l
then
(8) 0# det(0l) ,,0) I+1<pv=n

Consider the equations (6) for each ©®:

n
g
I D o R T Y RN O F =

u=I+1
d
=D(xl,...,xk+1,...,gp,... %ﬂ_ .

Equation (7), together with (8), shows that
0% det(C0)  1+1<pv<n
So equations (9) can be written, near 0, as

gv 1 k+1 9gp
(10) W:Ev(x,...,x ,...,gp,...,m,... .

Now we have arrived at a familiar looking problem.
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15. THEOREM (THE CARTAN-KAHLER THEOREM). Let M be an an-
alytic manifold, and let 4 be a differential system (of analytic forms) with 4o = 0.
Let W C M) be a regular k-dimensional integral clement, and let N be a
k-dimensional integral submanifold of 4 with N, = W. Let X € &, {(W) be
a vector not in W, and let P be an analytic submanifold of M of dimension
k+ 1+ cit1(W)such that P D N and P, N & (W) = W@ R-X. Then
there is a unique analytic (K 4+ 1)-dimensional integral submanifold N’ of J
with NCN' CPand Ny =WaR-X.

PROOF. The previous considerations show that the existence of N’ is equiva-
lent to the existence of functions g, satisfying

gv(xl,...,xk,0)=0 v=Il+1,...,n

and also equations (6) for all @ € Jdy4y. In particular, the functions g, must
satisfy (10), with the above imtial conditions. The Cauchy-Kowalewski theorem
(together with the considerations at the end of section 3) shows that there are
unique analytic functions g, with this property. This already proves uniqueness,
and proves the existence of N, with inclusion map i: N’ — R", satisfying
*o'tl = = i*" =0.

To complete the proof of existence we must show that i*w = 0 for all w € dg;.
Here 1s where the regularity of W is required.

We will continue to use the convention in the proof of Lemma 14. For each h < k,

choose (4 + 1)-forms 0® such that the linear functions

h+1
Y = w}(,lf‘.)l(()’el’""ehyy) a = 1,...,ch+1 - Ch+1(0,el,...,eh)

are linearly independent. Thus the forms ‘“1(:21 are the forms o'*!,. .. o"
introduced previously. Consider the (k + 1)-forms

(a)/\dx AdxP A AdxRH! a=1,...,¢

w§ Adx3 A A dxET! a=1,...,0
@
)
wl(:’f‘_l a=1,...,Cq1-

We use all of these forms to construct a map G : R"&+2) — Re1+-+e+1_ defined

by
G(@. Y1, Yiw) = ((0f ) Adx? A AdxE*) g, Y, Yir),

1(:_::?')((1, Yi,..., Yk+1))'
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Since

.("‘)/\dxi'H /\---/\dxk'H)(O,el,...,e,',...,Yh,...,ek_H) =0,

wi(a) cd, — (wl

the Jacobian matrix of G has the form

q Y Y, Y; ... Yiq

s Chtl)-

. 4> o ... 0
(2{ " at(o,el,

con |

By our choice of the w,(lo_“_)l, the block A4 has rank c¢p4;. So the whole matrix
has maximal rank ¢; + --- + cx41. Thus G™1(0) is an (analytic) submanifold
of R+ *ek+1 pear (0,ey,...,ex+1), of dimension n(k +2) —cf — -+ — Ck+1.

But the forms (I) are all in the ideal 4, so G™'(0) contains the manifold qu+1
in the proof of Lemma 14. It also has the same dimension as this manifold, so
it equals this manifold near (0, ey, ..., ex41). We will write the forms in (I) as

T](ﬂ)/\dxk-‘.1 ﬁ:l,,,,,d=c1+...+ck

(@)
W a=1,...,Ck+1,

(I)

where the forms n(‘s) are all in 4.
Now consider an arbitrary (k + 1)-form @ € dg41. Since W is a regular
integral element, we know that we can write

Ck+1

@Y YY) = Y Balg, Yoo i) - 08 (@ Vs Y, Y)
a=1

for all (g, Y1,...,Yy) € ﬂk close to (0,e1,...,ex). The functions B, can be
solved for explicitly by Cramer’s rule, so they are actually analytic functions 1n
a whole neighborhood of (0,ey,...,€) in R"*+V even though the equation
need hold only for (g, Y1,...,¥) € My. We may express this situation as
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follows:

the function

(a) w— Z Byw®

(analytic) submanifold Mj 41, defined by the equations

k (o)
(b) n® Andx*t =0, o =o0.

on R"*+2) vanishes on the submanifold ﬂk x R" and hence on the

123

It follows easily (Problem 1) that locally the function (a) is a sum of analytic

functions times the functions in (b). Consequently, we can write

w(q, Yl, LR Yk+1)
Ck+1

=Y Cal@. Y1, i) - 0@ (g, Y, Vi)
a=l1

d
+ ) Dp(g Y1, Yiew)) - P A dxXF g, YL Yen),

B=1

for analytic C; and Dg. This implies that if ¢ € N’, and Yy,..., Y4 are

tangent to N’, then

(Fw)(g, Y1, ., Yit1)
d

=0+ > Dg(@,V1,.... ir)i* (0P Adx* (g, 11, ..., Yiq).

B=1
So it suffices to show that

P Adx*thYy=0 B=1,....,d.

From the form of N’ (equation (4) on page 119) it is clear that x!,..., x*+!

is a coordinate system on N'. So we write each i*n® as

k+1
@ =3P dx A A dxT A A dxR
j=1
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Now the above analysis for the (k + 1)-form @ € g4y can be applied, in
particular, for w = n® AdxJ. Thus each i*(n® Adx/) is a linear combination,
with analytic coefficients, of the forms i*(n® A dx**1). Since
*dx! APy =dx) A @ = hP dx' A A dXEY <k
P(dx* A By = hP) dxt A A dxkt!

=H® dx' A  Adx*!) sy,

s

this shows that we can write h](.ﬂ ) for J < k as an analytic linear combination
of the H®,

d
®
WP =" Ejg, HY.
Since dd C 4, we can also write cach i*dn® as a linear combination of the
i*(n(ﬂ) A dxk'H),

d
i*dn® =" Fg, HY dx! A+ A dx*H,
y=1

But

*dn® = di*y®

k+1
= d(Z(—l)”lh](.ﬂ) dx' A AdxI A A dxk+1)

i=l

onf? ML) o
=|:8X1 Bk dx A Adx

: [a(zy B HO) S, EuyHY) o

1 k+1
™ ok 8xk+1} ax Ao AdxtT

Comparing with the original expression for i*dn®, we see that we have a
system of equations

IH® ad oHW
(*) Gxck+T ZF/’ H(Y)+ZG]ﬂV oxl B=1,....,d,
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with everything in sight being analytic. Finally, we have to use the fact that the
original manifold N (equation (3) on page 119) is an integral submanifold of 4.
This implies that all forms ) vanish on N, which means that

(*o) HPOG L xk0)=0, p=1,....d.

The uniqueness part of the Cauchy-Kowalewski theorem shows that the only
solutions H® of (*) with the initial conditions (x0) is H® = 0. Thus all
WP =0, 50 all i*n®) = 0. %

As an immediate consequence we obtain

16. COROLLARY. Let M be an analytic manifold, and let d be a differential
system (of analytic forms) with £o = 0. Let W C M, be a k-dimensional integral
element which contains a regular (k — 1)-dimensional integral element. Then
there 1s a k-dimensional analytic integral submanifold N of 4 with N, =W.

PROOF. Choose a good basis Xi,..., X; of W, and consider the subspaces
Wi c W, C --- C W with W, the subspace spanned by Xj,...,X;. The
desired result then follows by induction from Theorem 15, starting with p as a
0-dimensional integral submanifold. «

The reader may easily check that if J is an ideal generated by linearly inde-
pendent 1-forms wy, ..., @, then for every k-dimensional integral element W
we have ¢1(W) = n—I. Consequently, every integral element is regular. Thus
the Frobenius theorem follows, in the analytic case, from the Cartan-Kahler
theorem.

As a final remark, we point out that it is not hard to take care of the case
do # 0. One merely has to assume that {g € M : f(g) = 0 for all f e do}is

a submanifold M’ C M near p, and then apply the previous considerations to
dIM’.
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ADDENDUM 2
AN ELEMENTARY MAXIMUM PRINCIPLE

It is well-known that if u is harmonic (8%u/3x*+3%u/dy* = 0), then u cannot
have a relative maximum at an interior point of an open set. A more general
principle holds, and its proof, although tricky, is elementary.

On an open set U C R", consider the second order differential operator L
defined by

(#) Lu_Za,,8 . Zb

i, j=1
for certain functions a;j, b;,¢c on U. We assume that a;; = aj;, and that the
matrix A = (a;;) is everywhere definite. [Thus the equation Lu = 0 is the
most general second order linear elliptic equation.] To be more specific, we will
assume that A = (a;;) 1s positive definmite. Thus Zi’j a;j & > 0for 0 #§ e R™;
equivalently, if * denotes the transpose, the 1 x 1 matrix
E-A-E'>0 for0#£&eR"

An elementary observation about definite matrices will be needed. Suppose
that B is also positive definite, so that

E-B-E'>0 for0O#£&eR"
For any non-singular matrix P we then have
£.PBP'- £ = (EP)B(EP) > 0 for0 # £ e R",

so PBP' = C = (¢;;) is also positive definite. Now the symmetric matrix 4 can
be diagonalized—there is an orthogonal matrix P such that

h0

An

PAP ' = PAP' = A > 0.

Then
trace A B = trace PABP" = trace(PAP"Y)(PBP")

= trace(A;cij)

= Z}\i(‘ii > 0.
i
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Similarly, we have trace AB > 01f B is positive semi-definite, and trace AB < 0
if B 1s negative semi-definite.
Now consider the operator (x), where we assume that

@) c<0 in U.

Suppose that u: U — R is a twice differentiable function with a relative maxi-
mum at some point p € U. Assume, morcover, that

(1) u(p) > 0.
From (i) and (i) we have
n 82
(iii) > ay Terdx; =—=—(p) = (Lu)(p) — c(p)u(p) = Lu(p).
i,j=1

On the other hand, since v has a relative maximum at p, the matrix

32
( Bxi0x (p))

is negative semi-definite. Hence we have

9%u

0%, -(p).

i 0>t A B =
(v) race A(p) - ”2:1 aij 7—— %

Since (ii1) and (iv) imply that Lu(p) < 0, we find

(A) If the operator (%) has (a;;) positive definite on U and ¢ < 0 on U, and
the twice differentiable function u satisfies Lu > 0 on U, then u cannot
have a non-negative relative maximum on U.

The significant fact is that we can replace the condition Lu > 0 by Lu > 0,
provided that we consider actual maxima rather than relative maxima.

17. THEOREM (E. HOPF). Consider a second order differential operator

Lu ia &u +ib 8u+ c<0
- - * — 1 cu
Y 8x;8xj P '8x,~ -

i,j=1
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on a connected open set U C R”. Assume that the functions b; and ¢ are locally
bounded, and that in a neighborhood of any point of U there are constants
e, M > 0 such that the matrix (a;;) satisfies

n

e Y &< Y aykif<M-) & EeR
i=1 i=1

Lj=l1
Suppose that u is a twice differentiable function on U satisfying

Lu>0.

Then u cannot have a non-negative maximum on U, unless # is a constant.

PROOF. Suppose u has a maximum at p € U, with u(p) 2 0. If u is not
constant, then there is clearly a point ¢ € U and an open ball B centered
at ¢ with B C U such that u(g) < u(p), but u(p*) = u(p) for some p* €
boundary B. Moreover, by choosing the smallest ball B with this property, we

can assume that u < u(p) in B. Let r be a point on the open segment qp*, set
p=d(r, p*) and choose 0<p <p.

Let B’ be the open ball of radius p’ around p*; assume p’ chosen sufficiently

small so that B’ C U.
Now consider the function

— 2 a2
v(x) —e kd(r,x) —e kp
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where & 1s a constant. We find that

Lv(x) = e~kd(rx)? |:4k2 Za,-j (xi —ri)xj —r;) — 2k Zb,- (xi — ri)}

i j i

+ c|:e_k‘°2 - e_kd(”x)z]

By choosing & sufficiently large, we will obviously have Lv > 0 at all points
of B’. So for all A > 0 we will have

0 Lu+iv)=Lu+AiLv>0 inB.
We also Have
(2) v(p*) =0 = (u+2v)(p*) = u(p*) = u(p).

Now consider S” = boundary B’. It is the union of a set C and a closed set D
such that

xeC —= d(x,r)>p
= v(x) <0
xeD = xe B = u(x) <u(p).

This clearly implies that for sufficiently small A > 0 we have
3) u+iv <u(p) on S’

But (2) and (3) imply that u + Av has a maximum > u(p) > 0 on B’. Together
with (1), this contradicts (A). «

The example

u=—-(x*+3yH -4

%u  9%u 5 5
LUZW-FW—U:X +y 20
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shows that the function ¥ in Theorem 17 may well have a negative maximum
on U. The example

u=—(x2+yH+5
?u  d%u

Lu=2%47%
! 8x2+8y2

+u=1—(x2+y2)20 forx2+y2_<_1

shows that the hypothesis ¢ < 0 1s essential. If we assume ¢ = 0, then we get a
stronger conclusion: '

18. COROLLARY. Consider the operator L of Theorem 17, with ¢ = 0. If u
is a twice differentiable function on U with Lu > 0, then u cannot have a
maximum on U unless # 1s a constant.

PROOF. Suppose u has a maximum at p. Let v = u — u(p). Then v has a
maximum of 0 at p. Moreover,

Lv=Lu=>0.
So Theorem 17 implies that v is a constant. +¢

As an application, consider a function f: M — R on a Riemannan mani-
fold M. Then we have the Laplacian A f, defined in Addendum 1 to Chapter 7.
In a coordinate system (x',...,x") on M, the formula for A f (pg IV.133) is
precisely of the form considered in Corollary 18. Soif Af > 0, then A f can-
not have a maximum on M, unless f is a constant function. This gives another
proof of Bochner’s Lemma (Lemma 7-60).

In contrast to Corollary 18, where we assume ¢ = 0, there is another result
where ¢ is arbitrary.

19. COROLLARY. Consider the operator L of Theorem 17, with arbitrary c.
If u is a twice differentiable function on U with Lu > 0 and # < 0, then u cannot
have the value 0 anywhere on U unless # is identically 0.

PROOF. Let

n n
9%u du
Pu = E ji—— b —.
! < i dx;0x; + " D x;
i,j=1 i=1
Then we have
Pu+cu=Lu>0.
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Hence
Pu + min(c,0)u = [min(c,0) — cJu + Lu.

Now

min(c,0) < 0
min(¢,0) —¢ <0 = [min(c,0) — cJu > 0 since u < (

= [min(¢,0) — cju + Lu > 0.

Applying Theorem 17 to the operator Pu + min(c,0)u, we conclude that u
cannot have a non-negative maximum unless it is a constant. o

There 1s also a version of Theorem 17 when u has its maximum at a boundary
point of U.

20. THEOREM. Consider a second order differential operator L as in Theo-
rem 17. Let u be a twice differentiable function on U satisfying Lu > 0 and such
that at some point p € boundary U the function # has a maximum u(p) >0
on U U {p}. Suppose moreover that there is some closed ball m cUu{p}
containing p on its boundary, and that the directional derivative of u at p in the

direction from p to r is > 0 (all directional derivatives in directions tangent to
the boundary of B,(r) are clearly equal to 0). Assume, finally, that the functions
aij, bi, ¢ have the same properties as in Theorem 17, but in U U {p}. Then u is
a constant function,

PROOF. Suppose u is not a constant function. Choose 0 < o1 <p=d(p,r),
and let

K ={x:d(x,r) < pandd(x, p) < p}. ’ D
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Again define

2 2
v(x) = e—kd(r,x) _ e—kp )

The boundary of K is the union of a closed set C C U and a closed set D
on which v = 0. Theorem 17 implies (choosing p smaller if necessary) that
u(x) < u(p) for x € C. So for sufficiently small A > 0 we have

—xv(x) > u(x) —u(p) for x € boundary K.
But for sufficiently large k, we have Lv > 0 in K. So
L(u —u(p) +Av) = Lu —cu(p) +ALv > 0.
It follows from (A) that
—dv(x) > u(x) —u(p) for all x € K.

So the directional derivative of u at p, in the direction from p to r, is less than
or equal to this directional derivative at p of —iv. But we casily compute that
the latter directional derivative is

_2xkpe™*" <0,

contradicting the hypotheses. <

Naturally, there are analogous versions of Corollaries 18 and 19.

PROBLEM

1. (@) Let f: R" — R be a C* [respectively, C*] function such that f =0
on the points (0, ... ,0,x"%+1 __ x") near 0. Show that there are C* [C*]
functions h; near 0 such that

k
f = Z h,‘xi.
i=1

[The C? case is actually trivial; the C* case can be proved by generalizing the
argument in the proof of Lemma I.3-2.]

(b) Let g: R” — R¥ be a C® [C*] function whose Jacobian has rank k on
¢71(0), and let f: R” — R be a C* [C*] function which vanishes on g710).
Then near any point of g7*(0) there are C* [C*] functions A; such that

k
f= Z hig'.
i=1



CHAPTER 11

EXISTENCE AND NON-EXISTENCE
OF ISOMETRIC IMBEDDINGS

In the past we have had some very special results about the non-existence of
isometric imbeddings of certain Riemannian manifolds in other Riemannian
manifolds. For example, a compact surface of everywhere negative curvature
cannot be isometrically imbedded, or even immersed, in R?, nor can a complete
surface of constant negative curvature be isometrically immersed in R*. Ideally,
differential geometry should be replete with such results, so that we could have
a reasonable chance of finding the smallest dimensional Euclidean space into
which a given Riemannian manifold can be isometrically imbedded. But at
present only quite 1solated facts are known, and a general theory can hardly be
said to exist.

There are, first of all, purely topological, or at any rate differential-topological,
questions which have to be considered in any imbedding problem—for there is
no point trying to isometrically immerse or imbed a Riemannian manifold in
R™ unless its underlying differentiable manifold has some differentiable immer-
sion or imbedding in R™. Generally speaking, the methods used to settle such
questions are of little interest to differential geometry per se. We note, however,
that one special result of this sort has already been proved in Volume I: A
compact hypersurface imbedded in R™ 1s always orientable (Theorem 1.11-14).
Thus, for example, there is no imbedding of the projective plane P2 in R®. We
can supplement this result with a simple differential geometric one: If ( , )isa
metric on P2 with K > 0, then (P2, ( , )) cannot even be isometrically immersed
in R; this follows directly from Hadamard’s Theorem (Theorem 2-11).

At the other extreme from these global topological restrictions, there are cer-
tain purely local results. For example, if n > 3, and M" has all sectional
curvatures < 0, then M" cannot be locally isometrically imbedded in R**!; for
the principal curvatures ki, ...,k, would have to satisfy k;k; < 0 for all i, j,
while some pair k;, k; must have the same sign. Similarly, Theorem 7-50 shows
that if # > 3, and M” c R"*! has Ricci tensor Ric = 0, then M is flat; so for
n > 3, a non-flat M" with Ric = 0 is not isometrically imbeddable in R"*!.
Historically, this was first used to show that the 4-dimensional Schwartzschild
metric of general relativity is not imbeddable in R5.

122
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To obtain purely local results for higher codimension, we need to replace the
trivial algebraic considerations used previously by something more substantial.

1. LEMMA. Lets: R” x R” — R* be a symmetric bilinear map, and let ( , )
be a positive definite inner product on Rk, Let S"~!' C R” be the unit sphere

with respect to the usual inner product { , ) on R"), and consider the function
P p
f(x) = |Is(x,x)]? for x € S*71.

() If x € S"~! is a critical point of f, then
{s(x,x),s(x,y)}y=0 for all y with (x, y) =0.
Consequently, if f(x) # 0, then
s(x,y)=0 = (x,y)=0.

(2) If x € $"7! is a minimum point of f, then for all y € S"=1 with (x,y) =0
we have

(s(x,x),s(y, ¥)) + 2{s(x, p), s(x, )} = {s(x,x),s(x,x)).

PROOF. (1) Using the fact that the derivative DA(x) of a linear transforma-
tion A is always A4 itself, we easily see that the map S: R" — R¥ defined by
S(x) = s(x, x) has derivative DS(x): R" — Rk given by

(DS)(x)(y) = 2s(x, y).
It follows that
(Df)(x)(y) = 2{S(x)(»), S(x)} = 4{s(x, y),s(x,x)}.

Since x € S™! is a critical point for f, we must have (Df)(x)(y) = 0 for all
y e S" 1, ie, for (x,y) =0.
Now suppose s(x, y) = 0 and s(x,x) # 0. Writing y = Ax + y', with

(x, 1) =0 = (s(x,x),s(x,¥)) =0 by the above paragraph,
we have

0 = (s(x,x),s(x,))
= {s(x,x),s(x, Ax)} + (s(x,x),5(x, "))
= (S(.\’,X), S(X, )\Y))
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Since s(x, x) # 0, this implies that A = 0.
(2) Let ¢ be the curve in $"~! defined by
c(t) = (cost)x + (sint)y.

Since x is a minimum of f we have
2

<
T dr?,_
A short computation shows that the right side 1s

4= (s0x, ), 506, 0) + {506, 3), 50, 7)) + 2455, 1), 505, 7)) o

0 fe(@)).

From this we derive, first of all, a purely local result.

2. PROPOSITION. Let N be a manifold of dimension 2n—2 with all sectional
curvatures > Kp, and let M be a manifold of dimension n with all sectional
curvatures < Ko. Then M cannot be isometrically immersed in N. The result

also holds if all sectional curvatures of N are > Kg and all sectional curvatures
of M are < K.

PROOF. Suppose we could isometrically immerse M in N, and let s be the
second fundamental form. For any p € M, and orthonormal X,Y € M),
Gauss’ equation gives, under the first hypothess,
Ko < (R'(X, Y)Y, X)
= (R(X, Y)Y, X) + (s(X,Y),s(X,Y)) — (s(X, X),s(Y,Y))
< KO + (S(Xa Y),S(X, Y)) - (S(Xa X),S(Y, Y))
Under the second hypothesis the < and < are interchanged. In either case, we

obtain

(l) (S(X,X),S(Y,Y))——(s(X,Y),S(X,Y)) <0, X,YGMP

linearly independent

(for this final inequality we do not need X,Y to be orthonormal). Choose
X € M, to be a minimum point of X + [s(X, X)| on the unit sphere of M).
Since {Y : s(X,Y) = 0} has dimension > 2, there is a unit vector Y linearly
independent of X with

2) s(X,Y)=0.

From (1) and (2) we see that we must have s(X, X) # 0. But then Lemma 1(1)
implies that (X,Y) = 0, so Lemma 1(2) gives

(s(X, X),s(Y,Y)) +0 > (s(X, X),s(X, X)) = 0,
contradicting (1) and (2). &
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In particular, an n-manifold M of constant curvature K < Kg cannot be
locally isometrically immersed in a (2n — 2)-manifold N of constant curvature
Ko. An example of a (non-complete) n-manifold of constant negative curvature
in R*~! is given in Problem 1. It seems reasonable to conjecture that there
is no immersion of a complete n-manifold of constant negative curvature in
R*"=!_ but this has not been proved (whether one can be found in R?* is any
body’s guess). It is known, however, that no such immersion exists if M is
compact. This follows from the next theorem, whose proof combines the local
information from Lemma 1 with just a smidgen of globalness.

3. PROPOSITION. Let N be the complete simply-connected (21 — 1)-dimen-
sional manifold of constant curvature K¢ < 0, and let M be a compact

n-manifold with all sectional curvatures < 0. Then M cannot be isometrically
immersed in N.

PROOF. Suppose there were an isometric immersion f: M — N. Letgo € N
be a fixed point, and choose p € M so that f(p) is furthest from go. Then
(pg TV.118) there is £ € M,* with

) (s(X,X),& > vV—-Ko = (s(X,X),s(X, X)) > —-Kp for X € M),

Choose X € M, to be the minimum point of X + [s(X, X)|?> on the unit
sphere in M. Since {Y : s(X,Y) = 0} has dimension > 1, there is a unit
vector Y € M, with

(2) s(X,Y)=0 = (X, Y)=0 by Lemma I(1).

Then Lemma 1(2) gives

(3) (s(X, X),s(Y,Y)) > (s(X, X),s(X, X)) > — Ko, by (1).

Morecover, applying Gauss’ equation to the plane P C M, spanned by the
orthonormal vectors X, Y, we have

K(P) = (s(X, X),s(Y,Y)) — (s(X,Y),s(X,Y)) + Ko
>—-Ko+0+ Ko by (2) and (3).

This contradicts the assumption that K(P) < 0. ¢

Remark: More generally, if each tangent space M, contains an /-dimensional
subspace on which all sectional curvatures are < 0, and the compact mani-
fold M can be isometrically immersed in the complete simply-connected (n+k)-
dimensional manifold of sectional curvature Ko < 0, then we must have k > /.
Proposition 2 can be generalized similarly.
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4, COROLLARY (TOMPKINS). An n-dimensional compact flat Riemann-

ian manifold cannot be isometrically immersed in R2*~!,

Obviously 2n — 1 is the best possible dimension here, since the flat n-torus
S x---x S!isisometrically imbedded in R?". It is also isometrically imbedded
in H*(K,) for any Ko < 0, since it is isometrically imbedded in $2"~!, and
there are spheres of all curvatures in H2"(Kp). I do not know if there is a
non-flat compact n-manifold in R?" or H?"(Ky) with all sectional curvatures
<0.

The proof of Proposition 3 breaks down if N is a sphere, with constant cur-
vature Ko > 0, since we cannot guarantee the existence of the requisite point
p € M unless we know that M lies in a hemisphere. Indeed, the n-dimensional
flat torus ' x --- x ST can be isometrically imbedded in S2"~!. It seems rea-
sonable to assume that M" cannot be isometrically immersed in $"~! if all
sectional curvatures of M are > 0 and < 1. For the special case where M has
constant curvature, see Problem 2.

Now we are going to consider some more elaborate algebraic results. Let V
be a real vector space, and let ®: V x V — R be bilinear. With ® we can
associate a linear transformation ®: V — V* by

d(v)(w) = D (v, w).

A collection ®!, ..., ®" of bilinear forms on V is called exteriorly orthogonal if
for all vi,v, € V we have

n
2P w) AP () =0 e QXV);
i=1
equivalently,
n
Y [0, w) D (v, ) — D vy, W)@ (w2, wy)] = 0
i=1
for all vy, vy, wy, ws € V. Before stating the main result about exteriorly orthog-
onal bilinear forms, we make a simple observation. If ® # 0is ® = ¢ ® ¢
for some ¢ € V*, so that ®(v,w) = ¢(v) - p(w), then B(v) = P(v) - ¢, and
consequently range ® C V* is I-dimensional. Conversely, if range ® C V* is
I-dimensional, then ® must be of the form

D) (w) = Y (v) - p(w)

for ¢,y € V*. If, moreover, ® is symmetric, so that ¥ (v) - ¢(w) = Y (w) - $(v)
for all v, w, then we must have ¢ = ¥ [since (¢ — ¥)(w) = 0 for some w # 0],
$0 @ is of the form ® = ¢ ® ¢.
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5. THEOREM (E CARTAN). Let V be a real vector space of dimension n,
and let ®',...,®" be n exteriorly orthogonal symmetric bilinear forms on V.
Suppose that

n
() 0= ﬂkeréi ={veV :®(v,w)y=0forallveV andalli}.
i=l

Then there is an orthogonal 7 x n matrix 4 and linearly independent ¢',.. .,
¢" € V* such that

n
=) Aip) @¢/.
j=1
PROOF. We claim that there is a vector v € V such that the ®(v) € V*
are linearly independent. To prove this, let vo € V be a vector such that the

subspace ) )
[®'(vo), ..., D" (vo)] C V*

spanned by the & (vp) has maximal dimension d < n, and suppose that d < n.
Replacing the {®} by an orthogonal linear combination of them changes nei-
ther the hypotheses nor the conclusion of the theorem, so without loss of gen-
erality we can assume that

®!(v), ..., éd(vo) are linearly independent,
¥+ (1g) = -+ = B"(vp) = 0.

Then for any vector v € ¥V we have

d
Z éi(vo) A <I~>i(v) =0.
i=l1
Cartan’s Lemmma thus implies that for i = 1,...,d, the ®'(v) are a linear com-
bination of the ®(vg), i = 1,...,d. Consequently

V={d'(v):veV, l<i<djcV*
also has dimension exactly d. Since d < n, there is a vector 0 # w € V such
that ¢(w) = 0 for all ¢ € V. But by (*) there is some i and some v € V such

that ®'(v,w) # 0; clearly i > d. Now consider the vector vo +ev. If & > 0 is
sufficiently small, then

dim[®' (vo + £v),. .., B (vo + ev)] = dim[® (vp),...., D¢ (v)] = d

l

[<i>1 (vo +ev),..., 4 (v + sv)] =V, since dmV =d.
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But ®'(vo +v) ¢ V, by the choice of v and i. So
dim[él(vo +6v),..., 9" (vo + sv)] >d,

contradicting the definition of d. This establishes the claim.

Now choose a basis vy, ..., v, of V such that ®!(vy),..., ®"(v;) are linearly
independent. Since

n

Y ) AP =0,

i=1
Cartan’s Lemma implies that there is a symmetric matrix C(j), with C(1) =
identity, such that

&' () = > CNL @M vy).

h=1
The equation
Z&)h(vj) A éh(vk) =0
h

implies that C(j) and C(k) commute. Then a well-known theorem of linear
algebra (Problem 3) states that there is an orthogonal matrix B such that the
matrices B - C(i) - Bt are diagonal for all i, where * denotes the transpose. If

we set
v =" B ok,
h

then \ili(vj) is a constant times W (v;). Thus range ¥/ is 1-dimensional, so
W = ¢! @ ¢ for some ¢’ € V*. We choose A = B~!. The ¢’ must be linearly
independent, for otherwise there 1s 0 # v € V such that ¢'(v) = 0 for all i,
contradicting (x). «»

The hypothesis (%) in Theorem 5 may be interpreted as saying that the set
{®'} “depends on n variables” —we cannot find ¢',...,¢" 1 € V* such that
each @' is a linear combination of the ¢/ ®¢*, 1 < j,k < n—1. More generally,
if ®!,..., ®F are bilinear forms on V, then the set {®'} depends on g variables
if the subspace [, ker ® has codimension g.

6. COROLLARY. Let V be areal vector space of dimension n, and let ol ...,
@k be k exteriorly orthogonal symmetric bilinear forms on V which depend on
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[ > k variables (so necessarily k < n). Then / = k and there is an orthogonal
k x k matrix A and lincarly independent ¢!, ...,¢* € V* such that

k
o' =) Aip) @/,
j=l1

In particular, k exteriorly orthogonal symmetric bilinear forms always depend
on < k varnables.

PROOF. Without loss of generality, we can assume that / = n [by applying the
result to a subspace of V complementary to ﬂf-;] ker ®']. If k <[ =n, we set

okt — ... =" =0.

The 7 bilinear forms ®', . .., ®" are then exteriorly orthogonal and (I, ker @'
= 0. By the Theorem, there is an orthogonal n x n matrix A, and linearly
independent ¢',...,¢" € V* with

n
ol =) Al @¢).
j=1
So we cannot have ® = 0 for any i, which shows that actually k =n =1. &
These algebraic results were used by Cartan for a systematic local study of
n-dimensional manifolds M of constant curvature K isometrically imbedded

in an (n + k)-dimensional manifold N of constant curvature Ko > K. For
an adapted orthonormal moving frame X1,..., Xp on M C N we have, as in

Chapter 1,
o= =i
i
the second fundamental forms II” are given by
=) y/ @6
i
We also have
Kot n67 = QL = "yl Ayf
r

= K0 n0T =) Yl Ay,
r
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or equivalently
M > (sisky — sisis) = (K — Ko) 8178kt — 8i18kj).
r

If we define
¥ = /Ko — (Ze’ ®9’)

then equation (1) says that the & + 1 bilinear forms {II”, ¥} are exteriorly or-
thogonal. The collection {II", ¥} certainly depends on all n variables, since W
alone does. So Corollary 6 implies that n < k + 1, showing once again that M"
cannot be isometrically imbedded in N2, Cartan showed, using his theory
of exterior differential systems (Chapter 10, Addendum 1) that the analytic local
imbeddings of M" in N?*~! depend upon n(n — 1) functions of one variable.

Another consequence of Corollary 6 depends on two definitions, one intrinsic
and one extrinsic. For a point p of a Riemannian manifold M", we define the
index of nullity at p to be

w(p) =dim{X € M, : R(X,Y) =0forall Y € M,}.

Equivalently, n — p(p) 1s the minimum number of 1-forms in terms of which we
can express the collection of 2-forms {Qj.( p)}. For M" ¢ R**k with second
fundamental form s, we define the index of relative nullity at p to be

v(p) =dim{X € M, : Ae(X) =0 forall £ ¢ M,"}
=dim{X e Mp : s(X,Y)=0forall Y € M,}.

Equivalently, n — v(p) is the minimum number of 1-forms in terms of which we
can express the collection of forms {II"(p)}, for an orthonormal set v+, .
U"+k € MPJ_'

L]

7. PROPOSITION. For M" c R"** we have

v(p) < pu(p) < v(p) + rank s(p) <v(p) +k.
PROOF. The first inequality follows from Gauss’ equation, which shows that

{X e M, :s(X,Y)=0forallY € M,}
C{XeM,:RX,Y)=0foral Y € M,}.
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For the second we can assume, by choosing the v™ appropriately, that II"*!(p),
. 11" (p) are linearly independent, for d = rank s(p), while the other II" (p)
are all 0. Then Gauss’ equation shows that II"*1(p), ..., 11"+ (p) are exteriorly
orthogonal when restricted to {X € M, : R(X,Y) =0forall Y € Mp}. Let W
be a subspace such that

{X e Mp: R(X,Y)=0forall Y € M} ‘
=Woa{XeM, s(X,Y)y=0forall Y € Mp}.

Then II"*!(p),..., 1I"*4(p) are exteriorly orthogonal on W, and depend on
all variables of W. Corollary 6 implies that d > dim W = v(p) — u(p). %

Remark: We have a similar result for M" C N"** where N"*¥ has constant
curvature Ko, provided we redefine

u(p) =dim{X € M, : R(X,Y)Z = Ko[(Y,Z)X — (X, Z)Y]}.

8. COROLLARY. If M" is a compact manifold immersed in R"+¥, then
k > mi .
2 min u(p)
PROOF. Proposition 7-30 shows that for some p € M we have v(p) = 0. %

Note that Corollary 4 is a special case (admittedly the only reasonably general
consequence we can give). Recently Corollary 6 has been used to prove results
of quite another sort, which we will mention in the next chapter.

This ends our treatment of non-imbeddability theorems, and pretty much ex-
hausts the subject in its present state (a few other special results are mentioned in
the Bibliography). Now we will take a more positive approach to life and try to
prove that under certain circumstances isometric imbeddings do exist. We first
consider the purely local problem of isometrically imbedding a surface in R3.
So we assume that we are given functions g;; (= E, F, G) on a neighborhood of
0 € R?, with det(g;;) > 0, and we want to find a function f: U — R3, on some
smaller neighborhood U of 0 € R2, such that Iy = f*( , ) has components g;;.
This means that the component functions f* of f must satisfy

3

gij =Y (% %),

a=1



Existence and Non-existence of Isometric Imbeddings 143

so that we have three (non-linear) partial differential equations in three un-
knowns. We also know that f can be found once we have functions /;; satisfy-
ing Gauss’ equation and the Codazzi-Mainardi equation, which again gives us
three equations in three unknowns. There is also a way of introducing a single
second order equation, which was used classically. Suppose that the required f
exists; let N be its normal map, and let /;; be the components of IIs. Then for
each component function f of f we have the Gauss formulas

fe =T %4 =T f% =1l N®
M S 2= Thf* = Thf% =1N®
[ =T f% —TL /% =InN*

If we denote these component functions of f by u, v, w, then

Sixfoo (u v wi) x (U2, v, wp)

vdet(gij) Vdet(gij)
_ (w2 — vawy, wiu — uwy, U1V — URYy)

Vdet(g;;)

So, for example, the third component N? of N satisfies

N =

det(g;;) - (N*)? = (u1v2 — upv;)?
= (ui® + i) (u2? + v2%) — (uuz + vivy)?
= (g1 — w19 (g22 — w2°) — (g12 — wywy)*

= det(gij) — (gnw’ — 222w ws + grw)’).
Using equations (1) for @ = 3, we obtain
) (wiy— T} wy — Tfwa)(way — Tlwi — Tw,) — (wi2 — Dfywy — T ws)?

{det(gij) — (g22wi® — 2g12w 1wz — g1w2?)}
det(g;;)
= K{det(gij) — (g22wi* — 2g12wiw2 + guw2?)},

= (Inln — 1% -

where the I'’s and K are all computable in terms of the g;;. We thus have a
Certain non-linear second order partial differential equation (x) for w. Notice
that this equation does not contain w explicitly. If w is any solution, then so is
W + constant, so we can always specify w(0) arbitrarily.
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It is easily checked (and is a priori clear on symmetry grounds) that ¥ and v
also satisfy equation (). On the other hand, it is by no means true that (u, v, w)
is a solution of our problem whenever u, v, w each satisfy (x), even if (4, v, w)
is an immersion. In order to obtain more precise information, we must use
a different procedure, due to Darboux. Suppose first that we are given an
immersion f = (u, v, w) such that Iy has components E, F, G; thus

() du®du+dv®dv+dw®dw = E dx®dx+ F[dx®dy+dy®dx]+G dy®dy,

where (x, y) is the standard coordinate system on R%. By composing f with a
Euclidean motion, if necessary, we can assume that

(2) w1(0,0) = w2(0,0) =0
(3) (u1 uz) is nonsingular at (0, 0).
U1 (%)

Consider the tensor
(,YV=Edx®dx+ Fldx®dy+dy®dx]+Gdy ®dy — dw ® dw
=(E -~ w))dx ® dx + (F —wjw))[dx ® dy + dy ® dx]
+(G — wy?)dy ®dy.
Using (1) we can write
(4) (,Y=du®du+dv®dv.

This is positive definite at (0,0) by (2), and hence positive definite in a neighbor-
hood of (0,0). Moreover, (1, v) is a coordinate system for R? in a neighborhood
of (0,0), by (3). So equation (4) says that ( , )’ is flat, and thus has curvature
K' =0.

Recall (pg I1.131) that the metric with coefficients E, F, G has curvature K

given by 3G+ F,—1En 3E Fi—3E
(5) K(EG — F?)? = det Fy— 3G, E F
1G> F G
0 1E» 3G
—det| 1E, E F
16, F G

To obtain the condition K’ = 0, we set the right side equal to 0 after replacing E
by E — w2, etc. With the standard notation

p =wy, q = wy,
r=wr, s = W, I = w,
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the (1, 1) term 1in the first matrix becomes
1 2 1 ) 1 1 )
—E(G—wz )11+(F—w1w2)12—§(E—w1 )22 = —5G11+F12—§E22+(s —rt),

all third derivatives canceling. We thus obtain a second order equation for w, the
“Darboux equation”, which written out explicitly becomes

(k%) 0= —4(EG — F)(rt —s%)
+2pr[2GF, — GGy — FGy) + 2qr[EG, + FGy — 2FF,)
+4ps[FGy — GE3] + 4qs[FE; — EGy)
+2pt[GE, + FE; — 2FF|] + 2qt[2EF, — EE; — FE]
+ (E — pH[E2G2 — 2F1G2 + (G1)?]
+(F — pq)[E1G2 — E;Gy — 2E,F> — 2G F1 + 4F F3]
+(G — ¢)[G1E| — 2F2E1 + (E2)*]
+2[EG — F* - Gp* — Eq* + 2Fpq] - [2F1; — Ex — Gyl

Brute force computations will show that equations (x) and (*x) are, in fact, the
same (a somewhat more refined approach is given in Problem 4). But our deriva-
tion of (%) now enables us to relate solutions of (%) with functions f = (u, v, w)
satisfying (1). For suppose that w is a solution of (xx) satisfying (2). Then ( , )’
1s positive definite, and has curvature K’ = 0. So there is a coordinate system
(1, v) satisfying (4), which implies that (u, v, w) satisfies (1). The possible coor-
dinate systems (u, v) for the flat metric ( , )" all differ by a Euclidean motion
of R?, so (u,v) is determined by specifying

u(0), v(0),
u(0), u2(0), v1(0), v2(0),

where the #;(0) and v;(0) have to be chosen so that (1) holds at (0,0) . Notice
that # and v will automatically satisfy (xx), since this equation is equivalent
to (x), which 1s satisfied by all component functions f = (u, v, w) satisfying (1).
We thus have the paradoxical situation that u, v, w all satisfy (¥x) = (x), but that
once we pick the imtial conditions wy, w; along the x-axis which determine w,
then we have almost no choice left for the initial conditions for u and v; of
course, we could just as well pick the initial conditions for u, say, and then be
stuck with those for v and w.

The Darboux equation is not linear, but it is linear in (r7 — $2),r, s, t; as we
mentioned in Chapter 10, section 8, equations of this sort are called “Monge-
Ampére equations”. We can write our equation as

1(r+Ap + Bq) +C =0,
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where 4, B, C do not involve ¢, and thus we can solve for ¢ in terms of the
other quantities,
6 = ¢ -
(6) —r+AP+Bq—g(x,y,p,q,r,s).
More precisely, if we are given initial conditions along the x-axis such that
Ap + Bg +r # 0 at (0,0), then we can write our equation in this form near
(0,0). In Chapter 10, Part 4, we showed that the Cauchy problem for such
an equation is equivalent to the Cauchy problem for a quasi-linear first order
system, which can always be solved, by the Cauchy-Kowalewski theorem, if all
functions in the equation, and the imtial data, are analytic. Thus we see that
the required isometric imbedding f exists locally if E, F, G are analytic.

Naturally we would like to know to what extent this restriction to analytic
E,F,G and analytic initial data is necessary. Recall that a solution w of a
second order PDE

F(x,y,w,p,q,r,5,t) =0

is elliptic [respectively, hyperbolic] if and only if
4F, F, — F?2 >0 [respectively, < 0].

We consider the Darboux equation in the form (*) on page 143. Our condition
becomes

4(wyy — Thw — T wy)(wyy — T jwy — T2 ws) — 4wz — ThHw, — T2,w,)?

>0 [respectively, < 0].
Using equations (1) on page 143, this becomes
(N?Y (Il —11) > 0 [respectively, < 0].

So at all points where N* # 0, the solution w is elliptic [hyperbolic] if and only
if the corresponding surface (obtained by choosing u, v as before) has K > 0
[K < 0]. Thus the cases K > 0 and K < 0 require separate treatment.

We note first that Theorem 10-13 shows thatif K > 0 everywhere and E, F,G
are analytic, then every imbedding f such that Iy has components E, F,G
is automatically analytic, so there is no point considering initial data which
are not analytic. Expressed somewhat differently, if a surface M C R? has
K > 0 everywhere and a metric which is analytic in some coordinate system,
then M is actually an analytic submanifold of R*. In particular, if M is any
(C3) surface of constant positive curvature, then M is automatically analytic.
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When E, F,G are not analytic, there is no known criterion on the initial data
which will guarantee the existence of a solution of the Darboux equation (kx),
However, we might simply ask if there is some solution of the Darboux equation
(without specifying initial conditions), and hence some imbedding f such that I
has components £, F, G. The fact that a second order equation like () actually
has solutions has been “known” for a long time—an actual proof may be found
in Jacobwitz [1].

When K < 0 there is no problem. Theorem 10-12 shows that for any initial
conditions with F; =r + Ap + Bq # 0, there is always a solution w of (%) in a
neighborhood of (0,0), and we can obtain solutions less differentiable than the
functions E, F,G. (In the next chapter we will have occasion to examine the
case where the initial conditions are such that F; = 0.) We see, in particular,
that there are surfaces of constant negative curvature in R? which are C*, but
not analytic.

By the way; it is interesting to note that a surface of constant mean curvature H
1s always analytic (the sign of H couldn’t be relevant, since it is not even well-
determined). For suppose that M C R3 is a surface with H = C, given locally
as the graph of a function 4. Then formula (B} on pg. III.137 gives

0=F(x,y,h,p,q,r,s,1)
= (1+¢*)r —2pgs + (1 + p*) —2C(1 + p* + ¢*)*/?,
SO
AF, F, — F> =4[(1+ ¢ + p*) — p*q*1 =401 + p* + ¢%) > 0,

and 4 is analytic by Theorem 10-13.

We now consider the general problem of locally imbedding an n-manifold in
R™. We are given g;; on a neighborhood of 0 € R”, and we seek f: U — R™,
on some smaller neighborhood U, such that

M gij = (fi, /i)
m m oara  gfa
=Z<fai7faj):Z f f

a=1 a=1

ax;  ox,

Since this is a set of s, = n(n + 1)/2 equations, 1t seems unlikely that we can
always find f if m < s,. In fact, if (1) is to hold, then all equations obtained
from (1) by partial differentiation must also hold. If we evaluate these equations
at 0, we obtain polynomial formulas expressing the derivatives

) gr+tg.
(2) m(o) 0<n+--+rmr—-1
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in terms of the derivatives

9 +trn fa

3) m(o) 1<r+-+m=r

For cach g;;, the number of derivatives in (2) is the binomial coefficient ("+;_1)

[= the number of ways of picking » things from n +7r — 1 things|, for we can

associate to each set @) < @p < --- < oy of integers from 1 to n +r — 1 the
numbers

n=a -1, n=o—-—a -1, ..., r=0g— 0 — 1.
Thus

3

—1
# of derivatives in (2) is a = s, - (n +; )

Similarly,
# of derivatives in (3) is b = m - [(” :’) - 1} .

Now if m < s,, then the first of these numbers will be greater than the second
for large enough r. In fact,

(n+r) n+r-1)
' T CIE}Y

(sn — 1)

for r=n(s, —1).
nlr!
But this means that the set of all possible derivatives (2), considered as a point
in R?, is the image of a polynomial map defined on a lower dimensional space
R? | so the derivatives (2) cannot be assigned arbitrarily for a map f: R* - R™,
m < s,. In other words, not every g;; can be obtained from some f.

It also seems reasonable to conjecture that we can always find an appropri-
ate f when m = s,. With the proper handling of subsidiary considerations,
the proof of this conjecture can be reduced to the Gauchy-Kowalewski theorem
(which means that we will have to assume that the g;; are analytic). First a
preliminary definition. Given f: U — R™, consider the space spanned by the

vectors T 82f

Py 1<i<n, Ixiox] 1<i,j<n
at a point p € U [this is the direct sum of the tangent space of f(U) at f(p)
and the first normal space at f(p), in the terminology of Addendum 4 to
Chapter 7]. The map f is called non-degenerate if these n + s, vectors are
linearly independent, for each p € U. For example, a curve in R?2 C R™ is
non-degenerate if its curvature is nowhere zero.
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9. THEOREM (BURSTIN-JANET-CARTAN). Let g;; be the components
of an analytic Riemannian metric in a neighborhood of 0 € R”. Then there

is an analytic isometric imbedding f: U — R (defined on some smaller
neighborhood U).

PROOF. Let V; be i-dimensional subspaces of R", with
Vl C .. C Vn ZRnO,

and let
H; = expy(V;) C R"

(the exponential map being defined with respect to the metric given by the
gij). Since Hj is a curve, we can clearly find an analytic isometric imbedding
fi: Hi — R®"; moreover, we can arrange for fj to be non-degenerate. We
will now show that if fi: Hy — R is a free analytic isometric imbedding,
then f; canbe extended to an analytic isometric imbedding f; 1 Hgyy — R
(defined perhaps in a smaller neighborhood of 0). Moreover, for kK + 1 < n we
will show that f; 41 can be chosen to be non-degenerate [note that/ <n —
[ + 51 < 5,]. This will clearly prove the theorem.

Step 1. By changing our coordinate system Xj,...,Xk, ¥ = Xg4+1 on Hiyq we
can assume that

Hy ={(x,y): y =0}
gik+1 =0 (I =i <k), 8k+1,k+1 = L.

Then the equations g;; = (f, fj) become

(fx,-, fx]') =gl]
(1) (fx,-, fy) :O
(fy: fy) =1

Differentiating the first equation with respect to y, and the second with respect
to xj, we find that if f satisfies (I), then it also satisfies the following set of
equations, which are of first order with respect to the y variable:

1
(2a) (fJ’7 fxix]-) = _E(gi]')y

(2b) (fyr Jr) =0
(2C) (fy,fy)=1-
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Similar manipulations show that [ also satisfies the equations

(3a) Syps fr) =0
(3b) (Syys [y} =0
1
(3C) (fyya fx,-x,-) Z_E(gij)yy'i'(fyx,-a fyx,-),

which are of second order with respect to the y variables.

Conversely, suppose that [ satisfies (3), and also satisfies (2) on Hx. We
claim that [ satisfies (I). First of all, since (3b) says that (fy, fy)y =0, equa-
tion (2¢) on Hy implies that (fy, fy} =1 everywhere. Consequently, we also
have (fy, fx;y) = 0. So (3a) says that {(fx;» fy)y = 0, and then (2b) on Hy
implies that (fx;, fy) = 0. Thus we have the last two equations of (1). Now
from

(fx,"fy):Oa (fx,-afy)zoa (fy’fy)zl

we obtain

(l) (fx,'xja fy})"‘(fx,-’ ijy) =0
(ll) (fx,-x,-afy)+(fx1'afx,-y) =0
(lll) (fx,-ya fy) = 0

and then
W) SLpeiws Sy) + Sxgxin Sord + Ui Sy + (s Sxipy) = 0 from (i)
) Srixys Sy) + Uiy Srgp) =0 from (i),
Equations (iv) and (v) give
(Srivy» Jxj) = —{xixps Jyy)s
so we have

(fxi’ fX,')yy - (fx,'y,v’ ij) + z(fx,-ya fx,—y) + (fxi’ fx,-yy)
= _2(fx,'xj’ f)’y) + z(fx,-ya fx,-y)
= (&ij)yy by (3¢).

On the other hand, (i) and (ii) give

(fX,-a fx,-)y = —2(fx,-x,-a fy)
= (gij)y on Hyg, by (2a).
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It follows that (fx;, fx;)y = (8i;)y everywhere. Since we have (fy,;, fx;) = gi;
on Hy, we conclude that ( fy;, fx;) = gij everywhere, as desired.

Step 2. Having established this, we now claim that there is an analytic function y
on Hj such that

1
(X’ inX,') = _E(gij)y

(@) (X, fx;) =0 on Hy,

:x)=1
x is linearly independent of fy;, fx;x;.

The reason for this is the following. At 0, we have (g;j), = 0 (Proposition
I1.4-1). So x(0) is just a unit vector in R™ which is perpendicular to all f,(0)
and fxij (0) [such a vector exists, since k + s; < s,]. In general, we first pick
a linear combination x; of the (linearly independent) vectors f;, fx;x; so that
the first two conditions in (2') hold for x;. Near 0, this makes x; a vector of
small norm. Then we add on an appropriate vector orthogonal to the fy, and
Sx;x; so that the norm becomes 1. There is no problem arranging for x to be
analytic,

Consider the following system of equations for functions f,q: Hy41 — R

fy:q
(qyafxf)=0 i=1,..,,k
) (gy,q) =0

1 ..
(qy’fx,‘x,‘):—'E(gij)yy'{'(qx,‘aqx,‘) l’J:L"'ka

with the initial conditions

{ f(x,0) = fi(x)

o 4(x,0) = x(x)

n Hy.

If we have a solution (f,¢q), then f will be a solution of (3) such that x(x) =
Jy(x,0) satisfies (2) on Hy, so f will be an analytic isometric imbedding extend-
Ing fi in a neighborhood of 0. Now () is rather like the equations considered
in the Cauchy-Kowalewski theorem, expressing the partials of the 2s, functions
SLo g%, g™ with respect to y in terms of their partials with respect
to Xx1,...,xx. However, we have more unknowns than equations (except for

k =n — 1), and the g, are not explicitly solved for. Such a problem is handled
as follows.



152 Chapter 11

Step 3. Write the last three sets of equations of (x) as a matrix equation

fx,- qu 0

: :
_E(gij)yy + <‘1x,-a‘1x,')

s,
fXjX]‘ q ”y .
(k+14si)x sy spx1 (k+14s5)x1
matrix matrix matrix

or for short as
B(fx,'a‘b fxixj) 4y = §-

On Hy, the rows of B(fx;,q, fx;x;) are linearly independent, because fi is
non-degenerate, and by the choice (2') of x. So this matrix has a right inverse.
Moreover, we can pick this inverse analytically—that is, for any r < s there is
an analytic map B + B from the r x s matrices of rank r to the 5 x r matrices
such that
B - B =r x r identity matrix.
[One specific way to define B is as follows. Write B as a collection of row
U1
vectors, B = ( : ) for v; € R®. There is a unique decomposition v; = w; + z;,

V4
where

w; € subspace W; C R spanned by T 170N | z; L W

clearly z; # 0. Then
0 i#]
<Ui72j) = . .
(zi,z) 1=,

so we can choose B to be the matrix whose columns are z;/(zi, zi).]
Now consider the system of equations

{fy =49
(%) -
qy = B(fx,'aqa fx,-x;) -8,

with the initial conditions (o). This equation makes sense in a neighborhood
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of Hy, since the rows of B(/fx;,q, fx;x;) are linearly independent there. Any
solution of (xx) will be a solution of (%), since

4y = E(fx,'7q7 f;C,'x]') ‘g8 = B(fX,"q’ fx,-x,-) 4y = &.

But () is a set of equations to which the Cauchy-Kowalewski theorem applies
[more precisely, it can be reduced to such a set by the method of section 4 of
Chapter 10]. Thus we have established the existence of the extension f.

Step 4. We still have to arrange for f to be non-degenerate when k+1 < n. We
claim first that we can choose x on H so that x satisfies (2'), and also so that the
VECtors X, Xx;» Jxi» fx;x; are linearly independent at 0. To do this we again first
choose x; to be a linear combination of the fy;, fx;x; which satisfies the first
two conditions of (2); near 0 we have |x;| < 1. We next choose «: Hy — R*»
to be an analytic map with @ perpendicular to fy;, fx;x; and |¢| small. Then
there is a constant Ag with |x; +Ae| = 1 at 0. We can assume, by renumbering,
that the vectors of the set

A = {a7 (X + )‘Oa)xn LR} (X + )\Oa)x;,’ fx,-’ fx,-x,-}

are linearly independent at 0, and that 2 < k is the largest integer with this prop-
erty (h = 0 is a possibility, i.e., there may be no vectors (x +oa); in our set). If
h = k we are done. Otherwise, pick non-zero analytic functions By, ..., Bk
which are orthogonal to the vectors of A, and also mutually orthogonal. Then
determine the analytic function A so that

k
X = ) 4400 - (a3 B )| = 1

i=h+1

Thus ¢ = A(0). Suppose some linear combination of X, Xx;, fx;» fx;x; vanishes
at 0. Le., suppose that at 0 we have

h
0=a(n +Ar) + Y a((x)x + ey + Axa)

i=1
k

+ Z ai((Xl)X,’ + )\ax,- + )‘X,'a + )"ﬁl)
i=h+1

k k
+Zbifx,- + Z bijfx,—x,-'
i=1 i,j=1

Take the inner product with some B,(0) (¢ = h + 1,...,k). The B; are mu-
tually orthogonal, and B, is perpendicular to all vectors of A; moreover, each
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(X1)x; +Aax, (i = h+1,...,k) is a linear combination of elements of A, by the
maximality property of 4. So we end up with

A(0)a,|B.(0)> =0 = a, =0.

Then we also have a = a; = b; = b;; = 0, since the vectors of A are hinearly
independent. Thus yx has all the required properties.

Now in a neighborhood of the sg + 2k + 1 linearly independent vectors
x(0), xx,; (0), fx;(0), fx;x;(0) we can choose an analytic map (v, v;, w;, w;j) =
h(v,v;, w;, wi;) # 0 such that

h(v,v;, w;, w;j) 1s perpendicular to v, v, wi, wij.

Consider the equations

{fy =q
(%) -
gy = B(fx,-,q, fxix,-) - & +h(q,qx,-, fx,-a fxix,'),

with the initial conditions (o). A solution will again be a solution of (x), since
our choice of h gives

B(fx,'aqa fx,'x,-) ‘ h(qaqx,'a fx,-, fx,~x,~) =0.

The vectors fy, fyx;» fxi» fxix; are linearly independent near 0, by our choice
of x. Then f,, = ¢, will be independent of fy, fyx;s fx;» fxix;, since
h(fy, fyx;s fxis fx,.x].) is linearly independent of all these vectors, while our ex-
plicit construction of B makes its columns span the same space as the rows of B,
which implies that E(fx,.,q, Sxix;)-g 15 alinear combination of the g, fx,, fx,.x]..
So f is non-degenerate. <

This proof can naturally be applied to the case n = 2, and then there 1s only
the step from & = 1 to k + 1 = 2. In this case, the matrix B(fx,q, fxx) 15 a
3 x 3 invertible matrix, so we just consider the equations

fy =4
gy = B(fx.q, fxx)"' - &

One can check that this is a hyperbolic system when K < 0, so that Theorem
10-12 can be applied, with the initial choice f;: (x-axis) — R3 being C rather
than analytic; thus we can obtain the same results as we got by looking at the
Darboux equation previously. Perhaps one could even try to analyze higher
dimensional cases similarly, when the given metric has all sectional curvatures
< 0. There is not much interest in doing this, however, for although analyticity
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was required to obtain the “best possible” local result of Theorem 9, there are
global results where it is not needed. These results are essentially theorems in
analysis, rather than geometry [with certain significant exceptions}, and gener-
ally require rather involved techniques, some of which were created precisely
for this problem. So we will merely indicate what these results are, and our
discussion will be particularly brief since there are now several research reports
which cover the field quite well.

One class of global results gives very strong information about the special case
of surfaces in R3. The first such question was raised by Hermann Weyl, who
asked whether every metric { , ) on S with K > 0 comes from an isometric
immersion in R? (necessarily an imbedding as a convex surface, by Hadamard’s
Theorem). Although Weyl indicated an approach to this problem, the first af-
firmative solution, for analytic metrics, was given by H. Lewy [2]. A proof for
C* metrics, k > 4, was given by Nirenberg [1], and the cases k = 2,3 were
later handled by Heinz [l]. Already in 1942, A. D. Alexandrov had consid-
ered Weyl’s problem from a completely different, totally geometric approach,
involving polyhedral approximations to the surface. He was able to solve Weyl’s
problem for C? metrics, although his result did not indicate how differentiable
the resulting surface would be when the metric was more differentiable. But
this was established by later research, especially that of Pogorelov. At the same
time, this pioneering work of Alexandrov led him to investigate arbitrary convex
surfaces (which need not be smooth at all); although such surfaces may not have
Riemannian metrics, we can still define an isometry between two such surfaces
to be a homeomorphism preserving lengths of curves, and there are suitable
generalizations of other differential geometric concepts like curvature (which
may exist only almost everywhere). In consequence, there has developed an
entirely disjoint school of differential geometry, whose practitioners are almost
exclusively Russian mathematicians, which proves certain results in far greater
generality than classical differential geometry, and has sometimes proved results
from this field which are still inaccessible by the classical methods. Some exam-
ples of this will be mentioned in the next chapter, and the Bibliography gives
further references to the Russian school.

In contrast to Weyl’s problem, which arises by considering the metric { , )
induced on S? by some imbedding of S? as a convex set in R?, we now consider
a strictly convex surface M C R? and define a function & > 0 on S? by

K(p) = k(v(p)),

where K > 0 is the curvature of M, and the difftomorphism v: M — S2 is
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the normal map. This function k always satisfies certain integral equalities. To
derive them, we note that we have

O=/ vidAzf <v,i>dA;
M M\ ox!

this follows from the Divergence Theorem (Problem 1.9-13 or Theorem 7-57),
applied to the region D bounded by M. Consequently, if da is the volume
element of S, and x'/k(x) denotes the function x x!/k(x) on S?, then

U oigae [ o
) fyo o da= [, (k(x) Xd")

“Minkowski’s problem” is to show that any function k > 0 on § 2 which satisfies
the conditions (x) is Kov™! for some convex M C R3. This problem was solved
by Lewy [3] in the analytic case, and by Nirenberg [1} in the C 2 case. It should
also be mentioned that generalizations of Minkowski’s problem have been given
in higher dimensions, in the style of the Russian school, by A. D. Alexandrov [3]
and Fenchel and Jessen [1], but for the higher dimensional cases little 1s known
about the differentiability of the hypersurfaces obtained.

Less delicate, but much more general, results are now available for the prob-
lem of isometrically imbedding arbitrary Riemannian manifolds in some Eu-
clidean space. The first results along this line were by Nash [1], supplemented
by Kuiper [1]. For a compact n-dimensional Riemannian manifold M, their
results show that if M has any imbedding in R?, with ¢ > n+1, then it also has
a C! isometric imbedding Thus compact orientable surfaces always have a C !
isometric imbedding in R?; in particular, even the flat torus can be C ! isometri-
cally imbedded in R*! The most important isometric imbedding theorems stem
from a second paper of Nash [2], where he proved that every C*° Riemannian
manifold can be C*® isometrically imbedded in some Euclidean space. We will
not give the dimensions of the Euclidean spaces involved; for this the reader
may consult Gromov and Rokhlin [1], which gives a very complete discussion
of the results known up to 1970. We merely mention that almost nothing 1s
known about the lowest dimensional Euclidean space in which the imbedding
1s possible.
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ADDENDUM

THE EMBEDDING PROBLEM
VIA DIFFERENTIAL SYSTEMS

Although the general line of argument for the proof of Theorem 9 was pro-
posed by Janet, it was Burstin who gave the first ngorous proof. The result
is often known as the Cartan-Janet theorem because E. Cartan gave another
(completely different) rigorous proof, using his theory of differential systems
(Chapter 10, Addendum 1). We will give this proof here; so we assume that we
have an analytic Riemannian metric in a neighborhood of 0 € R”, and we seek
a local 1sometric imbedding into R*, s, = n(n + 1)/2.

Let O(TR*#) be the bundle of orthonormal frames of R* on which we have
the dual forms ¢ and connection forms 1//; (1 <a,B < spu); for simplicity we
do not use bold-face letters for these forms on O(TR*#). The forms ¢¢, 1//;
give a basis for the dual space of the tangent space O(TR™), for any u €
O(TR*). Also let Z,,...,Z, be some fixed orthonormal moving frame on
R”, with dual forms 67, connection forms w]’:, and curvature forms Q; Suppose
that f/: U — R*™ is an isometry, for some neighborhood U of 0 in R". Let
s = (Y, Yn, Yut1,- .., Y;,) be any orthonormal moving frame on f(U)
with Y; = fiZ; fori = 1,...,n; then s*¢“ and s*l//g are its dual forms and
connection forms. Since f 1s an isometry, we clearly have

0 = f*(s*¢') = (so f)*¢' i=1,...,n
0= f*(s*(@")=(so [)*¢" r=n+1,...,8,.

