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CHAPTER 7

HIGHER DIMENSIONS
AND GODIMENSIONS

he aim of this chapter is, roughly speaking, to see whether and how the re-

sults of the previous chapters generalize; instead of surfaces in R3, we will
be considering higher dimensional manifolds, of higher codimensions, imbed-
ded or immersed in more general Riemannian manifolds. Even at the risk
of making the chapter somewhat disorganized, I have tried to make it pretty
complete, so that readers do not have to sit gnawing their thumbs wondering
whether a generalization does not appear because it is trivial or because it is
false, or because it is unknown. It should be mentioned, however, that a few
diddly topics, like the Dupin indicatrix, aren’t considered at all. In addition, a
few points are taken up in later chapters, and the bibliography for appropriate
sections should also be consulted. Finally, the most notable omission of all is
the generalization of the Gauss-Bonnet Theorem, which occupies the place of
honor 1n the last chapter of the book.

A. THE GEOMETRY OF
CONSTANT CURVATURE MANIFOLDS

Although our aim in this chapter is to obtain results of the greatest possible
generality, many of the theorems will not hold, or even make sense, unless the
ambient manifold has constant curvature Ky. It will be necessary for us to be as
familiar with the properties of these Riemannian manifolds as we are with the
case of Euclidean space (Ko = 0). We will consider only the simply-connected
complete n-dimensional Riemannian manifolds (M, { , )) of constant curva-
ture Ko; by Problem 1-5, the manifold (M, ( , )) is then uniquely determined
up to isometry by Kj.

For Ky > 0, the manifold (M, ( . )) is Jjust the n-sphere S"(Kp) of radius

1/VKo in RPH!,

n _ n+1 ., 1
S(Ko)—{peR Ap,p) = Ko}

with the Riemaimian metric induced from the ordinary metric { , ) of R**I,
For simplicity, we usually consider only the case Ko = 1, setting S” = S”(1).
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It is clear that every orthogonal map 4 € O(n + 1) takes S" to itself and 1s an
isometry. Moreover, O(n + 1) is precisely the set of isometries of §", since a
suitable 4 € O(n + 1) takes any orthonormal frame Xj,..., X, € S”p at any
point p € S" to any other orthonormal frame Y1,...,Ys € S", at any point
g € S", and an isometry of S" is determined by its action on S"p (Problem 1-5).

For Ko < 0, we can obtain an analogous submanifold of R"*+! by considering
a non-positive definite Riemannian metric on R"*!. Denoting the components
of apointa € R"*+! by a°, a',...,a", we consider first the non-degenerate inner

product { , ) on R"*! defined by
(a,b) = —a®p° +a'b' + .- +a"b".

This is called the Lorentzian inner product on R"*!, and the group O'(n+1)
of all linear transformations f: R**! — R"*! which preserve { , ) is called
the Lorentz group [actually (Problem 1), any map f: R"*' — R"*+! preserving
{ , ) is automatically linear]. By means of the standard identification of R+,
with R”*! we obtain a non-degenerate inner product { , ), on each RAH
and thus a non-positive definite Riemannian metric on R”*!, which we denote
also simply by { , ). In terms of the standard coordinate system X0 xt, . x"

on R"*! we have
(,)= —dx®®@dx® +dx' @dx' + -+ dx" ®@dx".

The isometries of (R"*! ( ,)) are (Problem 2) precisely the maps of the form
p> A(p)+yq AcO'n+1), geR

Now for Ko < 0 consider the quadric hypersurface

1
o =—1.
{p (p.p) =%
As illustrated on the next page, this consists of two components, each homeo-
morphic to R”; we will pick one of them, say the one consisting of points with
p° > 0, and define

1
H"(Kp) = {p e R"™: p® > 0and (p, p) = 7(—;}

For simplicity, we usually consider only the case Ko = —1, setting H*(—1) =
H" . the “n-dimensional hyperbolic space”. To find the tangent space H"p. we
proceed precisely as in the case of S". Any curve ¢ in H" satisfies

(c(),c(t)) =0 forallt = {().c(t)) =0,
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the cone

i (xi)Z - (XO)Z
i=1

-
-
-
-
-
-

so H", contains only vectors v, with (v, p) = 0. Moreover, {v : (v, p) = 0}
is the kernel of the non-zero linear functional v — (v, p), so it has dimension
exactly n — 1. Thus

H", ={vp : (v, p) =0} for pe H", ie., (p,p)=—1.

We now claim that the induced Riemannian metric on H" is positive definite.
'To show this, it is convenient to consider the index of a bilinear function B: V x
V' — R on a vector space V, which is defined to be the largest dimension of
any subspace W C V on which B is negative definite [that is, B(w,w) < 0 for
all 0 # w € W]. The bilinear function

(a,b) — (a,b) = =d®P° +a'b' +... £ a"b"

on R"*! clearly has index > 1, for it is negative definite on the subspace
U™ = {(d%0,...,0)}. Moreover, { , ) is positive definite on the subspace
Ut = {(0,a',...,a"}. If (,) were negative definite on a subspace W of
dimension > 2, then { , } would be negative definite on the non-zero subspace
W N U*, which is clearly impossible. So ( , ) has index 1. Naturally, each
(. )p also has index 1. Now consider { . ), on H",. If v, € H",, then v is
linearly independent of p, and we already have {p, p) < 0, so we cannot have

(v,v) <0.as ( , ) has index 1. Nor can we even have {v,v) = 0, for then we
would have

{p+v,p+v)=(p,p) +2(p,v) + (v,v) = (p, p) <0,
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which is also impossible. Thus { , }p 1s positive definite on H"p, and H" is
an ordinary Riemannian manifold. (In the picture on the previous page this is
quite clear, since all tangent lines have greater slope than the generators of the
cone X:l-(,>c")2 = (x%)%, and a vector v along one of these generators satisfies
{v,v) =0)

Naturally every element of O'(n+ 1) which keeps {p € R**! : p® > 0} fixed
will give an isometry of H" onto itself. We also claim that all isometries of H"
arise in this way. To prove this, we just note that if (vi)p, ..., (vn)p € H, 1s
orthonormal, and similarly for (wy)g, ..., (wn)g € H"g, so that

(r.r)=1{q.q) =—1
(vi, p) =0 = (wi,q)

(vi,vj) = (wi, wj) = bij,
then the linear transformation taking
prq and v w;

is clearly in O'(n 4+ 1). Since there are thus isometries of H" taking any or-
thonormal basis at any point to any orthonormal basis at any other point, H"
must have constant curvature. We can compute that H"(Kp) has constant cur-
vature Ko in a manner exactly analogous to a computation of the curvature of
S"(Kyp), by using Theorems 1-1, 1-6, and 1-9; the only difference is that we must
allow the ambient manifold in Theorems 1-1 and 1-6 to have a non-positive
definite Riemannian metric, and the “unit” normal field v in 1-9 will actually
satisfy (v,v) = —1. The manifold H"(Ko) is (geodesically) complete. Because
we are dealing with an indefinite metric on R"*!, this does not simply follow
from the fact that H"(Kg) is a closed subset of R”+!. However, it is an easy
exercise to prove completeness using the fact that there are isometries taking
any orthonormal basis to any other. We also mention that the geodesics of H"
are (Problem 3) precisely the intersections H” N P where P is a plane i R+
through 0: more generally, the totally geodesic submanifolds of H" are H" N P
where P is a vector subspace of R"+!.

In the past we have given several other models for H", and for S” minus a
point. For example. we have described the metric of a space of constant cur-
vature Ko in terms of normal coordinates, in Addendum 1 to Chapter I1.7. In
Addendum 2 to that chapter we found the most general isothermal coordinate
svstems on the manifolds of constant curvature, after first determining the ex-
pression for the metric on S” in the coordinate system defined by “stereographic
projection”. To define this map, we considered S" as the sphere of radius 1
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around the point (0,...,0,1), so that S” is tangent to R” = R” x {0} C R"*},
Letting * be the “north pole” * = (0,...,0,2) € S”, the stereographic projec-
tion

o: 8"~ {x} > R"

is defined geometrically as follows: for any p # * in S”, we let o(p) be the
point where the line between p and * intersects R”. It is easy to check (see the

2
X\ /7

o(p)

figure on the right) that

2pl 2pn

and that f = 07! is given by

1 n 1 i\2
_ y y 3 20"
@ o' =)= e T T T T e |-
1‘*’22,‘(}') l+zZ,-(y) 1+zZ,-(y)
If y',..., »" denotes the standard coordinate system on R”, then the ' o o

give a coordinate systerm on S” —{x}. We can compute the metric { , ) in terms
of this coordinate system by computing

n+1 ) . n+1 . ]
¥y dxt@dx' = Y dff @ df
i=1 i=1
n+l n ] i
aft aft %
= Z Z 307 5% dv! @ dy®.

i=1 j k=1

by means of equation (2).
However we can save ourselves a lot of computational work by first proving
geometrically that o is conformal. It clearly suffices to consider the case n = 2.
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Notice first that if L C R? is a straight line, then the lines through * and
points of L form a plane with a horizontal line through * deleted, so o N(L)is
¥ — {} for some circle £ C S2. Now given two linearly independent vectors
X1, X, € §?,, consider the straight lines Ly, L, through o (p) pointing in the
directions of 04(X;) and 04(X3). Their inverse images under ¢ are Ij — {*}

L,

N

O'*Xz

and £, — {*} for two circles Z;, £, C S? containing *. The angle between X
and X, is the angle of intersection of Z; and X, at p, which is the same as the
angle of intersection of X and X, at . But the tangent lines to £; and X,
at * are parallel to Ly and L, respectively. So the angle of intersection at * 1s
the same as the angle between 0, X and 04 X;. Thus, ¢ is conformal.

Now for any point y € R”, let ¢: [0,27] — R" be a curve, parameterized
proportionally to arclength, which goes once around a circle centered at 0 and
passing through y; thus ¢’ always has squared length | y|%. Formula (2) shows

that (6" = ¢)" always has squared length

i[‘—’:lzz |,V|2
=1 EEEPVEES BN RS S o
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This shows that in the conformal coordinate system {x’ = 3’ 0o} on S" — {x},
the metric { , ) has the form

n

dx' @ dx!
3
¥ ; 1+ 1 Z(x)Z]

If we were dealing with a sphere of curvature Ko, the factor 1/4 would be
replaced by Ko/4.

For later use, we mention one further property of the stereographic projection:
it takes spheres in §” to spheres and hyperplanes of R”, and vice-versa. Indeed,
a sphere ¥ C S” 1s the intersection of §” with some hyperplane,

n+1

r= {peS”:Zaipi=ﬂ}>

i=1
and then

yeo(X) < o_'(y) ex

! Zi(}’i)z
TTis o T s o = @
{:}ZI I+ Z(y)2 T Ty e = b e

This is always a sphere or hyperplane in R”, and the converse works similarly.
Now for Ko < 0, in particular for Ky = —1, we can just formally replace the
factor 1/4 in (3) by —1/4. In Addendum 2 to Chapter II.7 we showed that this
metric does indeed have Ko = —1. In fact, this metric was simply one possible
choice for the conformal metrics of constant curvature Ko = —1.
We have already pointed out that, in order to have a connected manifold, we
must consider the metric

" dx! @ dx!
(,)=
; [1- 4 a?)

only on the open ball of radius 2,

B" = B"(2)={x e R": X ;(x')? < 4},

but that ( , ) is already complete on B” (see pg. I1.339). Thus (B",( , )) must
be isometric to the space H" C (R"*'.( , })); a method for constructing an
explicit isometry between (B", ( , }) and H" will be suggested later.



8 Chapter 7, Part A

The model (B”, { , )) will often be very useful, and we will examine it in great
detail, determining, in particular, precisely what the isometries of (B",{ , ))
onto itself look like. In order to do this, however, we first need to generalize a
few results from previous chapters.

First of all, Dupin’s Theorem (4-10) on triply orthogonal systems of surfaces
generalizes immediately to a theorem on #-orthogonal systems of hypersurfaces
in R”. We will also need to generalize Theorem 2-2, concerning all-umbilic
surfaces in R*. For a hypersurface M c R"+! we locally have a unit normal
field v: M — S" C R"*!, and a map dv: M, — M, (Theorem 1-8); we call
p € M an umbilic if dv: M, — M, is multiplication by a constant.

1. LEMMA. For n > 2, let M C R"*! be a connected hypersurface with all
points umbilics. Then M is part of a hyperplane or an n-dimensional sphere.

Remark: Later on we will have much more general results.

PROOF. As in the proof of Theorem 2-2, it suffices to prove this locally. Choose
an adapted orthonormal moving frame X, ..., X, X,41 = von M. By hypoth-
esis, there is a function A on M such that

0 Vi Xnps1 = -AX X tangent to M.
In terms of the dual and connection forms we have
Yl (X) = (Viy Xni1, X)) = —M(X, X)),

and thus _ _
1//;'+l = —1//'{_H = A0/,

Taking the exterior derivative of this equation, we obtain

di A6 4+ hdb) =dy! == "y Aol (pg IIL19)
i

= —A ZOi /\a)j’:,
i

while
a6/ = =Y " wl A6
i
So we find that
diAb) =0 j=1l.... H.

This implies that dA = 0. so X is constant.
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The remainder of the argument can be carried out as in the proof of Theo-
rem 2-2, by considering an immersion f: U — M for U C R" open. Here is
an alternative (essentially equivalent) argument. If A = 0, then all 1//}"“ =0,
so the second fundamental form s = 0; thus M is totally geodesic (Proposi-
tions 1-16 and 1-17), so M lies in a hyperplane. So we assume A # 0. Let V be
the vector field on R"*! defined by

V(p) = pp e R . T T T SN
If x',...,x"" s the standard coordinate system on R"*!, then

; 0
V=IZxW,

and we easily see that V'x V' = X for all tangent vectors X of R"*'. Thus
equation (1) can be written

V¥ (Xp41 +2V) =0.

Thus the vector field X4 +XV is parallel along M. Identifying tangent vectors
of R"*! with elements of R"*!, this means that X, 41+ V isa constant vector vg
on M, so we have

Xnt1(p) + Ap = vo e R*.

Thus
_ 90— Xt ()
A
for all p € M. which means that M lies in the sphere of radius 1/ around the
point vg/A. &

Using Lemma 1. and the generalization of Dupin’s Theorem, it is now a
straightforward matter to generalize Liouville’s Theorem (4-12) to R": every
conformal map of an open subset of R” onto an open subset of R” is the
restriction of a composition of similarities and inversions, in fact at most one of
each. In addition (compare the proof of Lemma 4-13). these conformal maps
take hyperplanes and spheres to hyperplanes and spheres.
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With this information we are now i a good position to consider the isome-
tries of (B",{ , )). Since { , ) 13 conformally equivalent to the usual metric
Y., dx' ® dx' on B", we see immediately that

() Every 1sometry f: (B®,{ ,)) — (B",{(,)) onto itself is a conformal
map of B” onto itself (as a subset of R" with the usual metric).

We next claim

(2) If /. B" — B"isaconformal map of B" onto itselfand f,: B", — B",
1s a multiple of the identity for some p € B”", then f is the identity (or
possibly minus the identty, if p = 0).

To prove this, consider the sphere S = boundary B”. Then § is taken into
iself by f (more precisely, by the composition of similarities and inversions of
which /" is the restriction). If P is a hyperplane through p, then f(P) is a
hyperplane or sphere tangent to P at p (since f,: B", — B", is a multiple
of the identity). But also the angle at which P cuts S must equal the angle at
which f(P) cuts f(S) = S. It follows easily that f(P) = P. Consequently, f
cannot be an inversion or the composition of one inversion and one similarity,
for the inversion must be through a point p, ¢ B", and then f(P) could not
be a plane. So f must be a similarity, and the desired result follows casily.

Now consider any conformal map f: B" — B" of B" onto itself, and let
p € B" be apomnt # 0. If X1,...,X, € B", is an orthonormal basis with
respect to ( , )p, then there 1s some A > 0 with

(f*(Xi)s f*(Xj))f(p) =A- 8ijs

5o { fx(X:)/¥A} is an orthonormal basis for B"¢(p). Consequently, there 1s an
1sometry g: (B",{, ) = (B",{ . )) with
1

VA

Then g=' o f: B" — B" is a conformal map of B" onto itself (by (1)), and
(g e e B", — B", 1s a multiple of the identity. So g = f by (2). Thus

g+(Xi) = J+(X0).

(3) Every conformal map f: B" — B" of B" onto itself is an isometry of
(B".{ ,)) onto itself.

We can now deduce some further information about (B”,( , }}. We know
(pg- 111.26) that the d-dimensional totally geodesic submanifolds through 0 € B”
are just B" N P, where P is a d-dimensional plane through 0 in R”. Now
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any totally geodesic submanifold is the image of B” N P under some isometry
S B" — B" The map f is conformal by (1), so

(4) Every totally geodesic submanifold of B” is the intersection of B" with
a plane or sphere which mtersects S = boundary B" orthogonally.

Conversely, suppose that X is a plane or sphere which intersects S orthogo-
nally, and let p € £N B". There is a totally geodesic submanifold of B” tangent
to ¥ at p. By (4), this submanifold must intersect S orthogonally. So it must
be precisely £ N B”. Thus

(5) The intersection with B” of a plane or sphere which intersects S orthog-
onally 15 a totally geodesic submanifold.

Next consider a geodesic sphere £ around 0 € B" (that is, let £ be the set
of points at fixed ( , ) distance from 0). By symmetry of { , ), the set T is
an ordinary (hyper) sphere. Now any geodesic sphere is the image of £ under
some 1sometry f: B" — B". Since this isometry is a conformal map we see
that

(6) Every geodesic sphere of (B",( , )) is an ordinary hypersphere com-
pletely contained in B”.

Now we will work on proving the converse of (6). Suppose we have an or-
dinary hypersphere £ completely contained in B”. We claim first of all that
there 1s a hypersphere £’ which is orthogonal to both ¥ and S. To prove this

we note that by means of an mwersion through a point of S, we can reduce
the problem to that of finding a hypersphere £’ orthogonal to a hyperplane H
and a hypersphere ¥ lying completely on one side of it. If T has center p
and ¢ € H is the point closest to p, then we simply choose £’ to be a hyper-
sphere around ¢ whose radius has the length of a tangent from ¢ to . Now
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that we have the hypersphere L’ orthogonal to both £ and S, we consider
the intersection p of ¥’ and the line I between 0 and the center of X. Let

S B" — B" be an 1sometry taking p to 0. We know by (5) that B" N X' is
a totally geodesic hypersurface. Therefore f must take X’ to a hyperplane H
through 0. Moreover, f takes the geodesic L to another geodesic through 0,
1e., to a straight line L’ through 0, but not lying in H. The image hypersphere
S(Z) must be perpendicular to both H and L', which can happen only when
f(2) has center 0. So f(X) 1s a geodesic sphere, which implies that X is also:

(7) Every ordinary hypersphere completely contained in B”" is a geodesic
sphere.

All of this information, by the way, was obtained only for the case n > 3, since
we made use of Liouville’s Theorem. The case n = 2 is sometimes analyzed
by explicit computation, making use of the identification of R? with C (see
Problems 4, 5, 6), but we can also use the information which we already have
for n > 3. To do this we consider B? as a totally geodesic surface in B3.
An isometry f: B> — B? of B? onto itself clearly extends to an isometry
f: B> - B3 of B3 onto itself. Since f 1s conformal, f is also. Moreover,
since fi 1s a composition of at most one similarity and inversion, it is not hard
to see that the same must be true of f (this information is not redundant in the
2-dimensional case). Conversely, if f: B? — B?isa conformal map of B? onto
1self which happens to be a composition of at most one similarity and inversion.,
then f can easily be extended to a similar conformal map f: B3 - B3 of B?
onto itself. Since f' 1s an isometry, so 1s f. It now follows, exactly as before, that
the geodesics of B? are portions of lines or circles intersecting S orthogonally,
while the geodesic circles are the ordinary circles completely contained in B2.
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In Addendum 2 to Chapter II.7 we also described a complete manifold of
constant curvature Ko = —1 by means of the metric

" dx! @ dxt

P (xn)Z

on the upper half-space X" = {a € R" : ¢" > 0}. It is easy to describe the
isometry between #” and B". In fact, since the metric on each of them is
conformally equivalent to the usual metric on R”, the isometry f: B" — #"
must be a conformal map. If we take an inversion I about a point * on the
boundary sphere S of B, then I(B) will be an open half-space, and it is only
necessary to compose I with an appropriate similarity. We now easily see that
the 1sometries of H" onto itself are precisely the conformal maps taking "
onto itself; that the totally geodesic submanifolds of #" are £ N #" for planes
and spheres ¥ intersecting R"™! orthogonally; and that the geodesic spheres
of #" are the ordinary spheres completely contained in #”. It will prove
extremely useful to be able to shuttle back and forth between B” and #".

We have now given intrinsic characterizations of the sets TN B" [or £ N J#"]
when X is a hyperplane or hypersphere intersecting S [or R”™!] either or-
thogonally, or else not at all. We also want to give intrinsic characterizations
when ¥ intersects non-orthogonally. There are two different cases to consider,
the first of which is related to a certain limiting construction which played an
essential role in the earliest investigations of non-Euclidean geometry. Take
a ray L, with mitial point p, in a non-Euclidean space. For each q on L,
consider the sphere with center ¢ that passes through p. As ¢ — oo, this
sphere approaches a surface. In the Euclidean case, this surface is just the

A0
)
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plane through p perpendicular to L; in the non-Euclidean case, the limiting set
is called a “limit sphere” or horosphere. It is easy to see that the horospheres of
(B",{ ,)) are precisely B" N T where X is a hypersphere completely inside B
except for one point. (First consider the horospheres determined by a ray start-
ing at 0, as in the figure below, and then note that there are isometries of B"

taking any horosphere to any other.) The early non-Euchdean geometers had
their minds blown when they proved that the laws of Euclidean geometry hold
on the horosphere; in other words, the horosphere is flat. The easiest way for us
to see this is to consider an 1sometry f: B" — H#" which involves an inversion
around the unique point * € ¥ NS. The image f(X) is then a hyperplane par-
allel to R"~!. But the metric induced on this hyperplane is a constant multiple
of 3, dx’ ® dx', so this hyperplane (which is a horosphere of #") is flat; all
other horospheres are isometric images of this one, so they are also flat.

To describe the other sets TN B" and TN H", we first do a short computation
in #2. Consider a semi-circle intersecting R! orthogonally, parameterized by

c(6h)

¢(8) = (a +rcosh,rsinb). r c(6o)
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This curve 1s a geodesic, apart from its parameterization. Its length from the
point ¢(6p) to c(6)) 15

91 0]
| eerae= |
o By

_/9' (—rsin0)2 + (r cos8)? 40
- 80 (r cos9)?

6, 1
:/ deo.

g, cost

Notice that this 1s independent of r. It follows that for a geodesic L which is a
straight line perpendicular to R, the set of points at a fixed distance d from L
is a pair of straight lines making equal angles with L. Similarly, if P is a totally

) 0 0
(=rsmn O)W + (r cos O)W d9

L
d d set of points
at distance d
dld from L

geodesic hypersurface in #" consisting of a hyperplane to R"~!| then the set of
points at a fixed distance d from P is a pair of hyperplanes Py, P, making equal
angles with P. For the isometry f: B" — ", involving an inversion about the

\/
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point * € S, the set f~'(P)is N B" for some hyperplane or hypersphere X
with * € £N.S; and the sets f~1(P;) are sets of the same sort. We thus see that

totally geodesic
surface

three pairs of lines at fixed distances a pair of surfaces at fixed distance from
from a given geodesic a given totally geodesic surface

for hyperplanes or hyperspheres £ which intersect S [or R"™'] in more than
one point, but not orthogonally, the set £ N B” [or £ N #")] is one component
of the set of points at a fixed distance from a totally geodesic hypersurface; these
sets are thus called equidistant hypersurfaces.

By the way, we can also describe the geodesic spheres, horospheres, and
equidistant hypersurfaces for

H'={peR"™ : p®>0and (p,p) = —1}.

They are all of the form H" N P for some hyperplane P. As illustrated in
the figure on the top of the next page, the parabolas, which occur when P
is parallel to generator of the cone Y_;(x%)?> = (x°)?, are horospheres; ellipses,
which occur when P makes a larger angle with the x%-axis, are geodesic spheres;
and hyperbolas, which occur when P makes a smaller angle, are equidistant
hypersurfaces. Although these assertions should look pictorially reasonable, we
are not vet in a position to prove them (see page 78). For the moment we merely
want to note that we would not obtain any new hypersurfaces by considering
the sets H" N Q where Q is another quadric hypersurface of the form

Q={peR"™ :{p~po.p—po) =}
for it is easy to see that H" N Q is always of the form H" N P for some hvper-

plane P. (Analogously. the intersection of two ordinary spheres in R"*! is also
the intersection of one sphere with a hyperplane.)
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X0

Much of the above discussion evolved from the existence of conformal maps
from S” or H" to R". Another kind of map will play an important role. A
homeomorphism ¢: M; — M; from M) into M, is called a geodesic mapping
if for every geodesic y of M, the composition ¢ o y 1s a reparameterization
of a geodesic of M,. Notice that a geodesic mapping ¢: M; — M, clearly
also takes totally geodesic submanifolds of M, to totally geodesic submanifolds
of Mz.

As usual, we first consider S”. We define the central projection ¢ of S” to be
the map which takes a point p in the open northern hemisphere S”* of S” to
the intersection of R" = R” x {1} C R"*! with the straight line through p and
the origin 0 € R"*!. It is clear that ¢: S"* — R” is a geodesic mapping, since

d(p)
N

the geodesics of S are intersections of S” with planes through the center of S”.
An exactly analogous construction works for H” C (R",{ . )), except now we
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obtain a map defined on all of H”. We define¢: H" — R” to be the map which

o(p)

\
i
’

’

’

\
’

takes p € H" 1o the intersection of R" = {(1,d",...,a") € R"F!} with the
straight line though p and 0 € R"*!. In this case, the image of H" is the open
ball in R” bounded by the intersection of R” with the cone }_,(x')* = (x°)%;
thus ¢(H™) is the open ball B"(1) of radius 1.

We can also construct a geodesic mapping by using the model (B",( , )) =
(B™"(2),({ , )). To do this, we regard S" as the unit sphere tangent to R" =
R” x {0} at 0. Then the stereographic projection ¢ from the north pole of §*

takes the open southern hemisphere of S” diffeomorphically onto B"(2). A
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geodesic y in (B",( , )) is a straight line or circle intersecting S = bound-
ary B" orthogonally. It follows from the properties of stereographic projection
that 0~'(y) is a semi-circle intersecting the equator of S" orthogonally. Now
let g: S” — R” be the orthogonal projection g(x!,...,x"*") = (x!,..., x").
Then g takes circles intersecting the equator of S" orthogonally onto straight
line segments of R"”. So g oo~!: B"(2) — B"(1) is a geodesic mapping, Us-
ing these geodesic mappings H" — B"(1) and B"(2) — B"(1), it is not hard
(Problems 9, 10) to describe an isometry between H" and B"(2).

Naturally, the geodesic mapping "t — R" and H" — B"(1), together with
the standard coordinate system on R”, lead to new coordinate systems for $"+
and H". In particular, the umt ball B"(1), together with the metric induced by
the metric on H", 1s called the “projective model” of H".

We could calculate the form of the metric in these coordinate systems, and
describe the geodesic spheres, horospheres, and equidistant hypersurfaces of H"
in the projective model, but we will never need to know any of this information.
For us, the only important result will be the existence of the geodesic maps $"+ —
R” and H"” — B"(1). This is not surprising in view of the following:

2. THEOREM (BELTRAMI). If M is a connected Riemannian n-manifold
such that every point has a neighborhood that can be mapped geodesically
to R"”, then M has constant curvature.

PROOF. The case n > 3 follows immediately from Theorem 1-18; it is the case
n = 2 which causes all the trouble. Note first that in the case of a surface,
Lemma II. 7-18 implies that the curvature K satisfies

Ruijk = K(ghjgik — gnk &ij)

I

2
1) Rljk =" " Ruijic = K(8gix — 84817)-
h=1

We will use the mapping in the hypothesis of the theorem to identify our neigh-
borhood in M with an open set in R, on which we use the standard coordinate
system (x!,x2). Thus the metric Z,-_j gij dx! ® dx/ has the same geodesics as
the metric )7, ; §;j dx' ®dx/. Since the Christoffel symbols for the latter metric
are all zero., Proposition II.6-18 shows that the Christoffel symbols for g;; satisfy

F;k = Sjwk + 8 w;
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for certain functions w;. Hence we have
2 1 1 2 2 1
2) i =Tp=0 Iy =2I,, [y =20,

From equation (1), and the formula (xx) for R!;jx on pg 11.188, we find that

3 d
(3a) Kgu = (TH)* — F12 (3b) Kgin= ryrf - 5;5F122

0
T

8
Bc) Kgn = (Flz) F112 (3d) Kgzu = F122F112 Tl

Notice that equations (3b) and (3 ( d) imply that

@ J 5 0

_ 1
dx? M2 = dx! Mo
We also have

2¢12Th = g12TY, by (2)
=gl + g22TH by (2)
= [11,2]

1 8g12+8g12 8g11)
dx! ox!  9x?

_9gi2 ldgn
Toaxt o 209x%
Subtracting this equation from
1dg
gnll+ gl =[121]= 121,
2 0x
we obtain ] ]
1 2 9% 212
gulp —gnlp = 2 gxl
Multiplying by K, and using (3a) and (3b), we obtain
- dgn 081 d A
(5 K(—a‘\_z T G FIZa zrxz FIZWFIZ'

Now differentiate (3a) with respect to x2, and subtract the result of differen-
tiating (3b) with respect to x!. We obtain

K K d d
K( g1l glz)

Enga T8y vz axl

a ., B 0
= ZF122mr1'2 - Féla_\_TFIZZ - FIZZWFél'
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Using (5) we have

0K 0K 0 d
glla gIZa FIZa 2F12 F1228 1F21

Hence by (4) we have

0K 0K —o
gnax2 glzax‘ =0
Similarly,
0K 0K
&5 —Engy =0.

Since the determinant g11 g2 — (£12)* # 0, this implies that K /dx' = 0 and
0K /x> =0. &

B. CURVES IN A RIEMANNIAN MANIFOLD

Before investigating general submanifolds of a Riemannian manifold, we will
consider the special case of 1-dimensional submanifolds, which works out quite
differently than all other cases. Our aim is not to obtain any particularly star-
thing theorems about curves in Riemannian manifolds, but merely to show
briefly how the Serret-Frenet formulas of Chapter II.1 generalize; along the
way we will derive a few results which are needed to discuss higher dimensions.

Consider a Riemannian manifold (¥, { , )), and an arclength parameterized
curve ¢: [a,b] = N. We use N for the ambient manifold to conform with the
notation to be used in the general case of a submanifold M C N. For consistency
of notation, we also use V' for the covariant derivative in N, even though there
will be no occasion to consider the covariant derivative V in the 1-dimensional
manifold ¢([a, b]). We willlet v; = ¢’ denote the unit tangent vector of ¢. Since
(vi,v1) = 1 we have

d D’
0= M) vi(s) = 2<v1(s), 2—‘!”}

We define the first “curvature function” «y of ¢ by

D'vy(s)
ds

Kk1(s) =‘

k]

and if «y(s) # 0 for all s we set

D'vy(s)

va(s) =k (s)" - P
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so that v is a unit vector field along ¢ which is everywhere perpendicular to v.
We then have the “Frenet formula”

F D'vi(s)
(k1) s =K1 (5)v2(s).
Now .
(va,v2) =1 = <V2(s), v2(5)> =0.
ds
Moreover,
<Wﬂﬁ=0==>0=<D““{hu§+<wuxD”“»
ds ds

D/
=n@)+buw, Z“» by (F1).

This implies that

D/
ZIZ(S) = —k1(s)vi(s) + vector perpendicular to vi(s) and va(s).
s
We define the second “curvature function” ky by
D'vy(s)
Ka(s) = ;( +ri(s)Vi(s) |,
K

and if k,(s) # 0 for all s, we set
D'v,(s)
ds

vﬂw=xxw”[ +nuwmw]

so that v3 is a unit vector field along ¢ which is everywhere perpendicular to v
and vo. We then have

D'v,(s)
(F2) T = KW (5) K2 (5)¥a(s).
Now suppose, inductively, that for j < m = dim N we have orthonormal vector
fields vy, . .., v; along ¢ and nowhere zero curvature functions k, ..., kj—1 such
that
D'vi(s)
(F) = = (s
s
D'vy(s)
(F2) = Ks(s) + i (s)va(s)
D'vi_y(s
(Fj-1) Dy=als) —Kj—2(8)Vj-2(5) + 15 —1(s)v; (s).

ds
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Then

(vj,vj) =1

D'v;(s)
<T]S’ v](s)> = 0’
while for i < j we have

B . D'v;(s) _ D'v;(s) .
(vj,vi)—0:><v,(s), s >_ < 75 ,v]>

_{o i#j—1

—kj_1(s) i=j—1.