Conversely, if F: U — O(TR®) is a map which can be written as F = s o f,
and

6’ = F*¢' i=1,...,n

0= F*¢" r=n+1,...,5,,
then f is an isometry. We will look for F, and hence f, by looking for its graph
in R" x O(T'R%). We have two projections

R" x O(TR®") —2

Jm

Rn

O(TR*")
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and for simplicity we will denote

i by o), m*Q by Qi
m*e* by ¢%  m'yg by yp.

]'[1*9'. by 9’., nl*w':

We easily see that our problem 1s solved if there 1s an n-dimensional manifold
I € R" x O(TR*") through some point (0, u), such that 7y.: [, — R 13
one-one, and such that

$ —-6'=0 on ' i=1,....,n
=0 on T r=n-+1,...,s,

We want to find ' as an integral manifold for an appropriate differential sys-
tem 4. So, first of all, we want 4 to contain the ¢’ — 6" and the ¢". Now

Sn

d¢' —6') =~ Zr/famp +Zw Ao’

D SU/RI NI SN NPT S SRS

j=1 j=I1 r=n+l1
and

Sn

— ) Yine®
a=1
n Sn
==Y At - Zt[/] INCIE DD PR ON
Jj=1 j=1 t=n+1

so in order to have dd C 4 we also want the 1//’ — w " and the Z yin 6/ to be
in 4. Similarly, since

Sn

d(l//’—w)— Zl//a/\llf] —Q’ —+-th/\(0

a=1
_ijfh/\(wh a))—Z(x//h-—a)h)/\w
h=1

— D ViAY -9,

r=n+1
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we also want the Y~ ¢/ A e Q; to be in 4. Moreover, we easily see that if
is generated by ”

(@) ¢’i—9i i=1,...,n

(b) ¢ Fr=n+1,...,5n

(c) ¥} — ] i,j=1,....n
n .

(d) PN r=n+1,..., 8
j=1
Sn

(e) Sowiayl - ij=1,...,n,
r=n+1

then we have dd C 4. The Cartan-Kahler Theorem (Theorem 10-15) tells us
that the desired n-dimensional manifold I' € R” x O(T R*") exists 1if for some
u € O(TR*) there is an n-dimensional integral element W C O(TR*)(q )
of 4 which contains a regular (n — 1)-dimensional integral element of d, and
for which m,.: W — R"j is one-one. We assume n > 2, since the case n = 1 1s
trivial.

We claim, first of all, that every point of R” x O(TR*") 1s a regular 0-dimen-
sional element of 4. To prove this we have to consider each 81((x,u)) for
(x,u) € R® x O(TR*"). By definition, 81((x, u)) 1s the set of all vectors (X,Y)
[with X € R", and Y € O(TR*"),] such that the forms (a)—(c) vanish on (X,Y),
that 1s:

¢ (w)(Y)=0'(x)(X) i=1,...,n
0 ¢"(W)(Y)=0 F=n+1,...,5,
Vi) =ol(x)(X)  ij=1,...n

Because the ¢*(u), wg(u) are a basis for O(T R*"),, the dimension of &, ((x, u))
is always exactly the dimension of R” x O(TR*") minus the number of forms
(a)—(c), and thus a (non-zero) constant. So each (x, u) is a regular 0-dimensional
integral element.

For any tangent vector Y € O(T R*),, it will be convenient to consider n
vectors Y@ in R~ = R"™=V/2_ defined by

YO = (Y u)(Y), ... ¥ @)(Y)).

Note that we can always choose Y € O(T R*), satisfying (1) [i.e., with (X,Y) €
&1((x, u))] such that the Y@ are any given n vectors in R*®—1/2,



160 Chapter 11

Now at any point (x, u), pick (X;,Y1) € 6‘1((x,u)) with X} a unit vector so
that the n — 1 vectors

Yl(l)’ o Yl(n_l) c Rn(n—l)/Z

are linearly independent [this 1s possible since n(n —1)/2 > n — 1 for n >
2}, and consider 82((x,u), (X1, Yl)). It 1s the set of all (X2, Y3) such that (1)
holds, and such that the forms (d) and (¢) vanish on the pair (X1, Y}), (X2, Y2).
If X; is a multiple of Xj, then (1) implies that Y 1s the same multiple of Yi,
so we will assume that X3 is linearly independent of X;. Since (X2,Y2) €
82((x, u), (Xi, Yl)) implies that any linear combination of (Xj, Y1) and (X2, Y>)
1s also 1n 82((x, u), (X, Yl)), in computing the dimension of this space we can
restrict our attention to (X>,Y>) with X;, X» orthonormal. Extend Xi, X3 to

an orthonormal basis Xi,...,X, at u. Then (d) and (e) vanish on the pair
(X1, Y1), (X2, Y>) if and only if

@ " =Y
@ Y .yP_y® .y _(RX, X)X, X)) =0  1<i<j<n,

where - denotes the usual inner product in R"®~1/2_ Equation (2) determines
Yz(l); then equation (3) for i = 1, j = 2 determines a hyperplane H, ¢ R"—1/2
in which Y2(2) must lie; then equations (3) fori =1, j =3andi =2, j =3
determine a plane H; C R""~D/2 of codimension 2 in which Y2(3) must lie;
etc. [we use here the fact that Yl(l), e Yl(”—l) are linearly independent]. In
particular, the dimension of 82((x, u), (X, Yl)) is the minimum possible.
Thus (Xi, Y1) generates a regular 1-dimensional integral element. Notice that
6‘2((x, u), (Xi, Yl)) does contain some (X3, ¥») [with X|, X orthonormal], since
each Hy (@ = 2,...,n) has dimension

n(n—l)_(a_l) S nn-1)

—(n-1)=>0 forn > 2.

In the case n = 2, we have just shown that there 1s some 2-dimensional integral
element containing the regular 1-dimensional integral element generated by
(X1, Y1), which completes the proof. In the case n > 3 we claim that we can
choose Y3 so that
) (n—=1) (2) (n—1)
Y, LY, D SR A

are linearly independent. We choose Yz(a) successively fora = 2,...,n—1. We
want Yz(a) to be linearly independent of the vectors in the set

a={y®, Ly @yt
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Now Yz(a) must lie in the plane Hy, which is perpendicular to the vectors in the

set
B {rO,.ye)

So we just need to have dim H,, greater than the number of vectors in the set
_ () (n—1) (2) (a—1)
A-B={y®, vV y@  ye g

Thus we need

dimHazw—(a—l) > (n—a)+(a-2),

or
n(n — 1)

2

>n—-1)4+ (¢ —2).
But for @ < n — 1 we have

m—D+@-2)<(r-1)+n-3)
<m-1)4+@n-2)
n(n —1)

<1 —1=
=l+--+n 3

This proves the claim.
Now suppose that for some k < n — 1 we have found (X, Y1),..., (X, Yi)
with Xi,..., X orthonormal such that
M) (X1, Y1), .., (X, Yi) generate a k-dimensional integral element,

) (X1, Y1), ..., (Xpe—1, Yie—y) generate aregular (K —1)-dimensional integral
element,

) the -~ 4+m—-—2)+...+ (n — k) vectors

1) (n—1) 1 (2) (n—1) (k) (n—1)
ORI A A AT G 7

are linearly independent.

~ [We have Just done this for k = 2.] We claim that (X, 1),...,(Xk, Y) gen-
Crate a regular k-dimensional integral element, which can be extended to a
(k 4+ 1)-dimensional integral element generated by (X1, Y1),..., (Xks1, Yis1)

[with Xi,..., X4 orthonormall; moreover, if k +1 < n — 1, then Yi41 can
be picked so that Yk(liTl) e Yk(iTl) are linearly independent of the vectors

in (ii). Once we have proved this claim, it will clearly follow that there is
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some n-dimensional integral element spanned by (X1,Y1),...,(Xa, Y,), with
Xi,..., X, orthonormal, such that (X1,Y1),...,(Xn=1,Yn—1) span a regular
(n — 1)-dimensional integral element. Thus the proof will be complete.

To calculate the dimension of &y ((x, u), (X, ), ., (Xk, Yk)) we consider
(Xk+1, Yea1) with Xi, ..., X4 orthonormal, and again extend Xi,..., Xk+1
to an orthonormal basis Xi, ..., X, at x. Then (d) and (e) vanish on the pairs
(Xn, Yn), (Xgg1, Y1) (1 < h < k)if and only if

) Y =yE h=1, 0k

h=1,...,k

n v ) @) @)
COD VD Ml f 1<i<j<n.

i D YD (R(Xn, Xea) Xp, Xi) =0

0)
Yk+1

Ylgql—)l’ equation (3') holds for i, j < k. In fact, by hypothesis (1) we have

Equations (2) determine for h < k. We claim that with these values of

(@) D =y® v =y® sk,
as well as
O vy _yQR O _ v _ i,j<k

Choose | = h and } = k + 1 in (b), and substitute (2') and (a) into the equation.
Using the identity (R(Xj, Xi) Xh, Xg41) = (R(Xp, Xi41) Xj, Xi), we obtain (3)
fori,j <k.

Thus, we need to consider (3') only for i or j > k + 1. Since we are choosing
i < j, we have j > k + 1 in either case. Moreover, we claim that for each
j 2 k+1,and h <k, we need only consider the cases h < i. Yor if we have all
these cases, and ¢ < A, then by choosing ¢ as our A, and 4 as our i, we have

© Y2y ® —y® v 9 — (RO, Xiw) Xj, Xn) = 0.

Moreover, by (b) we also have
(d) Yh(k+1) ) Y[(j) _ Yh(j) ) Y[(k'H) —(R(Xy, Xp) Xies1, Xj) = 0.
In addition, (2') and (a) give
(k+1) _ () ) _y® k+1) _ y©
AAEES AT AR A A

So adding (c) and (d) gives

YO v — v v — (RO, Xi) Xiwt, Xp) + (R(XG Xiw) X, Xi)] =0,
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Using the identities for the curvature tensor, we obtain finally
Y00 =Y — (RO, X)X, X0 =0,

which is indeed just the required identity for ¢, j.
So consider now the equations

h<k i=h

@) ¥9 . y® _y® rEkot
i<j jzk+1.

P el 'Y;,(j) —(R(Xp, Xp+1) X, Xi) =0 {

For j = k + 1, there is one equation for each of the vectors
ACIIUI AL AU AU ALl

k+1)
Yk+1

plane Hyyy C R™"=1D/2 of codimension 1 + --- + k. For j = k + 2, there is
then one equation for each of the linearly independent vectors

which are linearly independent, by (ii1). Thus 1s restricted to lie in some

Yl(l), e Yl(k'H), Yz(z), e, Yz(k'H), e, Yk(k), Yk(k'H).
So Yk(ﬂ'z) is restricted to lie in some plane Hy 4, of codimension 2+- - -4 (k +1).
Etc. We see right away that
dim 8k+1 ((xa u)a (Xla Yl)a RN} (Xka Yk))

is the minimum possible, so (Xi,Y1),...,(Xk,Yx) do generate a regular
k-dimensional integral element. Moreover, it can be extended to a (k + 1)-
dimensional integral element, by choosing an appropriate (Xg41, Yiyq1) [with

X1,..., Xg41 orthonormal], since each Hy (@ = k + 1,...,n) has dimension
nn—1
%—[(a—k)-i—----i—(a—l)]
=l4+---+m-D)-[la-k)+---+ (¢ —1)]
> 0.

We claim, finally, that if k + 1 < n — 1, then Yz4; can be picked so that

Y& Ly are lincarly independent of the vectors in (iii). We pick Y%,

successively, for « =k +1,...,n — 1. The vector Yk(l:—)l has to be picked linearly
independent of the vectors in the set

a={r® Ly Ly y e,

with cardinality (n — k) +---+(n - 1)+ (& — k = 1).

(x—1)
LLYE,
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Equations (3) say that Yk(i)l must lie in a plane H, perpendicular to the vectors
of the set
B = {Yl(l), ey Yl(a_l), Y2(2), e Yz(a_l), s Yk(k), ces Yk(a_l)} ,
with cardinality r, say.

This is possible if dim Hy, is greater than the number of vectors in the difference
set A — B. Since r is just the codimension of Hg, we thus need to have

nn—1)

—r>m-K+.---+m-D+@—-—k-1)—r.

But for @ < n — 1 we have

m=-Kk+--+m-D+@—k-1)<m-k)+---+n-1)+n—-k-2)
<m-k)+---+m-1)+Mm—-k-1)
n(n—1)
5

<l4+--+m-1)=

as required.
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PROBLEMS

1. Leta; #0for 1 <i <n—1with Y ;a;* = 1. Defirie an immersion
fi{xeR":x, <0} > R*!

by

FE N (x) = aze*n cos(xi /a;)

. ) 1<i<n-—1
FH(x) = aze* sin(x; /a;)

N (x) = /Oxn V1—e2dr.

Calculate that the induced metric has constant negative curvature.

2. Let M" be a manifold of constant curvature K isometrically immersed in a
manifold N2~ of constant curvature Ko > K.

(a) Using equation (1) on page 141, generalize the argument in the second proof
of Lemma 5-10 to prove that the bracket of two unit asymptotic vector fields
on M is zero.

(b) Also use an argument from this proof to show that if M is complete, then
1ts universal covering space must be R”.

(c) Conclude that we cannot have K > 0.

3. @ Let T: V — V be a self-adjoint linear transformation, and let V =
Vi ® - @ Vi where the V; are the mutually orthogonal eigenspaces for the
distinct eigenvalues Ay, ..., x. Let Pi: V — V; be the corresponding orthogo-
nal projections, P; (Z] a; vj) = a;v;. Show that P; is a polynomial in T, namely,

(T = A1) AT = 2T = Xig1) (T — g)
Ai—=A) - A = X)) = Aigr) - (A — Ag)

Thus we have T = Y, A; P; where the P; are polynomials in 7.

(b) Let S: V — V be another self-adjoint linear transformation with § =
_j 1j Q;j for polynomials Q; in S. If S and T commute, then all P; and Q;
commute. Let A = ) ;; aij PiQ; for distinct a;; € R. Show that 4 is a self-
adjoint transformation, that S and T are both polynomials in A, and that any
linear transformation that commutes with S and T also commutes with A.

© If Th,..., T, are commuting self-adjoint operators, then there is a self-
adjoint transformation A such that each T; is a polynomial in A.

(d) Consequently, Ty,..., T, can be simultaneously diagonalized.
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4. (a) Let /= M — R, where (M, ( ,)) is a Riemannian manifold, and con-
sider the symmetric covariant tensor V(df') of order 2, with components f;;;
in a coordinate system. Each V(df)(p): M, x Mp — R can be regarded as a
linear transformation M, — M, by using the inner product on Mp. So we can
form D f(p) = det(V(df)(p)). Equivalently, D/f(p) = det(V(df ) (p)(Xi, X)),

where Xi,..., X, is any orthonormal basis of Mp. In a coordinate system we
have
i)f _ det(f,-;j).
det(gij)

Show that equation (x) on page 143 can be written
Dw = K(1 - Aw).

(b) Check that equations () and (x*) are the same when F = 0, and conclude
that they are always the same.



CHAPTER 12
RIGIDITY

In Chapter 7 we proved a result (Theorem 7-47) which is but a special case
of the following more general

1. THEOREM. Let M and M be immersed hypersurfaces in R"+! and let
¢: M — M be an isometry. Suppose that dv: Mp — M) has rank > 3. Then
(¢*I_I)(p) = +II(p). [This equation makes sense even though v and v may be
defined only locally, and then only up to sign.]

Consequently, if M and M are connected (not necessarily complete) hyper-
surfacesand dv: M, — M, hasrank > 3 forall p € M, then ¢ is the restriction
of a Euclidean motion.

PROOF. To deduce the second part of the theorem from the first part, we
recall (pg. IV.63) that there is an inner product preserving bundle isomorphism
¢: Nor M — Nor M covering ¢. The first part of the theorem shows that if
p € M, then

either  5(¢u X, 0.Y) = ¢(s(X,Y)) forall X,Y € M,
or S X, 0:Y) = —¢(s(X,Y))  forall X,Y € M,.

Moreover, only one alternative can hold at each p, since dv: M, — M, is
non-singular. It follows that one of the alternatives holds for all p € M. Then
Theorem 7-21 shows that f is the restriction of a Euclidean motion.

To prove the first part, let Xi,..., X, € Mp be an orthonormal basis, and
define the n x n symmetric matrix S by S;; = II(X;, X;). Similarly, let X; =
¢« Xi € My(,) and define the symmetric n x n matrix S by Si; = (X, X)).
Gauss’ equation shows that

SivjySiajs = Sivj2Siafy R(Xil’Xiz)X]"’le)

=
(R(Yu , X,,) 12> Xj1), since ¢ is an isometry
= §i1jl Sizj» SHPSHJI

We now use an algebraic

167
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2. LEMMA. Let S and § be symmetric 7 x n matrices, with rank S > 3. Sup-
pose that the determinant of every 2 x 2 submatrix of S equals the determinant
of the corresponding 2 x 2 submatrix of S. Then S = +S.

PROOF. To isolate the main idea of the proof, we first consider

Case 1. The matrices S and S are non-singular. (Then the hypothesis on the rank
just means thatn > 3.) Let 7T, T : R" — R" be the non-singular linear transfor-
mations with matrices S, S. Then T*, T*: R™ — R"™ are also non-singular.
We can also consider the linear transformations

T*, T*: Q*(R") - Q*(R").
If ¢y....,¢n € R™ is the dual basis to the standard basis of R", then
T*(¢i1 A ¢i2) = T*¢i| A T*¢i2
=" Sijidi A > Sujbi
i1 Jj2
= Z (Si1j1Sirja — Sivj2Siaj) - @iy A iz
J1<j2
and similarly for T*. Thus we see that the hypotheses on the determinants of S
and S is equivalent to the assertion that
(1) T = T*: Q%(R") — Q*(R").
Now given any ¢ € R™, we claim that 7*¢ and T*¢ must be linearly de-

pendent. For otherwise we could choose ¥ € R™ with T*¢,T*¢, T*y lincarly
independent. Then we would have

0£T*OAT* Y AT*¢=T*(@AY)AT*
=T*@AY)AT ¢  by(}
=T* AT*Yy AT*
=0,
a contradiction. Thus T*¢ = ¢ - T*¢ for some ¢ € R. If we choose linearly

independent ¢, ¢, € R"™, and apply this result to ¢y, ¢,, ¢y + @5, we find that
there are constants ¢1,¢;, ¢ with

T*¢y=c1-T*¢y, T*¢y=c2-T",
T*¢ + T*py =c - (T*¢; + T™¢,).
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It follows that ¢; = ¢;. So T* = ¢ - T* for some ¢ € R. Form (1) we see that
¢ = *+1.

Case 2. General Case. Since S is symmetric, the map T: R"* — R” is self-adjoint
with respect to the usual metric on R”; that is, (Tv, w) = (v, Tw) for v, w € R",
Similarly, if we give R™ the inner product with (¢;, ¢;) = §;;, then

2 (T*o, ¥y = (o, T*Y) for ¢,y € R™.

Let (ker T*)+ € R™ be the orthogonal complement of ker T* C R™ with
respect to this inner product. We easily see from (2) that T* takes (ker 7*)+
into itself and that

(3) T*: (ker T*)* — (ker T*)* is one-one.
We now claim:
(4) kerT*={¢p : T*¢ AT*y =0forall y ¢ R™} =W, say
It is clear that ker 7* C W. Conversely, given ¢ € W, write
p=¢,+¢, with ¢ ekerT*CW, ¢,ec (kerT*> .
Then '
5) ¢, € (ker THENW.
We want to show that ¢, = 0. Note that
dim(ker T*)* = rank 7* = rank S > 3,

so if ¢, # 0, then there is ¥ € (ker T*)* with ¢, and V¥ linearly independent.
By (3), this means that T*¢, and T*¢ are linearly independent, so
0+ T*¢y A T*Y,

contradicting the fact that ¢, € W [by (5)]. Thus ¢, must be 0, and we have
demonstrated (4).

Notice that in proving (4) we really used only the fact that rank S > 2. Now
we also have rank § > 2 (otherwise every 2 x 2 submatrix of S would have
determinant 0). So we also have

@ ker T* ={¢: T*¢ AT*Y =0 for all ¥ € R™}.
Then equation (1) shows that ker T* = ker T*. Now we can apply Case | to
T*, T*: (ker T*)* — (ker T%)L,

for these maps are one-one by (3) and the corresponding (3), and morcover
dim(ker 7*)1 = rank T* =rank S > 3.
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The rank of dv: M, — M), is called the type number 7(p) of M at p; it is
the number of non-zero principal curvatures at p. The hypothesis that #(p) > 3
says, roughly speaking, that M curves in at least 3 different directions at p. The
hypersurfaces with 1(p) = 0 or 1 for all p are precisely the flat hypersurfaces,
with curvature tensor R = 0, while the hypersurfaces with 1(p) = 2 for all p may
be regarded as a sort of generalization of this class. They have been classified
into three different types by E. Cartan [1], but the classification suffers the same
defect as the classical classification of flat surfaces, for there is no discussion of
the manner in which hypersurfaces of different types can be joined together.
We will have a little more to say about this later on.

Theorem 1 is often expressed by saying that a hypersurface in R"*+! which
bends enough is “rigid”. The first precise proof was by Killing {1}, although
the result had been stated by Beez [1], who found it so astounding that he could
barely cease discussing it, and practically regarded it as a proof that space can’t
be 4-dimensional. While we might not be willing to go quite so far as that,
it is nevertheless true that because of this result most of the interest in rigidity
phenomena has centered on the case of surfaces in R?, where intuition tells us
that a small piece of surface is not rigid, and at the same time suggests that
compact surfaces should be rigid. Actually, there are several different senses
in which a surface can be rigid. Books written in English often consider only
one possible sense, or tend to be rather sloppy about distinguishing the various
possibilities. I therefore propose to introduce some terminology which, although
it may not be especially appealing aesthetically, and suffers the disadvantage of
not being standard, at least has the virtue of being unambiguous.

Consider a C*® imbedding f: M — R3?. The strongest sense in which f (M)
can be “bent” corresponds to the ordinary conception of the word, whereby
f(M) passes continuously from one shape to another, without being stretched.
To express this idea precisely, we define a bending of the imbedding fi M-
Ritobea C® mapa: [0,1] x M — R? such that

(a) each map a(t): M — R3, given by p — «(t, p), is an imbedding,
(b) @(0) = f,
(©) @()*( . ) =a(0)*( , ) forallz €o,1].

Thus « is a “variation” of f, in the terminology of Chapter 9. To be a little more
precise, @ should be called a bending through imbeddings, and we can also define a
bending through immersions. The bending «: [0, lJxM — R? is called trivial if
each @(1) is A, o f for some Euclidean motion Ay; it is called non-trivial 1f at least
one @(¢) is not of this form. We say that the imbedding f: M — R3 is bendable
if there is a non-trivial bending of f; otherwise it is called unbendable. To be
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precise, we must speak of bendability and unbendability through imbeddings
or through immersions. We can also define when an immersion f: M —
R3? is bendable or unbendable; in this case, of course, only bendings through
immersions can be relevant. (It is also possible to consider C! bendings of C¥
imbeddings and immersions, for 1 </ < k < w; but we shall hardly ever stray
from the case k =/ = 00.) Finally, a submanifold M C R? is called bendable
or unbendable (through imbeddings or immersions) according as whether the
inclusion map i: M — R3 is bendable or unbendable.

One way of modifying the concept of a bending is by taking a discrete ana-
logue: We will call an imbedding f: M — R* warpable if there is an imbedding
g: M — R*such that /*( , ) = g*( , ), but such that g is not 4o f for any
Euclidean motion 4. If f is not warpable, it will be called unwarpable. We can

also define a warpable immersion. It is conceivable that there 1s an imbedding
f: M — R3 such that

(i) there exists an immersion g: M — R® with f*( , ) = g*( , ),

(i) there does not exist an imbedding g: M — R> with f*( , ) = g*( ,)
except for g of the form A o f for some Euclidean motion A;

we can express this by saying that f is warpable as an immersion, but not
as an imbedding (an actual example of this phenomenon will be mentioned
later). A surface M C R? is called warpable or unwarpable (as an imbedding
or immersion) according as whether the inclusion map i: M — R? is warpable
or unwarpable. An unwarpable surface M C R? is sometimes called “uniquely
determined” (for M 1s then uniquely determined, up to a Euclidean motion,
by its induced metric); similarly, we.can speak of an imbedding or immersion
f: M — R? being “uniquely determined”. A bendable surface is obviously
warpable, but it is not a priori clear whether there are any warpable surfaces
which are not bendable.*

We can also consider an infinitesimal analogue of a bending a, by looking at
its “variation vector field” Z. This is the vector field along f defined by

Z(p) = tangent vector at 0 of 1 = a(t, p) € R?s(,).

* As If matters were not already sufficiently complicated, one more possibility must be
mentioned, which for the sake of simplicity we shall describe in terms of submanifolds,
rather than imbeddings. Let M C R? be a surface. It is conceivable that M is warpable,
so that there is an isometry ¢: M — M C R? which is not the restriction of a Euclidean
motion, but that whenever we have an isometry ¢: M — M then there is also another
isometry ¥ : M — M which is the restriction of a Euclidean motion. Thus M might

be warpable, but only into surfaces which happen to be congruent to M. No example
of such a phenomenon is known, however.
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Consider for the moment the case where M C R? and f = inclusion map.
Since o satisfies
(X,Y) = (@) (X), a(t)«(Y))

for all £, and X,Y € M, we have

1) 0= %(&(1)*(1\’),&(1)*()’))

D _ _ _ D
= <—870((l)*(X), Ol(l)*(Y)> + <O{(l)*(X), Ea(t)*(y)> s

where D'/d1 denotes covariant differentiation in the ambient space R3, as usual.
Now if ¢ is a curve in M with ¢/(0) = X, then

! D’ 0
— a(t)«(X) = ET = a(t,c(s))
t=0 I'li=0 05 Is=0
D' by Proposition I1.6-9
= — —|  altc(s)) (or simply equality of
95 |5=0 97 =0 mixed partials)
D/
=3 Z(c(s))
S ls=0
=V'xZ.
So equation (1) becomes
(2) 0=(VxZ,Y)+({X,VyZ) for all X,Y tangent to M.

This is equivalent, by polarization, to
(2" 0=(V'xZ,X) for all X tangent to M,

and these equations can also be written

o {O ={dZ(X),X) for all X tangent to M
@) 0=(dZ(X),Y)+ (X,dZ(Y)) forall X,Y tangent to M,

where Z is considered as an R3-valued function on M, and the tangent vector X
of R? is identified with an element of R’.
For the general case of an immersion f: M — R3, the vector field Z along f
still satisfies (2), except that now the term
!
s=0)

D
ccv/ Z” —
X das

dZ(c(s))
ds

dZ3(c(s))
s=0,...,———ds

Z(c(s)) = (
=0

5=
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denotes a “covariant derivative of a vector field along f”. Equation (2") be-
comes

2" 0 =(dZ(X), fx(X))
=({dZ(X),df (X)) for all X tangent to M,

where Z is considered as an R*-valued function on M, and Jf+(X) 1s identified
with an element of R?, or f is considered as an R3-valued function on M. This
equation is sometimes written simply

(dZ,dfy=0 or dZ-df =o.

[Note: Sometimes X (or German X) is used to denote the immersion X : M —
R?, and this equation appears as dZ - dX = 0.]

A vector field Z along an immersion f: M — R? will be called an infini-
tesimal bending of f if it satisfies equation (2). Clearly this equation will be
satisfied by the variation vector field of a variation @ which merely “preserves
lengths up to first order”, equation (l) being, in fact, the analytic expression of
this condition. Of course, we can always find infinitesimal bendings by taking
the variation vector field Z of a bending @ by means of FEuclidean motions,

a(t,p) = f(p)- B(t) +v(1),

where B(t) € O(3) with B(0) = 1, and v(¢) € R? with v(0) =0 [and f(p)- B(¢)
denotes the product of the 1 x 3 matrix f(p) with the 3 x 3 matrix B(¢)]. In
this case we have

Z(p) = f(p)- B'(0) +v'(0),

where B'(t) € 0(3) = {3 x 3 skew-symmetric matrices}. Conversely, if Z is an
infinitesimal bending of f of the form

®) Z(p)=f(p)-C+w, Cen(3d),

then Z is the variation vector field of the bending a through Euclidean motions

defined by
a(t, p) = f(p)-e'C +1w.

So we will call an infinitesimal bending Z trivial if it is of the form (3). An
immersion f: M — R? will be called infinitesimally bendable if there is a
non-trivial infinitesimal bending of f; otherwise it will be called infinitesimally
rigid. (The word “rigid” is sometimes used to mean infinitesimally rigid, but
unfortunately it is also sometimes sloppily used to mean unwarpable, or un-

bendable.)
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Notice that the product of a vector by a skew-symmetric matrix,

0 —a -b
(x,y,2)-la 0 —c|=(ay+bz,—ax+cz,—bx—cy),
b ¢ 0

can also be written as a cross-product
(x,,z) x (¢, —b,a) = (ay + bz, —ax + cz,—bx — cy).
So equation (3) can also be written
(3 Z(p)= f(p)xY +w, YweR.
As an easy consequence of the triviality condition (3") we have
dZ(X)=df(X)xY  all X tangent to M.

Now the same formula holds for an arbitrary infinitesimal bending Z, provided
that we allow Y to vary:

3. LEMMA. If Z is an infinitesimal bending of f: M — R?, then for each
p € M, there is a unique Y(p) € R3 such that

dZ(X)=df(X) x Y(p) for all X € Mp.
PROOF. Let Xi, X2 € M), be lincarly independent. Since (dZ(X;),df(X;)) =

0, there are certainly some vectors Y; € R3 with
dZ(X;) =df(Xi) x ;.
Moreover,
0 = (dZ(X2),df (X1)) + {dZ(X1),d[(X2))
= (df (X2) x Y2,df (X1)) + {df (X1) x Y1,df (X2))
= (Y2,df (X)) x df (X2)) — (Y1, df (X1) x df (X2))
= (Y2 — Y1,df (X1) x df (X2)).
Thus Y — Y, € df (M), so we can write
Y, - Y1 =adf(Xy) +bdf (X2).
If we set
Y(p) =Y2—adf(X1)) =Y+ bdf(X2)

then we have

dZ(X;) = df (Xy) x Yi = df (X;) x Y(p).

Uniqueness is obvious. «
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The vector field p — Y(p) of Lemma 3 is called the (infinitesimal) rotation
field of the infinitesimal bending Z. We know that Y is constant when Z is
trivial, and conversely,

4. LEMMA. If the rotation field Y of the infinitesimal bending Z is constant,
then Z is trivial.

PROOF. By assumption, there is a vector Yy € R* with
dZ(X)=df(X) x Yo

for all X tangent to M. Let ¢ be a curve in M, with ¢(0) = pg € M. Then

D) _azewy = areoy < v = LEO oy,
Therefore
Z(c(t)) — Z(po) = [f(c(®)) — f(po)] x Yo,
or

Z(c(t)) = f(c(1)) x Yo + wo,

where wo € R? does not depend on ¢. So for all p € M we have

Z(p) = f(p) x Yo + wo,

and Z is trivial. &

At first sight it might seem that every bendable surface must also be infinites-
imally bendable. As a matter of fact, we certainly do have

5. LEMMA. Leta: [0,1)x M — R? be a bending, and let Z, be the variation
vector field of & at time ¢. If each Z, is trivial, then the bending « is trivial.

PROOF. By definition,

d
) Zi(p) = —-a(t, p),
and since each Z; is trivial we have

(2) Zl(p) =a(l7 p) X YI + Wy )/171‘01 € R3'
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Then for all py, p» € M we have

d
ot pr) = alt, p2)IF = 2(alt, pr) —alt, p2), Zi(p1) — Zi(p2)) by (1)

= 2a(t, p1) — a(t, p2), [@(t, pr) — alt, p2)] x ¥i)
= 0.

So |e(t, p1) — alt, p2)| is constant in 7. In particular, |a(t, p1) — a(t, p2)| =
(0, p1) — a(t, p2)|. This implies that cach o, differs by a Euclidean motion
from ag. %

Nevertheless, it is conceivable that f: M — R? is bendable, yet that every
bending & of f has trivial variation vector field Zg at time t = 0, so that f is not
infinitesimally bendable. No example of such a weird phenomenon 1s known,
but there are also no positive results along this line, except for the obvious fact
that if f is an analytic immersion which is analytically infinitesimally rigid,
then f is analytically unbendable.

There are a couple of other surprising facts about infinitesimal bendings. First
of all, there are non-trivial infinitesimal bendings Z of a plane which vanish
outside a compact set. If our plane is the (x, y)-plane, we can choose Z to be

d . . - .
h - PP where A is any C* function vanishing outside a compact set. For any
z

A

tangent vector X of the (x, y)-plane we have

0
dZ(X) = (X(0), X(0), X(h)) = X(h) - PP

so the infinitesimal rotation vector field of Z is

Y:X(h).ai

Since Y is not constant, Z is non-trivial. Even more surprising, perhaps, 1s an
immediate consequence of this fact: any surface containing a portion of a plane
is infinitesimally bendable.

Notice that the infinitesimal bending Z constructed above is everywhere per-
pendicular to the surface M = (x, y)-plane. This is essentially the only possi-
bility:
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6. LEMMA. (1) If Z is an infinitesimal bending of an open subset M of the
(x, y)-plane, and Z is always tangential to the (x, y)-plane, then Z is trivial,

Z(p)=p-C+v
for a 2 x 2 skew-symmetric matrix C, and v € (x, y)-plane.

(2) More generally, Z is an infinitesimal bending of M C (x, y)-plane if and
only 1f the tangential component TZ of Z is an infinitesimal bending, and
hence trivial. In particular, any vector field Z normal to M is an infinitesimal
bending.

(3) Let M C R be a surface and let Z be any infinitesimal bending of M which
is everywhere normal to M. Then at every point p € M where Z(p) # 0, the
second fundamental form II(p) = 0. (So if Z(p) # 0 for all p in an open set
U C M, then U lies in a plane.)

PROOF. (1) Let

Z(x,y) = (a(x, y),b(x, ) = a(x, y) S Thlx, y)—

Then

Thus
o=(aiz () = 5=
o=(az(5y)) = =0

SO we can write ~
a(x,y) =al(y), b(x,y) = b(x).

Moreover,

d d d d -, 5oL
0_<8x dzZ (ay)>+<5;,dZ (£)> = a(y)+b(x)=0.

Since this is true for all x, y, the derivatives @’ (y) and b’(x) must be constants.
So we must have

alx,y)=a(y)=ay+p
b(x,y) = b(x) = —ax + 8.



178 Chapter 12

Then
—u

e =en-(o )+ 6

This completes the proof of (1).
Now for any M C R3, with unit normal v, consider a vector field

Z=TZ+¢ v
Then for X € M, we have
VixZ =VxTZ +1II(X,TZ) - v+ X(@) - v —¢(p)dv(X).
So0=(V'xZ,X) if and only if
(%) (VxTZ,X) =¢(p)- (X, X).

If M C (x, y)-plane, then II(X, X) = 0Oand II(X, TZ) = 0, so (*) says that Z
is an infinitesimal bending if and only if 0 = (VxTZ,X) = (VxTZ, X) for
all X, so that TZ is an infinitesimal bending. This proves (2).

On the other hand, if Z is an infinitesimal bending with TZ = 0, and
$(p) # 0, then () shows that II(X, X) = 0 for all X € M. This proves (3). %

There also turns out to be a relationship between warpability and infinitesimal
bendability, which at first sight seem to have nothing to do with each other.

7. LEMMA. Let Z be an infinitesimal bending of an immersion f: M — R°.
Define a;: M — R? by

/ax(M)

a(p) = f(p)+1-Z(p),
My

where Z(p) is considered as an element of R? as usual. Then in a neighborhood
of any point p € M, the map ¢, is an immersion for sufficiently small 7, and
the induced metric o,*( , ) on M is related to the metric f*( , ) by

(X, Y) = [/*C D)X, Y) + 2 Z(X),dZ(Y).

In particular, the metrics o/*( , ) and ¢—*( , ) on M are the same.
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PROOF. 1If X is a tangent vector on M, with X = ¢’(0) for some curve ¢ in M,
then

¥ d
o = —
Lk dS

a(c(s))

s=0

c(s) +1Z(c(s))
s=0

=¢'(0) +1dZ(c'(0))
=X +tdZ(X).

This immediately leads to the desired formula, and this formula shows that ¢, is
an immersion for small ¢, in any neighborhood of p on which Z is bounded. ¢

An illustration of this phenomenon is provided by the infinitesimal bending Z
of the (x, y)-plane given previously. The map taking p +:Z(p) = p —tZ(p)

AN,
A

18 the restriction of a Euclidean motion, namely reflection through the (x, y)-
plane. But this is the only case in which this happens:

8. LEMMA. Let Z be a non-trivial infinitesimal bending of a surface M C R3
which is not part of a plane. Then for ¢ # 0, the map

p+iZ(p) > p—tZ(p)

[which is an isometry by Lemma 7] is not the restriction of a Euclidean motion.

PROOF. 1f this map is the restriction of a length preserving map of R3, then
for all p,q € M we have

lp+tZ(p)—lq+1tZ(@)} =|p—tZ(p) —{q —tZ(q)}],

that is,

lp—q+1Z(p) - Z(}| = 1p—q-t{Z(p) - Z(g)}I.
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This implies that
() (p—q,Z(p)—Z(g)) =0.

Without loss of generality, we may assume that M contains the point 0, and
that Z(0) = 0. Then equation (1) gives

(p,Z(p)) =0 PEM,
from which we further deduce that
(2) (P, Z(@)+ 4, Z(p)) =0, p,geM.

Since M is not contained in a plane, there are three linearly independent points
r1,r2,r3 € M. Now if A; are numbers with ) ; A;r; € M, then

(Z(XZ; hiri)ri) = =25 hiris Z(r) by (2)
== Ailri, Z(rj))
=2 AilZ(ri),rj) by (2)
= (Z, k,-Z(r,-),rj).
This implies that
Z(Zi )»,-r,-) = hiZ(ri).

So Z is the restriction to M of a linear transformation T. Since a linear trans-
formation is its own derivative, equation (2”) shows that

0=(TX,Y)+ (X,TY)

for all pairs of vectors X, Y which are in some M), (when M), is identified with
a subspace of R? in the usual way). Since M is not contained in a plane, there
are three distinct subspaces My, , M,,, Mp, (we regard these as vector subspaces

of R¥). Choose
X3 € Mpl N Mpz
X, e My, N My,
X € MP2 N MPS'
Then the X; are linearly independent, and 0 = (T'X;, X;) + (X;, T X;) for each

i, j. This implies that 0 = (TX,Y) + (X, TY) for all X,Y € R3. Thus T 1s
skew-adjoint, and its matrix C is skew-symmetric. In other words,

Z(p)=p-C C € 0(3),

and hence Z is trivial.
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In order to obtain some deeper results about rigidity, we will find it useful to
consider various R3-valued differential forms on a surface M. Many of these
forms will be defined in terms of other R3-valued forms and functions on M
by means of the inner product and cross product on R3. If fog: M - R3 are
two functions, then there is only one reasonable meaning for f x g, namely the
function

pr f(p)xg(p) e R3.

But if @ and 7 are R*-valued 1-forms on M, then o x 1 might mean any of the
following operations on tangent vectors:

X = o(X) x n(X) (a quadratic function)
(X,Y) > o(X) x n(Y) (a bilinear function)
(X,Y) > o(X) x 9(Y) — o(¥) x n(X)  (a 2-form).

To distinguish these possibilities, we might write the last two as

® A
®wXn and w X1,

Since we shall, in fact, only be interested in the last case, we will introduce the
simpler symbol X and define

o X n(X,Y) =o(X) x n(Y) - o(Y) x n(X).

The present situation is actually just a special case of the one already consid-
ered at the end of Chapter 1.10; see pg 1.403 and especially Problems 1.10-20
and 10-21. In general, if @ and 7 are R3-valued forms of degree k and /,
respectively, then we define a (k + /)-form @ x n by

o X r)(Xl,...,Xk,Xk+1,...,Xk+1)

1
=% Y sgno - 0(Xeqy,. .., Xow) X MXo@+1)s - - s Xok+1))-

T o€Sk 4

[Actually, since we will be dealing with a surface M, only the cases k,] < 1
are relevant.] In an exactly analogous way, we define o » 1, using the product
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v-w = (v,w) in R®. Then we have (Problem 1.10-21(a))

dlwxn) =do Xn + (=D)*w x dn
dlwen)=dwen+ (=D)*w « dn.
Notice that since X is not commutative, @ X  need not be zero. In fact, for a

1-form w we have
o X o(X,Y)=2w(X) x o).

More generally,

wxn=D)*"yxo

wen=(D"ne0.
It is also easy to see that the formula
v-(wxz)=—w-(vx2z) v,w,z € R

leads to the relation

1)k1+1

we(nXA)=(- ne(wXxAi).

Pure notational fiddling would lead us to write we( X 1) in the form det(w, n,4),
which can be defined directly in an obvious way: if @ = (', w?, »*) for ordi-
nary 1-forms o', and similarly for n and A, then det(w, n,A) denotes

o' 0! o}
det| AV A2 A%},
1,2 3

n n n
where the determinant is expanded out as usual, with all multiplications being
replaced by A, and care being taken to write products in the correct order
(namely, the same order as the columns they appear in). One easily checks,
either from this definition, or from the alternative form w « ( X 1), that

d det(w,n, 1) = det(dw, n, 1) + (=1)F det(w,dn, 1)
+ (=¥ det(w, n,d}).
We will frequently use the various formulas given here without specific com-
ment.

Now consider an immersion f: M — R? of an oriented surface M, and the
corresponding normal map N: M — R3. If d4 is the volume element of M
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for the metric f*({ , ), then we have the following identities among R3-valued
2-forms on M

O df x df =2NdA
I df X dN = —2HN dA
(III) dN X dN =2KN dA.

To prove these simple relations, pick vectors X1, X5 ¢ M, with (X1, X>) pos-
itively oriented. Now df(X;) is just f,(X;), considered as an element of R3,
So
df X df (X1, X2) = 2df(Xy) x df(X)
= 2N(p) - area of parallelogram spanned by df (X)), df (X>)
=2N(p) - dA(Xy, X2).

" Moreover, if

dN(X\) = a df (X1) + B df (X2)
dN(Xz) =y df (X1) + 8 df (X),

then
df X dN(X\, X2) = 8df (X1) x df (X2) — adf(Xz) x df (X;)
= (a +8)df (X)) x df (X3)
=(a +8)N(p)dA(Xy, X>)
= —2H(p)N(p) dA(Xy, X>),
and

dN x dN(Xy1, Xz) = 2dN(X;) x dN(X>)
= 2o df (X)) + Bdf (X)] x [y df (X)) + 8 df (X3)]
= 2(ad = By)df (X1) x df (X>)
= 2K(p)N(p) dA(X1, X2).

Naturally, all these formulas can be applied when M C R?, and f is just the
inclusion map i: M — R3. And, in fact, we shall usually apply them to imbed-
ded, rather than immersed, surfaces. But it nevertheless seems conceptually
casier always to regard M as an abstract surface sitting off in the void, so that f
and N can be thought of simply as certain R*-valued functions on M without
worrying about the geometry they induce; most of the geometric information
In question is already presented in formulas (I)—(III).
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We will also need to recall the support function h = —f - N: M — R?,
which is defined in Problem 3-7. As we saw, 4(p) is the signed distance from
the origin to the tangent plane of f(M) at f(p); when f is an imbedding with

N(p)

f(M) star-shaped with respect to 0, and N is inward pointing, it is precisely this
distance. This happens, in particular, when f(M) is convex, and 0 lies inside it.
Now consider the R3-valued 1-form a on M defined by

a=(f xXN)df.
We have

do = (df X N)edf + (f x dN)«df
[the dots do not have to be bold

=—N-(df xdf)+ [ (N xdf) since f and N are functions]
— —2dA—2H(f-N)dA by (I)and (II)
=-2dA+2hHdA.

If M is compact, then f da = f a = 0, so we obtain
M aM

Iv) area(M) =f hHdA.
M

Similarly, for the 1-form
B=(fxN)edN,
we have

dB = (df X N)«dN + (f X dN) « dN
— _N-(df xdN)+ f-(dN x dN)
—2HdA—2hKdA by (II) and (III).
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Hence for compact M we have

V) '/MHdAszthA.

Equations (IV) and (V) are sometimes called Minkowski’s formulas.

As a first application of these formulas, we reprove a rigidity result which
appeared a long time ago. The theorem that a compact surface with constant
K > 0 must be a (standard) sphere in R? can also be stated as follows: a sphere
is unwarpable.* To prove this from our present formulas, we consider any
compact surface M C R? with constant K > 0. It is convex, by Hadamard’s
theorem, and we can assume that 0 € R? lies in its interior, so that the support
function 4 is always positive for the inward pointing N. There is no loss of
generality in assuming that K = kjk; = 1. Since for x > 0 we always have

1
X+ =22,
x
with equality only if x = 1, this implies that

1 1
H=-{k — 1
2(1+kl)2 ’

with equality only if k) = k;. So

fM hdA = fM HdA by (V)

> [ a4
M
= | hHdA by (IV),
M
and consequently
/ h(1 — H)dA > 0.
M

Since h > 0 everywhere, and 1 — H < 0 everywhere, it follows that H = 1
everywhere. This implies that k; = k, everywhere.

*Actually, the statement that a sphere is unwarpable is formally stronger than the state-
ment that any compact surface isometric to a sphere is a sphere—see the footnote on
Page 171. But the complete equivalence of the two statements follows easily from the
fact that any isometry of a sphere onto itself is the restriction of a Euclidean motion.
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Similarly, we can reprove Theorem 5-3, and in a little greater generality.

9. PROPOSITION. The only star-shaped surfaces of constant mean curva-

ture H are spheres.

PROOF. We still have & > 0, and there 1s no loss of generality in assuming that
ki + ka2

1=H= .
2

Then
K =kiky = k(2 — k) = 2ky — (k)* <1,

with equality only if k; = 1. Now

f hdA:f dA by (IV)
M M

=f hKdA by (V),
M
SO

f /‘l(l - K)dA = 0.
M

Thus we must have K = 1 everywhere, hence k; = 1 everywhere, hence k; =
1 = ky everywhere. &

This proof is mainly a curiosity, since, as we showed in Chapter 9 (Adden-
dum 2 or 3), a much stronger result actually holds. By considermg another
R3-valued 1-form, however, we obtain a real theorem, one of the first in the
subject.

10. THEOREM. Let M C R3 be any compact convex surface which does not
contain a portion of a plane. Then M 1s infinitesimally rigid.

Remarks: (1) We have already pomted out that the conclusion fails if M does
contain a portion of a plane.

(2) We could replace convexity with the hypothesis K > 0 (see the remark after
Theorem 2-11 or Proposttion 7-32).

PROOF. For simplicity. we first consider the case where K > 0 everywhere.
Let Z be an mfinitesimal bending of the inclusion map f: M — R and let Y
be 1its rotation field. so that

dZ(Xp) = df(Xp) x Y(p)
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for all X, € Mp. This relation can be written in terms of the R3-valued 1-forms
dZ and df, and R*-valued function Y, as

dZ =df x Y.
Now
) 0=d(dZ)=—-df xdY.
This means that for X;, X; € M, we have
2) df(X1) x dY(X2) — df (Xy) x dY(X1) =0.

Taking the dot product of this equation with df (Xy) and df (X3), we find that
dY (X;) lies in the plane spanned by df(X;) and df (X3), which is nothing but
the tangent plane M, moved over to the origin. In other words, we can consider
dY asamapdY: M, > M,.
Now choose a moving frame X, X3 in a neighborhood of p. We can write
dY(Xy) = adf (X)) + B df(X>)

3
©) dY(X>) = ydf(X1) +8df(X2)

for some functions «, B, y,8. Equation (1) implies that
(4) a+6=0.

Remembering that f is just the inclusion map, so that Xi, Xz are vector fields
on M, we can write

B)  0=d(dY)(Xi, X2) = X1(dY(X2)) — Xa(dY (X1)) — dy([ X1, X2))
= )/V/Xl X1+ 8V,X| Xy — O(lele — ﬂV,szz

+ somethmg tangent to M.
Taking the inner product with N, and using (4), we get

0= )/H(Xl, Xl) - Z(XH(XI, Xz) - ﬂH(Xz, Xp_)
=yl —2am — fBn, sav.

In particular, suppose that we choose Xi, X2 to be principal vectors at some
poit p, so that at p we have m = 0. Then our equation is simply

(6) 0=yl - fBn.
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Since K = In > 0, this shows that y and B have the same sign. So
0<By and 0=p8y onlyif =y =0
Hence at each point p we have

(7) 0§a2+ﬁy=—detdY
with equality onlyif e = =y =0 = dY =0.

Consider the 1-form
w=(xY)edY

(closely related to the 1-form B considered previously). We have

do = (df X Y)edY +(f xXdY)edY
=Y -(df xdY)+ f-(dY x dY)
—0+ f-(dY xdY) byl

But we also have
dY xdY =2(detdY)N dA,

by the very same argument which proved formula (III). Hence
dow =2h(detdY)dA.

So for our compact manifold M we have the integral formula of Blaschke:
(%) f h(detdY)dA = 0.
M

Since & > 0, and detdY < 0 by (7), we must have detdY = 0 everywhere.
Then (7) also shows that dY = 0 everywhere. Therefore Y is constant. So Z
is trivial by Lemma 4.

Now we consider the case where K > 0, but M contains no portion of a
plane, so that the planar points of M are nowhere dense. Ata parabolic point
we have n = 0 and [ # 0, say. Equation (6) then shows that y = 0. Hence we
still have

0 <a?+ By =—detdY.

Thus we have det dY < 0 at all non-planar points, which implies that detdY <0
everywhere. So we can still conclude from (¥) that detdY = 0 everywhere. We
want to show that consequently dY = 0 everywhere; it obviously suffices to
show that dY(p) = 0 when p is a parabolic point.
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If the parabolic point p lies in the closure of {g € M : K(q) > 0}, then
clearly dY(p) = 0. So consider a parabolic point p which has a neighborhood
on which K = 0. By Proposition 5-4 and Corollary 5-6, M contains a ruled
surface

(s,2) > c(s) +td(s), ldl=1 = (d,d")=0

around p such that the ruling through p has its endpoints in the closure of
{g € M : K(g) > 0}, and consequently dY = 0 at the endpoints of this ruling,
We can choose the curve ¢ to be the intersection of the ruled surface with a

c—7

plane perpendicular to the ruling through p. So if X, X, are the coordinate
vector fields

Xi(s,8) =c'(s) +td'(5)
Xa(s,1) = d(s),
then along the ruling through p we have
(X1, X2) = (' +1d',d) = (',d) =0.

Now X; is the principal vector with principal curvature n = 0. So along the
ruling through p, the vector field X is the other principal vector, with principal
curvature / # 0. So we have [by (6)]

8) y=0 along the ruling through p.
Since we have 0 = — det Y = a? + By everywhere, we also have
9 a=0 along the ruling through p.

So equations (3) and (4) give

dY (X)) = Bdf(X2)

dY(X5) =0 along the ruling through p.
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Then equation (5) becomes simply

0=0—-X2(Bdf(X2)) -0
= —X2(B)df (X2) — BV x5, Xz

Thus 0 = X>(B) along the ruling through p, so that 8 is constant on this ruling,
But B = 0 at the endpoints, since dY = 0 at the endpoints. It follows that also
B =0 at p; together with (8) and (9) we now have dY(p) = 0. %

At this point it might be nice to have some non-trivial examples of surfaces
which are infinitesimally bendable. Consider a surface given as a graph,

f(x,y) = (x,y,u(x,));

we introduce the standard notation

3%u 3%u 9%u

=— = — 1=—.
I s dxdy’ 9y?

Suppose that Z = (_, —,¢{) is an infinitesimal bending, with rotation ficld
Y = (o, B,¥). Then

d d
(—, —.))=dZ (——) =df (—‘a ) x (o, B, ¥)
X

dax
= (1,0, p) x (&, B, ¥)
= (—’—aﬁ)
and similarly
(‘—’ —’;2) = (_" _’_a)'
So Y must be of the form
Y = (_gzagla W)

Using equation (2) in the proof of Theorem 10, we see that we must have

(I’Oa p) X (_42254‘12’ WZ) - (Oa laq) X (_4-1254‘11, WI) = 09
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which is equivalent to

" {‘/fl =q8%11 — péi2

V2 = —q8i12 + péaa.

Conversely, if ¥;,;; satisfy these equations, and we define the vector-valued
1-form W by

W(X) = df(X) x (82,61, ¥),

then W will satisfy dW = 0, so on any simply-connected portion of the (x, y)-
plane there will be Z with dZ = W. Now equations () can be solved for ¥ if
and only if

(@811 — pSi12)2 = (—q812 + plaa)1,

which leads to an equation for ¢{:
(%) ri — 2582 + 181 = 0.

As a particular case, we consider the paraboloid u(x, y) = %(x2 + y2). We
obtain the equation

{11+ 82 =0,

whose solutions are the real part of any entire function on C = R2. Thus there
are non-trivial infinitesimal bendings of {(x, y,u(x, y))}, which is a complete
convex surface.

As we have already pointed out, it is not known whether infinitesimal rigidity
generally implies unbendability. But we can deduce this further property in the
special situation considered in Theorem 10.

11. COROLLARY. Let M C R? be a compact convex surface with K > 0
everywhere. Then M is unbendable.

PROOF. Leta: [0,1]x M — R be any bending of the inclusion map i : M —
R3. Then all @(t)(M) have K > 0 everywhere, so all @(¢)(M) are infinitesimally
rigid, by Theorem 10. So the variation vector field Z r of « at time ¢ is trivial.
Then by Lemma 5, the bending « is trivial. «

In this corollary, the case K > 0 eluded us, but we aren’t going to worry very
much about it, because we are now going to prove a much better result anyway,
the famous theorem of Cohn-Vossen that any convex surface is unwarpable.
This result is the uniqueness part of Weyl’s Problem, mentioned in the previous
chapter; the present proof stems from the work of Herglotz.
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12. THEOREM (COHN-VOSSEN). If M C R3 is a compact convex surface,
then M is unwarpable.

PROOF. As in the proof of Theorem 11, for simplicity we first consider the
case where K > 0 everywhere. So we consider two imbeddings f, f:M—>R?
with f*(,) = f*( , ), such that the curvature K = K for this metric is > 0

everywhere. Let N, N be the inward pointing normals, for the convex surfaces
f(M) and f_(M) and orient these surfaces so that N and N are the normals
determined by the orientations. We can assume that M has an orientation
which makes both maps f/: M — f(M) and f*M - f(M) orientation
preserving (by composing f with a reflection if necessary). For each p € M we
have two subspaces df (Mp), df(M ) € R3, which are just f,(M,) and f*(M )

moved over to the origin. So we can consider
v=d(f o [71): df (Mp) — df (Mp).
The magic 1-form which we want to consider is
w=(f X N)e(todN).

Figuring out de will be quite a bit harder than in the previous theorem. First
we will get an expression for ® in terms of moving frames We choose a moving
frame X7, X2 on M which is orthonormal for f*{ f* ), and let @', 6?2
and w} = —w)} be its dual forms and connection forms We can consider

(feX1, fe X2, N) and (f*Xl, f*Xz, N) as adapted orthonormal moving frames
on f(M) and f_(M); let 1//13, 1//23 be f* of the corresponding forms on f(M),
and define ¥ 3,3 similarly. Then for X tangent to M we have

AN(X) = PHX) - df (X)) + ¥3(X) - df (X2)

) l

LodN(X) = 93 (X) - df (X1) + 3 (X) - df (X2).
We will also express f(p) as a linear combination

2 f(p) = »(p)-df (Xi(p)) + ya(p) - df (X2(p)) + y3(p) - N(p),

where, in particular,

3) yy=f-N=—h.
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Then for X € M, we have

o(X) =[f(p) x N(p)] - [¥3(X) - df (X\) + ¥3(X) - df (X2)]
= [i(p) - df (X)) x N(p) + y2(p) - df (X2) x N(p)]
(X)) - df (X)) + ¥E(X) - df (X2)]
= yi(p) - ¥i(X) — y2(p) - V3 (X),

and consequently

@) ® =—yi¥; + ny;.
Now equation (2) implies that for X € M, we have
df (X) = dyi(X) - df (Xi(p) + »i(P)V'rx fuXi + -

= dyi(X) - df (X1(p) + »i(P)oi(X)-df (X2(p))
+ N (PYX)NP) + -

= [dy1(X) + ya(p)o3(X) + y3(p) Y3 (X)]df (X1) + -

But also
df (X) =0"(X) -df (X)) + 0*(X) - df (X2).
Hence we have
5 dyy = 0" + y08 + y3y}
dyr = 0% + yi0) + y3y3.

Now we can compute

do =d(=yi¥3 + y297) by (@)
= ="+ 207 + y3¥) A3 + 11 (U] A )
+ (0% + 110} + y3y3) AU = 1203 A o))
by (5) and the structural equations
C O AP O AT — AT -V A T
= —{(n + h2) + y3(lulaa + Lulaa — 2h2l12)} dA,

where

L =Wy (X, X)), by =Np(X Xj), dA=6"A6%

193
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Now one has to observe that
lilyy — 212l + hilia = (il — 1122) + (hiha — h??)
~ det (1:11 —In 1:12 —112)
ha—la lo—In
= 2K —det(dN — dN),

where we now regard dN and dN as maps dN,dN: M, — M,. We obtain
finally B B
do = —{2H — h(2K — det(dN — dN))} dA.

So for our compact M we have

(6) 2[ FldA—zf thA:—f hdet(dN —dN)dA.
M M M

Using formula (V), we obtain the Herglotz integral formula:

(7) 2[ H—HdA:-f hdet(dN —dN)dA.
M M

[Note that formula (V) also follows from (6) by taking f = f.] Now we need
an algebraic

13. LEMMA. Let A and B be two self-adjoint linear transformations on R?
which are positive semi-definite (i.c., have eigenvalues > 0). Suppose that
det A = det B. Then

det(4 — B) <0.

Moreover, if A and B are positive definite, then equality holds only if 4 = B;
and if A and B are positive semi-definite, then equality holds only if 4 and B
are proportional.

PROOF. Consider A and B as symmetric matrices, and suppose first that 4 1s
positive definite. Since A4 is self-adjoint, there is an orthogonal matrix P, with
transpose P!, satisfying

PAPt = PAP™! = Ao 0 , A1, Aa > 0.
0 A
If we set |
_\/: 0
o=cp, c=[Y" ]
0 -
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then
(a) QAQ'=CPAP'C =1

Now consider QBQ". It is also symmetric, so there is an orthogonal R with

(b) (RQ)B(RQ)‘=R(QBQ‘)R‘=(“O‘ lfz) ps 2 > 0.

Morcover, equation (a) gives
(c) (RQOA(RQ) = RIQAQHR™' = L.

[We have simply reproved the well-known result that two positive definite qua-
dratic forms can be simultaneously diagonalized.] So for § = RQ we have

(det S)?>det B = pypa by (b),
(det S)2det 4 =1 by (c).
If det A = det B, then
Hip2 =1
Moreover,

1—/1,1 0

(det S)? det(4 — B) = det (
1 — o

)=2—Uu+uﬁ
Since for x > 0 we always have
1 . . .
X+ —->2 with equality only if x =1,
X

it follows that
2= (1 + p2) <0,

with equality only if uy =p, =1 = 4 =B.
Now suppose that 4 and B are positive semi-definite, with 4 # 0, say. We
can now obtain @ with

' 1 0
@) 040'= (4 7).
and R with

) (RQ)B(RQ)‘=(’§)‘ lfz) iz 0, pipe =0,
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As before, we also have

/ ¢ _(1 0
(') (RQ)A(RQ) = (0 K
So for S = RQ we have

(det S)?det(4 — B) = det (1 _O'ul (L ) =—pa+ U1y = — 2.
— M2
Thus det(4 — B) < 0, with equality only if u, =0 = B = pu; - 4. QE.D.

Applying the Lemma to the positive definite maps dN,d N: M, - M, with
the same determinant K(p), we conclude from equation (7) that

f I-_IdA—/ HdA>0.
M M

But we can interchange f and f in this inequality to obtain

f HdA—/ HdA=>0.
M M

/HdA:/ HdA.
M M

(%) / hdet(dN — dN)dA = 0.
M

Hence

Then equation (7) gives

Now () implies that det(dN — dN) = 0 everywhere. Then Lemma 13 implies
that dN = dN everywhere. So the fundamental theorem of surface theory
implies that f and f differ by a Euclidean motion.

Now we consider the case K > 0. We can still obtain () and thus conclude

that det(d N —dN) = 0 everywhere. We have to show that dN(p) = dN(p) for
points p with K(p) = 0, and it is only necessary to consider points p with K =0
in a whole neighborhood of p. If f(p) and £ (p) are both planar points, there
is nothing to prove. So suppose that f(p), say, is a parabolic point. Then, as in
the previous proof, the point f(p) is on some line segment I' C f(M), whose
endpoints @1, Q> are in the closure of the set where K>0 LetT C f(M)
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be the image of I' under the isometry f_ o f7l f(M) —> f_(M), Then T is a
geodesic in f(M). Now T is also an asymptotic curve, II(X, X) = 0 for tangent
vectors X pointing along I". The last part of Lemma 13 then shows that we must
have II(Y,Y) = 0 for tangent vectors Y pointing along T'. So T has normal
curvature k, = 0; since ' has geodesic curvature &g = 0, it follows that T has

curvature & = Vic,® 4+ &g> = 0. Hence T is also a straight line segment, with
endpoints @y, 02, say. Lemma 5-5 says that the non-zero principal curvature k
along T 1s of the form

k(s)=

1
As+ B’
where k(s) is the value of k at the point on I' at distance s from f(p). In
particular, k cannot approach zero at @ or Q3, so Q1 and Q3 are not pla-
nar points. Since Qp, (2 are in the closure of the set where K > 0 we have
dN(Qi) = dN(Q;), so Q1, Q2 are also not planar points. So by Corollary 5-6,

f(p) is not a planar point. Thus the non-zero principal curvature k along T is
of the form

k(s) =
As + B’
where s now measures the distance from f(p). But since dN(Q;) = d]\_/(Qi),

we have k(Q;) = k(Q;). It follows that A = A and B = B. Hence dN(p) =
dN(p). %

For later use, we insert here a form of the Herglotz integral formula for
compact surfaces-with-boundary.

14. LEMMA. Let M be a compact oriented surface with boundary dM, and
let f, f: M — R? be immersions with f*( , ) =/*(,).LetN,N: M > R3
be the normals determined by the orientation, let d4 be the volume form on
(M, f*( ,)), and let ds be the volume form on dM. For p € IM let t(p),u(p)
be the ﬁrst two vectors of the Darboux frame at f(p) for the curve f(dM) on
J(M); we regard t and u as elements of R?, as usual. Let «, and 7 be the
normal curvature and geodesic torsion for this curve, and let ¥, and 7, be the
corresponding quantities for the curve f(9M) on f(M). Then

f (Tg — ) (/i) + (kn — Kn){(fiu) ds
M

=f hdet(d]\_/—dN)dA+2/ H—- HdA.
M M
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PROOF. We consider the 1-form
w=(f X N)s+(odN)
of the previous proof, for which we have
) dw = —{2H — h(2K — det(dN — dN))}dA.

If s is the unit tangent vector of the curve dM on (M, f*(, ), sothatdf(s) =t,
then
dN(8) = —kpt — 740,

by definition of k, and 7g. Similarly,
(todN)(s) = —knt — Tgu.
Therefore

2) w(s)= f-Nx(odN)s) = f-N x [kt — Tgu]
= [ - (T4t — kpu)
=T (f.t) — kn( /o u).

Substituting (1) and (2) into Stokes’ Theorem,

/ w:/ dw,
oM M

we obtain

(3) faMfg(f,t)—;z,,(f,u)ds=—2/Mf1dA+2thKdA

+/ hdet(dN — dN)dA.
M

We cannot use formula (V) for / hk dA, since M is not compact. But choos-
ing / = f in (3) we obtain M

/ tg(f,t)—K,,(f,u)ds=—2/ HdA+2/ hK dA.
oM M M

Substituting this into (3), we obtain the desired result. <
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The proofs of Theorems 10 and 12 have a formal correspondence which
is even more complete than their superficial resemblance. Indeed, suppose
that the two imbeddings f, f of Theorem 12 are part of a variation @ of f,
with variation vector field Z. Then each @(¢) has a normal field N;, and the
integrand A det(dN; — dN) of the Herglotz integral formula can be expanded
in powers of ¢; the terms up to second order in ¢ turn out to be exactly the
integrand in Blaschke’s integral formula.

More to the point, perhaps, is the fact that the proofs of Theorems 10 and 12
are cqually mysterious. They depend on discovering 1-forms @ for which
dw = (something interesting) - d4; these 1-forms @ are suggested by the ge-
ometry in only the vaguest way, and one simply has to carry out the com-
putations explicitly to see what dw really is. In this connection, however, the
following may be mentioned. The requirement that f be an imbedding with
the same metric as f is a system of partial differential equations (in 2 variables)
for the components of f. (The requirement that @ be a bending of f is an
even more complicated equation in 3 variables, and the basic aim of mntroduc-
ing infinitesimal bendings is to reduce the problem to one in only 2 variables.
This “linearization” of the problem leads to a system of linear partial differen-
tial equations.) Theorems 10 and 12 may be regarded as uniqueness theorems
for partial differential equations on M. As Stoker {1} points out, “the proofs of
uniqueness theorems for boundary-value problems involving other partial differ-
ential equations also usually require the invention of special tricks and devices,
above all if the problems are nonlinear, and such devices commonly involve in-
tegrals over the domains in question (e.g., energy integrals in problems having
their origin in mathematical physics).”

This is perhaps an opportune moment to describe briefly the original, quite
geometric, proofs of these rigidity results. Theorem 10 was first proved by
Liebmann, and the crux of his proof was the following observation. Let Z be
an infinitesimal bending of M C R®. Regarding each Z(p) as an element of
R3? we obtain a surface Z = {Z(p) : p € M} C R3. Of course, this may not
really be an immersed surface; indeed we hope to prove that it contains only one
point when M is compact with K > 0. Licbmann showed that at points p € M
where p > Z(p) is an immersion, the curvature of Z is < 0 at Z(p) when the
curvature of M is > 0 at p. This immediately shows that p +— Z(p) cannot
be an immersion everywhere when M is compact with K > 0, since Z would
then be a compact surface with K < 0. Liebmann showed that even when Z
has singularities, it is nevertheless true that if Z is not a point, then Z has the
character of a surface of negative curvature, in the sense that no point g of Z
has a support plane (a plane containing g and all points of Z on one side of it);
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this property again contradicts the compactness of Z. Since Liebmann’s proof
involves the investigation of singularities, it is hardly surprising that it works only
in the analytic case.

Cohn-Vossen’s proof was also originally restricted to the analytic case, and
is quite similar to the proof of Hopf’s Theorem (Theorem 9-33) on surfaces of
constant mean curvature, which was obviously inspired by it. Given M, M C
R3, with normals v and ¥, and an isometry ¢: M — M,wecal pe Ma

“congruence point” if ¢*(II(¢(p))) = II(p). If ¢ is not the restriction of a
Fuclidean motion, then by analyticity the congruence points are 1solated. At
all other points p, Lemma 13 shows that

det[¢*(I(¢(p))) — I1(p)] < 0,

where the bilinear functions II(p) and ¢*(I1(¢(p))) are regarded as linear trans-
formations on M, by means of the metric on M. It follows that the linear
transformation corresponding to the difference ¢*(I_I(¢( p)) — 1I( p)) has two
eigenspaces, one with a positive eigenvalue, and one with a negative eigenvalue.
By picking the one with the positive eigenvalue, say, we obtain a 1-dimensional
distribution defined everywhere on M except at the congruence points. At each
congruence point we can define the index of the distribution, and the sum of
these indices is 2 if M is homeomorphic to S? (Theorem 4-20). On the other
hand, Cohn-Vossen showed that if M has positive curvature, then the index
would have to be negative. The Bibliography will guide the interested reader to
descriptions of Cohn-Vossen’s argument, as well as alternative arguments and
refinements introduced later. We merely mention here that the assumption of
analyticity can be dropped by using appropriate results about partial differential
equations, and that the whole argument can be formalized to yield an “index
method”, which has been successfully used in studying certain questions in sur-
face theory; it is one of the few methods which has never yet been generalized
to higher dimensions.

We will now return to the use of integral formulas, and prove a result simi-
lar to Cohn-Vossen’s, which although not strictly speaking a rigidity theorem,
nevertheless seems to belong in this chapter since it is the uniqueness part of
Minkowski’s Problem (page 156). The original proof was based on the gen-
eral “Brunn-Minkowski inequality” for the “mixed volumes” of convex sets (see
Bonnesen-Fenchel {1}). The present proof, obviously inspired by Herglotz’ proof
of Cohn-Vossen’s theorem, is due to Chern.

15. THEOREM (MINKOWSKI). Let M be a compact surface with K > 0
everywhere, and let f, f: M — R3 be two isometric imbeddings with N = N.
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Then f and f differ by a translation. (Alternatively stated, if two compact
convex surfaces in R with everywhere positive curvatures have the same cur-
vatures at points where the normals are parallel, then one surface is a translate
of the other.)

PROOF. Since K > 0, the maps N,N: M — §? C R? are diffeomorphisms,
so we can consider the imbeddings

g:foN_l: S? > R3

g=foN: 8?5 R
These imbeddings have the property that p € S? is normal to the tangent plane
of g(S?) at g(p), and similarly for g. Thus the normal maps £&: 82 > R?
for g and g are both the identity map id: S2 — S2. Since N = N, and f, f
are isometries by hypothesis, the maps g, g induce the same metric on S2. It

clearly suffices to show that g and g differ by a translation.
Consider the 1-form

w=(gXg)edg
on S2. We have
1) do = (dg X g) +dg + (g X dg) + dg
= —g +(dg x dg) + g « (dg x dg).
To calculate dw explicitly we consider a positively oriented moving frame

on S? which is orthonormal for the usual metric on S2. If we move the vectors
X;(p) over to g(p), then the translated vectors, Y;(g(p)), will be tangent to
2(S?) at g(p), since £(p) = p. Thus we obtain an orthonormal moving frame
Y1,Y> on g(S?). Let 6,6 be the dual forms for Y, Y, and let 1//; be the
connection forms for the moving frame (Y;,Y>,v) on 2(S?), where v is the unit

normal field on g(S5?). Define 6 and 1/_/;‘ similarly, using g. If we set
= g™, it = g%,
then for X tangent to S? we have
dg(X) =1'(X) - Y1+ n*(X) - Y2 = n'(X) - Xi + 1*(X) - X,
dg(X) = 7'(X) - X1 + 7 (X) - Xa,

where the X; and Y; are now regarded as R3-valued functions. It follows that
we have

dg xdg = (' A7 —n* A" -id,
dg x dg =2(7' A %) - id,
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so that (1) becomes
(3) do = h(n" A72 = n* ARG = 2h(7" A 7?),

where & and h are the support functions of g and g, respectively.
Now we have to relate the forms 5?, i to the dual forms for the moving frame
X1, X2 on S2. On g(Sz) we have

vl =) 1yt
J
where /;; = II(Y;, Y}); hence
gyl =Y Wijog)-n.
J

But
gV X) = ¥ (g X) = —vi(g: X)
= (—vsgu X, Vi)
(—d(v o g)(X),Y:)
(- dsm Y)
(=X, Y:) = (X, Xi).

So if ¢!, ¢? are the dual forms for Xi, X, so that ! A % = dA, the volume

element of S2, then
= Uijog)-n.
J

If A is the 2 x 2 matrix of functions on S? defined by
Mp) = Ui (g(p) ™,

_Zkij,gj
J

then

Similarly,
== hijt’,
j

where A is the inverse of the matrix (l_,-j o g). Since
det(/;j o g) = det(ljj 0 §) = K

where K is the curvature for the metrics g*( , ) and g*( , ) on S2, we likewise
have .
det(k,-j) = det(k,-j) =K
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Now we have _
AR =t AP=Kd4
and _ ) _
M AR =0 AR = (idaz + AiAzn — 2hi2h12) dA.

Calculating as in the preceding proof, we see that
A=t A = [2K7N = det((dD) ! — (dv)T1)]dA.
So equation (3) becomes
do = —{hdet((dV)™" = (dv)™') + 2K (h — h)} dA.
Hence

hdet((dv)™" — (dv)™')dA = —f 2K7V(h — h)dA.
S2 S2

Then Lemma 13 shows that the left side is < 0, so that the right side is also < 0.
By symmetry we conclude that the right side is 0, and then by Lemma 13 again
that in fact dv = dv. Thus there is a Euclidean motion 4 such that g = Ao g
and U = A,v. The latter implies that A is a translation. +

Sometimes this result is expressed in a way that looks quite different: Let
M, M C R? be compact surfaces with K, K > 0 everywhere, and let ¢: M —
M be a map such that K(¢(p)) = K(p) and such that ¢ preserves the third
fundamental forms. Then ¢ is the restriction of a Euclidean motion. To see the
equivalence of this statement and Theorem 15, just note that by Proposition 2-7,
the normal maps of M and M are congruent, so after rotating M suitably we
have two surfaces satisfying the hypothesis of Theorem 15.

Unlike the last few results, Theorem 15 is not true if we allow K > 0; a
counterexample is shown below. Notice, however, that the components of the

LS
4L

/= inclusion
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set where K # 0 on one surface do differ from the corresponding components
in the other surface by a translation. It is not hard to see that this is always
the case, and that Theorem 15 remains true if the set where K = 0 is nowhere
dense. (For the alternative statement of the theorem surely the only reasonable
situation is that in which N is one-one.)

In our next result, the condition K > 0 is more crucial, for we are going to

consider the sum
1 1 2H

e K

of the reciprocals of the principal curvatures; the reciprocals are classically called
the “radii of principal curvature”. After constructing a proof of Minkowski’s
Theorem by means of integral formulas, Chern then succeeded in constructing
a similar proof for the following result, which is actually older than any yet
considered.

16. THEOREM (CHRISTOF FEL). Let M be a compact surface with K > 0
everywhere, and let f, f: M — R3 be two imbeddings with N' = N such that

1 1 1 1

-+ =,
kl k2 kl k2

where the functions k; and k; on M are the principal curvatures at the corre-
sponding points of f(M) and f(M), respectively. Then f and f differ by a

translation.

PROOF. We introduce the imbeddings g,&: S? — R? of the previous proof,
and we will use all the notation and formulas from that proof. In addition, we
note that for the normal map § = id of g we have, of course,

dE(X) = X ={1(X) - X1+ F2(X) - Xa,
from which it follows that

(1) dex dg =" An* =P An')-&
=~k + A1) dA
=—(ky '+ HEdA.

Similarly, since £ = £, we have

(2) dE x dg = —(ki ' + k2" )EdA.
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Consider first the 1-form
w; = (g X §)edg.
We have
doy = (dg X §) e dg + (g X d§) « dg
= —£+(dg x dg)+ g + (d§ x dg)
= —Eo(dg xdg)— (ki +k2")g-£dA by (2
= ko (dg x dg) +h(ki™" +ky7")dA.
Similarly, for the 1-form
w2 = (g X §)edg
we have
dwy = —E o (dg x dg) + h(k; ™" + k7 ')dA.
Since ky '+ k7t = 151_1 + 152_1, we obtain the integral formula

(3> [ 6+ e x )~ & +(dg x dg)dd =0,
By interchanging the roles of g and g we also obtain
@ [L6e @ x dg) -+ @ x dpyda =0
Adding (3) and (4) we obtain an integral formula
(+) f 1da=o0.

S2

Now we have

205

Eo(dg X dg)—Ee(dg xdg)=(' A2 —n? ATDE-E—200" AnP)E - €

= (A1h22 + A2z — 2hiaAi2 — 2(hiha — Ai2?) dA4,

§o(dg x dg)—§&«(dg x dg)

= (hi1h22 + Ai1Azz — 2h2Ai2 — 2(hi ko — Aip?) dA.

So the integrand [ in (x) 1s

I =201kas + Aihaz — 2hi2h12) — 2(iAz2 — Ai2?) = 2(hithaz — Ap2?) dA

= 2[(ki — Ai)(haz — haz) — (Riz2 — A12)?] dA.
Since Aj; + Ay = M+ A2 by hypothesis, we can write
I = —2[(A22 — A22)(Ra2 — h22) — (Ri2 — A12)?1dA
= 2[(A22 — A22)* + (A2 — A12)?1dA.

So the integrand / in () is everywhere > 0. Hence it must be everywhere
= 0. Hence A;; = A;j, implying that dv = d¥, and the proof is complete, as

before. o
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In Christoffel’s time the radii of principal curvature were regarded as the
fundamental entities (which is pretty awkward when K = 0), so Theorem 16
was the natural result to try to prove. Nowadays, of course, the result looks
rather weird and we would like to formulate it for H = %(kl + k7) instead.
Oddly enough, this more reasonable looking problem hasn’t been solved. The
pair of surfaces pictured on page 203 give a counterexample of sorts, but I do not
know of any counterexample which is strictly convex. This same pair of surfaces
illustrates the need for the final hypothesis appearing in the following result
along these lines, which replaces the conditions on the normal maps by one on
the imbeddings themselves (as some sort of compensation for the stringency of
this hypothesis, notice that no hypothesis on K is required).

17. THEOREM (HOPF AND VOSS). Let M be a compact surface, and let
f, [+ M — R be two imbeddings with H = H such that f(p)—f(p) is always
parallel to a fixed vector v € R*. Suppose, moreover, that (M) and f(M) do
not contain a portion of a cylinder with generators parallel to v. Then f and
f differ by a translation in the direction of v.

PROOF. Write )
f=f+a-v
for some function & on M. For any X, X, € M), we have
df (X1) x df (X2) = [df (X)) + dee(X1) - v] x [df (X2) + de(X2) - v]
=df(Xy) x df(X2)
+ [da(X1) - v x df (X2) — da(X2) - v x df (X1)].
So . _
df x df =df x df +2(da -v x df).
By (I), this 1s equivalent to
() NdA = NdA+ (da v x df).
Consider the 1-form
w) =f(a-vXxn)edf.

We have
2) doy = (do-vX N)edf + (¢ -vXdN)edf

=-—Ne(da-vXdf)y+a -ve(dN xdf)

=dA—(N-N)dA+2aH(-N)dA by (1) and (I).
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Similarly, for the 1-form
w2=(a'vxﬁ)odf,
we have

3) dwp=(da-vXN)edf +(a-vXdN)edf
=(da-vX N)edf + (0 -vXdN)edf,
since df = df +da-v
=—Ne(da-vXdf)+a-ve(dN x df)
=N -NdA—-dA+2aH(@- - N)dA by (1) and (I)
=N -NdA—dA+2eH(v-N)dA by (1.

From (2) and (3) we derive the integral formula
2[ a(H — H)(v-N)dA =f (1—N-N)dA+dA).
M M
Since H = H, we thus have
f (1—N-N)(dA+dA) =0.
M

But N - N < 1, so we must have N - N = 1 everywhere, and hence N = N
everywhere. We will use this to show that « is constant.

For simplicity assume that v points along the z-axis. The final hypothesis
implies that N(p) has non-zero z-component for all points p in a dense open
set. If p is such a point, then f(M) and f(M) can be represented near p as
the graphs of two functions, g and g, say. Then the normals are given by

(g],g27_1) (gl,g%_l)
—_—_— and —_—.
V1+gi2+g2? VI+gi2+ g2
Since these normals are everywhere equal, we must have g; = g;, so a is

constant in a neighborhood of p. <

Before returning to rigidity theory proper, we will take this opportunity to
mention that Minkowski’s Theorem and Christoffel’s Theorem have gener-
alizations to compact hypersurfaces M C R"*! with all principal curvatures
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ki,...,kn > 0. For eachi = 1,...,n we can consider the elementary symmet-

ric polynomial
1 1
Pi=oi|l—....,7—)-
i = 0j (kl ) kn)

If M and M are two such hypersurfaces, and for some i the functions P; and
P; agree at points of M and M where the normals are parallel, then one
hypersurface is a translate of the other. A proof may be found in Chern [1].
(Our proofs of Theorems 15 and 16 are taken from that paper, and are pretty
representative of the sort of argument which is used. In fact, the proof of
Theorem 15 is a special case of Chern’s proof for all i > 1, while the proof
of Theorem 16 is a special case of Chern’s proof for i = 1, which needs a
separate argument. Chern remarks that that distinction is significant, since the
case i = | involves linear partial differential equations, while the case i > 1
involves non-hnear ones.)

Another remark is necessary to put Theorem 16 on an equal footing with
Theorems 12 and 15. The latter two results give the uniqueness of imbeddings
whose existence was discussed in Chapter 11 (Weyl’s Problem and Minkowski’s
Problem). The corresponding existence result for Christoffel’s Problem 1s much
more involved, for there are complicated relations which must be satisfied by
a given function on S? in order for it to be 1/k + 1/k, for some imbedded
surface. Many incomplete treatments of this problem have been given, and the
correct necessary and sufficient conditions (in all dimensions) were discovered
only in 1967 by Firey [1]. One could also seek the conditions on a function in
order that it be P; (1 < i < n) for some convex hypersurface, but this problem
is perhaps hopelessly complicated.

Finally, we want to point out that the higher dimensional generalization of
the Minkowski and Christoffel theorems can also be expressed as follows: Let
M, M C R™! be compact hypersurfaces with all principal curvatures > 0, and
let $: M — M be a map such that P:i(¢(p)) = P;(p) and such that ¢ preserves
the third fundamental forms. Then ¢ is the restriction of a Euclidean motion.
The argument is just the same as on page 203, using Problem 7-18 in place of
Proposition 2-7. In this connection it is interesting that E. Cartan [2] raised
the possibility of studying surfaces by means of their second fundamental form,
rather than their first. For example, he showed that if II is positive definite,
then the curvature of (M, II) can be written in terms of the ordinary principal
curvatures and their derivatives. Grove [1] used integral formulas to prove that
a diffeomorphism of compact convex surfaces which preserves II and the Gauss-
ian curvature K = kjk; is the restriction of a Euclidean motion, and Walden [1]
used the index method to prove the same result if either ki +kyorky Y4k, is
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preserved (as well as if k12 +k,? or k1 =2 +k,™2 is preserved). On the other hand,
it is perfectly conceivable that a diffeomorphism of compact convex surfaces is
the restriction of a Euclidean motion if it merely preserves II, and perhaps the
surfaces need not even be convex. In higher dimensions, the only result is that
of Gardner [}, proved using integral formulas, which generalizes Grove’s result
to the case where Il and & - - - k, are preserved.

All our rigidity results have required the hypothesis of convexity, so it is only
natural to wonder what happens in the case of non-convex surfaces. There is
a standard example, illustrated below, of two compact rotation surfaces which

are 1sometric but not congruent. To be sure, this example 1s rather unsatisfying,
since 1t 1s merely C®°, and cannot be modified to be analytic. Moreover, the
surface consists of two parts which are individually kept rigid, but which are
glued together in two different ways along a plane curve where K = 0. Finally,
this example is merely a reflection of the fact that the plane has infinitesimal
bendings which vanish outside a compact set. It could have been obtained by
starting with a surface containing a portion of a plane, finding an infinitesimal

bending Z which vanishes outside the planar region, and then mapping p +
Z(p) to p—Z(p), which is an isometry, by Lemma 7, but not the restriction of a
Euclidean motion, by Lemma 8. We can at least show that there is no bending
connecting our two non-congruent isometric C* surfaces. In fact, there is not
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even a bending taking the small region A of positive curvature pictured below
to its corresponding region A’ in the other surface, the region A’ being simply

the mirror image of 4. To prove this, we simply recall that any surface of
positive curvature has a natural orientation, which has to be preserved during
the bending.

Long before such C* trickiness was in vogue, Cohn-Vossen [1] had investi-
gated infinitesimally bendable rotation surfaces by quite different methods, and
he found C® rotation surfaces with non-trivial C? infinitesimal bendings. Af-
terwards, Rembs [1] managed to obtain an example where the rotation surface
is analytic; but the infinitesimal bending is still only C 2 (a point which is by
no means made clear in the paper). Applying Lemmas 7 and 8 in this case
we merely obtain two C? isometric non-congruent surfaces, which seems a lot
worse than C%; but at least this example is not a bald-faced trick like the previ-
ous one. Since the example is interesting, but nevertheless rather disappointing,
it has been relegated to an Addendum.

It seems that at present it is simply unknown whether every analytic compact
surface is unwarpable. A fortior: it is unknown whether every analytic compact
surface is unbendable; it certainly seems likely that even C* compact surfaces
are unbendable.

There is only one crumb of comfort which we can offer in this dismal situa-
tion. It is known that a torus of revolution is unwarpable. Such a torus M has

the property that

KdA =4n,
M+
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where M+ = {p € M : K(p) > 0}; the closure C(M ™) of M+ is a compact
surface with boundary such that 3C(M ™) is the union of plane curves along
which the tangent space of M is constant. Suppose that ¢: M — M is an
isometry. Then also

~ KdA =4nm,

M+
so it follows from Theorem 6-16 that C(M ) is a compact surface of the same
sort as C(M ™). Now apply Lemma 14 to f = inclusion map of C(M7) and
f=¢:C(M*) - C(M¥). The terms tq, kn, T, kn are all 0, since the
normal is constant along each component of dC(M™*) and dC(M*). So we
have simply

ozf hdet(d]V—dN)dA+2f H— HdA,
C(MT) C(M™t)

the same equality which we used in the proof of Theorem 12. Then the same
argument which was used in this proof shows that ¢: C(M*) — C(M ™) is the
restriction of a Euchidean motion.

This already shows that any analytic surface of minimal total absolute cur-
vature 1s unwarpable in the class of analytic surfaces, a result originally due to
Alexandrov [4]. A proof that ¢ is also the restriction of a Euchdean motion on
the part of the surface with K < 0 has been given by Nirenberg [2]. The proof,
which involves a discussion of hyperbolic equations, requires some additional,
rather unsatisfactory, hypotheses, but these hypotheses are satisfied at least in
the special case of a torus of revolution.

We can also ask about the rigidity of complete convex non-compact surfaces.
It is not hard to see (compare the pictures on pg. I'V.84) that the normal map v
of such a surface M always lies in a hemisphere, so that

f KdA <o, ' ) ‘
M

T/

==

1)(M) /

The first result on complete convex non-compact surfaces was the surpris-

ing theorem of Olowjanischnikow [1} that M is warpable if/ KdA < m
M

Olowjanischnikow’s proof uses the methods of the Russian school of differential
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geometry, which was briefly discussed in Chapter 11. As we have already men-
tioned, these methods, though intricate and difficult, allow one to prove certain
results for surfaces which are merely continuous. For example, Pogorelov {1}
has proved Cohn-Vossen’s theorem for arbitrary convex surfaces: if M and M
are the boundaries of compact convex sets (with non-empty interiors) in R3,
and ¢: M — M is a map which preserves lengths of curves, then ¢ is a
congruence. Similarly, Olowjanischnikow’s result holds whenever M 1is the
boundary of a closed non-compact convex set (with non-empty interior) in R3.
Pogorelov {2; pg. 114} also showed that any surface isometric to such a sur-
face M may be joined to M by a continuous bending. To my knowledge, no
one has ever provided simpler proofs of these results when the surfaces consid-
ered are C*.

When our complete convex surface M has

f KdA =2n,
M

it is unwarpable. The proof of this is due to Pogorelov [2]. We have already seen
that such surfaces, although unwarpable, and hence unbendable, may neverthe-
less be infinitesimally bendable; and I think that this is the only known instance
of such a phenomenon.

As opposed to the complete convex surfaces, consider what happens when
we delete a set with non-empty interior from a convex surface. Is it bendable,

or warpable, or infinitesimally bendable? The promptings of intuition seem to
vary from person to person, and historically there was considerable confusion
on the question. We claim first of all that any open set U C S 2 whose closure
U is contained in an open hemisphere of S? is warpable. For this purpose we
consider the rotation surface M, of constant curvature 1 given on pg. I11.163,
with a > 1. Locally there is an isometry S — M, taking the tangent vectors
(0,1,0) and (0,0,1) at (1,0,0) € S2 to the tangent vectors (0,1,0) and (0,0, 1) at
(a.0,0) € M,. If a is sufficiently close to 1, then this isometry can be extended
to cover U C the hemisphere {p € S?: p! > 0}. The image of U is contained
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in the open set V' C M, which is obtained by deleting the profile curve of M,
in the left half (x, z)-plane, as well as a neighborhood of the top and bottom
boundary curves. We also claim that this open set V' is bendable. To prove this

we consider all the rotation surfaces M, for a’ close to a. Then there will be
an isometry fg: V — My which takes the tangent vectors (0, 1,0) and (0,0, 1)
at (a,0,0) € M, to the tangent vectors (0,1,0) and (0,0, 1) at (a’,0,0) € M.
The 1-parameter family of isometries { 5/} gives us the bending.

The warpability of U was noted in a paper by Liebmann [1] in 1goo, which
also offered up a proof that U is not warpable if it contains a closed hemi-
sphere. Fifteen years later, Blaschke [1] observed that the proof, “as simple as
this assertion may appear”, was incorrect. In 1919 Liebmann [2] showed that
in fact the sphere minus any disc, no matter how small, is bendable. He did this
by specifically constructing the bending, using other classical examples of open
surfaces of constant curvature 1. A physically intuitive argument, involving soap
bubbles, is given in Hilbert and Cohn-Vossen {1}. Liebmann was then willing to
conjecture that any convex surface with K > 0 everywhere is bendable after a
small disc is removed. The infinitesimal bendability of such surfaces was proved
by Cohn-Vossen [2] in 1927, and bendability was proven by Hellwig [1] in 1955;
both proofs require facts about partial differential equations, with more difficult
theorems required for bendability. (This question has also been treated by the
Russian school; see Pogorelov {2; pg. 104}.)
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It should be noted that the bendability of a convex surface M with a set
A C M removed does not necessarily imply the bendability of M — B for
A C B. FYor conceivably the bending of M — A might always be constant on

9

B

M — B! But at least we do not have to worry about this anomaly if M is analytic,
with K > 0 everywhere. For it then follows from the results of Chapter 11 that
all warpings of M — A are also analytic.

We can also ask what happens when we delete even smaller sets from a con-
vex surface M. Hilbert and Cohn-Vossen {1} claim that the sphere minus any
segment of a great circle is bendable, but I have never seen a reference to such a
result. I am almost certain that nothing similar is known when the sphere is re-
placed by an arbitrary convex surface M. As recently as 1971, Green and Wu [1]
showed that if only finitely many points are removed from a compact surface
M with K > 0 everywhere, then the resulting surface M’ = M —{py,..., pi}
is unwarpable. On the other hand, Pogorelov [1] had already shown that if
k > 2, then M’ is warpable as an immersion: there is an isometric immersion
of M’ which is not an imbedding (in fact, there are infinitely many inequivalent
isometric immersions). In one special case this is easy to see: Take M’ to be
S2 —{p1, p2}, where p; and p; are the north and south poles, and consider the
surface of revolution M, on pg. II1.163 with @ = 1/2; it is not hard to compute

"B""B
3 s

that the area of M, is just 1/2 the area of S2. Then there will be an isometry
of a closed hemisphere of S? — {p1, p2} onto M, which takes the two semi-
circles on the boundary onto the same curve in Mg, namely its profile curve in
the left half (x,z)-plane. By using a similar map on the other hemisphere of
S2 —{pi1, p2} we obtain a local isometry S2 —{p, po} = M, which is a double
covering.
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To end this discussion of holey surfaces we mention one more indication of
the abysmal state of our ignorance: It is not known whether the standard torus
minus a disc is bendable, or even warpable.

We now turn our attention to purely local results about rigidity, where further
surprises are in store for us. We will begin by examining some of the classical
results along this line, partly to give an idea of the sort of questions which used
to be investigated, and partly because some of these questions throw great light
on the geometric aspects of the Darboux equation.

Consider a surface M C R? and an arclength parameterized curve &: la,b] —
M. Given another arclength parameterized curve c: [a,b] — R3 we ask
whether there is a neighborhood V of ¢(la, b]) in M and an isometry ¢ V-
V of V onto a surface V C R? such that ¢ o ¢ = ¢. In other words, we
want to know to what extent a curve ¢ on M can be changed in a local warp-
ing. We might as well assume that M is the image of an isometric immersion
f: (U, (gij)) = R? where U c R? is an open set containing [a, b] x {0}, and
&x) = f(x,0) for x € la,b]. On [a,b] x {0} we can compute the geodesic
curvature kg of ¢. If the isometry ¢ exists, then the geodesic curvature kg of ¢
on V must be the same as k. On the other hand, if ¢ is a curve on any
surface V whatsoever, then its geodesic curvature kg on V always has absolute
value less than or equal to its curvature « (which is a known function). Thus
we see that the 1sometry ¢ cannot exist unless

kel < k.
Consider the case where we have the strict inequality |Kg(x)| < k(x) for all x.
If the surface V' exists, and v(c(x)) is its normal at ¢(x), then equation (9) on
Pg. II1.190 shows that we must have

Kg =Kg =K -sing,

where ¢ is the angle from the principal normal n(x) of ¢ to v(c(x)). This
equation determines two possible choices for ¢, and hence two possible choices
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for the tangent space V(). Consider either of the two possible continuous
choices of V,(x) along c. We claim that we can find V with this choice of Ve(x).

vie(x)t

Ve M(X)c’(x)
=
/ )

(4

We will look for V as the image of an isometric immersion f: U — R? with
¢(x) = f(x,0). By changing our coordinate system on U, we can assume that

g12=0, g =1 and g1 =1 along [a,b] x {0}.

We easily compute that in this case the curve x (x,0) has geodesic curvature
0 Rg(x) = —3(g11)y-

Now the vector v = (0,1)(x,0) € Ux,0) is a unit vector perpendicular to
(1,0)(x,0) € Utx,0). Obviously we want the vector

Jev) = x(x), say

to be a unit vector in the known vector space V), perpendicular to the known
tangent vector ¢’(x). Thus x(x) is determined along [a, b] X {0}. For the values
of x(x) so determined we have

(x(x),c'(x)) =0
(x(x), x(x)) =1
(2) (x(x), " (x)) = k(x) - (x(x),n(x))
=k(x)-sin¢
= kg(x) = —3(g11)ys by (1)

Now we can use the arguments in the proof of Theorem 11-9. We have the
map f defined on [a,b] x {0} by f(x,0) = c(x), and we want to extend f to a
neighborhood of [a, b]x{0} in U. The submanifold [a, 5]x{0} isn’t necessarily of
the form expy(V1), but that is irrelevant, because we have already determined x
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satisfying (2), which are just the equations (2') on page 151. Moreover, y is
linearly independent of f, fxx on [a, b] x {0}, as required. Thus we can solve
equation (*) in the proof of Theorem 11-9 with the initial conditions f(x,0) =
c(x) and g(x,0) = x(x).

This argument requires that the original surface M and the curves é,¢ be
analytic, in order to apply the Cauchy-Kowalewski theorem. But analyticity is
not needed if M has curvature K < 0, for in this case the system involved is
hyperbolic, as we mentioned on page 154.

For other purposes, it 1s also important that we examine the classical treatment
of this problem, by means of the Darboux equation. We continue to use the
special coordinate system on U, with g1 = 0 and g2 = 1; and gi; = 1 along
[a,b] x {0}. We would like to find f = (u, v, w) by using the three components
of the equations

S (x,0) = c(x)

Sy (x,0) = x(x)
as the initial conditions for the solutions #, v, w of the Darboux equation. Un-
fortunately that simple procedure won’t work, since, as we have already seen,

there is not that much arbitrariness permitted in the choice of u, v, w. What

we have to do 1s first find a solution w of the Darboux equation with

(3) w(x,0) =c(x),  wy(x,0) = x*(x),

and then choose u and v so that we at least have

@ u(0,0)=c'(0),  ux(0,0)=¢c"(0),  uy(0,0)=x"(0)
v(0,0)=c*(0),  v.(0,0)=c¥(0),  v,(0,0) = x*(0),

and so that f = (u, v, w) is an isometry, and consequently satisfies

g = ([, fx) = ux Uy +Vx Uy + Wy Wy
O'_—(fxafy) =Ux Uy + Uy - Uy + Wy - Wy

(5) L= (fy, fy) =uy-uy+vy-vy+w,- wy

ﬂ (as in the proof of Theorem 11-9)

_%(gll)y = (faxs fy) = txx Uy + Vsx - Uy + Wy - Wy

We claim that # and v will automatically have the desired initial conditions on
[a,b] x {0}. To see this, consider the R?-valued functions

a(x) = (c"(x),c*(x))
B(x) = (x' (x), x*(x)).
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By substituting equations (3) into equations (2), we find that & and f sausfy

(1) (@, B) = —wy(x,0) - wx(x,0)
(iii) (o, B) = —2(g11)y — wy(X,0) - wyx(x,0),

while we also have
(V) (@e) =1 = w(x,0) - wy(x,0) = g11(x,0) — wy(x,0) - wy(x,0).

Simple arguments (Problem 1} show that the solution of the system of equations
(i)—(iv) is completely determined once «(0), B(0) are known. But equations (5)
show that

(ux(x,0), vx(x,0))
(uy(x,0),v,(x,0))

satisfy this system, while equations (4) insure that

a(0) = (ux(0,0),vx(0,0))
B(0) = (u,(0,0),v,(0,0)).

It follows that for all x € [a, b] we have

(V(x), ¥ (x)) = a(x) = (ux(x,0), vx(x,0))
= (c'(x),c*(x)) = (u(x,0), v(x,0)) by (4)
(1 (x), x2(x)) = B(x) = (uy(x,0),v,(x,0)).

Thus # and v will indeed have the initial conditions which we would like, and
f = (u,v,w) will be the required isometric imbedding.

We have already noted in the previous chapter that the Darboux equation is
hyperbolic when K < 0, so we do not need the Cauchy-Kowalewski theorem in
that case. In this case there is still one problem remaining, however, for in order
to solve the Darboux equations for w with the initial conditions (3), we need to
know that the interval [a, b] of the x-axis is free for these initial conditions. Here
is the place where the geometry links up beautifully with the analysis. To begin
with, suppose we have an isometric immersion f = (u,v,w): (U, (gi)) — R3,
and a curve y in U. Then w is a solution of the Darboux equation, and we
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would like to know when y is free for the initial conditions which we obtain by
restricting w to y. Recall that for the second order PDE

F(x,y,u,p,q,r,s,1) =0,

this means (c.f. (I-4) on page 84) that

oF
ar

IF IF
.(v1)2+$-v1v2+5'(v2)2#0 aty(1),

where (v, v?) is the normal to y at 7. Since (v, v?)is proportional to (=5, ),
this means that

B_F
ar

oF

(') — 25 N

oF
v+ o (v))? #0.
t
Consider the Darboux equation in the form () on page 143. Our condition
becomes

(6) (w22 — Thwy — TAHw2)(1y)? + 2(wiz — Thwy — Thw2)yy v,

+ (wir — Tlywy = THw) (1) #0,
which by equation (1) on page 143 becomes

0# N3[ha(yy)? + 2oy vy + a3
= N1, (v, ¥).

Thus the curve y is free for the initial conditions determined by w if and only if
the curve foy on f(U) is nowhere asymptotic, and the tangent plane for f(U)
is nowhere vertical along y. On the other hand, y is characteristic for these
initial conditions if and only if f o y is an asymptotic curve, except perhaps
at points where the tangent plane of f(U) is vertical. These conditions have
the paradoxical feature customarily associated with the Darboux equation: the
condition on a single component w of f is stated in terms of the whole map f.
When we are merely given initial conditions along a curve, rather than a solu-
tion, we simply write out equation (6) as stated. In the situation we are consid-
ering, our initial curve is just the interval [a, b] of the x-axis, so that y;" = | and
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¥,' =0, and we compute that in our special coordinate system on U we have

[11,2] = —3(g1)y
[12,1] =[21,1] = %(gll)y along the x-axis,
other [ij, k] =0

and then
r,=T0y = %(gll)y
Ty = —%(gll)y along the x-axis.
other F{‘j =0

Then equation (6) becomes
(6) wit+3guw2 #£0,  or () —&ex #0.

Now in our situation, x is not a multiple of ¢”. Simply by rotating everything,
we can then insure that (¢*)” —kg x* # 0 on [a, 5] x {0}. Thus we really can solve
the Darboux equation and obtain an isometry ¢: V > V with ¢poé = ¢ (suitably
rotated). Naturally we can then obtain a new 1sometry ¢’ with ¢’ o ¢ =c.

Things work out quite differently when we try to find an isometry ¢: Vv
with ¢ o¢ = ¢ in the case where kg(x) = «(x) for all x. If ¢ exists, then we must
have kg = kg = &, so ¢ must be an asymptotic curve on V, which means that V
must have K < 0 along ¢ so M must have K < 0 along ¢. We will actually
assume K < 0, so that the Darboux equations are hyperbolic. We first suppose
that k(x) > 0 for all x. Then the Beltrami-Enneper Theorem (Theorem 4-7)
shows that the torsion t of ¢ must satisfy

7(x) = v —K(c(x)) = vV - K(c(x)) .

Thus there is, up to Euclidean motions, only one possibility for ¢. If we are given
this curve ¢, and ¢: Vv exists, then Ve (x) must be the osculating plane of ¢
at x, so our choice for x(x) = f,(x,0) must be the principal normal n(x) of ¢
at x(x). In this situation we have ¢” = «kn = kx = kg, s0 equation (6') is
not true; our initial curve is characteristic for the initial conditions. Fortunately,
we have complete information about this situation, since we are dealing with
a Monge-Ampere equation. Along the x-axis our Darboux equation (from
page 143) is

[wit + (g1 wal - w2a — [wiz — Lg1)ywi P = K(1 — wi? — wy?).
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As we pointed out at the end of section 8 of Chapter 10, there is no hope of
solving for w;; along the x-axis unless we also have

(7) —[wi2 — %(gll)ywl]z = K(1 — w,? — wy?)

along the x-axis. Moreover, if this equation does hold, then we can choose wy,
arbitrarily, and there will be a solution with these initial conditions. We claim
that equation (7) holds as a consequence of our choice of c. For,

[the 3 denotes

[wi2 = 3(g1)yw)* = {0 +kc)’)? third component]

= {(—«kc’' + b+ kc')*}? by Serret-Frenet
= {(th)*}* = *(b’)?
= —K(b’)?,

so we just have to show that
()2 =1—w? —w’ =1-{()’}* — {n’}?.
This is elementary: we have
e3 = (e3,¢")c’ + (e3,n)n + (e3,b)b,
and when we take the inner product with e3 we get
L=} + '} + ),

as desired.

Thus, when ¢ is a curve with ¥k = &, and > = —K, we can find infinitely
marny isometries ¢ : V — V with ¢ 0 ¢ = ¢; all the surfaces V are tangent to
each other along ¢. In particular, if ¢ is an asymptotic curve on M, with K < 0
along ¢, then we can take ¢ to be ¢, and we see that a neighborhood of ¢ can
be continuously bent keeping ¢ fixed; all surfaces in the bending are tangent
to M along ¢. As opposed to this, if ¢ satisfies kg < k everywhere, then there is
only one other surface containing ¢ which is isometric to a neighborhood of ¢
in M, and it is nowhere tangent to M along ¢.

The case where k = kK = 0 (both ¢ and c¢ are straight lines) is similar, except
that now there is even complete leeway in the choice of the tangent space of V
along c.

The discovery that asymptotic lines of a surface are precisely the curves along
which the surface may be bent leads one to formulate all sorts of other questions.
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For example, when is there an isometry ¢p: M — M which takes both families
of asymptotic lines of M to asymptotic lines of M? It is easy to see that this
happens essentially only when ¢ is the restriction of a Euclidean motion. In fact,
if f:U — M is an imbedding for which the parameter lines are asymptotic
curves, so that / = n = 0, and we define f = ¢ o f, then also I =n=0. But
we have, in addition,

2

In—m?=1n—m* — m=+tm.

If we restrict our attention to surfaces with K < 0, then we must have m = m
or m = —m everywhere, and we can assume m = m by suitable choice of the
normal. Hence ¢ is the restriction of a Euclidean motion.

Since this question turned out to be rather uninteresting, we modify it by
investigating isometries ¢: M — M which take the asymptotic curves of only
one family of asymptotic lines on M to asymptotic lines on M. Choose an
orthonormal moving frame X, X> on M such that II(Xy, X;) = 0, so that the
integral curves of Xj are the given family of asymptotic curves. Then we have

v = mo*

l
v Y3 =mb' + nb?,

where 0 = [ = II(Xy, X1) and m = II(X7, X») and n = II(X3, X5). Let X1, X5
be the orthonormal moving frame X; = o« X; on A_l, and let barred_ forms
(e.g, ¥}) actually denote ¢* of the corresponding forms on M. Then 6 = 6*

and 6)21 = wé. Now [ = I_I(fl,fl) = 0 by the hypothesis that our family of
asymptotic curves is taken into asymptotic curves. Moreover,

[n—rnz:l__—n_’l2 - m=:tn_1,

again we consider only the case K < 0 everywhere, so we might as well assume

that m = m, by suitable choice of the normals. Then we have
Ui = mo?

@) 73 1, =n2
Yy, =mb +nb”.

In particular,
Ui =9 = dyi =dyy
= WAV} =0 Ay by Codazzi-Mainardi
= n—nwfrb*=0.
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Applying this to Xj, X, yields
(n —7) - w}(X;) = 0.

If n = i1 everywhere, then ¢ is a congruence. Assume that 7 — 7 is always # 0.
Then wlz(Xl) =0 = Vyx, X1 =0, so the integral curves of Xj are geodesics.
Since they are also asymptotic curves, they must be straight lines; similarly their
images, being both geodesics and asymptotic curves, are straight lines. In other
words, this case involves a ruled surface being warped in such a way that the
rulings remain straight.

[In general, it is easy to see that ruled surfaces can always be bent keeping
their generators straight. In fact, suppose that our ruled surface is

f(s,1) = c(s) + t8(s), 8l =1 = (§,8)=0.
Then

" +18, ¢ 18y = (¢, )+ 2(c", 8') + 128, §)
c',8)

E =
F={
G=1

Let § be any curve with

8l=1, 18'=18

In order for the surface

fs,1) = &(s) + 18(s)

to have the same metric as f, the curve ¢ must satisfy

'] = |c'|
(El,gl) (C/,(Sl)
(c',8) = (c, ),

which is always solvable for ¢’. The curve § can have essentially any shape. For
example, if 8" # 0 everywhere (the rulings are always changing), then we could
reparameterize so that |§| = 6’| = 1. Then all we require is 6] = 18| = 1, so
that § can trace out any regular curve in S2 ]

Here is one final classical problem about bendings. When does a surface M
have a bending @ : [0,1] x M — R such that each a(t)(M) ¢ M? One exam-
ple that immediately comes to mind is a surface of revolution. Obviously any
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surface isometric to a surface of revolution also has this property. (The question
really has almost nothing to do with surfaces n R3, and is essentially intrinsic.)
We will show that “in general” these are the only such surfaces. What we ac-
tually assume is that the various curves cp(f) = (1, p) give a foliation of M.
Since each @(¢) is an isometry, each curve ¢, has constant geodesic curvature,
for @(1y) o @(fo)~! is an isometry taking a neighborhood of ¢(fo) to a neighbor-
hood of ¢(t1). Now for any curve cp, consider its “geodesic parallels”, the set of

51(11)051(10%—»
)

the point on the geodesic intersecting ¢, orthogonally at p. Clearly «(t,9q) is on
the geodesic intersecting ¢, orthogonally at a(¢, p). Thus the geodesic parallels
of ¢, are the other curves ¢q. Note that the geodesics perpendicular to ¢, are
also perpendicular to ¢g (Problem 1.9-28). Now take a coordinate system u, v
such that the v-parameter curves lie along the curves ¢,, while the u-parameter
curves are the arclength parameterized geodesics perpendicular to all curves ¢,.
Then the metric has the form

du ® du + G dv ® dv.

A computation shows that the geodesic curvature of the v-parameter curve
through (u,0) is

lGu(u,v) __lalogG
2 G(u,v) 2 Ou

(u, v).

Ky (V) = —
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But «y(v) depends only on u. So log G is of the form a(u) + b(v), and thus G
is of the form

G(u,v) = A(u) - B(v).

Letting v; be a function with
v’ =+B,

our metric takes the form
du @ du + A(u) dvy ® dvy.

Comparing with formula (4) on pg. II1.158, we see that M is isometric to a
surface of revolution. It doesn’t seem worthwhile refining these purely local
considerations by trying to analyze in detail just what happens when some of
the curves ¢, degenerate to points, but it certainly would be nice if one could
prove that a compact surface M admitting a bending into itself is (globally)
isometric to a surface of revolution.

Just for the hell of it, we will also look at a couple of classical local results about
infinitesimal bendings. Let M C R3 be a surface, and let a: [0, 1] x M — R3 be
any variation of the inclusion map i : M — R? whose variation vector field Z at

¢t = 0 is an infinitesimal bending of M. Let X}, X, be an orthonormal moving
frame on M. Then

dt

by the argument on pages 171-172; since Z is an infinitesimal bending we thus
have

d
1 =
(0 yr
On each surface @(¢)(M) we can define an orthonormal moving frame X;(¢),
X2(#) by applying the Gram-Schmidt orthonormalization process to @(t)4 X,

(1)« X5. Let 0(¢) be @(t)* of the dual forms for this moving frame, so that
67 (0) = 67, the dual forms for Xi, Xs. Equation (1) 1s easily seen to imply that

(@(0)oXi, @ ()uXj) = (dZ(Xi), Xj) + (Xi, dZ(X}))
t=0

<&(l)*Xi’ &(l)*X']) =0.
t=0

@ 0=

7 0'(r) =6, say.

t=0

For each ¢ we have unique forms w]’: (¢) with
wl(t) = —w] (t)

(3) . 2 .
do'(t) = = wi() A6 ().

i=1
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Letting t = 0, we see that w]’: (r) = w]’:, the connection forms for X1, X5. Now
differentiate (3) with respect to . Since (Problem 2) we always have

(dn) =dp

for any 1-parameter family of forms 7(t), we obtain, using (2),

i ]
w; = —w;

2 2
0=df' = (do')y =—) i nt/ = > o) A6
j=I1 j=1

2
_ 3 J
= ijw .
j=I

It follows that @) = 0. Now we differentiate the equation
dw(t) = K(1) 0" (t) A 6%(2),

to obtain '
0=do) = (doy) = K6' A6 + 0.

Thus we see that we always have
K=o

It now seems a natural enough question to ask when we have H = 0. The
answer to this question is left to Problem 4.

Another question, especially interesting in view of Lemma 6, 1s to find those
surfaces M which possess an infinitesimal bending Z that is everywhere tangent
to M. Once again, surfaces of rotation are obvious examples. Moreover, one
can easily show that if Z is an infinitesimal bending of M which is tangent
to M, and f: M — M is an isometry, then Z = f,Z is an infinitesimal
bending of M.

Again we can show that “in general” these are the only such surfaces. Givena
nowhere 0 infinitesimal bending Z tangent along M, we choose an immersion
f: U — M such that the v-parameter curves lie along the integral curves
of Z, and the u-parameter curves along the curves perpendicular to them.

Then Iy = f*( . ) has the form

Iszdu®du+de®dv.
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By assumption, Z is always proportional to d//9v, and it will be convenient to

write Z as A oS A\
Z=———=—/.
Jow VG

Then the equations

0=(Z1, i) =(Z2, f2), 0=(Zy, 2) +(Z2, f1)

(%)
E o R, G/
v ’ v v
From the first we see that we can alter the immersion f so that £ = 1 ev-
erywhere. From the third we see that we can likewise arrange that A = VG
everywhere. Then our metric has the form

lead to

=0.

du ® du + A(u)* dv ® dv,

as desired.

Most of these local results are rather unsatisfying, since they usually require
some subsidiary conditions of the same nature as those used in the classical clas-
sification of flat surfaces. But there are certain questions where local results are
precisely what we should be interested in. We have already seen (pages 209-210)
that there are isometric compact surfaces in R® which cannot be connected by
a bending. But it seems likely that isometric surfaces can locally be connected
by a bending. Actually, the argument on page 210 shows that even this is false,
since a surface of positive curvature can never be bent into its mirror image. So
we should instead conjecture that given any two isometric surfaces, the first can
locally be connected by a bending to the second or else to its mirror image.

To investigate this question, we consider once again the Darboux equation.
From the considerations on pages 143-146 we see that the immersions f =
(u,v,w): U — R3 defined in a neighborhood of 0 € R? such that

) If=FEdx®dx+ Fldx®dy+dy®dx]+ Gdy ®dy
(1) w(0) = w1(0) = w2(0) =0
(i) u(0) =v(0) =0
() u1(0) =0, u2(0)>0, vi(0)>0
are in one-one correspondence with the solutions w of the Darboux equation

which satisfy (if). Writing the Darboux equation as on page 146 [equation (6)],
we see that the following holds:
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(¥) Let E, F, G be the components of a metric in a neighborhood of 0 € R2,
and let p, o be two functions in a neighborhood of 0 € R with

p0) = p'(0) =0(0) =0
p"(0) # 0.
Assume E, F,G and p,o are analytic, unless the curvature K satisfies

K(0) < 0. Then there is a unique immersion f = (u,v, w) defined in a
neighborhood of 0 € R? such that (i)—(iv) hold, and for which

w(x,0) = p(x), wy(x,0) = o(x).

From this observation it is but a short step to

18. LEMMA. Let ¢: M — M be an isometry between two surfaces M, M c
R3 and let X € M), be a vector such that II(X,, X)) and I_I(¢*Xp,¢*Xp) are
either both positive or both negative. Assume that M and M are analytic
surfaces, unless K(p) < 0. Then there is a neighborhood U of p and a bending
a: [0,1] x U — R* with @(0) = identity and (1) = ¢.

PROOF, Choose immersions f = (u,v,w) and f = (@, v,w) taking a neigh-

borhood of 0 € R? into M and M, respectively, with f(0) = p and f0) =
¢ (p). Without loss of generality we can assume that both f and f sausfy the
conditions (ii)—(iv) above, and that X, = f4((1,0)) and ¢« X, = £((1,0)). Let
Ir = Ij: have components E, F,G. For 0 <t < 1, let

pi(x) = (1 = Hw(x,0) + rw(x,0)

o (x) = (1 — Hwa(x,0) + 1w (x,0).
Then (11) gives
Y p:(0) = p,'(0) = 0,(0) = 0.
If /,m,n and I,m,n are the coefficients of Iy and IIj:, then by assumption
II(Xp, Xp) = 1(0,0) and ﬁ(¢*Xp,¢*Xp) = [(0,0) have the same sign. Now

n
1(0,0) = . det{ fi at (0,0) [formula (A) of Chapter 3]
EG — F? 5

1 Uil v wi
= _2 ~det | u; V1 w1 at (0’ 0)
vVEG - F Uy vy W
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= ;(0, 0) - w11(0,0) - u2(0,0) - v1(0,0) by (ii) and (iv),

vVEG — F?

and similarly for (0,0). Using (iv), we see that w;;(0) has the same sign as
[(0,0), and similarly for w1(0); so wy1(0) and w11(0) have the same sign. It
follows that

(2) Pt” (O) # 0.

By (), there are unique immersions f; = (uy, v, w,) defined in a neighborhood
of 0 € R? such that (i)~(iv) hold, and for which

we (x,0) = o (x), (wr)2(x,0) = 0r(x).

The uniqueness implies that fo = f and f; = f.
The only details which need to be checked are that all f; can be defined in a
common neighborhood of 0 € R?, and that the f; vary smoothly with ¢. This

unrewarding task is left to the reader. +

19. THEOREM (E. E. LEVI). Let ¢: M — M be an isometry between two
surfaces M, M C R?, and suppose that p € M and ¢(p) € M are not planar
points. Assume that M and M are analytic surfaces, unless K(p) < 0. Then
there is a neighborhood U of p and a bending a: [0,1] x U — R3 with @(0) =
identity and either @(1) = ¢ or (1) = R o ¢, where R is a reflection.

PROOF. Since p and ¢(p) are not planar points, there are at most 2 asymptotic
directions at these points, and thus certainly a tangent vector X' € M), such that
II(X, X) and I_I(¢>*X, ¢+ X ) are both non-zero. If they have the same sign we
apply Lemma 18; if they have opposite signs we apply Lemma 18 to M and
R(A_l) <

We know that the reflection R has to be allowed if K(p) > 0. It turns out
that R is unnecessary if K(p) < 0. We begin with a preliminary result.

20. LEMMA. Let E, F, G be the components of a metric in a neighborhood of
0 € R?, and v € R?%) a given tangent vector. Assume that E, F, G are analytic,
unless K < 0. Then there is an immersion f = (u,v, w) in a neighborhood
of 0 such that I has components E, F, G, and f,(v) is not an asymptotic vector
on the image of f.



230 Chapter 12

PROOF. Without loss of generality, we can assume that v = (1,0). Then choose
any two functions p, o satisfying

p(0) = p'(0) =0(0) =0
p"(0) #0,

and consider the immersion f determined by (¥), with

u2(0) > 0, v1(0) >0
w(x,0) = p(x) = wni(0,0) = p"(0).

The calculation in the proof of Lemma 18 shows that

[(0,0) = (0,0) - wy1(0,0) - u2(0,0) - v1(0,0) # 0.

1
VEG — F?

This means that f,(v) is not an asymptotic vector. ¢

21. THEOREM (E.E. LEVI). Let¢: M — M be an isometry between two
surfaces M, M C R3, and suppose that K(p) < 0. Then there 1s a neighbor-
hood U of p and a bending a: [0,1] x U — R3 with @(0) = identity and
a(l) = ¢.

PROOF. We just have to show that a neighborhood of p in M can be bent
into its mirror image R(M). Let X € M), be an asymptotic vector. Then there
are vectors Y arbitrarily close to X in M with II(Y,Y) > 0, as well as vectors
arbitrarily close to X with II(Y,Y) < 0. Lemma 20 says that there is (locally)
an 1sometry v M — M c R? such that ¥4(X) is not an asymptotic vector
on M. We can assume, by composing M with a reflection if necessary, that
H(l//*X ¥+X) > 0. Then the same inequality holds for all tangent vectors of
\/[1,,(1,) in some sector containing ¥xX. So we can choose Y € Mp, with

II(Ya Y) > 05 II(‘/I*Ya W*Y) > 05

and it follows from Theorem 19 that there is a bending of a neighborhood of p
in M onto a neighborhood of ¥(p) in M. But we can also choose ¥ € M,
with _

II(Y,Y) <0, (.Y, ¥.Y) > 0,
and then it follows that there is a bendmg of a neighborhood of R(p) in R(M)

onto a nelghborhood of ¥(p) in M. Consequently, there is a bending of a
neighborhood of p in M onto a neighborhood of R(p)in R(M). %
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This little proof; clever as it s, certainly doesn’t give any idea of what is going
on geometrically. E. E. Levi supplied a geometric description of the bending in
the special case of a surface M of constant negative curvature whose asymptotic
directions are perpendicular at p € M. Rotation through an angle of /2

Ya\

around the normal at p takes M into its reflection R through the tangent plane
at p. But the isometry M — R(M) thus obtained is not the same as RIM. To
modify this, we consider the series of isometries obtained as follows. At time t
we first perform a rotation 4, through an angle ¢ around the normal, and then
compose A¢|M with a map B;: A;(M) — A,(M) of the surface of constant
curvature A;(M) onto itself which rotates the tangent space M, back by an
angle of —t. For t = 7/2 we obtain the map R|M.

These results of E. E. Levi [1] were proved nearly 30 years after A. Voss had
first explicitly pointed out that a distinction ought to be made between warpings
and bendings. Levi’s results were regarded as demonstrations that these distine-
tions really did not exist (at least locally). Of course, Theorem 19 does have the
added hypothesis that p and ¢(p) are not planar points; in E. E. Levi’s original
theorem, there was the stronger requirement that K(p) # 0. Such require-
ments were regarded, if they were regarded at all, as merely technical details.
Remarkably enough, H. Schilt [1] discovered that Theorem 19 is actually false if
the point p is a flat point, even if all points in a neighborhood of p have K < 0.
We will outline the arguments here, but for some of the details the reader is
referred to Schilt’s paper, which is very clearly written and easy to follow.

Consider a surface M which is the graph of a function 4: R? — R with
0 = h(0) = h1(0) = h3(0). If the curvature K(0) < 0, then M looks like a
“saddle”, as we saw in Chapter 2. But if K(0) = 0, and K < 0 in a deleted
neighborhood of 0, then it can be shown that M looks like a “generalized
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monkey saddle”: inside a sufficiently small circle C around 0, the zero set of h

h>0lh<0

>

h>0lh<0

consists of an even number 2X of curves starting at 0 and ending at C, with no
points in common except 0; the sign of 4 on the sectors between these curves

/C

is constant and changes as we go from one sector to another. The number
s = A — 1 is called the order of the saddle point at 0. An ordinary saddle point,
where K(0) < 0, has order 1, while the monkey saddle has order 2. The graph
of h(x,y) = Re(x + iy)**! has order s.

The order of a saddle point can be described in another way, by considering
a closed curve in M going once around p in the positively oriented sense. It
turns out that the image of this curve under the normal map goes s times
around the normal at p, but in the negatively oriented sense. The following
picture illustrates this for the monkey saddle.
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Finally, the order of a saddle point may be described in yet a third way. In
the region where K < 0, the principal curvatures &y, k, are of different signs,
say k1 > 0 > k. So we can pick out the l-dimensional distribution of all
muluples of the principal directions corresponding to the principal curvature kj,
say. Notice that if Xj, € M), is a principal direction with principal curvature kj,
and X, is a perpendicular vector with (X, »> Xp) positively oriented, then there
is just one unit asymptotic vector Y, in the quadrant of M, bounded by X,
and X,. Morcover, if we start with — X, instead of X),, then we just end up

S XP‘Y Py S P
s Py’ X
e P XP S P
e t—
PR S 1~
~&p i IR
-7 S - "’Yp L S
- 9

with —Y,. Thus we can also pick out a 1-dimensional distribution consisting of
all multiples of an asymptotic vector at each point.

Another way of stating these facts is the following: the principal curves and
the asymptotic curves can each be separated into two distinct families in the
region where K < 0* The following picture shows the projections on the
(x, y)-plane of the two families of asymptotic lines (one indicated by solid lines,
the other by dotted lines) for the ordinary monkey saddle.

*Schilt [1] tries to do this for the asymptotic curves by looking at the signs of their
torsions, which have to be different by the Beltrami-Enneper theorem. But this doesn’t
work at points where the torsions don’t exist.
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Now one can define the index of any one of these distributions (Addendum 2
to Chapter 4); this index i is a half-integer, and is clearly the same for both
families. It is related to the order s of the saddle by

(%) s=1-2i

For example, the monkey saddle, with s = 2, has i = —1/2 (compare the above
picture with the one on pg II1.219). On the other hand, if 0 is a parabolic
point, then the asymptotic curves have no singularty at 0, so i = 0 and s = 1,
just as in the case of an ordinary saddle point.

Proving (%) is not completely straightforward, but the relation is very impor-
tant, for it leads immediately to the result that s is a bending invariant: given a
bending «: [0,1] x M — R3 of the inclusion map of M into R?, each surface
@(t)(M) has a saddle at «(z,0), and for all ¢ the order of this saddle 1s 5. For the
proof one merely observes that the principal curves or asymptotic curves vary
continuously, and therefore always have the same index.

One might think that this result is hardly worth mentioning, on the grounds
that s should actually be a warping invariant: any surface isometric to M also
ought to have a saddle of order 5. But this is not true! For suppose that M
is an analytic surface with a saddle of order s > 1. By Lemma 20, there is a
surface M isometric to M such that the point corresponding to p is a parabolic
point. Thus the saddle order at this point is 5 = 1. Consequently, there is no
bending from M to M; indeed, no neighborhood of the saddle point on M can
be bent onto its isometric image in M!

These examples of isometric surfaces which are not even locally connected by
a bending all have K < 0 in a neighborhood of the point with K = 0. But Hopf
and Schilt [1] show that, for certain classes of surfaces, the order of contact of the
graph of & with the (x, y)-plane is also a bending invariant, but not a warping
invariant. This allows them to give examples of the same phenomenon, but for
surfaces with K = 0 at one point and K > 0 in a neighborhood of the point.
They are also able to show that Theorem 21 fails 1f K(p) =0,evenif K <0
for all other points in a neighborhood of p.

It should be mentioned that the present proofs of Theorems 19 and 21 (which
slightly strengthen E. E. Levi’s original result) are due to Schilt, who also ob-
served that the above analysis of the Darboux equation can be used to prove the
following: If p € M is not a planar point, then [assuming M is analytic, unless
K(p) < 0] some neighborhood of p has a non-trivial bending. Actually, this
result holds without assumptions of analyticity when K(p) > 0, although the
proof is much harder; in fact, this comes out of the proof that a convex surface
with a disc deleted is bendable (see Hellwig [1]). However, the case K(p) =0
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is unresolved. There is a startling result of Efimov along these lines (see Efi-
mov {1}, Chapter IX, and Hoesli [1]): There exist infinitely many examples of
analytc surfaces containing a point p such that no neighborhood of p has any
non-trivial analytic bendings; in fact, any smooth bending of this neighborhood
into analytic surfaces is trivial. A specific example is {(x, y,z) : z = (x2 + »?)5}
with p = 0 € R®. Whether there are examples where no neighborhood has
any non-trivial bendings into C°° surfaces is unknown, and certainly a highly
intriguing question. As far as I can tell, it is not even known whether every C*
surface 1s locally warpable.