Hence

D'v;

+ vector perpendicular to vi(s),...,v;(s).

If j < m we set
D'vj(s)
ds

Ki(s) =

El

+ ki1 ($)vi1(s)

and if «;(s) # 0 for all 5 we set

D'v;
Vin(s) =k;(s)7"- [ :l] ) + Kj—l(s)vj—l(s):| .
A
We then have
D'v;
(F;) %(S) = —K; 1 (8)V;1(8) + ki (s)Vj 1 (8).

If j = m, then only the zero vector is perpendicular to v{(s),...,Vn,(s), so
equation (*) becomes

D'V ()
ds

(Fm)

= —Km—1(8)Vm-1(5).

It is easy to see that we have equations (Fy) to (F;j_;) with nowhere zero
functions «;. ..., kj—1 if and only if
D/('/(S) D/(j_l)('/(s)

ds =~ 77 dsi—!

'(s).

are everywhere linearly independent: the vector fields vy,...,v; along ¢ are
then precisely the result of applying the Gram-Schmidt orthonormalization
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process to these vectors. If D'Y¢/(s5)/ds! is everywhere linearly dependent
on e (s), ..., 'YV (s)/dsI ™" then the function &; will be everywhere 0, and
we cannot define vj 41, but we can write instead

D/Vj (\)

(¥ s —Kj—1(8)vj—1(s).

[Note, in particular, that (F/,) is just (F).] As in the theory of curves in R?, we
consider only intervals where a set of equations (Fy), ..., (F;-1), (F}) holds for
some j < m. In other words, we assume that «j,...,k;_ are nowhere zero,
while «; is identically zero. We call vy,...,v; the “Frenet frame” for ¢. The
subspace of N(s) spanned by v;(s) and v;(s) is sometimes called the (i — 1)*
osculating plane of ¢ at s.

Notice that once we have ¢’(s), ..., D’(m—z)c’(s)/ds”‘_2 linearly independent,
so that vq,...,Vm_ are defined, then there are only two possible choices for
each v, (s). Having made a choice of vy, (a), there is then a unique continuous
way of choosing vp(s) for all s € [a,b]. We stll have equations (Fi) to (Fm),
but now the function «,— might take on negative values, whereas all other «;,
being non-zero norms, are everywhere positive. The particularly interesting
situation occurs when N is oriented. Then we define v,,(s) to be the unique
unit vector in N,y orthogonal to vi(s), ..., Vm—1(s) such that (vi(s),...,Vm(s))
is positively oriented [equivalently, we can define vy (s) = vi(s) X <+« X V-1 (8),
where the cross-product is determined by the metric and the orientation (see
Problem 11)]. For curves in R? this is precisely how we defined the binormal
b = vj, and obtained the torsion T = &, which could be positive, negative, or
zero. When we apply this procedure to arclength parameterized curves ¢ in an
oriented 2-dimensional Riemannian manifold, we obtain an everywhere defined
curvature k1, whose values may be positive, negative, or zero. Clearly, « is just
the geodesic curvature kg defined previously.

In the next theorem we will, for simplicity. ignore these refinements and con-
sider only curves with ¢/(s),..., D' 7V¢/(s)/ds™ " everywhere linearly inde-
pendent. Readers may sort out for themselves the details which have to be
changed when N is oriented and we allow kp,_; to take on non-positive values.

3. THEOREM. (I) Letc.¢: [a.b] = N™ be arclength parameterized curves
with nowhere zero curvature functions «i..... Km—1 and kq..... Km—1. respec-
tivelv. and Frenet frames vj..... Ve and V.. ... Vm. respectivelv. Suppose that
ki =i for 1 <i <m —1.and that

cla) =cla) and vi(a) = vi(a) fori=1,...,m.

Then ¢ = ¢.
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(2) Let N™ be complete, let «y,... Km—1: [a,b] — R be everywhere positive
continuous functions, and let V1, . . ., V,; be an orthonormal basis for some Np.
Then there 1s an arclength parameterized curve ¢: [a,b] — N with c(a) = p
whose curvature functions are ki, ..., k,—1 and whose Frenet frame vy, ..., v,
satisfies v;(@) = V; for 1 <i < m.

PROOF. To prove (1) it clearly suffices (by a least upper bound argument) to
show that ¢(s) = ¢(s) for s sufficiently close to ¢. So we might as well assume
that M = R™, with some metric Zi’j gij dx' ® dx’, where x',...,x™ is the
standard coordinate system for R”. Let v;(s) € R™ be the vector representing
v;(s) when we identify tangent vectors of R with elements of R” in the usual
way. We thus have m + 1 functions

C V... U [a,b] = R™.

We will also let Dv;(s)/ds be the vector representing Dv;(s)/ds when we iden-
tify tangent vectors of R™ with elements of R™. The formula on pg. II1.232
shows that Dvj(s)/ds can be written in terms of

c(s), (), vi(9), v'(s),  den (), vils), v (s), v;(s).
Each Irenet equation (F;) then gives us an equation
(Ej) v;i'(s) = Fj(c(s),v1(5), ..., um(s)).

We also have the equation

(Eo) c'(s) = vi(s).
So the equations (Eg), (E1), ... , (Em) gives us an equation
(*) a'(s) = Fla(s))
for the function @ = (¢, vy....,v,). The function F depends only on «i.,.. ..
Km-1 (and the Clnistoffe] symbols).
For the function @ = (¢, vy, . .., Upy) there 1s a sinnlar equation

a'(s) = F(a(s)).

Moreover, since k; = k; for all i, the function F is exactly the same as F. Now
by hypothesis, the functions o and @ are equal at a, so by uniqueness of solutions
of (x) we have o = @. Hence ¢ = ¢.
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To prove (2) we first show that the desired curve ¢ can be defined on some
interval [¢,a + €]. Again we may clearly assume that M = R™. Now we can
solve equation (*) on some interval [a,a + €], with any given initial conditions.
This gives us a curve ¢: [a,a+¢] — M and vector fields ¢ =vy,...,vyalongc
satisfying the Frenet formulas (Fy) to (Fy,), with

c@)=p and vi(a) =V, 1<i<m.

We have

Dv;(s) vi(s)
(vi,vj) (s) = <d;s( Vj(S)> + < i ($), ] >
using the formulas (F) to (F,,), we find that this 1s zero. Since {vi(a)} = {¥i} is
orthonormal, {v;} must therefore be orthonormal everywhere. So vy, ..., Vp is
the Frenet frame of ¢, and the «; are its curvatures.

In order to extend ¢ to all of [a, b], we first consider the equation (x) once
again. If we choose our initial point p to lie in some Compact set, then there
will be & > 0 with the property that for any orthonormal {¥;} at any such p,
there is a curve ¢: [a,a + €] — N with curvature functions «; on [a,a + €],
whose Frenet frame vy, ..., Vm satisfies v;(a) = V;. The size of & will depend
on bounds for F, and hence only on bounds for the k;, as well as bounds for
the Chnistoffel symbols Fk It is thus clear that for every point ¢ € M there is
8(g) > 0 with the followmg property:

(x+) If d(p,q) < 8(g) and {V;} is an orthonormal basis for M), then for any a’
with ¢ < @’ < b there is a curve ¢: [¢', min(a’ + 8(q),b)] = M with
curvature functions &; on this interval, whose Frenet frame vy,...,vp
satisfies v;(a’) = 6,’.

Now by a least upper bound argument it clearly suffices to show that the
curve ¢: [a,a + &) — M, with Frenet frame vy.. .., Vm, can always be extended
to the closed interval [a,a+¢]. The curve ¢ is parameterized by arclength (since
vi = ¢’ has length 1), so for all ¢ < ¢’ < a + & we have d(c(a),c(a’)) < length
of ¢ on[a.a'] =a’—a < e. So the image of ¢ on [a.a +¢) lies in some compact
subset K of the complete manifold M. Thus there is § > 0 which will serve as
8(g) in (xx) for all g € K. Now choose ¢ < a’ < a+¢,so that (¢ +¢) — a < 8,
and find the curve ¢ with curvature functions k;, whose Frenet frame vy.. .., Vo
satisfies ¥;(a’) = vi(a’). The curve ¢ is defined at least on [a’. €] by (%), and ¢
followed by ¢ is an extension of ¢ at least as far as ¢ +&. <
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4. COROLLARY. Let N be a complete m-dimensional Riemannian manifold
of constant curvature Ko. Let ¢,¢: [a,b] — N be arclength parameterized
curves with nowhere zero curvature functions ki, ...,km—1 and K1,...,Km—1,
respectively. If k; = &; for 1 < i < m — 1, then there is a unique isometry
A: N —- Nsuchthatc = Aoc.

PROOF. Left to the reader.

We also want to consider curves with k1, . . ., kj—1 nowhere zero, but «; identi-
cally zero, for some j < m—1. In Chapter II.1 we found that curves withxk =0
are straight lines, while curves with T = 0 lie in a plane. The generalization for
curves in R™ is the following.

5. THEOREM. Let c: [a,b] — R™ be an arclength parameterized curve
with k1, ...,kj—1 nowhere zero, and «; everywhere zero. Then ¢ lies in some
Jj-dimensional plane in R™.

PROOF. Letvy,...,v;j be the Frenet frame for ¢, and let A(s) C R™.(s) be the
j-dimensional subspace of R™.(s) spanned by vi(s),...,v;(s). We claim that
all A(s) are parallel (considered as j-dimensional planes in R™). To prove ths,
we note that since D'v;(s)/ds is just v;'(s) in R”, the Frenet equations (Fy), ...,
Fi-1), (F]’) show that each v;/(s) is a linear combination of certain of the v;(s),

J
vi'(s) = Z a,;i(s)vi(s).
=1

So if w is a parallel vector field on R™ (that is, if for some w € R™ we have
w(p) = wp for all p), then

d J
(*) %(Vi(s), w(c(s))) = (vi'(s), w(c(s))) = Zati(s)<vl(s)a w(c(s))).
=1
By uniqueness of solutions of the system (¥), we see that if all (v;(a), w(c(a))) =0,
then all (v;(s),w(c(s))) = 0 for all 5. In other words, A(s) is always orthogonal

to the same vectors as A(a). Hence A(s) is parallel to A(a). Our result now
follows from

6. LEMMA. Let ¢: [a,b] — R™ be an immersed curve, and for each s let
A(s) C R™ () be a j-dimensional subspace of R™( with ¢’(s) € A(s). Sup-
pose that all A(s) are parallel. Then ¢ is a curve in some j-dimensional plane
P C R™ and P is just exp(A(s)) for any s.
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PROOF. let P = A(a), considered as a j-dimensional plane in R”. Without
loss of generality we may assume that P is parallel to the (x',...,x7)-plane. If ¢
does not lie entirely in P, then by the mean value theorem some tangent vector
¢(s) has a non-zero k™ component for some k > j. But this is impossible,

c'(s)

since ¢’'(s) € A(s) and A(s) is parallel to P = A(a). So ¢ lies in P. Since
each A(s) is parallel to P = A(a) and also contains the point ¢(s) € P, each
A(s) must equal P when A(s) is considered as a j-dimensional plane in R™.
In other words, P = exp(A(s)). <

As soon as we try to replace R™ in Theorem 5 with a manifold N of con-
stant curvature, we find that the proof of Lemma 6 doesn’t generalize at all.
However, the result is still true, and we will give two proofs, exploiting two
different descriptions of constant curvature manifolds. First consider a curve
¢: [a,b] > N in any Riemannian manifold N, and suppose that for each s
we haye a j-dimensional subspace A(s) C Ne(), so that A 1s a “distribution
along ¢”. Let t5: Nya) = Negs) be the parallel translation along ¢ from c(a)
to ¢(s). We say that A 1s parallel along ¢ if 7,(A(a)) = A(s) for all s. Suppose
that A is parallel along ¢ and that V is a smooth vector field along ¢ belonging
to A (that is, V(s) € A(s) for all 5). Proposition II.6-3 immediately shows that

D'V(s)

ds

€ A(s) for all s,

so that D'V (s)/ds also belongs to A. We need the converse assertion also.

7. PRE-LEMMA. Let ¢: [a.b] — N be a curve in a Riemannian mani-
fold N, and let A be a smooth j-dimensional distribution along ¢. Suppose
that D'V (s)/ds belongs to A whenever V is a smooth vector field belonging
to A. Then A is paraliel along c.
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PROOF. Choose everywhere linearly independent smooth vector fields V1,
V; along ¢ belonging to A. By hypothesis, we can write

ey

D’V(s) J

Z ai(s)Vi(s)

(1)

for certain smooth functions a,;. We claim that there are functions b;;, with
arbitrary initial conditions b;;(«), such that

/

D /
= {(5)Vals) =0, i=1,...,].
2) R AE_I bi(s)Vals) i=1 J

In fact, equation (2) is equivalent to

D’ VA(S)

i
M‘-

bai' (s)Vals) + be,(s)
A=1

>
1

J j
=Y bV + Y buaa(s)Vils) by (D),
=1 A=l

and hence to
j
3) bi'(s) =) _an(9brils),  i=1,....].
A=l

Since (3) is a linear equation, we can solve it on the whole interval [a, 5], with
arbitrary initial conditions. Choose the initial conditions by;(a) = 8y;, and set

j
Wils) =) bails)Vals).
A=l

Then the vector fields W; along ¢ are parallel, by (2), and linearly independent
at a, hence linearly independent everywhere. So the W;(s) span A(s) for all s,
which shows that A 1s parallel along ¢. <

8. LEMMA. Let N be a manifold of constant curvature Ko. Let¢: [a.b] = N
be an immersed curve, and let A be a j-dimensional distribution along ¢ such
that ¢/(s) € A(s) for all s. Suppose that A is parallel along ¢. Then ¢ lies in

some j-dimensional totally geodesic submanifold P C N, and exp(A(s)) C P
for all .
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FIRST PROOF. It is easy to see that this result is essentially a local one, so
without loss of generality we take N to be the complete simply-connected
manifold of constant curvature Kg. Consider first the case Ko > 0, so that
N = S™(Ko) C R™*!. We can then consider V(s) C R™*!(5). We denote the
covariant derivatives in N and R™*! by V' and V', respectively, and we will
let v be a unit normal field on N = S™(Kj).

Let V be a vector field along ¢ which belongs to A, so that D'V /ds also be-
longs to A, since A is parallel along ¢. If D’/ds denotes the covariant derivative
along ¢ in R"*!, then Corollary 1-2 gives

T(D’V(s) _D’V(s)
ds )_ ds  ©

A(s).

Thus we see that

D'V (s)

)y V(s)e A(s) foralls — € A(s) + R -v(c(s)) forall s.

On the other hand, we also have

2 w = V'c/(sy» = (constant) - ¢(s),

since all points of N are umbilics

€ A(s), by assumption on A.

Now let
A(s) = A(s) B R -v(c(s)) e R™ ).

From (1) and (2) we see that for a vector field W along ¢ in R”*! we have

D' W(s)

Wi(s) e A(s) foralls = € A(s) forall s.

By our prelemmanary remark we see that A is parallel along ¢ in R™*!. So
Lemma 6 shows that ¢ lies in some (j + 1)-dimensional plane P C R™*+!
and P = exp(A(s)) for all 5. Since v(c(s)) € A(s), the plane P must pass
through the origin 0 € R"*!. Hence ¢ is contained in P N S™(Ky), which is
a j-dimensional totally geodesic subspace of S™(Kjp). Clearly, we also have
exp(A(s)) € PN S™(Kp) for all s.

The case Ko < 0 can be proved similarly, taking N to be H™(Kj), considered
as a subset of R™*! with the Lorentzian metric.
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SECOND PROOF. As the result is essentially local, we can assume that we have
a geodesic mapping ¢: N — R™. If V denotes covariant differentiation on
R™, then Proposition II.6-18 shows that there is a 1-form w on R™ with

() Vo x 0¥ — ¢u(VxY) = 0($uX) - $2Y + 0($,Y) - $, X.
Let

y(s) = ¢(c(s))

A(s) = guAls) C Ry,

Then we have

) ¥'(5) = ¢uc’(5) € purls) = A(s).

If V 1sa vector field along ¢ with V(s) € A(s) for all s, and hence D'V (s)/ds €
A(s) for all 5, the equation (1) implies that

Do,V D'v / ’
% =9 ( ds(S)) + oy (5)) - 9V (8) + 0(@aV(5)) - y'(5)

€ A(s), by (2).

In other words, if W is a vector field along y with W(s) e A(s) for all s, then
also DW(s)/ds € A(s) for all s. Once again, this implies that A is parallel
along y. So Lemma 6 implies that y lies in some j-dimensional plane P C R™,
Then ¢ lies in ¢~'(P), which is totally geodesic j-dimenstonal submanifold
of N. Clearly, we also have exp(A(s)) C ¢~(P) for all 5.

9. THEOREM. Let N be a manifold of constant curvature Ky. Let ¢: [a, b]
— N be an arclength parameterized curve with «, . .., kj—1 nowhere zero,

and «; everywhere zero. Then ¢ lies in some j-dimensional totally geodesic
submanifold of N.

PROOF. Let vi,...,v; be the Frenet frame for ¢, and let A(s) C M) be
the subspace spanned by v (s),...,v;(s). The argument in the proof of The-

orem 5 shows genecrally that A is parallel along ¢. So our result follows from
Lemma 8. &

10. COROLLARY. Let N™ be a complete manifold of constant curvature
Ko. Let ¢,¢: [a,b] — N be arclength parameterized curves with «, . . . JKj—
and ky,...,&_; nowhere zero, and kj and k; everywhere zero. If «; = k; for
L <i < j— 1, then there is an isometry 4: N — N such that ¢ = 4 o ¢. The
group of all such isometries is isomorphic to the orthogonal group O(m — j —1).

PROOF. 1eft to the reader, o
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For later use, we note a consequence of Lemma 8 for higher dimensional
submanifolds M of N.

11. COROLLARY. Let N be a manifold of constant curvature Ko. Let M
be a connected submanifold immersed in N, and let A be a j-dimensional
distribution along M such that M, C A(p) for all p € M. Suppose that A 1
parallel along every curve ¢ in M. Then M lies in some j-dimensional totally
geodesic submanifold P C N, and exp(A(p)) C P forall p e M.

PROOF. Choose a point pp € M, and let P be the largest j-dimensional
totally geodesic submanifold of N with P D> exp(A(po)). For any p € M,
choose a curve ¢: [0,1] — M with ¢(0) = po and ¢(1) = p. Lemma 8,
applied to the distribution s + A(c(s)) along ¢, implies that ¢ lies in some
Jj-dimensional totally geodesic submanifold P* C M, and exp(A(c(s))) C P’
for all 5. Applying this for s = 0, we see that P’ C P. Hence p € P, and also
exp(A(p)) = exp(Alc(1))) € P/ C P. &

C. THE FUNDAMENTAL
EQUATIONS FOR SUBMANIFOLDS

In Chapter 1, we considered a submanifold M" of a Riemannian manifold
(N™,( ,)) withi: M — N the inclusion map. Yor each p € M, we have
N, = M, ® Mp*, and we used this decomposition to define two projections,
T:N,—> Mpand L: N, — M,L. Tor vector fields X and Y tangent along M
we wrote

V/XpY = T(V,X,,Y) + -L(V/X,,Y)

where V' is the covariant differentiation in N, and we showed that T(V'x,Y) =
Vx, Y, where V 1s the covariant differentiation in M determined by the metric
i*( , ), while L(V'x,Y) = s(Xj.Y}) is symmetric n X, and Y, (and indepen-
dent of the extension Y of Y,). This gave us

The Gauss Formulas: V’Xp Y =V, Y +5(Xp. Yp)

and we then dernved

Gauss’ Equation:
(R(X.Y)Z,W)=(R(X.Y)Z, W)
+ (s(X.Z),s(Y, W) — (s(Y,Z),s(X,W))
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for all tangent vectors X, Y, Z, W € M. (For convenience we will often use
X,Y,Z,... without subscripts to denote vectors as well as vector fields.)

Yor a hypersurface with a unit normal field v, we showed that V'y,v € M, and
we determined this vector explicitly by

The Weingarten Equations: (V'x,v,Yp) = —(v,5(Xp, ¥p)).
Defining a tensor II by s(X), Y,) = II(X),, Y,) - v(p), we then derived the
Codazzi-Mamardi Equations:
(R(X,Y)Z,v) = (VxIIN(Y, Z) — (VyI)(X, Z).

Now we want to consider a submanifold of arbitrary codimension. We define
the normal bundle Nor M of M in N to be

Nor M = U Myt
peM
and we define the projection map

w: NorM - M

to be the one which takes all vectors in M,* to p. Thus (compare pg. I.344)
@w: Nor M — M is a vector bundle whose fibre w~'(p) over p is M,*. A
section & of E is a map with &(p) € Mpl for all p, in other words, a normal
vector field along M.

Unlike the case of a hypersurface, it is no longer true that V'y, & € M, even
if £ always has length 1, so we will look at the general decomposition

V'x,§ = T(V'x,£) + L(V'x,§).

The tangential component 1s just as nice as in the case of hypersurfaces:

12. PROPOSITION. If ¢ is a section of the normal bundle of M, and X, €
Mp, then the vector T(V'y,§) € M, satisfies

(T(V'x,6),Y,) = (Vx, 6, Y,) = = (6(p), s(Xp, Yp))s forall Y, € M,.
Consequently, T(V'y,&) depends only on X, and £(p).

PROOF. If Y is a vector field tangent along M which extends Y. then (§,Y) =0.
)

0=X,((£. 7)) = (V'x,§.Yp) + (§(p).Vx,Y)
= (Vx, €. Yp) + (6(p), s(Xp. Yp)).

since £(p) € M,*, by assumption. <%
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For any vector &, € Mp®, we will define Ag,: M, — M) as follows. For each
X, € My, we let Ag,(Xp) € M)p be the unique vector satisfying

(Ag, (Xp), Yp) = (s(Xp, Yp), §p) forall Y, e M),.
By Proposition 12, we also have
AEp(XP) = —T(V/Xpé)7

where & is any normal vector field extending &,. When M is a hypersurface in
R"*! with unit normal vector field v, the map A,,: M, — M, is the same as
—dv: My, — M,.

For the normal component L(V’, &) we will simply introduce a new symbol,
just as we did for L(V'x,Y). For a section § of the normal bundle of M, and
for X, € M, we define

Dy, = L(V'x,£) € M,*

Unlike the case of L(V'y,Y), the value of L(V'y,§) depends on the values of &
in a neighborhood of p, not just on &(p).

13. PROPOSITION. The map (Xp,&) +— Dx,£ is a connection on the normal
bundle Nor M; that is (compare pg. I1.227 and also pg. 1I.346),
() Dx,+v,£ = Dx,& + Dy,§
2) Dx,(§ +n) = Dx,§ + Dx,n
3) Dax,§ =aDx,§ forallaeR
4) Dy, f &= f(p)- Dx,&+ Xp(f)-&(p) forall C® functions f

If X isa C™® vector field and € is a C® section of the normal bundle,
then p +— Dyx,§ is also C™

2)
(3)
)
(9)

Moreover, D is compatible with the metric ( , ) on the normal bundle:
Xp((E.n) = (Dx,&.n) + (§. Dx,n).

PROOF. All properties follow immediately from the corresponding properties
for V'. &
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We will call D the normal connection for the imbedding M C N. With
the notation we have just introduced, we may now write the decomposition

Vix,& = T(Vx,8) + L(V'x,§) as

The Weingarten Equations: V'x,& = —Ag,(X,) + Dx, 5.

In the case of a hypersurface, we used the second fundamental form s and a
unit normal vector field v to define a real-valued second fundamental form II.
In the general case, we choose Vp41,.. ., Vm to be everywhere orthonormal sec-
tions of E defined in a neighborhood of a point and we define 1 —n real-valued
second fundamental forms II” by

I (Xp, Yp) = (Vix, Yoo vr(P)) = (s(Xp. Yp)ovr(p))  r=m+1,....n.

We thus have
s(Xp, Yp) =Y T (Xp, Yp) - vr(p).
¥

Notice that the set {II"} depends on the choice of the {v,}; there are many
possible choices, unlike the case of a hypersurface, where the choice of the
single unit normal field v was essentially unique. Using the II” instead of s, we
can write

Gauss’ Equation:
(R(X,Y)Z,W)=(R(X,Y)Z,W)
+ Y (I (X, ) (Y, W) — I (Y, 2)II" (X, W)}.

Since the tensors II” give us an explicit expression for s, they also essentially
give us an expression for the 4,,(p), for the equation

(Avr(p)(Xp)a Yp) = (v(p), S(XP’ YP)) = Hr(Xps Yp)

determines A,,(p)(X,). We also want quantities by means of which we can
express D. So we introduce certain 1-forms, the normal fundamental forms £,
by
IB:(Xp) = (V/X,,Vra Vg) = (DX,,Vr, Vs).
Then
Dx,v, = Z,Bf(X,,) - Vs,
A

and Dy,& can be computed for any § = Y, a’v, by using Proposition 13.
Notice that since (v,,v5) = 1 or 0, we have 85 = —p7. In particular, for

hypersurfaces we have the single 1-form Batl =o.
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14. THEOREM. Let M be a submanifold of N, with corresponding s and D.
Then for all vector fields X, Y, Z tangent along M we have

L(RI(X,Y)Z) = [Dx(s(Y,Z)) —s(VxY,Z) —s(Y,Vx Z)]
— [Dy(s(X,Z)) —s(Vy X, Z) — s(X,Vy Z)].

If Vpii,...,vm are everywhere orthonormal sections of Nor M, with corre-
sponding II” and B, then for all vectors X, Y, Z € M, we have

The Codazzi-Mainardi Equations:
(RI(X,Y)Z, V' (p)) = (VxII)(Y, Z) — (VyII')(X, Z)

+ 3 IE(Y, Z)B5(X) — TP (X, Z)B5(Y).

PROOF. The first equation is precisely equation (3) in the proof of Theo-
rem I-11. Now Proposition 12 gives

) Dx(s(Y,Z)) = Dy (Z IIs(Y,Z)vx)
=Y X(AP(Y, 2)) - vs + > I(Y, Z) Dx vy

Moreover,

@ s(VxV,Z)+5(Y,VxZ) = Y _IP(VxY,Z) vs+ ) IP(Y,VxZ) - v;.

Then (1) and (2) give
(3) Dx(s(Y,Z)) —s(VxY,Z) —s(Y,Vx Z)
= Y XA (Y, Z)) - I (Vx ¥, Z) = [P (Y, Vx Z)] - vs

+ ) (Y, Z) Dy vs
S
= Y (VxIP)(Y, Z) - vs + ) II°(Y, Z)Dxvs by Corollary IL.6-5%.
s S

Hence
3 (Dx(s(Y,2)) = s(VxY.Z) —s(YVx Z),v,)
= (VxII")(Y, Z) + Y _IP(Y. Z)B; (X).

*As on pg. IIL 11, we really need this Corollary for tensors of type (f))
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Naturally there is a similar equation with X and Y interchanged. Substitut-
ing into the first part of the Theorem, we obtain the Codazzi-Mainardi equa-
tions.

The Codazzi-Mainardi equations which we have derived here are obviously
a lot less satisfying than they were in the case of a hypersurface, since the set
{II"} is not unique. As a matter of fact, the nicest form of the Codazzi-Mainardi
equation is obtained by looking a little more closely at the expression

DX(S(Ys Z)) - S(VXYsZ) _S(Ya VXZ)

which appears in the first part of Theorem 14. A quick check shows that this
expression is linear in X, Y, and Z over the C* functions. So the value of this
expression at p depends only on X,,Y,,Z,. To obtain an explicit descrip-
tion of this function of three vectors, we consider s as a section of the bundle
Hom(TM x TM,Nor M) whose fibre at p is the vector space of all bilinear
maps M, x M, — M,*. Now, using the connection V in TM and the connec-

tion D in Nor M, a connection ¥V in the bundle Hom(TM x TM,Nor M) can
be defined in the following natural way. Given

{a section ¥ of Hom(TM x TM,Nor M),

a vector X, € M,
we want to have a bilinear map
%Xpw: My x M, — M,,l,
so we want to define
Vx, ¥)Yp, Zp),  for Y, Z, € M,
Let ¢ be a curve in M with ¢/(0) = X, and let

the parallel translation in TM along ¢

T = fiom ¢(0) to ¢(/) determined by V,

the parallel translation in Nor M along ¢
Pk = from c(0) to c(/) determined by D.

Then we define

= 1
Vx, V)X, Zp) = lim = [on™ (Y (cON@nYp, th Zp)) = ¥ (P)(Yp. Zp)].
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[Notice that if Nor M were just the trivial bundle M x R, making y essentially
a tensor of type ((2)), and D were the flat connection, with parallel translation the
same along all curves, taking (p,a) to (¢,a) forall p,q € M anda € R, then this
definition would reduce to the definition of Vy, ¥ already given (pg. I1.235). On
the other hand, if Nor M were TM, with the connection V, then this definition
would reduce to the definition of Vx,¥ when ¥ is a tensor of type (f)] Now
it is easy to see that if ¥ and Z are vector fields, then

(Vx, ¥)(Yp, Zp) = Dx, (¥ (Y, Z)) = ¥ (Vx, Y, Zp) = ¥ (Y, Vx, Z)

[Corollary I1.6-5 is the special case when Nor M is the trivial bundle]. We can
therefore also express the Codazzi-Mainardi equations in an intrinsic form:

15. COROLLARY. Let M be a submanifold of N. Then for all vectors
X,Y,Z € M, we have

The Codazzi-Mainardi Equations:
L(R'(X,Y)Z) = (Vxs)(Y, Z) — (Vys)(X, Z)

where V is the covariant differentiation on Hom(TM x TM,Nor M) deter-
mined by the covariant differentiations V. on TM and D on the normal bundle
Nor M.

The Gauss and Codazzi-Mainardi equations tell us what (R'(X,Y)Z, W) is
when all four vectors are in M,, or when three are in M, and one is in Myt
(which one doesn’t matter, because the symmetry properties of R’ allow us to
express all possibilities in terms of the one where W € M,»). We can just as well
ask what (R'(X.Y)Z, W) is when two vectors are in M, and two are in M,,’L.
The answer is known (though not very well known) as the Ricci equations, or
sometimes as the Ricci-Kithne equations. We need one more definition. Given
X.Y € Mp, and an orthonormal basis Ui, ..., Uy of M, we set

n
I + 16X, Y) = Y 17X, U) - IE(Y, Uy).

i=1

It is easy to check that II” +II* does not depend on the choice of the orthonormal
basis Uy, ..., Uy. Classically, II” xII* would be written as a contraction involving
the components of II”, II* and the metric { , )}* on T*M (compare pg. I11.130).
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16. THEOREM. Let M be a submanifold of N, with corresponding s, A,
and D. Then for all vector fields X and Y tangent along M, and all sections & of
the normal bundle Nor M we have
L(R(X,Y)E) = s(Ae(X),Y) — s(Ae(Y), X)
+ [Dx(Dyé&) — Dy(Dx&) — Dix ré]-

If Vpgrs.--,Vm are everywhere orthonormal sections of Nor M, with corre-
A

sponding II” and B;, then for all vectors X, Y € M, we have

The Ricci Equations:
(RI(X, Y v(p),vs(p))y =TI" x ITF (X, Y) = II" = IT° (Y, X)
+ (Vx B)(Y) — (Vy B)(X)
+ ) BL(XNBR(Y) — B (Y)B(X).