With these considerations we finally end our investigation of rigidity for sur-
faces in R3. So far we have said absolutely nothing about surfaces in S* or H?,
Recollection of Chapter 7F might make even the stoutest hearts quail at this
prospect, but fortunately there is an incredibly neat trick, due to Pogorelov {3},
which reduces almost all such questions to the case of surfaces in R3. Since
Pogorelov’s book 1s written more 1n the style of the Russian school, and includes
many results specifically tailored for such a study, we will give a treatment of
the main points totally from the C* point of view.

In Chapter 7A we considered the central projection ¢: S"t — R”, from the
open northern hemisphere S”* of S” onto R”. It is easily computed that

¢’(X)=(x1 x,,) for x € S"T.

Xn+1 T Xn+1
Let x = (0,...,0,1) be the north pole of S". Then ¢ can also be described by
— x.%) %

x
P(x) = X, %)

Now let fi, fo: M — S" be two maps of a Riemannian manifold M into S".
Define f;: M — R” (actually, into R” x {0}) by

J1(p) — (/i(p), %) - *
(filp) + fa(p) )

and define f, similarly (this formula makes sense so long as f; + f» is never
perpendicular to %, which happens, in particular, if f; and f; both go into
S,

e R" x {0} c R"!.

(%) fitp) =

22. PROPOSITION. The two maps fi, f: M — S* induce the same (pos-
sibly degenerate) metric on M if and only if the two maps fi, fa: M — R”
induce the same metric on M.
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PROOF. For the R"-valued form df; we compute from equation () that

) (fi + S0 dfi = (fi + o, 9]dfi — (dfi, %) - ¥]
—{dfi + dfa, ¥ - Lfi = (i) A

[This equation means that

2 (fi(p) + folp), B dfi(X)
= (/i(p) + f2(p). WA/ (X) — (dfi(X), %) - 4]
—(dAi(X) + dfa(X), %) - [fi(p) = (/i(p), %) - *]

for all X € Mp.]
Since (fi, fi) =1 = {(dfi, /i) =0, we have

i+ o0t 1P = U+ 021 = (df %)
+ 201 + faxMdfy 4 dfa, %) (i, 8 df *)
+(dfy +dfa, %21 = (fi,%)?]
= (fi + Lo, 2 2df )+ (dfi + dfz, %) ,
— [{fi + S ) dfi, %) — (dfy + dfa, 0 fi, 9]
= (fi + fo. AP+ (dfi + dfa, %)
— [ f2, ¥)(dfi, %) — (df2, %) {1, %)%,

which is symmetric in f; and f3 if and only if |dfi|? = |df2]?. &

Remark: Even if fi and f5 are immersions, the maps fi and f> need not be.
However, if * is not a linear combination of fi(p) and any vector df;(X) for
X € My, then the vectors df;(x) — (dfi(X),*)* and fi(p) — {fi1(p),*)* in (2)
are linearly independent, so dfi(X)#0forall X e Mp, and f1 is an immersion
at p.

Suppose we have two maps fi, f2: M — R" C R"*!1. We define fii: M >
S” by
2/i(p) + (= 1AW+ 1)) - *
2A(p) + (= 1A+ 1201 - *

and we define fo: M — S” similarly. It is easy to compute that if we begin
with two maps fi, f2: M — S”, form fi, f: M — R” as before, and then

~

fitp) =

apply the present construction to fi, f2, obtaining fi, f: M — S", then

fclzfl’ f:2=f2'
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Similarly, if we start with f}, fa: M — R”, then

A=f  h=h

Hence

23. COROLLARY. The two maps f;, f>: M — R” induce the same metric

on M if and only if the two maps f1, f2 M — S™ induce the same metric
on M.

On the other hand, our new constructions also preserve the notion of con-
gruence.

24. PROPOSITION. Let 4 be an orthogonal map of R+ 5o that 4: " —
S" is an isometry, and let fi, fa: M — S™ be maps with f; = Ao f;. Sup-

pose that we can define f, f5: M — R". Then there is a Euclidean motion
A: R" > R” such that fr= Ao fi.
PROOF. We just have to show that

1A1(p) = fil@? =1 /(p) — fr(@))?

for all p,q € M. For any x with x + Ax not perpendicular to *, let x* ¢ R"*!
be a multiple of x such that

0 (x* + Axt %) = 1.

Then
Si(p) = {fi(p), *)*

(filp) + A(fi1(p)), *)
and similarly for fi(q), f2(p), /2(q). Set z = fi(p)* — fi(g)". Then

1/1(P) = A@1P =1z = (z,%) - %> = |22 = (z, %)?
|2(p) = 22(@)1? = |4z — (Az, %) - %[ = |Az|? — (Az, %)2.

filp) = = fi(p) = (fi(p)!, %) - *

But |Az| = |z|, while

(z+Az,%) = (i(p*+ AL () — [/i@)' + Afi(@P, %) =0, by ()
— (Z,*) = (Az,*) . %
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25. PROPOSITION. Let B: R” — R” be an isometry, and let fi, f2: M —
R” be maps with f = Bo fi. Then there is an isometry 4: §" — S” such

that f; =4o ﬁ
PROOF. Define py, p2: R* — S" by

2y + (=[P 4Byl - *
p1(y) =

|[numerator|

2y + (=[P + 1By -+
- |[numerator|

p2(y)

’

so that A A
Sfi=piofi, fa=p20o f2.

It is clear that p; and p; are continuous. We claim that p; and p2 are one-one.
Suppose instead that y # z € R”, but p1(y) = p1(2). Clearly y and z must be
lincarly dependent, so there is a unit vector v € R” with y = Av and z = pv.
Then p1(y) = p1(2) implies that

2A _ 2u
|numerator for p1(y)|  |numerator for p;(z)|
-2+ (ByP 1 p4 B
[numerator for pi(y)]  |numerator for p;(z)|’
and hence
n 1-A2+|By? 1—p*+|Bz
A B n '

Let B = Ty o C, where C is a rotation, and Ty, is translation by a vector w.
Then

|By|> = |C(hv) + w|? = A2 + 2(C(hv), w) + |w|?
|Bz|? = u? + 2(C(uv), w) + |w|*.

So (1) becomes

1 2 1 2
+x|w| +2(C(v), w) = L1

+ 2(C(v), w).

Hence A = 4 = y = z. Similarly, p, 1s one-one.
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Since p; and p, are continuous one-one maps between manifolds of the same
dimension, their images are open, by Invariance of Domain (Theorem 1.1-1).
So we can consider the map p; o B o p;7!, defined on some open set in S”,
We claim that this map preserves distances on §”, and is thus the restriction of
some isometry A. Since

A

f;=p2°f2=P2°B°ﬁ=P2°BOP1_1°P1°f1=P2°BOP1_1°f1,

this will prove the Theorem.
It suffices to show that

lp1(¥) = p1(2)1> = |p2(By) — p2(B2)%,

since the distance between two points in S is determined by their Euclidean
distance. Clearly, we just have to show that for all y and z we have

(p1(¥), p1(2)) = (p2(BYy), p2(Bz)).

If
a(y)=2y+(1—Iyl*+|By|» -
b(y) =2By + (1 — |By|* + |y[*) - %,
then o) b(y)
a\y Y
= — By)= ——.
p1(y) 2] p2(By) e
So it suffices to show that for all y,z € R" we have
(2) (a(y),a(z)) = (b(y),b(z)).
Now

3 { @(¥),a() =4(y,2) + (1 — |12 + 1By)(1 — |z]2 + | Bz|?)
(b(y),b(2)) = 4By, Bz) + (1 — |By|* + [y)(1 — | Bz|? + |z]%).

Writing B = T, o C as before, we have
|ByI? = |y + 2(Cy, w) + |w]?

1Bz = |2* + 2(Cz, w) + w2,

and
(By, Bz) = (y,2) + (Cy + Cz,w) + |w|>.

Substituting into (3), we obtain (2).
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The hardest problem is to show that our construction preserves convexity.
This holds only in certain circumstances, which requires a preliminary remark.
We say that a hypersurface M C S n+ is star-shaped with respect to * if each
geodesic ray starting from *, and contained in S™*, intersects M exactly once.
Clearly M has a natural orientation, just as in the case of hypersurfaces M C R”
that are star-shaped with respect to 0. Our results will hold only for imbeddings
fi, fr: M — S"* or R" whose images are star-shaped with respect to * or 0;
moreover, for some orientation on M, the induced orientations on fj(M) and
f2(M) must be the natural ones.

Before giving the precise results, we consider one more preliminary. Let y
be an arclength parameterized curve in $”. Then the Frenet equations for S”

e

comis) = 22— 1)
N
=y"(s) — (¥"(5), ¥(s)) - ¥ (s).
But
) =1 = (¥,y)=0 = (¢, »)=—("y)=-1
So we have
Y (s) = k(s)n(s) — y(s).
Hence
/’12
(%) yis+h) =y(s) +hy'(s) + 7)/”(S) + o(h?)

h? h?
= (1 — 7) y(s) + ht(s) + 7K(s)n(s) + o(h?).

96. PROPOSITION. Let M be an oriented (n — 1)-manifold, and let fi, f2:
M — S™ be two imbeddings such that fi(M) and f2(M) are convex and
star-shaped with respect to *, and such that f; and /2 induce the same metric
on M, and the natural orientations on f1(M) and f2(M). Suppose, moreover,
that the second fundamental forms of f;(M) and f2(M) are positive semi-
definite. Then the same is true for the second fundamental forms of f_l(M )
and f2(M) in R". (Note that under the given hypotheses, fi and f; will be
immersions, by the Remark after Proposition 22.)

PROOF. Let ¢ be an arclength parameterized curve in M (with the metric
induced by f or f2). Apply (¥) to the arclength parameterized curve y = fioc¢
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in S”, letting t; and n; be its tangent and normal, and &, its curvature. We
obtain

h? h?
Siles +h)) = (1 - 7) Sile(s)) + hti(s) + Frs)mls) + o(h?)

h2 hZ 2
={1- 5 )x+ hty + S +o(h°) for short,

and similarly

2 2

h h
fale(s +h)) = (1 - 7) S2(c(s)) + hta(s) + 7K2(S)n2(s) +o(h?)

h? h? »
={1- 5 x3 + hty + 7K2n2 + o(h*) for short.

So

file(s + h))

_ (l - %))ﬂ +hty + Bicymy + o(h?) ~ <(1 - E))ﬁ +hty + Zicimy +0(h2),*>*

—
—
~—

(1= %) i+ x2) + At + 1) + B amy + am) + 0(h2), +)
Writing this as
a_%a_i_hA a=<X]+X2,*),

and noting that

v=Bvrrv iy BV - Av)

a—%a—i—hA “+hA_(a+ a+hA)(a+hA)’

we see that (1) can be written

@ file(s +h) =

h? h?
Xy + Aty + —xymy —{x; + At] + —K 0, * ) *
2 2
pE + O(h’)
<X1 +x2+ At +t2) + 7(/(1!11 +/<2n2),*>

where O(h%) denotes a function such that O(h%)/h® is bounded as & — 0.
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Expanding equation (2) out up to terms of order A2, we find that

3) filets +h) — file(s))
h

= m {—(tl +t2, *).f-l(c(s)) +t1 —_ (tl,*)*}

R (t; + ta, %)
(xl + X2, *)2
h?

+ [ —
2{x1 + X2, %)
+ 0.

[t + 62,9 () =t + (1, 0%]

{—(Klnl + Kcamg, %) fi(c(s)) + kinp — (Klnla*)*}

Let N; be the unit normal of fi(M) at fi(c(s)). Clearly

<ﬁwu+h»—ﬁwm» —>:0

lim

, N
h—0 h !

So equation (3) implies that
@ (~th + 2,9 file(s) + t = thn), Bi) =0

Using (4), and the fact that (N1, %) = 0 (since f1(M) lies in R” x {0}), equation (3)
now gives

() (file(s +h) = file(s)), Ny)

L
C2(n +x2,*)< {mg, % fl(C(S))—i-nl, N1>

Kah?
BT M fi(e(s)), Ni) + Oh?).

Since Taylor’s Theorem shows that the second derivative o of a function « 1s
given by
a(\ +h) +alx —h) — 2a(r)

¢ (\’) - h—>0 h

equation (5) implies that

(Ur 006,71 = oty [ et +m, )

(X1 4+ x2, %
K2

—GTIZTSM’)ﬁ@U»NQ
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The term on the left 1s the second fundamental form of fl(M ) applied to
((f1 o) (s), (f1 o¢)'(s)). So it suffices to show that it is always > 0. Since

K K
! >0 and ;>0

(X1 + x2,%) (X1 + x2,%) —

1t suffices to show that
6 (i) +n, B)>0  and  —(m{Ale(s), M) >0

We can also assume that N is the normal to the tangent plane of fi(M) at
f1(c(s)), since we can choose ¢ so that fi o ¢ is a normal section of fj(M).
Equation (6) is then proved in the following Lemma, whose statement introduces
some more convenient notation.

27. LEMMA. Let P and Q be the tangent planes_of S1i{M) and f5(M) at the
points ag = fi(p) and by = f2(p), and let ¢o = f1(p). Let a, and b, be the

unit normals to P and Q at ag and by, and let ¢, be the unit normal to the
tangent plane of fi(M) at ¢g. Then

(_(an, *)Co + an, C,,) >0 and — (bn, ) - (o, cn) > 0.

PROOF. Choose positively oriented unit orthonormal vectors ay, . ..,a,—; at
the point ag in P, let by, ...,b,_; be the corresponding vectors at by in Q, and

let ¢, ..., ca—1 be the corresponding vectors at ¢g in the tangent plane of f(M)
at ¢g. Then for some C > 0 we have

(7) an=1a0x - Xan-1, bp=bogx-- - Xbp_t, Cn=C-%kXC1 XX Cpi.

Apply the formula for dfy, in the proof of Proposition 22, to the tangent vec-
tor X; in My such that df (X;) = a;. This gives, in the present notation,

(@0 + bo, *)2¢; = (a0 + bo, ¥)[a; — (a1, *)%] — (a; + bi, x)[ao — (a0, ¥)*],

and thus

1
(8) c,-=)\—02()\0a,-—)\,-a0)+(---)* i=1,...,n—1,

(9) k,-:(a,-+b,-,*) i1 =0,...,n—1.
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Note also that ¢ is given by
(10) co=— + ()%

From (7) and (8) we obtain
) cp=C-xxXC1 X+ X Cpi

= gy % X (hoat = hi0) X - X (hon-1 = An160)
0

C
=A—n{ko(*xa1 X ooo X Apey) — Ak X @g X az X --+ X Ap—1)
0
— e —Ap_ik xap X - X ap-2 xao)}.
Consider first the quantity

_(bna*) . (C(), cn)-

First of all, we have

(12) (*abn) = (%, by x -+ X bn_1) by (7)
bo
= det :
n—1
*
Also,
(13) (co, Cn) = <i—z + ()%, c,,> by (10)
C
=A—()7(ao,*xa1x"'xa,,_1) by (11)
ap
=—Ta det
0 an—1
*

Since f; and f» induce the natural orientations on fi(M) and f2(M), the
determinants in (12) and (13) are both positive. Hence we do indeed have

—{bpn, *) - {co,cn) > 0.
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Now consider

{(—(an, *)co + ap, ca).
First of all, we have

ag 2
C :
(14) —(an, *) - {co,cn) = — | det | - by (7) and (13).
)\0" Ap—1
%
Also,
(cn,an)=g,;{ko(*xa1X---Xan-l,aoX--~><an-1)
_kl(*anX"'Xan—laaOX"'Xan—l)—"'
—An_l(*xalx-uxao,aox--.xa,,_l)} by (11).

Using the formula (Problem 5)

(U X o+ X Uy, Wy X --- X Wp) = det((vi,wj)),
we obtain

C
(cn,an) = A—M{ko(*,ao) + A ar) + -+ Api(x,a-1) )
Substituting in from (8) yields

C n—1

(ensan) = 1= Y lai, )+ (@i, #) by, %)
i=0
C n—1
> ) @i, %) — (b, %)%
2ho" 1=
Since
n n
D lanx ) =1= (b, %2,
i=0 i=0
we get
C
(15) (Cnsan) > ﬁ((*abn) — (*,an) )
bo 2 ap 2
C : :
= m det : — | det :
2h0 bn_1 An—1
%
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From (14) and (15) we get

bo 2 ao
(—(a,,,*)co + a,, c,,) > —C— det E + | det E >0, &
T 2A0" bn-1 an—1
* *

There is a result analogous to Proposition 26 when we begin with imbeddings
into R” and construct the imbeddings into $”, but we will not need it. It is
probably already clear how the results which we have just proved can be used
to transfer theorems from Euclidean space to the sphere. For example, keeping
to dimension 3, which is the really interesting one, suppose we have two compact
convex surfaces M, M C S? (each contained in some open hemisphere), and
an isometry «: M — M. We claim that o is the restriction of an isometry
A: §3 — S? Without loss of generality, we can assume that M and M are
contained in St and are star-shaped with respect to *. Let fi: M — Snt
be the inclusion map, and let f: M — S™* be @ o fi; then f; and /> induce
the same metric on M. We can also assume that M is oriented so that fi
and f> induce the natural orientation on M and M, by composing f> with a
reflection if necessary. Then fi, f2 M — R? induce the same metric on M,
by Proposition 22, and fi(M) and f(M) have K > 0 by Proposition 26. So
by Theorem 12, there is an isometry B: R® — R* with f» = Bo fi. Then
Proposition 25 shows that there is an isometry 4: § 3 — S3 with

f2=f_2=AOf_1=A°f1,
which shows that
ao fi=Ao fi = aisthe restricition of 4 to fi(M) =M.

Pogorelov states that essentially the same formulas can be used to transfer
rigidity problems from hyperbolic space to Euclidean space, and he shows how
problems of infinitesimal rigidity can also be transferred in this way.

We also want to add a few remarks, of a different sort, about hypersurfaces of
S+ and H"*!'. The proof of Theorem I carries over almost without change
to this situation, so hypersurfaces of S"*! or H"*! are rigid if their type num-
ber (the rank of X, +> V'x,v)is > 3 at each point p. The hypersurfaces of
S+ and H™! with type number 2 at all points were studied by Dolbeault-
Lemoine [1]. She divides them into the same three classes that E. Cartan found



Rigidity 247

for hypersurfaces of R"*!, but it turns out that all hypersurfaces in one of the
classes are rigid in S"*! and H"*! for any n > 3, while the hypersurfaces of
the other two classes are rigid in S"*! and H"*! for any n > 4. Moreover, the
hypersurfaces with type number 1 at all points are also rigid in $"*! and H"*!
for any n > 4. This leads her to conclude that for n > 4, all hypersurfaces
of S"*! and H"*! are rigid. Unfortunately, this does not follow directly from
the preceding results, for it is conceivable that two hypersurfaces from differ-
ent classes can be joined together in two isometric, but non-congruent, ways;
whether this is actually possible is a question which still has to be cleared up.

The only subject left for us to consider at this point is the rigidity of subman-
ifolds of higher codimenson. There are two main results in this direction, a
classical local one, and a modern global one.

The classical result involves the notion of the type number of a submani-
fold M" C R™ of arbitrary codimension. First an algebraic definition. Let V
be a vector space, and let T1,...,Tx: V — V be linearly independent linear
transformations. We define the type number of {T},..., T} to be the largest
integer ¢ for which there are ¢ vectors vi,...,v; € V such that the k¢ vectors

T, (vi) 1<i<t 1=<r<k

are linearly independent. The type number of linearly independent matrices
S1s. .., Sk is defined as that of the corresponding linear transformations. Now
for a point p € M" C R™ we let k(p) be the rank of the map § +— A
from M,» into the space of all symmetric maps of M, into itself (recall that
Ag: Mp — M, is defined by (4g(X),Y) = (s(X,Y),§)). Equivalently, k(p)
is the dimension of the first normal space at p, which may be defined as the
orthogonal complement in M,» of {£ : A¢ = 0} (compare Addendum 4 of
Chapter 7). Set k = k(p) and let &, ..., & be a basis for the first normal space
at p. If T,: M, — My is Ag, forr = 1,...,k, then Ti,..., T} are linearly
independent, and we can define the type number ¢(p) of M at p to be the type
number of {77, ..., Tk}; itis easily checked that this definition does not depend
on the choice of &,...,&. The following result shows that submanifolds with
type number at least 2 cannot twist too much.

28. LEMMA. Let N™ be a manifold of constant curvature, and let M" be a
submanifold with normal connection D, whose first normal space Nor' M), has
the same dimension k at all points, and whose type number is > 2 at all points.
Then Dz& € Nor' M, for any section & of Nor' M, and Z € M.

Consequently, if M is connected, then it lies in some (n + k)-dimensional
totally geodesic subspace of N.
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PROOF. Locally we can choose orthonormal sections V41, ..., Vm of Nor M
such that vpi1,...,Vyek Span Nor' M. Then Ay, =0 = 1II"” =0 for
r > n + k. So the Codazzi-Mainardi equations (Theorem 7-14) give

n+k
0= > IFY,W)B(X) - IPF(X,W)B(Y) r>n+k

s=n+1
n+k

) 0= Y BIX)- Ay (Y) — Bi(Y)- Ay (X)  r>n+k.
s=n+1

By assumption, there are X,Y € M, such that the vectors A4,,(X), A,,(Y) for
s=n+1,...,n+k are linearly independent. Then (1) shows that

(2) Bs(X)=Bs(¥Y)=0 n+l<s<n+k, r>n+k.

Moreover, for any Z € My and r > n+ k we have

n+k
0= 3 BIX) - 4y(Z) — B(Z) - Ay (X)
s=n+1
n+k
=- Y BUZ) Ay (X) by (2)
s=n+l1
(3) BI(Z)=0 n+l<s<n+k, r>n+k.

This shows that Dzvs € Nor! M, for n +1 < s < n+k, and proves the first
part of the theorem.

Now consider the (# + k)-dimensional distribution A(p) = M, ® Nor! M »
along M. The first part of the theorem clearly implies that V'z£ € A(p) for
all sections & of A and Z € M,. So A is parallel along any curve ¢, by Pre-
Lemma 7-7. The result then follows from Corollary 7-11. <

Remark: A curve in R™ with k, . .., kp, all non-zero represents a counterexample
to Lemma 28 when the type number 1s < 2.

The extension of Theorem | of this chapter to submanifolds of higher codi-
mension rests on some more algebraic results.
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29. LEMMETTE. Let ¢y, Vr,¢r, %, € V*forr =1,...,k with

k k
Z(pr A V/r = Z(i’r A 1/_/r'
r=1 r=1

Suppose that ¢y, ..., Pk, Y1, ..., ¥k are linearly independent. Then the same is
true of the ¢,, ¥,, and the subspace [y, ..., Pk, Y1, ..., Yx] spanned by the ¢,
and ¥, equals the subspace (@1 s Ok ¥ty e V] spanned by the ¢, and V.

PROOF. Recall that for v e V and w € Q¥(V) we define v w € Q¥~1(V) by
vdw(v,...,0—1) = @(v,v1,...,-1). Defineamap f:V — V* by

k k
S(v) = UJ(Z@ A 1//r) = Z(pr(v) “Yr — Yr(v) - ¢
r=1 r=1

Clearly
range [ C [¢p,.. O Y1, -5 Vi)

Moreover, by linear independence of the ¢, and y,, there is v € V with

¢,(v) = 1 and all other ¢,(v) = ¥, (v) = 0. Then f(v) = ¥, so Yy € range f.
Similarly, all ¢, ¥, € range f, and we therefore have

rangefz [(p],--'a(pkal//la"'alpk]'

Now we also have

k
J@) =6, ¥r — ¥, (V) &1

r=1

So
[¢1""’¢ka1//1a"'a1//k] =rangef C [‘51,-~,¢_’k,1/—/1,.-.,1ﬁk]'

Hence the subspace on the right has dimension > 2k. So it has dimension
exactly 2k, which means that the ¢,, {, are linearly independent and that the
two subspaces are equal. <

30. LEMMA (CHERN). Let Si,...,S%,Si,..., Sk be symmetric n x n ma-
trices, with Si, ..., Sk linearly independent, of type number > 3. Suppose that
the sum of the determinants of corresponding 2 x 2 submatrices of the S, always
equals the sum of the determinants of the corresponding 2 x 2 submatrices of
the S,. Then we have

k
§r = Z Asr Ss
s=1

for some orthogonal matrix A € O(k).
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PROOF. Let T,,T,: R" — R” be the linear transformations with matrices
S,,S,. The hypothesis on the determinants of S, S, is equivalent to the hy-
pothesis that the maps

Tr*7 Tr*: Qz(IR”) — QZ(R”)

satisfy
k

k
Tr* = Z Tr*;
1 r=1

in other words, for all ¢;,¢; € V* we have

r=

k k
M YT AT@) =Y T, (i) A T ().
r=1

r=I1

Choose a basis {¢;} for V* such that the 3k vectors {T,*(¢;) : i = 1,2, 3} are lin-
early independent. Applying (1) with i =1, j = 2, and using the Lemmette, we
see that each T,*(¢;) is a linear combination of the T:*(¢), T5*(¢,). Similarly,
each T,*(¢,) is a linear combination of the T*(¢y), Ts*(¢3). So each T,*(¢))
is a linear combination of the 75*(¢,;). The analogous conclusions hold for the
T,*(¢,) and the T,*(¢5). Set

T*(¢) =) BrTs*(¢1)
T* () = Cs T (@)
7_—‘r*((t’ji) = Z DrsTs*(¢3)'

Equation (1) gives us
B.C'=1=C-B' (=1j=2andi=2 j=1)
C-D'=1=D-C' (i=2j=3andi=3j=2)
B.D'=1=D.B! (i=1,j=3andi=3,j=1).

These imply that B = C = D and B - B' = I, so that B is orthogonal. Let
T, : R" - R" be the linear transformation with

T,* =) B, T
s
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Then i*((bj) = T,*((bj) for j =1,2,3. We just have to show that this is also
true for j > 4.

Using (1) and orthogonality of B, we see that
DT AT @) =Y T @) AT M) i=1,23
and hence

AT @) - T AT ) =0 =123
The T,*(¢;) are linearly independent, so by Cartan’s Lemma (Lemma 1-13 or
Problem I.7-11) the 7_",*(¢>j) — T,*(¢;) are a linear combination of the T,*(¢7)
for each i = 1,2. But {T,*(¢i) © 1 = 1,2} are linearly independent, since
{T.*(¢:) : i = 1,2} are, so we must have 7_",*(¢>j) - i*((bj) =0,

31. THEOREM (ALLENDOERFER). Let M" and M" be immersed sub-
manifolds of R™, and let ¢: M — M be an isometry. Suppose that the first
normal spaces of M and M have the same constant dimension k at all points.

Suppose, moreover, that the type number is > 3 at all points of M. Then ¢ is
the restriction of a Fuclidean motion.

PROOF. By Lemma 28, there is no loss of generality in assuming that m = n+k,
so that the first normal space is the whole normal space. First we will show
that ¢ is locally the restriction of a Euclidean motion. Choose an orthonor-
mal moving frame X;,..., X, in a neighborhood U of p, and let X; = P X,

Choose orthonormal sections Vn+1, - -5 Vm of the normal bundle of M, and
Vnt1, .., Um for the normal bundle of Af. For g € U, define n x n symmetric
matrices S,,r =n+1,...,m by

(Sr)ij =" (Xi(q), X; (q))-

Define S, similarly, for the point ¢(gq). Gauss’ equation, in the form given on
pg IV.32, shows that the S,, S, satisfy the hypotheses of Lemma 30. Thus we
see that there is an orthogonal matrix-valued function A on U with

§, = ZAers~
N

Using linear independence of the S,, and smoothness of the S, and S,, we see
that the A;, vary smoothly with q. Now define new sections v'y41,. .., V/pyk of
the normal bundle of M by
v, = Z Agpvs.
s
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Then for the corresponding second fundamental forms we have

II'"(X,Y) = (s(X,Y),v})
= <s(X, Y), ZAsrvs>
= ZAS,IIS.

In particular,

07 (X, X;) =y A5 1I°(X;, X))
8§

= Z Asr (Ss)ij

= (S))ij
=1 (X;, X)).

Theorem 7-19 then shows that ¢ is the restriction of a Euclidean motion on U.

We claim that this Euclidean motion is unique. This is easy to see once we
note that since the first normal space is the whole normal space, every normal
vector at p € M is ¢”(0) for some arclength parameterized curve in M. Having
established uniqueness, it is clear that the local result implies the global one.

To be sure, the hypothesis that the type number is > 3 is extremely strong for
submanifolds of higher codimension, but Theorem 31 is very likely the best local
result obtainable. It is therefore a pleasant surprise to find that there is a global
result in this area. To end this chapter, with its vast areas of ignorance, on a
more joyful note, we quote the following beautiful recent result of J. C. Moore;
the proof is somewhat lengthy, but uses only material which has already been
developed here, the only somewhat non-standard result being Corollary 11-6.

THEOREM (J. C. MOORE). If Mj,..., My are compact connected Rie-
mannian manifolds with M; of dimension n; > 2, then any immersion ¢: Mj x
oo X My — RM+tmctk s up to a Fuclidean motion, a product of immersions
of the M; as hypersurfaces.

In particular, if the M; are compact convex surfaces in R?, then Mj x - - - x My
is rigid in R3, though not locally rigid.
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ADDENDUM
INFINITESIMAL BENDINGS OF ROTATION SURFACES

We will be dealing with surfaces of revolution obtained by revolving a curve
c(s) = (r(s),s) n the (x, z)-plane around the z-axis. Define

z

] r(s)

D

y(t) = (cost,sint,0),

so that in time 27, the curve y goes once around a unit circle in the (x, y)-plane.
Then our rotation surface 1s given by

S0 =r(s)-y() + 5-e3,

where e3 = (0,0,1). Here r(s) is smooth for so < 5 < 51, while r'(sg) = —o0
and r’(s;) = +oo. Considering for the moment only s € (so,51), any vector
field Z along f can be written uniquely as a linear combination of the three
vectors y,y’, e3, thus

Z(s,t) =a(s,1) - y({t) + b(s,1) - y'(t) + c(s,1) - e3.
Now Z is an infinitesimal bending if and only if
(1) (N1,Z1) =0,  (f2.Z2)=0, (fi,Z2)+(f2,Z1) =0.
Since
h=ry +e f=r-y
Zy=ar-y + by + ces Zy = (a2 = b)y + (by +a)y’ + cze3,
equations (1) become

r'aj+c¢ =0
@ by+a=0
r’(az—b)+rb1 +c =0.
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Since a, b, ¢ must be periodic in ¢ of period 27, it is natural to look for solutions
in terms of Fourier series

a(s,)y =Y ey (s)
k=—00
b(s,)) = Y e*y(s)
k=—00
c(s,t) = Z eiklfk(s),
k=—00

where, in order that ¢, Yk, &x should be real-valued, we must have
(3) bk=bk, Vrx=Vr Ex=k.
For a (complex-valued) solution involving a single k, equations (2) become

r'(s)¢x(s) + E'(s) = 0
(4) ikyg(s) + ¢x(s) =0

r'($)liker(s) — Vi ()] + r()¥x'(s) + ikr(s) = 0.

Differentiating the third equation, and then using the first two, we obtain
(%) ryr” + (k% = 'y =0.

Conversely, suppose we have a complex-valued function ¥y satisfying (x). Then
the first two equations of (4) can be used to determine ¢ and then &. If we define
¢k, Y_k, 5k by (3), then (4) also holds for —k. Thus we will have real-valued
solutions

a(s,t) = e* gy (s) + e * g (s)
b(s,1) = e® i (s) + e 7 Py (s)
c(s,1) = e g (s) + e E(s)

of (2). Any finite linear combination of solutions is also a solution.
For k = 0, we can solve directly from (4). The first two equations give ¢ = 0,
and then & = constant A. Then the third equation gives

=—r'Yo+ryo =r (‘/fo) = Yo = Br for some constant B.
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Thus we obtain the infinitesimal bending

Zo(s,t) = Br(s)-y'(t) + A-e3
=[r(s) - y(t) +5-e3] X Bes + Ae;
= (f(s,t) X Bes3) + Aes,

which 1s trivial.

Yor k = 1, equation (x) says that ¥ is linear. In particular, one possible
solution 1s

Yi(s) = Cs, C real.

Then the second equation of (4) gives
¢,(s) = —iCs,

and so the first equation gives & (s) = iCr(s) + constant; in particular, we can
take

§1(s) =iCr(s).

Then we have

a(s,t) =2Ree’ (—iCs) = 2Cssint
b(s,t) = 2Re e’ Cs = 2Cs cost
¢(s,t) = 2Re e’ (iCr(s)) = —2Cr(s)sint.

This gives the trivial infinitesimal bending

3Z1(s,1) = (Cssint)y (1) + (Cs cos 1)y' (1) — (Cr(s) sin t)es
= [r(s) - y(t) + se3] x [-Csinty’ + C costy]
= f(s,1) x (C,0,0).

Similarly, we can take
Yi(s) =iCs (C real), $1(s) =Cs, §1(s) = —Cr(s),
obtaining the infinitesimal bending

%Zl(s,t) =[r(s) - y(t) + se3] x [-C costy’ — Csinty]
= f(s,1) x (0,-C,0).
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Obviously every trivial infinitesimal bending is a linear combination of the var-
ious infinitesimal bendings Zo, Z;. Since the various Zj are linearly indepen-
dent, we see that any solution of (x) for k > 2 leads to an infinitesimal bending Z
which is not trivial.

These considerations all hold only for the region so < s < si, that is, for the
surface of revolution minus its two “poles”. Given any infinitesimal bending Z
obtained as above, we still have to see how it behaves at the poles (one can easily
see, for example, that if we had picked ¥1(s) = Cs + D with D # 0, then the
corresponding solution, although not a trivial infinitesimal bending, would have
a singularity at the poles). In order to do this, we consider the functions ¢ or—1
etc., where r ! really denotes two different functions, depending on which pole
we are at. To be precise, we note that at either pole r~1(x) makes sense for x in
some interval [0, ). We extend r~! to a function p on (—¢, €) by requiring p to
be even. We will assume that p is analytic at 0 (this is precisely what one needs
in order for the surface f to be analytic at the poles). Setting

O =drop
Wi =vYrop
Bk =&k op

and noting that p’ = 1/r’ o p, we find that equations (4) can be written
P(x)E'(x) + @/ (x) =0
() kWi (x) + Pp(x) =0
ik g (x) — Wi (x) + x W' (x) + ikp'(x)E(x) = 0,
while equation (x) becomes
(%) X0 ()W (x) — xp" ()i (x) = (k% = 1)p" (x) ¥ (x) = 0.
Now suppose also that p”(0) # 0. Then
p(x)=p"Ox[1+---1,  p"(x)=p"(0) 1 4 xxx]
and we can write our equation as
X2 O)[14- - 10 (x)=xp" O)[1 4+ - 1Wi"(x) = (k= 1)p" @) [1 4#xx] W (x) = 0
or

(deoxex) XU (x) + xa ()W (x) + B Wi (x) =0,
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where « and B are analytic with
a(0) = —1, BO) =1 — k2.

Now equation (**x*) has a “singular point” at 0; we cannot put it in the form
" (x) = F(x, Wg(x), W¢'(x)) near 0, so we cannot apply our standard theo-
rems. However, this singular point is of a very special sort, called a “regular
singular point”, and there is a complete theory to cover this situation. It is
one of the standard topics in differential equations, which the reader can find,
for example, in Whittaker and Watson {l; Chapter 10}. The theory shows that
equation (x*x), or equivalently (), has two linearly independent solutions near
x = 0 of the form

ui(x) = x1+k . (analytic function)

pa(x) = x'%. (analytic function) + c(log x) - ©1(x),
where the analytic functions in question are non-zero at 0 (but ¢ might be 0).
So when k > 2, we see that (%) always has one solution which is analytic
near 0, while any linearly independent solution blows up at zero. If Wy is an
analytic solution, so that Wy vanishes up to order k + 1 at 0, then the first and
second equations of (5) determine functions ®; and Ej which vanish up to

order k + 1 and k, respectively, at 0. So for & > 2 the infinitesimal bending Z
then determined by ¢y = Py o r, etc., has the form

Zi(s,1) = r(s)%0(r(s),1)

for some analytic function 0. Now an analytic parameterization of our rotation
surface near a pole is given by

(x> (x,2.07 (Va2 4 52))
=f (r_l(v x24 )2 ), arctan %)

So if Zy(x,y) denotes the value of Zj at this point on the rotation surface,
then

Zi(x, ) = (Va2 + )7 Yo(VaZ+y?,1) = (2 + 1o (Va?+371).

One can easily check that this function is* C? at 0.

*If o involved only even powers of v x? + y%, then we would actually have an analytic
function. Unfortunately, this can never happen, since equations (5), and the fact that &

—

is even, shows that ®, ¥, E cannot all be even functions.
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This analysis holds at each pole, but it will usually happen that the function Wy
which is analytic for one choice of p = r~1 will not be analytic for the other
choice. So further analysis is required.

We consider a 1-parameter family of functions r; which passes continuously
from a convex function to non-convex functions. For example, we can deter-
mine r; by the equation

(re(s)? +s2)2 + 212(r,(s)2 -5t =1- 212 0<1?< %

For ¢2 = 1/2 we have a lemniscate, and for = 0 we have a circle. For t2<1/3
the functions are convex.

The dotted line is the
set of inflection points -1
of the various curves.

For a fixed ¢, which we temporarily suppress, consider equation (x) for r = ry:
(%) ry” + (k2 = Dr'"yy = 0.

On any (concave) interval where r” > 0 (which exist for 2 > 1/3), there will
be a large number of zeros of ¥ once k is large enough. To prove this we
merely choose a subinterval on which r”/r > & > 0 for some &, and apply the
Sturm Comparison Theorem (Theorem 9-15) to equation () and the equation
3" + (k% — 1)ey = 0, which has lots of zeros for large k. Notice that on each
of the outer intervals, where r” < 0, the function ¥ cannot have a positive
maximum (¥ > 0, ¥;” < 0) or a negative minimum, so it cannot have even
two zeros. Thus the total number of zeros in (—1,1) is finite. For 2> 1/3
we have r” < 0 everywhere on (—1,1), so ¥ has at most one zero on (—=1,1).
Even for t? = 1/3 we easily see that ¥ has at most 2 zeros on (=1,1). Since ¥
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is a solution of a second order equation, we must have ;' # 0 when Y =0
(assuming ¥y is not the zero function), so ¥y crosses the axis at each zero,
rather than being tangent to it. It follows easily that any function sufficiently
close to ¥ has at least as many zeros as Y.

Now pick some 7o with %2 > 1/3 and a k so large that any solution Yi,zo Of (%)
for r = ry, has more than 2 zeros on [0, 1). Let ¥ 4, be a solution which gives an
infinitesimal bending that is C? at the bottom pole s = —1, and let ng > 2 be the
number of its zeros on [0, 1). Now for all ¢ < # we will pick a continuous family
of solutions Y of (*) for r = r, all of which also give infinitesimal bendings
that are C? at the bottom pole. Choosing ¥, is equivalent to choosing Wit
which is determined only up to a constant factor. So we can easily arrange that
each Y, is not the zero function. For 2 > 1/3, the function ¥ , has at most
two zeros in (—1, 1), so a fortiori at most two zeros in {0, 1). So we can consider
the greatest lower bound #; of all ¢ such that ¥ , has exactly ng zeros on [0, 1),
and 1,2 > 1/3.

We claim that Y ;, has a zero at 0. For suppose that all the zeros of ¥ ,, on
[0, 1) actually occur on (0, 1), and let #; be the number of such zeros. Since any
function sufficiently close to ¥ ,, has at least as many zeros on (0, 1) as ¥,
does, we easily see that ny < ng. We claim that we cannot have n; < ng. To
prove this, it suffices to show that the functions vy , for ¢ close to t; have af most
as many zeros on (0, 1) as ¥ ;, does. On some interval containing the n; zeros
of Y, we will have r,,"/r;, < M for some M. The same inequality holds
on this interval for ¢ sufficiently close to ¢;. Applying the (second part of) the
Sturm Comparison Theorem to (*) and the equation y” + (k* — )My = 0,

we find that the zeros of ¥ , must be at least ¢ = n/\/ (k? — 1)M apart. So
if we choose a neighborhood of the graph of vy ,, which intersects the s-axis
in intervals of length < ¢, then the ¥, whose graphs lie in this neighborhood

ya s

/A =/

the == intervals

have length < ¢

can have at most n; zeros on (0,1). Thus we have shown that ¥y ,, actually
has exactly ngy zeros on (0, 1).

But these very same arguments show that for ¢ sufficiently close to f,, the
function ¥ ; has exactly ng zeros on [0, 1) even for t < t;. This contradicts the
choice of #, and thus shows that indeed ¥, (0) = 0.
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Now from the differential equation
Vi + (k* — l)rtl//‘/fk,tl =0

satisfied by ¥k 4, and the fact that r,, is an even function, we easily see that
s > Y, (—5) also satisfies the equation. Since Yk, (0) = 0, it follows that
Vi1, (—S) = ¢ Yk y, (s) for some constant ¢. But this means that the infinitesimal
bending determined by ¥k, [on the rotation surface determined by ry,] 1s
also C? at the top pole.



Rigidity 261

PROBLEMS

1. Let a,8: R — R? be differentiable functions for which we know the func-
tions

(o, B), (', B), (a,a), (B, B),
We want to show that we can find @ and B once we know a(0) and B(0).

(a) We can assume that {a,«) = (8,8) = 1.
(b) If we write

a(x) = (cosB(x),sinB(x))
B(y) = (cos¢(y),sm¢(y)),

then (o, 8) and (&', B) determine 6’. Hence o(0) determines .
(¢) Then B(0) determines f.

2. (a) Let n be a 1-parameter family of k-forms. Use Proposition 9-10 to show
that for every singular (k + 1)-cube ¢ we have

f(dn)'=fa r';=fdr';.

Conclude that (dn)' = dn.
(b) Give another proof by writing n(u) in a coordinate system x!,...,x", and
noting that 3/du commutes with 3/9x/.

3. A surface M C R’ is called isothermal if it can be covered by isothermal
coordinate systems whose parameter lines lie along the lines of curvature.

(a) Surfaces of revolution are isothermal.
(b) Problem 4-8 shows that ellipsoids and hyperboloids of one or two sheets
have coordinate systems (u, v) with

(,)Y=(u v)[f()du@)du f()dv@dv]
where the u- and v-parameter lines are lines of curvature. Conclude that these
surfaces are isothermal.
(¢) Let X, X3 be a moving frame consisting of orthonormal principal vectors.
Show that M is isothermal if and only if there is a nowhere zero function «
such that

de AO' + @@ AO*=0=da n0?® — aw? AB.

Hint: This means that d(u0') = d(u6?) = 0.
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4. Let M C R3 be asurface, and a: [0,1]x M — R? a variation as on page 225.

(a) Show that
Ui AYs ¥ Az =0
dyi =i A
4yl = —w? A,
(b) Show that H =0 if and only if
Y3 A0 =93 A6

Hint: Use the equation on pg. 111.69.

(c) Suppose that the moving frame X;, X2 on M consists of principal vectors,
so that 1//1.3 = k;0', where ki, k; are the principal curvatures. If p is an umbilic,
then we always have H(p) = 0. [Hint: Use the first equation of (a).] On the
other hand, if H =0, and M has no umbilics, then

YPA0t=0=13 A6
(d) If we write
Vi) =Y ;060 @), @) =k, 20)=k,
j
then H =0 = in =i22 =0.
(e) Conclude that if H =0, then

dilz /\91 — 2[12wé /\91 =0

diya A 6% = 2lhw? AG' =0.

Then use Problem 3 to show that M is isothermal.

5. For vectors vy,. .., Us—1 and wy, ..., Ws—; in R”, show that
(U1 X - X Uy, Wy X <o+ X wpo) = det((ve, w;))

by noting that both sides are linear in the v; and w;.



CHAPTER 13

THE GENERALIZED
GAUSS-BONNET THEOREM
AND WHAT IT MEANS FOR MANKIND

In previous chapters we have seen that interesting and challenging questions
can arise even in the lowest dimensions, and that the methods used to resolve
these problems often rely more on ingenuity and hard work than on particularly
sophisticated concepts—the proofs may be involved, but they have the satisfying
concreteness of geometrical arguments, and something of the charm of antique
music. Nevertheless, it is futile to deny the decisive influence which has been
wrought upon the shape of modern mathematics by the daemonic spirit of func-
torial constructions. So it is appropriate that this book end with a topic that
represents one of the triumphs of machinery in mathematics. Here, at last, con-
nections in principal bundles play their true predestined role, the invariant form
of the Bianchi identities prove their superiority, and connections on arbitrary
bundles are frequently invoked. As a final affirmation that we have plunged
into the icy stream of modern mathematics, hardly a picture appears.

One of the star attractions of differential geometry is the Gauss-Bonnet
Theorem, which for a compact oriented surface M states that

f KdA =2nx(M).
M

Although the curvature K is defined intrinsically in terms of the metric { , )
on M, it can also be defined extrinsically when the metric { , ) on M is induced
by an imbedding M C R?. In fact, if v: M — S? is the normal map, and da
is the volume element of S2, then K dA = v*(da), so that

f KdA = f v*(da) = (degv) - f da = 4m - (degv).
M M s2

As we indicated in Addendum 2 to Chapter 6, one can prove, without invoking

any differential geometry, that degv = % x(M), thus proving the Gauss-Bonnet
Theorem for the special case where the metric on M comes from an imbedding
in R3. Precisely this argument was used by Heinz Hopf [2] in obtaining the

263
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first generalization of the Gauss-Bonnet Theorem. Consider a compact hyper-
surface M" C R**! where n is even. If da denotes the volume element of S”,
then

f K,dV =f v¥(da) = (volume of S")-degv
M M

_ (volume of S")

5 - x(M), by Corollary 6-23.

Now this result, although proved for a hypersurface of R"*!, can be formulated
for any compact oriented Riemannian n-manifold (M, ( , )) of even dimen-
sion n. In fact, we have already noted (pg IV.69) that

1 .
() K, = 7ot -contraction of (R® - @ R ® e @ ¢).
n/2 times

In a coordinate system, we have (pg. IV.69)
8i|...in 8j|...jn

Vdet(gij) ' Vdet(gi;)

1
Kn= S > Riigjijs - Rinrinjucsin-
T e in
Jrseesin

We are thus led to conjecture that we always have

fS"
f K,dV — (volume o ) (M),
M 2

whenever M is a compact oriented Riemannian manifold with n even, where
K, is defined by (x).

For the case where the metric on M comes from an imbedding M C R"**
in some Euclidean space, the result was first proved by Allendoerfer [1} and
Fenchel [2]. This was done by considering a closed tubular neighborhood N
of M, for which dN C R"*¥ is a hypersurface with a volume element dV, say,
and corresponding K,4x—1. We can assume that n+k —1is even (by considering

M C R"tk ¢ R"+*+1 if necessary), so that the result for hypersurfaces gives

(volume of S"tk—1)
2

f Ky dV =  X@N).
IN

Now it can be shown without too much difficulty that

X(BN) = x(M) - x(SF1) = 2x(M).
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On the other hand, it also works out that

f Kn+k—1 dv
N

can be computed in terms of f K, dV; when the computation is effected, we
M

obtain the correct expression for Kn,dV.
M

At the time of this proof, the Nash imbedding theorem was not yet known.
But the Burstin-Janet-Cartan Theorem (Theorem 11-9) was known. In 1943,
Allendoerfer and Weil [1] proved a generalization of the Gauss-Bonnet formula
for a polyhedral piece of a Riemannian manifold imbedded in Euclidean space;
using this, they were able to obtain a proof of the general Gauss-Bonnet The-
orem for (C®) Riemannian manifolds, by means of a triangulation. Since the
Nash imbedding theorem is now available, the earlier result of Allendoerfer and
Fenchel implies that the generalized Gauss-Bonnet Theorem holds for all C*
manifolds. But a proof of this sort is clearly unsatisfactory, not only because of
the difficulty and essentially non-differential geometric nature of Nash’s result,
but also because an intrinsic theorem ought to have an intrinsic proof. The
intrinsic proof was obtained by Chern [2] in 1944. Ensuing developments have
led to a2 much deeper understanding of the fundamentals which are involved
here, so that we can now give a completely non-computational proof of this ex-
traordinary theorem. This proof by magic is presented in the first four sections;
in the remainder of the Chapter we will contravene the rules of legerdemain,
and reveal some of the mechanism behind it.

1. OPERATIONS ON BUNDLES

In the past we have considered numerous structures on vector bundles and
principal bundles, but, except in some of the problems for Chapter 1. 3, we have
not yet examined in detail the relationships between different bundles. The
simplest relation is that of equivalence 2 between two vector bundles & and &
over the same base space X. We have also defined the notion of a bundle map
from & = 7 E{ > X, to & = my: E» — X,. This is a pair of continuous
maps (f, f), where f: X; — X, and f: Ey — Ej; the map f is required
to satisfy w3 o f = [ omy, so that f takes fibres of & to fibres of &, and
each map f+m7 Y x) = m27'(f(x)) is required to be linear. In this chapter
we will redefine the notion of a bundle map, by adding the requirement that
each f: m '(x) - 72~ '(f(x)) be an isomorphism of vector spaces (so &
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and & must have the same fibre dimension). Instead of referring to a bundle

map (f, f), we will often say that f is a bundle map covering f. If fisa
bundle map covering a homeomorphism f: X; — X3 from X; onto X3, then

we can define ( f~ )_1 : E; — E;. Using the local product structure, and the
fact that A — A~' is continuous for A € GL(n, R), we easily see that (f~)_1

is continuous, so that (f )—1 is a bundle map covering f~!. In particular, a
bundle map covering the identity map of X is an equivalence.

Consider next two principal bundles & = 7;: P; = X; (i = 1,2) with the
same group G; we denote the action of G on the right of P; and P; by the
same symbol “.”. A (principal) bundle map from &; to §; is a pair (f, ), where
f:Xi - X2 and f: P, — P,, such that w3 o f~= f omy, and such that

(%) fw-a)y= f(u)-a forallu € Panda € G.

Notice that condition (x) already implies that f takes fibres to fibres, and thus
automatically gives us the map f. We could thus speak simply of a bundle

map f. In practice, it is usually more convenient to speak of a bundle map f
covering f. Note also that f~ s (x) = w7 1(f(x)) is clearly a homeomor-
phism, since the fibres of Pj are {u -a : a € G} for fixed u, and similarly
for the fibres of P;. As before, if [ is a bundle map over a homeomorphism
f: X1 = X, then (f )_1 is a bundle map over f~!. When f is the identity

map of X, we call f an equivalence, or an isomorphism. A principal bundle
£ =m: P — X is called trivial if it is equivalent to the bundle 7#’: X xG — X,
where 7’ is projection on the first coordinate. As we have already pointed out
(pg. 11.311), if the principal bundle £ has a section s: X — P, then £ is trivial,
for we can define a map X x G — P by (x,a) — s(x) -a.

Recall (pg. I1.307) that for every n-dimensional vectorbundle § =n: E — X
we can define the principal bundle F(§) = w: F(E) — X of frames of E, with
group GL(n, R), whose fibre @ 1(x) is the set of all ordered bases (uy,...,un)
of the vector space w~!(x). If & are vector bundles over X; and f: E, - E;
is a bundle map covering f: Xi — X, then we clearly have also a principal

bundle map f: F(E,) — F(E;) covering [ (this would not be true if we did
not require a bundle map to be an isomorphism on each fibre). Conversely, a
principal bundle map f: F(E) > F(E;) covering f gives rise to a bundle
map f: E, — E,. In fact, given any frame u = (ui,...,un) of o (x),
there is a unique isomorphism 7;7!(x) — 72~ (f(x)) which takes u; to the

i" member of the frame of f(u). The condition (x) on f insures that this
isomorphism is well-defined.
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There is one operation which is special for vector bundles. Given two vector
bundles §; = 7;: E; — X over the same space X, we can form the direct sum
7 (x) @ w7l (x) [= m 7 (x) x w71 (x) as a set] for each x € X. Let

E= U 71'1_1()() X 71'2—1()() C Ey x Ej,
xeX

with the topology it has as a subset of E; x E3, and let m: E — X be the
map which takes all elements of 7N (x) x a7V (x) to x (thus m = m;|E for
i =1,2). It is easy to check that 7 : E — X 1s also a vector bundle, whose fibre
dimension is the sum of the fibre dimensions of & and &. This new bundle is
called the Whitney sum &, @ &, of & and &,. We clearly have

e xbh b, GEof)eiHE2H0E85).

Our next construction works for either a vector bundle or a principal bundle
E=mn:E—Y Let f: X - Y be continuous. We can construct a

E
|

X ——Y

[principal] bundle n over X, and a [principal] bundle map ( f, f) from n to &,
as follows.

XxE~E 1 L E
B

f

X——Y

Let
E'C X x E={(x,e): f(x) =n(e)},

and let
7 E' - X be 7'((x,e)) =x.

Thus the fibre 7/7'(x) over a point x € X is just {x} x 77 1(f(x)). In the
case of a vector bundle, we use the vector space structure on 7' (f(x)) to
define a vector space structure on 7’ ~1(x); in the case of a principal bundle, we
use the action of G on 7~ 1(f(x)) to define the action of G on n'~1(x). It is
easy to check that #': E’ — X is a vector bundle [principal bundle], and that
f: E' > E defined by

fl(x,e)) =e
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is a [principal] bundle map covering f. The bundle #’: £’ — X is denoted
by f*£, and is called the bundle over X induced by f and §. If X C Y and
i: X - Y is the inclusion map, then i*§ is equivalent to the restriction §{X
of £to X. If g: W — X is another continuous map, then

gr (") = (f 0 8)* ().
Finally, if £ =n: E — Y is a vector bundle, then
SHFE) = F(f*§).

Although we used an explicit construction to define f*, this [principal] bun-
dle can be characterized uniquely, up to equivalence, by the fact that there is
a [principal] bundle map covering f from f*£ to §&. Indeed, suppose that
n =n": E” - X is a [principal] bundle, and f: E” > E is a [principal]
bundle map covering f. We define g: E” — E’ by

g(e") = (f(x" ("), f(e");

it is easily seen that g is an equivalence of n and f*¢.
In the case of two vector bundles & = 7;: E; — Y we have

ffE®E) > fFE) D [ ().

The most reasonable way to prove this is to consider the explicit construction
of the total space E of f*(§) @ f*(£2), and then define a bundle map f
covering f from E to the total space of & & &. On the other hand, consider
two bundles & = m;: E; — X;, and let p;: X1 x X2 = X; be the projections
on the factors. Then we can form the bundle

£ x & = pi*(&1) ® p2*(&2)

over X; x X»; the fibre over (xi, x2) is essentially 77! (x;) @ 7571 (x2). When
X1 = X2 = X, we have
£ @&~ A'(E x &),

where A: X — X x X is the diagonal map, A(x) = (x, x).

As a somewhat more esoteric example of induced bundles, consider a vector
bundle £ = 7: E — X with a Riemannian metric { , ). Let S be the “sphere
bundle”

S={eecE:lee)=1}
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and denote the restriction 7|S by mg: S — X. Then we can form the bundle
7o E over S. We claim that mo*§ always has a nowhere zero section. To see this, we
recall the construction of mo*§. For each e € §, the fibre of m¢*& over e is just

e | T ((e) =

« . B
fibre in whi
{e} x 17 (mo(e)) = {e} x 7 (m(e)). ekiies ek

We define a section s of mg*€ by
s(e) = (e, e) € {e} x n  (w(e)).

Since
s(e) # (e,0) = 0 element of fibre of mo*§ over e,

this section s is indeed nowhere zero. Similarly, if we regard X as a subspace
of E (by considering X as the image of the 0 section), then the induced bundle
(m|E — X)*¢ over E — X has a nowhere zero section. On the other hand,
the bundle 7*¢ itself need not have such a section. Indeed, if it does, then the
restriction (7*€)|X of 7*E to X must have a nowhere zero section. But it is
clear that (7*£)|X ~ &.

The most important result about induced bundles gives a condition under
which f*& ~ g*£. As a start towards this result, we note that eny bundle over
[0, 1] is trivial. The proof may be considered as an exercise for the reader; the
next Lemma and Theorem establish a more general result.

1. LEMMA. Let £ be a principal bundle over X x [a,b]. Then every point
x € X has a neighborhood U such that £ is trivial over U x [a, b].

PROOF. Each point (x,t) € {x} x [a,b] has a neighborhood V x W such
that £ is trivial over V x W. By compactness, finitely many such neighborhoods
Vi x WA, ..., V, x W, cover {x} x [a,b]. We claim that the theorem holds with
U=WVn---NnV,. The proof will be by induction on r. For r =1 it 1s trivial.
Assume it holds for < r — 1 sets. We can clearly choose a point p € (g, b) such
that [a, fo] and [to, b] are each covered by < r — 1 of the sets V; x W;. Then § is
trivial over sets U) X [a, to] and U; X [tg, b]. This means that there is a section s
of & over U; x [a, ty] and a section o of & over Uy X [to, b]. On (Uy NU3) x {to}
we have
s(x, ) = o(x,t) - a(x)
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for a continuous function x +— a(x) € G. Then we can define a section § on
Uy N Uy x [a, b] by

- s(x,1) a<t=i
5(x,1) =
o(x,t)-a(x) to<t<b. &
Now let j: X x {1} - X x [0, 1] be the inclusion, and let p: X x [0,1] —
X x {1} ne p(x,t) = (x,1).

2. THEOREM. If £ = n: P — X x [0,1] is a principal bundle, and X 1is
paracompact, then

£ p*j*E x> prEIX x {1}).

PROOF. We want to show that there is a bundle map p: P — 7~ 1(X x {1})
covering p. ~

p—P i xxf)

X x[0,1] — 2 X x {1}

By Lemma 1, there is an open cover {Ug} of X such that § is trivial on U, %[0, 1].
We can assume that {Uy} is locally finite, by taking a refinement if necessary. By
Theorem I.2-15 we can choose a partition of unity {¢q} with support ¢ C Us
(the Theorem is stated for a manifold, but holds for any normal space X if we
only want the functions ¢, to be continuous). Let so be a section of & over
Uy x [0, 1]. Consider the map, from 7N (U x [0,1]) to itself, defined by

Sa(xal) — Sa(xamin(l + ¢a(x), 1))
This map is the identity on (boundary Uy,) x [0,1]. So we can extend it con-

tinuously to X x [0, 1] by making it the identity on (X — Uy) x [0, 1]. Thus we
obtain a map

Po: P —> P

2\,
/Uy

graph of ¢q

which is a bundle map from & to the part of § over the shaded set in the figure.
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Suppose first that there are at most countably many such maps, py, p,,... .
Define

B=popo.

This possibly infinite composition makes sense, since all but finitely many p;
are the identity in a neighborhood of any point. Clearly p is the desired bundle
map.

Even if there are uncountably many maps {p, : @ € 4}, the procedure is the
same. Choose any ordering on A (not necessarily a well-ordering) and define p
to be the composition of the p, in the order given by 4; in a neighborhood
of any point, only finitely many pq are not the identity map, so this makes
sense. ¥

In practice, it is more convenient to work with a slight restatement, and ap-
plication, of Theorem 2. Let i;: X — X x [0,1] be i;(x) = (x,?).

3. COROLLARY. If £ is a principal bundle over X x [0,1], and X is para-
compact, then

ig*"§ ~ir"§.
PROOF. Let g: X x [0,1] - X be the projection g(x,t) = x. Then jop =
i1 oq. So, by Theorem 2,
1) =prjtE = (jop)E=(hog)'s =g’k
On the other hand, we also have ¢ o ip = identity. Consequently, equation (1)
gives
i0"€ ~ io*q"i1"E ~ [i1 o (g o i0)]"E = iy*§. %

From this we immediately obtain the result toward which we have been aim-
ing,

4. THEOREM (THE COVERING HOMOTOPY THEOREM). If 7 is a
principal bundle over ¥ and f,g: X — Y are homotopic, with X paracom-
pact, then f*n >~ g*n. The same result holds if 7 is a vector bundle.

PROOF. Let H: X x [0,1] — Y be a map with

Hoig= f and Hoij=g.
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Applying Corollary 3 to § = H*(n) over X x [0, 1], we have

f*n = (Hoig)*n=io*(H"n)
~ i *(H*n) >~ (Hoi))'n=g"n.

When 7 is vector bundle we have, by the remark on page 268,
F(f*n) = [*(F(n) = g"(F(n) = F(g"n).

By the remark on page 266, this implies that f*n = grn. %

As a particular case of Theorem 4, note that if X 1s paracompact and con-
tractible, so that the identity map 1: X — X is homotopic to a constant map ¢,
then & ~ 1*& ~ ¢*£, which is trivial. So any principal bundle or vector bundle
over X is trivial (compare with remark 3 on pg. 1.474).

In applying these results, we will usually be interested only in vector bundles.
But in one instance principal bundles will be used. Let § = 72 E — X be a
vector bundle, and let { , ) be a Riemannian metric on §. As in Chapter 7, we
can consider the principal bundle O(§) = w: O(E) — X with group O(n),
whose fibre @ ~!(x) is the set of all frames of 771 (x) which are orthonormal
with respect to ( , ). If { , ) is another Riemannian metric on &, then we have
another principal bundle O'(§) = @w’: O'(E) — X, consisting of frames which
are orthonormal with respect to { , ).

5. COROLLARY. If £ = 7: E — X is a vector bundle with two Riemannian
metrics { , ) and { , ), then O{) = O'(§).

PROOF. Letq: X x[0,1] = X be the projection q(x,1) = x, and consider the
bundle ¢*£ over X x [0,1]. The fibre of g*& over (x,f) is

{(x, 1)} x 17 H(x).
The inner products { , )x and { , )’x on 7~ 1(x) give us an inner product
[(a)x+(1_[)(’)/x

on 7~!(x). Using this inner product on the fibre {(x,1)} x 71 (x), we obtain
a Riemannian metric { , ) on ¢*£, and we can consider the corresponding
principal bundle O(¢*§). If i;: X — X X [0,1] is i,(x) = (x,1), then clearly

i0*O(g*s) = O()  and i1 O(q"§) = O'(§).

So the result follows from Corollary 3. <
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2. GRASSMANNIANS AND UNIVERSAL BUNDLES

We have defined projective n-space P" to be the set of all pairs {p, —p} for
p € S" C R™!. We could also have defined P” to be the set of all lines
through 0 in R"*! since each such line intersects S” in a set {p, — p}. More
generally, we define the Grassmannian manifold G,(R"Y) to be the set of all
n-dimensional subspaces of RV (we will always assume that N > n). In order
to topologize G,(RV), we consider first the Stiefel manifold V,,(RV) consisting
of all n-tuples

(V1,...,Un) eRV x--. xRV

for which vy, ..., vy are linearly independent. Clearly V, (RV) is an open subset
of RN x ... x R¥. We can define a map

p: Va(®RY) > G(RV)
by letting
p((v1,. .., v,)) = subspace of RY spanned by vy,..., v,

We give G,(RV) the quotient topology for this map—thus U C G,(RV) is open
if and only if o~ (U) C V,(RV) is open.

We can also consider the subspace V,O(RN)  V,(RV) consisting of n-tuples
(V1,...,V5) € Vu(RN) which are orthonormal. If py = p|V,C(RY), then the
diagram .

VoY) —L—v,®") £ ve®Y)

Po Jp Po

Gn(R™)

commutes, where i is the inclusion map, and g((vy,...,v,)) is the n-tuple in
V.O(RN) which results by applying the Gram-Schmidt orthonormalization pro-
cess to vy,...,U,. From this diagram it is easy to see that the topology on
Gn(RV) can also be described as the quotient topology for pg. Since VnO(RN )
is compact, this shows that G,(R") is also compact.

There is yet a third description of the topology of G,(RV) which will be
important later on. Consider the orthogonal group O(N). If Wp ¢ RV is the
n-dimensional subspace spanned by ey, .. .,e,, then we can define a map

o) % G,(®Y)
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by
o(A) = A(Wo) € Go(RY).

The following diagram then commutes,
vO®Y) —L— G (RY)
a{ /
o
O(N)
where « is the continuous map defined by
a(4) = (A(er), ..., Alen)) € VP RY).
We thus see that if U C Go(RY) is any set, then
0 o~ (W) is open => ' (p~'(U)) is open
= o~ (U) is open.

Notice moreover that we clearly have

a(e™' (W) C p~H (W)

In addition, the map « is onfo VO(RN), which easily implies that we actually
have
(o™ (W) = p~ (W

Finally, the map « is an open map, so if U C Gp(RN), then

(2) o~ (U) is open = a(o~1(U)) is open
— p~1(U) is open.

From (1) and (2) we see that the topology on Gn(RVN) can also be described as
the quotient topology for o.
This description of Ga(RY) is useful for the following reason. The set

o1 (Wp) = {4 € O(N) : A(Wp) = Wo}

is easily seen to consist of all N x N matrices of the form

(C()‘ g) for C € O(n) and D € O(N —n).
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For convenience, this group of matrices is usually denoted by O(n) x O(N —n).
Now any other element of G,(R") is of the form B(W,) for some B e O(N),
and
o~ (B(Wo)) = {4 € O(N) : A(Wo) = B(Wo)}
={A € O(N) : B'A(W,) = Wy}
={4 € O(N): B~'4 € O(n) x ON —n)}
= the left coset B - (O(n) x O(N — n)).

Thus we can identify G,(RY) with the left coset space
O(N)/ O(n) x O(N —n),

where this quotient space is given the quotient topology for the natural projec-
tion map
O(N) — O(N)/O(n) x O(N — n).

In section 6 we will study in greater detail the quotient spaces G/H of a Lie
group by a closed subgroup, and show that G/H is always a Hausdorff C*®
manifold of dimension dim G — dim H. Thus G,(R™) will be a C* manifold
of dimension

NN -1) 3 {n(n—l) 4 (N—-n(N-n-1

5 5 5 }=n(N—n).

We can also describe this manifold structure on G,(RY) directly as follows.
For any W € G,(RY), consider the orthogonal complement W+ c R¥. The
decomposition RY = W @ W+ determines an orthogonal projection

WJ_
p: RN > w.

Let U C G,(RN) be the set of all n-dimensional subspaces V with V N W+t =
{0}, sothat p: V - Wis an isomorphism. Clearly o~ N W C V,(RY) is open,
so U is an open subset of G, (RM). Now let wy, ..., w, be a fixed orthonormal
basis for W, and let wpy1,..., wn be a fixed orthonormal basis for W-. For
every V € U, there are unique vy,...,u, € V with p(v;) = w;, and these v;
can be written uniquely as

N
(*) v = w; + Z a,'j(V)'wj.
J=n+1
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The one-one map
V> (ai(V))

takes U onto the set of #n x (N — n) matrices. This map is continuous, since
the v; depend continuously on V'; morcover, the inverse map 1s

N
(a;j) v space spanned by the w; + Z aij - wj,
j=n+1

which is also continuous. Thus we have mapped U homeomorphically onto
R*(N-1)_We leave it to the reader to check that any two such homeomorphisms
are C®-related. Thus G,(RY) is a C* manifold. The reader may also check
that the map

Ga(R™") = Gm(R™)

defined by taking an n-plane W to its orthogonal m-plane W+ is a diffeomor-
phism.

Over the Grassmannian manifold G, (RV) there is a natural n-dimensional
bundle y"(RY), constructed as follows. The total space E(y"(RY)) of the
bundle will be the subset of G,(RY) x RN consisting of all pairs

(W,w) € Go(RV) x RN such that w € W,

and the projection map 7: E(y"(RV)) = Gn(RY) will be 7((W,w)) = W.
Thus the fibre 771 (W) over the point W of Gn(RN) will just be W itself—
more precisely, it will be

{(W,w) :we W}

The vector space structure on a7 1(W) is defined by using the vector space
structure on the subspace W C R¥; thus
(W, wy) + (W, wp) = (W, w; +w2)
a-(W,w) =(W,aw).
To show that y"(R") satisfies the local triviality condition, we consider a point
W e Gn(RV), the orthogonal complement W+, the corresponding projection

p: RN — W and the open set U C Gy (RV) consisting of all V with V'N Wt =
{0}. Now we can define a map

U - Ux WxUxR"

by taking
(V,v) = (V, p(v)).
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This map is easily seen to be a diffeomorphism, and is an isomorphism on each
fibre, so y"(RV) is a smooth vector bundle over G, (RV).

Notice that for M > N there is a natural map a: G,(RY) - G,(RM),
since an n-dimensional subspace of R can be considered as an n-dimensional
subspace of RM . There is also an obvious map @: E(y"(RN)) - E(y"(RM))
such that (&, @) is a bundle map from y" (RV) to y"(R™). Thus

y"(RY) = o* (y"(RM)).

Now consider a C* manifold M" immersed in R"*!. Since M need not be
orientable, we may not be able to define the normal map v: M"* — S”. But
we can certainly define a map f: M — P" = G{(R"*!), by taking p € M 1o
the 1-dimensional subspace of R"*! which is parallel to the line M. Lt C R

Mt

Sf(p) p

We can also define a map f from the normal bundle Nor M of M into the
total space of y!(R"*!) by sending v € MI,J‘ to (f(p),v). Thus we have a
bundle map (f, f) from the normal bundle Nor M to the bundle y!(R"*!);
consequently, the normal bundle Nor M is equivalent to f*(y!(R"*!)). It is
even more interesting to look at the map f from M into the diffeomorphic
manifold G,(R"*") defined by f(p) = subspace of R"*! parallel to M,. For
then we can define f: TM — E(y"(R"*")) by sending v, € M, to (f(p), v).
Thus we see that the tangent bundle TM is equivalent to f*(y"(R"*!)). More-
over, this construction can be generalized. By Proposition I.2-17, any compact
n-manifold M can be considered as a submanifold M" ¢ R for some N. De-
fine f: M — G,(RN) by f(p) = subspace of R¥ parallel to M, and define
f:TM — E(@"(RM)) by sending v, € M, to (f(p),v). Then (f, f) is a
bundle map from TM to the bundle y”(RV). Thus the tangent bundle TM is
equivalent to f*(y"(RV)). Actually, this holds for a// bundles.

6. THEOREM. let ¢ = 7n: E - X be an n-dimensional bundle over a
compact Hausdorfl space X. Then for sufficiently large N there is a map
f1 X = Gu(RN) such that & ~ f*("(RN)).
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If X is a smooth manifold and & is a smooth bundle, then f can be chosen
to be a smooth map.

PROOF. Let Uy, ..., U, be open sets covering X such that each §|U; is trivial.
The Shrinking Lemma (Theorem 1.2-14) holds for the cover U,..., Ur of X,
for the proof merely uses the fact that X is normal. So there is an open cover
Vi,...,V, of X with V; C U;. Similarly, there is an open cover W,..., W, of
X with W; C V;. Let ¢;: X — R be a continuous function which is 1 on W;
and 0 outside of V;.

By assumption on the Uj, there are equivalences

ti: w7 (Up) > Ui x R™.
Composing with the projections U; x R" — R”", we thus obtain maps
1 WU - R”
which are isomorphism on each fibre. Define 7;': E — R" by

0 n(e) ¢ Vi
¢i(m(e)) -ti(e) mle) € Ui

These maps are linear on each fibre, but not one-one on all fibres. Now define

7i'(e) = {

T-E->R'® - --dR"~R™"

by

T(e) = (u'(e),..., 7' (e)).
Then T is linear and one-one on all fibres, so each set T( ~1(x)) is an n-plane
in R, Defining f: X — G,(R™) and f: E— E(y"(R™)) by

f(x) =T (x)) ={T(e) e e 17 (x)} € Gu(R"™")
fle) = (f(n(e)),T(e)) € EG"(R™)),

it is easily checked that (f, f) is a bundle map from § to y"(R"™").
When £ is a smooth bundle, we choose the ¢; to be smooth, and then S will
also be smooth. #

The map f: X = Ga(RV) of Theorem 6 cannot be unique, for Theorem 4
shows that f*(y"(]RN)) ~ g*(y"(RV)) whenever f and g are homotopic. But
in a certain sense this is the only extent to which the representation fails to be
unique:
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7. THEOREM. Let fo, fi: X = G,(R") be two maps such that
fory"(®RY) ~ fi*y"(RY).
Consider the natural inclusion «: Go(RY) — G,(RM), for M > 2N. Then

fo=ao fyand fi = a o f; are homotopic.
If fo and f; are smooth maps, then fo and f; are smoothly homotopic.

PROOF. Tor each x € X we have two n-planes fo(x) and fi(x) € G,(RM).
By assumption, there is a bundle map from the total space of for(y"(RM)) to

the total space of fi*(y"(RN)). Recalling how these bundles are defined, we
see that for each x € X we have an isomorphism

h(x): folx) = fi(x),
depending continuously on x. First we consider a

Special Case. For all x € X and all non-zero v € fo(x), the vector A(x)(v) is
never a negative multiple of v.
In this case, for each 7 € [0, 1] we define a map #,(x): fo(x) = R¥ by

h(x) = (1 — 1) - identity + £ - h(x).
For the image /,(x)(fo(x)) C RY we have
ho(x)(fo(x)) = fo(x)
h(x)(fo(x)) = fi(x).
We define a homotopy f; between fo and f; by
Jr(x) = he(x)(fo(x)).

The assumption in our special case insures that each /,(x) is one-one on fp(x),
so that we have f;(x) € G,(RY). It is not hard to check that (x,7) > fi(x) is
continuous on X X [0, 1], and is therefore the desired homotopy.

General Case. In the general case, the above construction does not work. More-
over, it may happen that the hypothesis for the special case will never occur
even when we replace fp by some homotopic map fo'. It is necessary to look

at the compositions f_o, f_l: X — G.(RM). Note that
Sy ®M) = (@o fi)*y"®RY)
~ fita*y"(RM)
~ f*y"(RY).
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So by hypothesis we have
Now since M > 2N, we can define a map RM — RM by
(ar,...,an,an+1,...,aaN,...) > (@N+1s---, 02N, A1, ..., AN, ... ).

This induces amap S: Gy (RM) - G,(RM), which is homotopic to the identity.
ThusSOf-IZf_l,so

Sy ®RM) = fit (" ®M)) 2 (S o fi)*y"(RY).
But fo and S o f; clearly satisfy the hypotheses of the special case. So we have
foxSofi~fi.

If fo and f] are smooth, so that fo and fi are smooth, then the homotopy
constructed above 1s also smooth.

In algebraic topology it is customary to consider the union G,(R*) of the
increasing sequence
Gu(R™) C Gu(R™?) C -

with the “weak topology™: a set U C Go(R®) = |J; G»(R"*) is open if and
only if UNG,(R") is open in G,(R") for all I. There is a natural n-dimen-
sional bundle y” over G,(R*), defined analogously to y™"(R™), and this bundle
has the following two properties:

(A) For every bundle & over a paracompact space X thereisamap f: X —
Gn(R*) such that § > f*(y"),

B) If fo, fi: X — Gn(R*®) are maps of a paracompact space X into
Go(R*®) with fo*y" >~ fi*y", then fo = f1.

For this reason, y" is called the “universal n-dimensional bundle”, and G,(R*)
is called the “classifying space” for n-dimensional bundles, since equivalence
classes of n-dimensional bundles over X are classified by homotopy classes of
maps of X into G,(R*). Since G,(R*) is not a manifold, we do not work with
these bundles. Instead we will continue to use the bundles y"(RY), which we
also call, somewhat sloppily, “universal bundles”.

All of the preceding discussion can be modified to deal with oriented bun-
dles. Recall that an orientation p for a vector space V is an equivalence class of
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ordered bases for V, where (vy,...,vs) ~ (w1,...,wy) if and only if the matrix
(aij) defined by w; = Y ;aj;v; has det(a;;) > 0. There are only two such
equivalence classes, and the one which is not u is denoted by —u. An oriented
vector space is a pair (V, ), where p is an orientation for V; the condition
(v1,...,Vn) € p is usually expressed by saying that vy,...,v, is positively ori-
ented (with respect to p). Given two oriented vector spaces (V, 1) and (W, v),
we orient V @ W by declaring vy, ..., Vs, Wy, ..., W to be positively oriented
if vy,...,v, and wy,..., W, are positively oriented with respect to i and v,
respectively. Thus the orientation for W @ V is (—1)™" times the orientation
for VoW

An orientation for abundle § = 7: E — X is a collection p = {ux} of ori-
entations for the fibres 7 ~! (x), satisfying an obvious compatibility requirement,
while an oriented bundle is a pair (§, 1), where @ is an orientation for §. An
orientation y for £ gives us another orientation —p = {—pux}; if X is connected,
this is the only other orientation for £. Given two oriented bundles (&, 1£1) and
(62, 12) over the same space X, we can define an orientation on the Whitney
sum & @ &, by using the orientation on the direct sums of fibres described in
the previous paragraph; thus we can define (§; ® &2, ;1 ® p2) to be & & &, with
this orientation. Given an oriented bundle (£, ) over Y, and a continuous map
f: X — Y, there is an obvious way to define an orientation f*u for f*&; thus
we can define f*(&, i) to be the oriented bundle (f*&, f*u).

For two bundles &;, & with orientations 1, iz, respectively, we can speak of
orientation preserving bundle maps and equivalences, or we can simply speak
of bundle maps and equivalences between the oriented bundles (§1, ;1) and
(&2, u2). Notice that the oriented bundles (&, 1) and (§, — ) need not be equiv-
alent. For example, if @ is an orientation of the tangent bundle of S 2 then
(T'S?, 1) and (T'S?, —u) are not equivalent. In fact, an orientation preserving
equivalence from (T'S2, u) to (T'S2, —u) would give us a continuous family of
1somorphisms

A,: S% — S?5,  withall det 4, < 0.

Now a linear transformation A: V — V from a 2-dimensional vector space V
to itself has two complex eigenvalues Ay, A2, and if A; is not real, then A =
A1. But the condition det A = A112 < 0 clearly implies that we do not have
A2 = A1, s0 A has two real eigenvalues of opposite signs. Thus we could use
the A, to continuously pick out a 1-dimensional subspace of S, for all p € S2,
by choosing the eigenvectors with the positive eigenvalue for A,. But such a
continuous choice cannot be made, by Problem 1.9-7.

We define the oriented Grassmannian manifold G,(RY) to be the set of all
oriented n-dimensional subspaces of RY. We have already defined the map
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p: Va(RN) > Gy (RV), where V,(R") is the Stiefel manifold. We can define a
map _
p: Va@®Y) —> Gu(RY)
by setting
ﬁ((vl’ MR} Un)) = (p(vla Tt Un)’ l"’)a

where u is the orientation of p(vy,...,vn) determined by the ordered basis
Ui,...,Un. We give Gy (R™) the quotient topology for p. If po = f)IVnO(RN),
then the diagram

VORYN) —L— v, ®RY) —E— VO®RY)
00 lf’ )
Gn(RY)

commutes; to prove this, one just has to check that the Gram-Schmidt process g
preserves orientation. So the topology on Gn(RN) could also be described as
the quotient topology for go.

Similarly, we can define a map on the special orthogonal group,

&: SO(M) = Gn(RV),

by
G(A) = (A(Wo), ),

where the orientation p on A(Wp) is that determined by the ordered basis
A(ey), ..., A(en). The diagram

VORN) _r Gn(RY)
M SO(N)[ /
SO(N)

commutes, and a| SO(N) is onto for N > n. So, as before, we see that the
topology on G,(R") can be described as the quotient topology for 6. It is then
easy to see that Gn(RV) can be identified with the left coset space

SO(N)/SO(n) x SO(N —n).
There is a natural map 7: G (RV) — Gn(RV) defined by

(W, u) =W.
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If W € Go(RN) and U C G,(RN) is the open set on page 275, with wy, ..., wy,
a fixed orthonormal basis for W, then every V € U can be given the orienta-
tion u(V) determined by the ordered basis vy, . .., Un, where v; are the unique
vectors in V with p(v;) = w;. The sets

UT ={(V,u(V):V eU}
U™ ={(V,-u(V): V € Ui

are easily seen to be disjoint open subsets of Gn(RN). Thus we see that Gn(RY)
is a smooth manifold, and that 7: G,(RV) — G, (RV) is a 2-fold covering. As

a matter of fact, Gy (RV) is clearly the oriented 2-fold covering of the non-
orientable manifold G,(RV), as described in Problem 8-2.

Over G (RN) we define an oriented n-dimensional bundle (G"RM),p) as
follows. The total space E ()7"(RN )) consists of all pairs

(W, ), w) € Gu(RY) xRN such that w € W,

and we define 7((W, 1), w) = W. The vector space structure on a7 (W, )
is defined as before, and we can also define the natural orientation L on

a7 (W, w) = {((W, p), w) tw € W}

by using the orientation y on W. (We ought to use a symbol like pn, ¥, but for
simplicity we won’t.) Note that *y"(RN) is equivalent to the bundle 7H(RN),
where we forget about the orientation p. For M > N there is a natural map
@: Gu(RV) —> Gn(RM), with

G"RY), k) = *F"RM), p).

8. THEOREM. (I) Let (£, u) be an oriented n-dimensional bundle over a
compact Hausdorff space X. Then for sufficiently large N there is a map

f: X - Gn(RN) such that (&, ) =~ f*(7" (RV), ). If X is a smooth manifold
and £ is a smooth bundle, then f can be chosen to be a smooth map.

@) Let fo, fi: X — Gn(RV) be two maps such that fo*(7"(RV),p) =
f*@"(RN), n). Then the compositions fo=ao foand fi =ao f; are ho-
motopic, where o' 5,, (RV) —» 5,, (RM) is the natural inclusion, and M > 2N.
If fo and f; are smooth maps, then fo and £} are smoothly homotopic.

PROOF. Left to the reader. %
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3. THE PFAFFIAN

We have already given an intrinsic expression, as well as an expression in
terms of a coordinate system, for the function K, on a compact oriented Rie-
mannian manifold M of even dimension n = 2m. But the most important
expression for K, mnvolves the curvature forms Q; for a positively oriented or-
thonormal moving frame Xj,..., Xy on M. In terms of these forms, we can
easily write down the n-form K, dV which we want to integrate over M. We
will be using the symbol &/1-/n (defined on pg IV.68); notice that a sum over
permutations, like

> AXqys s Xniy)s

neSy

for example, can just as well be written as

S e, X
Jlseenrn
Now consider the m-fold wedge product
i in—
QA AN
Irom the definition of A we have (remembering that the Q; are 2-forms)
QLA AQT(X, LX)

Q2+---4+2) 1 L i
= ) Z Sjl"']”Q:';(Xiniz)"'Q;n I(lel—l7Xj)

A28 !
Jlseesin
1 L
= W ’ Z gl <1{(‘/\/11 ’ XjZ)XiZ’ Xil) T <R(Xj:1—l ’ X]’”)Xi”, Xin—l)
J1seeesdn
1 L
- on/2 ' Z gltIn RiliZjIjZ e Rin—lilzjn—ljn (SCC Pg 11190)
J1seesdn

So the formula on page 264 gives

1 . . )
= —2n/2”| Z gltedn /2 Q:'z A A Q;::—l(xl’ LX),

Iyedn

K

and thus

1 Y ;
KpdV =— > &l Ao A
n! 12 in

iyennsdn




The Generalized Gauss-Bonnet Theorem ’ 285

This computation shows, in particular, that the form on the right does not
depend on the choice of the positively oriented orthonormal moving frame
X1, ..., Xu. Itis also possible to prove this fact directly, by the following algebraic
considerations.

For an n x n matrix A = (a;;) with n = 2m even, we define the Pfaffian
Pf(A4) of A by

1 L
Pf(A) - 2”’—m' A Z sllmlnailiZ Qi yip-

It will soon become clear why the factor 1/2™m! should appear. At the mo-
ment we can account for the 1/m! by observing that our expression has a
lot of redundancy in it. Note first that &'~ does not change when we in-
terchange iy—; and iy —; and also iy and i; more generally, it does not
change when we perform any permutation of the pairs (iz—1,i21). So for any
set P = {(h1,k1),...,(hm,km)} of pairs of integers between 1 and n, it makes
sense to define
s(P) = ghki-hmkm.

it is not necessary to specify any ordering on the pairs (h;, k;) in P. Notice also
that a permutation of the pairs (io7—1,iz7) does not change the factor

QAiyiy " Qip_yin-
So for each P as above we can define
ap = ahlkl o 'ahmkm'

If 2 is the collection of all such P, we then clearly have

Pf(4) = 51-”- > &(P)ap.

Pe?P

9. PROPOSITION. Letn = 2m be even. Then for all n x n matrices A and B

we have

Pf(B'AB) = (det B) - Pf(4),

where t denotes the transpose. In particular, if B € SO(#n), then

Pf(B~'4AB) = Pf(A).
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PROOF. We have
2"m!Pf(B'AB)

— ’l R
= 2 gl § (bjmajuz bjsiy) -+ Bjuyin_ jn— 1inOinin)

i1...ip . . . .
§ [ § € bjm"'bjntn]'ajuz"'ajn—un

J1seees Jn i1,
- § : (e det B) - Ajyja Ajn_yjn
Jiseees Jn

= 2™m! (det B) Pf(A). %

Proposition 9 was stated for matrices of real numbers, but Pf(A4) can be
defined so long as the entries of A are in some commutative algebra A over R.
It is easy to see that Proposition 9 still holds when 4 and B have entries in oA;
in fact, the proof works without change. We could also deduce this extended
version from the original Proposition by the “principle of extension of algebraic
identities”: First consider the ring R[4;;, B;;] obtained by adjoining commuting
indeterminants A4;; and B;j to R. Then the polynomials

Pf(B*4B) and (det B) - Pf(A)

are elements of R[A;;, Bij]. Proposition 9 tells us that these polynomials have
the same values on all (a;j), (b;;) for a;;,bi; € R. Therefore they are equal
as polynomials in the indeterminants A;;, Bij. So these polynomials are equal
when we substitute elements a;;, b;; of the algebra A for the indeterminants
Aij, Bij. QED.

Now let us consider once again a positively oriented orthonormal moving
frame X = X),..., X, on M, with curvature forms Q’ For each p € M, the
direct sum

A=R @ QM,) & Q* (M) & -
is a commutative algebra over R, under A. Consequently, it makes sense to
write Pf(Q2(p)), where Q(p) is the n x n matrix (Q (p)) of connection 2-forms
at p. In fact, we clearly have

1 .
PRQ(P) = 5 D £ QA AL (p).
il in
Now if X’ = X - a is another posmvely oriented orthonormal moving frame,
then a(p) € O(n), and by Proposition II.7-15 the corresponding curvature
forms (Q’;'.) satisfy
Q' =a'Qa.
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Then Proposition 9, in its extended form, shows that
PE(Q/(p)) = Pf(a~ (p)Q(p)a(p)) = PE(Q(p));

thus the form )
Z Si""i" Qi' A A an—l
iZ in
il in

is indeed well-defined.
Later on we will need to know the important algebraic properties of Pf(4)
that hold when A is skew-symmetric. In this case, even the expression

Pf(A) = 2lm > e(Pap

Pep

1s redundant, fOI‘ thC term
5J' wd 7
! " iyiz " Qiy_yip

is unchanged when we interchange iy and iy. Let P C P be the collection
ofall P = {(h1,k1),...,(hm,km)} € P with h; < k; for all i. Then for skew-
symmetric A we clearly have

Pf(4) = ) &(P)ap,

Pep’

which is a polynomial with integer coefficients. (It follows that Pf(A) can be
defined for a skew-symmetric matrix A with entries in any commutative ring 4
with unit.)

There is an important canonical form for skew-symmetric matrices, which 1s

merely a reformulation of the following result which has already appeared in
Problem 1.7-8.

10. PROPOSITION. Let V be an n-dimensional vector space, and let « €
Q2(V). Then there is a basis ¢, ..., ¢, of V* such that

a=(p; Ady)+ -+ (P2r—1 A P2r)

for some r. (For o = 0 we must allow the vacuous sum, with r = 0.) If {¢;} is
the dual basis to {v;}, this means that

1)

{a(vzi—l,vzi) = —a(vy,v2i-1) =1 fori<r

a(vi,v;)) =0 for all other pairs i, j.
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PROOF. We use induction on n, the result being trivial for n = 1. Assume the
result is true for dimensions < n, and consider a non-zero o € Q2%(V), where V
has dimension n. There exist vi,v2 € V with a(v,v2) = 1; let [v1, v2] be the
subspace generated by vy and v2. Now consider the subspace W C V of all
v € V such that a(v,v) = a(vy,v) = 0. This subspace W is ker f1 Nker f>
where fi: V — Ris defined by fi(v) = a(v;, v). So dim W > n—2. Moreover,
we clearly have W N [vy, v2] = {0}, sodimW =n—2and V = [v,v2] & W.
Since the result is assumed true for a|W x W, there is a basis v3, ..., Un of W
such that (1) holds for these v;. Then vi,v2,v3,...,Vn is the desired basis. ¢

11. COROLLARY. Let A = (a;j) beann xn skew-symmetric matrix. Then
there is a non-singular n x n matrix B such that

U

B'AB = S
0 °

0 1

s_(_l 0).

PROOF. Let ey, ..., ey be the standard basis of R”, and define o € Q2(R") by

a(e,-,ej) = ajj.

where S is the matrix

Let vy, ..., Un be the basis of R” given by Proposition 10, and let B = (bij) be
the matrix defined by

n
vy = Zbk,-ek.
k=1
Then
a(vi,vj) = a(zbkiek, Zbljel)
K !
= Zbkiblja(ekael)
k.l
=Y bibjjan = (B'AB)ij,
k.l

which gives the desired result. <
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Using the expression

Pf(A) = Z e(P)ap

Pey!

for skew-symmetric A, it is easy to compute that

Pf(S » )
0 s

On the other hand, this matrix also has determinant = 1. This gives us

12. COROLLARY. For every skew-symmetric # X n matrix A with n = 2m
even we have

{Pf(A4)}? = det A.

PROOF. Ttsuffices to prove this when det A4 # 0, since both sides are continuous
functions of the entries of A and the matrices with non-zero determinant are
dense. By Corollary 11, there is a non-singular n x n matrix B with

s -0
BAB=(O'. S).

S
1=det( O )=(detB)2-detA,
0 =

while Proposition 9 gives

S
1=Pf( O ) = (det B) Pf(A4).
0 s

For a skew-symmetric n x n matrix A with n odd we define

Then

Pf(4) = 0.
Note that in this case we have
det A = det A' = det(—A4) = (—1)"det A = det 4 =0.

So Corollary 12 still holds.
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For even n the skew-symmetry of 4 is likewise crucial in Corollary 12. If
we consider det(4;;) as a polynomial in n* independent commuting variables
Ajj, then det(A4;;) is not the square of another polynomial. But if we consider
det(4;;) as a polynomial in the n(n — 1)/2 independent commuting variables
A,'j fori < j [and define A;; = 0, A,'j = —Aj,' for i > ]], then dCt(A,'j) =
{Pf(A4)}? as polynomials in these A;;, since the two polynomials give the same
results when applied to all real numbers a;;, i < j. Since R[4;;] is a unique
factorization domain, Pf(A4) and — Pf(A) are the only two polynomials with this
property. The principal of extension of algebraic identities shows that det 4 =
{Pf(4)}* when A is a 2m x 2m skew-symmetric matrix with entries in any
commutative ring » with unit.

[By working in the ring R[4;;], we could have produced the Pfaffian in a
neat, mysterious, way that avoids all computations. For there is a matrix X
with entries in the quotient field of R[A4;;] such that

S0

0 s
Hence the polynomial det A in R[4;;] is the square (det X)~? in the quotient
field of R[A;;]. Since R[4;;] is a unique factorization domain, this implies that
det A is already a square in R[4;;]. There are only two possible elements Pf(4)

for det A4 to be the square of, and we determine Pf(4) by requiring that Pf have
the value +1 on
S0

0 =
Similarly, if we consider the ring R[A4;;, Biy, - .-, B,,] in the indeterminants A4;;

for i < j, and By for all i, j, then the identity det B'AB = (det B)®det 4
implies that

Xtax =

Pf(B'AB) = +(det B) Pf 4,

and by choosing B = I we sce that the sign must be +1.]

As a rather trivial example of the use of polynomial rings to avoid some
computations, we prove one more simple, but important property of Pf. If A
and B are two square matrices, we will use 4 @ B for the matrix

(o )



The Generalized Gauss-Bonnet Theorem 291

13. COROLLARY. For all skew-symmetric matrices A and B we have

Pf(A ® B) = Pf(A) - Pf(B).

Note: This result holds even when A4 or B, or both, 1s of odd order. In that case
it says that Pf(4 ® B) = 0.

PROOF. By Corollary 12 (which holds even for matrices of odd order) we have
) {Pf(A @ B)}* = det(A ® B) = det A - det B = {Pf(A) Pf(B)}?,

and thus

(2) Pf(4 @ B) = £+ Pf(A) Pf(B).

If A or B is of odd order, then we already have Pf(4 & B) = 0. For 4 and B of
even order, we just need to determine the sign in (2). Now the same sign must
hold in (2) for all 4 and B, for we may consider equation (1) as an equation in
the ring R[4;;, Bij] with commuting variables A;;, B;; (i < j in both cases).
Letting A and B be of the form S @ --- @ S, we see that the + sign always
holds. %

4. DEFINING THE EULER CLASS
IN TERMS OF A CONNECTION

Consider a smooth oriented n-dimensional vector bundle § = n: E - M,
over a smooth manifold M (of any dimension). For compact orientable M
we defined the Euler class x(§) € H"(M) in Chapter I.11. To do this, we
first defined the Thom class U(§) € H!(E), and we proved (Theorem I.11-
26) that U(£) is the unique class whose restriction to each fibre 77 1(p) is the
generator v, € H"(7w~!(p)) determined by the orientation. From this result we
can immediately conclude

14. LEMMA. Let £ = n: E — M be a smooth oriented vector bundle over
a compact oriented manifold M, and let f: M’ — M be a smooth map,
where M’ is also a compact oriented manifold. If E’ is the total space of f*¢,
and f: E’ — E is a bundle map covering f, then

fXUE) = U(f*€) € HINE).
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PROOF. Note first that f is proper (the inverse image of a compact set is
compact), so f* does take H!(E) to H'(E'). Let f*§ be n': E' - M.
If p’ € M’ is any point, and j, : n'~!(p’) = E’is the inclusion, then

Jp* FRUE) = (f o ju)*U(£).

If we recall how f*£ is defined, we see that (fojp/)*U(E) must be the generator
of Hc"(n’_l(p’)), since jr(py*U(§) 1s the generator of Hc"(n_l(f(p’))). This

shows that f*U(E) must be U (f*&). %

We defined the Euler class x(£) to be s*U(§), for any section s of §. In

particular, we can choose s = 0 = the zero section. Hence

15. PROPOSITION. Leté =n: E — M be a smooth oriented vector bundle
over a compact oriented manifold M, and let f: M" — M be a smooth map,
where M’ is also a compact oriented manifold. Then

ST x€) = x(f*§) € H"(M).
PROOF. If 0/ denotes the zero section of f*£, then f o0 =00 f. So
x(S*E) = )Y U(f*E)
= (0)* f*U (&) by Lemma 14
= ([o0)*UE) =00 /)*UE)
= fr0U(§) = f*x(§). %

As a particular consequence, we note a result which we will need later on.

16. COROLLARY. If # is even, then
XF"RY)) #0
for all N > n.

PROOF. Since S" C RN for N > n, we have a bundle map (f, f): TS" —
E(p"(RN)), as on page 277. So

X(TS™) = [*x(7"(RY)).

But Theorem I.11-30 says that x(7'S") is x(S") times the fundamental class
of §”, and x(S") =2#0. &
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The Euler class has one further Important property which it is not really
essential to prove at this point, for it could eventually be derived from other
results of this section. Nevertheless, it will motivate much of the argument to
come.

17. THEOREM. Let & = z;: Ei - M for i = 1,2 be smooth oriented
vector bundles over a compact oriented manifold M. Then X(& @ &) is the
cup product

X1 ® &) = x(&1) U x(£&).

PROOF. The Whitney sum & @ & is 7: E — M where E C Ey x E; 1s
{(e1,€2) 1 mi(er) = my(ez)}. Let pi: E — E; be the restriction of the projection
maps Ey x E; — E;. For any p € M, let

j:n_l(p)—>E, j;:n,-_l(p)—>E,~
be the inclusions, and let
oi:m ' (p) x w27 (p) — 7 (p)
be the projections. Then
Jiooi=p;oj.
So
J (1™ Ui (1) v p2"Ua(£2)) = (p1 o j)*Ui(€) U (0 o J*U28)
= 01" ji*Ui(§) v 0r* j* Us(£)
= 01" U 02"y,

where v; is the generator of H (m:~'(p)) determined by the orientation on
77N (p). But o1*v; U ay*v; s casily seen to be the generator of the group

H "2 (g~ (p)xm2~'(p)) determined by the orientation on ;=" (p) x 7,1 (p)
(given on page 281). It follows that

1" UL (E1) w p2*Us(&) = U (§), the Thom class of £.
So if s; are sections of &;, then for the obvious section 81 + 52 of & we have

X(E) = (51 +52)*U () = (51 + 52)*(01* Ui (1) w p2*Us(£2))
= [p1 o (51 +52)]"Ui(&1) U [p2 0 (51 + 52)]*Ua (&)
= 51"U1(§1) U 52*Us (&)
= X1(81) U x2(&2). %
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Now we are going to look at principal bundles associated with a smooth ori-
ented n-dimensional vector bundle § = n: E — M over a smooth manifold M.
We have already considered the principal bundle F(§) of frames of E. If we
have a Riemannian metric { , ) for &, then, as in Chapter 7, we can consider
the bundle O(E) of orthonormal frames, which is a principal bundle with group
O(n). Since we will be considering only paracompact manifolds M, we know
(see pg. I1. 342) that there is an Eheresmann connection @ on the bundle O(E).
Thus w is a matrix of 1-forms (wj’:) on O(E) taking values in 0(n); the curvature
form = Dw is a matrix of 2-forms (Q;-), also with values in 0(n). [Since we
will seldom be working with TM any more, and never with moving frames, we
will not resort to any special symbolism to distinguish the forms wj':, Q} defined
on a bundle from those defined for some moving frame.] As we pointed out
in Chapter 7, a connection @ on O(E) is equivalent to a covariant differentia-
tion operator on E which is compatible with the metric { , ). In the case of a
general bundle & over M there will be many connections compatible with the
metric { , ); we cannot single one out by asking for a symmetric connection,
as this concept makes sense only for the tangent bundle. Since our bundle §
is oriented, we can also consider the bundle SO(E) of positively oriented or-
thonormal frames; if X is connected, it is simply one of the two components
of O(E). The group of this bundle is SO(n), whose Lie algebra is also o(n).
So a connection @ on SO(n) again has values in o(n), as does the matrix of
2-forms 2.

Now let us specialize to the case of a smooth oriented n-dimensional vector
bundle £ = n: E — M over M, where n = 2m is even. If ( , ) is a Riemannian
metric for &, and w is a connection on the corresponding principal bundle
w: SO(E) — M, then we can consider the n-form

2m-mPEQ) = ). gtin Qi AL A QI
iy in

which is defined on the bundle SO(E). The following proof is merely an invariant
formulation of an argument presented in the last section.

18. PROPOSITION. There is a unique n-form A on M such that
@A) = Y QLA A Q' = 2"m! PR(Q).
il yein

PROOF. Given Xi,..., Xn € M,, choose some u € o~ 1(p),andlet Yi,...,Yu
€ SO(E), be tangent vectors with @w,Y; = X;. Clearly A must satisfy

AX1,. .. X)) = 2"m! PEQ) (Y1, . .., Yo),
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which proves uniqueness. Existence will be demonstrated once we prove that
this A is well-defined.

Consider first what happens when we take different tangent vectors Z;, . . .,
Zy € SO(E), with @, Z; = X;. Since w«(Y; — Z;) =0, all Y; — Z; are vertical.
But Q(Y, Z) = 0 if either Y or Z is vertical. So we clearly have

PE(Q)(Y1. ..., Yn) = PE(Q)(ZL, Ys,. .., Yy)
=PRQNZ\,Z2, Ys,...,Y,) = - --
=PHQNZ,, ..., Zy).

Thus the definition of A does not depend on the choice of the ;.
Now suppose we choose a different # € w™!(p). Then it = Ry(u) =u - A
for some A € SO(n), and we can let the ¥; € SO(E); be ¥; = Ry,Y;. Then

PE(Q)(Y1,...,Y,) = PE(Q)(RanY1, . .., RanYy)
= Pf(RA&*Q)(Y1,...,Y,)
=PfAT'QA(Y,...,Y,) by Proposition II.8-11
=PI(Q)}Y1,....Y,) by Proposition 9. «

We also have the following result, which is automatic when £ is the tangent
bundle of M.

19. PROPOSITION. The unique n-form A of Proposition 18 is closed, dA = 0.

PROOF. Given Xy,...,Xyq1 € My, choose u € w~!(p) and Yy,...,Ypyy €
SO(E), with w,Y; = X;. Let hY; be the horizontal component of ¥;. Then

dA(Xy,..., Xnp) =dA (@Y, ..., @ Yas1)
=dA(whYy,..., ThY )
= (@*dA)(hYy,...,hY,qy)
=d(@*A)hYy,...,hY )
=2"m! d{Pf(Q)}(hY1,...,hY, 1)
= 2"m! D{PL(Q)}(Y1,..., Yns1).

But DQ = 0 by Bianchi’s identity (Theorem II.8-20), and this implies that
D{Pf(2)} = 0. ¢
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In view of Proposition 19, the n-form A determines a de Rham cohomology
class [A] € H*(M). The form A itself depends on the oriented n-dimensional
bundle § = 7: E — M over M, on the choice of a metric { , ) for §, and on
the connection w on the corresponding bundle SO(E).

20. PROPOSITION. The cohomology class [A] is independent of the metric
{ , ) and of the connection w.

PROOF. Let { , ) and ( , ) be two metrics for §. By Corollary 5, the corre-
sponding principle bundles SO(E) and SO'(E) are equivalent. If f: SO'(E) —
SO(E) is a fibre preserving diffeomorphism which commutes with the action
of SO(n), and w is a connection on SO(FE), then o’ = f*w 1S a connection
on SO'(E). It is easy to see that the corresponding curvature forms satisfy
Q' = f*Q, so that Pf(Q) = f*Pf(Q). This implies that the corresponding
forms A’ and A are actually equal. To complete the proof it therefore suffices
to show that any two connections wp, @ on the same principal bundle SO(E)
give rise to forms Ag and A whose difference 1s exact.

Let g: M x [0,1] — M be the projection g(p,t) = p, and consider the
bundle g* SO(£) over M x [0,1]. There are obvious induced connections ¢*wo
and g*w; on g* SO(§). Let v: M x [0,1] — [0,1] be the function t(p,t) = ¢,
and form the connection

o =(1-1)(q*wo) + T(q"w1)

on g* SO(£), with connection form , say. If i;: M — M x [0,1] is ir(p) =
(p.1), then io*(w) can clearly be identified with wp, and i1* (@) can be identified
with @;. By Propositions 18 and 19 (which hold for manifolds-with-boundary
as well as for manifolds), there is a closed n-form A on M x [0, 1] which pulls
back to 2™m! Pf() on the total space of g* SO(§). Clearly we must have

io*A = A() and il*A = A].
Now Theorem L.7-17 (pg. 1.224) shows that Ay — Ag is exact. %

We thus see that every oriented smooth bundle & over M of even fibre dimen-
sion n determines a de Rham cohomology class C(§) = [A] € H"(N). Clearly

CE=Cmif §x=n.

21. PROPOSITION. Let & = n: E — M be a smooth oriented bundle
over M of even fibre dimension n, and let f: M’ — M be a smooth map.
Then

C(f*) = f*(C(®) € H'(M).
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PROOF. Let E’ be the total space of f*£, and let f: E’ — FE be the bundle

map covering f. If (,) isa rr_1€tric on E, then f*( , ) 15 a metric on E’.
Clearly there is an equivalence f: SO(E’) — SO(E) covering f.

SO(E") _f SO(E)

4

M —
If w 1s a connection on SO(E), then f_*(w) will be a connection on SO(E"),

and it is easy to see that the corresponding connection forms satisfy Q' = f*Q.
Consequently,

PA(Q) = PR(f*Q) = f*PI(Q).
For the n-forms A on M given by Proposition 18 we then have
@ (f*A) = [*o*A
=2"m! f*Pf()
=2"m! Pf(Q').

So f*A must be the n-form A’ on M’ given by Proposition 18. #
g y Frop

We will extend the definition of C by seting C(§) = 0 when £ 15 a smooth
oriented bundle of odd fibre dimension. We would like to show that C(§) 1s
always some constant times x(§). If this is the case, then we ought to have an
analogue of Theorem 17 for C. And indeed we do.

22. THEOREM. Leté& =m;: E; — M fori = 1,2 be smooth oriented vector
bundles over M, of fibre dimensions #y and ny. If n; = 2m;, then

(my + my)!

C&E s = WC(EI) v C(62).

(I'or ny or np odd, this just asserts that C(&; & &) = 0.)

PROOF. Choose Riemannian metrics { , ); on &;, and let { , ) be the obvious
metric { , )1 ®(, roné@éE =a: FE > M. Let w;: SO(E;) > M and
@ : SO(E) — M be the corresponding principal bundles. Over M we consider
first the principal bundle SO(E{) * SO(E3), with group SO(n;) x SO(ny) C
SO(ny + n32), whose fibre over p € M is just the direct product w1 N (p) x
w1 (p), so that we can regard

SO(E1) * SO(E;) C SO(E).
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Let pi: SO(E;)*SO(E2) — SO(E;) be the obvious projection maps. If w; are
connections on SO(E;), with curvature forms £2;, then

prrwi 0
pr*w; @ pfwr = ( 0 N )
p2 w2

is a connection @ on SO(E1) * SO(E,), with curvature form

5 p1* 82 0
Q= p*Q *Q, = .
o1 S21 B p2 82z ( 0 pz*Qz)

The connection @ can be extended uniquely to a connection @ on SO(E)
[the requirement @ (o (M)) = M determines @ at the new vertical vectors,
hence @ is determined at all points of SO(E1) * SO(E3), and then at all points
of SO(E) by the requirement &(R4*Y) = Ad(A~Ha(Y)]. At any point e €
SO(E}) * SO(E3) the horizontal vectors for @ are the same as for @, so at e we
have

Q=0Q [on tangent vectors to SO(E}) * SO(E?)]
— Pf(Q) = PI(Q) = Pf(p1*21) A Pf(p2*Q2) by Corollary 13
= p*PI(Q1) A p2* PE(S22).

Soif A;, A are the forms given by Proposition 18, then at e we must have

w* A =22 (my + my)! Pf(Q2) [on tangent vectors to SO(E1) * SO(E2)]

!
= %2m'm1! p1* PE(Q21) A 272ma! " PR(Q2)
1- .
my + my)!
- (—n;%m*wl*m A p2" @t Az
1- .
!
1-M3.

This implies that
_ (m +m)!
T omytmy!

A A1 A A2. @

Applying Theorem 22 when n; = 1, we immediately deduce that the class C
has a property which we have already mentioned for x (pg. 1.445):
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23. COROLLARY. If the oriented bundle £ = 7: E — M has a nowhere

zero section §, then

cE =0
PROOF. let E; C E be
U R-s(p),
pPeEM

and let E; C E be the orthogonal complement

U ®-s(ppt

pPeEM

with respect to some Riemannian metric on E. Then & = m|E: E; > M 1s
an oriented 1-dimensional bundle, so & = m,|E;: E; — M 1s also an oriented
bundle (since & 1s oriented). Clearly £ ~ & @ &,. So Theorem 22 shows that
CE)=0. %

But this fact practically characterizes y:

24, COROLLARY. If £ =n: F — M is a smooth oriented vector bundle of
fibre dimension n over a compact oriented manifold M, then the class C(§) €
H"(M) is a multiple of the Euler class x(&).

PROOF. Let S be the sphere bundle S = {e € E : (e,e) = 1} formed with
respect to some Riemannian metric on E, and let 7p: S — X be the restriction
7|S. As we pointed out in section 2, the bundle 7¢*£ has a nowhere zero section.
So Corollary 23 gives

0= C(mo*§)
= 10" C(£) by Proposition 21.

But Theorem I.11-31 says that a class @ € H"(M) satisfies mo*« = 0 if and only
if o 1s a multiple of x(&). #

If we apply this corollary to the tangent bundle of a compact oriented man-
ifold M of even dimension n, we find that the class C(TM) € H"(M) is some
multiple of the Euler class x(TM). This statement is not very interesting, since
H"(M) is 1-dimensional (all it tells us is that C(TM) = 0 if x(TM) = 0). But
we obtain a statement which is interesting when we apply the corollary to the
universal bundle:
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25. COROLLARY. For every even n, there is a “universal constant” 4, such
that

C) = An - x(8)

for all smooth oriented n-dimensional bundles £ over compact oriented mani-

folds.

PROOF. Consider the bundles "(RV), for N > n. By Corollary 24, there are
constants A, x such that

m CH"RN)) = A - x(7"(®RY)) € H"(Gu(RY)).
If «: an(RN) — 5,, (RM) is the natural inclusion, then

o* (7" (RM)) = 7" RY),
so Propositions 15 and 21 give

) CH"(RV)) = a*C(F"(RM))
(3) XG"RN)) = o* x (G"RM)).

Equations (1)—(3) give
Apn - XG"RY)) = A m - xGRY)).

Since x(7"(RN)) = 0 by Corollary 16, this implies that A,y = Au,pm for all
N, M > n. Denoting this common number by A4,, we have

(*) CH"RY)) = 4n - x(G"(RM)).

Now by Theorem 8 any smooth oriented n-dimensional bundle § over a com-
pact manifold M is equivalent to f *p"(RN) for some smooth map f: M —

5,, (RV). Thus

C() = C(f*7"RM)

= f*CF"(RY)) by Proposition 21
= An- [*XG"RY)) by ()
= An - x(§) by Proposition 15. ¢

To see what this universal constant 4, is, we merely have to compute 1t In
some convenient special case:



The Generalized Gauss-Bonnet Theorem 301

26. THEOREM (THE GAUSS-BONNET-CHERN THEOREM). For even

n = 2m, the constant 4, is

Ap = ? -volume of the unit n-sphere S”
n! gmantig!
= - ——— =71"2"m!.
2 n!

Consequently, if (M,( , )) is a compact oriented manifold of even dimension
n = 2m, then

1
/ KndV = —volume of S" - x(M)
M 2

man .y
= T ).
PROOF. Let & be the tangent bundle TM of a compact oriented Riemannian
n-manifold M. On page 284 we have a formula for K, dV (in this formula the
SZ; are the curvature forms for some positively oriented orthonormal moving
frame) which clearly implies that the form A given by Proposition 18 for the
bundle SO(¢) = SO(TM) is

A=n'K,dV.
So if u is the fundamental class of M, then

1 1
([ 57) 5= (], 2) = e

An
= —nTX@)

A
= —:'X(M) - by Theorem 1.11-30.
n!

Hence
A
) / KndV = 2 x(M).
M n!
Taking M = S" in (1), with K, = 1, we have
A 24
volume §" = ~Ex(S§") = ="
n! n!
! P rmantpg)
= A, = %volume St = % n—'m =a"2"m!, by Problem 1.9-14.
n!

Substituting this value of A, back into (1) we now have, for any M,

mam
/ K,,dV:n " X(M). &
M n!
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5. THE CONCEPT OF CHARACTERISTIC CLASSES

Our proof of the generalized Gauss-Bonnet theorem made essential use of
the fact that both the Euler class x(£) and the class C (&) are “natural”: for a
bundle § = 7: E - M and amap f: M’ — M we have

X(f*) = *(x®) and  C(S*E) = ST(CE)).

This suggests that we might obtain greater insight into the theorem by trying to
find out what al/ such natural classes are. To be precise, we define a character-
istic class of dimension k for smooth n-dimensional bundles to be a function C
which associates to each smooth n-dimensional bundle £ = n: £ — M an
element

C(§) e H* (M),

with the following property: if § = n': E' - M’ is another smooth n-dimen-
sional bundle, and (f, f) is a smooth bundle map from £’ to &, then

C(E) = f*(CE®) e H'(M)).

Here is an equivalent formulation: C(§) = C(n) if § > n, and for every smooth
n-dimensional bundle £ = 7: E — M and smooth map f: M’ — M we have

C(f*§) = [*(C(§)).

We can also define characteristic classes for oriented bundles; these are the
characteristic classes that we will actually investigate. What we would like to
do is to find out what all these characteristic classes are. This question might
look hopeless, were it not for the universal bundles 7"(RY). Notice that a
characteristic class C of dimension k for smooth n-dimensional bundles gives
us, in particular, certain elements

cn = C(F"RM)) € HX(G4(RV)).

If
an v Gu(RY) - Gu®RY) N >N

is the natural map, then
an Nt T RY)) = 7" (RY) = annTen =N,
Conversely, suppose we are given classes

en € HM(GR(RY))
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satisfying the compatibility condition
(C) aN NTCN  =c¢N for N' > N,

Since, by Theorem 8, any oriented n-dimensional bundle £ over a compact M
is equivalent to f*7"(RV) for some [ M — G,(RV), we can define

C) = f*en.

Then C () is well-defined, for if we have

fiM > G,RY) and g: M - G,RY)
with

S7RY) >~ gt RY),

then the compositions

aN,N”Of; aN’,N”Oga N”zZN,2N’
are homotopic, so

f*cN = f*aN,N”*cN” by COHditiOﬂ (C)
= (an,N7 o ) enr

= (aN’,N” (e} g)*CN//
= g*cnr.

Moreover, if h: M’ — M is a smooth map, then

C(h*€) = C(h*f*7"(RN))
_ h*f*CN
= h*C(¢).

So we could just as well define a characteristic class of dimension k for smooth
oriented n-dimensional bundles to be a collection of classes

en € H¥(G,(RM))
satisfying

(C) CYN,N’*CN’ =CN for N' > N.
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Now the problem doesn’t seem quite sO formidable; the main task seems to be
the computation of H k(én (RV)). As a matter of fact, it will turn out that the
maps

an s HEGo®Y) = HX(Gn(R™))

are isomorphisms for N,N' > n+k. So a characteristic class of dimension k will
be just the same as an element of Hk(a,,(RN)), for any N > n +k.

[If we were willing to work with singular cohomology, say, on spaces which
are not manifolds, then we could define a characteristic class to be simply an
element of the k-dimensional cohomology of the space Gn(R®), the oriented
version of the space G,(R*) defined on page 280.]

Now the calculation of cohomology groups is really the business of algebraic
topologists, and all sorts of machinery has been used for computing character-
istic classes [for all coefficient groups]. Rather than using any of the standard
methods from this field, we will compute characteristic classes by purely differen-
tial geometric methods, making essential use of the fact that the Grassmannians
are coset spaces of Lie groups. Although the procedure is quite involved, along
the way we will get to look at several topics which are interesting in their own
right. Moreover, the analysis will motivate the definition, in section 10, of one
of the famous constructions in differential geometry. Finally, the Pfaffian will
arise in a completely natural way.

6. THE COHOMOLOGY OF HOMOGENEOUS SPACES

By a homogeneous space we will mean a left coset space G/H, where G 1s a
Lie group and H is a closed subgroup. We let 7: G — G/H be the natural
projection 7(a) = aH, and we give G/H the quotient topology: a set UcG/H
is open if and only if 7~ (U) C G is open. It is an casy exercise to show that
G/H is Hausdorf. Notice also that if V' C G is any set, then

@) en(V) <= aHe{bH b e Vi
<= aH =bH forsome b e V
< ae€bH for some b € V.

So
a M avy=V-H=J V- h
heH

This shows that 7(V) C G/H is open if V C G is open; thus 7 is an open map,
as well as a continuous one.
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Tor every a € G we have a map L,: G/H — G/H given by L,(bH) = abH
(the notation L,: G — G will be reserved for the map given by L,(b) = ab).
Obviously the diagram

G—L - G/H

L L.

G—" -G/H
commutes, which implies that L, is continuous; more generally, it is easy to see
that the map

G xG/H - G givenby (a,bH)v> abH

1s continuous.

In this section we will show that G/H is a manifold, and we will find a method
of computing the de Rham cohomology H*(G/H) when G is compact and
connected. More precisely, we will reduce the determination of the de Rham
cohomology to purely algebraic calculations involving the Lie algebras of G
and H. In section 9 we will carry out a sufficient portion of the algebraic
calculations for the Grassmannians én(RN) = SO(N)/SO(n) x SO(N —n) to
determine all characteristic classes for oriented bundles.

We already know, from Theorem 1.10-15, that the closed subgroup H of G is
a Lie subgroup; in fact, there is a C* structure on H, with the relative topology,
that makes it a Lie subgroup of G.

27. PROPOSITION. Let G be a Lie group of dimension n, and H a closed
subgroup of dimension d. Then G/H is a topological manifold of dimension
n —d, and there 1s a unique C* structure on G/H such that
) m:G—> G/HisC™
(1) For every point of G/H there is a neighborhood U and a C*® section
$: U — G (amap s: U — G satisfying 7 o s = identity).

PROOF. Trom the proof of Theorem 1.10-15 we know that there is a coordinate
system (x, U) around e with
x(e)=0
x(U) = (—¢¢) x--- x (—¢5¢),

such that each slice

d+1

X = constant, . .., x" = constant
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is an open subset of some left coset of H. In particular, the slice S, through e
is an open subset of H. Since H has the relative topology, this slice is of the
form V N H for some open set V. So by choosing & smaller, if necessary, we can
assume that
UNH=S..
We will now show that we can arrange for all slices to lie on different cosets
of H. Choose &1,¢2 < ¢ so that the sets U; with x(U;) = (—&i, 81) % - - x(—¢i, )

satisfy
U~ U cU,, Uy, -UscCU.

If a,b € U, satsfy aH = bH, then
blacUyNH=UyNS, = acbh-(U2NS).

Now b - (U> N S,) is connected and lies in U, so it lies in a single slice. This
shows that @ and b lie in the same slice. Equivalently, different slices of U,
lie in different cosets, as desired. For convenience, we assume that U; 1s our
original U.

If we now consider the “cross-section” C C U defined by

C=laecl :xl(a)=~-=xd(a)=0},
we see that
x|C: C —- G/H

is one-one, with image 7(C) = n(U), which is open in G/H. Since 7 1s both
continuous and open, the map 7|C is a homeomorphism. The inverse home-
omorphism

x=@C)y ' rU)—>C

can be regarded as a map 1nto R~ we will use this map as a coordinate system
around the coset H in G/H. For every a € G we let xq be the composition

Lo (zlC)™!

n@-U) —— a(U) —
Then for a,b € G we have

Xaoxp ' = (@C) T oLgoLyom|C
on the set W = xp((@a-U)Nn(b- U)).

For ¢ € C we have
L,1Ly(|C)(c) =a~'bcH,
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and it is easy to check that if ¢ € W, then
(IC) T Lam1 Ly (xIC)(e) = a ™ be.

This shows that x, and xp are C* related, so the collection {x,} determines a
C® structure on G/H.
To show that 7: G — G/H is C* at a, we have to show that the map

Lgox™! b4 Xa
(-8,8)x - x(-g,8) ——>a-U — 7@ -U) —

is C*°. This map 1s

Lgox™! i L, (@)™t
(=5,e)x---x(=8,8) ———a-U — a(@a-U) — a(U) — C,
which equals
-! w (@lC)!

(—&,8) x -+ x (—¢g,¢) x—> U— a(U)——— C;

the latter map is just projection on the last n — d coordinates.
To prove (i1), we note that

S=Lagoya:mwa-U)—> G

satisfies 7w o s = identity.
Uniqueness 1s left to the reader. +

The quotient topology on G/H has the property that f: G/H — X is con-
tinuous if and only if fon: G — X 1s continuous. The C* structure on G/H
given by Proposition 27 now has the property that f: G/H — M is C* if and
onlyif forn:G — M is C®. Infact, if fomis C*®, and s is a C* section
on U C G/H, then f|U= fomosis C®. Itisalso easy to see that the map

G xG/H - G/H, (a,bH) — abH
is C®: if 5: U — G is a section, then on G x U this map equals

identity x s . 7
GxUY———>GxG— G—> G/H.

In particular, each Lg: G/H — G/H is C*. Finally, we recall that in section 3
we defined a C® structure on G,(RY) geometrically. It is easily checked that
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this C* structure satisfies (i) and (ii) when we consider Gn(RVN) as the quotient
space SO(N)/SO(n) x SO(N — n).

For the remainder of this section we will assume that G is a compact, connected
Lie group, with Lie algebra g, and that H is a closed subgroup with Lie algebra
f C g. Before we consider the cohomology of G/H, a few preliminaries are
needed. Recall (Proposition 1.10-20) that any left invariant n-form ¢” on G s
also right invariant. We will choose 0" to be the unique bi-invariant n-form
with f; 6" = 1; as before, for a function f: G — R we often write

foa" as fo(a)da.

For every a € G we define the map Ad(a): g > g by
Ad(@) = (Lao Rg-1)x: 8 = g

When G is a subgroup of GL(n,R), so that g is a subspace of gl{n,R) =
n x n matrices, we have the simple formula (Problem 1.10-19 or pg. I1.309)

Ad(A)M = AMA™! forAe G, M eaq.

Finally, recall that there is a bi-invariant Riemannian metric { , ) on the
compact Lie group G. When G = O(n) we can describe such a metric explicitly
as follows. For M, P € o(n) = skew-symmetric n x n matrices, let

(M, P) = trace MP* = > M;; P;j.
Lj

For every A € O(n) we have

(Ad(A)M, Ad(A)P) = trace AMA™ - (APA™")!
= trace A(MP%)A™!
= trace MP' = (M, P).

So if we extend { , ) to O(n) by left invariance, then it will also be right invari-
ant.

Now consider a k-form @ on G/H. We say that @ is invariant if Ly*w = w
for all @ € G. For any k-form w on G/H we can define a new k-form

o = / (a+ Lgw)o" =f L, w da;
G G
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this equation really means that
w’(Xl,...,Xk) = / [a > La*a)(Xl,...,Xk)]Un = / La*w(X1’~u,Xk)da-
G G

It follows easily from left invariance of ¢” that o' is invariant. More generally,
given a smooth family a + n, of k-forms on G/H, where 1, is defined for all a
in an open set U C G, we can form

/(a = 1g)o" =/ na da,
U U

which is a k-form on all of G/H. If Xi,..., Xy,Y are vector fields on G/H
then

bl

Y(/Ur)a(Xl,...,Xk)da):/UY(r;a(Xl,...,Xk))da;

this follows from Proposition 9-10 when we choose an integral curve ¢ for Y
and let

P = [a = na(Xi(c@), ..., Xi(c@))] - 0"

Using Theorem 1.7-13, we then see that

a([ (@ n)om) = [ (@r dnor

in simpler, but rather confusing, notation, we have

d(/ r;ada)zfdr)ada.
U U

28. PROPOSITION. If o is a closed k-form on G/H, and

w’:/ LJ,*wda,
G

then w — w’ is exact.

PROOF. Tor afixed a € G, the map La: G/H — G/H is smoothly homotopic
to the 1dentity map L.: G/H — G/H. In fact, we can write a = exp X for
some X € g (Problem I.10-27), and consider the smooth family of maps Lexprx
from L, to L,. It follows from Theorem L. 8-13 that there is a (k — 1)-form 1,4
with

(%) o — Ls*0 = dn,.
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Moreover, the proof of this Theorem gives us an explicit formula for ng.

Now let E C g be an open set on which exp is a diffcomorphism. From
the explicit description of n, we see that nq varies smoothly with a for all
a € exp(E). So we can integrate equation (*) over exp(E), to obtain

[volume exp(E)] - @ — / L fwda=d / Naday .
exp(E) exp(E)

(Notice that the three forms in this equation are each defined on all of G/H.)
But by Theorem 8-31, we can choose £ so that G — exp(E) has measure 0.
Then our equation becomes

w — / L, wda=d / Nadal. %
G exp(E)

On the other hand, it is even easier to show

99. PROPOSITION. If o is a form on G/H which is invariant and exact,

then w is actually the exterior derivative of some invariant form.

PROOF. 1If w = dpn, then

a)=/ La*a)da=/ Lg*(dn) da
G G

=d (/ L.*n da) =dy,
G

where 1’ is invariant. ¢

From Propositions 28 and 29 we immediately have

30. THEOREM. The k-dimensional de Rham cohomology H¥(G/H)of G/H
is naturally isomorphic to

closed invariant k-forms on G/H

k ~
H"(G/H) {dn : n an invariant (k — 1)-form on G/H}

The cup product in H*(G/H) corresponds to A under this isomorphism.
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What really makes this result important is the fact that we can describe the
nvariant k-forms on G/H in terms of the left invariant forms on G. Note
that the map Ad(a): ¢ — g induces maps Ad(a)*: Q¥(q) — Qk(q); the map
Ad(a)* isjust (Lgo R,—1)* ate. A k-form 1 on G will be called Ad(H )-invariant
if

Ad(a)*n(e) = n(e) foralla € H.

We say that 7 annihilates § if n(e)(Xi,..., X;) = 0 whenever some X; eh.

31. LEMMA. If n: G — G/H is the natural projection, then the map @ +>
T*w is a one-one correspondence between the invariant k-forms on G/H and
the left invariant, Ad(H )-invariant k-forms on G which annihilate h.

PROOF. 1f w is invariant, then for all a € G we have
Ln*w = n*L*0 = n*w,
so m*w is left invariant. If Xy,..., Xx € g and some X; € B, then 7, X; = 0, so
(T*0) (X1, .o, Xi) = (T X, .. T Xy T X)) = 0;
thus 7*w annihilates §. Finally, if a € H, thén the map
molsoR,—1:G— G/H
is
b+>aba'H = abH = L,(bH) = L(n(b)),

so we have
) molLsoR,~1 =Lgom;

consequently,
(Lgo Rg-1)*'n*w = n*L*ow = nto,

so m*w 1s Ad(H )-invariant.