(Notice that these equations are trivial if M is a hypersurface.)
PROOF. The Weingarten equations and the Gauss formulas give
Vx(V'y§) = =V'x(4g(Y)) + Vx (Dy§)
= —Vx(4g(Y)) — s(X, Ag(Y)) — Apye)(X) + Dx (Dy$),

and hence
) L(V'x(V'y§)) = —s(X, A (Y)) + Dx(Dy§),
() L(V'y(V'x§)) = —s(Y, Az(X)) + Dy(Dx§).
Also,

V'ix, 1§ = Ae(IX, Y] + Dix rié,
SO
(2) L(V'ix,v1§) = Dix it

Equations (1), (I'), and (2) give the first part of the theorem.
Now if Uy, ..., U, is an orthonormal basis for M,, then

n

Au () (Xp) = D (Au(p)(Xp), Ui} - Us

i=1

=Y (vr(p),s(Xp, Up)) - Uj

i=1

n
= ZIIr(Xp’Ui) - Ui’

i=1
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SO
(3) (s(Av, (p)(Xp), Yp), vs(p)) = II'(Ay, () (Xp), ¥))
- Hf(zn:H’(X,,, Uy - U, Y,,)
i=1
= Xn:H’(X,,, Upy - T8 (Y,, Uy)
i=1
= II" « II*(X,,, Y,),
(3 (s(Av, () (Yp), Xp), vs(p)) = 17 % 1T (Y5, X,p).

We also have
Dx(Dyvy) =Y Dx(BF(Y) - v)

=Y X(BPY)) vw+ Y BE(Y) Dyvy

=D XBYY) vw+ Y BEY)- Y LX),

SO

) (Dx(Dyvy),vs) = X(BI(Y)) + ) B (X)BE(Y),
() (Dy (Dxvr),vs) = Y(BL(X) + Y B3, (Y)BP(X).
Also,

(5) (D[X,Y]Vrs vs) = (DVXYVra vg) — (DVyXVra Vs)

= B,(VxY) = B (Vy X).
From (4), (4'), and (5) we get
6) (Dx(Dyv,) — Dy(Dxv,) — Dix vy vr, vs)
= [X(B(Y)) = By (Vx Y)] = [Y(B/ (X)) — Bi(Vy X)]

+ Y BLXBEY) — B (Y)BY(X)

= (VX BY) = (Vy BINX) + D B (Y)BY(X) — B, (Y)BP(X)
by Corollary 11.6-5. v

Substituting (3), (3"). (6) into the first part of the theorem, we obtain the Ricci
equations.
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The expression Dx(Dy§&) — Dy(Dx&) — Dix y)§ which appears in the first
part of Theorem 16 can be treated just like the expressions which arose in
Theorem 14. In fact, for any connection D in any vector bundle @ : E — M,
the map

(X,Y,&) — Dx(Dy&) — Dy(Dx§) — Dix.x)§

(for vector fields X, Y on M and sections & of E)is linear in X, Y, and & over the
C™ functions. Consequently, its value at p € M depends only on X, Yy, §(p):
we already know this for the two vector fields X, Y (Theorem I.4-2), and the
proof for the section £ is essentially the same. We therefore have a well-defined
map

Rp =Rp(p): My x M, x @~ (p) — @~ (p),

the curvature of the connection D, given by
Rp(p)(Xp, Yp)ép = Dx(Dy&)(p) — Dy (DxE)(p) — Drx.x1&(p),
for any vector fields X and Y extending X, and Y}, and any section § of E

with £(p) = &,. Thus we can state a more intrinsic form of the Ricci equations:

17. COROLLARY. Let M be a submanifold of N, with corresponding s
and A. Then for all vectors X,Y € M, and § € M,,l we have

The Riccl Equations:
L(R(X,Y)E) = Rp(X,Y)§ +5(Ag(X), Y) — s(4g(Y), X)

where Rp is the curvature of the connection D in Nor M.

The Gauss, Codazzi-Mainardi, and Ricci equations are the only general
equations which we have for submanifolds of a Riemannian manifold. It would
not be reasonable to expect an interesting formula for (R(X,Y)Z,W) when
three of the vectors are in M,,l. Forif X,Y,Z € M,,l, then R'(X,Y,Z) has
nothing to do with M at all, and (R'(X,Y)Z, W) would depend only on the
position of M. The classical reason for resting content with these three equa-
tions was somewhat different. In Chapter 2 we saw (at least in a special case)
that the Gauss and Codazzi-Mainardi equations were precisely the integrability
conditions for the Gauss formulas. It turned out that the integrability condi-
tions for the Weingarten equations reduced to the Codazzi-Mainardi equations,
but this was only because we happened to be dealing with a hypersurface. In
general, the integrability conditions for the Weingarten equations lead to two
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sets of equations; one set reduces to the Codazzi-Mainardi equations, while
the other set 1s precisely the Ricci equations [notice that our proof of Theo-
rem 16 essentially investigated integrability conditions also, for we compared
Vx(V'yE) with V'y(V'x€)]. Tt was therefore clear to classical differential ge-
ometers that the II” and ] determine an n-dimensional submanifold of R” up
to Euclidean motion, and that any set of II” and 8 comes from some subman-
ifold if the three fundamental equations are satisfied. In order to derive these
results without writing everything out in very classical terms, we will first see
what our fundamental equations say in terms of moving frames.

Consider an adapted orthonormal moving frame Xi,..., Xy, Xpa1, ..., Xm
on M. As in Chapter 1, we let 6, a)j’:, and Q; be the dual forms, connection
forms, and curvature forms on M for the frame X, ..., X,, and we let 0%, wg,
and \Ifg be the forms on N for the frame X, ..., X,,. Then on TM we have

¢i — 91" ¢r =0.
By looking at the first structural equations, we found that
¥ = ol

and that there are unique functions s/ ; on M satisfying
vi =28t s =g

i

These functions are related to s by the equation (pg I11.19)
S(X, ) =) s X,
r

So if we choose the orthonormal vectors Xni1,..., Xm tobe our vopq, ..., v,
then the II" are given simply by
(a) (X, Xe) =55, = y](X)=1I"(X, X)),
while the normal forms 85 are simply
(b) Bi=vi onTM.
Since the map A is determined by

(Avr(Xi)sz) - (‘)rsS(XisA/j))

r
Sij’
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we also have the explicit formula
Ay (X)) =) sl X;.
J

More important, we have

n
C II" «1I°(X;, X;) = " (X;, X)) (X, Xy)
(c) j j

k=1

n
=D Siksik:
k=1
Now let us look at the second structural equation
A
dyg == Yf Ayh + U3,
v

If we restrict to TM, and choose various ranges for the indices, we obtain the
following three equations (for the first we also use the structural equation on M,
as in Chapter 1):

A) V=9 = ) ¥ AU
(B) dyj == Wi e =Y UL AYY +
(C) Ay} =Y S AU =Y UL AYY + U

Using equation (a) we see immediately that equation (A) is precisely equivalent
to Gauss’ equation (in the form given on page 32). For equations (B) and (C)
we recall that for a I-form n we have (pg 1.215)

(d) dn(Xy, X7) = Xie(n(X1)) — Xi(n(Xx)) — n([ Xk, X;]).
We also have
() [Xe, Xi] = Vi, Xi — Vi, Xi = D 0} (Xi) X; — 0l (X)) X;

i

and (Corollary II.6-5)

<f> (VXkIIr)(XIs Xj) = Xk(IIr(XIs Xj)) - IIr(VX;\-XIs Xj) - IIr(XIs VX;\XJ)

(8 (Vi B)XD) = Xie (B (XD) = B (Vx, X1).

When we apply equations (B) and (C) to (X, X7), and use equations (a)—(g), we
find that (B) and (C) are equivalent to the Codazzi-Mainardi equations in The-
orem 14, and the Ricci equations in Theorem 16, respectively. Equations (A),

(B), (C), involving differential forms, are much more convenient for considering
questions connected with integrability conditions.
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18. THEOREM. (1) Let M, M C R™ be two connected n-manifolds imbed-
ded in R™, let vp41, ..., vm be everywhere orthonormal sections for the normal
bundle of M, and let Vy41, ..., Vm be everywhere orthonormal sections for the
normal bundle of M. Let I, II", B2 be the first, second, and normal fundamen-
tal forms for M (defined with respect to the {v"}), and define I, i, B2 similarly.

Let ¢: M — M be a diffeomorphism which preserves all the fundamental
forms:

=1, T =1, ¢*B =5
Then there is a Euclidean motion A4 such that ¢ = A|M and A,(v,) = v, for
r=n+1,...,m.

(2) Let (M, { , ))) be an n-dimensional Riemannian manifold with curvature
tensor R. For r,s =n+1,...,m, let S be symmetric tensors on M, covariant
of order 2, and let b} be 1-forms on M with b} = —b]. Suppose that the S”
and b} satisfy

() Gauss’ Equation:

0=(RX,Y)Z, W) — ZS’(Y, Z)S" (X, W)+ S"(X,Z)S"(Y,W)

(2) The Codazzi-Mainardi Equations:
0= (VxSH(Y,Z) - (VyS)(X, Z)
+ ) {S° (Y. Z2)bL(X) — S*(X, Z)bJ(Y)}

(3) The Ricct Equations:
0=2S5"%S"(X,Y) =S % S°(Y,X) + (Vxb))(Y) — (Vyb;)(X)
+ 3 UL (XObE(Y) — b, (Y)BE (X)),

Then for every point of M there is a neighborhood U and an isometric imbed-
ding f: U — R™ such that there are evervwhere orthonormal sections v,41, . ...
vm of the normal bundle of f(U) in R™ for which the corresponding forms II”
and B on f(U) satisty

sT= . b= SR

PROOF. We will consider the proof of (2) first. since the proof of (1) will come
along for free. Since we are trving to prove a local result, we might as well
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assume that M is R”. Let X|,..., X, be an orthonormal moving frame for
( , ) on R", with dual forms 6”, and connection forms ;. Define I-forms yg
(1 <a, B <m)on R" as follows:

¥l = o] 1<ij<n
Yi(X)=S"(X,X;) 1<j<n<r<m
Wy = by n<rs<m.

Then the forms ¥ g satisfy two crucial equations:

() ZW}A9j=O r=n+l1,....m
Jj=1
(%) dwg=—ZW3Aw}; a.f=1,....m.
y=I

Equation (x) follows directly from the definition of ¥ and symmetry of §".
Equation (+#) follows from the Gauss, Codazzi-Mainardi, and Ricci equations
in the hypothesis. This should be clear from our verifications, prior to the state-
ment of the theorem, that equations (A), (B), and (C) are equivalent to Gauss’
equation on page 32, and to the Codazzi-Mainardi equations in Theorem 14
and 16, respectively.

Now suppose for the moment that we have an immersion f: (R",{ , )) —
R™, and orthonormal sections vy, ...,V of the normal bundle of f(R").
Identifying tangent vectors of R™ with elements of R™, as usual, we thus have
a map

v= (vls"'svm) = (f*(Xl)s---af*(Xn)aVn+la---an): Rn - Rmz'

If f is an isometry and S” = f*II" and b} = f*B;, then the components vh
of the functions v will satisfy

m
(1) dvg = Z ve Y.
y=1

So we will first show that a map v = (vy.. ... Um): R" — R™ satisfving (1) can
be found. The idea of the proof is to look for the graph I' C R" x R™ of v
(compare pg. 11.264). Let m: R” x R™ — R" and mp: R" x R" — R™ be
the projections on the first and second factors, and let {.\-5} be the standard
coordinate system on R™ . It is easv to see that if v: R" — R™ satisfying (1)
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exists, then its graph I' C R” x R™ is a submanifold on which the m? linearly
independent 1-forms

m
(2) d(xf o my) - Z(Yf omy) Y
y=I1
all vanish. Conversely, if all these 1-forms vanish on an #-dimensional manifold
I C R"xR™, then T is the graph of the desired function v. So by the Frobenius
integrability theorem (1. 7-14), we just have to show that the exterior derivative
of each form (2) 1s in the ideal J generated by these forms. Now

d(Z(xe o 13) '771*1//&’) = Zd(xf omy) AT YY)
y=I1

y=1

+ Z(xf o) - m*dy)

A=l

m
= Z d(xg o) Am* Y)Y
y=I1

- Z(xf ° M) - (Z”l*‘//)}: /\771*‘//&’) by ()

y=1

= Z(d(,x o my) — Z(xl o My) - mM ‘//y) AT Y,

y=1
which is indeed in the ideal J generated by the forms (2). Thus we see that there
is a function v: R” — R™ satistying (1). In fact, we can choose v(0) to be any
linearly independent set of vectors in R™’ (just choose the integral submanifold

of d = 0 which passes through this set of vectors); in particular, we can choose
v(0) to be a set of orthonormal vectors.

We next note that, for the ordinary mmer product { , ) on R”, the functions
1L TR Vp, satisty

d({vg.vg)) = (dvg, vg) + (ve. dvg)

m m
- Y dvY Y. oY
= Z vg -dvg + Z vy - dvg
y=l1 =

m
= Z vﬂvAl,// + Z vivl v by (1)
y.A=I y-A=1

m

m
Zlﬁl’ 1[/)‘-!—2 (Ve )Y )‘.

A=l A=1
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In particular, for any curve ¢ in R™, the functions
Jap(t) = (valc(t)), vg(c(t)))
satisfy the differential equation

m m
Jag (1) = D Ve O) () + DY) far D).

A=l A=1
Since ¥g = —wf , this same equation is satisfied by the functions f(r) = Sap-
So by uniqueness of solutions with a given initial condition, we conclude that
U1, ..., Um are orthonormal everywhere.

Now we want to show that there is actually a function f: R” — R™ such
that
Jo(Xi) = v; i=1,...,n

For the component functions f!,..., f™ of f we want

n
df*(Xi(p)) = vi(p) e, df*(p)=> _v¥(p)-07(p).
j=1
"To prove that f exists, we look for its graph I' € R” x R™. We let ,: R" x
R™ — R" and 72: R” x R™ — R™ be the projections on the first and second
factors, and we let {x*} be the standard coordinate system on R™. The I' we

are seeking is a submanifold of R” x R™ on which the 1-forms
n

(3) d(x*om) = Y (¥ om) - m*6
j=1
all vanish. Now

n n
d(Z(U}X o) - 7T1*9j) = Zm*dvj‘?‘ A m*07
j=1 j=1
n n
— Z(vl‘-’ om) - Zm*a)j’: A *67
i=1 j=1
n m
= ZZ(U;‘ om) - m* Y] Am*6)
j=ty=1

n
= > om) - mtol Am*6l by ()
ij—-l
n
Z Z vy om) - m*Y] Am*0

j=1r=n+1
=0 by (x).
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So the Frobenius integrability theorem proves that there is f/: R” — R™ with
fu(X;) = v (i = 1,...,n). Then f is an isometry, since Xi,..., Xy, and
V1, ...,y are both orthonormal sets. This proves part (2).

As for part (1), we first note that the required Euclidean motion 4, if it exists, 1s
unique [for if p € M, then A.|Mp, must be ¢ p, and Ax(v,(p)) must be v, (p)].
Therefore it suffices to prove existence of A locally. By the usual argument,
it suffices to show that M = M if for some p € M we have p = ¢(p) and
M, = M,, and ¢., = identity and v,(p) = v,. But thls follows immediately
from the fact that there 1s just one function v: R” — R™’ satistying (1), with a
given value of v(0). <

This classical formulation of Theorem 18 was given in order to emphasize
the extra problems which arise when the codimension is greater than 1. But
it is a very unsatisfactory way of bringing the normal bundle into the picture.
After all, everywhere orthonormal sections Vp41, ..., Vs of the normal bundle
can usually be found only in a neighborhood of each point. So the first part
of Theorem 18 really makes sense only locally, even though it is supposed to
be global. We have similar problems in the second part, where we would like
to obtain a global result when M is simply connected. These defects are easily
rectified, since we also have invariant statements of our fundamental equations.
We need one simple bit of terminology. Let M and M be C* manifolds, and
letw: E—> M and @: E — M be C*® vector bundles of the same dimension
over M and M, respectively. If ¢: M — Mis a difftomorphism, then a C*°
map ¢: E — E is called a bundle isomorphism covering ¢ if:

() the diagram

.

commutes, so that q3 takes ‘(U_l([)) to @~ (P(p)).

A

(2) each map i
Pl (p): @ (p)— T (P(p)

15 a vector space 1somorphism.

It then follows easily that ¢ is a diffcomorphism. Notice that if § is a section
of E, then we have a section ¢(&) of E defined by

PENG) = PEW@D (@)  ge M.
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19. THEOREM. (1) Let M be a connected submanifold of R™ with normal
bundle @ : Nor M — M, and corresponding second fundamental form s and
normal connection D. Similarly, let M be a connected submanifold with nor-
mal bundle @: Nor M — M and corresponding 5 and D. Let¢: M — M be
an isometry. Suppose that there is a bundle isomorphism ¢: Nor M — Nor M

covering ¢ such that ¢ preserves inner products, second fundamental forms,
and normal connections:

(), $(m) = (£,n) for all £, € M,™
P(s(X,Y)) =5(d X,h:Y) for all X,Y € M,
qg(DXE) = 5¢*x(q~>(é)) for all X € M, and all sections & of Nor M.

Then there is a Euclidean motion 4 such that ¢ = A|M and ¢ = A,|Nor M.
(2) Let (M,{ , )) be asimply-connected n-dimensional Riemannian manifold,
with covariant differentiation V and curvature tensor R. Let @w: E — M be
an (m — n)-dimensional vector bundle over M with a Riemannian metric { , },
let § be a connection on E compatible with { , }, with curvature tensor Rg,
and let 0 be a symmetric section of the bundle Hom(TM x TM, E). Denote

by V the connection on Hom(TM x TM, E) determined by V and §; and for
X € M, and § € w™'(p), let Ag(X) € M, be the unique vector satisfying

(Ag(X),Y) ={E,0(X,Y)}  forall Y € M,.

Suppose that o and § satisfy

() Gauss’ Equation:

(RX,Y)Z,W) ={o(Y,Z),0(X, W)} —{o(X,Z),0(Y, W)}
(2) The Codazzi-Mainardi equations:
(Vxo)(¥,Z) = (Vyo)(X, 2)
(3) The Ricci equations:
Rs(X,Y)e =0(Ae(Y), X) —0(Ae(X),Y).

T:hen there is an isometric immersion f: M — R™ and a bundle isomorphism
f+ E — {normal bundle of f(M)} covering f such that

(f&). f(m) = &0} for all £,n € @' (p)
floX,Y) =s(fiX. fiY) forall X.Y € M,
f((SXE) = D¢*X(f(é)) for all X € M, and all sections & of E.

where s and D are the second fundamental form: and the normal connection

for F(M).
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PROOF. 1t’s just one big translation job locally. Then simple-connectivity is
used to prove the global result, as in Problem 2-3. &

Naturally, Theorem 19 simplifies considerably for the case of hypersurfaces,
when Nor M is 1-dimensional. In part (1) we can dispense with the normal
connection D, and in part (2) we can dispense with § (and the Ricci equations).
When we deal with orented hypersurfaces, we can ignore Nor M completely,
since the orientation of M determines a unit normal field v, and thus a second
fundamental form II. In part (1), we simply need that ¢ is an 1sometry with
¢*I1 = II; then the Euclidean motion 4 of the conclusion is actually a proper
Euclidean motion with 4,v = v. In part (2), we simply supply our Riemannian
manifold (M, { , )) with a symmetric tensor S, covariant of order 2, satisfying

(RIX,Y)ZW)=8S(,Z) S(X,W)—S(X,Z)-S(Y,Z)
(Vx $)(Y, Z) = (V¥ $)(X, Z).

In the general case, Theorem 19 1s much less satisfying, for it does not tell us
when a map ¢: M — M between two submanifolds of R™ is the restriction of
a Fuclidean motion; it only gives us information about maps ¢: M — M to-
gether with bundle isomorphisms ¢: Nor M — Nor M covering ¢ (as a slight
compensation, we find a Euclidean motion A preserving this additional struc-
ture). In the theory of curves we have a situation more closely resembling the
case of hypersurfaces, since certain functions ki, . . ., km—1 determine (“general”)
curves parameterized by arclength. For curves in R”, the results of part B are
actually a special case of Theorem 19, for the vector fields va, ..., v, along ¢
give a trivialization of the normal bundle of ¢; it 1s not hard to see (Problem 12)
that if we choose v, = v,, then the corresponding II” and B are all express-
ible n terms of ki,...,Kk,—1. For higher dimensional submanifolds of higher
codimension there is also a theory which determines “general” submanifolds,
up to Euclidean motions, by means of tensors on the submanifold. Although
this theory is certainly more appealing geometrically, it is rather elaborate, and
is presented separately in Addendum 4.

For the present, we merely wish to generalize Theorem 19 by replacing R™
with a more general ambient space. Now the first part of Theorem 19 simply
isn’t true for an arbitrary ambient space (N, ( , )), which may not have any
isometries onto itself except the identity. For example, we can easily construct a
metric on R"*! such that the hypersurfaces R” x {0} and R” x {1} are isometric
and have vanishing second fundamental forms, without there being any non-
trivial isometry of R"*! onto itself, and in particuiar none taking R"” x {0} to
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R" x {1}. It should be mentioned, however, that one can at least prove the
following (Problem 12):

Suppose that M and M are connected submanifolds of (N, ( , }) and
that there 1s a pomt p € M N M with Mp, = Mp. Let¢p: M — M
be an isometry with ¢(p) = p and ¢up: M, — M, the identity.
Suppose that there is a bundle isomorphism ¢: Nor M — Nor M
covering ¢ which preserves inner products, second fundamental forms,
and normal connections, and such that ¢ is the identity map on M,*.
Then M = M and ¢ is the identity.

We encounter difficulties of another sort when we try to generalize the second
part of Theorem 19 for an arbitrary ambient manifold (N, { , }). Now we don’t
even know what conditions to place on § and o, since the Codazzi-Mainardi
and Ricci equations for § and o involve terms R'(X,Y)Z which we cannot
evaluate unless we already have the imbedding of M into N.

These difficulties do not arise when (N, { , }) is a complete simply-connected
manifold of constant curvature K. The Euclidean motions of part (1) will be
replaced by the isometries A: N — N; such isometries can be found taking any
orthonormal frame at one point of N to any orthonormal frame at any other
point (Problem 1-5). Moreover, the Codazzi-Mainardi and Ricci equations for
a submanifold M C N are exactly the same as in the Euclidean case, since

R(X,Y)Z = Ko[{Y,Z)X — (X, Z)Y]  (pg IILI1)

I

L(R(X.,YYZ)=0 for X,Y,Z tangent to M
R(X,Y)E=0 for X, Y, Z tangent to M and & normal to M.
Gauss’ equation, on the other hand, becomes (Corollary 1-12)
Kol[{X, W) (Y, Z) —(X.Z) - (Y, W)]
=(R(X,Y)Z, W)+ (s(X,Z),s(Y,W)) — (s(Y,Z),s(X,W)).

For an adapted orthonormal moving frame on M, equations (B) and (C) have
Wl = W) =0, while equation (A) becomes

@) Kol0' n07) =) = ) i Ay,
since r
VHX,Y) = (R(X.Y)X;, Xi) = Kol{X, X;) - (Y. X;) — (X, X;) - (Y, X;)]
= Ko[0'(X)07(Y) — 67 (Y)8/ (X)].
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One fairly straightforward method of generalizing Theorem 19 is to regard N
as S™(Ko) C R™1 or as H™(Ko) € R™*! with the Lorentzian metric. The
details of this pleasant proof are lefi to Problems 13 and 14, partly because it
uses a result from the next section, but mainly because we want to provide
a (rather unpleasant) proof which involves only the intrinsic description of N
as a manifold of constant curvature Ko. The proof of Theorem 19 itself will
not generalize at all, because it involves the natural identification of TR™ with
R™ x R™, an identification that essentially depends on the fact that R™ is flat.
For a general manifold (N, ( , )) of constant curvature, we will have to consider
the tangent bundle TN, and work with Ehresmann connections.

Consider a principal bundle 7: P — M with group G. For each X € g =
Lie algebra of G, we have defined (pg. II. 311) the fundamental vector field on P
corresponding to X; we will change notation slightly and denote this vector field
by 6(X) [so that o can still be used as in the statement of Theorem 19]. Recall
that an Ehresmann connection on P is a g-valued 1-form on P. We will use a
bold face Greek letter, like ®, for such connections. Here our aim is to avoid
confusing w with the (closely related) connection forms a)]’: of a moving frame on
a manifold. Recall that a frame u for M), is an ordered basis u = (uy, ..., u,) of
M, and that we have a principal bundle F(TM) — M with group GL(#n, R),
where F(TM) is the set of all frames at all p € M. An Ehresmann connection
w = ((oj.) on F(TM) is a gl(n, R)-valued 1-form on F(TM). For any moving
frame s = (X1,...,X,): U — F(TM) on an open set U C M we thus have the
matrix of 1-forms @ = s*w, and the assignment of = s*w tos = (Xj,..., X})
is a (Cartan) connection on M; then by defining Vxy X; = >, w}(X)X,-, we
obtain a covariant differentiation operator V on M. Conversely, every Cartan
connection on M comes from a unique Ehresmann connection ® in this way,
and thus every covariant differentiation operator V comes from a unique .
More generally, given a k-dimensional vector bundle @ : E — M, we let F(E)
denote the set of all ordered bases u of w~!(p), for all p € M. Then F(E) —
M is a principal bundle with group GL(k,R), and Ehresmann connections @
on F(E) correspond to covariant differentiation operators (X.&) —» Vx&on
sections § of E. In the special case of F(TM) we also have the R”-valued
dual form 6 = (8',.. ., 0"); for anv moving frame s = (Xj,. .., X,). the forms
6’ = 5*0' are just the dual forms for this moving frame.

When we have a vector bundle @ : E — M which has a Riemannian metric
{ . }. it is often more convenient to consider the bundle O(E) C F(E) consist-
ing of orthonormal frames. Notice that for X € o(k) C gl(k.R). the vector field
6 (X) on O(E) is just the restriction of the vector field o (X)) which is defined on
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F(E). Now suppose we have a covariant differentiation (X, &) — Vx& which
is compatible with the metric { , }, so that

XUE.m) =1Vx&,n} + {5, Vxn}.

If &1,..., 5k are local sections of E with {§;,§;} = §;;, and we define the 1-forms
wf (1 <1, <k)by

k
Vx§ =Y ol(X) &,
i=1
then we have
9 o = —w;.

Let w = ((oj-) be the Ehresmann connection on F(E) corresponding to the
covariant differentiation V. We claim that ®|O(E) actually takes values in

o(k) = {skew-symmetric kK x k matrices}. In fact, if Y is a vertical vector at
some # € O(E), then Y = ¢(X)(u) for some X € o(k), and

oY) =w(o(X)(u)) =X € o(k).

On the other hand, every non-vertical vector at a frame u € O(E) at p € M
is of the form s,(Z) for some local orthonormal section s = (£1,...,&) and
some tangent vector Z € M), and then

0(s54(Z)) = s*w(Z) = w(Z),

so the claim follows from equation (I). Thus we see that ®|O(E) is an Ehres-
mann connection on the principal bundle O(E). [Conversely, an Ehresmann
connection on O(E) clearly extends in a natural wayv to an Ehresmann connec-
tion on F(E) whose corresponding V is compatible with the metric { , }.] It
is clear that at any point u € O(E), the horizontal subspace for the connection
®|O(E) is exactly the same as the horizontal subspace at v € F(FE) for the

connection . So for Yy, Y, € O(E),. the covariant differential D(w|O(E)) has
value

D(w|O(EN(Y1,Y2) = d(w|O(E)(hY1,hY,) iY; = horizontal
_ component of Y;
= dw(hY1.hY2) in either F(E)
= Q(Y1,Y>). or O(F)
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In other words, the curvature form of @w|O(FE) is just the restriction to O(E) of
the curvature form £ of . So no confusion will arise if we simply use w for
the restriction ®|O(E), and  for the curvature form of @w|O(E).

We will apply these considerations, in particular, to the case where £ = TM
is the tangent bundle of a Riemannian manifold (M”",({ , )) and ® is the
Ehresmann connection corresponding to the Levi-Civita connection for { , ).
Thus we have o(n)-valued forms 6/, (oj., SZ; on O(TM). For another Riemann-
ian manifold (N™,{ , )) we have, similarly, o(m)-valued forms ¢*, \Ifg, \Ilg on
O(TN).

Now suppose that we are given a Riemannian manifold (M”", { , ))), and
an (m — n)-dimensional vector bundle @ : E — M with a Riemannian metric
{,} Let O(TM, E) denote the set of all pairs (1, v) where u € O(TM) and
v € O(E) lie over the same point p € M. Then O(TM, E) is a principal
bundle, whose group G is the set of all m x m matrices of the form

(f)l g) Ae€Om) and B e O(m-n).

These bundles will come into our proof of the generalization of Theorem 19 in
the following way. If we succeed in finding an isometric immersion f: M —
N, covered by an inner product preserving bundle isomorphism fiE >
{normal bundle of (M)}, then we will also have a “principal bundle isomor-
phism” from O(TM, E) into O(TM)| f(M). Instead of looking for f directly,
we will look for this principal bundle isomorphism. Since the graph of this prin-
cipal bundle 1somorphism is a subset of O(TM, E) x O(TN), we will look for
the graph as an integral submanifold of a certain distribution on O(TM, E) x
O(TN); if (u,v) € O(TM, E) and w € O(TN), then the integral manifold
through ((u,v), w) will turn out to be the graph of the principal bundle iso-
morphism determined by (_f'*,f), where f: M — N is an i1sometry with
felu;) = w;, and ,f(vr) = w,. Thus, although our set-up is now rather com-
plicated, it is verv natural to look for maps from O(TM . E) to O(TN), because
thev involve precisely the right amount of leeway which we expect in the choice
of the 1sometric imbedding f: M — N.

20. THEOREML The results of Theorem 19 hold when R™ 1s replaced by a
complete connected Riemannian manifold (N. { . }) of constant curvature K.
and the following modifications are made:

(1) The map A4 in the conclusion of part (1) is replaced by an isometry
A: N — N.



Higher Dimensions and Codimensions 35

(2) Gauss’ Equation in the hypothesis of part (2) is stated as:

Kol(X, WY, Z) — (X, Z) (Y, W)]
= (R(X,Y)Z, W) +{0(X,Z),0(Y,W)} —{o(Y,Z),0(X, W)}

PROOF. Again we will begin by considering the second part of the theorem.
So we are given (M, { , )) and the bundle w: E — M, with metric { , }, a
connection § compatible with { , }, and a symmetric section ¢ of the bundle
Hom(TM x TM, E). Then § gives us a connection form ¥ on O(E) which is
o(m — n)-valued; we will denote its components by \M forr,s=n+1,...,m.
Similarly, (\Tls’) will be the curvature form on O(E).

Now we have obvious maps

O(TM , E)
)\1 )\2

O(TM) O(E).
For convenience we will denote
MEO), M*()), M) simplyby 6 of, @

lz*(\ifsr), lz*(\flsr) simply by ¥, \Tlsr

We define functions sl.’j : O(TM, E) — R as follows. An element of O(TM, E)
1s a pair (¢, v), where u and v are orthonormal frames, of TM and E, respec-
tively, at the same point p. Then o'(u;,u;) can be written uniquely as

auisuj) =D 8T ((u,0)) - vy
r
We now define forms ¥/ directly ou O(TM, E) by
=) she <= Zsm*w’))-
J J

The symmetry of o implies that s;; = s;, and thus that

1 D ¥ A6 =0
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Now we claim that on the bundle O(TM, E) we have

@) Ko[6' A 6] Zw, AT
(3) dq;jz—Zw,-Aw,-—ZJrs’AJr}
) d¥; =) Y AU =) ¥, AwY

The proof is in two steps. First, consider a local section (X1,..., Xp, Va1, .-,
vm) =&: U — O(TM,E) on U C M. Denote §*(6") by 6, etc., and &*(¥")
by 1/—/,’ Then the 6, a)j':, and Q; are the forms for the moving frame Xp,..., Xj.
When we apply £* to equations (2)—(4), we obtain equations on M, of which
the first, for example, reads

2') Ko[6" A 6] Z NS

When we take into account the fact that

Ur =E =) (s 05) - £705 = (0(X;, Xp), v 05,
k

k

we find, by a straightforward calculation, that equation (2) is equivalent to
Gauss’ equation. As in the proof of Theorem 18, we can even avoid the calcu-
lation by realizing that it will be essentially the same as the calculation which
shows that equation (A’) is equivalent to Gauss’ equation. In a similar manner,
we see that true equations result from applying £* to (3) and (4). This means
that equations (2)—(4) hold when applied to tangent vectors which are not verti-
cal. So we just have to prove that (2)—(4) hold when applied to a pair of vectors
of which at least one is vertical.