Conversely, suppose that the k-form 5 on G is left ivariant, Ad(H)-invariant,
and annihilates §. The map 7,: @ = (G/H)p from g to the tangent space of
G/H at the coset H has kernel precisely B, and therefore induces an isomor-
phism

Tx: 9/h > (G/H)g.
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We can consider n(e) € Q¥(g/b), since n annihilates b, so there is a unique
w(H) € Q*((G/H)x) with

2 m*(w(H)) = nle) € 2*(a/b).

Define w on G/H by
w(aH) =L,~1*w(H).

To show that  is well-defined, consider a,b € G with aH = bH. Then
c=a'be H Soby(l),

7*Lo(H) = (Lo Re—1)*'n*w(H)
= (Lco Re-1)*n(e)
= 1(e),

since 7 is Ad(H)-invariant. Since w(H) is the unique element satisfying (2), we
conclude that

w(H) = L*o(H) = (Lg-1 o Lp) (H)
= Lp* (L1 0 (H)),

and hence
Ly—1*o(H) = L,-1*o(H),

as desired. Clearly w is invariant. Moreover, for all @ € G we have

n(a) = L,—1*n(e) since 7 is left invariant
=L, *1n*w(H)
=n7*L,-1*w(H)
= n*(w(aH))

= (*w)(a). %

Notice that in the first part of the proof we showed that for all a € H, the
given o satisfies (Lg 0 R,-1)*n*w = n*w at all points, not just at e. Since any
left invariant form 5 on G which annihilates § and satisfies (L4 0 Ry—1)*n(e) =
n(e) is *w for an invariant form w on G/H, it follows that such an 7 satisfies
(Lg o Ry,—1)*n = 7 at all points, for all a € H; this conclusion does not follow
just from the fact that 7 is left invariant—we need to know that n annihilates §.
Similarly, but more important, since dw is clearly invariant for all invariant @
on G/H, it follows that if 1 is left invariant, Ad(H)-invariant, and annihilates b,
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then dn has these same properties [but the fact that n annihilates §, for example,
does not by itself imply that dn annihilates §).

We are now ready to give a completely algebraic description of H¥(G/H).
Notice first that if ® is a left invariant k-form, and Xj,..., Xg4; € g, then
do(Xi, ..., Xg41) can be computed by applying Theorem 1.7-13 to the left
mvariant vector fields /\’7, extending X;. The terms

—

w(flw"’j};w”’fk+l)

are all constant by left invariance, so our formula becomes simply

() do(X1,..., X)) = D (D Ho(Xe, X1, X1, X X Xeyn),

i<j
which involves only the bracket operation in g. Now let
Q% (g/b) = {w € Q%(8) : 0(X1,..., X¢) = 0if some X; € b}.

The elements of Q¥ (g/B) are clearly in one-one correspondence with the left in-
variant forms on G which annihilate ). If @ € H, and X; € §), then Ad(a) X; € b,
since L, 0o R,—1: H — H; this shows that

Ad(a)*: QF(g/H) > QF(a/h)  foralla e H.

Let
Qk(a/)H = {w € Q*(q/9) : Ad(a)*w =  for alla € H}.

The remarks in the previous paragraph show that
d: %@/ - @ (/0"
where d is now defined by (). Moreover, Theorem 30 shows that

kerd: Q¥(g/n)H — Qk+l(q/p)H
d(Qk=1(g/h)H)

H*(G/H) ~

Even this description of H*(G/H) can be simplified. Notice that if §’ C g
is a subspace with ¢ = h @ b, then the elements of Q%(§’) are in one-one
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correspondence with the elements of Q¥(g/h): given w € Qk (), we define
the corresponding @ € Q*(q/h) by

o(Xy,..., X¢) = o(h component of X1,...,4 component of X).

In particular, consider the orthogonal complement bt C g of § with respect
to ( , )e, where ( , ) is a bi-invariant metric on G. Since each L, and R, 15
an isometry of (G, {( , )), the map Ad(a): g — @ is an isometry with respect
to { , Ye. Since Ad(a): ) — §fora € H, we also have Ad(a): H+ — Ht for
a € H, and hence

Ad(a)*: @F(vt) —» @*(pt)  foralla e H.
If we define
o = {0 € Q¥ (h1) : Ad(a)*0 = o for all a € H},
then the elements of Q% (§) are in one-one correspondence with the elements

of Q¥(q/H)H . Putting all this information together, we have finally

39 THEOREM. Let G be a compact connected Lie group, and H a closed
subgroup. Then the k-dimensional de Rham cohomology H*(G/H) of G/H
1s naturally isomorphic to

kerd: QK0 — @k (ph)¥

H*(G/H) =~ d(Qk—l(bL)H) ,
where
§* C g is the orthogonal complement of §
with respect to a bi-invariant metric,
and

QK (0HH = {w e QX (b1) 1 Ad(a)*w = w for all a € H},
and d 1s defined by

do(Xy.. ... Xis1)
= > (~1* (bt component of [Xi, X;1. Xi.... X X Xeg)-
i<j

for Xi1..... Xk+1 € bL.

The cup product in H*(G/H) corresponds to A under this isomorphism.
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Naturally, the simplest applications of Theorem 32 will occur when H is a
large subgroup, so that § is small. As an example, we consider G = SO(n+1),
with H = SO(n) € SO( + 1), so that G/H = G,(R™!) ~ G, (R"+) is S™.
In this case, where the geometry is so simple, it is easiest to use Theorem 30
directly. It tells us that in computing H k(S ™), 1t suffices to consider k-forms w
which are invariant under the action of SO(# + 1).. In particular, at any point
p € S", the function w(p) € Q¥(S”,) must be invariant under any linear
transformation A: §”p — S”p which is special orthogonal with respect to the
usual inner product on $",. Now if 0 < k < n and Xj,..., Xy € S", are
orthonormal, then there 1s an A of this sort with

AX) =X,  AX) =X, AWX)=X;, i=3..k
Consequently
w(p)Xy, ..., Xp) = w(p) (X2, X1, ..., Xp),

s0 w(p)(X1,...,Xx) = 0. This implies that w(p) = 0. Hence H¥(S") = 0
for 0 < k < n. For k = n, we can choose w(p) to be a multiple of the
volume element 6(p) of S” at p. Since @ must also be invariant under special
orthogonal maps taking p to any other point ¢ € S”, we see that @ must be a
constant multiple of the volume element 6. We have do = 0 automatically, and
since there are no invariant (k — 1)-forms, we see that H*(S") ~ R.

It will also be instructive to see what happens when we do not rely on the
geometry, and use Theorem 32. The Lie algebra ¢ = o(n + 1) is the set of all
skew-symmetric (7 4 1) x (# + 1) matrices, while ) consists of those of the form

0
M -, M € o(n).

0o ... 0

For the bi-invariant metric (M, N) = trace MNt = >_i.; Mij Nij, the orthogo-
nal complement §= is spanned by the n matrices

Y

I
a
I
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For any matrix A € H of the form

0
A= 4 11 gesom),
0
0 0 1
we compute that
0 0 0
_ y : At
Av A = 0 !
0 0
0 0 1 0 -1 0 0 0 1
0 0
4 :
= 0 1
O .
0 ... 0 1 —ay ... —ap 0
aii
_ 0
Ani
—-ay ... —Aapi 0

n
=D_ai%;:
j=1

So if we regard the ¥; simply as vectors in R”", then the adjoint action Ad(4)
on the Y; is just the usual action of the orthogonal matrix 4 on the vectors Y;.
As we saw in the previous paragraph, this means that

0 O0<k<n
ok J_H={
(67) R k=n

hence H¥(G/H) = 0 for 0 < k < n, and H"(G/H) = R.
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7. A SMATTERING OF CLASSICAL INVARIANT THEORY

The simple algebraic considerations used at the conclusion of the previous
section won’t get us very far when we replace the subgroup H = SO(n) C
SO(n + 1) by a smaller subgroup. In order to analyze the more general situa-
tion in an effective way, we need to delve briefly into classical invariant theory,
which was once considered the cornerstone of all mathematics, and then rapidly
dwindled to a state of near extinction, although recently it has excited new in-
terest.

As an example of the sort of question that arises in invariant theory, we con-
sider a standard fact from algebra, to which we have already alluded on occa-
sion. A function

f:Rx-..xR—>R
m
is symmetric if
S, xm) = f(Xzq)s - Xn(m))
for all permutations 7 € S,,. Alternatively, if we define an operation of S, on
Rx---xRby
(X1, Xm) = (Xr(1)s - -5 Xn(m))s

then f is symmetric if and only if
fr-x)= f(x) foralx e Rx..- xR andall m € S,,.

As examples of symmetric functions we have the “elementary symmetric func-
tions”

m
(X1, Xm) = Y Xiy O2X1, . Xm) = Y XiX)
i=1

i<j
Om(X1,...,Xm) = X1 -+ Xpm;

and for all x,y € R x --- x R we have y = - x for some 7 € Sy, if and only if
oi(x) = 0;(y) for all i (compare pg. IV.65). From this we see immediately that
any symmetric f can be written

f(-xla""xm) = F(Ul(xla"-,xm),---,am(xla'H,Xm))
for some function F. Indeed, we can define

F(si,.08m) = f(X1,...,Xm) for any x1,...,xm with o;(x1,...,xXm) = si
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—such x1,...,Xm certainly exist: we can take Xy, ...,Xm t0 be the roots of the
polynomial
x" — s x" L (=D's, =0

On the other hand, if f is a polynomial, then it is by no means so evident that
we can choose F to be a polynomial; the argument which establishes this fact
involves a slightly delicate induction, and can be found in any standard algebra
course.

Note, by the way, that the polynomals 1,...,0m are algebraically indepen-
dent, i.e., if p is any polynomial with

pO1(X1,. s Xm)s - Om(X15. s Xm)) =0
for all xi,...,Xm, then p = 0. In fact, this equation implies that
P(Sts. ey Sm) =0

for all sq,...,8m, and hence that p =0.
Now consider a function

i R"x---xR" > R,
——
m times

which we will often describe as a “function of m vectors in R"”. A typical
element of R” x - - - x R" will be an m-tuple of vectors (vy, . . ., Um), and each v,
is an n-tuple vy, ..., V. We say that a function f of m vectors in R” is
invariant under O(n) if

f(vls"'svm) = f(A(Ul)s"'ﬁA(Um))

forall vy ..., Um € R and all 4 € O(n). Alternatively, if we define an action of
O(n) on R” x --- x R" by

A- (Uls s Um) = (A(Ul), fees A(vm))s
then f is invariant under O(n) if and only if
f(4-v)= f(v) forallve R” x --- x R" and all 4 € O(n).

Similarly, we can consider functions invariant under any subgroup of GL(n,R).
In writing A(v,), we are considering an n X n matrix A = (a;j) as a linear
transformation 4: R" — R”, by the rule

n
A(e,-) = Zajiej.
j=l1
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Since we are regarding v, = (Vr1,...,Vrn) = ) _, Uppeh as a row vector, this
means that we have

A(vy) =D v Aley) = > vmnajne;
h

hj
= (Z vrhalha L] Z Urhanh)a
h h

and consequently

[the product of the 1 x n
A(v,) = v, - A* matrix v, with the n x n
matrix A'],

which is slightly unpleasant, but something we can live with.

If v,w € R” x --- x R" are m-tuples of vectors with (v,, vs} = (w,, w;) for
all r, 5, then there is 4 € O(n) with w = A -v. It follows immediately that every
function f of m vectors in R* which is invariant under O(#) can be written as

f(vla .- 'avm) = F((U],Ul),. "y <vmavm))

for some function F. For brevity, we will also write

fr,...,vm) = F({<Ur, Us)}),

and if we introduce the inner product functions

‘rs(vla LR Um) = <vra vS)a

then we can write
f=Fo ({‘rs})'

From this general, and trivial result, however, it does not follow that every polyno-
mial function of m vectors in R” can be written as a polynomial in the ¢, (a func-
tion f: R" x --- x R" — R is a polynomial function if f(} ale;,..., Y al.ei)
is a polynomial in the a;) This deeper algebraic result is the content of the
“first main theorem of invariant theory for O(n)”. In order to prove this result,
as well as the corresponding result for SO(n), we will follow the classical route,
which will get us to our destination in the shortest time, although it involves
some unpleasant calculations, and uses some mysterious identities.

First, some preliminaries about polynomial functions f of m vectors in R”.
We say that f is homogeneous of degree (o1, . .., opm) if

f()"lv15"'a)"mvm) = )"lal n ')"mamf‘(vla"'avm)'
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Every polynomial function f can be written

(*) f = Z fal,...,am,
(a1,---,2m)
where fy, ..., is homogeneous of degree (a1, ..., Um). For example, we might

have f: R? x R? > R with

fOen,x2, 31, v2) = 3x1%x201% + xliny: + 8x° 4+ 1%t
R N’
degree (3,2) degree (3,0)  degree (4,0)

It is easy to see that the expression (x) is unique. Moreover, if f is homogeneous
of degree (a1, ..., ®m), then so is

Wi, ...,vm) > f(A-vy,..., A V)

for any linear transformation A. From this we easily see that if f is invariant
under any group of linear transformations, then so is fa,..., So we will
henceforth consider only homogeneous polynomial functions.

Notice that if f: R" — R satisfies f(Av) = Ak f(v), then

[+ 4774

A fv) = —A"f() —f(kv) Zv.—(xv)

In particular, for A = 1 we obtain Euler’s Theorem

kf = Z”'ax,

(In the case of a polynomial function f: R* — R, this result can be verified
directly) Naturally, there is an analogous result for homogeneous functions of
several vectors in R".

Now let

e, =(0,...,e;,...,0) e R" x --- x R”",
T

th place

where 0 denotes the zero vector of R”, and e; is the { th standard basis vector of
R”. The e,; form the standard basis for R” x - - - x R" when we identify it with
R™  so for a function

f:R*x---xR" >R

m times
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we can consider the partial derivatives

af

de,;’

these partial derivatives certainly exist if f is a polynomial function. Now for
1 <r, s <m we can consider the function

(Dsrf)(vlau',vm) szz (U1,...,Um);

in terms of the dual basis {¢"?} to the {eri}, we can write

sr = Z¢“ 36,,

For example, if (xq,..., x,, Y1,..., ¥n) denotes a typical element of R” x R”,
then for f: R” x R” — R we have

D21f(x1,~',xn,y1,u-,yn Zyl (xla"'axnayla""yn)'

The operator Dy, is called a polarization. It is important for the following
reason.

33. LEMMA. Suppose that
S, um) = f(A), ..., A(vy))
for all v,...,vm € R” and some linear transformation A. Then also
D f(v1,...,vm) = Dy, f(A()), ..., A(Um))

for all vy,..., v, ¢ R”.

PROOF. 1f (a;;) is the matrix of A, then by hypothesis we have
S e, ), ) = f(,(zj';l aljUrj,...,z;l=1 anjvrj),...),

which implies that

d .9
Bef' ...,vm)=2 f(...)ak,-.

= derk
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Therefore

n 8 n n 8
szi%(vla---avm) = Zzakivsiﬁ(---)

i=1 k=1 i=1

- 3
= ZA(vs)kéi(A(vl),...,A(vm)). X2
P Erk

In particular, we see that polarization takes polynomial functions invariant
under a group of matrices into polynomial functions with the same property.
Note that if f is homogeneous of degree (v1, .. .,0m), then Euler’s theorem
implies that Dy, f = a, - f. Note also that polarizations take the inner product
functions into sums of such:

Dyrigp = Orqlsqg + 8rplsp-
Finally, consider a determinant function

Ur)
(vi,...,um)y—>det| |,

Ur,

which we will denote by det,, _r, . We clearly have

Dy, dety, .r, = detr, . .ri_ysrigr.rn

D, dety, ,, =0 ifr#£r,... .

Now we want to look at the result of composing two or more polarizations.
It would be nice if

2 f
deri,0¢riy

? . .
Dslrz Ds1r| f Q Z ¢SI”¢S212

i1,z

But this holds only when r2, 52 # s1. It will be convenient. however, to denote
the right side of the above equation by a symbol that looks like a composition.
even in the case where ry or s, equals s;. So we will use the symbol Ay, for
the same operator as Dy, but we will define the operator Agyry Ay nOL AS A
composition. but formally by

. . 92
§ : s1i1 pS8202
ASQ"ZAS”'] = ¢l l¢__ 8 >
dey iy de

. s rai
i).ia 2t
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the operators Ay, As,r, As ry, etc., are defined similarly. As for the actual com-
position Dy, ,, Dg,r, we have

DuraDanf = L7 5 (zwi)

€ryi, aerlil

. . 32
= Z ¢,5212¢,8111 P f + 5r2 Z(pszzz
raiz

i1,z ' aerli' ae’llz

which shows that
0 Ds,, Dy, = AsyryAsiry + S;IZAszrl-

Now consider the operator

D D def
det (D; DZ) = Dy D2y — Dy Dy3.

From (1) we have
D11 Dy = Aq1Ar, Dy Dy = Ay Ay + Ay,
S0
Di1Dyy — Dy Dy + Dy = A11A97 — Aj1 Ay,

We used the indices 1 and 2 for convenience, but we clearly have the same result
for any distinct indices oy, ;. We can write our equation as

B (Pt ) g (B B
Da2a1 Dazaz Aagal Aazaz
Remarkably enough, this equation can be generalized. First we compute that

s3i s2iy 481 azf
Dsgr;(AszrzAslrl)f = pr ! ‘ (Z(p 2 2¢ ll )

€rii; i1iis ae’ziZae’lil

3f
38,3,'3 3€r2i23€,]i1
%f
86,2,‘286,1,‘3
% f

8e,2,-3 Be,l,-l

$3iz 5202 451}
@972

i1,d2,i3

AP

ia,i3
+82 Y phign
i3
(this formula works even if s; = s;). Consequently,

(3) Dsiry 0 (Asyry Dsir) = Asiry Dsars Asiry + 851 Mgy Dsyry + 852 Asiry Ay, -
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Now we consider the operator

Dy Az Ay et
det| Dy Ay An | S ) (sgnm)- Drayi o (Br@,282(3),3)-
D3y A3z As meSs

[For each term of this sum, operators in the first column of the matrix appear
on the left, followed by operators from the second column, etc.] Using (3) we
have

Dy Az A
det D21 A22 A23
Dy Ay Az
= Z (sgn ) {Ar(1),1822),28720),3
J'!GS3

+ 813 An(1),3022),2
t 5111(2)Aﬂ(1),2An(3),3}

= Y (gnm){Ar(),1822),2820),3
J'!GS3
[compose 7 with the trans-
— 5}1(1)A,,(3),3 Ar2),2 position interchanging
(1) and 7 (3)]
[compose m with the trans-

— 8}1(1)A,,(2),2A,,(3),3} position interchanging
(1) and 7(2)]

= > (g0 71)Ar(1),1 Az (,285(3).3

J'!GS3
=2 ) (sgnm)Ar@),2820),3
J'!GS3
with
z(1)=1
A A Ap
A A
=det| Ay Ao Axy | — 2det (AZZ A23) .
32
Az Az Aj »
We can also write this equation as
Di+2 Ap A A A A

det Dy, Az Az | =det| Ay A Ap
Ds, A3y Ay Ay Ay Aj
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Using (2), we find that
Dy +2 Dy Dy, Ay A Ap
det D21 D22 +1 D23 = det A21 A22 A23 .
D;, D3, D33 A3zl Az Az

Of course, the numbers 1,2,3 could be replaced by any three distinct integers
1,2, 03 from 1 to m. The same general procedure yields, by induction, the
result

D11+(m—1) Dy, eov. Dy
D2y + (m —2) Ay .. Ay,
4) det ) - = det : :
: Amt -.. A
Dml Dm2 e Dmm

We introduce the Cayley Q-process which takes a function f of n vectors
in R” to the function Qf of n vectors defined by

d d
Vll T deyy
Qf =det : S VA
d d
deny  Oenn

Notice that we could just as well write the transpose matrix here, since all partials
commute. It is easily seen that

Qf(A-vi,...,A - vy) = (det A) - Qf (v1,...,0n).

So if f is invariant under O(n) or SO(n), then Q f 1is invariant under SO(n).
Using det for the function
)|
(vi,...,v,) > det

>

Up
we now have

34. THEOREM (THE CAPELLI IDENTITIES). Let f be a polynomial

function of m vectors in R”. Then

Diy+@m—-1) ... Din
0 m>n
dCt . . f:
’ : detQf m=n.

Dy coo Dy
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PROOF. Equation (4) shows that at (vi,...,Um) the left side of our equation
has the value

Z (Sgnﬂ)An(l),l ce A7r(m),mf(U17 ceesUm)

neSm
n
atf
I R i A N,
e dey i, ... 0€m, i,
nteSm P10y im=1

n 8mf

= sgn ) T ;| ——(V1,...,Um).
Z |: Z ( g ) (1), n(m),tmil ael,il -~ '3€m,im( 1 m)

i{yenim=1"TESH

If iy = ip for some a # B, then the sum inside the brackets is clearly 0. This
always occurs if m > n, so we obtain 0 for the total sum in this case. When
m = n, the sum inside the brackets is zero unless iy, ...,y 1s a permutation of
1,...,n, so our total sum becomes

af
> > (sgnT)Vr(1),001) Vi), o) (vi,...,Vn)

de -+ - Je
€Sy ~TeS, 1,p0(1) n,po(n)

f

ey, p(1y -+ - 0€n,p(n)

= Z (sgn p) - det(vy,. .., Un)

PES,
=det(vy,...,v) - Qf(vy,...,vy). %

(Uly"'yvn)

In order to make use of the Capelli identities, we introduce a partial order-
ing < on the homogeneous polynomial functions of m vectors in R". Let S/
and f be homogeneous of degrees (a4, ..., ¢n) and (@y,. .., 0y), respectively,
and setd = o1 + - -+ an andd =@ + -+ @&n. Then [ < fifand only
it d <c?;ord=c?andam <61m;ord:c?andam=61m and om—1 < Gm—1;
or ... . This can also be expressed a little differently. Among all homogeneous
polynomial functions f of fixed total degree d = a1 +- - - +m, we can consider
(Cms Cm—15 - .., 01) as the digits of a number to the base d + 1. We define the
rank of / to be this number,

rank f = oy +aa(d + 1) +as(d+ 1)* + - +amd + )"

If f and g both have total degree d, then f < g if and only if rank f* < rank g.
Now consider the effect on f of the operator on the left side of the Capelli
identities. The main term

(D11+m—1)~'Dmmf
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is (by Euler’s theorem) just
(a1 +m —1)---ap f = (constant) - f,

and this constant is 0 only if f does not depend on v,,. All other terms will
involve certain diagonal terms, which are all just multiplications by constants,
and a term

rn<--<ry

Si F# i
Ds,r, - Ds,r, [ where . .
S15 .- -58u 18 @ permutation
of ri,....1u.
In particular, s, <r,. But Dy, ,, f is homogeneous of degree
(@r,...,05, + 1,0, —1,...,0m),
which means that D;,,,, f < f. Thus

Ds1r| ”'Dsu’uf = DSI’I f* — gjf*,
where f* < f, and & is a composition of polarizations; since f* is itself a
polarization of f it is invariant under O(n) or SO(n) if f is. So the Cappeli
identities show that

(A) (constant) - f = {

a sum of terms P f* m>n
asum of terms Pf* +det- Qf m=n

where f* < f is invariant under O(n) or SO(n) if f is,  is a compo-
sition of polarizations, and the constant is 0 only if f does not depend
on V.

We are now ready to prove

35. THEOREM. For all m and n we have

O™ Every polynomial function f of m vectors in R” which is invariant under

O(n) can be written as a polynomial in the inner product functions .

SOM:. Every polynomial function f of m vectors in R"” which is invanant un-

der SO(n) can be written as a polynomial in the functions ¢, and the
determinant functions det,,. ., .

PROOF. Notice that a function of m vectors can always be thought of as a
function of a larger number of vectors; so O7 = O™ and SO7 = SO7

automatically for m’ < m. Note also that the determinants in SO} are zero
unless m > n.

The proof of OF and SO} proceeds in two parts.
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36. LEMMA. If O [respectively SO%] holds, then O} [respectively SOJ']
holds for all m > n.

PROOF. The proof for SO will be almost exactly the same as for O, so we give
only the latter. Actually, we give the proof only for O"*!, as it will then be clear
how to proceed by induction. We consider invariant homogeneous polynomial
functions f of n + 1 vectors in R", of fixed total degree d. We will prove that they
can be represented in the desired form by complete induction on their rank.
If rank f < (d + 1)", so that the degree a, of f in v,4q 1s O, then f does
not involve v,41, so the result follows from the hypothesis that O7 holds. Let
ro > (d + 1)". Assuming that all f of total degree d and rank < rp can be
expressed in the desired form, we will show that all f of total degree d and
rank ro can also be so expressed. The constant in equation (A) is # 0 for our f,
so f is the sum of terms #f*, where f* < f is invariant under O(n) and & is
a composition of polarizations. Since f* is a single polarization applied to f,
the total degree of f™* equals the total degree of f. Since f* < f, the inductive
assumption says that each f™* can be written

f*=F"o({urs})
for some polynomial F*. This implies that
e?f*=‘77*O({<7)lrs})

for some polynomial F*. Since each Pt is a sum of ,4’s, it follows that each
Pf* is a polynomial in the t,5, and thus f is. Q.E.D.

We still have to show that O% and SO} hold. In the case of SO, there is a
single determinant det(v,;) involved. If 4 = (v,;), then

(A-AYs =) vpavse = (vr,v5).
k

Hence
[det(v,,')]2 =detd-A' = det((v,, vs))

is a polynomial in the t,5. Thus we need only linear terms in det.

37. LEMMA. O7 holds for all n. Moreover, SO} holds in the strengthened

form

SO”: Every polynomial function of n vectors in R” which is invariant under
SO(n) can be written as g + (det) - #, where g and A are polynomials in
the inner product functions ts.
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PROOF. We use induction on n. Consider first a polynomial function f: R —
R. If f is invariant under O(1), then f(x) = f(-x). So f(x) involves only
even powers of x. Hence f(x) = F(x?) = F((x,x)) for some polynomial F.
Moreover, any polynomial function f: R — R can be written

J(x) = g(x) + xh(x) = g(x) + (det x) - h(x),

where g and h involve only even powers.
To carry out the induction step,

(%) {O"~1 and SO}”}} = {O7 and SO},
we first show that

OZ:} = SO""' (= O"! since no determinants are involved).

So consider a polynomial function f of n—1 vectors in R”. Define a polynomial
function f of n — 1 vectors in R"~! by

fwi,... wam) = fQ1,. .., Way),

where
W, = (Wr1,..., Wr n—1, 0).

If f is invariant under SO(n), then f is actually invariant under O(n — 1). So
by hypothesis, there is a polynomial F with

fi,. .. wamy) = F({lw,, wy)}).

Now given vy, ..., vp—1 € R", choose A € SO(n) so that all 4-v, lie in R"~! x {0},
and hence 4 - v, = w, for some w, € R"~!. Then

S, o) = f(A vy, A vpmy) = f(Wr, ..., Wary)
= f_(wls"'swn) = F({<wrs ws)})
= _({<Urs Us)})'

This completes the proof that 07~} = SO~

Now for the proof of (x). This proof will also be by induction, using the same
general scheme as in the previous lemma, but there will be a slight complication,
for we will actually be using a double induction, first on the total degree of f,
and then within each total degree on the rank. In addition, the statements Oy,

and SO}, will have to be proved jointly in the induction. Thus, for a fixed total
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degree and rank, we will show that all f of this degree and rank which are
invariant under O(#) have the desired form, and also that all f of this degree
and rank which are invariant under SO(#n) have the desired form, assuming that
the same two statements hold for all f of lower degree, or of the same degree
and lower rank. There is certainly no problem beginning the induction with
degree 0; moreover, within any particular degree, the polynomials of sufficiently
low rank will not involve vn, so we will be back to the cases SO%~! and O~
which we have already proved.

Now consider a particular invariant f. We use equation (A), in the case
m = n, to see that f is a sum of terms #f* plus a constant times det - /. The
sum of the terms #f* can be written as F ¢ ({t,s }), as before, and we just have
to worry about det - Qf. First suppose that f is invariant under O(n). Then
Qf < f is invariant under SO(n), so by the induction hypothesis we can write

Qf =g+ (det) - h,

where g,h < f are invariant under O(n), and thus by the induction hypothesis
expressible as polynomials in the ¢,5. So we have

f=Fo ({t,s}) + (constant) - det - [G o ({t,s}) +det- Ho ({t,s})].

Since f, tr5, and det” are invariant under O(n), the term det - G o ({t,5}) must
also be invariant under O(n), which is possible only if G = 0. Thus f i1s a
polynomial in the t,.

If f is assumed invariant under SO(#n), then everything remains the same,
except that G need not be zero. +

8. AN EASIER INVARIANCE PROBLEM

For an n x n matrix M, we define fi(M),..., fu(M) by
det(l + AM) =1+ A1fi(M)+---+ A" fr(M).

It will also be convenient to set fo(M) = 1. Then the f; are polynomial
functions of the entries of M which are invariant under the adjoint action of
GL(n, R),

fiAd(A)M) = [i(AMA™") = fi(M)  for A € GL(n,R).
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If M has eigenvalues Ap,...,A,, and 0; denotes the jth elementary symmetric
polynomial, then*

fitM) = 0;(hq,..., Ap).

According to Problem 1.7-15, every polynomial function on the n x n matrices
gl(n, R) which is invariant under the adjoint action of GL(n, R) is a polynomial
in the f; (notice that we are now considering functions of a single matrix, rather
than functions of many vectors). Now we want to find out which polynomial
functions on o(n) are invariant under the adjoint action of O(n), or of SO(n).
The line of argument will be essentially that used in Problem I.7-15, except that
in some ways it will be even easier, since we have an especially simple “canonical
form” for elements of o(n), which greatly strengthens Gorollary 11:

38. PROPOSITION. For every 4 € o(n) there 1s a matrix B € O(n) such that
BAB™! equals either

0 A
A 0 : .

.. or N
0 % L%
—Am 0 m

(some of the A’s may also be 0).

0

PROOF. If T: R" — R” is the linear transformation determined by A4, then
the skew-symmetry of A means that

o) (Tv,w) = —(v, Tw) for v,w € R".

[Conversely, if this relation holds for T: (V,{ , }) = (V,{ , }), then the matrix
of T with respect to an orthonormal basis is skew-symmetric, and we have

2) detT =0  if dimV is odd

as a particular consequence.] Equation (1) implies that (image T)* = ker T.
Consequently, 7 must be one-one on image 7. Therefore rank 72 = rank 7.

*The A; are the roots of the characteristic polynomial x(A) = det(Al — M). Recall
that the o; = gi(Ay...., An) satisfy A" — A" 4 o= (A — &) = x(d). So
A AP 4 = (=)' (=A) = (=D)"det(—A] — M) = det(A] + M). Hence,
det(/ + AM) = Atdet(J /A + M) = A" [(1/M)" + o (/M) 1+ . ]=14+0oA+ -
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Moreover, this rank is even, by Corollary 11. [Alternate proof: The map
T|(image T): image T — image T is one-one, so its determinant must be non-
zero. Applying (2), we see that dimimage T is even.]

Now A2 is symmetric, so there is an orthonormal basis vy,. .., v, of eigen-
vectors of T2, with eigenvalues up, ..., i,. Note that

w; = (vj, T*v;) = —(Tv;, Tv;) < 0.

By renumbering, we can assume that pq,..., fom < 0, and that the remaining
w’s equal 0. Define a new orthonormal basis wy, ..., w, by

wyp =y, Wy =

T(v1)

1
/—h

T (vm)

1
Wam—1 = Um, Wom =
‘/_)\m
w; = v j>2m.

The matrix of T has the desired form with respect to the basis wy, ..., w,. %

Notice that for M € o(n) we have
(I+IM)=1-AM = det( + AM) =det( — A M),
SO
L+ AIM) 4+ -+ A" fu(M) =1 = A fi(M) + - + (=1)"A" fu(M),

and hence f;(M) = 0 for odd i. We will also need to use the following formula,
whose verification is left to the reader:

02/(()\17 _)\17 )‘27 _)\27 LR )‘”h _)\m) = Uk(_)ﬂz’ ] _)\mz)'
39. THEOREM. Let n = 2m or n = 2m + 1. Then every polynomial func-

tion f on 0(n) which is invariant under the adjoint action of O(n) is a polyno-
mial in f2,..., fom.
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PROOF. For Ay,...,Am € R, let [Ay,...,An] be
X BRI
A0 :
0 &% x
—~Am 0 o
depending on whether n = 2m or n = 2m + 1. Notice that the eigenvalues of

[At,...,Am) are idy, —iky,...,iAp, —iky [and O, if n = 2m + 1], so

fék([A'l, . ,A-m]) - 02k(lA'1, —iA'l,' .. ,iA-m, _lA-m)
= ok(A'lz, L ,A-mz)

Define
g(A.l,.. .,A.m) = f([A.l,,A.m])

Then g 1s a polynomial function of Ay, ..., A,. Notice that for the matrix
€ O(n)

we have

A-[Ay.dm]l- A7V =[Ao, Ar, L A

Similarly, we can interchange any two A’s by some 4 € O(n). Thus g is sym-
metric in the A’s. Notice, moreover, that for the matrix

0 1
1 0
B = 1 € O(n)

0

B -[AM,..,Am]B7 = [=A1, A2, Al

we have
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Thus
g()\'la .. ’)\'m) = g(—)\'la)\'Za . a)\'m)

This shows that the polynomial g does not have any terms involving A; to an
odd power. The same result clearly holds for all A’s, so we can write

g()\'la'”a)\'m) = h()\'lza"'a)\'mz)

for some polynomial A. Clearly h is symmetric in its arguments, so there is a
polynomial p with

g()\'la" a)\'m) = p(al()\'lza"'a)\'mz)a"'aam()\'lz""a)\'mz))'

Thus we have

T (s Amd) = PR A fom(Dhs s Am])

Now for any M € o(n) there is, by Proposition 38, some A4 € O(n) such that
A"TMA = [A,. .., Ap] for some Ai,...,Am. Since f, f2,..., fom are invariant
under the adjoint action of O(n), the above equation yields

S(M) = p(fa(M),..., rm(M)). %

Note that the polynomial functions f3,.. ., fam are algebraically independent
on o(n)—if

p(fo(M),..., frm(M))=0

for all M € o(n), then p = 0. Indeed, this equation implies that

P(Ul()\lza .. a)\'mz)a .. aam()\'lz’ L ,)\mz)) = 0

for all Aq,...,Am, and thus that the polynomial

PO1(X1, s Xm)s oo Om(X1,5 5 Xm))
is zero whenever Xi,...,Xm take on positive values; but this implies that this
polynomial in xi,...,Xn is identically zero, and hence that p = 0, as we re-

marked on page 318.

With slight modifications of our previous argument we obtain
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40. THEOREM. (1) If n = 2m + 1, then every polynomial function f on
o(n) which is invariant under the adjoint action of SO(n) 1s a polynomial in

Srsooos fom.

(2) If n = 2m, then every polynomial function f on o(n) which is invariant
under the adjoint action of SO(n) is a polynomial in f3,..., fom—2 and the
Pfaffian Pf .

PROOF. (1) Notice that the matrix A in the proof of Theorem 39 is actually
in SO(n). If n is odd, then [Ay,...,An] has a zero in the (n,n)h place, so for
the matrix B in the proof of Theorem 39 we can just as well replace the 1 in
the (n, n)th place by —1; this new B is in SO(n). Now the proof of Theorem 39
goes through as before.

(2) The matrix A4 is still in SO(n). We cannot arrange for B to be in SO(n),
but for the matrix

— o
OO

— o

O

€ SO(n),

we have

C Ay s AmlC7 = [=A1, =22, A3, ., Aml.

Similarly, we can send any pair of A’s to their negatives. So the symmetric
function g in the proof of Theorem 39 has the property that each monomial
appearing in it is either of even degree in all 1’s or else of odd degree in all 4’s.
So g can be written

g, hm) = B, Ad) + G A2 (A% ).

Since g is symmetric, the term hi(A%,...,Am?) [= the sum of the monomials
of g which are of even degree in all A’s] must be symmetric in A1,...,Am. So h
is symmetric in its arguments. Thus £ is also symmetric in its arguments. So
we can write

g()\'la"")\'m) = Pl(al()\lza~~~a)¥m2)a"~aam()¥12a~~-a)¥m2))
+ ()\'1 tT )\m) : pz(al()\'lza"'a)\'mz)a'"aam()\'lza"'a)\'mz))'
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Thus we have

F( - Am]) = P, Al fam (A5 Am]))
+PEA, - Am]) - P22, Aml)s s fam([Ms - Am]))

It follows, as before, that

SM) = pi(fa(M), ..., fam(M))
+PE(M) - p2(fo(M), ..., fom(M))

for all M € o(n). We can dispense with fam, since

f2m(M) =detM = {Pf(M)}2 <

We have already observed that the polynomials f3,. .., f2m are algebraically
independent on o(n). For n = 2m, the polynomials f3,..., fam—2,Pf are alge-
braically independent on o(n). For suppose that

p(fa(M), ..., frm—2(M),Pt(M)) =0 for all M € o(n).
Then for all Aq,..., A, we have

0 = p(al()\'lz,' .. ,)\mz), .. ,am—l()\'lz, .. ,)\mz),)\l n )‘m)
= p1@ A A Omet 2 A, Om (% A )+
()\'1 Tt )\m)PZ(Ul()\lz, LR )\mz), v ,Um—l()\'lz, o ,)\mz),am()\lz, v ,)\mz)),
for certain polynomials p; and ps. This polynomial in Ay, ..., Am can be zero
only if the two summands, representing the terms with all A’s of even degree
and the terms with all A’s of odd degree, respectively, are each zero. Then as
before we conclude that p; = p, =0.

There is one further simple property of the functions f;. In Corollary 13 we
gave a formula for Pf(4 @ B), where

A 0
A®B= ( 4 B) .
It is easy to find a formula for f; (A & B), forall 4 € al(r,R) and B € gl(s,R).
For we have
det(lr4s +A(AD B))

= det((I, + AA) & (I; + A B))

= det(I, + LA) - det(I; + AB)

=(1+Afi(A)+ -+ A f(A)- (1 +Afi(B) + -+ A fi(B)).
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So

k
Je(A @ B) = coefficient of A* =" fi(4) - f,_,(B).
1=0

When 4 and B are skew-symmetric, we have

k
LA ® B) =" fu(A) - fox—u(B).

I=1

9. THE COHOMOLOGY OF
THE ORIENTED GRASSMANNIANS

We are now ready to compute part of the cohomology of
Gn(RY) = SO(N)/SO(n) x SO(N — n) = SO(N)/H.

The Lie algebra o(N) has as a basis the matrices

Xf:Z(_l 1) l<a<B<N

which have non-zero entries only in the (@, ) and (8, @) positions. [We adopt
the convention that the indices «, 8 range from 1 to N, while the indices i, j

run from 1 to n, and r, s range from n + 1 to N] Let {¢£ } be the dual basis to
the {Xf }. The Lie algebra § consists of matrices

Ly 0 L, € o(n)
0 L, )° Ly, € o(N —n).

The orthogonal complement h1, with respect to the bi-invariant metric on
page 308, consists of all matrices

0 P '
(_Pt 0)’ P an n x (N — n) matrix,

and has as basis the X/ forl <i<mandn+1<r < N;sothe corresponding
@] are a basis for (h1)* [more precisely, the restrictions of the ¢/ to h are a

basis].
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The adjoint action of SO(n) x SO(N —n) on Bt is easily computed to be
40 0 P\(4 0\ ' (4 0 0 P\[A' 0
o BJ\-Pt o)\o B “\o BJ\-P" 0J\0 B
(4 0 0 PB!
—\o BJ\-pP4' 0
_ 0 APB!
~\-BP'4* 0 ’

We want to know which elements of Q¥(§1) are invariant under the induced
adjoint action of SO(n) x SO(N — n). We will split this question up Into two
parts, by considering invariance under the adjoint action of the two subgroups

SO(n)y x {1} = {(g1 (I)) tA4 € SO(n)}

{I} x SO(N —n) = {(é g):BeSO(N—n)}.

We consider first the adjoint action of {/} x SO(N — n), given by

(o) DG ) = T

If we regard bt as the n-fold product RV x ... x RN~ by identifying

(_(;)t 1(1))) € §% with the n-tuple of the rows of P, then this action is the usual
action of SO(N —n) on each factor. Since a form n € QK (1) can be regarded
as a polynomial function on the nk-fold product RN-" x ... x RN=" Theo-
rem 35 shows that 7 is invariant under the adjoint action of {/} x SO(N — n)
if and only if it is a polynomial in the inner products and determinants of the
vectors involved. We have to figure out just what this means when 7 is a k-form,
and express 7 in terms of the forms ¢ . From now on we assume that k < N —n.

Consider first the case where 1 is a 1-form, and thus a function n: §t — R.

If 5 is invariant under {I} x SO(N —n), and M = (_(jvt 1(1)))’ then n(M)
can be written as a polynomial in the inner products of rows of P and in the

(N = n) x (N — n) subdeterminants of P. Thus n(M)isa polynomial in

N
3 oL (M)-¢ (M)  1<iniz<n

r=n+1
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and
the determinants of the matrices formed

by picking (N — n) rows of P.

Multiplying M by « € R multiplies the first terms by o? and the determinants
by a¥=". So n(M) cannot be linear in M unless it is zero. Thus Q! (5+)H = 0.

Now consider a 2-form 5 € Q2(1). If 5 is invariant under {I} x SO(N —n),
then n(M;, M>) can be written as a polynomial in

D dn (M) - oL (M), D ¢ (M) - ¢, (M), Y ¢f (M) - ¢, (M2)

and
the determinants of the matrices formed by picking n; rows

of Py and nj rows of P, with ny +n2 = (N —n).

Multiplying M; [or M,] by o multplies these determinants by ™' [or «"2].
But either 777 > 1 or n2 > 1, since we are assuming that 2 =k < N —n. Conse-
quently, since 7 is multilinear, the determinants cannot be involved. Moreover,
of the remaining terms, only those of the third kind can be involved. So

n = a linear combination of the Z o, ® 91,
r

Since 7 is a 2-form, we have

n = Alt = a linear combination of the Z ¢>,~'I N
- .

Thus 22(h1)H can contain only linear combinations of the 2-forms

Sivin = Y &F, A, l<ii<iz<n
r

For a 3-form 5 € Q3(b1) to be invariant under {I} x SO(N — n), it must be
possible to write n(M;, M2, M3) as a polynomial in

Y oh (M) ¢ (Myy) i ja=1,2,3
r

and
determinants formed from rows of Py, Py, P;.

As before, the determinants cannot be involved, since we assume 3 = k < N —n.
Then it is easy to see that no non-zero polynomial in the other terms can be
multilinear in (My, Ma, M3). So Q3(hH)H =o.
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If n € Q*(h1) is invariant under {I/} x SO(N — n), then n(Mj, ..., M4) can
be written as a polynomial in the

Y ¢n(Mj) - ¢L (M) jjz=1.....4
r

(determinants are ruled out as before). Since 7 is multilinear, 1t is casy to see
that the only monomials which can appear are

r r
where ji,. .., ja are distinct. This term can be written
(Z ¢;, ® ¢i’z) ® (Z ¢r, ® ¢’,~'4)(Mn(1), My, My@3), Mr@))
r r

for some permutation 7 € S4. Since 7 is alternating, we find that 5 1s a linear
combination of terms §;,i, A igig.
In general, we clearly have:

If Kk < N —nis odd, then Q¥(pH)# =o0.

If k < N —nis even, then all elements of Q¥(§)F can be written as
linear combinations of the forms

{ill'z A A {ik_]ik~

To determine %(h1)H completely for all even k& < N — n, we still have to
consider invariance under SO(n) x {I}. But we already sece, from Theorem 32,
that

(A) If k < N —nis odd, then H*(G,(R")) = 0.

Moreover, the maps
ket B 4 kel H D ok Ly H
Q1pH T — (D" — Q" (h)
are zero for even k < N — n — 1, since the vector spaces on the ends are 0.
Consequently,
kerd: QF(pH)#
d(Qk“(bJ-)H)

H¥(G,(RY)) = =Q*@hHH/0=k@phHH.
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Actually, this result holds for all k, but we need a different argument. Notice
that something special happens when we take the bracket of two elements of bt
We have

0 P 0o Q) (0 @ 0 P
-Pt 0 /\-0' 0 -0t o /J\-P' o0
_(-Po'+ QP! 0
- 0 —PtQ + Qpt
which is in §). Consulting the statement of Theorem 32 we see that our map
d: Qk(b.L)H — Qk+l (b.L)H
is always 0. Thus
(B) For all k we have H*(G,(RY)) = Q% (p1)H |

We now have to investigate linear combinations of the forms Civiy A oo A
Cix_1ix - Such combinations can be described in terms of polynomial functions

f: 0(n) - R which are homogeneous of degree k/2: if f is a sum of mono-
mials

i . .
c- ¢,'2| ¢ : ¢k : | <irg-1 <i2a <n,

then /() € Q¥ (91) will denote the k-form which is the sum of the correspond-
Ing terms

€ Liyiy Aigig A~ Aoy iy
(since the {;; are 2-forms, the A products commute, so the order of the factors ¢'
is irrelevant). Clearly every linear combination of the forms Sivig A= A&y iy

is f({) for some f: o(n) = R. Since the ¢; are linearly mdependent, this f is
unique for k < N —n. Moreover, for homogeneous polynomials f,g: o(n) > R
we have

1) (/&) = () A g(©).

We want to find out how SO(n) x {I} operates on f({). Take first the special
case f = ¢j', so that f({) = ¢; '(£) = &ij. For

- A 0
A=(0 I)eSO(n)x{I}

_ 0 P _ 0 P2 1
Ml—(_Plt 0)9 MZ—(_Pzt O)Gb
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we have
[Ad(A)* )My, M2)
=3 ¢/ A ¢} (Ad(A) My, Ad(A) M)
— r 0 APl r 0 AP2
—Z{¢z (_PltAt 0 )’¢j(_P2tAt 0 )_
=Y {(AP)ir(AP2)j, — (AP2)ir(AP1)jr}
= Z Z {Aiu(Pl)urAjv(PZ)vr - Aiu(PZ)urAjv(Pl)vr}
roop,v=l1
= Z AiuAjv[Z(Pl)ur(PZ)vr - (P2)ur(P1)vri|a
w,v=1 r
and hence .
CAAA) G = Y AiAjnlus,
w,v=1
or
) Ad(A)*(#}(0)) = ( > AmAjvcbc‘)(;).
w,v=1

On the other hand, for a matrix L € o(n) we have

$IAd(@)L) = di(ALAY = ) AiAjuLy

u,v=1

— ¢loAd(A) = D A Ajdl.

=1
Comparing (2) and (3), we see that

Ad(A)* (90 = [¢} o Ad(A]Q).
Using equation (1), we find that for all f: o(n) — R we have

(%) Ad(A)* £&) = [f o Ad(A)]().
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From equation (%) we see that a linear combination f(&) is invariant under all
Ad(A)*, and thus £(§) € QK (61)H ~ H¥(G,(RN)), ifand onlyif [ o(n) — R
is invariant under all Ad(4), for A € SO(n). But Theorem 40 says that all
such f are polynomials in

2o fay if nis odd
2y fue2, PE if 7 1s even.

Moreover, f is uniquely expressible as such a polynomial, since 205 fatmg
lor fa,..., fu-2,Pf] are algebraically independent (pages 334 and 336).

Case 1. nisodd. The forms f5(¢),. .., J21n/2)(€) have dimensions 4,8, . . . 4[n/2].
So

If k < N —n is not a multiple of 4, then H*(G,(RV)) = 0.

If k < N —n is a multiple of 4, then every element of H*(G,(RM)) is a
unique linear combination of cup products of the classes corresponding,
via Theorem 32, to the forms

f2(§)7 LR fk/4(§)

Case 2. n is even. The forms f5(0),. .., fu—2(¢), Pf(¢) have dimensions 4,8,...,
2n —4,n. So

If k < N —nisodd, then H*(G,(RV)) = 0.

If Kk < N —n is even, then every element of Hk(an(RN)) 1s a unique
linear combination of cup products of the classes corresponding, via The-
orem 32, to the forms

S28)s- s Sy (§),  and PG ifk > n.

This can all be said more prettily if we fix # and allow N to increase:

41. PROPOSITION. If a: G,(RY) — G,(RM) is the natural map, and we
have M > N > n + k, then the induced map
a*: H*(Gn(RM)) > H*(Gn(RV))

is an isomorphism.
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PROOF. Because of the preceding discussion, it obviously suffices to show that
the element of H*(G,(RM)) corresponding to f, goes by a* to the element in

Hk (5,, (R™)) corresponding to fr. Proving this is just a matter of unraveling
definitions, and will provide a good opportunity to set straight everything done
up till now. <

Henceforth we consider only N sufficiently large so that 4[n/2] < N — n for
oddn,and 2n —4 < N —nand n < N —n for even n (we can take N > 3n —2
in both cases). Then all elements of H* (5,, (RV)) in dimensions < N —n are
unique linear combinations of cup products of the classes corresponding to

S208), .5 fam2(8) n odd
L200),. ., fu2(0),PI(E)  neven.
We let ~
Puk € H¥(GaRY))  k=1,...,[n/2)
be the class corresponding to

b
(271)2"

Sar(5),

and we let _
en € H'(G,(RY)) n=2m

be the class corresponding to

1
2m)m

Pf(?).

We defined pn.x for k = 1,...,[n/2] for both odd and even n, just for simplicity.
For even n this gives us the extra class pp;n/2, corresponding to [(©)/Q2m)". It
satisfies

Pn:nj2 = €n\J €n,

since e, v e, corresponds to

1
Pf(5) A Pf(¢) =

Q)" )™ ) Pf*(¢) by equation (l) on page 341

1
= G 0= Gy

Ju(8).

In these definitions, we are always taking N large, and applying Proposition 41,
so that there is no need to have an extra subscript N on the symbols p,;x and en.
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In accordance with our discussion in section 5, each class
Pukc € H¥(G,(RY)) N large
determines a “characteristic class”, that is, a function
§ > puk(§) € H¥ (M)

which assigns to a smooth oriented n-dimensional bundle £ = 7: E — M an
element of the cohomology of M. Explicitly,

Pnik é) = g*pn:k

where _
g: M = Go(RY) satisfies g*7"(RV) ~&.

This characteristic class is called the k' Pontryagin class for n-dimensional
bundles. For even n, we have the additional class

£ > en(§).

When one is dealing with characteristic classes, the number 7 is usually appar-
ent, since it is the fibre dimension of the bundle whose characteristic class is
being considered. Consequently, we write simply pg(£) and e(&). If £ has fibre
dimension n, then pg(€) is defined for k = 1,...,[n/2]; if n is even; then we
also have the class e(£), and p,/2(§) = e(&) U e(§).

Since all elements of H*(an(RN)) in dimensions < N — n are linear com-
binations of the p,4 and e,, we see that all characteristic classes for oriented
n-dimensional bundles are polynomials in the Pontryagin classes py, together
with e if 7 is even. In particular, the Euler class must be representable in this
way, and our notation clearly suggests that the Euler class is, in fact, just the
characteristic class e. In order to prove this, we have to look a little more care-
fully at the universal bundles.

Consider the universal bundle y*(RY) = 7: E(5"(RV)) — 5,,(11&”). A
point of G(RV) is an oriented n-dimensional subspace W C RV, and the fi-
bre 7Y (W) over W is {(W,w) : w € W}. So there is a natural Riemannian
metric {( , )} on P*(R™): the inner product of (W, w),(W,w;) € x7 1 (W) is
just the usual inner product of wi,w; € RN. For the corresponding princi-
pal bundle w: SO(E(7"(RM))) — én(RN), the fibre w (W) is the set of
all (W, (wy,...,wy,)), where (wy,...,w,) is a positively oriented orthonormal
n-frame in W C RY. Now we can define amap A: SO(N) — SO(E 7" (RN))),
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from the special orthogonal group SO(N) to the total space of this principal
bundle, as follows: If Wy C RY is the subspace spanned by ey, ..., ey, then

A(A) = (A(W), (Aler),. .., Alen))).

It is easy to see that for the point x = (Wo, (e1, ... ,en)) € SO(E(7"(RY))), we

have
AN (x) = {I} x SO(N — n);

more generally, for any x € SO(E(7"(RM)) the set A7 1(x) is a left coset of
{I} x SO(N —n). So SO(E(7"(RV)) can be identified with the left coset space

SO(N)/{1} x SO(N — n).

We leave it as an exercise for the reader to show that the topology and C*
structure on SO(E()?"(RN))) is the same as that on this left coset space, and
that the projection

@ SO(N)/{I} x SO(N — n) = SO(N)/SO(k) x SO(N — n)
is just the natural map taking the coset A - [{I} x SO(N — k)] to the coset
A -[SO(k) x SO(N — k)]. Notice that the diagram
T SO(N)
{I} x SO(N —n)
\N\ lw
SO(N)
SO(n) x SO(N —n)

SO(N)

commutes, where 7 and 7, are the natural projections. As in section 6, we
will use Ly4 for the left multiplication Lg: SO(N) — SO(N), and L4 for the
diffeomorphism of SO(N)/{I} xSO(N —n) taking the coset B-[{/}x SO(N —n)]
to AB-[{I} x SO(N — n)]. We also have the map Rq: SO(N) — SO(N), and
the map R 4 taking the coset B - [{I} x SO(N —n)] to BA-[{I} X SO(N — n)).
The reader should check that for 4 € SO(n), the map R4 corresponds to the
right multiplication by 4 in the principal bundle SO(7"(RV)).

On SO(N) we have the left invariant 1-forms ¢~>£ (@ < B)whose values at I €
SO(N) are the elements ¢£ € n(N)*; set ¢35 = —(i)g for o > B, and ¢Bg =0. We

claim that for i, j < n there are unique 1-forms w; on SO(N)/{I} x SO(N —n)
such that

) el = .
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To prove this we first note that 7y, is always onto. Since we need to have
2) o) (T X) = ¢{(X)

for all tangent vectors X' of SO(N), this proves uniqueness. To prove existence,
we need to show that definition (2) is well-defined, by showing that 43]’:(/\’) =0
whenever 714X = 0. So suppose X € SO(N)4. Then X = L4, X; for some
Xy € o(N). Since my o Ly = L 4 o, we see that

T X =0 = m L4 X7 =0
= L4« X1 =0
= mM«X; =0 since L4 is a difftomorphism
= Xj 1s of the form (8 2)
— $i(X) =0
== gI;]’:(X) =0 since d;]’ is left invariant.

Thus the forms w]’: exist. Note that

L4* o} (r1, X) = (U]l:(LA*ﬂl*X)
= o} (T1xLas X)
= ¢i(LauX)
= $;(X) = 0} (m X).
So ' '
Li*o; = ;.
Now w = (w]’:) is an o(n)-valued 1-form on SO(N)/{I} x SO(N — n). We
claim that w is, in fact, a connection on the principal bundle @ : SO(N)/{I} x
SO(N —n) — SO(N)/SO(n) x SO(N — n). We have to check that

wlo(M)) =M for M € o(n)

- for A € SO(n) and Y a tangent
®RaY) = A" 0(Y)4 vector on SO(N)/{I} x SO(N — n).

Recall that the value of o(M) at the coset B-[{I} x SO(N —n)] is ¢’(0) where
c(t) =Rexprm (B - [{1} x SO(N — n)])
= B(exptM) - [{I} x SO(N —n)]
=mLp(expt M)
= ¢'(0) = mi L M.
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Thus
wi(c(M) at B - [{I} x SO(N — n)]) = 0} (c'(0))
= o (r14Lps M)
= @} (L M)
= ¢j(M) =

which proves the first condition. To prove the second, take a tangent vector Y
at the coset B - [{I} x SO(N — n)] and choose a tangent vector X € O(N)g
with m1,X = Y. Then

ol(Y) = 0l(m1,X) = $](X) = ¢ (Lp-1,X),
while
0} (R4eY) = 0} (R 4715 X) = 0] (14 Rax X)
= 4;]’:(RA*X) R4, X atangent vector at BA
= ¢ (Lpay-1xRar X)
= ¢;(Ls—1sRaxLp-1,X)
= ¢} (Ad(A™") L1, X)
= ¢]( (LB I )A)

k
Z 1)1 ¢] LB I*X)}LA; by linearity of ¢]I7

which proves the second condition.

It is easy to see which vectors w1, X are vertical or horizontal when X -€ o(N).
First of all,

w1« X 1s vertical < w1, X =0
— X =0
< X €o(n) x o(N —n).
On the other hand,
w1« X is horizontal <= all w]': (M« X) =0
= all 0j(X) =0

<= X has the form (8 2)
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Given X € o(N), we write it as
0 =*x ¥ 0
(220 0)
= X1 + X

Then 7, X is horizontal and 7, X 1s vertical. This means that the horizontal
component of i, X is precisely

h(mie X) = m X1,

To compute the curvature forms Q; for the connection w]’: , we use the fact
(Problem 7-15) that the forms 435 satisfy

N
agE ==Y 8 né.
y=1
Then for X,Y € o(N) we have
Qi X, 1Y) = dol (hm X, by, Y)
= dw] (T, X1, 71, 11)
= d(m* o)) (X1, Y1)

= d¢i(X1, 1))

N
== & A (X1 YY),

y=1
Since
XYi=x- Y ¢y xf, rm=v- > ¢fwx) xl
aorf>n aorB>n

this gives

Qi X, mY) =) ¢ API(X,Y)
r

= §;i(X,Y),
which shows that
(*) 7[1*9;'- = Cij at SO(N)].

(In fact, we also have nl*Qj. = f,-j, where Z',-]- is the left invariant form extending

§ij, since the equation L 4*0] = ] implies that we also have L Qf = Q)
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42. THEOREM. If £ is an oriented n-dimensional bundle, with n = 2m even,
then the characteristic class e(§) 1s the Euler class x(§).

PROOF. Tt suffices to prove this when £ is the universal bundle 7" (R"Y). We
know, by Corollary 25 and Theorem 26, that the Euler class x(7"(RV)) is
represented by the unique form I' on SO(N)/ SO(n) x SO(N — n) such that

1

I1yeensin
1
= ——2" . m!Pf(Q)
T"m! 2"
1
= Pf(2).
@2m)m
We want to show that I' corresponds, via Theorem 32, to the form
Pf(¢g).
Gy PO

Note first that if L/, is the difftomorphism of SO(N)/SO(n) x SO(N — n)
taking the coset B - [SO(n) x SO(N —n)] to AB - [SO(n) x SO(N — n)], then
Liow =woLy So

1
(2m)m

o*(L*T) = L% = L. PE(Q)

L prLgr) =

e o

=w*I.
By uniqueness in Proposition 18 we have L/*I' = T for all 4 € SO(N). In
other words, T is an invariant form on SO(N)/SO(n) x SO(N - n), as defined
in section 6. So the element of Q"(0(N)) corresponding to I' in Theorem 32
1s simply m2*T" at 1. But
'l = m*=w*T
1 1

7[1* Pf(Q) =

= Gy Sy PHORR)

R/

Pf) atl, by equation (x). #

~ @om

The classes pg(&) of an oriented bundle £ = 7: E — M may be described
in exactly the same way: Choose a Riemanman metric { , } for &, form the
principal bundle O(§) = w: O(E) — M, and let @ be a connection on O(E),
with curvature form Q.
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43. THEOREM. There is a unique 4k-form A on M such that
1
A= ——r Q).
w (2]_[)2]( f‘2k( )

This form A is closed, and the cohomology class [A] is independent of the choice
of the Riemannian metric { , ) and the connection w in terms of which A is
defined. The cohomology class [A] is precisely py (). '

PROOF. The proofs of Propositions 18, 19, and 20 can be adapted, essentially
without modification, to prove the first two assertions. The proof of the final
assertion is exactly like the proof of Theorem 42. #

As a simple application, we consider a Riemannian manifold (M, {,))of
constant curvature Ko. Then the curvature form © on O(TM) satisfies

Qf = Kob' A6

To calculate f5;(Q2), we use the explicit formula given in Problem I.7-14, to
obtain

_ J1 J2K U1 d2g

Sk () = @0t Z LA ool
ilewiog
Jiejok

_ (Ko™ D AN AN RRUN LN S
- (2k)! 4= JreJok”
I|...12k
JieJox

In this sum, the § term vanishes unless jj, ..., Ja2k 18 a permutation of iy, . . ., iy;
but then 671 A .-~ A "2 has repeated factors, so it vanishes. Thus,

44. COROLLARY. If M" is a compact manifold of constant curvature, then

prk{TM) =0, k=1,...,[n/4].

Another application of Theorem 43 gives us an analogue of Theorem 17. For
a bundle § over M we define the total Pontryagin class p(£) to be the element
of HY(M)& HYM) @ - - given by

PE) =1+ piE)+ -+ ppum(€) = pol&) + p1(E) + - - + Pin21(€),

where 1 € H%(M) is the standard element (represented by the constant func-
tion 1 on M).
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45. THEOREM. If £ and n are oriented bundles over the same compact man-
ifold M, then the total Pontryagin class of £ @7 is given by the Whitney product
formula

pE®n) = pE&)v ph).

[This means that

k
pE®m =Y pi§) v pr-1(n),

1=0
when we look at individual components.]
PROOF. The proof will be almost exactly like the proof of Theorem 22. For
convenience we rename our bundles £ and nas § = m;: E; > M fori = 1,2,
andlet £,®& = m: E - M. We introduce the corresponding principal bundles
;. SO(E;) > M and @w: SO(E) — M, the principal bundle SO(E}) *

SO(E,) — M, and the projections p;: SO(E}) * SO(E3) — SO(E;). Choose
connections w; on SO(E;), with curvature forms ;. Then

FORON 0
*w *wy =
o1 wr & p2 w2 ( 0 pz*a)z)

is a connection @ on SO(E;) * SO(E>), with curvature form

— *Q 0
Q=P1*91®P2*92=(m ! ),

0 p2* 822

and @ can be extended uniquely to a connection @ on SO(E). At a point
e € SO(E}) * SO(F3) we have

~

Q=Q (on tangent vectors to SO(E}) * SO(E?))

which implies that

k
S () = fr (@) =D fulor* @) A fa—2(p2"R2)
1=0

by the formula on page 337

k
= Zpl*fZI(Ql) A p2* fak—2(R2).

=0
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So if Ag is the form representing pox (&1 @ &) while Tli are the forms repre-
senting py (§;), then at e we have [on tangent vectors to SO(E,) * SO(E>)]

ko 1

* 1 O * *
Ay = szk(ﬂ) = g G Ja(§21) A QTP J2ke—21(22)

k
1
= Z P m Y] A prw*YE

1=0
k
= Z w*Tll A w*T,f_l.
1=0
This implies that
k
A=) "T'ATE,. %
=0

10. THE WEIL HOMOMORPHISM

The invariant polynomial functions fy: 0(n) — R and Pf: o(n) — R arose
naturally in our attempts to calculate the cohomology of Gn(RM); each one
gave us an element of H* (5,, (R™)), and hence a characteristic class E— C(§)
for oriented bundles. On the other hand, at the end of the last section we saw
how these characteristic classes C(£) could be defined directly for the bundle &,
by means of a connection on the associated principal bundle SO(&). There is
no reason why we cannot use exactly the same procedure for groups other than
SO(n).