The 1-forms 87 on O(TM) are zero on any vertical vector, while the 2-forms
SZ; are zero on any pair of vectors of which at least one is vertical. Since
the vertical vectors of O(TM, E) are preciselv the vectors Y for which A1,(Y)
is vertical in O(TM) and A2.(Y) is vertical in O(E). we see that the forms
0’ and SZ; on O(TM. E) have the same property as the forms 0’ and SZ; on
O(TM). Analogous statements hold for the forms W] on O(TM. E). Moreover.
the forms ¥/ are clearly 0 on vertical vectors of O(TM.E). It is thus clear
that (2) holds when applied to a pair of vectors one of which is vertical. To treat
equation (). we note that the structural equation for O(E) gives

d¥l ==Y UL AGE + W
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Since W/ is zero on a pair of vectors one of which is vertical, while ¥ and ¥
are zero on vertical vectors, this clearly gives the result for equation (4). Thus
we are left with equation (3). If both our vectors Y;,Y, are vertical, then the

right side of (3) is zero; on the other hand, if )71, )72 are vertical vector fields
extending Y, Y3, then the left side is

d¥} (11, Y2) = V(¥ (1)) — Ha(¥7 (1)) — ¥/ (17, Ta))
=0,
since \It]’ 1s zero on vertical vectors. This leaves us with equation (3) in the case
where just one vector 1s vertical.
Every vertical vector at a frame (u, v) at p is 6(I')(u, v) for some I' in the Lie
algebra g of the group G of O(TM, E). We want to show that (3) holds when

applied to
Yl :G(F)(u’ v)’ Y2 :E*(Xp)’

for some X, € M, and some local section (X1, ..., Xp, Vaats...,vm) =&: U —

O(TM, E). We extend Y, to a vector field )72 as follows. First extend X, to
a vector field X on M. Then &,(X) is a vector field defined at just one point

in each fibre. We extend &,(X) to Y, by making it invariant under R, for all
a € G. This means, in particular, that for the Lie derivative we have

0= LoryY2 = [0(I), 1.
Equation (3), applied to Y1, Y2 thus becomes
@) Vi (12) = Y ¥/ (YD) @i () = Y Wl (YD¥i(Ya).

To prove equation (%), we need information about Ra*\It;, for a € G. We
write ¢ as

A 0
a—(o B) A€O(n), BeO(m-—n).

Let us note first that the definition of Si’j gives
o A)i(u - A)j) =Y s/ ((u.v)-a) - (v- B),.
r

From this we easily find that

s, ) -ay= Y 3 abalsy vy (BT

k.1=1p=n+1



58 Chapter 7, Part C

We can now compute
R} = Z(s R.¥,
using the equation (Proposition II.8-12)

R4*07 = Z(A“
k

we find that the (m — 1) x n matrix [¢] = (¥]) satisfies
(%) RS ¥] = B~ [¥)4.

Now suppose we write I' € g as

F=(Fl 0) for I’y € o(n), T €o(mn—n).
0 I

An integral curve of Y} = ¢(I')(u,v) 1s given by
t > (u,v) - exptl’ = Rexper(u, v).

So for the left side of( ") we find that

V(¥ (Y2)) = lim [w,(Yz(Rexphr(u v))) — ¥/ (Y2)]
o1 -
= lim = [¥] (RexparsY2) = ¥7 (12)]

(from the way Y, was defined)

1 - :
= lim ~[((Rexpar)™¥) (Y2) = ¥ (12)]

=(}) Component of

11m - [({exphF2} V[ - exp AT (Y2) — [$](Y2)]
by equation ()
= (;) component of {—T - [¥(¥2)] + [¥(¥2)]T1}

==Y ¥ (Y2) + D ¥/ (Ya) - (T}
= > W @MNF () + Y ¥ (Y2)el(e(T)

==Y WD) + Y ¥ (Y)el (),
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which is precisely the right side of (3).
After all this work, we are ready to construct a distribution on the product
O(TM, E) x O(N). We introduce the two projections

O(TM,E) x O(TN) —2_, O(TN)
v
O(TM, E).

Define A((u,v),w) to be the set of all tangent vectors at ((u, v), w) on which the
following 1-forms all vanish:

(@) T2t — 70
(b) "¢’

(c) nz*\]f;: - nl*wj-
(d) Mg —
(€) T - mtY

Since the forms ¢, ¥ (@ < B) are a basis for the dual space of the tangent
space O(TN )y, 1t 1s clear that each A((,,),) has dimension

dim O(TM, E) x O(TN) —dim O(TN) = dim O(TM, E),

and that 7141 Aqw,v),w) = O(TM, E) . 4) is an isomorphism. We thus obtain
a distribution A.

For any a € G, we have the map R,: O(TM,E) — O(TM,E). Since
a € G C O(m) = group of the bundle O(TN), we also have maps, which we
will denote by the same letter, R;: O(TN) — O(TN). These maps then give
us maps

Ra: O(TM, E) x O(TN) — O(TM, E) x O(TN).

We claim that Rz, A = A. To prove this, it suffices to show that R,*n 1s a linear
combination of the forms (a)—(¢) whenever 7 is any of the forms in (a)—(e). If

(A 0
“=\lo B)
then Proposition I1.8-12 shows that the R”-valued form 72* ¢ satisfies

_ A1 0
Ry 6 = m* R = m*a~ "¢ = my* ( 0o B! ) ¢,
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while
Ra*m*() = ﬂl*Ra*e = 7[1*A_19.

From this we see that R;*n has the required property when 7 is one of the forms
in (a) or (b). We also have, by Proposition II.8-11,

RS ™ = m* R = my*a ™ ya = my* (Ao_l BO.1 ) ¥ (g g) ;
for the same reason we have
R *w =m* A7 WA,
RIm* =m*B~'¥B, ¥ =(¥)),
while (x) gives
R[] = m* B~ [¥]4 [¥] = (¥]).

From these equations we see that R,;*n has the required property when 7 s one
of the forms in (c)—(e).

Now we claim that our distribution A is integrable. According to Proposition
1.7-14, we just have to show that the differentials of all the forms in (a)—(e) are
in the ideal 4 generated by these forms. Now we have, for example,

d(m* ¢’ — m* ) =n2*(_2¢; A¢j) _ m*(—Zw}i Aef)
J J
+ ﬂz*(—zwi /\d)r).

The last term is in J, since the forms (b) are. The first two terms can be written
_ * g 0 *aj *ej _ LR B N | *ej
" A ¢l — 7" 8)) (" — M wi) Ao,
J J

which 1s in {. For the extertor differential
d(m"¢") = 772*(— Z Vi A ¢i) + 772*(— Z VA ¢S)-
i s
we note that the second term is in . while the first can be written

=Y M =) AT = Dt A (el — o)

1

- Zﬂl*(\w AO'):
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the first two terms are in 4, while the third is zero by equation (1). We will
briefly outline the check for (c), and leave the others for the reader. We have

d(m* ¥ — m*e)) = nz*(— > WA \]!]k) - m*(—Zw}; A wf)
k k
+ nz*(— Y wia xu;) + (W) — ().

Since N has constant curvature Ky, we have nz*(\ll]':) = Kom*(¢' A ¢7), while
equation (2) tells us how to get nd of 7{1*(9;). We obtain, in parucular, the
term

K()[]Tz*d)i A ﬂz*d)j - ﬂl*ei A ﬂl*ej]
= Ko[(my* @' — m*0') A 1" ¢’

+ 10" A (127 — m%07)],

which 1s in . The other terms are easily paired off and treated as above.

Now consider an integral manifold T of the distribution A. Since the map
s A,y wy) = O(TM, E)y ) 1s always an isomorphism, the map 71: T —
O(TM, E) is a diffeomorphism in a neighborhood of any point. Replacing M
by a sufficiently small open subset of M if necessary, we may assume that
7 T — O(TM, E) 1s a diffecomorphism. Then T is the graph of a function
g: O(TM, E) - O(TN), given exphcitly by

g=mo(m|T)™".

Because R, A = Aforalla € G, itis easy to see that g takes fibres of O(TM, E)
to fibres of O(TN), so that there is a diffeomorphism f: M — N for which
the following diagram commutes.

g

O(TM . E) O(TN)
1
M f N

Now suppose we have a tangent vector Xp € My, aframe (4.v) € 7! (p), and
atangent vector Y € O(TM, E)(, ) with m,}Y = X,. Then. by definition of *.
we have

8°(Y) = i™ component of X, with respect to the frame u.
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Now
f:kXp = f*ﬂ*Y =TTN:ExY,

so we likewise have

it component of f, X, with respect to the frame g((u, v))

= ¢'(gxY)

= ¢/ (M2 (m|T)'u(Y))

= 1% (m|T)~'u(Y))

=m*0' (m|T) "' (Y)) since the forms (a) are zero on T’
=0'(Y).

Similarly, since the forms (b) vanish on T', we find that

rth component of f, X, with respect to the frame g((u,v)) =0.

This shows us that g is of the form
g, v) = (fw), f ),

for some bundle 1somorphism f: E — {normal bundle of f(M)in N} cov-
ering f. The map f is an 1sometry, since f, takes orthonormal frames to
orthonormal frames, and the map f is inner product preserving, for the same
reason.

The proof that f makes o correspond to s and § correspond to D is similar
to the above arguments, using the fact that the forms (c)—(e) vanish on T’

We have thus proved the existence part of the theorem locally. Simple-
connectivity is then used to prove the global result, in the standard way. The
uniqueness part of the theorem is handled just like the uniqueness part of The-
orem 18. «»

For ease of reference, we want to have an explicit statement of Theorem 20
in the case of hypersurfaces. We will assume that the ambient space N is ori-
entable. In this case we claim that a diffoomorphism ¢: M — M between
immersed hyvpersurfaces is always covered by an inner product preserving bun-
dle isomorphism $: NorM — Nor M. To construct ¢ we first choose a
particular orientation for N. Then for p € M we choose an ordered basis
Xy, X» € M), and a unit normal v, € M,,l such that (X7..... Xn.,vp) is pos-
itively oriented in Np,. Then there is a unique unit normal vy (,) = Mgy pyt such
that (¢ X1, ... .9 Xn.Vg(p)) 15 positively oriented in Ny (p). We let q~§: M,,J' —
My(p)* be the linear map taking v, to Dg(p); it is clear that this map is well-
defined. If —1: Nor M — Nor M is the bundle equivalence taking X e M,*
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to —X € My', then ¢ = ¢ o —1: Nor M — Nor M is another inner prod-
uct preserving bundle isomorphism covering ¢, and these are clearly the only
such. When N 1s oriented, the hypersurfaces M, M are also oriented, and
¢: M — M is orientation preserving, things are even simpler, for there are unit
normal fields v and ¥ on M and M, determined by their orientations (and the
orientation of N), and the obvious ¢ to consider is the one taking v to .

21. THEOREM. Let (N"*!,{ , }) be an orientable complete connected Rie-
mannian manifold of constant curvature Kp.

(1) Let M and M be connected hypersurfaces of N, let ¢: M — M be an isom-

etry, and let ¢: Nor M — Nor M be one of the two inner product preserving
bundle isomorphisms covering ¢. Suppose that either

5(@a X, 0.Y) = (s(X,Y))
for all tangent vectors X, Y at all ponts of M, or

5(@a X, 0:Y) = —d(s(X, Y))
for all X, Y.~ Then ¢ 1s the restriction of an 1sometry 4: N - N with 4, = q;
or A, = —¢ on Nor M.

(I'Y Choose an orientation for N, and let M and M be connected oriented
hypersurfaces of N, with unit normal fields v and v determined by their or1-
entations (and the orientation of N), with corresponding second fundamental
forms I and II. Suppose that ¢: M — M is an orientation preserving isometry
with ¢*IT = I1. Then ¢ is the restriction of an orientation preserving isometry
A: N - N with A,v = v.

(2) Let (M,{ , )) be a simply-connected n-dimensional Riemannian mani-
fold, with covariant differentiation V and curvature tensor R, and let S be a
symmetric tensor on M, covariant of order 2. Suppose that S satisfies

() Gauss’ Equation:
Ko[(X, W) (Y, Z) — (X.Z)) - (Y, W))]
=(RIX.NZ WH+S(X.Z) - S(Y.W)—-S(Y,Z2) - S(X,W)
(2) The Codazzi-Mainardi Equations:
(VxS$)IY. Z) = (VyS)(X, Z).

Then there is an isometric immersion f: M — N such that S = f*II, where I1
1s the second fundamental form on f(M) for some unit normal field v.
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One concluding remark is in order. In Chapter 2 we showed that the Gauss
and Codazzi-Mainardi equations for a surface in R? are equivalent to the equa-
tions of structure of O(3), and that the Fundamental Theorem of Surface The-
ory reduces to Theorems 1.10-17 and 1.10-18 about Lie groups. It is not hard
(Problem 15) to show, similarly, that the Gauss, Codazzi-Mainardi, and Ricci
equations for a submanifold of R™ are equivalent to the equations of structure
of O(m), and that Theorem 19 reduces to theorems about Lie groups. The Lie
group O(m) makes 1ts appearance here because of the fact that the group of
Euclidean motions of R™ is a semi-direct product R™ x O(m). For a general
Riemannian manifold (N, ( , )) of constant curvature Ky, the group of 1some-
tries cannot be factored in this way. That is why our proof of Theorem 20
mvolved the bundle O(N) of orthonormal frames of N. As a matter of fact,
the bundle O(N) is the group of isometries of N (as a set), since an isometry
is determined by knowing which orthonormal frame u € O(N) is the image of
some fixed orthonormal frame ug. Thus we ought to be able to interpret the
Gauss, Codazzi-Mainardi, and Ricci equations for a submanifold of N as the
equations of structure of O(N), equipped with the appropriate group structure,
and Theorem 20 should reduce to Theorems 1.10-17 and 1.10-18. However, we
forbear to enter any further into such considerations.

D. FIRST CONSEQUENCES

We begin by considering hypersurfaces M" C R"*!. In a neighborhood of
any pomt of M there is a unit normal field v: M" — S§" C R"*! unique up to
sign, and hence a single second fundamental form II: M, x M, — R (which
is defined only up to sign). We also have the map dv: M, — M, with

(X,,Y,) = (s(X,, ¥,), v(p))
= (V'x, Y, v(p))
=—(Vx,v,Yp)
= (=dv(Xp).Yp).

Thus —dv: M, — M, is a symmetric linear transformation. As in Chapter 2.
we define the principal directions at p to be the unit eigenvectors X, € M, for
—dv: M, — M. and we define the principal curvatures to be the correspond-
ing eigenvalues. Equivalendy. the principal curvatures are the eigenvalues of
the ssmmetric matrix (I1(X;. X;)) = ({(s(X;. Xj).v(p))) for Xy..... X, an or-
thonormal basis of M.

Various kinds of curvatures can be defined in terms of the &;. Since the
ordering of the A; is arbitrary. we obviously want to consider only combinations
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of the k; which are invariant under all permutations of the indices 1,...,n. It
is well-known that any polynomial function of # variables 1,...,t, which is
invariant under all permutations of 1,...,n can be written as a polynomial in
the “elementary symmetric functions” oy, .. .,0, defined by

n
Ol(tls"'stn)=ztia 02(11,...,tn)=Ztitj,
i=1 i<j
03ty ln) = Z 1itjly
i<j<k
On(tyy ... th) =Hhta - 1y,

These functions are the coefficients, up to sign, of the various powers of x in
the polynomial

P ox)=(x—-t)x—-10) (x—t)
=x" =01 (t1s. )X (=D o, ).

[Recall also that if o0;(1y,...,1,) = oi(u1,...,u,) for all i, then the polyno-
mials Py, ., (x) and Py, 4,(x) are equal, and thus the set of their roots,
{t,...,tx} and {u, ..., un}, are also equal, counting multiplicities.] We define
the (elementary symmetric) curvatures K (p),..., K,(p) by

where the k; are the principal curvatures at p; the binomial coefficient (;') 18
inserted for sentimental reasons. In particular,

ki o+ ka

H(p) = Ki(p) = p

1s called the mean curvature,

K(p) = Kn(p) =k -k, is called the Gaussian curvature.

Notice that K(p) is independent of the choice of v for j even, while K;(p) is
only defined up to sign for j odd.

In the case of surfaces, we found that the Gaussian curvature K = ky - k3 1s
an invariant under isometry. In general, we have

22. PROPOSITION. For hypersurfaces of R**!_ the set of the (5) numbers
tkik; © i < j} is invariant under isometrv: If f: M — M is an isometry
between two hypersurfaces M, M C R"™! and k. ..., k, are the principal
curvatures of M at p, while ki, ....kn are the principal curvatures of M at
S(p), then the sets {kik; i < j} and {/;[/\_'j i1 < Jj} are equal. counting
multiplicities.
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PROOF. Yor X,Y € M,, let R(X,Y) denote the map M, x M, — R defined
by

R(X,YNZ,W) = (R(X,Y)Z,W).
The symmetry properties of R show that the map R(X,Y) is skew-symmetric,
so that R(X,Y) € QZ(M,,). Now the inner product { , ), on M, gives us a

map X — X* from M, to M,*, defined by X*(Y) = (X, Y). Choose a basis
X1,..., Xp for M), and consider the map from Qz(M,,) to QZ(M,,) given by

Xi* A Xi* = R(Xi, X;);

this makes sense since the X;* A X;* for i < j are a basis for QZ(M,,) and since
R(Xj, X;) = —R(X;, Xj). We see immediately that under this map

(Zi“iXi)* A (Z; bin)* = R(Zi a;i Xi, Zj ijj)s
so we can describe our map, without any choice of basis, as

(0 X*AY*— R(X,Y), from QYM,) to Q%(M,).

Now the vector space Q*(M,) has dimension (}), so this map has (}) eigenval-
ues (counting multiplicities). But if X1, ..., X, are principal vectors at p, with

corresponding eigenvalues k1, . .., kn, then Gauss’ equation tells us that
R(X;, Xj) = —kikj Xi* A X*.

So the set {—k;k; : i < j} is the set of eigenvalues of the map (1). Since (1) is
defined in terms of the curvature tensor R and the metric { , ), this proves that
{—kik; :i < j} s mvariant under isometry. <

23. COROLLARY (THEOREMA EGREGIUM). For hypersurfaces in R**!,
the Gaussian curvature K is invariant under isometry if # is even, and invariant
up to sign if # is odd.

PROOF. Observe that

n

-
Kt = (l_ll\,)n = l_I/\','kj. L

i=1 i<j
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There 1s another way of reaching this result, which will provide us with an ex-
plicit formula for K in terms of R and ( , ), a formula which will be extremely
important in Chapter 13. First we will do a little linear algebra. Let V be a
vector space of even dimension n, andlet /1 V — V be a linear transformation
having matrix A = (a;;) with respect to a basis vy, ..., v,. We propose to find
det f = det A in terms of the determinants of all 2 x 2 submatrices of A. We will let

D(ir, 2 j1s J2) = @iy ji @iz jo = @iy j2 i ju s

sothatif i} < iy and j; < j,, then D(iy,i3; ji, j2) 1s the determinant of the 2 x 2
submatrix of A obtained by selecting rows #; and i, and columns j; and j,.
Recall that det f can be defined as follows. The linear transformation f gives
us a map f*: Qk (V) - Qk(V) defined by

XYy, v) = TS, -, f(0r), al T e QFv).

In particular, we have the map f*: Q"(V) — Q"(V). Since Q"(V) is 1-dimen-
sional, this map must be multiplication by a constant; and this constant is, in
fact, just det f. Now our map f* also satisfies

S n-Ad) = [T @) A A S (k) all g; € Q'(V).
In particular, let the ¢; be the dual basis to the v;. Then

f) = Za,-ivj = [M¢i) = Zaij¢j-
j=1

j=1

So
S @A Agn) =[P A ST @DIA -

= (Zalj¢j A Za2k¢k) AN
j=1 k=1

= (Z[auazk —aikazjld; A ¢k) N

j<k

1 .
(5 > DQ,2: ), k) /\qsk) Ao
Jj.k
From this we see that

1 o . S i
det f = 7 Z D(1,2: jy, j2)--- D — 1, jo—q, ju)et7n,
jl ----- jn
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where

1 J1,...,jn 1s an even permutation of 1,....n
ghin = & J1s-- .5 jn 18 an odd permutation of 1,...,n

0 J1s- -5 ju are not all distinct.

We can clearly also write

1

det f = 21/2p)

Dy, iz2; j1s j2) - Dn—150n; a1, jn)et neltin,
I1y.ensin

JUseesJn

Now we apply this formula to evaluate
K(p)y=det—dv: M, - M,

n terms of a basis X1, ..., X, of M,. Using Fact 0 from Chapter 2, we have

For the determinants of the 2 x 2 submatrices of the matrix (II1( X, X)) we have
by Gauss’ equation,

k]

D(iy,12; j1, j2) = (R(Xiy, Xi) ) X}, Xj,).

So

1
K(p)= ZTZII' Z (R(XizﬁXil)Xfl’sz)
I yeunsin

J1seesn
gil...i,,gjl...j,,

- (R(X; Cdet((X7, X;))

ne nfl’Xjn)

Xin—I)Xj

If we have a coordinate system x',...,x" on M, and let X; = 8/0x", then

(R(Xiz,Xil)leﬂle):<R( a a ) 8 8 >

axi27 gxi ) gxJ1T gz

= Rj, a0, (see pg. 11.190)
R

= Riizjrja2-
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So we can write

gil---in gjl---jn

Vdet(giy) ' Vdet(gij)

1 Z
K= E”/Tn' RililjljZ U Rin-linjnAljn ’

I eee, In
Jiseenn

The symbol &'t /v/det(g;;) which appears in this formula has the following

natural interpretation. We have a map

A
Mp* X - x Mpy* —> Q"(M,)

n times
given by
(¢]s"'a¢n)|_) ¢] AA¢n

In particular,
(dx"(p),....dx"(p)) w & (dx"(p)A--- A dx"(p)).

Now the metric { , ), on M, determines (compare pg. I.311) two elements of
norm 1 in the 1-dimensional vector space Q"(Mp), namely

£vdet(gi;(p)) - dx'(p) A+ Adx"(p).

If we choose an orientation for M, then we have a way of choosing between
these two elements (choose the + sign if and only if x',... x" is a positively
oriented coordinate system), and we therefore have a map Q"(M,) — R defined
by taking this element to 1. The composition

A
e My* x - x M,* — Q"(M,)—> R

n times

is then a contravariant vector field of order », and its components in the x!, . ..

k]

x" coordinate system are precisely e/t /v/det(g;;). If we use R for the tensor
RX,Y.Z,W)=(R(X,Y)Z, W),

we can then write our formula for K as

1 .
K=—— contractionof (R®-- - @ R® e ® &).
2n/2p1 e e’
n/2 times

A different choice of orientation for M changes € to —e. but doesn’t change K.
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Proposition 22 also shows that K3 1s mvariant under sometry, since

(5)Katp) = oathr, o hen) = Y kiky = on(thiky i < 7)),
i<j

The other elementary symmetric functions of {k;k; :i < j} are also invariant
under 1sometry, but in general these functions do not have very nice expres-
sions in terms of ki,...,k,. More mnteresting is the fact that K, is invariant
under 1sometry whenever r is even; this follows from the algebraic fact (Prob-
lem 16) that the coeflicients of even powers of A in the characteristic polynomial
Xx(X) of A can always be expressed in terms of the determinants of the 2 x 2
submatrices of A.

Now let us consider a hypersurface M” of a general Riemannian manifold
(N™' (). We still have a unit normal field v on M, and corresponding
second fundamental form II with

II(Xps Yp) = (S(XpsYp),V(P))
= (V/X,,Y,U(P)) = —(V/va,Yp)
= (A,(Xp), Yp).

We can define the principal directions at p to be the unit eigenvectors for the
self-adjoint map A,: M, — M), and the principal curvatures to be the corre-
sponding eigenvalues. Equivalently, the principal curvatures are the eigenval-
ues of the symmetric matrix (II(X;, X;)) for X1,..., X, an orthonormal basis
of M,. We no longer expect the Theorema Egregium to be true in general—
even for surfaces, Gauss’ equation for the Gaussian curvature involves not only
the metric induced on the surface, but also the curvature of N, which varies
from point to point. We do obtain a generalization of the Theorema Egregium
m the one case where we would expect it:

24. PROPOSITION. Let N"*!' be a Riemannian manifold of constant cur-
vature Ko. Then for hypersurfaces m N, the set {k;k; : i < j} of products of
principal curvatures is invariant under isometry. Consequently, the Gaussian
curvature Kjp 1s mvariant under sometry if # is even, and mvariant up to sign
if 715 odd.

PROOF. Exactly like the proot of Proposition 22, except that Gauss’ equation
gives

R(X;. X;) = —(kik; + Ko)Xi* A Xj*.

so the set {—k;kj — Ko : i < j}is the set of eigenvalues of the map X* AY* —
R(X.Y).
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When we consider submanifolds M C N of higher codimension, the defini-
tions given previously no longer make sense. However, if we choose any normal
vector & € My then we have the map Ag: M, — M), satisfying

(‘S(X’Y)’E):(AE(X)’Y) X’YeMp’
so we can define the principal directions and principal curvatures for £ to be
the unit eigenvectors and corresponding eigenvalues for Ag; equivalently, the
principal curvatures are the eigenvalues of the symmetric matrix ({s(X;, Xj),£))

for X1, ..., Xy an orthonormal basis of M,. We can then define the (elementary
symmetric) curvatures K¢, ..., Ky¢ by

n
(J.)Kj;g =0j(ki,....kn),

where the k; are the principal curvatures for §&. We thus have maps
My — R givenby £ Kj.
The one interesting (and also very important) case arises for the map
Ml,l — R givenby & He = K¢,
This map is lnear, since Agrg = Ag + Ag and since trace is a linear function
of matrices. Therefore there i1s a unique vector n(p) € M,,J' such that

X1, X)),
1(p), &) = Hy = 22 d 83)
for all £ € Mpl,

Xi,..., X, € M, orthonormal

This vector n(p) is called the mean curvature normal at p. In the case of a
hypersurface, n(p) = H(p)-v(p), where v is the unit normal (changing v to —v
changes H to —H, so H - v is well-defined). In general, if vyq1,...,vm € M+
1s an orthonormal basis, then clearly

n(p) = Z Hy, - v,

r=n+l1

If; moreover, Xj,..., X, are vector fields tangent to M with X (p), ..., X,(p)
an orthonormal basis for M, then

Hy = - trace((s(Xi(p). X;(p).£))

n
1

=5 2 s(Xi(p). Xi(p)).§)

i=1

n
1

=5 (V' (p»Xi.&).
i=1
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Consequently,
m
77([7) = Z Hvr “Vr
r=n+l
1 m n
=5 2 2 VnmXiv) v
r=n+1 i=lI
whence

n
1
n(p) = E'L(Z V/X,-(p)Xi)a X1(p), ..., Xy(p) orthonormal.
i=1

The mean curvature H for a hypersurface, and the mean curvature normal
field n m general, will play an important role in Chapter 9.

Even though principal directions and curvatures cannot be defined for sub-
manifolds M C N of higher codimension, one definition still makes sense. A
point p € M is called an umbilic if the principal curvatures for § are all equal,
for every £ € M,*. In other words, each map Ag: M, — M, must be some
multiple of the identity, so for each & there must be a A with

Ae(X) =AX = (s(X,Y), &) =4 (X,Y) foral X,Y € M,.

It clearly suffices to have
Ay, (X)=A X

4 hacl 1

for a basis vy4q..... U of Mp—.
It p i1s an umbilic and we choose an orthonormal basis v,44.. ... Vm of Mpl

and constants Ay41,.... A, with

(S(X.Y).v) = A (X.Y)  forall X.Y € M,,

then
m m
SX.Y) = ) (s(X.Y).v)v, = (X.Y) ( > A,u,).
r=n+1 r=n+1
This means that for everv & € M, ,,l. and everv orthonormal basis X7..... X

of Mp. we have

(s(X;. Xj).86)y = 5ij<z)\rvra E>1
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SO

L trace(s(X;, X)),6)) = <Zx,v,, >trace(8,-j)

= <Zx,v,, s>.

It follows that 3, A, v, is precisely n(p), so we have
s(X,Y) = (X, Y n(p), at an umbilic p.

When s: M, x My — Myt is not the zero map we can set

77(]7)'—_ Z )\r\)r:)\\)*

r=m+1

for a unique non-zero A € R and unit vector vy, and for all X,Y € M, we have

($(X,Y),vs) =4 (X,Y)
(%) {

(s(X,Y),v)=0 for (v,v,) = 0.

95. LEMMA. Let (N™,( ,)) be a space of constant curvature Ko, and for
n > 2 let M" be a connected immersed submanifold with all points umbilics.
Then either s = 0 everywhere, so that M is totally geodesic (by Theorems 1-16
and 1-17), or else A # 0 is constant and M lies in some (# + 1)-dimensional
totally geodesic submanifold.

PROOF. Suppose that s(p) # 0, so that A(p) # 0. In a neighborhood of p we
choose an adapted orthonormal moving frame X1, ..., Xp, Xng1,. -5 X, on M
with X,41 = vy at each point. Then for 1 <7 <n, and X tangent to M we
have, by (%),

MX.X) r=n+1

; =(V’ ir»Adr) = X. Xi), Xy) =
Y/ (X) = (Vix Xi, Xp) = (s(X. Xi). Xo) {0 R

which means that on TM we have

(2) yl =0, r>n+l.
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From equation (1) and the Codazzi-Mainardi equations we find that on TM we
have

dAAOT+ A dO = dy!t! = = Yt Ay
o

n
= —Z)\@k A of,
k=1

while the first structural equation gives

n n
do' = = wj n0F ==Y 0% Aok
k=1 k=1

So we find that '
dl A0 =0, 1 <i<n.

Since n > 2, this implies that dA = 0, so that A 1s constant in the neighborhood.
This argument shows in general that {g € M : A(g) = A(p)} 1s open. But this
set 1s also closed, and hence all of M. Thus A is constant.

Now note that equation (2) gives

0=dy] ==Y YL Ayt ==Yy, AN
o
= Y, =0 onTM, forr >n+1.

Therefore

B) Vv =ViXopi =Y Yl (X) X; =2 (X.X;)-X; by ()
j=1 j=l
=-1X.

We also have

n
(4 VixXi= > vFO X+ 9N X)) v =1
k=1

Let A be the (n+1)-dimensional distribution on M with A(p) = Mp+R-v.(p).
Equations (3) and (4) and Pre-Lemma 7 show that A is parallel along every
curve ¢ lying in M. So Corollarv 11 implies that M lies in an (n + 1)-dimen-
sional totally geodesic subspace of N. <
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For the case Ko = 0, we can immediately characterize the all-umbilic sub-
manifolds:

926. THEOREM. Forn > 2,let M" C R" bea connected immersed subman-
ifold of R™ with all points umbilics. Then either M lies in some n-dimensional
plane or else M lies in some n-dimensional sphere in some (7 + 1)-dimensional
plane.

PROOF. We just have to show that if A # 0 in Lemma 25, then M lies in a
sphere of radius 1/A. We simply repeat the proof from Lemma 1: Let V' be the
vector field on R™ defined by

V(p) = pp € R"}.

Then V¢V = X for all tangent vectors X of R™, so we can write equation (3)
in Lemma 25 as -

Vi (Xps1 +AV)=0.

Thus the vector field X,41+AV is parallel along M. Identifying tangent vectors
of R™ with elements of R™ this means that Xp41 + AV 1s a constant vector vp
on M, so we have

Xps1(p)+4-p=vo€R™.

Thus
vo — Xn41(p)

P = 3
for all p € M, which means that M lies in the sphere of radius 1/ around the
point vg/A. <

This proof, which depends so strongly on the special properties of R”, breaks
down completely when we replace R by a complete simply connected manifold
of constant curvature Ko # 0. Again we have to exploit different descriptions
of these manifolds. First we consider the case Ko > 0.

27. THEOREM. Let S C R™*! be an m-sphere. For n > 2, let M" be a
connected immersed submanifold of S with all points of M umbilics. Then M
1s part of an n-sphere.

PROOF. We have M C S ¢ R™*!, with corresponding covariant differentia-
tions V, V', V'. Given X,.Y, € M,, extend them to vector fields X, Y in R™
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which are tangent to M along M, and tangent to S along S. If £ € M,* C S,
then
(V'x,Y,E) = (V'x,Y,§),

since V'x, Y is the component of V'x Y tangent to S; so we have
0 (V'x, Y, &) = M(X,,Y,) for some A,

since p is an umbilic. On the other hand, if v € SPJ' C R™*1, is the unit
normal, then

(2) (V'x,Y,v) = —(X,Y),  r = radius of S,

1
,
since all points of S are umbilics in R”*!. Equations (I) and (2) show that all
pomts of M are umbilics when M is considered as a submanifold of R™+!,
Thus the desired result follows immediately from Theorem 26. o

Notice that, as predicted by Lemma 25, an n-sphere £ C S is either a totally
geodesic submanifold of § (when the radius of T equals the radius of S), or
else 1s contained in some (# + 1)-dimensional totally geodesic submanifold ¥’
of S. In the latter case, I is a geodesic sphere in ¥’; thus we have a complete
analogy with Theorem 26.

In order to use the same scheme for investigating all-umbilic submanifolds
of H", we would first have to consider the all-umbilic submanifolds of R”*! with
the Lorentzian metric; these are the planes P C R"*! of various dimensions,
and the quadrics

Q={peP:{p—po,p—po)=c}CP.

Then the all-umbilic submanifolds of H” must be of the form H"NP or H'NQ,
and we already noted that the latter submanifolds are contained among the
former. However, we merely mentioned, but did not prove, the characterization
of the sets H" N P. So we will use a different method for the case Ko < 0. We
have already used the projective model of H", in the second proot of Lemma 8.
Now we will use the conformal model. We appeal to a classical result about
conformally equivalent manifolds.

28. PROPOSITION. Let f: N — N be a conformal equivalence, and let
M C N be a submanifold of N with an umbilic p € M. Then f(p)is an
umbilic of f(M) C N (but the A for f(p) need not be the A for p).
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PROOEF. Since the result is purely local, we can assume that the underlying
spaces of N and N are both R™, that f is the identity, that p = f(p) = 0,
and that M, = f(M)gp) 1s the (x',..., x")-plane C R™,. The metrics for N
and N have components gqp and gqp satisfying

gaﬂ = ezagaﬂ

for some function 0. Then g® = ¢729g*# and straightforward calculations
show that the corresponding Christoffel symbols satisfy the following equations,
in which subscripts on o denote partial derivatives:

[@B,y] = eza([aﬂs yl+ Zoy0p + &8y0a — gaﬂay)
m
F;'ﬂ = F;'ﬂ +8Yop + Szoa — Zap Z goy,.
pn=l

In particular, for i, j <n and r > n we have
_ m
0 I =T —&i- ngau-
n=1

The hypothesis that p = 0 is an umbilic point for M means that for each r > n
there is a constant A, with

Firj(O):)\rgij(O), l<ij=n

Then equation (l) gives

70 = [Ar - Z g”‘(O)Uu(O)} - £ij(0),

u=l1

which shows that f(p) = 0 is an umbilic for f(M). ¢

29. THEOREM. For n > 2. let M" be a conmected immersed submanifold of
H™(Kg) with all points of M umbilics. Then either M is totally geodesic. or
else M is either a geodesic sphere, a horosphere, or an equidistant hypersurface
in some (1 4+ 1)-dimensional totally geodesic submanifold of H™(Kp).

PROOF. Tmmediate from Lemma 25, Theorem 26, Proposition 28, and our
discussion of (B™, ( , )) in section A. &
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Proposition 28 could just as well be used to prove Theorem 27. Conversely,
if we apply the method used in proving Theorem 27 with the results of The-
orem 29, then it is not hard to work backwards and verify the description of
geodesic spheres, horospheres, and equidistant hypersurfaces in H” which was
given on page 16. A particular consequence of Theorem 29 is also noteworthy:
Any n-sphere contained in H", and any n-sphere which intersects R™~! non-
orthogonally, lies in some (n + 1)-sphere or (n + 1)-plane which intersects R~
orthogonally.  Presumably one could also hack this result out by elementary

geometry.
For an orthonormal frame X1, ..., X, on an all-umbilic hypersurface M™~1
C H™(Kp) (m = 3) with (constant) A we have

R(X;, Xj) = —(A + K))X;* A X;*  (compare page 70),
which implies that

(R(Xi, X)) X;, Xi) = R(X:, X;)(X;, X;)
. = )\-2 + K0>

so that M has constant curvature A? + Ko. Any two all-umbilic hypersurfaces
with the same A are related by an isometry of H™(Kp), by the first part of
Theorem 21. Moreover, there exists a hypersurface with any given A > 0 (for
A < 0 we just have the same hypersurface with the opposite choice of unit
normal field). In fact, if (M,{ , )) is a simply connected (m — 1)-dimen-
sional manifold of constant curvature A% + Ky, and we define the tensor S
on M by S(X.Y) = A{X.Y)). then M, together with { , ) and S, satisfies
Gauss” equation and the Codazzi-Mainardi equations, so by the second part of
Theorem 21 there is an isometry of M into H™(Kj) with second fundamental
form II satistyving Il = A - 1.

It is not hard to determine how the various X are attached to the various tvpes
of all-umbilic hypersurfaces of H™(K,). For simplicity, consider (B™,{ , }),
with constant curvature Ko = —1. We know that the horospheres have constant
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curvature 0 = A> — 1 == 1 = 1, while the totally geodesic hypersurfaces
have constant curvature —1 = A2 — 1 == 1 = 0. We can take a family of all-

=1, curvature 0

0< X<, =1 < curvature < 0

A =0, curvature —1

umbilic hypersurfaces passing continuously from a totally geodesic hypersurface
to a horosphere, with all members of the family distinct up to 1sometry of B™.
The intermediate hypersurfaces will be equidistant hypersurfaces, and include
all such hypersurfaces (up to isometry of B™). The corresponding A’s must vary
monotonically from 0 to I. This shows that equidistant hypersurfaces, and only
equidistant hypersurfaces, have 0 < A < 1. So all A > 1 must occur for the
geodesic spheres. If A, 1s the A for the geodesic sphere of radius r around 0,
then r = A, must be a monotonic function of r. Clearly A, — oo as r — 0,
and A, —» lasr — o0.

We have now generalized essentially the material in Chapter 2 which precedes
the discussion of the third fundamental form. The facts about higher funda-
mental forms in general will be left to the Problems. The next generalization
on our agenda is then the following.

30. PROPOSITION. If M" is a compact submanifold immersed in R™, then

there is a point p € M and a normal § € M,* for which the map 4;: M, —
M

ps
(Ae(X).Y) = (s(X.Y).6), X.Y eM,,

Is positive definite. (4g(X), X) > 0 for X # 0. So if M is a compact hy-
persurface. with unit normal field v, then there is a point p € M for which
—dv: M, — M, is either positive or negative definite (depending on the choice
of v). In particular, the Gaussian curvature K,(p) is non-zero, and in fact
Ku(p) > 0 for n even.
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PROOF. As in the proof of Proposition 2-8, let p be a point of M furthest
from 0. Then the line from 0 1o p is normal to M at p, and we choose & to be
the unit vector in M, pointing in this direction. The rest of the argument is left
as an exercise for the reader. <

31. COROLLARY. There are no compact submanifolds M” immersed in R™
with mean curvature normal n = 0. In particular, there are no immersed
hypersurfaces in R” with mean curvature H = 0.

PROOF. 1f & is a normal given by Proposition 30, then
(n(p),&) = Hg = trace Ag,

and trace Ag > 0 since Ag is positive definite. ¢

Suppose we replace R™ in Proposition 30 by the space (B™, { , )) of constant
curvature Ko < 0. If p € M is a point furthest from 0, then M is contamed in
the geodesic sphere around 0 which passes through p. All principal curvatures

of this sphere are equal to some A > /—Kp (compare pg. III.64). The geodesic
from 0 to p is normal 1o M at p. and if we choose £ to be the unit normal in
Mt pointing in this direction. then we will have

(Ag(X). X) > A > —Kop.
For a hypersphere M. and a correctly chosen unit normal field v. swe thus find

that all principal curvatures ky,. .., kp are > A > /—Kgo. Hence

Kn(p)=[]ki = 2" > (V-Ko)".

=1
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In particular, for n even this holds for either choice of v. We also see that
there are no compact immersed submanifolds of N with mean curvature nor-
mal 1 = 0, and hence no compact immersed hypersurfaces of N with mean
curvature H = 0.

Now let us replace R™ by a sphere S of radius l/\/?, for Ko > 0, and sup-
pose moreover, that M is contained in an open hemisphere of S, say the hemisphere
centered around the point x. By choosing a point p € M furthest from x, and
a unit normal & in M, pointing along the geodesic from x to p, we find that

(Ag(X), X) = A

for some A > 0. But there is obviously no positive lower bound for all A’s. For
hypersurfaces M we find that K,(p) # 0, and K,(p) > 0 for n even, but again
there is no positive lower bound for K,. Similarly, we find that Corollary 31
generalizes to compact submanifolds of an open hemisphere. Naturally, our
results break down if we replace the hemisphere by the whole sphere, for the
equatorial (m — 1)-sphere has second fundamental form s = 0. You might think
that this is the only exception, but there are actually many other possibilities. In
fact, we easily compute that for p,q > 1 with p + ¢ = m — 1, the hypersurface

M:{(xl,...,xp+1,y1,...,yq+1)eR"’+' Y oxii =

cSsm

p 2 4
m—1 and 3 yk _m—l}

has mean curvature H = 0 in the unit sphere S™, so there is certainly no point
p € M where dv: My, — M, is definite.

To complete our generalization of the material in Chapter 2, we want to dis-
cuss the relationship between positive curvature and convexity of hypersurfaces.
For a hypersurface M" C R"*!, the proper analogue of positivity of the Gauss-
ian curvature at p is the condition that all sectional curvatures at p are positive;
equivalently, all principal curvatures should have the same sign, or yet again,
the map dv: M, — M, should be (positive or negative) definite. Itis easy to see
that definiteness of dv: M, — M, implies that M locally lies on one side of the
tangent hyperplane of M at p. If dv: M, — M, is merely semi-definite (that
is. (dv(X), X) > 0 for all X.or (dv(X), X) <0 for all X), then no conclusion
can be drawn. Butif dv: M, — Mp is not semi-definite, then M locally lies
on both sides of its tangent hyperplane at p. Propositions 2-9 and 2-10 clearly
generalize to hvpersurfaces in R™*!: e will not bother to write down all the
details. but will henceforth use the word “convex” for a hypersurface in either
of its two equivalent meanings.
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32. PROPOSITION.
(Iy If M is a convex hypersurface in R"*!, then dv: M, — M), is semi-definite
for all p € M.

(2) Let M be a compact connected n-manifold, and f: M — R"*! an immer-
sion with normal map »n such that dn: M, — M, 1s definite for all p € M.
Then

(i) The manifold M is orientable, and the normal mapn: M — S" c R"*!
1s a difftcomorphism.

ii) The map f: M — R"*! is an imbedding, and f(M) is convex.
p g

PROOF. This generalization of Hadamard’s Theorem (2-11) is proved in exactly

the same way as the original. &

The most significant part of this result 1s the fact that the immersion f must
be an imbedding. In fact, the definiteness of dv implies that M is locally
convex, and there are general arguments to show that a locally convex set in
R™ i1s actually convex, which implies the theorem for an imbedded hypersur-
face M. On the other hand, we have already mentioned in Chapter 2 that
for n = 2 Hadamard’s Theorem holds even under the weakened assumption
that K(p) = 0 for all p € M. Here the result 1s not clear even for imbedded
M C R, since the condition K > 0 does not imply local convexity for arbi-
trary (non-compact) M. For example, the graph of (x,y) — x*(1 + y?) has

Y

K > 0 in a neighborhood of 0 € R? (by an easy calculation), but is clearly not
locally convex. The extension of Hadamard’s Theorem for K > 0 (and n = 2)
was originally proved by Chern and Lashof [I], using a little Morse theorv.
Sacksteder [1] then gave a proof for all n under the weakened assumption that
dn: M, — M, is semi-definite for all p € M; in fact, compactness of M can
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be replaced by completeness, provided that there is at least one point p € M
where at least one sectional curvature is non-zero (without this last condition, M
might be a generalized cylinder). Sacksteder’s proof is more “elementary”, and,
as one might guess, much harder. (For the case where all dn: Mp — Mp are
definite, but M is merely complete and immersed, there is an earlier proof
by Stoker [1}.) Do Carmo and Lima [I] gave a simple proof of a result even
more general than Sacksteder’s when M is compact: If f: M" — R™ 1s an
immersion with all maps Ag: M, — M, semi-definite (for £ € MpL) for all
p € M, and all maps Ag definite for at least one p € M [for m = n + 1 this
latter condition follows from Proposition 30}, then f(M) is contained in some
(n + 1)-dimensional plane in R™, and f is an imbedding of M as a convex
set. In Do Carmo and Lima [2], they also give a simple argument which re-
proves Sacksteder’s result for complete M (but which does not recapture all of
the additional information obtained in the course of Sacksteder’s analyss).

We can also consider convex sets in spaces of constant curvature Kp. For
H™(Ky), the definition is precisely the same as for R”: a set A C H™(Ko)
is convex if A contains the segment of the unique geodesic between p and ¢
whenever p,q € A. For Ko > 0, we consider only an open hemisphere of
S™(Kjp), so that there is a unique geodesic between any two points, and the
same definition can be used. Since geodesic mappings preserve convexity, we
see immediately that Proposition 2-10 generalizes when we replace the tangent
plane of M at p by the totally geodesic hypersurface exp(Mp). Again we will use
“convex” for hypersurfaces in either of its two equivalent meanings. It also looks
as if we should be able to use geodesic mappings to generalize Proposition 32
to hypersurfaces of H"*1(Kp) and S"'(Kj). The details of this program turn
out to be a little sticky, and since the arguments have been covered in a recent
paper, Do Carmo and Warner [1], we will merely quote their results:

33. THEOREM (DO CARMO-WARNER).

(I) If M is a convex hypersurface in H"Y(Ky) for Ky < 0, or a convex hyper-
surface in a hemisphere of S"*1(Kj) for Ko > 0, then all sectional curvatures
of M are > K,. Moreover, if ¢ is a geodesic mapping from H"*'(Kp), or a
hemisphere of S$"*!(Kj), to R"*!, then all sectional curvatures of M are > Ko
at p if and only if all sectional curvatures of (M) are > 0 at ¢(p).

(2) Let M be a compact connected #n-manifold, and /: M — S$"7'(Kp) an
immersion, for Ky > 0, such that all sectional curvatures are > Ko. Then M
is orientable, the immersion f is an imbedding, and either f(M) is totally
geodesic, or else f(M) is contained in some open hemisphere and 1s convex.
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(3) Let M be a compact connected n-manifold, and f: M — H"(Kp) an
immersion, for Kg < 0, such that all sectional curvatures are > Kg. Then M 1s
orientable, the immersion f 1s an imbedding, and /(M) is convex.

In part (2) of this result, compactness of M 1s really equivalent to complete-
ness, by Corollary 8-22. In part (3), compactness does not follow from complete-
ness, and if we try to deal with complete M in H"*!(Ky) we run into the prob-
lem that the image ¢( H"*'(Ko)) of the geodesic map ¢: H"F1(Ko) — R"*!is
an open ball, and hence ¢ o f(M) need not be complete. As a matter of fact,
part (3) is false if M 1s merely assumed complete. Even if all sectional curva-
tures of an immersion f: M — H"t1(Kg) are > Ky, it does not follow that f
is an imbedding. To see this, we consider an immersed, but not imbedded,

%

surface in R with everywhere positive curvature. Such a surface cannot be
complete in R?, but its intersection with the projective model of H?* may very
well be complete in H?, even though its (extrinsic) curvature is > — 1, by part (1)
of Theorem 33. Similarly, if M C R? is the non-convex surface pictured on
page 82, with non-negative curvature near 0, then the intersection of M with
the projective model of H3 can be a complete imbedded surface with extrinsic
curvature > —1 everywhere, but it will not be convex in H?.

As a concluding remark, we point out that a complete convex hypersurface
in R"*! is of very restricted topological type; it is homeomorphic to S” (if it

Y

is compact) or to R” or S' x R"~! otherwise. On the other hand, there are
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complete convex hypersurfaces of H"*! which are homeomorphic to R” with
any number of holes, as shown below for the projective model of H?.

E. FURTHER RESULTS

This section is devoted to generalizations of certain material in Chapters 3
and 4. The first thing we want to consider are ruled surfaces in R™, given by

f(s,1) = c(s) +18(s)

for two curves ¢ and § in R™. When m = 3 we found that the surface is flat
precisely when ¢’, 8, 8’ are everywhere linearly dependent, by using the Gaussian
curvature ki - k2, the product of the principal curvatures. For m > 3, we have
to compute the curvature of the surface f from an intrinsic formula. We can
assume that 8] = 1, and hence (§.8’) = 0. Then

S 1)
f1. f2)

+ 20" 8y + 128, 8)

c'. )
(c'.8)

fi=d 418
=
fr=8

Q" m
I

(
(
1

Most of the terms in the formula on pg. 11.129 vanish, and we end up with

IE Y 2E
4EG-FH'K=G- (a—f) - 2(EG - Fz)aat2

= [2(c". 8y + 21(8'.8")])?
— 2! Ty 20 8y + 1288 — (¢'.8)%] - 2(8.8").
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The coeflicients of ¢ and ¢? vanish, and we find that
K=0 e 0=(.8)" —(c.c) (8.8 +(c".8)* - (8,8).
This condition is automatic when 8’ = 0. At points where §’ # 0, we can write

5! 2
K=0 < ()= <c’, |8_’|> +{c', 8)%.
Since 8, 8'/|8'| are orthonormal, this happens precisely when ¢’ is a linear com-
bination of §,8’. So in all cases,

K=0 < ('8, are linearly dependent.

We can now repeat the analysis on pp. II1.236-237 and see that flat ruled
surfaces in R™ are “in general” cylinders, cones, or tangents to a curve.

It should be pointed out that there are plenty of non-ruled flat surfaces in R™
for m > 3. For example, the torus

St x S c R? x R? = R,

with the product metric, is flat.
We can also define ruled surfaces in an arbitrary Riemannian manifold
(N™,{, ). They are the surfaces which can be parameterized as

f(sv t) = expc(s)(tV(s))v

where V is a unit vector field along c.

We want to consider, in particular, the case where N has constant curvature
Ko, and try to describe the ruled surfaces in N which also have constant cur-
vature Kg. First we consider the case m = 3. For a surface M C N3 it is
important to make a distinction which does not arise in the case of surfaces in
R*. The surface M has an induced Riemannian metric, and thus an intrinsic
curvature

Kin(p) = (R(X,, Y)Y, Xp) for orthonormal X, Y, € M,.

[t also has an extrinsic Gaussian curvature Kex(p) = k; - k2, the product of
the principal curvatures at p. If N has constant curvature Kjp, then Gauss’
equation tells us that

<*> Kint = Ke,xt + KO-

Recall. by the way. that a surface M having constant curvature just means that
the function K, on M is constant. while the condition that a higher dimen-
sional manifold have constant curvature is more involved.

The reason for considering the case m = 3 first is that in this case the hy-
pothesis that M is ruled is essentially redundant:
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34. PROPOSITION. Let N be a 3-dimensional manifold of constant curva-
ture Ko, and let M C N be a surface with constant intrinsic curvature Kin =
Ko. If p € M i1s a point where the second fundamental form s: M, x M, —
M, is not 0, then p has a neighborhood which is a ruled surface.

PROOF. Since M has
Kint = KO - Kext =0 bY (*)7

one principal curvature, ky, is always 0. Since s is non-zero at p, the other
principal curvature, k2, is non-zero in a neighborhood of p. Choose orthonor-
mal vector fields X1, X3 on this neighborhood so that each Xj(g) is a principal
vector with principal curvature k;(q) = 0, and X>(g) is a principal vector with
principal curvature k2(q) # 0. Now the Codazzi-Mainardi equations for N
are exactly the same as for R3, so the proof of Proposition 3-4 goes through
unchanged, leading to the conclusion that V'y, X; = 0, which means that the
integral curves of X are geodesics in N. <

Naturally, this result does not hold when N has dimension > 3, so for a
general manifold (N, ( , )) of constant curvature Ko we will now restrict our
attention to ruled surfaces M C N. By Synge’s inequality (Corollary 1-7) we
always have Kin(p) < Ko. Moreover,

Kine = Ko along a ruling y of M <= M, is parallel along y.

But Lemma 8 shows that

M is tangent to a
M, ;) is parallel along y <= 2-dimensional totally geodesic
submanifold of N along y.

The interesting thing about this last condition is that it does not involve metrics,
but only their geodesics. Hence

35. THEOREM. Let N be a manifold of constant curvature Ko and let ¢:
N — R™ be a geodesic mapping. Let M C N be a ruled surface. Then M

has constant intrinsic curvature Ki = Ko if and only if the ruled surface
¢(M) C R™ is flat.

PROOF. Immediate from the above equivalences. ¢
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From Theorem 35 we see that the surfaces M C N with K;,, = Kg are
“in gencral” ¢~ of cones, cylinders, and tangent developables. As a local
classification, this works equally well for Ko < 0 and Ky > 0. But the situation
is quite different when we look for complete surfaces with Kj,c = Ko. In the
sphere, any pair of geodesics intersect, so there cannot be “cylinders” as in
R™ (this is reflected in the fact that the geodesic mapping from $™ to R™
is actually defined only on a hemisphere). Once one realizes this, it seems
very hard for therc to be many such surfaces. In fact, in the next section we
will see that in S* the only complete surfaces with Kj,, = Ko are the great
2-spheres. Now consider hyperbolic space H™. We know that there is a geodesic
mapping ¢: H”™ — B™(1). Equivalently, there is a metric { , ) on B™(1) with
constant curvature Ko < 0, whose geodesics are just straight lines of R™ (with
a different parameterization). A cone, cylinder, or tangent developable in R™
then intersects B™(1) in a surface with Kj,; = Ko with the metric induced
from { , ). The interesting thing is that we can take the vertex of our cone,
or the generating curve for the tangent developable to lie outside of B. Then

the intersection with B will be a complete flat surface, without singularities, of
constant intrinsic curvature Kie = Kp. Thus there are many such surfaces, of
far greater variety than in R”. In the next section we will see this in a startling
wav.

Now cousider an ortented surface M in an arbitrary oriented 3-dimensional
Riemannian manifold (N, { . )). and an arclength parameterized curve ¢ in M.
We again define the Darboux frame of ¢ on M to be the moving frame

t(s) =c'(s). u(s). v(s) =t(s) x u(s) = v(c(s)).

whiere u(s) € M5y is a unit vector perpendicular to t(s) with (t(s),u(s)) pos-
itively oriented in M. and tlie unit normal field v is chosen so that the triple
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(t(s),u(s),v(s)) 1s positively oriented in N. We still have

t' = KgU + KpV
[ —

U = —i,t + gV
!

V= —kut — 150

for certain functions kp, kg, Tg. Everything in Chapter 4 up to and including
Proposition 4-5 generalizes almost without any change (asymptotic directions
on M are defined just as before, as unit vectors X € M, with II(X,, X,) = 0;
they exist only on regions where Kex((p) < 0). Moreover, Theorem 4-7 also
generalizes, essentially without change. For reference, we merely state this gen-
eralization:

36. THEOREM (BELTRAMI-ENNEPER). Let M be a surface in an ori-

ented 3-dimensional Riemannian manifold (N, { , }). If ¢ is an asymptotic
curve in M with ¢(0) = p and first curvature i« (0) # 0, then

[k2(0)} = v/ = Kexc(p).

Moreover, if Kex(p) < 0 and the two distinct asymptotic curves through p
both have non-zero first curvature «; at p, then their second curvatures 3 at p
are negatives of each other.

The next result generalizes Theorem 4-8.

37. THEOREM. Let N™ be a manifold of constant curvature Ky, let ¢ be
an immersed curve 1n a hypersurface M C N, and let S be the ruled surface
formed by the geodesics of N which are perpendicular to M along ¢. Then c 1s
a line of curvature if and only if S has constant intrinsic curvature K = Ko.

PROOF. Since the result is a local one, we can assume that there is a geodesic
mapping ¢: N — R™. The surface S is {exp,(, 7v(c(s))}, where v is a unit
normal field on M. Hence, identifying tangent vectors of R™ with elements of
R™ as usual. we have

B(S) = {B(c(s) + 1. (v(c(s)))}
= {y(s) +18(s)}, saw

If V denotes covariant differentiation in R, then, as in the second proof of
Lemma 8, we have

Vo, x 0+ — 0 (VxY) = (¢ X) - Y + 0 (9sY) - 9o X,
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for some 1-form @ on R™. Hence

8'(s) — ¢« (V'ei(s)v) = a linear combination of ¢, (c’(s)) and ¢, (v(c(s))).
Consequently, we can write
(1) §'(s) = @ (Ve )v) + agu(c’(s)) + bou(v(c(s))).

First suppose that ¢ is a line of curvature, so that V’./(5)v is a multiple of ¢/(s)
for all s. Then equation (1) shows that we can write

8'(5) = agu(c(5)) + bpu(v(c(s)))
=ay’'(s) + bs(s).
So y’,8,8" are always linearly independent, and the ruled surface ¢(S) C R™
1s flat. Hence S has constant intrinsic curvature Kj,, = Ko by Theorem 35.
Conversely, if S has constant intrinsic curvature Kjy, = Ko, then ¢(.S) is flat,

so y',8,8" are always linearly dependent. Then (1) shows that for each s there
are numbers 4, B, C, not all 0, with

(2) Ac'(s) 4+ Bv(c(s)) + C[V'esyv +ac’(s) + bv(e(s))] = 0.
Clearly C # 0. Taking the inner product of (2) with v(c(s)) gives
B+ Cb=0,
and hence (2) becomes
(A+ Ca)c'(s) + CV' v =0,

which shows that ¢ is a line of curvature. <

In Eisenhardt {1; pg. 213} this result is verified in a more direct way, by using
special coordinates-—the Weierstrass coordinates. I like the above proof be-
cause it has the strange feature that it uses geodesic mappings even though such
mappings preserve neither perpendicularity nor lines of curvature. Once one
realizes this, it becomes clear how to generalize the theorem vastly (Problem 19).
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F. COMPLETE SURFACES
OF CONSTANT CURVATURE

In this section we will classify, so far as possible, the complete constant curvature
surfaces in the complete simply-connected 3-dimensional manifolds of constant
curvature. First consider a surface M in any 3-dimensional manifold (N, { , }).
By Corollary 4-17, for any point p € M we can find an imbedding f/: U - M
with U C R? open and p € f(U) whose coordinate lines are the lines of
curvature, or the asymptotic lines [if Kex(p) < 0]. We want to see what the
formulas in the Addendum to Chapter 4 become in these cases. As before,
E, F,G are the components of f*{ , ) with respect to the standard coordinate
system (s,1) on R2, while /,m, n are the components of f*II, where II is the
second fundamental form of the hypersurface M C N for some choice of a unit
normal field v on M. The formula in Problem 4-13 gives the intrinsic curvature
K, so we see that

(A) When the parameter lines of M2 C N? are orthogonal, we have
F=0

o[ ()]

We also know that the Codazzi-Mainardi equations for an ambient manifold of
constant curvature are the same as in the Euclidean case, so

(B) When N? has constant curvature and the parameter lines of M? C N3
are lines of curvature, we have

l=k1E, n=sz, m=0, F=0

E2 / n
L=22—+=
2 2( +G)

G] l n n
m=—I=+=]).
'"2\E"G
(C) When N3 has constant curvature and the parameter lines of M? C N3
are asymptotic curves, we have
[=n=0
_— [3(EG — F?)1 + FE2 — EGy] "
' EG - F?
[3(EG — F?)2+ FG, — GE,]
EG - F?

my =

- m.
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Recall, finally, that when N has constant curvature Ko, the intrinsic curvature
Kint of M and the extrinsic curvature Key are related by

<*) Kint = Kext + KO-

The first thing we are going to do is to see what the basic lemmas of Chapter 5
give in our more general situation. The main problem is keeping track of the
times when the curvature K in the Euclidean case should be replaced by Ky,
and when it should be replaced by Kex.

38. LEMMA. Let M be a surface immersed in a 3-manifold N of constant
curvature, and let p € M be a non-umbilic point. Let k > ky be the two
principal curvatures on M and suppose that k; has a local maximum at p,
and k, has a local minimum at p. Then K (p) <0.

PROOF. The proof is exactly the same as the proof of Lemma 5-1.

39. THEOREM. Let N be a 3-manifold of constant curvature. If M is a
compact connected surface in N with constant extrinsic curvature Kexy > 0
and (constant) intrinsic curvature Kj,, > 0, then all points of M are umbilics.

PROOF. First suppose that Kexr > 0. As in the proof of Theorem 5-2, let
ki > ky be the principal curvatures and let ky achieve its maximum at p.
Then k; = K»/k1 has its minimum at p. If p were not an umbilic, then
by Lemma 38 we would have Kin(p) < 0, contradicting the hypothesis. So
ki(p) = ka(p), and, reasoning as in the proof of Theorem 5-2, we see that all
points are umbilics.

Next suppose that Kexr = 0. Suppose there is a non-umbilic point p € M.
Then 0 = ki (p) - ka(p), but ki (p) # k2(p), so either ki(p) > 0 or 0 > ky(p),
say the first. Let p be the point where k; takes on its maximum k1 (p) > 0. Then
k1 > 0 in a whole neighborhood of p, so k2 = 0 in a whole neighborhood of p,
and hence k> has a local minimum at p. Then Lemma 38 gives K (p) <0, a
contradiction. <

40. THEOREM. Let N be a 3-manifold of constant curvature. Let M be a
2-dimensional immersed submanifold of N with constant extrinsic curvature
Kexi < 0. Then for every point p € M there is a diffeomorphism
g (—ee) x(—&e)—> M
g(0,0)=p

whose parameter curves are asymptotic curves parameterized by arclength.
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PROOF. The proof is exactly the same as the first proof of Lemma 3-10. ¢

41. THEOREM. Let N be a 3-manifold of constant curvature. Then there
is no complete surface M immersed in N with constant extrinsic curvature
Kext < 0 and (constant) intrinsic curvature K, < 0.

PROOF. Suppose such a surface M existed. Using Theorem 40, we can repeat
the first argument in the (first) proof of Theorem 5-12 verbatim and conclude that
there is a Tschebyscheff net f/: R* — M. If w is the angle between the first
and second parameter lines, then by Lemma 5-11 we have

0 (K 0

— =(—Kipn <w<m,

Y int) SIN @ W<
where — Kijy is a positive constant. Then part (B) of the proof of Theorem 5-12
shows that there 1s no such w. <

Now we will begin putting these results together. Take N to be S2, with
constant curvature 1, and consider the possibilities for complete surfaces in S3
with constant extrinsic curvature Key. Since equation () now becomes

Kint = Kext + la

we see that Keyy < —1 == Kj;; < 0. So Theorem 41 shows that there are
no complete surfaces immersed in S3 with constant Keyy < —1. We also see
that K¢y > 0 = Kjy > 0, so Theorem 39 and Theorem 27 show that the
only compact surfaces in S3 with constant Keg, > 0 are spheres (Theorem 8-17
again shows that compactness can be replaced by completeness).

—1 0 Kext range
none totally other
geodesic S? spheres

How about the range —1 < Ky < 0? First of all we have

42. PROPOSITION. Tlhere are no complete surfaces M immersed in S? with
constant Key; satisfying —1 < Koy < 0.
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PROOF. The intrinsic curvature of M would satisfy Kjy > 0, so M would be
compact, by Theorem 8-17. We can assume that M is orientable, for other-
wise we can look at the orientable 2-fold covering of M. which will also be
immersed, with the same Kex. Then M must be homeomorphic to S? by the
Gauss-Bonnet Theorem. Since Kex < 0, at every point p € S? the principle
curvatures k1(p), k2(p) have opposite signs. By choosing the vectors pointing
in the principal directions which correspond to the positive principal curvature,
we would have a continuous choice of I-dimensional subspaces of S2,. But
this is impossible (Problem 1.9-7). &

—1 0 Kext range
none none totally other
geodesic S? spheres

This leaves only the isolated possibility Kexy = —1. Oddly enough, there are
complete surfaces in S* with Key = —1 (equivalently, Ki, = 0). In fact, for
p,0 > 0 with p 4+ ¢ = 1, the torus

(xeR* : xP+x2tP=pandxs’ + x4l =0} C S?