For any Lie group G, with Lie algebra g, we consider the set £ (g) of functions
S g — R which can be expressed as polynomials in {¢%}, where {¢*} is a
basis of g*. Such functions are called polynomial functions on g (the concept is
clearly independent of the choice of basis {¢q}), and the set of all homogeneous
polynomial functions of degree k will be denoted by £%(g). We say that f: g —
R is Ad(G)-invariant if f o Ad(a) = f for all @ € G. Instead of considering
polynomial functions on g it is often more convenient to consider the set §%(q)
of symmetric k-linear maps f: g x --- x ¢ — R. Given f € 8%(g), we define
a polynomial function Pf € P*(q) by

PHX)=fX,..., X) X €aq.
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Conversely, given a basis ¢',...,¢" of g, and a polynomial function f of de-
gree k on g, we can write it uniquely as

Z aal...ak(pal U ¢ak

where the Qg ...y are SYMMEic M U1, . . ., 0k then we define 8f € 85(q) by

(B (X1se o Xi) = D a3 (XD 6% (Xe), X, Xe €@
It is easy to check that the maps
P: 85 - PE@), 8 PR - 5@

are inverses to each other (so 8 doesn’t depend on the choice of basis). For
f e 8%(q) and g € 8!(q) we define fg € sk+(q) by

fg(X17"'7Xk+l)

1
=% > S Xray - Xa) - 8 Xy - > XaterD)-

TESK 41

This makes P(fg) = P(f)-P(g). We define f € $%(g) to be Ad(G)-invariant
if

f(Ad@) Xy, ..., Ad@) X)) = f(X1,. .., Xi)
foralla € G and Xi,..., X € g;

then f is Ad(G)-invariant if and only if Pf 1s Ad(G)-invariant. The set of
all f € 8%(g) which are Ad(G)-invariant is denoted by I¥(G). Thus, & takes
I*¥(G) into the set of polynomial functions on g which are Ad(G)-invariant,
and 4 takes this set back to I%(G).

Now let 7: P — M be a principal bundle with group G, and let @ be
a connection, with curvature form 2. Thus both @ and €2 are g-valued, so if
¢',...,¢" is a basis of g*, then we can write ® = Y w*-¢% and Q = 3 Qe-9”
for ordinary forms »® and Q%. Given f € Pk (q), we write it as a sum of terms

C.(pal...(t)ak,

and then let f(Q) be the 2k-form on P which is the corresponding sum of
terms
c-QY A A QTR
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(since the Q% are 2-forms, the order in the product ¢! - .. g2 is irrelevant).
This is the definition used previous}y for the case G = SO(n), where the Lie
algebra o(n) has a natural basis {¢]’- }i<j (provided we use the convention that
a polynomial in the ¢]’- (i,j = 1,...,n) be interpreted as a polynomial in the
{¢]’:},-< j by replacing ¢I.j by —¢]’: for j > i). A more intrinsic description is
possible when we work with f € $%(q). We now define f(2) to be the 2k-form
on P given by

f(Q)(X177X2k)

1
=k > (gn7) - QX Xa @), s R Xn@tmty, Xnat)),

ﬂESzk

where Xj,..., X3 are now tangent vectors of P. It can be checked that
(PHQ) = f(Q) for [ € 8*(q); equivalently, (§/)(Q2) = £(Q) for f € P*(g)
(so the definition of f(2) doesn’t depend on the choice of {¢?}).

46. THEOREM. Let § = 7: P — M be a principal bundle with group G,
and let w be a connection on P, with curvature form Q. Then for every f €
1*%(G) there is a unique 2k-form A on M such that

A = f(Q).

The form A is closed, and its de Rham cohomology class we(f) = [A] is
independent of the choice of w. For f € I*(G) and g € I'(G) we have
we(fg) = we(f) v we(g).

PROOF. Exactly like the proofs of Theorems 18, 19, and 20. «

Ifwe set H*(M) = H*(M)®H' (M)®--- and I(G) = R&I1'(G)®--- , then
we have a homomorphism wg: I(G) - H*(M), depending only on the given
principal bundle § = 7: P — M. This map is called the Weil homomorphism.
It is natural, in the following sense.

47. PROPOSITION. Letn: P — M be a principal bundle with group G and
let f: M" — M be a smooth map, inducing the map f*: H*(M) - H*(M').
Then

wrg = f* o wg.
PROOF. An elementary exercise (just like the proof of Proposition 21). «s



356 Chapter 13, Section 11

If we take G = SO(n) in Theorem 46, and consider the functions g2 =
3( fox) € 12k(3O(n)) corresponding to the polynomial functions . on o(n),
then we have classes wy(g2) € H* (M) for any principal SO(n) bundle 7
over M. If € = m: E — M is an oriented n-dimensional vector bundle over M,
then we can form the principal bundle 7 = SO(§) by means of a Riemann-
ian metric on £ [all such n are equivalent by Corollary 5], and Theorem 43
amounts to the assertion that w,(g2x) = pi(§). Notice that the SO(n)-invariant
polynomials fox on o(n) are also GL(n, R)-invariant polynomials on gl(n, R).
So there are corresponding g'2x € I1*(GL(n, R)) which restrict to gz on
o(n) x --- x o(n). Now a connection o for the principal bundle n = SO(§)
extends to a connection @’ for the principal bundle n' = F(§) of frames of &,
and €' is an extension of 2. Thus the form

g2 () restricts to 22(R) on SO(E).

This shows that w,(g'2x) = wy(g2k) = px(§). Since wyy (g'2%) doesn’t depend
on the particular connection Q' for F (&), we see that we can define pg(§) in
terms of an arbitrary connection for F(§); it is not necessary to use a connec-
tion which preserves inner products, and our bundle does not even have to be
orientable.

On the other hand, for n = 2m, the Pfaffian Pf: o(n) — R 1s not GL(n, R)-
invariant, nor even GL* (n, R)-invariant, so our construction definitely requires
orientability, and a connection on SO(E), 1e., a connection compatible with
some metric. Indeed, there are examples (see Milnor and Stasheff {1; pg 312})
of oriented bundles & having a connection @ with § = 0, but with x(&) # 0;
naturally such a connection cannot be compatible with any metric on §.

11. COMPLEX BUNDLES

A complex vectorbundle 7 : E — X is defined precisely like a real vector bun-
dle, except that each fibre 7~ 1(x) has the structure of a vector space over C, and
in all the conditions for a vector bundle, including local triviality, we replace R
by C whenever it occurs; vector space isomorphisms are always understood
to be isomorphisms of complex vector spaces, hence linear over C. Linearity
over C is also understood in the definitions of bundle maps (and equivalences)
between complex bundles. The Whitney sum § & n of two complex bundles &
and 7 is a complex bundle, and so is the induced bundle f*§. The principal
bundle F(&) of frames is now a principal bundle with group GL(n,C) = the set
of all non-singular 7 x n matrices with complex entries (which may be identified
in a natural way with the set of all non-singular linear transformations of C").
Note that the Covering Homotopy Theorem (Theorem 4) holds for complex
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bundles, since it holds for the corresponding principal bundles. There are two
reasons for discussing complex bundles, and their characteristic classes. On the
one hand, everything works out to be simpler; on the other hand, there are re-
lations between the characteristic classes for real bundles and those for complex
bundles. To discuss complex bundles, however, we need several preliminaries
about complex vector spaces.

On the vector space C” we could consider the bilinear function

n
(z,w) — Zziwi.

i=l

This is not an inner product, since it is not even real, and certainly not positive
definite. The linear transformations 7: C" — C” which preserve this bilinear
function correspond to n x n complex matrices A4 such that AAt = I. This
group of matrices is known as the complex orthogonal group. It is of little
interest to us, mainly because it is not compact. We consider instead the function

C" x C" — C given by
n
(z,w) = Zzi Cwi,

i=1

More generally, for any vector space V over C we define an Hermitian inner
product to be a map ( , ): V x V — C which is linear over C in the first
variable, and which satisfies

(v, w) = (w, v) (= (v,v) is real)
(v,v) >0 for v # 0.

The first condition shows that ( , ) is conjugate linear in the second variable
(Le., (v, w1 + w2) = (v,w1) + (v, w2) and (v, aw) = a(v, w)). Because of the
second condition, we can define |v] = /(v, v). We compute that

v+ w* — v —wl* =2((v, w) + (v, w))

= |v—iw® - lv+iw?® = 2i((v, w) — (v, w)).

Consequently, we can express (v, w) in terms of | |. A basis vi,...,v, of V
1s orthonormal with respect to an Hermitian inner product ( , ) if we have,
precisely as in the real case, (v;, v;) = 8;;. We can always obtain an orthonormal
basis from a given one by the Gram-Schmidt process, which works Jjust as well for
Hermitian inner products. Hence, any n-dimensional Hermitian inner product
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space (V,{ , )) is isomorphic to C" with the standard Hermitian inner product
(zyw) =Y 2" - wi,

We define U(n) C GL(n, C) to be the subgroup of all A such that AA* =1,
where A* denotes the conjugate transpose of 4,

A* =AY,  ie, A=A

We can also think of U(n) as the set of all linear transformations of C" which
preserve the standard Hermitian inner product. It is easy to see that U(n) is
compact, just like O(n). Thus U(n) must be a Lie group (Theorem I.10-15).
To see this in a more elementary way, we can consider the exponential map
exp: (n x n complex matrices) - GL(n,C) defined, just as in the real case, by

M?
expM=I+M+-5—+~~.
Reasoning as on pg. 1.388, we easily see that U(n) is a Lie group whose Lie
algebra 1(n) is the set of all n x n complex matrices M with M + M* =0
(skew-Hermitian M). Thus M € 1(n) if and only if M has the form
ibn  _px
. b;; real.
B ibu
So U(n) has dimension
n+2(0+---+n—1)=n%

Notice that U(1) is just the set of complex numbers of absolute value 1. Hence
U(1) is connected. We can regard S?"~! C C” as the set of all z € C" with
|z] = 1. So for n > 2 we can define f: U(n) — S2=1 by f(A) = A(po),
where po is the n-tuple of complex numbers 0,...,0,1). Then f~!(po) is
homeomorphic to U(n — 1). Using induction, as in Problem I.3-30, we see that
U(n) is connected for all n. (Reasoning similar to that in Problem I.3-31 would
show that GL(n, C) is also connected.)

Every vector space V over C is also a vector space Vg over R [formally, Vr
is V with the same addition map V x V — V and the multiplication Rx V' — V
which is the restriction of the given multiplication C x V' — VI If vi,...,vn
is a basis for V over C, then v1,ivy, v2,iVa,. .., Un, iUy 1s a basis for Vg over R.
Let T: V — V be a linear transformation (over C) whose matrix with respect
to v1,. .., s is the n x n complex matrix

A = (ajr) = @jk +ibjk),
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so that
n
TU]' = Zakj Uk .
k=1

Then the matrix of T: Vg — Vg with respect to the basis vy, ivy, ..., v,, iv, is
the 2n x 2n real matrix h(A) = (@;x), where @ 1s the 2 x 2 block

®jk = (b] ! ) :
j ajk

It is easy to see, using block multiplication of matrices, that
h: {n x n complex matrices} — {2n x 2n real matrices}
is 2 homomorphism. Hence it also gives us a homomorphism
n: GL(n,C) — GL(2n, R),
and moreover, we easily see that
he = h: gl(n,C) — gl(2n,R).

It is also easy to see that
h: U(n) - O(n).

Since U(n) is connected, and 4 takes the identity matrix of U(n) to the identity
matrix of O(2n), we actually have

h: Un) — SO(2n).

This also follows from

48. PROPOSITION. For every n x n complex matrix 4 we have
det 7(A4) = |det A,

PROOF. The formula clearly holds for a diagonal matrix

apy _bll
ay +ibn O by an O
O Ann + iban Ann —bnn
bun  ann

So it also holds for diagonalizable matrices. But the diagonalizable matrices

are dense, and both sides of the equation are continuous in 4. So it holds for
all A. &
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If vi,...,vn and wy, ..., w, are two bases of V and 4 is the matrix express-
ing the w’s in terms of the v’s, then h(A) is the matrix expressing the basis
Wi, iWy,. .., Wy, iWy in terms of v1,ivy,..., U, (Vs Since deth(A4) > 0, this

shows that Vg has a natural orientation (which is but a reflection of the fact that
GL(n, C) is connected). If & is a complex vector bundle, then we can form a
real vector bundle g by replacing each fibre by the corresponding vector space
over R; clearly &g is always orientable, with a natural orientation.

For complex vector bundles it is natural to consider Hermitian metrics, which
assign an Hermitian inner product to each fibre. We can prove they exist, as
in the real case, by using partitions of unity (note that a positive real multiple
of an Hermitian inner product is also an Hermitian inner product). Using an
Hermitian inner product { , ) on the complex bundle § = 7: E — X we can
define the principal bundle U(§) = w: U(E) — X with group U(n), whose
fibre @~ !(x) is the set of all frames of 7 ~!(x) which are orthonormal with
respect to { , ).

Corresponding to the Grassmannian G,(R"), we have the complex Grass-
mannian manifold G,(CV), consisting of all W C CV which are subspaces of
CV (as a vector space over C) of complex dimension n. If V, (CN) is the set of
all linearly independent n-tuples (vi,...,vn) € CVN x ... x CN, we define the
map

o Vn((CN) - Gn((CN)

by letting
p((vy, ..., vn)) = (complex) subspace of cN spanned by vi, ..., U,

and we give G,(CV) the quotient topology for this map. Reasoning exactly as
in the real case, we see that G,(C") can also be described as the left coset space

U(N)/U(n) x U(N —n).

Over G,(CV) we have a natural complex bundle Y™ (CN) defined exactly as in
the real case, and for M > N there is a natural map a: G, (CN) - G, (CM)
such that y"(CV) >~ a*y"(CM). The reader may easily check that Theorems 6
and 7 hold for complex bundles when we replace y"(RY) by y"(C N) through-
out; the proofs are exactly the same.

To find the characteristic classes for complex bundles, we thus need to com-
pute the cohomology of U(N)/ U(n) x U(N —n). For this we need the solution
to two invariance problems. First we want to consider polynomial functions on
C" x --- x C", by which we mean real-valued functions which are polynomials
(over R) in the real and imaginary components of the various vectors.
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49. THEOREM. Every polynomial function f of m vectors in C” which is
invariant under U(n) can be written as a polynomial in the real and imaginary
parts of the Hermitian inner products.

Notice that this result is much simpler than the corresponding result for O(n)
and SO(n), for there are no determinants involved, even though U(n) is con-
nected. The proof is also simpler, in the sense that various delicate details which
arose in the proof of Theorem 35 are not needed. However, certain other con-
siderations are required, and the proof is deferred to Addendum 1.

Another instance of the greater simplicity to be found in the complex domain
is afforded by the spectral theorem, which is both more general and easier to
prove. We recall that for every linear transformation 7: C" — C” there is a
unique linear transformation 7*: C" — C”, the adjoint of T, with

(Tv,w) = (v, T w) for v,w e C".

If T corresponds to the matrix A4, then T* corresponds to the conjugate trans-
pose matrix A*. We call 4 normal if 44* = A*4, and similarly for transfor-
mations. Both self-adjoint transformations (T* = T') and skew-adjoint transfor-
mations (I'* = —T) are normal. If T is normal, then

(Tv,Tv) = (v, T*Tv) = (v, TT*v) = (T*v, T*v).
Applying this to T — &I, which is also normal, we see that
(T — Al)v| = |(T* = AI)vl.

Now any linear transformation 7': C* — C” has an eigenvector, since the equa-
tion det(T" — AI) = 0 has a root in the field C. The above equation shows that
if T'is normal, then an eigenvector v of T is also an eigenvector of T*. There-
fore the subspace [v] spanned by v is invariant under T*. Consequently, the
orthogonal complement [v]! (under the Hermitian inner product) is invariant
under 7** = T. From the invariance of both [v] and [v]* under T, we easily
see, by induction, that T has an orthonormal basis of eigenvectors. Equiva-
lently, for every normal matrix A, there is a matrix B € U(n) such that BAB™!
is a diagonal matrix.

Now it is easy to give a canonical form for elements of u(n).

50. PROPOSITION. TFor every 4 € u(n) there is a matrix B € U(n) such that

)
BAB™ = O A;j real.

iXy
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PROOF. Since A = —A* is normal, there is B € U(n) such that BAB™! is
diagonal. Moreover,

(BAB™Y)* = B™"A*B* = BA*B™! = —BAB™!,

so the diagonal entries of B~!A4 B must be pure imaginary. <

Using this result, we can easily describe the polynomial functions on u(n)
which are invariant under the adjoint action of U(n). Since the polynomials
fi,..., fn of section 8 are not real-valued on u(n), it is convenient to consider
instead the polynomials

Ju(M) =ik fr (M) = fi (i M),

so that 5 )
det(J +AiM)=14+Afi(M)+---+ A" fr(M).

We also set fo(M) =1. If M € u(n), then for all real A we have
T+AMY =14+ AiM = det(J + AiM) =det(I + Ai M),

which shows that all ﬁ(M) are real. It is easy to see, as on page 337, that for
all 4 € gl(r,C) and B € gl(s,C) we have

k
Se(A® B) =" fi(A)- fei(B).

1=0

51. THEOREM. Every polynomial function f on 1t(n) which is invariant un-
der the adjoint action of U(#n) is a polynomial in f1,..., fa.

PROOF. For Ay,..., A, € C,let [Ay,...,As] be the diagonal matrix with entries
i\i,...,iky on the diagonal. Define

ghr, ., hn) = f([A1,.. s An))
Then g is a polynomial in A4,...,A,. Moreover, g is symmetric, since
Artys - s Anem) = ATty An]A™!
where A4 € U(n) is a suitable permutation matrix. So we can write
g, ..., Ahn) = ploy(idy, ... ikpy), ... 0n(iA1,. .. iky))
for some polynomial p. Then
S hal) = P Al Ja(has o AD))

The result follows as before, using Proposition 50. <
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Using Theorems 49 and 51, we can carry out the whole program of section 9
for

Gn(CY) =U(N)/U(n) x U(N —n) = U(N)/H.

A bi-invariant Riemannian metric { , ) on U(n) can be defined explicitly as
follows. For M, P € u(n), let

(M, P) = Re(trace MP*) =Re Y M;; - P;;.

Lj

As in the case of O(n), if we extend ( , ) to U(n) by left invariance, then it will
also be right invariant. Now 1 consists of all matrices

(_(;)* 1(1))) P an n x (N — n) complex matrix.

On bt x b1 we have the functions

(P,Q)— > P -0f
.
(which are bilinear over R); their alternations 5, given by

vij(P,Q) =Y P/ -Q] — Q- P,

are complex-valued alternating bilinear functions on ht. Aformn e Qk )
will be invariant under {I} x U(N —n) if and only if it is a linear combination of
wedge products of the forms Re ¥;; and Im ;5 (since there are no determinants
to worry about in the first main theorem of invariance theory for U(n), we do
not need k < N — n). Such linear combinations can be described as f(y) for
polynomial functions f: 11(n) — R [this representation is unique in dimensions
< N — n], and the combinations which are invariant under U(n) x {I} corre-
spond to functions f: u(n) — R which are invariant under the adjoint action of
U(n). Thus we have a class ﬁ(l//) e H¥(G,(CN)) for each of the polynomials

f1, .. f,, of Theorem 51, and every element of H*(U(N)/U(n) x U(N — n))
15 a lmear combination of cup products of these elements [it is a unique linear
combination in dimensions < N — n].

The analogue of Proposition 4] holds, so we will consider only N with 2n <
N —n. Then all elements of H*(G,(C")) in dimensions < N — n are unique
linear combinations of cup products of the classes corresponding to

AW, ..., fay).
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We let
enk € H¥(G(CY))  k=1,...,n

be the class corresponding to

1 .
Wfk(‘/f)-

For an n-dimensional complex bundle § over M we define
k(€)= & Cnik

where
g: M —> G,(CV)  satisfies  g*y"(CV) =&

The characteristic class & > cg(£) is called the k™™ Chern class for n-dimen-
sional complex bundles; every characteristic class for n-dimensional complex
bundles is a polynomial in the Chern classes ¢y, ..., ¢s. The class

cE®)=1+a@)+ - +cn§) =col) +car(d) +-- -+ cnl8)

is called the total Chern class of the n-dimensional complex bundle &.

Just as in the real case, the Chern classes of an n-dimensional complex bun-
dle £ = n: E - M may be described in terms of a connection. Choose
any Hermitian metric for &, form the corresponding principal U(n) bundle
U(t) = w: U(E) - M, and let w be a (11(n)-valued) connection on U(§), with
u(n)-valued curvature form €.

52. THEOREM. The k" Chern class ¢, (§) of & is represented by the unique

form A on M with :

In other words, we have
a (§) = w(gk),

where g = 4( f~k) e I*(U(n)) corresponds to the polynomial function f~k
on u(n), and w is the Weil homomorphism for U(§).

PROOF. Tirst of all, an obvious analogue of Corollary 5 shows that the princi-
pal bundles 7 are all equivalent, no matter what Hermitian metric we choose.
Now to prove the result, we just have to consider the universal bundle y"(C M.
This has a natural Hermitian metric, just like the natural Riemannian metric
for p"(RV), on page 345. All the succeeding considerations also have natu-
ral analogues, and the result follows exactly as in the proof of Theorem 42 (or
Theorem 43). «
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As an immediate consequence we have

53. THEOREM. If § and n are complex bundles over M, then the total Chern
class of § @ n is given by the Whitney product formula

cEdn =clE)vech.

PROOF. Exactly like the proof of Theorem 45, except now using the formula
on page 362. #

We can also find relationships between Chern classes and Pontryagin classes.
For a real vector space V, we define a complex vector space V¢ by letting Ve =
V @ V, with complex multiplication determined by

i-(v,w)=(—w,v) [thus we think of (v,w) as v+ iw].

Doing this in each fibre of a real vector bundle & gives a complex vector bun-

dle &c.

54. THEOREM. If ¢ = n: E — M 1s an oriented n-dimensional vector
bundle, then
cwlée) = (=DFp®)  k=1,...,[n/2)

PROOF. Choose the Hermitian metric on §¢c = n’: E¢c — M to be an exten-
sion of a Riemannian metric on §. Then SO(E) C U(E¢), and the projection
w: SO(E) — M is the restriction of the projection w’: U(Ec) - M. A con-
nection @ on SO(E) has a unique extension to a (u(n)-valued) connection ¥
on U(Ec¢) [as in the proof of Theorem 22, ¥ is determined on the new vertical
vectors of SO(E), and hence on all of U(Ec¢)]. Let W be the curvature form

of ¥. At any point e € SO(E) the horizontal vectors for ¥ are the same as
for w, so at ¢ we have

=0 [on tangent vectors to SO(E)]
= fa(¥) = [(Q) = (=D ().
So if A represents px(§) and Y represents ¢k (Ec), then at e we have

*

1
o A = szk(g)

1
(m)*

= (-Drkw'*T.

= (-1F fak (¥)
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This implies that
A=(=DFT. &

The odd Chern classes, which are missing in Theorem 54, are easily calcu-
lated by the following considerations. Every complex vector space V' gives rise
to another complex vector space V in which complex multiplication « is defined

by

eV =0U-"

Applying this process to each fibre of a complex bundle & we get the conjugate

bundle £. The bundles £ and £ are equivalent as real bundles, of course, but
there may not be an equivalence which is complex linear on each fibre.

55. PROPOSITION. If & is a complex vector bundle, then

) =1-ci(§) +ca) — c3(E) + -+

PROOF. If w: U(E) - M is the associated principal bundle U(§) for §, with
R4 the right multiplication by A € U(n), then for the pr1nc1pal bundle U(€) we
may choose the same total space U(E), but with the action R of U(n) on the
right given by
Rsi=R i

So if w is a connection on U(£), with curvature form €, then @ (the complex
conjugate of w) will be a connection on U(§), with curvature form Q. If A
represents ¢ (§) and Y represents ¢ (é) then

o = o )kfk(Q)

= Gy -8
(=¥

= Gnf Se(Q)

= (-DrFz*A.
Hence Y = (—=1)*A. <

56. COROLLARY. If £ is a real vector bundle, then
céc)=0 for k odd.
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PROOF. We just have to note that
Ec ~ Ec (as complex bundles).

This is due to the fact that there is a natural complex isomorphism Ve — Ve
for every real vector space V —we merely take (v, w) > (v, —w). &

Instead of starting with a real bundle, we can instead begin with a complex
bundle £, and regard it as an oriented real bundle &g (of even dimension). In
order to find its Pontryagin and Euler classes, we need a lemma concerning
the homomorphism 4: GL(n,C) — GL(2n,R) defined on page 359. Since
h = he: gl(n,C) — gl(2n,R), we have h(u(n)) C 0(2n).

57. LEMMA. For M € u(n) we have

2k
Sah(M)) = (=1 Y " (=1)! fi(M) far—1(M),

1=0
PE(h(M)) = fu(M).
PROOF. For all real A we have

L 22 foh (M) + -4 32 iy R(M)) = det(Tan + Rh(M)) Loy = SO

— deth(I, + AM) In= ffe{‘ﬁ;‘/)

= |det(I, + A M)|? by Proposition 48

=1 —id fil(M) = A2 (M) + X3 (M) + A4 fy(M) — - - |2

= (1 = A2 (M) + A4 (M) — ) =i (A fi (M) = A3 f5(M) + )2

= (L= A2 (M) + A fu(M) = - )2+ (Afi(M) = A 5(M) + )2,
The coefficient of A% on the right side is

3 (DEEDE f(M) fos (M)

I even

+ 3 DT EDFFT M) fei(M)

! odd

= (—1)"[ > A OM) foi (M) = f}(M)f}k_z(M)]

! even ! odd

= (D% D (=D fi(M) frri (M).
I
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For the Pfaffian we have
[PE(h(M))]? = det (M) = |det M* = | fu(M)?

-~ 2
onl
BOD <\,

and hence _
Pf(h(M)) = + fu(M).

To settle the sign, we consider

) 0)

Then 5
Pf(h(M)) = (-1)" =detiM = fu(M),

so the + sign Is correct. %

The relevance of this Lemma will become immediately apparent in the proof
of our final result.

58. THEOREM. If £ is a complex bundle of dimension #, then

2k
pr(Er) = CDFY (=Da® ven®)  k=1,....2n,

=0

and

x(ér) = cn(§).

PROOF. Note that an Hermitian inner product { , ) on a complex vector
space V gives an ordinary inner product on Vg—we define vy, ivi,. .., Uy, iU
to be orthonormal whenever vy, ..., v, is orthonormal with respect to { , ).
This inner product on Vg is well-defined, for if w; = 3" aijvr 1s another or-
thonormal basis, then the matrix A = (ay;) is clearly in U(n), so h(A) € SO(n).
Choosing an Hermitian metric on § = n: £ — M, and applying this con-
struction to each fibre, we obtain a Riemannian metric on £r. Moreover, for
the corresponding principal bundles, we have U(E) C SO(E), and the pro-
jection w: U(E) — M is the restriction of the projection w': SO(F) - M.
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For A € U(n), the right action R4 on U(E) is just the restriction of the right
action Rp(4) on SO(E). A connection w on U(E) is u(n)-valued, as is its cur-
vature form Q. The A(u(rn))-valued form /% o @ has a unique extension to a
connection ¥ on SO(E), with curvature form W. At any point e € U(E) we
have

¥="hoQ on tangent vectors to U(E).

So if A represents pi(ér) and A; represents ¢;(€) for [ = 0,...,2k, then at e
we have

wA = o )2k — S (W)
Wﬁk(h o £2)
(2 )2k (=¥ Z(_l) fI(Q) A faie—1(R) by Lemma 57
2k
= (‘l)k Z(—I)IW*A] A w*Azk_,,
=0

which proves the first formula.
If A represents x(£r), then at e we have

wl*A_

Pf(W
(2),, ()

Pf(hoQ
= n ),, (h o)

(2 )n f,,( ) by Lemma 57

=w*A,.

This proves the second formula. #

12. VALEDICTORY

Now that we have built up so much machinery, it seems a shame not to
use it. But this would really take us out of the field of differential geometry
entirely. We have tried to show how the characteristic classes arise naturally,
how they can be computed by differential geometric means, why they should be
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expressible in terms of curvature, and especially how the Euler class is expressed
in terms of K, dV, which involves Pf(Q). For further applications of these
characteristic classes, the reader is urged to consult books specifically devoted
to the subject, where characteristic classes are usually defined by methods of
algebraic topology. One of the most famous set of notes, now finally available in
book form, is Milnor and Stasheff {1}. Here the Euler class is defined essentially
as we have defined it, in terms of the Thom class. But the Pontryagin and Chern
classes are defined in completely different ways. For a complex n-dimensional
bundle £ = 7: E — X, the top Chern class ¢,(§) is defined by the formula of
Theorem 58, as

cen(§) = x(Er).

The other Chern classes are defined inductively, as follows. Choosing an Her-
mitian metric for &, we form the associated sphere bundle S C E, and let
7o: S — X be the restriction of . It turns out that the map

mot: HR(X) — H*(S)

is an isomorphism for k& < n. Now 7o*€ has a section, so it can be written as
the Whitney sum

"6 =& @&,

where & is a trivial 1-dimensional complex bundle. The Chern class ¢,—1(§) is
defined as

en1(8) = (mo*) Hen—1(£1)).

This makes sense, since ¢, is defined for the (n — 1)-dimensional complex
bundle &. Moreover, it is compatible with our definition, since it is equivalent
to

Cn—1 (JTO*E) = cp—1(61),

which is what the Whitney product formula gives when §; is trivial. Now that
Cn—1(£) is defined for all n-dimensional complex bundles &, the Chern class
¢n—2(€) can be defined as

en—2(8) = (") en=-181)),

and so on, by induction. After the Chern classes are defined, the Whitney
product formula is proved, and the cohomology of G»(C*) is calculated, by
means of various tricks. The Pontryagin classes are defined by the formula n
Theorem 54, and all properties are derived from this definition and the prop-
erties of the Chern classes. In the whole development, there is no restriction
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to manifolds, and singular homology is used throughout. Moreover, the coeffi-
cients are Z, rather than R. Integer coefficients can be used because the Thom
class can be defined with integer coefficients, so the Euler class has integer co-
eficients, and the map mo*: Hk(X) — Hk(S) is an isomorphism with integer
coefficients. This shows, by the way, that our Euler, Pontryagin, and Chern
classes, defined originally with real coefficients, are actually all integral classes;
that, of course, was the reason for inserting the various factors (27)~% in the
definitions.
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ADDENDUM 1
INVARIANT THEORY FOR THE UNITARY GROUP

At first sight, the problem of determining all invariant polynomials for U(n)
seems peculiarly complicated, since we are dealing with polynomial functions
of the real and imaginary parts of the components of the vectors, rather than
polynomial functions of the components themselves. But there is a trick which
will allow us to reduce the problem to one where we study only polynomials
of the latter type. The basic result which we need for such polynomials can
actually be formulated for any field.

Let k be an arbitrary infinite field, and let V = k" be the standard n-dimen-
sional vector space over K, with standard basis elements ey, ..., e,. The group
of all non-singular n x n matrices with entries in K is denoted by GL(n, k). Just
as in the real case, a matrix 4 = (a;j) € GL(n, k) is also regarded as a linear
transformation A: V — V, by the rule

n
Alei) = Zajiej,
j=1
so that for a (row vector) v € k" we have
Aw) =v- A"
We also define an action of GL(n, k) on the m-fold product V x --- x V by
A-i,...,vm) = (A(W1),..., A(Vm))-

A function
f:Vx--xV >k

is called a polynomial function if it is a polynomial (over k) in the components
of the elements of V; we also define homogeneous polynomial functions just as
before. We say that f is invariant under a group G C GL(n, k) if

f(4-v)= f(v) forallve Vx-.-xV,andall 4 € G.

We still have the standard basis vectors e,; for V- x --- x V, and the partial
derivatives df/de,; can be defined formally for polynomial functions f. Euler’s
theorem can be checked formally, polarizations are defined as before, and the
Capelli identities still hold. Introducing the partial ordering on the polynomial

functions as before, we still have assertion (A) on page 327.
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Actually, we want to be even more general, and consider functions

iV X xVxV*x...x V¥ k.

m I

We define an action of GL(n, k) on V x --- x V* by

Ao Ums By 81 = (AW, AUm), @ 0 A7 o A7),
and we say that f is invariant under a group G C GL(n, k) if

S(A-(v,9)) = f((v,¢)) forall (v,¢) e V x---x V* and 4 € G.

For example, the “evaluations”

Srs(Ul,u',Um,¢1,~',¢l) = ¢S(U!‘)

are invariant under all of GL(n, k). It will be convenient to identify an element
¢ € V* with the column vector

d(er)
e=|
o (en)

Then it turns out that the action of GL(n, k) is
A " (Ul,'-',Um,El,"---,EI) = (Ul ° At,-'-,vm . At,(A_l)t 'El,"',(A_l)t EI)

We call f a polynomial function if f(vi,...,vm,&,... ,€1) 1s a polynomial in

the v,; and &;; (here &; is the entry in the jth row of &). Notice that the
evaluations are polynomial functions—under the identification of V* with the
set of column vectors they are simply the maps

EVS(UI,"',UM,El,"',EI) =Vr 'ES'

‘Two other important types of polynomial functions are the functions

Ur
detn,...,r"(vl,'",Um,gl,"',EI)=det

Uy n

and

det:I s"(vl,"',vm,gl,"',gl) = det(ésl,u-,gsn)

.....

They are invariant under the subgroup SL(n, k) C GL(n, k) consisting of ma-
trices of determinant 1.
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We can define homogenecous polynomial functions as before, except now we
must consider functions which are homogeneous of degree (¢y, . . ., &m) In the V
variables, and of degree (B1,...,8:) in the V* variables. For any homoge-
neous f, we can apply the apparatus of the Capelli idenuties to either the V
variables or the V* variables separately, and obtain assertion (A) on page 327
where the partial ordering < is applied to either the degree in V' or the degree
in V*, the polarizations being applied to the variables in V or V*, respectively.

59. THEOREM. For all m, /, and n we have

SL™*. Every polynomial function f of m vectors in k" and / vectors in (k")*
which is invariant under SL(#, k) can be written as a polynomial in the

evaluation functions &,5 and the determinant functions det,,, ., and
*
detsl,...,s,, .

PROOF. The proof is similar to that of Theorem 35, but the steps are casier.
First we note that SL™ — SL™!" for m' < m and I’ < I. Next we have

60. LEMMA. IfSL%""~! holds, then SI™ holds forallm > n—1,1 > n—1.

PROOF. The argument is similar to that for Lemma 36. In the present case we
can start with SL~ 57! rather than SLjy" because the term det appearing in
assertion (A) in the case m = n causes no problems—it is one of the invanants
in terms of which we are trying to express f. Q.E.D.

Now the proof of the special case to which we have reduced the problem does
not even require an inductive argument:

61. LEMMA. SL*~1"~! holds for all n.

PROOF. Consider (v1,...,Un—1,®;,--->Pn—1) satistying
() det(¢i(vj)) # 0.

Then N/Z/ ker ¢; is 1-dimensional. Let 0 # w € (), ker ¢;. If we had

n—1
w = E a;vj
j=1
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for constants a; (necessarily not all zero), then we would have
n—1
0=¢,~(w):2aj¢,~(vj) j=1...,n—1,
j=1

contradicting (). So w is linearly independent of vy,...,v,—;. Hence there is
some A € SL(n, k) such that

Ale;) = v; i=1,...,n—1

A(en) = a multiple of w.

Then

(l) f(vl,'",Un—l,(ppu',(pn—l)
= f(A7 W), .., AT Wnmt), Py 0 Ay g 0 A)
= f(el,...,e,,_l,(pl OA,...,¢n_1 OA);

note that

(¢i 0 A)(ej) = ¢i(vy) j=1,...,n—1

@ (¢i 0 A)(en) = 0.

Now define a polynomial function F of (n — 1)? variables a;;, as follows:

F({alj}) = f(el, L ,en—l,,ul, .. ,l“’n—l),
where u; are the unique linear functionals with

wile;) = ayj j=1,....n—1
wilen) = 0.

Then equations (1) and (2) show that
(**) f(vl,'",Un—l,(pls"',(pn—l)=F({¢i(vj)})

whenever () holds. A standard argument (“the principal of irrelevance of al-
gebraic inequalities”) shows that consequently () holds everywhere: for the
polynomial

[, vnet, 15 bnt) — F({8:(0)})] - det(i(v)))

is identically 0, hence one of the factors must be identically 0, and the second
factor certainly isn’t. o
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We will use Theorem 59 only for the case SL(n, C). We easily see (compare
Problem 1.10-27) that the Lie algebra sl(n,C) of SL(n,C) consists of all n x n
complex matrices with trace = 0. Similarly (compare page 358), the group
SU(n) = U(n) N SL(n, C) has Lie algebra su(n) consisting of all matrices

ib

! ) —B* b;; real

B T Zbii = 0.
ibpn

Notice that 3u(n) is not a complex subspace of gl(n, C); however, it is easy to
find the complex subspace W C gl(n, C) spanned by su(n). Note that W must
contain

. (ibn O ) i O b;; real
_l . c. . —_— t. . L
O ibw 0 Bun 2. =0

—1 - :—-i. p— N
iA 0 iA 0 A 0

and thus also the matrix

(O O)=(0 .._.A*)_F 0 ...A*)’ e (0 ...A )
4 4 4 0 o

Irom this we easily see that

and

()  the complex subspace of ql(n, C) spanned by su(n) is just 3l(n, C).
This simple fact leads to

62. LEMMA. ILet g: GL(n,C) — C be a complex analytic function (this

makes sense, since GL(n, C) is an open subset of (C”Z). If g vanishes on SU(n),
then g also vanishes on SL(n, C).

PROOF. Pick Y1,Y; € su(n), and consider the function #: C — C defined by

h(z) = g(exp(zY + 12)).
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Then A is analytic and vanishes for all real z. So A vanishes for all z. Similarly,
we may now prove that

glexp(z1Y1 + 22Y2) =0 for all z;,z, € C.

Then (x) implies that g(exp(X)) = 0 for all X € 3l(n,C). But the image
of exp: 8l(n,C) — SL(n,C) is dense* in SL(n, C), since the diagonalizable
matrices are certainly in the image of exp. Hence g = 0 on all of SL(x, C). o

63. COROLLARY. Let f be a polynomial function of m vectors of C" and
I vectors of (C")* [that is, f is a polynomial over C in the (complex) compo-
nents of the vectors]. If f is invariant under SU(n), then f is also invariant
under SL(n,C), and is thus a polynomial in the evaluation functions g,s and

the determinant functions det,,, .., and det},

n sy "

PROOF. Tor fixed (v,¢) € C" x --- x (CM)*, define gw,¢): GL(n,C) — C by
Ew,p)(A) = f(A4-(v,9)) — f((v,9)).

Then g 1s complex analytic, and g vanishes on SU(n) by hypothesis. So by
Lemma 62, g vanishes on SL(n, C). Since this is true for each (v, ¢), it follows
that f is invariant under SL(n, C). ¢

Now we really want to consider R-valued functions of m vectors in C” which
are polynomials in the real and imaginary parts of the components of the vec-
tors. Actually, we might as well consider complex-valued functions which are
polynomials over C in the real and imaginary parts of the components of the
vectors. Equivalently, we consider functions

[C"x...xC"> C

which are polynomials over C in the components v,; of the vectors and in their
complex conjugates v,;. Given such a function f, we define a function

SO %o xC"x (C")* x--- x (C")* > C
————

m m

as follows:

(1) if f(U],...,Um)=Uri,thCn f(U],...,Um,El,...,ém)=Uri
() if f(vi,...,Um) = Bpi, then f(u1,...,0m E1,. .. Em) = &,

(ii) the correspondence f + f is an algebra homomorphism.

* Actually, the exponential map is onto SL(n, C), but we won’t prove that here.
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Notice that f is a polynomial function in the (complex) components of the

vectors of C" and (C")*. The mapping [ + f is clearly a one-one correspon-
dence between the polynomials in the v,; and v,;, and the polynomials in the
v,i and &,;. Note that if f is the Hermitian inner product t,s of v, and v;,
then f is the evaluation &,;. If [ is the determinant of v,,...,v,,, then f 18
also this determinant; if f is the conjugate of this determinant, then f is the
determinant of &,,...,§,,.

Suppose that f(vi,...,Vm) = Uri. Then

()  f(A-(v1,...,vm)) = the conjugate of the i" component of v, - A*
jug p

= the conjugate of Za,'j Urj
= Zﬁ,‘jﬂrj.
i

On the other hand, if 4 € U(n), so that 47! = At then

@ SA-@1 Ul Em) |
= f - A v AL (AT E (AT )
=it component of (A™Ht ¢,

= i™ component of 4 - &,

= aijky.
j
Comparing (1) and (2), we see that

3) fo(d-)=[o(4"),

where (4 -) on the left is the action of 4 € U(n) on C" x - -- x (C")*, while (4-)
on the right is the action of 4 on C" x --- x C". From the way that f +> f is
defined, it is clear that (3) holds for all f. Consequently,

J

[ is invariant under U(n) if and only if f is invariant under U(n).

From this we immediately conclude

64. THEOREM. Let f: C" x --- x C" — C be a polynomial function in the
components of the vectors of C” and the conjugates of the components which is
invariant under SU(n). Then f is a polynomial in the Hermitian inner products

and the determinants det,,,....,, and their conjugates dety,,....r,-

.....
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PROOF. By Corollary 63, the function f is a polynomial in the evaluations &,
and the determinants det,, ..., and det}, , . Since

it * -
Ers = lps, detr.,...,rn = detr. ..... ras detr, ,,,,, m= detr;,...,

the result follows. &

In order to prove Theorem 49, which gives the corresponding result for U(n),

we need just one more observation. Let vy,...,vp,wy,...,w, € C*, and let
A = (vi;), B = (w;j). Then we have

(A-BY;; = Zvikw_jk = (v, wj),
k

where ( , ) i1s the Hermitian inner product. Hence
(%) det A det B = det((v;, w;)).

PROOF OF THEOREM 49. Since f is invariant under SU(n), by Theorem 64
it can be written as a polynomial in the Hermitian inner products and

n and dety,

.....

The action of an element A € U(n) multplies the latter two by

detA  and  (det A) =det A = det(A™") = (det A)~".

Hence every factor det,, ..., must come paired with a factor dets, .. 5,. But (%)
says that the product of these two functions can be expressed in terms of the

Hermitian inner product functions. «

.....
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ADDENDUM 2

RECOVERING THE DIFFERENTIAL FORMS;
THE GAUSS-BONNET-CHERN THEOREM
FOR MANIFOLDS-WITH-BOUNDARY

The crucial step in our proof of the generalized Gauss-Bonnet theorem was
Theorem 22, for it immediately allowed us to conclude thatif § =x: E - M
is an oriented n-dimensional vector bundle, with sphere bundle mo: § — M,
then 7¢*C (&) = 0. This means that if A is the n-form on M representing C(§),
then the n-form mg*A on S is exact,

710" A =dd for some (n — 1)-form ® on S.

In particular, suppose that £ = TM", and let X be a unit vector field on M
with a single isolated singularity, at p € M (Problem I.11-13). Let B(e) be a
closed ball of radius & around p, and set

M, = M — interior B(g).

Then X(M,) C S is a manifold-with-boundary, the image of M, under the
section X : M — {p} > S. Now

/ A= / A = lim A = lim X*(mo*A)
M M—{p} e—0 M, e—0 M,

= lim mo*A = lim do
e=0Jx(M,) =0 Jx(M,)

= lim d.
e>0 Jax(M,)

Recalling the definition of the index of X at p, we casily sce that
0y / A = (index of X at p) - d
M 7o~ (p)

= (M) - ¢ by Theorem 1.11-30.
7o~ (p)

Since for n = 2m we also have

(2) / A= / n' KndV =7"m! 2" x(M) by Theorem 26,
M M
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we obtain, finally,

(3) / & =n"m!2".
7o~ (p)

In the original intrinsic proof of the generalized Gauss-Bonnet theorem,
Chern [2] did not use Theorem 22 or Corollaries 23 and 24. Instead, by clever
guess-work he explicitly constructed a form ® with m¢*A = d®, and noted that
it satisfied equation (3). By applying equation (1), he thus deduced equation (2),
which is precisely the generalized Gauss-Bonnet theorem. As we will soon see,
it is very useful to have an explicit formula for ® when we seck a generalized
Gauss-Bonnet theorem for manifolds-with-boundary.

Let (M,9M) be a compact orientable manifold-with-boundary. The Euler
characteristic x(M) is defined, as before, by

X(M) =dim HY(M) — dim H'(M) + - - - .

With some work, we could generalize Theorem I.11-5, and show that x(M) =
oo — oy + -+ -, where o is the number of k-simplexes in a triangulation. But
we won’t pause to prove this, because other facts about (M) are more im-
portant for us. First note that we can construct a compact oriented manifold
DM, the double of M, by taking two digjoint copies of M, and identifying
the corresponding points of dM. The following result is obvious in terms of

oM

DM

triangulations, but we will give an independent proof.

65. PROPOSITION. The Euler characteristic of DM is given by
X(DM) =2x(M) - x(0M).

PROOF. Let U and V be open neighborhoods of the two copies of M in DM
such that H*(U) =~ H¥(V) ~ H¥(M) for all k, and H*(U N V) ~ H*(aM)
for all k. Then we have the Mayer-Vietoris sequence (Theorem 1.11-3)

0—> HYDM)~ ... > H*(DM) > H*(U)® H*(V) —

8
— HY(UNV)— H**Y(DM) > ... .

When we apply Proposition I.11-4, we obtain precisely the desired result. <
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This result says quite different things when the dimension n of M is odd or
even. For odd n we have x(DM) = 0 (Corollary 1.11-25), so we obtain

1
x(M) = Ex(aM);

in particular x(dM) must be even. For even n, we have x(0M) = 0, so we have

(%) 2x(M) = x(DM).

66. COROLLARY. Let M be a compact orientable manifold-with-boundary,
of even dimension n. Let X be a vector field on M with only finitely many
zeros, all in M — M, such that X is outward pointing on M. Then the sum
of the indices of X is x(M).

PROOF. We can modify X near dM so that X is the outward pointing unit
normal v on M (and so that there are no new zeros). Then there 1s a vector
field on DM which looks like X on one copy of M and like —X on the other
copy. Since n is even, the index of —X at an isolated zero is the same as the
index of X at that zero (Problem L.11-12). Thus Theorem 1.11-30 gives

2(sum of the indices of X) = x(DM) = 2x(M), by (k).
67. COROLLARY. Let M be a compact oriented Riemannian manifold-with-
boundary, of even dimension n = 2m, with tangent bundle 7: TM — M, and
associated sphere bundle mg = 7|S: S — M. Let w be a connection on the

principal bundle @w: SO(TM) — M, with curvature form £2, let A be the
unique n-form on M with

wr A=Y QI A A QR =2"m! PI(Q),
and let ® be an (n — 1)-form on S with

mo*A =dd.
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Finally, let v: 9M — S be the outward pointing unit normal on 9M. Then

1 Tm! 2" 1
f KndV="1[ A= o+~ [ o
M n! Jum n! n! Jom

PROOF. Extend v to a vector field X on M with only finitely many zeros
Pts--s Pk € M —0M. Let B;(e) be closed balls of radius £ around pi which
are disjoint from each other and from 9M, and set

k
M,=M — Uinterior B;(e).

i=1

Then, as on page 380, we have

/ A =1lim o
M =0 Jax(M,)

k
= / v+ Zn”’m!Z” - (index of X at p;) by (3), on page 381
aM

i=1

= / VO 4+ 1"m!2" . x (M) by Corollary 66. ¢
aM

The only trouble with this result is that we can’t interpret Saps v*® until we
have an explicit @ with 7* A = d®. Fortunately, we can pull a2 ® out of the air
by looking more carefully at the proofs in section 4.

First consider two connections on the principal bundle SO(E), as in Propo-
sition 20. Changing notation slightly, we denote these connections by w and @,
with curvature forms £ and Q. Let A and A be the forms with

w*(A) =2"m!Pf(Q) and  w*(A) = 2™"m! PF($}).

All quantities associated with M x [0, 1] will be written boldface, so the induced
connections ¢*® and ¢*@ in the proof of Proposition 20 will be denoted by

©=q"w and 0 =q*o,

and we will set
vY=(0-10+16.

Note that 3/97 is horizontal for these connections.
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The proof of Proposition 20 tells us how to find a form @ with d® = A — A.
To obtain @ explicitly, we first want to describe the curvature form ¥ of ¥
more explicitly. Note that tangent vectors on M x {0, 1] can be considered as
sums

d
X 4+pu— pelR
at
where X is a tangent vector of M, and tangent vectors on the total space of
g* SO(£) can be considered as sums
d
Y —
hil at
where Y is a tangent vector on SO(E). We have
d¥=(1—-1)do+1d®+ dt A (@ — 0),

so for two tangent vectors Y; + 413/dt and Y2 + 120/31 on the total space of
g* SO(&) we have

V(Y| + 1118/37, Y2 + p2d/31) = d ¥ (h(Y1 + p19/97), h(Y2 + p23/97))
_ [(1 — 1) d@ + T dB)(h(Y) + 113/, h(Y2) + 128/37)
+{dt A (B — )] (Y1 + 119/07, Y2 + p28/97),
since ® — w = 0 on vertical vectors.

Extending Y to a vector field, we have

d
do(3/31, h(Y2)) = E;(w(h(Yz)) — h(Y2)(@(3/87)) — @([8/37, h(Y2)]).

The first term on the right must vanish, since we can choose the vector field Y>
to be independent of t; the second vanishes, since 8/97 is horizontal for ; and
it is easily seen that the third term also vanishes (compare pg. IV. 370). Soif @
and € are the curvature forms for ® and ®, then we have, finally,
V=(1-1)2+18 + dt A (& - w)
—Q+1(Q-Q) +dt A (G - ).
From this expression we see that
I PE(W) = Y el A A
I1seensin
Z Sil'"i" Szilz A A Qi:—l

[ in
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where H is a linear combination of terms of the form

m—k—1 i1...in @1 i2k—1 O _ OVi2k+1
(*) T Yo QLA AR A (R QA A
i1y.eesin

ORI - W)

We won’t bother keeping track of the exact coefficients involved in our calcu-
lations, since there will be a cheap way of getting them out at the end. Our
expression for 2™ m! Pf (¥) shows that the closed n-form A on M x [0, 1] which
pulls back to 2"m! Pf(¥) can be written

A=---+dtrn,

where 1 is a linear combination of forms which pull back* to the forms (). Now
Theorem 1.7-17 says that

A—A=i*A —ig*A = d(IA),

where
1
IA(p)(Xl,...,X,,_l):f NP, (X1, . i Xn_1)dt.
0

In this integral, 7 will enter only in the factors ™ %=1 All other terms are
independent of ¢, since the connections @ and @ are independent of t—for a
tangent vector Y on SO(E) we have @(i+Y) = @(Y), and similarly for &, @,
and €. So we see, finally, that

(A) A — A = d®, where the (n — 1)-form ® on M is a linear combination
of (n — 1)-forms which pull back to the forms
(r) 3 QI AL AQET A Q- Q) AL A

k42
[ W

A = Q)" A (B — w) !

in—2 In

on SO(E).

*It is easy to see that there are forms with this property, since €, €, and & — @ vanish
on vertical vectors. The proof is similar to that of Proposition 18, except that in the

second part we explicitly write out the value of the form (*) on R4 Y1,..., RaxYn—1,
noting that R4*w = A7'wA and R4*® = 471G 4, by the definition of a connection.
Then we check that this is det A = 1 times the value of the form on ¥i, ..., ¥,_1, the

computation being similar to that in the proof of Proposition 9.
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Now we will apply this to a special, complicated, case. Let § =n: £ — M
be an n-dimensional vector bundle with a Riemannian metric ( , ), let SO(§) =
@ SO(E) — M be the corresponding principal bundle, and let 7o: S — M
be the corresponding sphere bundle. Set

{=m*s=p:E—>M;

the total space E consists of all pairs (e, v) where e € S and v € n(e). For the
corresponding principal bundle

SO() = p: SOE) — S,

the fibre over e is the set of all (e, u) where u € @~ !(n(e)) is an orthonormal
frame at w(e). The principal bundle map

SO(E) —, SO(E)
o: SO(E) — SO(E) lﬂ lw

7o

S———M

which covers mg takes (e,u) to u.
Recall that we can write

{={1®{2a

where

Gi=p1:El > Misan (n— 1)-dimensional bundle,

{2 = p2: Ex > M is a trivial 1-dimensional bundle;

the total space E; C E consists of all paris (e, ue) for e € S and u € R, while
E, C E consists of all pairs (e, v) where v € n(e) is orthogonal to e. For the
corresponding principal bundles

SO(¢;) = pi: SO(E;) — S,

the fibre 227'(e) contains just the two pairs (e, e) and (e, —e), while the fi-
bre 217" (e) consists of all pairs (e, v) where v is an ordered (n — 1)-tuple of
orthonormal vectors at (e) all of which are perpendicular to e. We have a
natural inclusion

t: SOE;) = SO(E),
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which takes (e, v) to (e, u) where u is the frame whose first # — 1 members come
from v, while u, = e. Clearly,

SO(E1) —— SO(E)
poL=py. & lﬂ
S
Now let w be a connection on SO(E), with curvature form . Then
Yy =motw

1s a connection on SO(E), whose curvature form T is 7o*Q. Hence if A is the
unique form on M with

T*A =2"m! Pf(Q),
then
0 R T A = 7 w* A = 2"m! Pf(7y* Q) = 2™m! Pf(T).
We can also use y to determine a connection y, on SO(E;) by
(yl)§=t*y} Lhj=1,...,n—1,
The two conditions
neM)) =M for M e o(n—1)
Rei'yy =Ad(A7Y)y,  for Ae SOm—1)

follow from the corresponding conditions for y —if we regard SO(E;) c SO(E)
via the map ¢, then o(M) in SO(E;) is the restriction of o(M) in SO(E) for
M e o(n — 1), and R4 in SO(E)) is the restriction of R ;7 in SO(E), where
i=(89)

Although (yl)’ = L*)/; fori,j=1,. — 1, 1t does not follow for these same
values of i and j that the curvature forms I’y and T satisfy (l"l)’ = L*l"’ for the

horizontal component in SO(E,) is different from the honzontal component in
SO(E). To find the correct relationship, we use the second structural equation

(Theorem II.8-16),

dy(1,Y2) = —[y(Y1),y(Y2)] + T (Y1, Y2)



388 Chapter 13, Addendum 2

for tangent vectors Y1, Y2 on SO(E), which means that

@) dyi (Y1, Y2) = = Y Vi) (Y2 — v (Y[ (M)
k=1

+ i, Ya).

Similarly, for tangent vectors Zj, Z> on SO(E;), we have

n—1

dy)(Z1, Z2) = = 3 HZD 0K (Z2) = ) (2] (Z1)
k=1

+ (T)i(Z1, Z2)
which implies

n—1

B)  dyiaZiuZy) = — Y Vi ZOYf 0 Z2) — v Zo)yf (. Z))
k=1

+ (T)i(Z1, Z2).
Comparing (2) and (3), we see that

@) (Fl)j-::t*F]':-i-t*()/,i/\)/,{) ij=1,...,n—1L

Now we are going to apply the construction in the proof of Theorem 22. The
principal bundle SO(E;) for the 1-dimensional bundle ¢ is just 2 copies of M;
the only connection on SO(E;) is y, = 0. The bundle SO(E;)*SO(E;) C SO(E)
in the proof of Theorem 22 is just 2 copies of SO(E,); the first copy may be

identified with ((SO(E;)). The connection

V=07 @02y

on SO(E;) * SO(E;) which 1s constructed in the proof of Theorem 22 is just
1*y, on the first copy, and similarly the curvature form [ is just ¢*T'y on the first
copy. As before, we extend the connection 7 to a connection ¥ on SO(E), with

curvature form I'. We have unique forms Y, Y on § with

25 =2"m! Pf(I)
2*Y = 2"m! P(D).

But equation (1) says that Y = mo*A, while, as in the proof of Theorem 22,
we have Pf(F) = 0 at points of SO(E;) x SO(E;), which implies that T = 0.

Assertion (A) on page 385 thus shows that



The Generalized Gauss-Bonnet Theorem 389

mo*A = d®, where the (n — 1)-form ® on S is a linear combination
of (n — 1)-forms which pull back, via g*, to the forms

iednpi o i2k—1 T _ myi2k+1
Z £ | IARERNA Lo A D) A-on
iyenny in

AT =D A G-y

But on tangent vectors to SO(E;) * SO(E;) = 2 copies of SO(E;), we clearly
have

v iorj=n on the first copy,
; =

. . 0 i,J#n
(y—y)}={[* i

while equation (4) shows that we also have

CmAvd) B j#n

. on the first copy.
—*T; iorj=n Py

ﬁ—rﬁ={
Hence, remembering that y = 75*w and [ = 73*Q2, we can conclude that

mo*A = d®, where the (n — 1)-form ® on S is a lincar combination
of (n — 1)-forms @, 0 < k < m — 1, such that

% * %
2P =00 P,
ko k it..in—1 00 2k
=1 Ty Z £ Q,.Z/\ /\Q,.Zk
i1yein—1

i in_
/\a),,2k+l A Al 1);
in this sum, the indices iy run from 1 fon — 1.

This can be put in a more useful form by introducing the “last vector” map
£: SO(E) — S defined by
L(u) = u,.

We clearly have
fol?bolzﬂli SO(E])—> S.

It is easy to check that there are unique forms @ on S such that

*oy i..in—1 00 25— D2k 41 o in—1,
Oy = E £ Q,.Z/\---/\Q,.Zk A Wy A Ay

il,---,"n—-l

we use the procedure given in the footnote on page 385, noting that in the
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second part we only want to consider A € SO(n) with £(u - A) = £(u), so that
A= (g (1)) for B € SO(n — 1). But now we have

21O, = T O = p1"0;
= &y = O.

So we can state, finally,

(B) There are constants ao, . . . ,dm-1 such that
m—1
JT()*A = Z ak<I>k,
k=0

where the ®; are the unique forms on § such that

T} 1 fog— i in—
e*q)k — § : 811...1,,_1 Q’l A A Q'Zk 1 /\a),,2k+' A /\a):ln l'
L L0 )

i1yensin—1

Note that the constants do, . . . ,am—1 do not depend on the bundle, or any-
thing else; they are certain combinatorial terms in a formal calculation which
is exactly the same for all bundles. If we apply Corollary 67, we obtain

(%) / K,dv=1"° (M)+ Zak/
If we choose a positively oriented orthonormal moving frame X = (Xj,. .., Xn)
on dM with X,, = v, then
v=~_0oX, X: dM — SO(E),
$0
V@, = XD,
= Y (X A A (XU
] ,esin_1

A(x*w£2k+l) (X* in— 1).

Recall that w and € are forms on SO(E); the terms X*w,”*' and X*Q;} are
just the corresponding connection and curvature forms for the moving frame X.
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This allows us to give an invariant definition of v*®; similar to the invariant
definition of A/n! = K, dV: if dV,_; denotes the volume element on oM,
then

VO = K dVyy,

where Kj can be written as a contraction of tensor products of the tensor &
on dM (contravariant of order n — 1), the curvature tensor ® for M. , and the
tensor

(X,Y) > (Vxy, 1),

which is just the second fundamental form of M in M.

To calculate the constants ay, . .., am,_1, we Just have to apply equation (*) to
products M = D¥*1 x §7=k=1 iith 9M = S* x S""*=1. then the only non-
zero boundary integral is the one involving v*®. The explicit calculations are
left to the reader—after doing them, it should be fun to compare with Chern’s

paper [2].
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A. OTHER TOPICS IN DIFFERENTIAL GEOMETRY

I. Major topics everyone should know something about.*

(@) Complex manifolds. This is the main topic which was hardly touched upon
in these notes. Some people heartily dislike the subject, with its penetrating
algebraic odor, but for others it has a seductive appeal. A differential geometer
whose work often uses the simplifications obtained by considering the complex
domain explained to me that the additional structure of complex manifolds
makes them more interesting, just as two sexes are more interesting than one,
but various aspects of this argument are open to debate. A basic treatment of
complex manifolds is given in Kobayashi and Nomizu {I; v.2, ch.9}. See also
Chern {1}, Weil {1}, Wu {1}, and Yano {2}. For more emphasis on the analysis
aspects, see Griffiths {1}, Morrow and Kodaira {1}, and Wells {1}.

(b) Homogeneous spaces. In Chapter 13 we defined a “homogeneous space” to be
a quotient space G/H. The terminology comes from the fact that these are pre-
cisely the manifolds M on which G acts transitively (see Warner {1; 120fL.} or
Wolf {1; 11-13}); one should also be aware of the usage in the case of Riemann-
ian manifolds (cf. Kobayashi and Nomizu {l; v.1, 176}). Once the identification
with G/H is made, further study of these spaces becomes rather algebraic. See
Kobayashi and Nomizu {I; v.2, ch.10}. It should also be mentioned that ho-
mogeneous spaces provide the natural setting for geometry according to the
famous definition proposed by Felix Klein [1], of geometry as the theory of geo-
metric invariants of a transitive transformation group. Even such subjects as
Riemannian geometry have been brought within the compass of this definition,
essentially by means of connections on certain principal bundles. There are
some older references at the end of Chapter 2 of Veblen and Whitehead {1},
but the most extensive treatment is given by Sharpe {1}.

(c) Symmetric spaces. A very nice brief introduction to (Riemannian) symmetric
spaces can be found in Milnor {2; §§20, 21}. Increasing detail, and algebra,
can be found in Wolf {1}, Kobayashi and Nomizu {l; v.2, ch.11}, Boothby and
Weiss {1}, Loos {l}, and the standard treatise Helgason {1}, with specialized
material in Eberlein {1}.

(d) Mappings. Numerous types of maps between Riemannian manifolds are of
importance—isometries, similarities (which multiply the metrics by a constant),
conformal maps (which multiply the metrics by a function), affine maps (which
take geodesics into geodesics), and projective maps (which take geodesics into

* As evidenced by the fact that they get a chapter apiece in Kobayashi and Nomizu {1}.
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reparameterized geodesics); the latter two can be defined for arbitrary con-
nections. We might also mention [essential] volume preserving maps, which
preserve volumes of open subsets [up to a constant factor]. Certain classical
relations between such maps, not mentioned here, may be found, for example,
in Laugwitz {1; 147-161}. In preference to Theorem 13.4.6, one may consult
Lemma 1 on pg. 242 of Kobayashi and Nomizu {1; v.I} (Laugwitz defines “irre-
ducible” incorrectly); their proof of Lemma 2 on the same page is perhaps also
somewhat preferable to Laugwitz’s proof of the corresponding Theorem 13.6.2.
One other classical result may be found in Haack {I; 130-133} or Kreyszig {I;
267-269}. Naturally, the study of maps from S? to R? has received special atten-
tion. Although cartography is an independent subject, the reader will probably
find more than enough information about it in classical differential geometry
books, for example Kreyszig {1} and Laugwitz {1}, or Schefers {1; v.2, 36-53}
and Strubecker {1; v.2, 170-201} for more examples. In addition to the maps
themselves, one can study vector fields which represent “infinitesimal” versions
of them. In particular, the infinitesimal versions of isometries are the “Killing
vector fields”. Tor basic information on mappings and infinitesimal mappings
see Kobayashi and Nomizu {1; v.1, ch.6}, Lichnerowicz {2}, and Yano {3}.