15 a (flat) product of two circles. Moreover, there is an infinite variety of other
complete flat surfaces in S*. Such surfaces can be classified, modulo a few
sticky details, and we will essentially find the most general way to construct
them. The classification actually works even for a piece of a flat surface, but we
will deal only with complete surfaces, just to simplify some of the description;
this classification is based on the work of Bianchi [I].

It will be necessary to first consider some of the geometry which is special
to the manifold S*. For two poits x, y € S3, the distance d(x, y) between x
and y as elements of S? (not the Euclidean distance between x and j) is just
the radian measure of the angle between x and y. Consequently, we have

length = d(x, 1)

i cosd(x,1) = (x,1).
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Now we ask whether there are any isometries 4 € O(4) of S? with the property
that d(x, A(x)) is the same for all x € S$3 Such isometries would be the
analogues of the translations in R”; notice that S2, for example, certainly has
no isometries with this property, other than the identity, since every A € O(3)
has a fixed point in $2. If A = (a;;), then

4
(x, Ax) = Z ajiX; X;.
ij=l1
"Taking into account equation (I) we see that we are looking for 4 with

4

Z ajiXjx; = constant for all x € §*.
i,j=1

This implies that
4 4
Z aj;xjx; = (constant) - Zx,-z for all x € R*.
ij=1 i=1

Regarding this as a polynomial identity in the variables xi, ..., x4 we see that
we must have

an = dax = dasz = au, ajj + aji =0, I # .
Since A is also orthogonal we have
2 0=anai; + anax + asnas; + anasgy = asazs + agas

as well as

2 2 2 2 2 2 2 2
an”“+an+an”+an® = an +axn” +an” +agn

I

2 2 2 2
3 as’” +asn” = as” +aen”.

Equation (2) says that the vectors (@31, a41). (432, a47) € R? are perpendicular,
while equation (3) says that they have the same length. It follows that

a3y = dy) a3y = —dy4)

a4 = —dasz dasy = +as.
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We thus find two different kinds of A’s with the desired property:

a —-b —¢ —d a b ¢ d
b a —-d ¢ b a —-d ¢
¢ d a -—b ot —¢ d a b
d —c b a —d —¢ b a

A +br+r+d*=1.

The existence of these “translations” in 3 is directly related to the fact that S°
is a group, the group of quaternions of norm 1. Recall that the quaternions are
R* with the structure of a non-commutative division algebra over R having unit
1 =(1,0,0,0) and elements

i =1(0,1,0,0), 7 =10,0,1,0), k =(0,0,0,1)

satisfying
i~ j=k=—j"i
jok=i=-k-j and i-i=j-j=k-k=-1
k-i=j=-—i-k

The norm |x| of a quaternion x satisfies |xy| = |x| - |y}, so the quaternions of

norm 1 (i.e., $?) are a non-commutative Lie group. It is easily checked that the
two matrices given above are just left and right translation by the quaternion
a+bi +c¢j+dk € S In particular, this shows that the usual Riemannian
metric on S is left and right invariant. Moreover, the map

a —-b - -d

) ) b a —-d ¢
a+bi+cj+dk — e d 0 —b
d —c b a

is an isomorphism of S? into a subgroup of O(4), namely the subgroup of all
left translations by elemeuts of §3. It will be convenient to identify S? with a
subgroup of O(4) by this isomorphism.

We will need the first part of the following general result: the other parts are
included for independent interest.

43. THEOREM. Let G be a Lie group with bi-invariant metric (. ). If
X.Y.Z. W are left invariant vector fields on G, then

() VxY = 1[X.Y]
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2) ([X. Y], Z) = (X,[Y, Z])
(3) R(X,Y)Z = -1{[X,Y), 2]
(4) (RIX,Y)Z, W) = —g{[X., Y], [Z, W]).
PROOF. The integral curves of X are left translates of 1-parameter subgroups

(recall the second proof of Corollary 1.10-8). Consequently, they are geodesics
(Proposition 1.10-21). This means that Vy X = 0. So

0=VxsyX+Y =VyX 4+ VyY +VyX +Vy¥ = VyY + VyX.
But also
VxY - VyX =[X,Y],

which gives (1).

For (2) we note that

0=Y(X,Z)=(VyX,Z)+ (X,Vy Z)
= 3{Y. X1, Z) + 3(X,[Y, Z)).
For (3) we have
R(X.Y)Z =Vx(VyZ) = Vy(VxZ) - Vix r\Z
= 301V, Z)) - 4. X, Z]) - §[IX. Y], 2],

which gives the desired result when we apply the Jacobi identity.
Finally, (4) follows from (2) and (3). ¢

Now we want to look at the Lie algebra £(S?) of the group S*. This is the
tangent space of S3 at (1,0,0,0), and is therefore spanned by the vectors

X1 =1(0,1,0,0)
X2 =1(0,0,1,0)
X3 - (030303 l)-

regarded as tangent vectors at (1.0, 0,0). Notice that X; = ¢'(0), where

c(t) = (cost,sint,0,0) € S3

= cos? + (smt)i

cost —sint 0 0
sin ¢ cost 0 0
0 0 cost —sint

0 0 sin ¢ cost
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under the identification of S* with a subgroup of O(4). Thus X} can be iden-
tified with

o -1 0 O
Lo 1 0 0 o0
c'(0) = 0 0 0 —1 € n(4).
0 0 1 0
Similarly X> and X3 can be identfied with
o 0 -1 0 0 0 0 -1
0 0 0 1 and 0 0 -1 0
1 0 0 0 n 01 0 0
0 -1 0 0 1 0 O 0
A short calculation then shows that
0 [X1, X2] = 2X;3, [X2, X3] =2X,, [X3, X1] = 2Xa.

If we think of the X; as vectors in R3, by simply ignoring their first compo-
nents, then we have

X]XX2=X3, X2><X3=X1, X3><X1=X2.

Equivalently, this relation holds when we define x in S31,0,0,0) In terms of

the usual inner product and the usual orientation for S~. 3. So if X; is the left
invariant vector field on S* which extends X;, then

(2) flezz)a, j/vzx,ia:j;], j/v3><j;1=j(v2,

where x in each tangent space is defined in terms of the usual metric ( , )
on S* and the usual orientation for S°.

Now the theory of curves in S* can be given a special development, because
we can express all tangent vectors in terms of the left invanant vector fields X,
Suppose ¢ is a curve in 3 parameterized by arclength, and let the unit tangent
vector t = vy of ¢ be given by

3
(3) t(s) = fils) - Xi(c(s)).
i=1

where

) DofF=1 = Y fifif =0
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As usual, we denote the covariant derivative in our ambient manifold S* by V.

Then for any vector field ) ; A;(s) - X;(c(s)) along ¢ we have

D' ~ o D -
g[; hj(s) - Xj(f(s))} = ;h,- () - Xj(c(s)) + ;hj(S)ng(C(S))
=Y h'(s)- Xj(c(s))
J

+ Y)Y i)V g Xi(e(s)).
J i

Using Theorem 43 to write V’ jy')?] = %[/\7,-, X;], and computing the brackets
from (1), we get

D’ >
(5) X[Zh,- (s) X,-(c(s))} =
j
Db X+ fhs = )X+ (il — i)y + (fihs = foh) Xs]
J

{all functions evaluated at s, all X; at c(s)}.

In particular, we have

©) DU s~ o

ds

hence the curvature « (= k) is given by

(7) k=%

and n = v; is given by

(8) n= —Zi fi'- %
p :
Therefore b = v; is given by
1 ~ ~
9) b=t><n=;-(2f,--X,-) X (Z;;’.X,-)
i j
1 ~ ~
= ;Zﬁﬁ’(Xi x Xj)
ij

= AR = AROVF 4 B = fi DT+ (A = fafi) R
by (2)

1 ~
=_Zgi'Xi; SaY'
K i
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Now we have
D'b(s) 1D ~ 'd ~
“ds m(zg’”’") R
i
. ~ ~ K’ > .
=;[(f2g3—g2f3)X1+---+Zg,-'X,-]—;EZgiXi by (5)
1 1]

= %[(fzgs —@ )X+ 1+ Z (%—)/1\7,

But
hes—gafs= LS = L) = HUBN =LA by )
= iUt + S = [+ 17
= h=/AD = /10 =A%) by (4)
==/
and similarly for the other terms. Hence we obtain

(1) Db) =X s (8,

ds K

= n+ Z (%) X by(®).

We therefore have the rather remarkable, and for us very important

44 THEOREM. If ¢ is a curve in S whose torsion 7 (= k2) satisfies 7 = 1
everywhere, then b is left invariant along c, that 1s,

b(S) = LC(S)C(O)'I*b(O)-

If ¢ has torsion T = —1 everywhere, then b 1s right invariant along ¢.
PROOF. The Serret-Frenet formulas give
Db(s)
ds

So r = 1 implies that (gi/k) =0, and hence that g;/« is constant. But equa-
tion (9) shows that g; /k are the components of b with respect to the left invariant
vector fields /\7,-.

To deduce the second part of the theorem, consider the map f(x) = x7
of S3 into itself. This map reverses 1-parameter subgroups through (1,0.0.0).
SO fyr LIS — £(S?) is multiplication by —1. This shows that f is orientation
reversing. It follows that the binormal of the curve focis—fib. Thus foc
has r = [ ifand only if ¢ has 7 = ~1. &

1
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Finally we are ready to consider connected immersed surfaces M in S* with
Kexe = —1, and hence Kiy = 0. We consider only oriented M; non-orientable
surfaces may then be analyzed by considering the 2-fold oriented covering of M.
Since Kext < 0, there are 2 distinct asymptotic directions at each point. The
argument in the (first) proof of Theorem 5-12, in conjunction with Theorem 40,
again shows that there 15 a Tsychebyscheff net f/: R? — M. It is not hard to
see that f is actually onto M (by essentially the argument used in the second
proof of Theorem 5-12; for this part, it is not necessary that the ¢; be defined
for all s € R, and simple-connectivity is irrelevant). The metric Iy = f*( , )
on R? is then

Ir=f*",)=ds®ds+cosw[ds @ dt +dt ® ds] + dt Q dt,

where o is the oriented angle between the first and second parameter curves.

Now consider the curve ¢(s) = (s,) in R2, which is an arclength parameter-
1zed curve for the metric I, Its tangent vector ¢’(s) = 3/ds is a unit vector for
the metric Iy, If D/ds temporarily denotes the covariant derivative determined
by the metric Iy, then from the formula on pg. I1.232 we compute that

dw
Dc'(s) 3s 9 3
ds ~ sinw cos@- ds ot

3\ . NN
If { =} 1s the unique vector field with —, | — | orthonormal for the met-
ds ds \ 0s

. d (4
ric Iy and —, (3—) positively oriented, then
s

ds
9 _ 9 LAY
o _cosw-as sinw - 55 )

so we find that

ds ds \0s
Equivalently, if t denotes the {unit) tangent vector to the parameter curve s
S(s,t) in M, and D/ds now denotes the covariant derivative in M, then

Dt dw

s~ as "

where u is the unique tangent vector field along s — f(s,¢) with t,u orthonor-
mal and (t, u) positively oriented. But s — f(s.¢) is an asymptotic curve, so the

Dc'(s) K2 ' ( 0 )l
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covariant derivative Dt/ds in M is the same as the covariant derivative D't/ds
in S3 (recall the equivalences on pg. I1.196). So we have

D't _ Jw

| _ .
Y ds s "
This shows that

u = normal n to the curve s = f(s,1)

curvature k(s) of the curve s — f(s,1).

80)( 0
as 5

On the other hand, Lemma 5-11 shows that w satisfies

9w _
dsdr

which implies that there are functions S and 7" with
w(s,1) = S(s)+TQ),

so that
0
a—w(s,r) = S'(s) and —w(s,r) =T'Q).
as ot

Thus the arclength parameterized curves s + f(s,) all have the same curva-
ture functions «(s) = |S’(s)|. Similarly, all curves ¢ = f(s,t) have the same
curvature functions |T7(1)|.

But even more is true. For the Beltrami-Enneper Theorem (Theorem 36)
tells us that the torsion 7 of the asymptotic curves s > f(s,1) and t — f(s,1)
satisfies 72 = 1 at points where x # 0, and that the two asymptotic curves
through a point have torsions of opposite signs if they both have « # 0 at that
point. We will first assume that for both sets of parameter curves « 1s never 0.
Then one set of parameter curves must have T = 1 everywhere, and the other set
must have T = —1 evervwhere. For definiteness, say that the curves s f(s.1)
have 7 = 1. We now see that a/l curves s — f(s.t) are congruent, and similarly
all curvest — f(s,t) are congruent.

Let A be the unique isometry of S3 onto itself with A;(f(0.1)) = f(s.1)
for all r. Under the family of isometries { Ay}, each pomt £(0,t) moves along
the arclength parameterized curve s > f(s,7). This strongly suggests that all
the A, are actually translations. In fact, we claim that all 45 are left translations.
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To prove this, we consider the family of left translations { Bs} = {L 7(s,0) r(0,0)~!}
which take f(0,0) to f(s,0). According to Theorem 44, Bj, takes the binormal
b(0) of s = f(s,0) at s = 0 into the binormal b(s) at s. Consequently, By,
takes the osculating plane of this curve at 0 into the osculating plane at s. Hence
we can write

t(s) = cosO(s) - Bst(0) —sinO(s) - Bs,n(0),

where 8(s) 1s the oriented angle from t(s) to Bgt(0). It is easy to compute

D’t/ds in terms of 6: For simplicity, and without loss of generality, we assume
that £(0,0) = 1 € S, and that t(0) and n(0) are X, X, € £(S?). Then the
functions f; in equation (3) on page 98 are just

1 = cos®, fo = —siné, f3=0,
so equation (6) on page 99 gives

D't
ds

= —0'(s)[sinO(s) - Bgxt(0) + cosB - By,n(0)]
= —0'(s) - n(s).
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Comparing with equation (1) on page 102, we see that 8’ = S’; since 8(0) = 0,
we find that
S(s) =0(s)+ S(0).

From this we easily see that

B;.. takes the tangent vector to the curve 7 — f(0,7) att =0

to the tangent vector to the curve 1 — f(s,t) atz = 0.

Moreover, these curves are asymptotic curves, so their osculating planes at 1 = 0
coincide with the osculating planes of the asymptotic curve s — f(s,0) at 0
and s, respectively. Thus their binormals at ¢ = 0 are the binormals b(0) and
b(s) of the curve s — f(s,1). Hence

By, takes the binormal to the curve t =~ f(0,1) at1 =0

to the binormal to the curve ¢ — f(s,1) at7 = 0.

These two facts show that By must be the isometry As. So A4; is indeed a left
translation.

If we write ¢(s) = f(5,0) and y(¢) = f(0,1), we thus see that our surface M
can be written as a collection of left translates of y,

M = {[c(s) -] - y(0)}.

Notice that this can equally well be written as a collection of right translates
of ¢,

M ={c(s)- e y@)} = {c(s) - y(0)! -y ()}
= {c@) - [y~ -y}

naturally we could have also deduced this description directly, by considering
the isometries of the curves s = f(s,t), and applying the second part of The-
orem 44.

Conversely, suppose we have any two curves ¢ and y with torsions 7 = 1
and T = —1, respectively. Suppose, moreover, that they are placed so that
¢(0) = y(0) and so that their osculating planes at 0 coincide. For simplicity, also
assume that ¢(0) = y(0) = 1 € S*. Then ¢ and y will not be tangent at 0, and
we can consider the surface

M = {c(s) -y ()}
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t = c(s)y(t)

osculating planes
coincide along ¢

Applying Theorem 44 first to the curve ¢ with T = 1, we find that the osculating
plane of ¢ at s coincides with the osculating plane of the curve ¢ = c(s) - y(¢)
at 1 = 0; hence these osculating planes coincide with the tangent space of M at
¢(s). Now applying Theorem 44 to the curves t = c¢(s) - y(t), all with torsions
T = —1, we find that the tangent space of M at any point c(so) - ¥ (fp) coincides
with the osculating planes of the parameter curves s — c(s) - y(fo) at s = s
and t — c(sg) - y(t) at t = tp. Thus these parameter curves are asymptotic
curves. So the Beltrami-Enneper Theorem shows that M has Key = —1.

We can also consider the case where ¢ has torsion 7 = 1, but y is a geodesic,
and hence does not have a torsion defined anywhere. The first part of our
argument still shows that the tangent space of M at points ¢(s) coincides with
the osculating plane of ¢ at 5. In other words,

D'c’(s)
ds

U

is a linear combination of ¢’(s) and L «y (0).

To show that the tangent space of M at c(so) - ¥ (fp) coincides with the osculat-
ing plane of s — ¢(s) - y(f) at s = s, we must show that

s c(s)y(t)
y c

t— c(so)y(t)
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D/
ds

R, 1)+ ¢'(5) is @ linear combination of Ry ()« ¢’ (50) and Le(sy« ¥’ (fo).

S=50
Now we have
D/

ds

R (-/(g) — R L’(s)
ylto)x O\ y(to)* ds

=50 §=50

= a linear combination of Ry ()¢ (s0)
and Ry (i)« Le(so) v'(0), by (I).

So it suffices to observe that

Ry (i)x Loy ¥'(0) = Le(sgys Ry(ap)+ ¥'(0)
- Lc(s())*y/(IO)a

since the geodesic y through 1 € S? is a 1-parameter subgroup, and hence
the integral curve of a right invariant vector field (recall again the second proof
of Corollary 1.10-8; although this proof deals with left invariant vector fields,
it works just as well for right invariant vector fields). So our surface M =
{e(s) - ¥ (1)} again has Kexe = —1.

Finally,* suppose that ¢ and y are both (distinct) geodesics through 1 € S3.
Then the surface M = {¢(s) - y(¢)} still has Keye = —1, or Ky = 0. To see this,
we consider the parameter curves

s c(s) - yl(to) . Ry(t())*C/(SO)
with tangent vectors

t > c(so) - y(r) Lc(so)* )’/(Io)-
We note that
<Ry(t0)* ()/(50)» Lc(so)* )"(fo)) = <Ry(t())*Lc(s())* ('/(0)» Lc(s())*Ry(to)*y/(O))

= <RV(I(»)*LC(S())* ¢'(0). Ry (t9)x L e (s« V/(O))
{¢'(0),¥'(0)).

Thus our surface has two families of geodesics intersecting at a constant angle,
so it is Hlat by Proposition 4-6. In particular, the flat torus
1

{,\‘ eRY xP 4P = 3 and x3% 4+ x4 = ;}

—_—

*We will not consider the case where onr asymptotic enrves have curvatire «(s) = 0 for
only certain 5. The truly fanarical reader may wish to investigate this situation further.
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is of this form. It is generated by the two geodesics

V2
{%(Cosqﬁ +sin ¢, cosp —sing, —cos@p —sin¢g, —cosP +sin¢)},

1
{—(cosQ, sinf), cosd, sin9)}

of which the second lies in the plane spanned by (1,1,—1,—1),(1,=1,—1,1)
and the first in the orthogonal complement.

We now have a very general way of describing surfaces M in S* with Kexi =
—1; we can take any “translation surface” {¢(s) -y (1)}, where ¢ and y are curves
of torsion 1 and —1 with ¢(0) = y(0) = 1 € S? and common osculating planes
at 1. Since the curves ¢ and y are otherwise arbitrary, there are clearly a great
number of such surfaces. We will describe some features of these surfaces in a
little greater detail, and then indicate some open questions.

It will be very useful to introduce a famous creature of algebraic topology,
the Hopf map #: S* — S$?, which is defined as follows. We regard S? as
the one-point compactification C U {oo} of the complex numbers; the specific
identification of §2 and CU{oo} will be given by means of stereographic projec-
tion, together with the identification of the north pole of S 2 with oo. However,
we will use a slightly different version of stereographic projection. We now
regard S? as the standard unit sphere {p € R3 : |p| = 1}, and map a point
p € S2—{(0,0, 1)} into the intersection o' ( p) of the (x, y)-plane with the straight
line between (0,0, 1) and p. It is easy to check that for our new o we have

a b
ola.b,c) = (1 —¢’1 —(')

_ 2X 2y X2+ }'2 -1
o (x,y) = , , .
N4 241 X242 41 x4
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It is not hard to see that $2 = C U {oo} has a C™ atlas consisting of two maps

fH:C—>C
fr: C—{0}u{*} > C

with fj = identity and

3] —
8]
RN

f2(2)={ ’ >

=2
N

k]

We consider S? as
{(21,22) eCxC:nl+|n?= 1},

Then h: $* — S? is defined by
21

h(zy,z3) = -

where “z)/z;” = 00 if zp = 0. This map 1s clearly C* on the set where z; # 0,

and also on the set where z; # 0, since we then have

Z—l) z 0 22 z 0
fzoh(zl,zz)z{fz(zz s n# {Zl’ 2 F
fr(o0), =0 0, z,=0
Zy
=

The inverse image A~!(zo) of any point zg € C is

hV(z0) = {(z1,22) € S* 1 21 = 2022}

If z; = x; +iy; for j =0,1,2, this can be written as
h='(z0) = {(x1, 31, %2, 12) € S? 1 X1 = Xox2 — yoy2 and ¥y = Xp)2 + X2)0}.
which is the intersection of S3 with two hyperplanes through the origin. So

h=1(z0) is a great circle. Moreover,

h=00) ={(z1,22) € S* 1 = 0}

is also a great circle.
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Now we need to know what the orthogonal maps 4: S? — S? look like when
we consider them as maps C U {oo} — C U {oc}. Elementary complex analysis
tells us that they must be maps of the form

f(z) =(az +b)/(cz + d),
for they must be one-one and have at most one pole, of order < 1 (we can
also use Problem 4-11 to reach the same conclusion). Some further calculations
(Problem 21) show that these maps, when normalized to have ad —bc = 1,
correspond to orthogonal maps if and only 1f
lal* + e = 1
B>+ 1d|* = 1
On the other hand, if these conditions are satisfied, then the map
g(z1,22) = (az) + bzy, cz1 +dz2)

is easily seen to be an isometry of $¥ ¢ C x C. Now for any set X C S? we
have

ab = —cd.

(z1,22) € (/7' (X)) & (a1,22) € S? and % e f71(X)

21
a'z—2+b

&> (z1,22) € S and eX

21
CZ_2+d

az +b
= (z1,23) € S3 and T on eX
czy +dzy

& (z1,23) € S* and h(g(z1,22)) € X.

Thus o R
(ST (X)) =g (h (X)),
In other words, if we want to know what A~ 1(X) C S3 looks like, up to an
isometry of S, we can replace X C S? by any set related to X by an isometry
of 2. In particular, to find h=Y(X) for T C §? a circle, we can assume that X
is parallel to the (x, y)-plane, so that the stereographic projection of X in C is
just a circle {z : |z] = R}. Then
- R}

'z 1zl = RY) = {(51,:2) Dz + 122)* = 1 and
R 1
(z1,72) i sl = ———== and || = _—},
{ V1+ R? V1+ R?
which is just a product torus. This shows that all product tor1in § 3 are made

up of a family of great circles, which are consequently asymptotic curves. When
R # 1, the other asymptotic curves are not great circles. If they begin at one

o

~2
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point of a great circle they will generally return to a different point of this great
circle. This shows how a translation surface {¢(s) - y(f)} can be compact even
though the curve ¢ or y may not be closed.

other asymptotic line

'\\ great circles

Now let ¢ be any immersed curve S*. We claim that the surface #7!(c) has
Kexi = —1 everywhere. In fact, for any so, we can consider the osculating circle
¥ C S? of ¢ at s¢ (in other words, ¥ is the circle in S? which is tangent to ¢ at sg
and whose curvature, as a curve in S2, is the same as the curvature «(s) of ¢
at sg). Then ¥ and ¢ agree up to second order at ¢(sg), so h~(Z) and h~(c)
agree up to second order on the whole great circle /7! (c(s0)); since A~ (Z)
1s a flat torus, with K¢y = —1 everywhere, h~1(c) must also have Ke = —1
everywhere. Taking ¢ to be an imbedded closed curved in S2, we obtain an
imbedded surface A7 1(c) in §3, with Kexe = —1, which is homeomorphic to a
torus, but generally not a product torus. A non-geodesic asymptotic curve in
h='(c) will be a curve ¢ with / o ¢ = ¢; it would be interesting (and probably
very difficult) to determine for precisely which curves ¢ this curve ¢ is closed. In
this connection, we point out that there are certainly some closed curves in S*
of constant torsion = 1. In fact, just as cylindrical helices in R* have constant
torsion, the helices on product tori in S are easily seen to have constant torsion,
and in the latter case we can arrange for the helices to be closed. I do not know
whether there are closed curves ¢ and y in S* of torsion t = +1 and 7 = —1
such that the translation surface {c¢(s) - y(¢)} is an wnbedded torus (the helices
on product tori give only immersed tort). Nor do I know the answer to the
following problem, which seems quite hard: are there one-one curves ¢ and y
in S? of torsion T = +1 and t = —1 such that the translation surface {c(s)-y (1)}
is @ one-one map into S*? Finally, one could try to analvze the non-orientable
complete surfaces in S? with Kexe = —1.

Now we consider the case N = H?, with constant curvature —1, so that (%)
becomes

Kim = cht -1
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First we see that Key < 0 = Ky < 0, so Theorem 41 shows that there are
no compléte surfaces immersed in H? with constant Ke < 0. Since we also
have Kext > 1 == Kjn > 0, Theorem 39 implies that a complete surface
immersed in H? with constant Keg > 1 is all-umbilic; since Ky > 0, it must
actually be a geodesic sphere.

0 1 Kext range

T |

none geodesic spheres

In the range 0 < Kex < 1 we have at least the totally geodesic spheres, the
equidistant surfaces, and the horospheres, but we will find other examples also.

We consider first the upper range Kexy = 1 = Kip = 0. By considering
the universal covering space of our immersed surface M with Ky = 0 we
can assume that M is simply-connected. Thus M, with the induced metric, 1s
isometric to R? with its usual metric. Equivalently, we are considering isometric
immersions f: R? — H? where R? has its usual metric dx ® dx +dy®dy, and
H? has the metric { , ) of constant curvature —1. Let {;j be the coefficients of
the second fundamental form II;. In Gauss’ equation,

(s(X,Z),s(Y,W)) — (s(Y,Z),s(X,W))

=(RI(X,Y)Z,W)—(R(X,Y)Z, W)

=-—[(X, W) (Y, Z) —(X,Z) (Y, W)] - (R(X,Y)Z, W),
we choose X = Z =9/dx and ¥ = W = 4/dy, to obtain
1 Inly — (h2)* = 1.
In the Codazzi-Mainardi equations,

0 = (VxII)(Y, Z) — (V¥lI)(X, Z)
=XI(Y,Z)-Y(AI(X,Z))— -+ -,

we take X = d/dx and Y = 4/dy, and then Z = 9/0x or 9/dy to obtain

2 hy oy 3l _ 0y
ax  dy’ ax 3y
These equations imply that there are functions a, 8: R? — R with
da dp
(a) —a-; = 112 ((‘) a—y = 122
5 and 58
o
— = — =In.
(b) 7% Iy (d) oy = 2
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Then (a) and (d) imply that there is a function ¢: R* - R with

o _, 50 _

= d — =
o an 9y

B.

Together with (b) and (c) we thus have

(3)

92¢ 029 92¢
8—5 = 122.
y

— :l =
8x2 11, 3x8y 1127

Thus equation (1) yields

290 (¢ \ _,
* o33 32 (axay) ="

We now appeal to a strange result which is usually used in a completely different
context (see Chapter 9):

45. THEOREM (JORGENS). If ¢: R? — R is a function on the whole plane
satisfying

2, 92 2
® T9o4¢ (W¢)=L

ax? 8_)/2 ~ \oaxdy
then ¢ is a quadratic polynomial in x and y.
PROOF. We adopt the abbreviations

_ 99 _ 99
T 1T %y

¢ ¢ ¢
r=—, § = s ! s
dx2 dxay dy?

p

so that our equation reads
() rt—s*=1.

This implies that r# > 0, so that r and ¢ have the same sign. We can assume
that r,t > 0 everywhere, by replacing ¢ by —¢ if necessary.
For fixed (xp, vo) and (x1, 31), consider the function

h(t) = ¢(xo0 + 1(x1 — X0), Yo + T(¥1 — W)).
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We have

H(t) = (x1 — x0)p + (11 — W)y,
B () = (x1 — X0)2r +2(x1 — x0) ()1 — yo)s + (31 — yo)*t,

where p,q,r,s,1 are evaluated at (xo +T(x1 —Xo), Yo+ {y1 — y0)). If x1 = xo,
then h”(t) = (31 — yo)*t = 0. If x; # xo, then

2
h'(1) = (x] — x0)? l:r -2 (—yl yo) s+ (—yl yo) tjl .
X1 — Xo X1 — Xo
The term in brackets is a quadratic polynomial in (y; — yo)/(x1 — xo) with

discriminant 452 —4rt < 0, by (%), so it is always positive. Thus we always have
#’(t) = 0. This implies that

H (1) = K(0),
and thus

) (x1 — x0)(p1 — po) + (¥1 — yo)lg1 — q0) = 0,

where
pi = pxi, yi), gi = q(xi, yi) i =0,1.
Consider the transformation of Lewy:
T(x,y) = ((x,»),n(x,3) = (x + p(x, ), ¥y + q(x, y)).

If we set
§i =8, v, mi=nlg, ) i=01,
then equation () implies that

(&1 — €)% + (m —no)* = (x1 — x0)2 + (11 — yo)*.

Hence T: R? — R? is distance-increasing, and, in particular, T is one-one.
Moreover, the Jacobian of T is

0t 0¢

ax 9y _(l+r s)
on on | s 1+1¢)/)°

ax By
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with determinant

l+r4+t+rt—s2=24r+1 by (%)

> 2,

so T is an immersion, and image T is open. But image T is also closed: For if
T(x;, vi) — a € R?, so that {T(x;, y;)} is a Cauchy sequence, then {(x;, y;)} 1s
also a Cauchy sequence, since T is distance-increasing; thus (x;, y;) — B € R?,
and T(B) = a. So T is actually a diffeomorphism of R? onto itself. It will
be convenient to use classical ambiguous notation and denote the inverse map

T=' by (&, ) = (x( ), ¥, n). Its Jacobian is
dx  ox

3 3—0 1+ s 7!
dy dy |\ s 141

0 dn
_ 1 1+1 =
T 244+t \ =5 14r )
from which we can read off the partial derivatives of x and y.
Now define F: R* — R? by

F&,n) = (UEn, VEn)
=x-p,—y+q) Le.,
= (x(& ) — p(x(E 0, yE M), —rE D+ 9 E ), ¥E ).

Then

1

t—r
241+t
Similarly. we find that
av 1t —r U
I~ 24r41t 0E
and
v 25 v
05~ 24r+t  an’
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Thus (U, V) satisfies the Cauchy-Riemann equations, so the map F: C — C
defined by

FE+in)=UEn) +iV(En)
=x—p+(=y+q)i

is complex analytic, and for the complex derivative F’ we have

aU v
F/ . _ = i
2) (& +in) T +1 o
_t—r+2s
2441
Consequently,
) (t —r)* + 452
F’ P
[F'(& +in)l R
(t—r)*+4rt—4
= b
Q+r+1)? Y&
) =4 241+t
T+ 24r 41’
which gives
(3) L= IF'E+in =

— >0
241 +1

Thus F' is bounded, and consequently constant, by Liouville’s theorem. But
equations (2) and (3) allow us to solve for r, s, in terms of F’ (here Re and Im
represent the real and imaginary parts):

241+t 2.-ImF’
= i-i-— .Ian/: —m_
2 1= [F']2
4Re F’ 1/ 4Re F’ 4
l‘—r:—e I=—( 5+ ,—2)
I —[F? 2\ F2 T 1T F
—
. 4 , 1 4 , 4R6F/)
= = — 2 F=—- 1 ——— — L .
1= |F]? Y\TZ[F2 I —|F']?

Since F’ is constant, so are r,s.f. ¢
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Applying Jorgens’ Theorem to our ¢, we find that the /;; are constants. We
can assume, moreover, that /j; = 0, by means of an orthogonal transformation
of R2. Then /11 = ki and /5 = k» are the principal curvatures of the immersed
surface f(R?), and k1ky = 1. By Theorem 21, the immersion f is determined,
up to an isometry of H?3, by the pair {ky, k,}, with k1, k2 > 0. So in order to de-
termine all such f, we just have to find one for each pair {k1, ka} with K1k = 1.
For k; = k, = 1, all points are umbilics, and f must be a horosphere. To
describe the other examples, consider the upper half-space model #3. Our im-
mersed surface M C J? with constant &, k, must have isometries of H3 taking
any point to any other. Now one simple case of isometries of #?* are the inver-
sions with respect to a sphere around 0. These isometries take rays through 0
into themselves, and thus take cones through 0 into themselves. Moreover, if

we consider only right circular cones, then there are clearly isometries of g3
taking any point on a circle parallel to the (x, y)-plane to any other point on
this circle, and hence there are isometries of #° taking any point on the cone
to any other point. These cones thus have constant k1, k. A simple calculation
shows. in fact, that if the generators of the cone make an angle of ¢ with the
--axis, then the principal curvature k; for the principal vectors pointing along
the generators is

ki = sinf,

while the principal curvature k, for the principal vectors pointing along the
circles parallel to the (x, y)-plane is

1

sin@’

ky =
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Thus k1kz = 1, and all pairs (k;, k2) are accounted for. We note, finally, that by
the discussion on pages 14—15, our cone is the set of points at a fixed distance
from the z-axis. We thus have

46. THEOREM (VOLKOV AND VLADIMIROVA; SASAKI). A complete

surface in H3 with constant Kexe = 1 is either a horosphere or the set of points
at a fixed distance from a geodesic.

Next we consider the lower range Kexy = 0 = K, = —1. We have
already indicated that there are many complete surfaces M C H? with Kext =0,
but now we will look more closely at their topological type. We know that if
B C R? is the projective model of H? (so B is the unit ball with a metric
of constant curvature —1 whose geodesics are reparameterized straight lines of
R3), then a surface M C B has K, = —1 if and only if M is flat, considered
as a surface in R? with the usual metric. Consider the intersection of a plane
with B, and a portion P of this plane which is bounded by four non-intersecting
geodesics ¥y, ..., ys. The geodesics ¥, and y; can be joined by a cylinder Z,

V4 ‘\

Z/

and similarly y, and y, can be joined by a disjoint cylinder Z’. By choosing
appropriate profile curves for these cylinders we can make a smooth surface
PUZ U Z' and it will have K, = —1 everywhere. The resulting surface is
topologically equivalent to a torus minus a disc (or a torus minus a point).

A

is homeomorphic
to the quotient
space

with shaded
— portions
removed

N M [
v . 3 s 3
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More generally, we can begin with portions P that are bounded by 2g non-
intersecting geodesics. In this way we can obtain surfaces homeomorphic to
any compact surface with a point deleted.

Notice that this construction produces only C* surfaces, not analytic ones. It
seems to me that all analytic flat surfaces in R*, and a posteriori all complete ana-
lytic surfaces in B with Kj; = —1, must be homeomorphic to a plane, cylinder,
or Mobius strip; but I haven’t tried to make a rigorous proof. If this does indeed
turn out to be the case, it will be one of the rare instances where the require-
ments of smoothness and analyticity lead to different geometric conclusions.

We are still left with the complete surfaces in H3 with 0 < Kext < 1. We
can obtain infinitely many examples of such surfaces by looking at surfaces of
revolution.

Given a geodesic y in the hyperbolic plane, we can describe a complete arc-
length parameterized curve s — c(s) in the hyperbolic plane in terms of the
distance r(s) from c(s) to y. A curve ¢ can be found with a given function r

c(s)

c(0) rs)

provided that |r'| < 1, so that |r(s1) = r(so)| < 51 — so. If we rotate ¢ around y
in hyperbolic 3-space, then the first fundamental form of our surface 1s (Prob-
lem 22)

=sih?r(s)df @ d + ds ® ds,

and we compute that its Intrinsic curvature 1S

1 d?sinhr(s)
Kint = — ' 2
simh r(s) ds
Setting Kiye = —c*. we obtain the strictly positive solution
sinhr(s) = ¢, as well as smh r(s) = a cosh(cs), a > 0.
Both solutions satisfv |r'| < 1 for 0 < ¢ < 1. Thus for each Kexe = 1 — ¢?

with 0 < Key < 1 we obtain a I-parameter family of distinct surfaces, and
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one extra one. In the model (B3, { , )) these surfaces look like those below. I do

(ﬁil‘) {

not know whether these are the only surfaces with 0 < Ky < 1, as in the case
of surfaces with Kexe = 1, or if there are many others, as in the case Kex = 0.

G. HYPERSURFACES OF CONSTANT
CURVATURE IN HIGHER DIMENSIONS

We now want to consider hypersurfaces M" C N"*' where (N,( ,)) is a
manifold of constant curvature Ko and of dimension > 3. We are interested in
the hypersurfaces M of constant curvature; since M is no longer a surface, there
is no ambiguity of meaning here—we are requiring that M, with the induced
metric, have all sectional curvatures equal. After the exertions of the last section,
it is a relief to find that everything is now much easier, and most of the results are
essentially local. For example, we claim that there is no 3-dimensional manifold
M ¢ R* with constant curvature —I, not even a non-complete one. In fact,
if M has principal curvatures ky, k3, k3 at p, then all products k;k; must = —1,
which is clearly impossible, since at least two of the k; will have the same sign.
More generally,

47. THEOREM. For n > 2, let N"*! be a manifold of constant curvature Ko,
and let M" ¢ N™*! be a hypersurface of constant curvature K. Then K > K.
If K > Ko, then all points of M are umbilics, and if K = Ko, then at most
one principal curvature 15 non-zero.

PROOF. Letk,...,kube the principal curvatures at p. Gauss’ equation shows
that
K — Ko = kikj. i # .
If K = K. then k;kj =0 forall i # j.soif ki.say.is # 0, then k3. .. k, =0.
If K — K¢ # 0. then all k; # 0, so the equation
/\'1/\’,':/\'1/\’]' i.j#1
implies that k3 = - - - = k,. Similarly. ky = -+ = k1. Since n > 2. this implies

that ky = --- = k,. So all points are umbilics. Moreover. K — Ko = kikz =
(k1)2 > (). &
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We will examine the case X = K in more detail later on. But first we indicate
how more general results can be obtained by considering a certain covariant
tensor of order 2, the Ricci tensor Ric of M. The map Ric(p): Mp x Mp — R
is defined by

Ric(p)(X), Xz) = trace Y — R(X,,Y) X, Y e M,.

In terms of the components Rijkl of R in a coordinate system x!, ..., x", the
tensor Ric 1s given by

n n
Ric = Ricjx dx/ @ dx* for Ricjx = Riji;
J j j

k=1 i=l

thus Ric is obtained from R by contraction. If X),..., X, is an orthonormal
basis for M,, then Ric(X, X7) is the trace of the matrix ((R(X7, X;) X1, X))
Therefore

Ric(X), X1) = Y _(R(X1, X)) X1, Xi)

i=1

= —Z(R(X,—,Xl)Xl,Xi)-
i=2

So if X € M, is any unit vector, then — Ric(X, X) is the sum of the sectional
curvatures determined by X and any #—1 orthonormal vectors orthogonal to X.
(We have defined Ric so that it agrees with the classical definition Ricjx =
3 Rijxi; nowadays, the opposite sign is often used.) The following result is
analogous to Schur’s Theorem (II.7-19).

48. THEOREM. If M is a connected Riemannian manifold of dimension
n >3 and
Ric(X,Y)=AMX.Y)

for some function A on M, then A is constant.

PROOF. Bianchi’s second identity (IL. 5-9), together with Ricci’s Lemma. gives
0 0 = Rhijk: + Rnikrij + Ruitjk = 0.

Multiply by 3 ;4 8"/ g'*. We have
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> &M g™ Ryijua

- Zghjgik Rinjiy = — Zghj Z REpjica
hoj k

=— Y (8" Ricy)y = - > _(eManM
hj hj
aA

"ol

> Mg Ry = Y Mg Ry =Y " Y Ro
hoj k

=Y (g" Ricw),j = > (@ gnh)
h.j

h.j

o
T ooxl’
> &™e" Ryt = > & e Rjing = > &% Rling
ik h
=Y (¢* Rici)u = Y (&% @1k
ik ik
o
—oox!’
So (1) becomes

(n—-2) o2 =0
axt

Since n > 2, we have 9A/9x! = 0 for all /. «

A Riemannian manifold M with Ric = —A{ , ) is called an Einstein space,
and A is sometimes called its mean curvature (not to be confused with the mean
curvature H of a submanifold). If M has constant curvature K, then M is an
Einstein space with mean curvature A = (n — 1) K. We note in passing that

49. THEOREM. A connected 3-dimensional Einstein space is a manifold of
constant curvature.

PROOF. Choose an orthonormal basis X1, X2, X3 € Mp, and let K;; = Kji

be the sectional curvature of the 2-dimensional subspace of M, spanned by X;
and X;. Then

— Ric(X1, X1) = K12 + K13
—Ric(X2, X2) = Ky + K>3
—RiC(X3,X3) = K31 + K32-
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Hence
— Ric(X1, X1) — Ric( X3, X3) + Ric(X3, X3) = 2K),.

Since all Ric(X;, X;) = —A, we have Kjp = A/2. &

Now for a manifold (N"*!, ( , }) of constant curvature Ko we consider hy-
persurfaces M C N which are Einstein spaces.

50. THEOREM. Forn > 2, let N"*! be a manifold of constant curvature K,
and let M™ C N™! be a hypersurface which is an Einstein space with Ric =
—A{, ). If X > (n — 1)K, then all points of M are umbilics, and M is a
manifold of constant curvature K > K. If A = (n — 1)K, then at most one
principal curvature is non-zero, and M is a manifold of constant curvature Kj.

PROOF. Let Xi,..., X, € M, be principal directions with corresponding prin-
cipal curvatures ki, ..., k,. Gauss’ equation gives

1y Kij = kik; + Ko,

where Kjj is the sectional curvature of the subspace of M, spanned by X;
and X;. Then

A= ZK,']' = Zkikj + - 1)Ky
J#F J#F

— (Zk])k, - (ki)2 + (n — I)Ko.
J

Hence all principal curvatures k; satisfy the equation
(%) X2 - (ij).\'+[)\—(n— 1)Ko] = 0.
J

If A = (n — 1)Ko, then every k; is either 0 or the number Zj kj. So there
can clearly be only one k; # 0. Then equation (1) shows that all K;; equal Ko,
so that M is a manifold of constant curvature Kj.

If & > (n — 1)Ko, then all k; are one of the two roots @, B of (), where

(2) af=A—-(nm—-1)Ky>0
(3) a+ﬂ:ij.
J
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If p ofthe k; equal o, and the other ¢ = n— p of the k; equal 8, then equation (3)
can be written

a+B=pa+qgf = (p—Da+(@-1)pB=0.

But @ and B have the same sign, by (2), so either p — 1 or ¢ — 1 is negative,
which means that either p or g 1s zero. Thus all k; are equal. Then equation (1)
shows that all K;; equal Ko + (k1)? > Ko, so that M is a manifold of constant
curvature K > K. %

Theorem 50 is not the best that can be obtained, for 1t is also known that if
A < (n —1)Kp, then Ky must be > 0, and that in this case M must be one of a
certain special class of hypersurfaces, with A = (n — 2) K. For the proof of this,
the reader 1s referred to the original paper of Fialkow [1]; see also Ryan [1].

We now consider the critical case of an immersion f: M" — N"*1 where M
and N have the same constant curvature Ko, so that at most one principal
curvature of f(M) is non-zero at each point. If all principal curvatures are
zero everywhere, so that the second fundamental form s = 0, then M is totally
geodesic. Otherwise, we can consider the non-empty open set U C M defined
by

U={peM:s#0at p}.
Around any point p € U, we choose an adapted orthonormal moving frame
Xty s Xn—1, Xn, Xng1

such that X, ..., X,— are principal vectors with principal curvatures 0, and X,
1s a principal vector with non-zero principal curvature A. [Our moving frame is
really defined in a neighborhood of f(p) € N, but for simplicity we will regard
M C N for all local arguments.| Let ¢%, wg be the forms for this moving frame,

and let €', a)j’: be the forms for X;,..., X,. Then we have
() Yyt =0 i=1,....n-1
2) ntl — 0",

Fori =1,...,n — 1. the Codazzi-Mainardi equations give

n
0=dy/*' = Wt _ "yt A o] = W 100" A
j=1

Since \IJ;'H(X, Y) =0 for X,Y tangent to M. we find that 8" A w] = 0. or
(3) o] is a multiple of 8" (on U) i=1,....n—1

From this we derive a higher dimensional analogue of Proposition 5-+.
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51. PROPOSITION. The distribution A on U C M defined by
Alp) ={X e M, s(X,Y)=0forall Y € M,}
={X € M, : X is a principal vector with principal curvature 0}

is integrable. Every integral manifold of A is a totally geodesic submanifold
of M, and is immersed as a totally geodesic submanifold in N.

PROOF. Locally A is defined by d6! = ... = d6"~! = 0. Now on U we have
n n—1
do' == wi A0/ ==Y wlr6/  by(3)
j=l1 j=1
So Proposition 1.7-14 shows that A 1s integrable; the vector fields Xy, ..., Xp—
are tangent along an integral manifold M; of A. Equation (3) says that
0 = w/(X;) = (Vx, Xi, Xn) iLj<n-—1,
1.e., that the second fundamental form of M; in M is zero. Since we also have
(Vix; Xi, Xnt1) =0 i,j<n—1

by the definition of A, it follows that M; is totally geodesic in N. ¢

Now we want to study the function A along a geodesic ¥ lying in an integral
manifold M; of A.

52. LEMMA. Let y be an arclength parameterized geodesic in an integral
manifold M; of A, and let A(s) be the value of the non-zero principal curvature
at v(s). Then the function A(s) satisfies the differential equation

( | " B Ko

[

PROOF. Choose the moving frame so that y is an integral curve of X;. Equa-
tions (2) and (3) imply that there are g; with

) of = gt

n

The Codazzi-Mainardi equation for i = n gives

n
(4 dw;H—l — \I/:+l _ Z 1//](H—l A w'jl'
j=1

=wrtt by ().
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Thus
Wit = dyttl = —dA A 6" — 1 dE" by (2)

n
= —dAAO"+ 1D o] A6,
i=1
and therefore

n
dA A0 =-1Y 0 Aol — Wt
i=1

Applying this to (X1, X) gives
X1V = —rof (Xn) + Ao (X))

= —Ao] (Xy) by (3)
= -Ag1 ¥ (Xn) by (3)
= 1’g by (2),

which we can also write as

(%) X (%) ~ g

Now on M we have the structural equation
n—1
doi = —Zw,'(' Aok +QF,
k=1
which by (3") becomes

n—1
dgyrth ==Y avrt Aol + 91,
k=1

and thus by (2) and (4)
n—1
dgy Ayt + Ut = —K(Z gkw{‘) AO" + Q1.
k=1
Finally, we use (2) again to write our equation as
n—1
—hdg AO" + g Ut = -—)\(Z gkw{‘) AO" + QY.
k=1
Applying this to (X1, X)) we get
-2 X1(g1) +0=10— Ky,
since all w¥(X) = 0. Thus (x) yields

K
X1 (X] (%)) =Xi(-g1) = —TO_ <&
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The solutions of the equation (1/A)" = —Ko(1/4) can be found explicitly—
1/A is linear if Ko = 0, a linear combination of sin and cos if Ko > 0, and a
linear combination of sinh and cosh if Ko < 0. In any case, 1/A is bounded on
any bounded interval.

53. COROLLARY. If M is complete, then the integral manifolds of A are
complete.

PROOF. We just have to show that a geodesic of an integral manifold M; can-
not approach a boundary point of U. The argument is almost the same as that
in the proof of Corollary 5-6. &

It is now a straightforward matter to generalize Theorem 5-9. We will make
things easy for ourselves by choosing the simplest proof.

54. THEOREM. If M is a complete flat n-manifold and f: M — R"*!isan
isometric immersion, then f (M) is a generalized cylinder (it is congruent to a
set of the form y x R"~! for some curve y C R?).

PROOF. We can assume M is simply connected, and thus R”. If f(M) is not
totally geodesic, then the set U C M is non-empty, so by Corollary 53 some
hyperplane of M is mapped isometrically onto an (n — 1)-dimensional plane of
R"+1. Now apply the third proof of Theorem 5-9. %

We also obtain complete information for the case Ko > 0.

55. THEOREM. If M" is a complete manifold of constant curvature 1 and

: M™ — S s an isometric immersion, then f(M) is a great n-sphere in
, . P
S"+1.

PROOF. We can assume M is simply connected, and thus S”. If f(M) were
not totally geodesic, then the set U C M would be non-empty, so Corollary 53
would show that there are two digioint complete totally geodesic (n — 1)-dimen-
sional submanifolds of M = S”. This is impossible. ¢

In the case Ko < 0 we would not expect such good results, since even the case
n = 2 is so complicated. Actually, the case n = 2 already contains essentially
all the complexity there is, for one can show that if M" is a complete manifold
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of constant curvature —1 in H"*!, then the higher dimensional cohomology

vanishes, _
H(M)=0 fori > 1.

This is essentially a consequence of the analysis already provided, although
technical details are required for a rigorous proof (see O’Neil [1]).
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ADDENDUM 1
THE LAPLACIAN

The material of these first 3 Addenda is essentially a part of intrinsic Rie-
mannian geometry, and might thus seem out of place in this chapter. But I
felt it was appropriate to put it here since this is the first ime in a long while
that we have seriously considered higher dimensional Riemannian manifolds.
Moreover, the next chapter will be devoted to material which is completely in-
trinsic in nature. Finally, some of the material covered here will be used when
we return to the study of extrinsic geometry in Chapter 9.

In classical “vector analysis”, there are three operators which play a crucial
role. First of all, for every smooth function f: R” — R we have a vector field,
the gradient of f, defined by

L gxi Oxt
i=1

gradf=(%,...,;£)_ ~ o

On the other hand, for every vector field X on R”, with

.9
X = Zal axt’
i=1

we have a function, the divergence of X, defined by

Finally, the Laplacian of f is the function*

n 2
Af = div(grad /) = Y -aii
i=1

(xi)Z'

. . ad - .
* Classically, one introduced the operator V. = ), — - ¢;, where ¢; = 3/9dx" is the jth

Foxi

basis vector of R”, and wrote (formally)

grad f =V [
divX=(V.X)=V.X
Af =(V.Vf)=V.Vf.

For this reason A was often denoted by VZ.
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The operators grad, div, and A all have natural generalizations to an arbi-
trary Riemannian manifold (M, ( , }). Consider first the gradient of f. Notice
that the components of grad f on R” are just the coefficients of df in the ex-
pression df = 3_,(3f/3x") dx'. Consequently,

L0 d
<gradf, Zb’ﬁ>= aflb, df(Zb’ ax,)
i=l1

We can use this equation in any Riemannian manifold (M, ( , )) to define
grad f as the unique vector field such that

{D (grad f,Y) = df(Y) =Y(f),
for all vector fields ¥ on M. We easily see that
{1 grad(fg) = f -gradg + g - grad /.

1

In terms of a coordinate system x',...,x" on M we have

n

n
g of 0
wad /= (L 57 5 )
i=1 "j=1
The divergence of a vector field X on M may be defined as

) (dwv X)(p) =traceY > Vy X Y eM,

n
= Z(V;z,.X, YH Yi,...,Yn € Mp orthonormal.

This clearly coincides with the original definition in Euclidean space. It is easy
to check that

) div(fX)=X(f)+ [ -divX = df (X)+ f -div X.

1

In terms of a coordinate system x', ..., x" we have

X = Za—‘1=>d1xX Za,——Z(—-—+na1F)

i=1 j=1

We can also define div @ when o 1s a 1-form, for the connection V on vector
fields gives rise to a connection V on I-forms (Chapter II.6), and we can set

(I (divw)(p) = Z(ina))(X,-) Xi,.... X, € M, orthonormal.
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It is easily checked that this definition does not depend on the choice of the
orthonormal basis X1, ..., Xp, but we can also give a completely invariant def-
inition. We note that every bilinear map @: V x V — R gives rise to a map
o'V — V*by o) (w) = a(v,w). If we also have an inner product on V,
then we have an isomorphism V* — V, and thus we obtain a linear map

/

o
V —>V*—> V.

It is easily seen that the trace of this composition 1s the same as
n
Za(X,-,X,-) X1, ..., X, an orthonormal basis for V.
i=1

To apply this to the case at hand, we consider the tensor Vo, with
(Vo)(X,Y) = (Vxw)(Y).

Then

(Vo)
(div w)(p) = trace of the composition M, —— M,* — M),

where the 1somorphism M,* — M), comes from the metric. The analogue of
equation (2) is

(3) div(fo) = {df,®) + f dive,

where the inner product { , ) on M,* comes from the inner product ( , )
on M, in the standard way.

More generally, consider a tensor A which is covariant of order k. We define
div A4 to be a covariant tensor of order & — 1 by the (admittedly asymmetric)
formula

(111 div A(p)(Ya, ..., V) =Y (Vi A)(Xi, Yo, ..., Vi)
i=1

Xi,.... X, orthonormal in M.

The reader mav easily work out a completely invariant definition.

In Problem I.9-13 we introduced the Divergence Theorem for n-dimenstonal
submanifolds-with-boundary of R”. Now that we have generalized the defini-
tion of div. we would like to generalize this theorem also. An examination of the
proof hinted at in that problem leads us to hope that the following alternative
definition of div is valid (the svmbol _i is defined in Problem 1.7-4).
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56. LEMMA. Let M be an oriented n-dimensional Riemannian manifold,
with volume element dV (which can be considered to be an n-form, since M
is oriented). Then for every vector field X on M we have

(%) d(X 1dV) = (divX)-dV.

PROOF. If () holds for X and X>, then 1t clearly holds for X + X>. Moreover,
if () holds for X, then

A(fX 1dV)y=d(f (X _1dV))
=df A(XJ1dV)+ f-d(X1dV)
=df A(X1dV)+ f-divX -dV.
Now Problem I.7-4(f) gives
0=X_(df AdV)=(X_1df)AdV —df A(X_1dV)
=X(f)-dV —df n(X1dV),
so our formula becomes
d(fX 1dVy=X(f)-dV + f -divX.-dV
= (div fX) -dV by (2).
Thus (#) is also true for fX.
Now let X1, ..., X, be a positively oriented orthonormal moving frame, with
dual forms 6!, ...,6", so that dV = 6! A ... A 6", By the considerations of the

previous paragraph, it suffices to prove (*) when X is some X;, and we might
as well take X = X;. We easily see that

X, 1dV =X 10" A A =02 A A"
So

n
d(X]JdV)=d(92A---AQ")=Z(—l)jQZA---AdeA---AQ"
j=2

n n
:—Z(—l)jQZA---A(Zw{AQi)A---AQ"
j=2 i=1

:—Z(—l)jQZA---A(w{AQ’)A---AQ"

j=2

n
=—Z(—l)jcule9‘A---A9fA---AQ".
j=2
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But

n

n
k=1 k=1

so we obtain

d(X,2dV) = Z(VX,-Xl,Xj)Ql NN L
j=2
= (div X1)dV. &

As an easy corollary we now obtain

57. THEOREM (THE DIVERGENCE THEOREM). Let M be a compact
oriented n-dimensional Riemannian manifold-with-boundary, with outward
pointing unit normal v on M. Denote the volume element of M by dVy,
and that of M by dV,_;. Let X be a vector field on M. Then

fdideV,,:f (X, v)dV,_,.
M oM

PROOF. This follows from Stokes’ Theorem, and the easily verified fact that
X 1dV, equals (X,v)dV,_; on OM. «

58. COROLLARY (GREEN’S THEOREM). If M is a compact oriented
n-dimensional Riemannian manifold without boundary, and X is any vector
field on M, then

f divXdV, =0
M

Notice that even when M is not orientable, equation (x) in Lemma 56 can
be used to define div X, for both sides of the equation change sign when the
orientation is reversed. so locally the formula defines div' X' unambiguously.

We now define the Laplacian A f of f on M by

(V) A f =div(grad f).
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For a coordinate system x!',..., x" on M we have, with the notation of Chap-
ter I1.3,

Af=Xn:(Xn:g”g—j):i =Xn:( n g”f-.j)

i=1 Vj=I i=1 ‘j=I i

=Y £ f = > Y fy
i, j=1 i j=1
o 9 = 3f
- Z g](axiaxj _ZWFS)

i,j=1 k=1

If x',...,x" is a normal coordinate system at p, so that Fij(p) = 0, and
g,-j(p) = 5,']', then

n 82
Af(p) = wa;z(m.
i=l1

We can also state a more precise result along these lines. Suppose that X, ..
X,, are vector fields which are orthonormal at p. Then

IV Af(p) = div(grad f)(p)
= trace X +— Vy grad f XeM,

b ]

= Xn:(Vx,»(p) grad f, Xi(p))
i=l1

= 3 K (grad £ X0) — 3 (grad 1)), T o
i=1 i=1

= Z X;(p)df (X)) — Xn:((grad D), Vx;(p Xi)
i=1 i=1

= Xn:(X,-X,-f)(p) - Xn:((grad D) Vi Xi)-

i=l i=1

So we have

AV Af(p) =Y (XiXif)(p) for

i=1

X1,..., X, orthonormal at p
Vx, X; =0 at p.

We ought to mention that the Laplacian A f on a surface was first introduced
by Beltrami, so A is often called the Laplace-Beltrami operator. For reasons that
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will appear in the next Addendum, the Laplacian is often defined as the negative
of the Laplacian as defined here. There is no general agreement on the proper
sign, so whenever a lecturer states that her Laplacian 1s the usual one (or the
negative of the usual one), one half of the audience (or the other half) raises
their eyebrows and murmurs disgruntledly “hmmpbh, so she calls #at the usual
Laplacian!”

A simple calculation [using normal coordinates, or equation (IV”), to make
things even easier| shows that

4) Afg)=f -Ag+g-Af+2grad f, grad g).

We will use this formula to derive a result of importance later on.

59. PROPOSITION. Let M be a compact oriented n-dimensional Riemann-
jan manifold-with-boundary, with outward pointing unit normal v on M.
Then
/ [fAf + (grad f, grad f)]dV, :/a (fgrad f,v)dV,_1.
M M

In particular, if f =0 on dM [and, a posteriori if IM = @}, then

/ fAde,,:—/ (grad f, grad f)dV,.
M M

PROOF. The Divergence Theorem (Theorem 57) gives

/ A(fHdV, =/ div(grad f*)d V, =/ (grad f2,v) d Vy_y.
M M M
Then equations (1) and (4) give the result. ¢

As a corollary we have

60. LEMMA (BOCHNER’S LEMMA). Let M be a compact connected Rie-
mannian manifold (without boundary). If f: M — Rhas A f > 0 everywhere,
then f is a constant function (and A f = 0).

PROOF. We can assume that M is orientable, by taking the orientable 2-fold
covering space of M if necessary. First of all, Corollary 58 gives

fAde:f div(grad f)dV =0.
M M
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Since A f > 0 on M, this already implies that A f = 0 on M. Now (the second
part of ) Proposition 59 gives

Ozf fAde:—f (grad f, grad f)dV.
M M
So we must have grad f =0 == df =0 == [ is constant. <&

An alternative proof of Lemma 60 is given in Addendum 2 to Chapter 10.

A couple of explicit calculations of the Laplacian will be used at various times.
Our first calculation is most easily carried out in a coordinate system. Consider

a 1-form

W= Za,- dx’,

i

and the vector field

.0 . .

Xzzal-gg, a’:Zg”aj.
i J
This vector field X is described intrinsically by the equation
(X,Y) =ow(Y) for all vector fields Y,

so that, in particular,

(X, X)=w(X)= Zaiai.
i
Now
A(Zaiai) = Zgjk (Z ai(l,')
i ik i sik
= Zgjk Z(ai;jai + aia,-;j);k
j.k i

" . . . .
=Y g (@ jkai +a' ek + ' wai +a'ai k).
J.k i

Since

i kil
Zgj a'jkai = Zzg] g"arjkgima”

ij.k i,j.kI,m

K ik .
= Z g] am;jka”' = Zg] a,-;jka',

J.k,m ij.k



136 Chapter 7, Addendum 1

and

i il
Yo taai =" Y g e arjaik,

i,jk Ljk 1

we have, finally,

(5) A(Z aiai) = 2( Yo dtda+ Y gjkg”a,-;kal;j)'
i

i j.k i,j.k,1

Our second calculation is easily carried out in a coordinate-free way. Con-
sider an immersion f: M" — R™, so that M has a Riemanman metric Iy =
f*(, ). We will compute A with respect to this metric (the fact that f is
R™-valued causes no difficulty, for we can compute the Laplacian of each of its
component functions—for simplicity we suppress the various components and
simply use formula (IV”) for R™-valued f). It will make things conceptually
easier to think of M" as a subset of R”, so that f is the inclusion map. Let
X1,...,Xn be vector fields on M satisfying the conditions of (IV”). We first
want to figure out what the R™-valued function X;(f) is. Now

X;(f) = df(X;) = “the vector part of” fi.(X}) by Problem I.4-3

= X; (when X; is considered as a point of R™).
Therefore,

Xi(X;: )(p) = Vx, Xi(p)
= Vx, Xi(p) + s(Xi(p), Xi(p))
= s(Xi(p), Xi(p)) by our conditions on X, ..., Xn.

Thus we see that

(6) Af(p)=n-n(p),

where 1 is the mean curvature normal. Notice, in particular, that if M has
n =0, then Af = 0. Lemma 60 then implies that M cannot be compact (for
n > 1), which reproves Corollary 31. In the particular case of a hypersurface,
we have

7 Af=nH-v,

where v is the unit normal field.
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Notice the correspondence between equation (7) and equation (I'y on
pg. 111.109, which can be written in the simple form

A< »>f=dvs

where A, |, indicates the Laplacian with respect to the metric { , } on M.
Since the Laplacian is such a natural operator on a Riemannian manifold, it
is not surprising to find Ay, f related to N. (Note also that Ay 4 involves
g;; and Christoffel symbols T{-‘j, and thus third derivatives of f, just like N).
As a matter of fact, this equation was originally used as the definition of N (it 1s
clearly a special linear affine invariant!).

The Laplacian can be generalized in two very important ways. One such
generalization is treated in the next Addendum. A different generalization,
important in Chapter 9, is suggested by the next to last line of equation (IV'),
which can be written

Af(p) =D Xi(p)df (X)) = ) df (Vx(p) Xi)
i=1

i=1

Xi,..., X, orthonormal at p.
Now Corollary II.6-5 says that the covariant derivative Vdf is given by
(Vx,df)(Yp) = Xp(df (Y)) — df (Vx, Y)

for any vector fields X,Y extending Xp, Y. Thus we can write
n
Af(p) = Z(indf)(Xi) Xi,..., Xn € M, orthonormal.
i=1

Thus, using (ITT) we can just as well define A /by
Af = div(df).

[Naturally, one could, with some work, demonstrate the equation div(grad f) =
div(df) directly from the completely invariant definitions.]

The nice thing about this new definition of A f is that it can be generalized
immediately. Consider a vector bundle w: E — M, where M has a metric
( ,), and E has some connection D. If § is any section of E. then Dy, & €
w~!(p) for X, € M,. We can therefore think of DE as a section of the bundle
Hom(TM, E) whose fibre at p is Hom(M,, @~ !(p)). Now the connection V
on M determined by ( , ), together with the connection D on E, determines
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a connection V on Hom(TM . E). This is defined as on page 37, except that
the situation is even simpler. As in that case, we easily see that for any vector
fields X, Y and anv section ¥ on Hom(TM, E), we have

(8) (Vx, ¥)(Yp) = Dx, (¥(Y)) — ¥(Vx, Y).

[f E = M xR, so that the sections of E are functions f: M — R, and we
define Dy f to be df(X), then V will just be the connection V on I-forms.]

Naturally ?71// will denote the section of Hom(TM x TM, E) with
VX, Y) = (Txy)(r).