II. Other topics of substantial interest.

(a) Classical curve and surface theory. There is still a lot of information to be mined
here, though the ore naturally tends to decrease in quality, rapidly passing the
point of diminishing returns.

In our discussions of curve theory, we imtially sought the limiting circle
through 3 points on a plane curve. This osculating circle is often said to have
second order contact with the curve. The notion of contact of curves and sur-
faces is described in Struik {1; 23}, somewhat more carefully in Goetz {1; 37, 44}
and Kreyszig {1; 47-51, see especially Theorem 14.3}, and in detail in Favard {l;
Part 1, ch.2}. Innocuous as the concept may seem, it is sometimes useful to have
precise mformation about it (cf. do Carmo and Warner [1; pg. 136]).

In the theory of space curves it is natural to seek an “osculating sphere” having
third order contact with the curve—see Blaschke {1; v.1, 33}, Eisenhart {2; 37},
Goetz {1; 77}, Kreyszig {1; 51}, Struik {I; 25}, or Gerretsen {1; 91}, which gives
the analogous considerations in R”. The condition that a curve lie on some
sphere is usually determined by setting equal the radii of all osculating spheres.
Problem III.4-2 gives a different approach (generalized in Gerretsen {1; 78});
some calculation is required to establish the equivalence of the two answers.

A standard topic in curve theory is the study of involutes and evolutes, which
was originated (cf. Coolidge {1; 319}) by Huygens in order to construct a pendu-
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lum whose period is independent of its amplitude (for ordinary pendulums this
is only approximately so, for small amplitudes). This property is possessed by a

pendulum whose weighted end describes a cycloid, hence the problem of finding
a curve whose “involute”, traced out by unwinding a thread from it, will be a
cycloid. The desired curve (the “evolute” of the cycloid) turns out to be another
cycloid. [Unfortunately, this ingeniously designed Huygens pendulum was su-
perseded by a pendulum suspended from a spring, which turns out to work just
as well.] Two other familiar curves might be mentioned here: the evolute of the
tractrix is a catenary. The standard material, none too interesting, on involutes
and evolutes (which are also defined for space curves) can be found in Eisen-
hart {2; 43—45}, Gerretsen {1; 8387}, Goetz {1; 65-70}, Kreyszig {l; 52-54},
Struik {1; 39—41}, and Strubecker {I; v.1, 222-226}. Guggenheimer {l; 35-47}
gives a treatment requiring less differentiability, by means of the Riemann-
Stieltjes integral (or see Ostrowski [1]), and finds all plane curves similar to
their evolutes (pp. 59-61).

It is strange that the theory of envelopes is so seldom mentioned in connection
with involutes and evolutes, for the evolute of a plane curve is the envelope of
its normals, and thus the locus of the centers of its osculating circles. Even the
latter fact is seldom mentioned (cf. Guggenheimer {1; 43-44}). As the figure
on pg. I1.6 seems to indicate, an osculating circle of a curve separates the parts
of the curve with smaller curvature from those with larger curvature. A direct
verification may be given (cf. Goetz {I; 84}), but it is even easier to prove a
much stronger result, due to Kneser. If ¢ is a curve, parameterized by arc-
length, with & nowhere 0, then the curve of centers of the osculating circles is
y(s) = c(s) + n(s)/k(s). The parameter s is not arclength for y. Instead we
have

1y 1
Y'(s) = (s) + (;) (s)n(s) + ——n'(s)

K(s)

=c'(s) + (%) (s)n(s) + L (—k(s)c'(5)) by Serret-Frenet

K(s)
1 !’
= (—) (s)n(s).
K
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Now n is not constant on any interval, so if ¥’ # 0 everywhere, then y’ is not

constant on any interval, and hence no portion of y is a straight line. Therefore

ly(s1) — ¥(s2)| <length of y form y(s1) to y(s2)

52 1 1
=/ Y (D) dr = ’—(sz)——(ﬁ)
K K

S1

2

where the left side is the distance between the centers of the osculating circles
at 51 and s, while the right side is the difference in the radii of these osculating
circles. Hence one must lie inside the other. Thus all the osculating circles
are nested (and the smaller ones, containing points of the curve with larger
curvature, must lie inside the larger ones). This gives a striking example of
a family of curves (the osculating circles) none of which intersect, but which
nevertheless have an envelope (the original curve).

There 1s a beautiful little book of Boltyanskii {1}, unfortunately out of print,
which makes the study of envelopes seem very pretty. In differential geometry
books, emphasis is usually placed on envelopes of families of surfaces; see Eisen-
hart {2; 59-65} and Kreyszig {l; 253-263}. There is a fairly thorough treat-
ment of envelopes in Favard {1; Part 1, ch.3}. We should not fail to mention that
the conjugate locus of a point is just the envelope of the geodesics through the
point (refer again to the picture on pg IV.221). An argument of Carathéodory
shows that the conjugate locus always has at least 4 cusps (cf. Blaschke {1; v1,
231}). Similar arguments show that the evolute (= envelope of the normals) of
a closed plane curve must have at least 4 cusps. This actually follows immedi-
ately from the four vertex theorem, but it can also be used to prove the four
vertex theorem, as well as a four vertex theorem for the hyperbolic plane (oral
communication by A. Weinstein).

Naturally, many special sorts of space curves are investigated in the classical
books. Special mention may be made of Bertrand curves-—see Blaschke {1; v,
35}, Eisenhart {2; 39—41}, Gerretsen {1; 83}, Goetz {l; 74-76}, Haack {I; 29},
or Strubecker {1; v.1, 228-238}. They are of some interest, as they may be used
to prove (Catalan’s theorem) that the only ruled minimal surface is the helicoid—
see do Carmo {1}. (This also follows from a classical result of Schwarz that a
minimal surface containing a straight line is taken into itself by a rotation of ©
around the line. See, for example, Blaschke {1}.) Perhaps this is also a suitable
place to mention an elementary theorem of Beltrami: the tangent developable
of ¢ intersects the osculating plane of ¢ at ¢(f) in a curve y whose curvature at
c(1) 1s 3/4 the curvature of ¢ at this point.

Moving on to global theorems, we first mention that a simple proof of Theo-
rem II.1-8 can be given when « is nowhere 0 by noting that the curve is locally
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convex, and then using a theorem of Schmidt (cf. Stoker {I; 46—47}) that lo-
cal convexity implies convexity. (But for this proof we need to know that the
curve bounds a region, to which Schmidt’s theorem is applied. The proof given
previously, using the “Hopf Umlaufsatz” (Theorem II.1-7), not only works for
k > 0 or k < 0, but also proves directly that the curve lies on one side of each
of its tangent lines, a criterion for convexity which does not use the fact that
the curve bounds a region.) Schmidt’s result holds in all dimensions, and could
also be used to prove Hadamard’s theorem (Theorem III. 2-11) for imbedded
surfaces.

Some theorems of Schwarz, Schur, and Schmidt are especially interesting
because they are global theorems about non-closed curves—see Blaschke {l;
v.l, 61-64}, as well as Chern {3; 35-38}. Guggenheimer {l; 31} proves one
of these theorems in the special case where both curves are planar; Hilbert
and Cohn-Vossen {I; 211-212} show how to obtain the general case from this,
and then give some further discussion. Compare also Blaschke {1; v.1, §39}.
Our old friend, the four vertex theorem, can be proved from the planar case
(Guggenheimer {1; 30-32} or Fog [1]). By the way, in our proof of the four
vertex theorem we only obtained 4 points where k' = 0, but it is easy to actually
obtain 4 relative maxima or minima of k. Other interesting global theorems
about non-closed curves are due to Vogt and Ostrowski (see Guggenheimer {1;

49-53} or Ostrowski [2]).

Laugwitz {l; 198-202} has some results on curves of constant width, which

may also be proved by more elementary means—see, for example, the beautiful
book of Yaglom and Boltyanskii {l; ch.7}.

Notice that the formula for T on pg, III. 225 can be written t = (arctankg)’. It
follows from this that [ t ds = 0 for a closed curve lying on a sphere. Conversely,
if this holds for all closed curves on a surface, then the surface is part of a plane or
sphere (Scherrer [1]). The same results hold for [ k"t ds (Saban [1]). Finally, we
mention that any curve in S? is the unit tangent t of some curve ¢ of constant
torsion. Such curves were studied classically (see, for example, Blaschke {l;
v.l, 47}, and Darboux {I; §§36, 39 and v.4, Note 7, §7}), but only recently
have closed curves of constant torsion been discovered (Weiner [l]; compare

pg IV.110).

Classical surface theory is of course much more extensive, and there is so
much material contained in the standard classical books that there is no point
trying to list the main topics. In Part B mention is sometimes made of specific
information contained in particular books. For serious digging be sure not to
forget the Encyklopadia der Mathematischen Wissenschaften.

See also the references under III. (c).
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(b) Extremal and isoperimetric problems. Various extremal and isoperimetric prob-
lems for curves are treated in Blaschke {l; v.1, ch.2}. See Chapter 8 of the
same volume for surfaces, and Chapters 2 and 6 of the second volume for
similar problems in special affine geometry. For various sorts of solutions to
the 1soperimetric problem see also Blaschke and Reichardt {1; §28}, Chern {3;
25-29}, and Guggenheimer {1}. The last has a solution in the plane (pp. 79-84)
which generalizes (pg. 289) to convex surfaces, by means of Steiner’s formu-
las relating the area A and enclosed volume V of a compact convex surface
M C R’ to the area A(¢) and the enclosed volume V (¢) of its parallel surface

tp+ev(p):pe My

A(e) =A+28f HdA + 4n&?
M

4
V(s)=V+sA+82f HdA+§ns3.
M

(The first formula follows from Problem III 3-12, and the second by integrating
with respect to e. It can also be proved by approximating the surface by convex
polyhedra. In this case H measures dihedral angles and K measures vertex
angles; for more details see pp. 168—170 of the article by Santalo in Chern {3}.)
See also Blaschke {3} or Santalo {1} for a treatment of the isoperimetric problem
by integral geometry (III.(a)). There is a detailed discussion of the isoperimetric
problem in Blaschke {2}, but for the final word (including the isoperimetric
problem in the spaces of constant curvature) see Hadwiger {1} and references
therein. For later work, see Chavel {2}.

(c) Closed geodesics. For brief remarks on the existence of closed geodesics see
Blaschke {1; v.1, 211-212}. See also pg. 233 for surfaces on which all geodesics
are closed; for more details consult Berger {1}, which also proves the theorem
of L. W. Green [1] that the sphere is the only surface on which every point
has a unique conjugate point. For modern treatments of closed geodesics see

Schwartz {1}, Flaschel and Klingenberg {1}, Besse {1}, and Klingenberg {1}, {2}.

(d) Holonomy. The holonomy group of a connection on a principal bundle P
with group G is the subgroup of all @ € G such that a fixed u € P can be joined
to u - a by a honizontal curve. Thus, the holonomy group measures the extent
to which the distribution of horizontal subspaces is not integrable. [In classical
mechanics (V.(a)) a system of “constraints” which can be described by a suitable
distribution is called “holonomic” if the distribution is integrable, and “non-
holonomic” otherwise. Thus, the “holonomy group” really should be called
the “non-holonomy group”, since it measures the extent to which a distribution
is non-integrable.] Holonomy groups are studied in great detail in Kobayashi
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and Nomizu {1}, with basic properties treated in chapter 2 of volume 1, and
applications throughout. In particular, we have the “holonomy theorem” of
Ambrose and Singer (first proved, or at least stated, by E. Cartan), which de-
scribes the Lie algebra of the holonomy group in terms of the curvature form
of the connection. It should perhaps be pointed out that this is in some sense a
global version of a classical description of the curvature tensor in terms of par-
allel translation around an “infinitesimal parallelogram” —see Eisenhart {1; 63},
Kreyszig {l; 295}, or Laugwitz {I; 108}, or slightly different versions in Bishop
and Crittendon {1; 97}, Nelson {1; 77}, or Singer and Thorpe {1; 170-174}. It
should also be noted that the holonomy theorem gives an immediate proof of
the Test Case. The most important application of holonomy groups for Rie-

mannian manifolds is the de Rham decomposition theorem (Kobayashi and
Nomizu {1; v.1, 187{1}).

(€) Reducing the group of a bundle; G -structures. The proof of the holonomy theorem
uses the concept of a reduction of the group G of a principal bundle P to a
subgroup H. This is, by definition, a subset P’ of P such that u-a € P’ for all
u € P'and a € H, so that P’ is a principal bundle with group H. The prime
example is a reduction of the group GL(n,R) of the bundle of frames of M
to the subgroup O(n). Any Riemannian metric { , ) gives such a reduction—
we define P’ to be the set of all frames which are orthonormal with respect to
(, ). Conversely, given any such reduction, we can define ( , ) by declaring the
frames in P’ to be orthonormal. Similarly, an orientation on M is equivalent
to a reduction of the group GL(n,R) to the group GL*(n,R) of matrices of
positive determinant. It could hardly be supposed that mathematicians would
not get around to generalizing these examples: a reduction of the bundle of
frames on M to a subgroup G C GL(n,R) is called a G-structure. For the
theory of G-structures see the last chapter of Sternberg {1}, and Kobayashi {1}.

(f) Contact transformations and contact structures. At each pomnt p of M we can con-
sider the set of (n — 1)-dimensional subspaces of the tangent space M,. With
the notation of Chapter V.13, this set would be denoted by G—1(Mp); in the
terminology of topic III.(g) it is the set of 1** order (n — 1)-dimensional contact
elements at p. We can form the manifold C,}_IM = UpeM Gn-1(M,) of all
these contact elements, and any immersion f: M — N gives rise to a map
Jfi: Cnl_lM — C,}_IN. An arbitrary smooth map g: C,}_IM — C,}_IN was
classically called a contact transformation if it satisfies the following condition.
which is automatic for f,: for every hypersurface P C M, there is a hypersur-
face Q C N such that the set of tangent spaces of Q is just the image under &
of the set of tangent spaces of P. This geometric definition is unfortunately
rather vague, since we want to allow the possibility, for example, that Q is a
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single point ¢ € N and g takes all tangent spaces of P into Gn_1(Ng). But it
is not hard to derive a precise analytic condition which captures the geometric
content. The manifold C}R?, for example, has a covering by two coordinate
systems, one of which is defined on the set U of all directions not parallel to
the y-axis—we use the coordinates a, b of the point p € R? as two coordinates
on U and the slope m of the line in R?, as the third coordinate. For a curve ¢
in R? we have ’

/ db(c' (1))
m(subspace spanned by (1)) = da@ )’
From this it is not hard to see that a map g: U — U should be called a
contact transformation if and only if g*(db — mda) = a(db — mda) for a
nowhere 0 function @. For CYR"*! with x!,... x" z as coordinates for the
point, and ' (i = 1,...,n) as the slope of the intersection of the n-dimen-
sional subspace with the (x?, z)-plane, we have the analogous criterion, in terms
of the form dz — }; y' dx’. For arbitrary manifolds these conditions can be
formulated on coordinate neighborhoods. Although the classical reference Lie
and Scheflers {2} will present problems, it is delightfully concrete and filled with
examples; see also Eisenhart {4; ch.6} and Favard {l; part 1, ch.4}.

Nowadays, these motivating geometric considerations are almost never men-
tioned (an exception is Hermann {2; ch.3}). The modern approach to the sub-
Ject may be found in Kobayashi and Nomizu {1; v.2, 381-382} and Kobayashi {1;
28fL}; it involves the notion of a contact structure, which also plays an im-
portant role in classical mechanics (V.(a)). An important tool in the study of
contact structures 1s a theorem of Darboux, which is proved in Kobayashi {I;
Appendix 1}; a very different proof is given in Lang {I; ch.5, §7}. The proof
in Godbillion {I; 115-121} or Sternberg {I; 135-141} is of interest, as it uses
the “characteristic system” of an ideal of differential forms. This “characteristic
system” is related to the characteristics of a PDE;; to see this made more explicit
one may consult Dieudonné {l; v.4, 92-118}. The “Legendre transformation”
is a contact transformation which is often used in PDE’s (see, for example,
Courant and Hilbert {I; v.2, 32-29}). Legendre transformations are also used
in the calculus of variations and classical mechanics (cf. Abraham {1}, Godbil-
lion {1}, or Sternberg {13}). For the connection between the two, try Hermann {2;
ch.6, §9}.

We could also consider maps g: CkM — CKN, defined on k™ order
r-dimensional contact elements [cf. IIL(g)], satisfying an analogous geomet-
ric condition. But these are essentially of the form feforr < n—1, or an
extension of a contact transformation g: C,:_IM — Cp_ N forr =n-—1
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(Knebelman [1]). Similarly, one can define “infinitesimal contact transforma-
tions”, but they always come from a map f: M — N. See Eisenhart {4; 252}
or Lie and Scheffers {2; ch.4, §2} for a classical statement of this fact, and
Kobayashi {I; 30} for a modern version.

(g) The Laplacian and Hodge theory. Berger, Gauduchon, and Mazet {I} is an
excellent introduction to the significance of the Laplacian, though somewhat out
of date because of the recent rapid progress in this field. For many applications
of Hodge theory similar to Bochner’s Theorem (Theorem IV.7-63), see Yano
and Bochner {1}, and Yano {1} (which also has applications of integral formulas
similar to those in Chapter V.12). See also Ruse, Walker, and Wilmore {1}, and
Jost {1}. A simple application to prove Poincaré duality is given in Warner {1};
for applications to complex manifolds see, for example, Weil {1}.

III. Other geometries

(@) Finsler geometry. For a brief introduction, see Laugwitz {l; §15}. For an ex-
tended treatment see Rund {1} and Matsumoto {1}. The reprinting of the thesis
of Finsler {1}, with a bibliography up to that time, may be of interest.

(b) Integral geometry. Blaschke {3} and Santalo {1} are very nice introductions to
this subject. The article by Santalo in Chern {3} gives references to later work.
It is of interest to compare the arguments on pg. 167 with the proofs of Fenchel’s
theorem and the Fary-Milnor theorem on pp. 33-35.

(c) Line geometry. Here one studies the manifold consisting of all lines inR3. I
haven’t the slightest idea what is done, but there are supposed to be some nice
things. See Blaschke {l; v.1, ch.9}, Eisenhart {2; ch.12}, Favard {l; pt.2, sec.l,
ch.5}, Forsyth {l; ch.12} and Hlavaty {2}. See also (¢). The manifold of all
circles in R3 has also been studied. See Eisenhart {2; ch.13} and Forsyth {l;
ch.12},

(d) Affine geometry. For special affine curve theory see Blaschke {1; v.2} and
Favard {1; pt.2, sec.2, ch.1}, as well as Guggenheimer {l; §8-3}. For special
affine surface theory see Blaschke {I; v.2} and Favard {I; pt.2, sec.2, ch.2}. See
also Flanders [1] and the references listed under it. Not much seems to have
been written about general affine invariants. See Guggenheimer {l; ch.7-3,
probs.10-12} and Dieudonné {l; v.4, ch.20, §14, probs.11, 12}, which first de-
scribes an affine normal (“pseudo-normale”) for a hypersurface of any manifold
with a torsion-free connection on its bundle of frames [compare with the second
part of (¢)] and then specializes to special affine geometry of R” (it will probably
make things much easier to rewrite the problem so that it deals with moving
frames, rather than with the bundle of frames itself). On the other hand, there
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is a considerable literature on what might be called “general linear geometry”—
properties of submanifolds of R” invariant under all linear maps (but not trans-
lations!), as well as properties invariant under all elements of SL(n,R), again
excluding translations [this certainly seems like a strange geometry to study, but
see Laugwitz {2}]. See Salkowski {1}, Shirokow and Shirokow {1}, and Nomizu
and Sasaki {I}.

(e) Projective differential geometry. This is the study of properties of submanifolds of
projective space P” which are invariant under the projective group (cf. Harts-
horne {1} for basic terminology). An eminent differential geometer, who per-
haps prefers to remain anonymous, has said that the problem with projective
differential geometry is that the projective group is too large to allow any in-
teresting local results, while no one has ever discovered any interesting global
ones.

The best introduction is probably Fubini and Cech {1}, which also introduces
E. Cartan’s methods (using moving frames—compare (g)) as worked out in Car-
tan {5}. Other texts are Bol {1}, Favard {l; pt.2, sec.3}, Lane {1}, Akivis and
Goldberg {1}, and Wilczynski {1}, one of the earliest works in the field [cf. (g)].
For “line geometry” in the projective case see Svec {1}.

Just as Riemannian geometry generalizes the differential geometry of R”, so
one might expect to generalize projective differential geometry to an arbitrary
manifold M by forming the union of the projective spaces obtained from each
tangent space M, constructing a corresponding principal bundle P, and con-
sidering some canonical connection  on P. All these steps can be carried out,
but @ is not characterized so simply as in the Riemannian case by having van-
ishing torsion (which is defined only for connections on the bundle of frames);
instead, there is a unique w which satisfies certain identities like the Bianchi
identities. This is described in Cartan {5}, but it will probably be much easier
to read Kobayashi {l; 127-138}.

(f) Other esoteric geometries. See Blaschke {I; v.3} for the interesting, but compli-
cated, geometries of Mébius, Laguerre, and Lie; for the last of these, see also
Cecil {1}. In all three geometries, the points are basically the circles in the plane,
or the spheres in space, etc., and properties are sought which are invariant under
various groups of maps on these circles or spheres. Mobius geometry involves
those maps which take the set of all circles or spheres through a fixed point
into another set of the same sort. Such maps are always induced by similarities
and inversions in the plane, space, etc., so that Mébius geometry reduces to the
study of this group of maps (the Mébius group) on these spaces. For dimensions
n > 2 it is thus “conformal geometry”.
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In the case of the plane one might also study properties of curves invariant
under all analytic maps. I know of only one strange result in this direction—see
Theorem 1-4 of Ahlfors {1}.

The more complicated geometries of Laguerre and Lie are allied to the notion
of contact transformations (IL. (f)). Laguerre geometry involves the maps which
take a set of circles tangent to a line (or of spheres tangent to a plane) into
another set of this sort, while the geometry of Lie involves the group of maps
which simply take circles or spheres which are tangent to each other to pairs of
the same sort.

Another weird topic is the theory of webs—sece Blaschke {4} and Blaschke
and Bol {l}.

All sorts of other oddities may be found by consulting Mathematical Reviews
and the journal Tensor.

(g) Lie’s theory of differential invariants, and E. Cartan’s general method of moving frames.
Lic’s theory is the one topic which I greatly regret not having written up, for it
is used extensively in certain early work which is far more impenetrable than
other classical material. In particular, Lie’s theory was used in the first investi-
gations of special affine surface theory by Pick [1] and in early work in projective
differential geometry (cf. Wilczynski {1}). Unfortunately, a reasonable exposi-
tion would probably require close to a hundred pages, which wouldn’t fit in
anywhere, for the material on first order linear PDE’s from Chapter V.10 is
needed, while the theory relates most directly to Chapter IIL.2 (which is al-
ready too long). Matters were in no way helped by my lack of understanding,
nor, since this delayed its treatment until last, by my lack of endurance.

The most interesting part of Lie’s theory applies to situations like Euclidean,
special affine, or projective differential geometry, where we seck propertics of
submanifolds of M which are invariant under a group G of diffeomorphisms
[i.e., submanifolds of homogeneous spaces (L.(b))]. The idea is to find “(geomet-
ric) differential invariants of order k for r-dimensional submanifolds of M 7 a
simple example of which is the curvature k of a curve ¢ in R". This s an “in-
variant” (it is the same for a curve and its composition with a Euclidean motion)
“of order 2” (one can compute it at any point knowing only the first two deriva-
tives of the curve at that point) which is independent of the parameterization
(“geometric”).

Such invariants can be thought of as functions on a suitable space. First we
construct the “k-jets” of maps of (R",0) into (M, p); these are equivalence
classes j(’)‘(f) of maps f: (R",0) — (M, p), where f ~ g if all mixed partials
of order < k of all component functions of f and g are equal at 0 (cf. topic
VL (c)). On the set of k-jets represented by immersions f: (R",0) — (M, p)
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we introduce a further equivalence relation by declaring j(l)‘( f1) and jE(f2)
equivalent if in a neighborhood of 0 € R” we have f> = f; o« for some diffeo-
morphism @. These new equivalence classes are the k™ order r-dimensional
contact elements of M at p (for k = 1 they may be identified with the r-dimen-
sional subspaces of Mp). The set C¥ M of all such contact elements at all peM
is a manifold, and any diffeomorphism ¢: M — M gives rise to a diffeomor-
phism ¢,: CKM — C¥M. A geometric differential invariant of order k for
r-dimensional submanifolds of M under a group of diffeomorphisms G is just
a function F: C¥M — R invariant under G (i.c., satisfying F o ¢ = F for all
@ € G). This set-up is briefly discussed in Hermann {2; ch.3, §14}.

We can also consider “differential invariant tensors”. If y is a k™ order
r-dimensional contact element of M at p, represented by a k-jet j¥(f) for
f:(R",0) — (M, p), then the 1% order r-dimensional contact element rep-
resented by the I-jet j3(f) depends only on y—it may be thought of as the
“tangent space” Ty of y. A function F on CKM such that each F(y) is a
bilinear function F(y): Ty x Ty — R, for example, may be thought of as a
k™ order covariant tensor of order 2 for r-dimensional submanifolds of M Jat
is easy to formulate the invariance conditions for such F.

There 1s actually a reasonable way to compute such differential invariants,
or at least to formulate the computations (in practice they become hopeless
quite quickly unless one introduces some extraneous geometric insight). Any
X € g = Lie algebra of G induces a 1-parameter family of diffeomorphisms
{exptX} of M, hence a family {(expzX),} on C¥M, and hence a vector field
X® on CkM. If G is connected, and thus generated by the elements exptX;
for a basis {X;} of g, then F is invariant if and only if X% (F) = 0 for all i;
each of these equations is simply a linear first order PDE in terms of coordinates
on C¥M. This allows one to compute the invariants F once one picks a natural
coordinate system on C¥ M and figures out appropriate methods for evaluating
X l.(k)(p) for each coordinate function p. There is no difficulty solving each

particular equation Xl.(k)F = 0, by the methods of Chapter V.10, §l. We find
that F must be constant along certain curves in C¥ M, or equivalently, that F
must be expressible as a function of certain combinations of the coordinate
functons. The problems arise when we seck a solution F of the equations
Xi(k)F = 0 for all i; we then have to guess a single function which can be

expressed as a function of each of the different combinations of coordinate
functions which arise for each i.

Even without performing the calculations, however, one can decide how many
invariants there should be. We seck a submanifold  C C¥ M which intersects
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each “orbit” {¢.y : ¢ € G}, y € CFM just once. The invariant functions on
C¥ M are in one-one correspondence with the functions on #, so the number
of “independent” ones is the dimension of #, thus the dimension of CkM
minus the dimension of an orbit. Differential invariant tensors can be treated
similarly.

Unfortunately, there is no really good reference for this topic. One can try
Lie and Scheffers {I; ch.22}, but it will be much easier to read Scheffers {1}.
Plane curves are treated in volume 1, part 1, §§8, 9; space curves in volume I,
part 2, §12; and surfaces in volume 2, part 3, §10. All the information here will
be quite new, because curves and surfaces are determined up to congruence by
certain fimctions, not by tensors; for curve theory this means that no use is made
of the parameterization by arclength (which is really equivalent to using the first
fundamental form of the image curve). There are also some (rather misleading)
calculations in volume 2, part 3, §6 which essentially determine all invariants
on the space of jets (i.e., the functions on surfaces which are invariant under
Euclidean motions but ot under change of parameter). The main problem with
this reference is that it doesn’t illustrate the general methods of computation
outlined above.

The most modern reference for these methods, Guggenheimer {1; ch.7-2}, is
frustratingly old-fashioned in its language. It might help to mention that the
formally introduced new “variables” x; = dx; /dx1,x},... are merely certain
natural coordinates for 1-dimensional contact elements in R™: on the set of
1-dimensional contact elements y represented by curves whose images can be
parameterized as x; > (x1, f2(x1),..., fm(x1)) [for unique S, s Sm] we let
xj(y) = f, etc. Similarly, on the set of 2-dimensional contact elements y in R?
which are represented by immersions of R? whose images can be parameterized
as (x1, x2) — (x1, X2, f(x1, x2)) we have the coordinates p(y) = df/dx, q(y) =
df/dy, r(y) = 82f/dx?, etc. Beware of misprints in some of the computations
of the “prolongations”.

There are extensive calculations in Forsythe {1; §§132-146}, but they are not
carried out directly on the contact elements. Instead, “relative invariants of
order w” are computed first; these are functions F on the jets such that

FUE(S o)) =(deta)” FGECS))

for any diffcomorphism «. Clearly the product of relative invariants whose
weights add up to 0 will give invariants on the contact elements. (Similar tricks
are used in the works of Pick and Wilczynski quoted above, as well as in the
much more straightforward calculations in Blaschke {I; v.3}.) One may also try
the introductory chapter of Schirokow and Schirokow {1}.
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Lie’s methods are supposedly applicable, in ways I don’t understand at all,
to such problems as the equivalence of Riemannian manifolds, and even more
general questions. See Lie and Scheffers {1; ch.23}, Veblen {I; ch.3, §§20-22,
ch.5, 6}, and Wright {I}. It might also be mentioned that there is a theory
involving even more general notions than jets and contact elements, the “geo-

metric objects”—see Yano {3; ch.2} or Aczél and Gotab {1}.

E. Cartan’s general method of moving frames is a sort of dual to Lie’s method
which allows computations to be made more easily. The general features of
the theory are well illustrated by the development of special athne surface the-
ory in Chapter II1.2—see especially pg. I11.102. We consider moving frames
X1, X2, X3 along M? c R3 with det(X;, X2, X3) = 1. An arbitrary moving
frame of this sort is what Cartan calls a “zeroth order frame”. A “first order
frame” is one which is adapted to M (i.e., Xj, X are tangent to M). To define
“second order frames” we now try to specialize the first order frames as much
as possible by seeking an appropriate condition on the dual and connection
forms. As we observed on pg II1.82ff, the condition ¥} = 6" has just the

“invariant” property we need—it depends only on the value of the frame at p
fie., if X1, Xz, X3 and X1, X2, X3 are adapted moving frames with dual and

connection forms 6%, 1//’ and ', 1/-/ respectively, and the two frames agree at p,
then ¥} (p) = 6'(p) if and only if 1//i (p) =6 (p)].

This definition of second order frames already gives an invariant tensor, the
special affine first fundamental form. To obtain this specialization we used
the calculations on pp.II1.79-81. To be sure, these calculations were not very
difficult, but that is because we already knew what we were looking for; we didn’t
even bother to compute the 1//’;'. in general, since they would not be mvolved
in our invariant condition. It would have been much harder to simply guess
an invariant condition without the previous geometric motivation (indeed, the
difficulties which arise here are exactly dual to the problem in Lie’s method of
fnding a common solution to the equations X, i(k)F = 0); this is an aspect of the
theory which Cartan always carefully suppressed in his expositions of it.

Now we can seek “third order frames” by specializing the second order
frames. An appropriate condition is 3 = 0; it gives us the special affine normal.
The verification that this condition is invariant is given on pp. II1.102-103. It
would clearly be a lot easier to discover ab initio than the corresponding invariant
condition (pg. II1.100) for first order frames; in general, one always works with
the highest order frames already successfully discovered. Specializing the third
order frames would lead us to the special affine second fundamental form (X;
and X> would be the eigenvectors of T with respect to ). For more examples
and details, see Cartan {6} or Favard {1}.
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IV. The Russian school; synthetic differential geometry

A thorough treatment of the foundations of surface theory without differen-
tiability hypotheses is given in Alexandrov {l}. As an introduction, the reader
may prefer to consult Busemann {1} or relevant portions of Efimov {1} and
Pogorelov {1}, {2}, {3}. For an extensive connected account of further develop-
ments in the theory see Pogorelov {5}. We might also mention Pogorclov {6},
where the geometric results are used to obtam stronger-than-usual results about
PDE’s.

Although most of the material in these references pertains to convex surfaces
(for which one may also consult Bonneson and Fenchel {1}, Blaschke {2}, Had-
wiger {1}, and Yaglom and Boltyanskii {1}), there 1s also an elaboratc theory
which investigates the most general sorts of surfaces, or even arbitrary metric
spaces. One treatment can be found in Alexandrov and Zalgaller {1}, while
a somewhat different direction is taken in Blumenthal {1}, Blumenthal and
Menger {1}, and Rinow {1}. In yet another vein, we have the work of Busemann,
which represents the very antithesis of Riemann’s approach (whereby a mecha-
nism for measuring lengths of arbitrary curves 1s postulated, and geodesics are
defined as curves of minimal length). In Busemann {3} postulates are instead
given for the geodesics, and many relations of classical differential geometry
are derived from them; although the arguments are often involved, just as a
rigorous axiomatic development of Euchidean geometry would be, the strength
of the results 1s often startling. For related results see Busemann {2}.

V. Applications to physics

(a) Classical mechanics. Tt turns out that differential geometry provides the natural
language for classical mechanics, for the two equivalent basic formulations of the
subject. via Lagrange’s equations and Hamilton’s cquations, take place on the
tangent bundle and cotangent bundle, respectively, of a suitable mamifold. A dis-
cussion of mechanies which manages to make some interesting points i a short
space. but which doesn’t make very clear which manifold one 1s working on. may
be found in Laugwitz {1: §14}. Another brief discussion. without this shortcom-
ing. is contained in Bishop and Goldberg {1: ¢h.6}. One can consult pp. 141-147
of Sternberg {1}. which also mentions other aspects of the subject as part of an
extensive discussion of the calculus of variations. in the succeeding chapter.
Similarly. see Hermann {1: ¢h.16}. The short book by Godbillion {1} reaches
its climax in the final. 9 page. chapter on mechanics. which begins by defin-
ing a “mechanical svstem™ as a triple (M. T.m). where M 1s a manifold. T a
differentiable function on TM. and 7 a semi-basic form on TM. A serious
study of mechanies will be found in Abraham {1}. beginning in the third chap-
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ter, where it 1s admitted however, that the treatment “possibly ... will scem
severely unmotivated without some background in classical mechanics . . ."”; see
also Wasserman {I}. Aside from this difficulty, common to all these books, the
most heartbreaking omission is any adequate discussion of the fictional “forces
of constraint” which are involved in such useful abstractions as “rigid bodies”.
These can usually be formulated as particular subspaces that the velocity vec-
tor in R¥*V of the system of N particles is constrained to lie in. When these
subspaces form an integrable distribution (the constraints are “holonomic”) the
mtegral submanifolds form a lower dimensional “configuration space” and the
basic principle is that the motion of the system with these forces of constraint is
determined by restricting the original equations on TR*N or T*R*N (0 equa-
tions on the tangent or cotangent bundle of the configuration space. (Some
details are given in Hermann {2; ch.2}.) For physics books on classical me-
chamcs the following references may be of use: Corbin and Stehle {1} (the most
modern m spirit of the elementary books), Pars {1}, and Whittaker {1}.

(b) General Relativity. Fortunately, I was ultimately not foolish enough to attempt
writing anything on this vast subject which I do not understand. My conscience
1s set at ease by recommending the monumental book of Misner, Thorne, and
Wheeler {1}, which is probably owned by every relativist in the world. For
more mathematical treatments you may prefer Sacks and Wu {1}, which places
great emphasis on foundational points, Weinberg {1}, Hawking and Ellis {1},
O’Neill {2}, and Beem {1}.

VI. Miscellaneous

(a) Calculus of variations; Hamilton-Jacobi theory. A subject closely linked with me-
chamces (V.(a)). The two great classical works usually referred to are Carathéo-
dory {1} and E. Cartan {4}. See also Abralham {1}, H. Cartan {1}, Godhil-
hon {1}, Hermann {1; pt.2}. Rund {2}, and Sternberg {1; ch.4}.

(b) Sprays. Tlns is a topic which I have assiduously avoided learning, convinced
that one can get by without it, and suspicious that it’s just a complicated new way
of sayig something old. Less obstinate readers may wish to consult Gromoll.
Klingenberg. and Mever {1: 60}. Lang {1: cli4. §§3-5. ch.6. §6}. or Sternberg {1:
199. 361;.

(¢) Jets. These. and the contact elements [cf. HI.(g)]. are natural structures to
consider in differential geometry: but they are only just beginming to be used in
any serious way. For basic definitions, see Bourbaki {1; §12} or Dieudomné {I:
v.3 (ch16.5=Problem 9. ¢ch.16.9-Problem 1). v:4 (¢h.20.1-Problem 3)}. For some
applications. see Kobavasli {1; 1391},
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(d) Other definitions of connections. Gromoll, Klingenberg, and Mever {1; 43} gives
a definition of a connection m terms of a map K: TTM — TM. This is useful
in dealing with infinite dimensional manifolds; see Flaschel and Klingenberg {1;
ch.1}. Gonnections have also been defined as sprays with certain properties, and
as a splitting of the “jet exact sequence”. I personally feel that the next person
to propose a new definition of a connection should be summarily executed.

(e) Reducing differentiability hypotheses. Itis of some mterest to some people (analysts)
to establish results with the minimum differentiability assumptions. Although
the work of the Russian school sometimes eclipses such efforts, this 1s not always
true, and m any case few mathematicians seem to find 1t a sufficiently com-
pelling argument to go that route. In any proof of classical geometry one can
always carefully count how many times one differentiates, but this usually turns
out to be one or two more times than one really has to, if one is sufficiently
clever. So the problem of finding miimal differentability hypotheses (and ex-
amples to prove they are minimal) is not easy. A long series of papers on this
subject was published by Hartmann and Wintner, maily in the American Journal
of Mathematics, beginning in 1947.

(f) Transversality. Not a part of differential geometry, really, but of differential
topology. Nevertheless, it 1s probably a wise move to learn the basic ideas.
See Sternberg {1; 64f.} or Guillemin and Pollack {1}, with its many beautiful
applications.

(2) Polyhedral geometry, models, constructive aspects, etc. Perhaps the oldest contribution
in this direction was the argument of Hilbert and Cohn-Vossen {l; pp. 194195}
proving Gauss’ Theorema Egregium for polyhedral surfaces. Recent work of
T. Banchoff and others has carried this approach much further. One may also
consult Sauer {1} and Kruppa {1}. For a rather different approach to the Gauss-
Bonnet-Chern Theorem, see Palais {1}.
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B. BOOKS

During the compilation of this bibliography, certain mstincts urged me to
seek encyclopaedic completeness, while healthier ones advised selectivity and
utility. From this conflict resulted the usual unsatistactory compromise, wherein
the advantages of neither course of action 1s retained. I have tried to single out
sources which might be particularly valuable, but this applies mainly to books
concerned with the topics covered in these five volumes; many others will have
already been mentioned in Part A.

Encyklopidia der Mathematischen Wissenschafien, Volume 11, Part 3D, B. G. Teubner,
Letpzig, 1902-1927.

Abraham, R. and Marsden, J.

{1} Foundations of mechanics, 2nd ed., Addison-Wesley, Reading, Mass., 1978
(MR 81e:58025).

Aczél, J. and Golab, S.
{1} Funktionalgleichungen der Theorie der Geometrischen Objeckte, Panstwowe Wydaw-
nictwo Naukowe, Warsaw, 1960 (MR 24 #A3588).

Ahlfors, L. V.
{1}y Conformal Invariants: topics in geomelric function theory, McGraw-Hill, New
York, 1973 (MR 50 #10211).
Akivis, M. A. and Goldberg, V. V.

{1} Projective Dyfferential Geometry of Submanifolds, North-Holland, Amsterdam,
1993 (MR 941:53001)

Alexandrov, A. D.
{1} Die Innere Geometrie der Konvexen Ilichen, Akademie-Verlag, Berln, 1955
(MR 17 #74).
{2} Awrven und Flichen, VEB Deutscher Verlag der Wissenschafien, Berln.,
1959 (MR 21 #3866).

Avery nice elementary introduction to curves and surfaces which men-
tions some things vou might not see otherwise (e.g., why a pail with a
curved rim is stronger than one with a plain rim). For an English trans-
lation see Chapter 7 of

Alexandrov. A. D.. Kolmogorov. A. N., and Lavrent’ev. M. A. (eds.)
W13 Mathematics. Its contents. methods and meaning. 2nd ed.. NLL'L. Press. Cam-
bridge (Mass.), 1969 (MR 39 #1258a—¢).
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Alexandrov, A. D. and Zalgaller, V. A.
{1y Intrinsic Geometry of Surfaces, American Mathematical Society, Providence,
R.L., 1967 (MR 35 #7267).
Arnold. V. L.
{1} Mathematical Methods in Classical Mechanies, Springer-Verlag, New York,
1978 (MR 57 #14033b).
Auslander, L.
{1} Differential Geometry, Harper & Row, New York, 1967 (MR 35, #2208).

This is an attemipt to construct an introductory course in differential
geometry from the point of view of Lie groups, witli the fundamental
cquations of surface theory arising from the equations of structure of
SO(3). Later chapters cover Riemannian geometry. The treatment of ge-
odesic completeness (pp. 203-214) may be of interest, and the Poincar¢
upper half-space is discussed in some detail (pp. 223-236). In particu-
lar, there is a description of the various one-parameter subgroups of the
group of isometries. The orbits of these subgroups are the geodesics, ge-
odesic circles, horocycles, and equidistant curves (for these are the curves
of constant curvature).

Auslander, L. and MacKenzie, R. E.
{1} Introduction to Differentiable Manifolds, McGraw-Hill, New York, 1963 (MR
28 #4462).
Beem, J. K., Ehrlich, P E., and Easley, K. L.
{1} Global Lorentzian Geometry, 2nd ed., Marcel Dekker, Inc., New York, 1996
(MR 97£:53100).
Berger, M.
{13 Lectures on Geodesics in Riemannian Geometry, Tata Institute of Fundamental
Rescareli, Bombay, 1965 (MR 35 #6100).
Thiese notes cover many topics. frequenty with details not to be found
elsewliere.
see also Lascoux. A.
Berger. M. Gauduchion. P and Mazet. E.
1Y Le Spectre dune Variété Riemannienne. Springer-Verlag. Berlin. 1971 (MR 43
#E8025).
Berger. M. and Gostiaux. B.
{1y Géométrie Différentielle. Armand Colin. Paris. 1972 (MR 58 #13102)
A very beautiful recent text on differentiable manifolds. with some dif-
ferential geometry included. §§6.7-6.9 and 7.5 prove the Gauss-Bouet
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theorem for submanifolds of Euclidean space by the method of Allendo-
erfer and Fenchel mentioned at the heginning of Chapter 13 (pg. V.264).
Chapter 9 treats global properties of curves, including an elementary
proof of the Jordan curve theorem for smooth curves, Whitney’s theo-
rem on smooth homotopy of closed curves, and the formula of Fabricius-
Bjerre-Halpern, which relates the number of double pomts and mflection
ponts of a closed curve to the number of double tangents (lines tangent
to the curve at two different points).

The next reference 1s a new edition, with additional material.

{2} Géométrie Dufférentielle: variétés, courbes et surfaces, Presses Umversitaires de

France, Paris, 1987 (MR 89b:53001).

There 15 also an English translation:

Differential Geometry: manfolds, curves, and surfaces, Springer-Verlag, New
York-Boston, 1988 (MR 88h:53001).

Besse, A. L.

{1} Mamfolds All of Whose Geodesics are Closed, Springer-Verlag, New York, 1978
(MR 80c:53044).

Bianchi, L.
{1} Vorlesungen iiber Differentialgeometrie, B. G. Teubner, Lepzig, 1899.

This 1s a translation, with some additions, of the first edition of the orig-
mal Italian work. Naturally 1t contains a considerable number of results
from classical surface theory, but 1t differs from many classical books by
also treating surfaces n the spaces of constant curvature. See in particular
§348, which considers a surface M in the upper half-space model of H3.
Yor p € (x, y)-planc, let y be the geodesic mtersecting M orthogonally
and approaching p. and let f(p) be the other point i the (x, y)-plane
which y approaches. Then f 1s holomorphic if and only if M has (in-
trmsic) curvature 0. Also note that §110 gives a nicer treatment of the
problem considered on pp. V.217-218; Bianchi shows directly that the
curve 7 = (1. 0). v(2.0). w(r.0)) has the same curvature and torsion as
¢. (The whole problem 1s simply 1gnored by Darboux {1}, By the way,
there 1s no adequate treatment anywhere m the classical literature of the
case where k¥ = Kg.)

There 1s a later. 4 volume, Italian edition, not translated. which treats
special questions of surface theory m great detail.
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Bishop. R. L. and Crittenden, R J.
{1 Geometry of Manifolds, Academic Press, New York, 1964 (MR 29 #6401).

Very compactly written, with mauy results wmerely quoted or left as
exercises. Particular attention mayv be called o some of the problems
ou pp. 106-107, 110, 114, 134, There 1s a study of complete simply-
counected mauifolds of constant curvature (§9.5) rather different from
the eleientary oue ontined w Problem 1M1 1-5, a more elaborate study
of convex neighborhoods, using the secoud variation (§11.8), aud some
applications of the secoud variation to theorems on the volumes of balls
(pp- 256-257). A bhibliography of 95 items.

Bishop, R. L. aud Goldberg, S. 1.

{1} Tensor Analysis on Manifolds, Macullan, New York, 1968 (MR 36 #7057).
Blaschke, W.

{1} Differential Geometrie, Volumes 1, 2, Chelsea, New York, 1967; Volume 3,

Springer, Berln, 1929,

Although this book 1s quite old-fashioned, I nevertheless find 1t very
stimulating, perhaps because the author 1s more interested in genuine
geometric questious, especially global ones, than i the formahties of
calenlations. More topics are covered here than m almost any other clas-
sical book, and there 1s an extraordinary nmumber of tteresting exercises,
remarks, aud sidelights.

Vohume 1, §72 shows that if the geodesic circles ave the same as the
curves of constant kg, then K is coustaut, while §84 proves the morve dif-
ficult result (mentoned on pg. IV.309) that K is constant if all curves of
coustaut kg are closed. The mampulations of §94 (nsed in the next sec-
tou for a proof of Chuistoflel’s theorem) are mysterious; Problem 1II1. 3-8
way be used wistead. See also the finmy vesutt on pg. 121 Tews witevesting
to find that the general forumta for variation of area was already given
bv Gauss (§109). Classical vesults of Schwarz (one meutioned uuder topic
I1.(a)) ave given in §§110, LHL while §116 gives the secoud vartaton of
avea (in a special case). and mentions a classical coudition of Schwarz
for a wmal surface to be a local mmmmun for area. For a modern
preseutation. see Barbosa aud do Carwo [1]. The proof of the velated
Theoretn TV9-39 is frown Rado {1}, §117 gives the fivst varaton of H
aud K (we esseutially tound the fivst variation of A 1 ovder to find the
secoud variation of area). Problemt 2 §118 wmentions mtevesting prop-
erties of associated mnimal surfaces. for example. the tangeut planes at
correspouding poiuts ave parallel. Couversely. if there s an tsometry be-
tween two surtaces such that tangent planes ave pavallel, then they ave
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cither congruent surfaces or associated minimal surfaces (to be taken with
a grain of salt—one of the surfaces could be the union. along a common
curve, of a picce congruent to part of the other surface and another piece
associated to a part of the other surface which 1s a minimal surface).

Volume 2 covers affine differential geometry. There are very many nice
geometric interpretations of the invariants arising here, as well as many
global results.

For Volume 3 see topic 1 (f).

{2} Rieis und Kugel, de Gruyter & Co., Berlin, 1956 (MR 17 1123).

{3} Vorlesungen iiber Integralgeometrie, 2nd ed., Chelsea, New York, 1949.

{4} Einfiihrung in die Geometrie der Waben, Birkhiuser, Basel, 1955 (MR 17 780).
Blaschke, W. and Bol, G.

{1} Geometrie der Gewebe, Springer, Berlin, 1938.
Blaschke, W. and Leichtweiss, K.

{1} Elementare Differentialgeometrie, 5th ed., Springer-Verlag, Berlin, 1973 (MR

50 #3122).

This 1s a modernization of Blaschke’s book which preserves the style
of the ornigmal. Numerous new problems and references of interest.

Blaschke, W. and Reichardt, H.
{1} Einfiihrung in die Differentialgeometrie, 2nd ed., Springer-Verlag, Berlin, 1960
(MR 22 #7062).
This 1s an attempt to modernize Blaschke’s book by writing everything

m terms of moving frames. It may be consulted for a few interesting
points hard to find elsewhere, especially §§56, 57, 77, and 69, Problem 19.

Blumenthal, L. M.
Y Theory and Applications of Distance Geometry. 2nd cd., Chelsea. New York,
1970 (MR 42 #3678).
Blumenthal, L. M. and Menger, K.
Y Studies in Geometry. W. H. Freeman. San Francisco, 1970 (MR 42 #8370).

Bochner. S.
see Yano. K.
Bol. G.
{1} Projektive Differentialgeometrie. 3 vols.. Vandenhoeck & Ruprecht. Gottingen.
1950 (MR 16 1150).
Extensive bibliography. extending that of Fubini and Cech {1}.
see also Blaschke. W
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Boltyanskit, V. G.
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{1} Variétés Différentielles et Analytiques. Fascicule de Résultats/ Paragraphes 1 a7 and
/ Paragraphes 8 a 15, Hermann, Paris, 1971 (MR 43 #6834).

Bourbaki is the originator of that famous pedagogical method whereby
one begins with the general and proceeds to the particular only after the
student is too confused to understand even that any more. His influence
is to be seen everywhere, probably in these volumes too. Bourbaki has
apparently decided that the theory of manifolds has now entered that do-
main of “dead” mathematics to which he hopes to give definitive form. In
this summary of results the corpse is laid out to public view; the complete
autopsy is eagerly awaited.

Boys, C. V.
{1} Soap Bubbles, their colors and the forces which mold them, 3rd ed., Dover, New
York, 1959.
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{1} Exterior differential systems, Mathematical Sciences Research Institute Pub-
lications, 18, Springer-Verlag, New York, 1991 (MR 92h:58007).

This very valuable book is concerned with an important, but extremely
difficult. portion of E. Cartan’s work. There is an extended discussion
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for given initial data for a hyper-
boic second order PDE in 2
variables, 97
for given initial data for a second
order PDE, 35
Characteristic classes, 302ff;
see also Chern class, Euler class,
Pontryagin class
Characteristic curve
of a function, for a hyperbolic sys-
tem in 2 variables in diagonal
form, 79
of a linear first order PDE, 4
of a quasi-linear first order PDE, 10,
26
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Characteristic curve (continued)
of a solution of a first order PDE,
15, 18
Characteristic strip, 20
Characteristic vector field
of a linear first order PDE, 4

of a quasi-linear first order PDE, 10,

26
of a semi-linear hyperbolic system in
2 variables, 74
of a solution of general first order
PDE, 18
Chern, S.-S., 200, 204, 208, 249, 265,
301, 380, 381
Chern class, 364, 370
total, 364
Chiristoffel, E. B., 206
Christoffel’s Theorem, 204, 207
Classification of semi-linear second
order PDE’s, 47-59
Classifying space, 280
Cohn-Vossen, S., 200, 210, 213, 213,
214; see also Hilbert and Cohn-
Vossen
Cohn-Vossen’s Theorem, 192, 212
Complete convex surfaces, rigidity of,
211-212
Complex
Grassmannian, 360
orthogonal group, 357
vector bundle, 356
Conductivity, heat, 64
Cone, Monge, 15
Conjugate
bundle, 366
linear, 357
Constant curvature manifolds
in manifolds of greater constant
curvature, 140
Pontryagin classes of, 351
Convex complete surfaces, rigidity of,
211-212
Courant, R., 79
Covering homotopy theorem, 271
Curvature, see Constant curvature
manifolds

Curve
base, 19
characteristic, see Characteristic
curve
initial, see Initial curve

Darboux, G., 144
Darboux equation, 145, 2171f.
Degree, total, 326
Density, 61
Dependence, domain of, 70
Depends on ¢ variables, 139
Derivative, normal, 32
Differential equations, partial, see Par-
tial differential equations
Differential ideal (or system), 112
integral element of, 112
integral submanifold of, 112
Dirichlet problem, 68
Dolbeault-Lemoine, S., 246
Domain of dependence, 70
Double of a manifold, 381

Efimov, N. V,, 235
Elementary symmetric functions, 317
Elliptic
semi-linear PDE, 49
solution of a second order PDE, 57
solution of a second order PDE
analyticity of, in 2 variables,
98-109
Energy, heat, 63
Equivalence, 265, 266
FEuler class, 291, 350, 370
Euler’s theorem, 320
Evaluations, 373
Extension of algebraic identities,
principle of, 286
Exteriorly orthogonal, 137



Fenchel, W,, 156, 200, 264
Firey, W.]., 208
First normal space, 247
First order PDE’s, 3
general, 13
Cauchy problem for, 25, 28
characteristic curve of a solution,
15, 18
characteristic strip of, 20, 27
characteristic vector field of a
solution, 18
initial curve for
characteristic, 26
free, 25
Initial data for, 22, 28
initial manifold for, free, 28
linear, 4
Cauchy problem for, 8
characteristic curve of, 4
characteristic vector field of, 4
initial condition for, 8
nitial curve for, free, 8 -
quasi-linear, 9
Cauchy problem for, 13
characteristic curve of, 10, 26
characteristic vector field of, 10,
26
initial conditions for, 12, 27
initial curve for
characteristic, 13
free, 12
mnitial manifold for, free, 27
systems of, 36
Cauchy-Kowalewski theorem,
38-46
Form, second fundamental, 208
Free
initial curve
for a general first order PDE, 25
for a linear first order PDE, 8
for a quasi-linear first order PDE,
12
initial manifold
for a higher order PDE, 29-35
for a quasi-linear first order PDE,
27
Fundamental form, second, 208
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Gardner, R.B., 209
Gauss-Bonnet (-Chern) theorem, 263—
265, 301, 380ff.
Geodesic parallels, 224
Good basis for a regular integral
element, 114
Grassmannian manifold, 273
complex, 360
oriented, 281
Green, R.E., 214
Gromov, M. L., 156
Grove, V.G., 208

Harmonic function, 71
Heat
capacitance, 63
conductivity, 64
energy, 63
equation, 65fT
specific, 63
Heinz, E., 155
Hellwig, G., 213, 234
Herglotz integral formula, 194, 197,
199
Hermitian
inner product, 357
metric, 360
Higher order PDE’s, 29-35
Hilbert, D., 213, 214
Hoesli, R.J., 235
Homogeneous
ideal, 112
polynomial function, 319
space, 304
Homotopy covering theorem, 271
Hopf, E., 127
Hopf, H., 206, 234, 263
Hopf’s Theorem, 127, 200
Hyperbolic
second order equation in 2 variables,
81-97
semi-linear PDE, 49
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Hyperbolic (continued)
solution of a second order PDE, 57
system in 2 variables, 72-80
ck, 73
semi-linear, 73

Ideal
differential, 112
homogeneous, 112
Identities, principle of extension of
algebraic, 286
Imbedding(s)
bending of, 170
bending through, 170
isometric, 133ff.
Immersions, bending through, 170
Index
of nullity, 141
of relative nullity, 141
Induced bundle, 268
Inequalities, principle of irrelevance of
algebraic, 375
Infinitesimal
bending, 173
of rotation surfaces, 253
rotation field, 175
Infinitesimally
bendable, 173
rigid, 173
Initial-boundary value problem, 67
Initial condition, 2
for a higher order PDE, 29-35
for a linear first order PDE, 8
for a quasi-linear first order PDE,
12, 27
Initial curve
for a general first order PDE
characteristic, 26
free, 25
for a linear first order PDE, free, 8
for a quasi-linear first order PDE
characteristic, 13

free, 12

Index

Initial data
for a first order PDE, 22
for a higher order PDE, 29-35
Initial manifold
free for a general first order PDE,
28
free for a higher order PDE, 29-35
free for a quasi-linear first order
PDE, 27
Inner product, Hermitian, 357
Integrability conditions, 1, 112
Integral element of a differential
system, 112
regular, 113
good basis for, 114
Integral formula
of Blaschke, 188, 199
of Herglotz, 194, 197, 199
Integral submanifold of a differential
ideal, 112
Invariant
Ad(G), 354
Ad(H), 311
differential form, 308
under a subgroup of GL(n, k), 372
under adjoint action of O(n) and
SO(n), 331
under adjoint action of U(n), 362
under O(n), 318
Invariant theory, 317fL.
first main theorem for O(n), 327ff
first main theorem for U(n), 361,
379
for unitary group, 372fL.
Irrelevance of algebraic inequalities,
principle of, 375
Isometric imbeddings, 133t
Isothermal
coordinates, 52
surface, 261

Janet, M., 149, 157
Jessen, B., 156



Kihiler, E., see Cartan-Kihler theorem

Killing, W,, 170

Kowalewski, S., see Cauchy-
Kowalewski theorem

Kuiper, H.H., 156

Laplace equation, 66

Lax, P, 79

Length, preserve up to first order, 173

Levi, E.E., 229, 230, 231

Lewy, H., 46, 155, 156

Liebmann, H., 199, 213

Linear first order PDE, se¢ First order
PDE

Majorants, method of, 43
Manifold
initial, see Initial manifold
strip, see Strip
Manifolds of constant curvature,
see Constant curvature manifolds
Map
bundie, 265, 266, 356
natural between Grassmannians,
277, 360
Maximum principle, 126fT.
Metric, Hermitian, 360
Milnor, J. W,, 356, 370
Minkowski’s
formulas, 185
problem, 156, 200
theorem, 200
generalized, 207
see also Brunn-Minkowski inequality
Monge cone, 15
Monge-Ampére equations, 97, 145,
220
Moore, J. C., 252
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Nash, J., 156
Natural
classes, 302
map between Grassmannians, 277,
360
Nirenberg, L., 155, 156, 21l
Non-characteristic, 8
Non-compact surfaces, complete
convex, 211
Non-convex surfaces, 209
Non-degenerate, 148
Non-trivial
bending, 170
infinitesimal bending, 173
Normal
derivative, 32
form for a semi-linear second order
PDE, 50
linear transformation, 361
space, first, 247
Nullity
index of, 141
relative index of, 141

Olowjanischnikow, S. P, 211
Orientation
of direct sum of vector spaces, 281
of vector bundle, 281
of vector space, 280
Oriented
Grassmannian manifold, 281
vector bundle, 281
vector space, 281
Orthogonal
exteriorly, 137
group, complex, 357
Orthonormal, with respect to Hermit-
ian inner product, 357
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Parabolic
semi-linear PDE, 49
solution of a second order PDE, 57
Parallels, geodesic, 224
Part, principal, 47
Partial differential equations, 1
first order, see First order PDE’s
higher order, se¢ Higher order
PDE’s and second order PDE’s
linear first order, see First order
PDE’s
quasi-linear first order, see First
order PDE’s
second order, se¢ Second order
PDE’s
system of, 1
integrability conditions for, 1, 112
overdetermined, 1
PDE, see Partial differential equations
Pfaffian, 285
Physics, prototypical second order
equations of, 59-72
Pogorelov, A. W, 155, 212, 213, 214,
235
Polar space, 113
Polarization, 321
Polynomial function, 319, 353, 360,
372
Pontryagin class, 345, 370
of constant curvature manifolds, 351
total, 351
Preserve lengths up to first order, 173
Principal
bundle
map, 266
of frames, 266
trivial, 266
curvatures, radit of, 204
part, 47
Projection, central, 235

Quasi-linear first order PDE, see First
order PDE’s

Radii of principal curvature, 204
Rank, 326
Regular integral element of a differen-
tial system, 113
good basis for, 114
Relative nullity, index of, 141
Rembs, E., 210
Rigid, 173
infinitesimally, 173
Rigidity of complete convex surfaces,
211-212
Rokhlin, V. A., 156
Rotation field, infinitesimal, 175
Rotation surfaces, infinitesimal bend-
ings of, 253
Russtan school of differential geometry,
155, 156, 212, 213

Schilt, H., 231, 233, 234
Schwartzschild metric, 133
Second fundamental form, 208
Second order PDE’s
analyticity of elliptic solutions in 2
variables, 98-109
characteristic initial manifold for, 35
classification of semi-linear, 47-59
elliptic solution of, 57
analyticity of in 2 variables, 98—
109
free mnitial manifold for, 29-35
hyperbolic solution of, 57
in 2 variables, 81-97
Monge-Ampére, 97
prototypical equations of physics,
59-72
semi-linear, 47
classification of, 47-59
elliptic, 49
hyperbolic, 49
normal forms of, 50
parabolic, 49
principal part of, 47
Section, 305
Semi-linear, se¢ Second order PDE’s



Skew-Hermitian matrices, canonical
form for, 361
Skew-symmetric matrices, canonical
form for, 287, 331
Small vibrations, 62
Specific heat, 63
Spectral theorem, 361
Sphere bundle, 268
Star-shaped
subset of S"1 240
surfaces of constant mean curvature,
186
Stasheff, J. D., 356, 370
Stiefel manifold, 273
Stoker, J.J., 199
String, vibrating, 59fL
Strip, 20
characteristic, 20, 27
condition, 20
manifold condition, 28
Submanifold, integral of a differential
ideal, 112
Subsonic flow, 57
Supersonic flow, 57
Support function, 184
Symmetric function, 317
elementary, 317
Systemn
differential, 112
hyperbolic in 2 variables, see Hyper-
bolic
integrability conditions for, 1, 112
of first order PDE’s, 36

overdetermined, 1

Temperature, 62

Tension, 60, 61

Thom class, 291, 370
Tompkins, C., 137

Torus of revolution, 210
Total Chern class, 364
Total degree, 326

Total Pontryagin class, 351
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Trivial
bending, 170
infinitesimal bending, 173
principal bundle, 266

Type number
of hypersurface, 170
of linear transformations, 247
of matrices, 247

of submanifold, 247

Unbendable, 170
Uniquely determined, 171
Universal bundle, 280
Unwarpable, 171

Variation vector field, 171

Vector bundle, complex, 356

Vector field, characteristic, see Charac-
teristic vector field

Vector field, variation, 171

Vibrating string, 59{L

Voss, K., 206

Voss, A., 231

Walden, R., 208
Warpable, 171

Watson, G. H., 257
Wave, 69

Wave equation, 62, 68-71
Weak topology, 280
Weil, A, 265

Weil homomorphism, 355
Weyl, H., 155

Weyl’s problem, 155, 191
Whitney product formula, 352, 365
Whitney sum, 267
Whittaker, E. T., 257

Wu, H,, 214