For a section & of E we can now define

V) Aé(p) = Z(%X, D) (X)) X1,..., Xy € My orthonormal.

i=1

(A completely invariant definition is easily formulated, as before.) If we let
X1,..., Xn be vector fields which are orthonormal at p, then

n

V) AEp) =Y (Vxp DENXi(p))

i=l

=Y Dxyp(DE(X)) = Y DE(VxpXi) by (8)

i=1 i=l1

n n
=Y DxnDxé =Y DE(Vx, () Xi).

i=1 i=l

So we have. in complete analogy with equation (IV"),

(" A&(p) = Z(DX’ Dx,€)(p) for

i=l

Xi...., X, orthonormal at p
VX/ X;i=0at D
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ADDENDUM 2

THE * OPERATOR AND THE
LAPLACIAN ON FORMS; HODGE’S THEOREM

Let V be an oriented n-dimensional vector space with an mner product { | ).
The * operator, from alternating k-linear functions QK (V) to Q"% (V), is usu-

ally defined as follows. Let vy, ..., v, be a positively oriented orthonormal basis
of V,and let ¢, ..., ¢, be the dual basis. Then

*(¢i1 /\/\¢1A):i¢]l /\"'/\(pjnfk’

where iy, ...,i; are k disunct numbers from 1,...,#n, and j),..., ju_; are the
other n — k numbers of this set, arranged in some order; we use the + sign 1f
Viys > VigsVjys- -5 Vj, , 1s positively oriented, and the — sign otherwise. We
also set x1 = £ A+ Ay, where 1 € QO%V) =R, and x(¢ A---Adp) = £1.
It is easy to see, first of all, that this definition is consistent, for a fixed basis
V1,...,Un, and then that the definition is also independent of the orthonormal
basis. An invariant definition can be given as follows. We always have a map

Qk(V)y x Q7 k) A QMV).

An orientation and inner product on V' gives us an isomorphism Q" (V) — R,
so we have a bilinear map

{,5:Qkv)yx " k) > R

Then we can define
A QK V) - ("R ))”
by
A(@)(n) = {w,n} we QW) neQ k).

Now the mmner product on V also gives us an isomorphism V — V* from which
we derive an isomorphism (Q"_k(V))* — Q" k(). One easily checks that
the composition

A x
Qk(v) — (")) - @ F)
is precisely *. Straightforward calculations show that

(h wx = x o x: QK(V) > QK(V) is (—1)*"=%) times the identity.
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In Chapter 1.9 we mentioned that the inner product on V gives inner prod-
ucts on all vector spaces Qk V), although we did not describe most of these
inner products explicitly. The inner product on (V) = V* can be described
by the condition that the dual basis ¢',...,¢" is orthonormal if and only if
Ui,..., Uy 1s orthonormal in V. Using the mnner product { , ) thus defined on
Q(V), we can describe the inner product on QK (V) as the unique one with

2) (Dy A Ay i A Ag) = det((¢i, W)

for ¢;,¥; € V*. In particular, if ¢,,..., ¢, is orthonormal in V*, then

iy A  Ais @y A A i)

5,’11 5,'11(

=det| :
St ... bik

_{0 iy, ..,y £41,...,k}

sgnm  if iy = m(a) for some permutation 7 of {1,...,k}.
Since the naming of the indices was purely arbitrary, we have, just as well,

0 W, ik # U k)
sgnmw if jo = w(iy).

3) (¢i1/\"'/\(pik’(p]'l/\"'/\(pjk):{

So we can also describe the inner product on QK (V) as the one which makes
the ¢;; A~ A @i, (1 < -+ < ik) an orthonormal basis, for any orthonormal
basis ¢, ..., ¢, of V*,

Now note that

Giy N AP ARy A ADR) =iy A ANy AEPrpr A Ay
{0 i, ..y £4L,... k}

(sgnm)-x1 iy, = ().

Again, since the naming of the indices was arbitrary, we have, just as well,

0 if {iy,.. . ik} #
B diy A NGy ARy A APy = { $tsee s Ji}
(sgnm)-*x1 if jo, = wliy).

Comparing (3) and (4), we see that for @,n € Q¥(V) we have

(5) (w,n) = x(w A *n) = x(n A xw).
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Now everything that we have done can be extended to k-forms on an oriented
Riemannian #-manifold (M,{ , )). We have an operator * taking k-forms to
(n — k)-forms, and *x = (=1)k0=k) on k-forms. It is easy to check (using the
dual forms to an orthonormal moving frame, for example) that * takes C*
forms to C® forms. Note that the volume element dV on M is just *1 for the
constant function (0-form) 1.

We also have, for two k-forms, @ and 7, a function {w,n) on M. We would
like a formula for {(w, n) when we have coordinate expressions

(a) w= Z a;l,,,ikdxi‘ Ao A dxie
n< "<ik

(b) n= Z bjl,,,jkdxj'/\---/\dxjk.
<<

For this, and later, purposes, it will be convenient to express a form in terms
of tensor products of the dx’, instead of wedge products. Recall (Theorem
1.7-2(3)) that

(14 +D!
TRT

= Z sgnodx’M @ ... ® dx° )

cE€SK

dxU A AdxR = Alt(dx"' @ - ® dx'*)

This shows that the expression (a) can also be written

w = Z iy dx" ® - ® dxik>
[ gennsif
where the new a;,. i, are skew-symmetric in the indices ii,...,i{x and agree
with the old a;,.;, when i} < --- < ix. Now let g;; be the components of { , )

in our coordinate system, so that g% are the components of { , ) on the dual
space. With any tensor, covariant of order &,

A= Z iy ...y, dx" ® - ® dxik>
Dyeensipy

1

we can associate the tensor, contravariant of order k,

- .. 0 d
= E VRTINS
A= at ax © ¥ axJe’

JiseesJk
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where

(6) @tk — Z giljl ..-gi“’jkaj,...jk-

In the special case where

A= Za,-dxi,
i

it is clear how 4 is described invariantly: if we think of A(p) as a linear function
on M,*, then

A(p)(@) = A(p)(S(#)),
where S: Mp* — M), is the isomorphism given by the metric. In general,

AP)@ys-- b)) = APUS (D)), ..., S(dx)).

Notice that if the a;, _;, are skew-symmetric in the indices, then so are the
a’tJk . So if w is given by (a), then @ is also given by

b= ¥ a2
. ) axll axlk
Ji<-<jx
[note, however, that the a/t/% are computed from (6), in which a;, _;, is de-

fined, by skew-symmetry, for all iy, ...,ix]. We now claim that for w, n given
by (a) and (b), we have

(7) ()= D an g b= Y gk

iy <-e<iy Iy <--<iy
1 . 1 .
—_ no.ay Iy dy
= E diy..i, b = E a' by iy
k' . i 1 k k' ] i 1 k
walk i

To prove this, we note that the last two expressions can be defined invariantly
as contractions (traces) of @ ® fj or @ ® 1. So it suffices to check that (7) holds
at a point p where dx!, ..., dx" are orthonormal. In this case g/ = §7 at p,
so gl = djy..ip at p. The desired result then follows immediately from
equation (3).

On the oriented Riemannian n-manifold M we can also do something else.
Since we have the map d. which raises the degree of a form, we can define a
map 4. which lowers the degree of a form, by

§ = (—1)1kFD+, gy from k-forms to (k — 1)-forms.
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We clearly have §2 = 0, and § = 0 on functions (0-forms). Note that on k-forms
we have

(8) *8 = (_l)n(k+l)+1(**)d*
— (_l)n(k+1)+1 . (_l)(n—k+1)(k-1)d*

by (I) [since dx of a k-form 1s an n — k + 1 form)]
= (=1)¥d «,
and similarly

9) §x = (—1)FH1xd.

Notice that 8 can really be defined even when M is not orientable, for its def-
inition is local, and changing the orientation of M reverses the sign of *, so
leaves § unchanged. We now define an operator A from k-forms to k-forms by

A =68d +dé.

The reader may check that on 0-forms this A is the negative of the one in the
previous Addendum. [N.B. The connection V on M gives rise in a natural way
to a connection V on the bundle of k-forms on M, so the final definition of the
previous Addendum also gives us a Laplacian on k-forms. But that Laplacian
is not related to the one defined here.] Simple computations, using (8) and (9)
for the last equation, give

(10) dA = Ad, SA = A§, *A = Ax.

On a compact oriented manifold M we can define the inner product (w, n)
of two k-forms w, n by

(w,m:/(w,nw:/ wAsy by ()
M M

This inner product ( , ) is clearly symmetric and positive definite. Now if @ 1s
a (k — I)-form and p is a k-form, then

d(w Axn) =do Axp+ (=)o Adxy
=do Axnp—w Axn by (8).

So Stokes” Theorem gives

0:/ d(a)/\*r)):/ da)/\*n—/ o A *8n,
M M M
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or
a (dw, 1) = (@, 5n).

Thus § is the “adjoint” of d for the inner product ( , ), and this property
characterizes 81, since ( , ) is positive definite. From this we easily see that A
is self-adjoint with respect to the inner product ( , ) on k-forms,

(12) (Aw,n) = (o, An).

In Euclidean space, a function f with A f = 0 is called harmonic. In an ori-
ented Riemannian manifold (M, { , )) we call a k-form @ harmonic if Aw = 0.
When M is compact, we can write

(Aw,w) = ([d§ + 8d]w,w) = bw,éw) + (dw,dw),
which shows that
(13) Aw=0 — dw =0 and dw =0, M compact

(the converse is trivial). If @ and 5 are k-forms, and Aw = 0, then equation (12)
gives
(An,w) = (n, Aw) = 0.

So the vector space of all harmonic k-forms (the kernel of A) is orthogonal
to the image of A. The fundamental result on harmonic forms states that
these two orthogonal subspaces of the k-forms span the whole vector space of
k-forms:

THE HODGE DECOMPOSITION THEOREM. If M is a compact ori-
ented Riemannian #-manifold, then for each k with 0 < k < n, the vector space
H* of harmonic k-forms is finite dimensional, and the vector space E*(M) of
all k-forms on M can be written as an orthogonal direct sum decomposition

E¥(M) = A(EX(M)) ® H*(M).
For a proof of this result, which is completely analytic in nature, the reader is

referred to Warner {l}; the proof given there is elementary and completely self-
contained. We will merely indicate the consequences of the theorem for the
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de Rham cohomology. The orthogonal decomposition of EX(M) gives two
projection maps
H (M)

AE*(M)).

For any a € EX(M), the form h* (o) = o — Hk (@) is uniquely Aw for some .
Set
G(a) = the unique w with Aw = o — H*(a),

so that
G = [A|AER (M) 7! o h*.
Now consider any linear map 7T : EX(M) — E!'(M) with TA = AT [eg,
T =d, §, A]. We easily see that
T(H* c H',  T(AE¥(M))) c A(EN(M)).
So
Toh¥ =h oT,  To[AAEFM)] =[AIAE (M))]-T.
From this we see that GT = TG. In particular, G commutes with d.
Now let w be any k-form. Then we have
o = AGa + H* (@)
=dsGa +8dGa + H ()
= d§Ga + 8Gda + H* ().

So if do = 0, then
o =dsGa + H* ().

Thus H*(a) is a harmonic k-form in the same de Rham cohomology class as o.
On the other hand, suppose o; and «; are two harmonic k-forms in the same
de Rham cohomology class, so that

ay —ay =dp
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for some B. Then

(dB.df) = (dB,a; —az) = (B, 8oy — Saz) by (1])
=0 by (13).
So df =0, or @) = ;. Thus there is a unique harmonic form in each de Rham
cohomology class. In other words, the k-dimensional de Rham cohomology
vector space is isomorphic to the vector space H¥(M) of harmonic k-forms.
We will give a simple application of this result in a moment. First we would

like to observe that both d and § can be defined in terms of the connection V
of M. For d this 1s easy.

61. PROPOSITION. If w is a k-form on a Riemannian manifold, then
do = (-1)F(k +1) - Alt Vo.
PROOF. Let x',...,x" be a normal coordinate system at p, and let

w = Z ail._.ikdxi' A A dxE
= Z a,-l,__,-kdxil ® - ®dx'*, as on page 141,

Then (pg. I11.231)

Vo = Z Za,l gk dX! Q... @dx* ®dx".

So

k +DIALVo = Y > aj, intk + DIAIAY" @ -+~ @ dy'* ® dx)

[T ir h
= Z Za,l ,Ahd\‘ AdxkoAdx
..... ir h
=KUY D i g dx A A dNE A dX
iy<-<ip h

by skew-symmetry of the a;,_ i, . So
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#  (CDFE+HDANYVo = Y Y ay g pdx" Adx A AdxE
iy <---<iy h

But at p we have (Proposition II.5-1)

0
ail...ik;h(p) = a—xh.ail.”ik (P)
So

(=D (k + 1) Alt Vo (p)
0 . .
= Z Z Wail---ik (p) dx" Adx A A dx'*(p)
iy <-<ip h

= da)(p) <

Naturally, the use of a normal coordinate system at p was merely a simplifying
device; in an arbitrary coordinate system we would obtain the same result with
a little more calculation—the Christoffel symbols in (%) all cancel out after we
write all dx® A dx't A --- A dx'* in terms of increasing sequences of indices.
The formula

do = Y Za,-lw,-k;hdxh/\dxi' A Adxk,

ip<-<ip h

which follows from (x) and the final result of the theorem, can be rewritten as

follows:
_ L JUoA ~Jk+1
dw = E biv.jps, dXIT A Adx ,
Ji<e<Jr41
for
k+1
L — 2 : _ 14+l —~
b]l---]k+l - (=1 Qjyoudksriu
pu=t

Notice that if the a’s are skew-symmetric, then the b’s will be also.
Now suppose that we have a (k + 1)-form

= Z Cjrejrrt dxIt A A d IR

Ji<<jrk4
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Then equation (7) gives

(14) (dw,n) = (k+ 1), Z b]l dke1€ eIt Tk

k+1

1 A
- Y 2l ~ J1eJk
- (k +1)! Z Z( D a/1~~~fu~~~jk+12juc !

Jises k1 =1

k+1
w1 ~ Jredksr
(k+1)' Z Z( b R T P Ju
~~~~~ Jr+1 =1
k+1

! 1
+ =l Z 2:(-””+ @y 7o @),

Now 1t is easy to see that

~ Jledr+r
Z ajl~~~ju~~~jk+1c Ju

s k41
_ E Jreeduedk+1 E Jue,.. .
- a “ g le~~~jk+1:p
oo k41 P
_ Y j,...]';...ijZ jup ~
- Z ( 1) a g Cjujl~~~]u~~~jk+1§»0'
Jlsesdk+n p
Hence
k+1 _
JreeduJk+1 E Jup ~
a .. < .
21 (k + 1)[ Z Z & C]u]l---]u~~~]k+l§;0
ik n=1 4
k+1

—1 Lo~
_ Jledudi N
NED Do Q@I e S

Now the y’s are simply the components of the tensor div 1, defined by (III') on
page 130. So

(135) ¥ = —{w,div n).
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On the other hand, we obtain k + 1 well-defined vector fields X, with

_ § : § oI Ju—1PJ 1k _3_
Xu Djifuediorr© OxP’

=1 “jlsees Jl+1

Then
| k+1
(16) Yo = div(— Z X,L) =divY, say.
k+ 1! o
Combining (14), (15), (16), we have
(%) {dw,n) = —{(w,divy) + divY.

From this we conclude

62. PROPOSITION. If nisa (k + 1)-form on an oriented Riemannian man-
ifold M, then

np = —dvn.
PROOF. First suppose that M is compact. Equation (x) gives, for any k-form w,

(dw,n):/ (da),r;)dV:/ (a),—divn)dV+/ divYdV
M M M

:/ (w,—divn)dV + 0 by Corollary 58
M
= (w,—divn).

Since 87 is the unique form with (dw, n) = (w,8n) for all k-forms w, it follows
that §n = — div .

If M is not compact, we can still conclude, from Theorem 57, that (dw, n) =
(w, —div n) for all k-forms w with compact support. This is still sufficient to
imply that §n = —divn. %

Now consider a 1-form w = Y_; a; dx’. Propositions 61 and 62 say that

do =0 & a;; =aj;

=0 & 0= Zgijai;j = Zai;i-
i i
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Suppose that do = §w = 0, and consider the expression (5) on page 136 for
A(Y; d'a;). For the first term in parentheses we have

Z gjkaiai;jk = Z gjkaiaj;ik since dw =0
i,j.k i,k
=Y gtd (aj;ki +> aR ,-,-k) by Ricci’s identity
ij.k !
i ( ik ik i pl
= Zal(g] ajk )i + Z glta'a R ji
i,j.k ikl
=0+ Z g’*d'a R iy since w = 0
i, j.k,1
jk i I
= Y gdgud" Ry
Ljk.lp
- P pgikp
= Z aa-g wjik
I,j.k,p
_—
=- Z a'a"g’" Rjpik
L k.p

= - Y dla" R
ik,u

=— E Ricy; a'a®.
ip
Thus we obtain

() A(Z aia,-) = 2[— Y Ricja'al + ) gjkg”a,-;kalzj]-
i )

i,j.k.1

63. THEOREM (BOCHNER). Let M be a compact oriented Riemannian
manifold with — Ric(X.X) > 0 for all X # 0. (This holds, in particular, if
all sectional curvatures of M are > 0.} Then the 1-dimensional de Rham
cohomology of M is zero.

PROOF. Let @ be any 1-form on M with Aw = 0. Then also dw = $w = 0.
by (13). Then (x) shows that A(Y_; a’a;) = 0. since the second sum on the
right is clearly > 0. Recall (page 135) that Y, a’a; is a well-defined function f
on M. So Lemma 60 implies that A(3"; a'a;) = 0. By the hvpothesis on Ric,
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this implies that @ = 0. In other words, 0 is the only harmonic l-form. Since
the vector space of all harmonic 1-forms is isomorphic to the 1-dimensional
de Rham cohomology of M, the theorem follows.

In the next Chapter we will prove that a compact Riemannian manifold M
satisfying — Ric(X, X) > 0 for all X' # 0 actually has a fimte fundamental
group m(M). Then the result of Theorem 63 follows by algebraic topol-
ogy. [First we use the Hurewicz theorem to conclude that the first homology
group H\(M;Z) is finite; then the universal coefficient theorem implies that
H'(M:R) = Hom(H,(M;Z),R) = 0}. However, Theorem 63 has many gen-
eralizations, proved using similar techniques, that have never been strengthened
in the same way.
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ADDENDUM 3

WHEN ARE TWO
RIEMANNIAN MANIFOLDS ISOMETRIC?

Suppose we are given two Riemannian manifolds M, M of the same dimen-
sion n. We would like a way of finding out whether they are locally isometric.
In other words, we ask if there is a point p € M, a point p € M, and an isom-
etry a: U — U of a neighborhood U of p onto a neighborhood U of p. We
have a slightly different problem if we are already given p and p, and merely
seck U and U. Admittedly, both of these problems are a little strange, for we
are not very likely to be given two explicit Riemannian metrics just out of the
clear blue sky; specific metrics which actually come up in practice are so special,
and the requirements of isometry so stringent, that there is usually no difficulty
seeing whether they are isometric. As a matter of fact, I know of no instance
where the (complicated) general methods which we will develop are actually
used. But it is nevertheless quite significant that we can now settle the question
of isometry in the category of Riemannian manifolds, for this shows that any
mtrinsic invariant of a Riemannian manifold can be defined in terms of the
various invariants (like the curvature tensor) which we have already discovered.

The theory is rather special, and quite pleasant, in the 2-dimensional case.
First some preliminaries. For two functions f,g on a Riemannian manifold
(M, { ,)), we introduce the classical notation*

Ai(f,8) = (grad f, grad g),  Af = Ai(f, /).
It is clear that if «: M — M is an isometry, and f,g: M — R, then
W) Ai(f ca,goa)=A(f,g),
where A; is formed with respect to the metric on M. For a metric
(., )=Edu®du+ Fldu @ dv+ dv ® du]l + G dv ® dv

on a 2-dimensional manifold, we easily compute that

[ (L U)o )

M(f8) = 5 | Eo- BN 0u du
l(f g) EG — F2 av av al) al,l 314 av aLl au

*In classical differential geometry books, the Laplacian A f was denoted by A, f (and,
worst of all, A f was sometimes written as A f), but we will stick with A/ for the
Laplacian.
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In particular, we have

G —F
A - - A , - - = .
M=EG - FY v =ge— . MTEG P
This gives
D AuAw-A 2= @2
G _F? =ANu-Av-— 1(U,U) = (u7v)7 say,
and thus
(2) . A]U _ —Al(u7v) _ Alu
T Ou,v) T 0w,y - O2w,v)

This equation shows that the metric { , ) is determined once we know Aj(u),
Ay (u,v), and A;(v) for any coordinate system (#,v). We can formalize the
contents of this equation as follows.

64. LEMMA. Let @: M — M be a diffeomorphism of 2-dimensional Rie-
mannian manifolds, and for each coordinate system (i, v) on M, define (u,v) =
(1,v) oo on M. If @ is an isometry, then

# Aw=(A@oa, Ay =A@Dow, Av=(AiD)oa.

Conversely, if these equations hold for some collection of coordinate systems
(i1, v) whose domains cover M, then « is an isometry.

PROOF. Since u = ii o and v = ¥ o a, the first part of the theorem follows
immediately from equation (1). To prove the converse, let the metrics on M
and M be

(,)=Edu®du+--- and (V" =Edu®du+---.
Since
du =d(iioa) = a*(du), dv = o*(dv),

we have
o*(Edu@di+---)=(Eoa)du®du+---.

, gives Eoa = E, etc. &

But the hypothesis (x), together with equation (2)
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Now consider two metrics {( , ) and ( , )~ on two 2-dimensional Riemannian
manifolds M and M. We want to know if there is locally an isometry a: M —
M. Tt might happen that the curvature K of { , ) is constant. Then a exists
if and only if the curvature K of ( , )™ is the same constant; if this is the case,
then there is a 2-parameter family of sometries @. Suppose mstead that the
curvature K of ( , ) is not constant. We consider a region where the scts K =
constant give a foliation, and we will try to decide whether the isometry exists

b

in this region. To be sure, the sets K = constant might look much worse; for
example K = 0 might be a single point, or a whole set with interior, etc., etc.
But in gencral, the more complicated the decomposition we obtain, the easier

K=1

it will be to handle the problem, for then the sets K = constant must look just
as complicated. At any rate, we will, over and over again, restrict our attention
to the “general” case, and not worry about the exceptional situations. When
the sets K = constant give a foliation, then the sets K = constant must also, if
the required 1sometry « is to exist. Moreover, the isometry o must take the set
K = c onto the sct K = ¢. However this still leaves a lot of leeway, and does not
yet determine . We now consider the function A, K. This function might not
give us any new information at all, for A; K might be a constant on each of the
sets K = constant. We will first consider the case where A; K is not constant on
these sets. In fact, we want to assume that A} K varies monotonically on each
sct K = constant. Then it will “generally” be the case that (K, A1K): M — R2
15 a local coordinate system for M. This is the situation which we will actually
consider. If the isometry o is to exist, then (E, A K): M — R? must also be
a local coordinate system for M. Suppose this also occurs. Then clearly the
isometry @ must. in fact. be the composition

a=(K.AK) ' o (K, A K).

defined in some open set U € M. Now the question arises: how do we knosw
whether this & is actually an isometry? There is an easy answer to this question:
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Lemma 64 tells us that o is an isometry if and only if

A]K =A]K_O(X
A(K, A K) =A(K,A\K)oa
A(AK)=A (A K)oa.

Moreover, the first of these equations is automatic, by the definition of «.
Now consider the opposite extreme, where A1 K is a function of K. If «
exists, then A K must be the same function of K,

(a) MK=foK,  MNK=foKk.

We look at the Laplacians AK and AK. If (K,AK) 1s a local coordinate
system, then (K, Z_SIZ) must be also, and o must be

a=(K,AK)"' o (K, AK).
This o s an isometry if and only if
AV(K,AK) = A(K,AK)oa, A(AK) = A(AK) o

the extra condition A K = A, K o« follows from (a) and the definition of «.
This still leaves us with the case where AK also fails to be independent of K
in the worst possible way, so that in addition to (a) we have

(b) AK=goK  AK=goKk.

Then it turns out (Problem 24) that the surfaces are isometric, and there is a
I-parameter family of isometries between them.

For higher dimensional manifolds the treatment will bc more systematic, but
correspondingly less concrete. We already know (Corollary II.7-13) that the
metric in a normal coordinate system determined by an orthonormal frame
Xip..... Xnp 1s completely detcrmined by knowing (R(X;. X;) X, X)), where
X, Xn 1s the moving frame adapted to Xj,..... Xnp. This result gives us
a criterion for determining when a neighborhood of p € M is isometric to a
neighborhood of j € M. but it cannot be regarded as a reasonable solution of
our problem, for we may not be able to compute the geodesics, or the parallel
translations along these geodesics. All we can compute is the equations for the
geodesics and for parallel translations—usually we will not be able to solve these
equations explicitly. What we want is a criterion involving only quantities di-
rectly computable in a coordinate svstem—like curvature, covariant derivatives
of tensors which have already been computed, etc.
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Recall the map ®: R x M, — M (pg. 11.270) defined by
(1, Xp) = exp(tXp).

From the discussion on pp. 11.270-278 [c.f. especially Corollary 9 and Theo-
rem 12] we see that the metric in the normal coordinate system determined by
Xips .-+ Xnp 1s completely determined once the functions Rijkl o ® are known.
Now suppose that the metric is analytic. Then its form in normal coordinates 1s
known once we know

(R js o ) 2R j) 0 @)
T(O,Xp), T—(O,Xp), all XPEMP.
Now
(R o D) RG(0( + h, X)) — R (91, X))
1 J =1 J p J p '
I T A i

Let R be the tensor
RX.Y,ZW)=(R(X,Y)Z,W),
so that (c.f. pg 11.277)
R i = R(Xk, X1, Xj, Xi).

Since ® (1, X,) = exp(tX,), and since the X; are defined by parallel translating
the X;, along geodesics, equation (1) can be written

IR jgy o @)
ot
= (Vx@, x,) R (Xe (D (1, Xp)), X (D1, Xp)), Xj(D(t, Xp)), Xi(® (1, Xp)))

(1, Xp)

= (VR)(Xi (D1, Xp)), Xi(D(1, X)), X; (®(t, X)), Xi (P (1, Xp)), X(D (1, Xp))),
where X is also defined by parallel translating X, along geodesics. In general,
we have

4R 3 o D)

d d
= (V- VR X (1, Xp))s .. Xl (1 X)), X (@1, Xp)), ., X(D(1, Xp))).
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In particular,

d

34 (Rijx; o @) —_——
TR 700, Xp) = (VAR) (Xpkes Xots Xpjs Xpis Xps -+ Xp).

94

Thus, in the analytic case, the metric in normal coordinates around p is deter-
mined completely by knowing all VIR at p.

Thus we have a criterion for deciding when some neighborhood of a given
point p € M can be taken isometrically onto a neighborhood of a point p € M.
This criterion works only for analytic metrics, but its real defect is the fact that
we have to compute infinitely many quantities (VAR)(p). Now we will explain
how one can decide whether some open set in M is isometric to some open
set of M, without being given points p, p in advance, without assuming the
metric is analytic, and by computing only finitely many covariant derivatives
V4R. True, we will have to compute the V4R on all of M, not just at one
point p, but in practice the only way to compute the (VAR)(p) is to compute
the V4® in a whole coordinate system anyway.

First we consider a general problem having nothing to do with metrics. Sup-

pose we are given two manifolds M N and MY of the same dimension N. Let

w',...,o" be N everywhere linearly independent 1-forms on (a subset of) M,

and let @',...,®" be similar 1-forms on M. We will find a way of deciding
when there is locally a diffeomorphism o: M — M such that o' = a*@' for
i =1,...,N. First of all, let us write

do' = ZC}kwj A wk
j<k
de' =Y Cha' nd*
j<k
for certain functions C¥, and C{,. If « exists, then we will have Ci. =Cl oa.
jk ik jk jk

Now suppose that among the functions C;k there are N which form a coordi-
nate system (4, ...,un) on M. Then if & exists, the corresponding N functions
C_';k must form a coordinate system (ity,...,uyN) on M. In this case, the diffeo-
morphism o must be

M a=(y,....an)" o (ur,...,uN).
For this @ we certainly have

@ Cly = Ciy o
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when Cjik is one of the u’s, and we may add the extra condition that equation (2)

hold in all cases. [In the “general” case, the other C]fk will be functions of the u’s,
jlk = f]lk © (ul’---’uN)’

so we are demanding that the other C_'}k be the same functions of the #’s.] We
still have to decide when a given by (1) is the required diffeomorphism. For this

we write
ke —Z kl‘“
k —Z kl")

for certain functions C].ikl and C_';k ;- If @ has the desired properties, then we
must also have

(3) Cj’k,, = j’k,,oa.

Conversely, suppose equation (3) holds. Then

(4) Y (0 —a%e )_Z 0 — Z( poe) atd!
)
Z kl") *(Zéjik,l'd)l)
)

=dC}; —a*(dCj,)

= de’ —d(Ck o)
=0 by (2).

This is a set of N3 equations in N unknowns. It can be written in terms of
the N3 x N matrix (C;k,l) in which / denotes the column, and j‘k denotes the
row. This matrix contains the ¥ x N submatrix (u; ), which 1s non-singular,
since (u1,...,un) i1s a coordinate system. So the matrix (C;k’l) has rank N.
This means that the only solution of our equations 1s the zero solution. Thus,
o =a*@' forl =1,...,N.

Suppose, on the contrary, that we can choose only N} < N functions C].ik
which are independent (meaning that for any coordinate system x!, ..., x" the
N1 x N matrix (BCik/B.x‘l) has rank Nj; or equivalently, that the Ny x N matrix

(C! ik, ;) has rank N;). We now look at the functions Cjik,l' Among these we may
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be able to choose N, functions C}k ; which together with the Ny functions C}k

are independent. If Ny + Ny < N, then we look at the functions C}k Im defined
by

i _ i m
dCl 1= Clrimo™
m

Among these we may be able to pick N3 which can be added to the Ni + N,
functions already obtained. Suppose that, after continuing in this way, we even-
tually obtain Ny +---+N, = N independent functions. Then we can determine
what @ must be; moreover, we can decide whether this & really works by seeing
if o satisfies

i _ A
Ciely oy = Cikty oy O

On the other hand, it may happen that we never obtain N independent func-
tions. In the general case this will happen because at some stage, the functions
i
Cjk,ll...lu+|

are all functions of the previously chosen functions. [Notice that once this
happens at stage i, it will happen at all later stages. So in general, the integers
Ni, N3, ... which we picked in the previous case are all > 1. Thus we either
obtain N independent functions in < N stages, or we arrive at the present
situation in < N stages.] We now have N’ = Ny +--- 4+ N, < N independent

functions. If @ exists, then it must satisfy the N’ equations

i _ i
Cjk = Cjk oo
(%)
i Lt o
Gkl = Gkl O

In the same way that we obtained equations (4), we can use equations (%) to
deduce N' linear equations for w! 1 ., oV —@". Moreover, the rank of
the matrix for these equations is N’, so we can solve for N — N" of the unknowns
in terms of the other N’. Without loss of generality, we can assume that these
equations can be solved for the last N — N’ of the o' — @' in terms of the first N
of the ' — @'. Then clearly the diffeomorphism « has the desired properties

if it satisfies (%) as well as

-

(%) 0 =a*d'. i=1,....N"

We claim that there are always such diffeomorphisms «, in fact, an (N — N)-
parameter family of them. To prove this, we look for the graph of o, as a subset
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of Mx M. Letn: MxM— Mand7: M x M — M be the projections.
Since the C;k, ... and C?k, ... in (%) are independent functions, the set

M={xeMxM:Cjon(x)=Cj om(x),...}

is a submanifold, of dimension 2N — N’. We will denote the restrictions of T*w!
and 7*@' to M simply by 7*w’ and #*@'. Consider the ideal d of forms on M
generated by the 1-forms

We have
d(r* ol —7*@) = Y (Ch o mm* ' Am*ew! = Y (Cl o)T*0' A T*
=Y ([Chomr o Aol —7*d' A 7*@’]  (on M)
=Y (€l om0 A 71 D) A T*e
— 7@ A (k= 7*a%),
which is in 4. Thus there is a submanifold M’ of M on which the forms
1*w' — 7*@" all vanish. This submanifold M’ has dimension QN —N')—N' =
2(N — N’). There is an (N — N’)-parameter family of N-dimensional subman-

ifolds M” of M’ which project one-one onto M. Each of these is the graph of
an appropriate o.

Finally, let us return to the case of two Riemannian manifolds M" and M.
We immediately pass to the principal bundles O(TM) and O(TM ) of orthonor-
mal frames. On these bundles we have forms 8 = (), ® = (@}) and 8 = (87),
®w = ((oj). Recall that for u = (uy,...,u,) € O(TM) and a tangent vector
Y € O(TM),, we have

n
m Yy =) 0 (Ya) - ui,
i=1

where : O(TM) — M is the projection map. In particular, 8(Y,) = 0 if and
only if 7Y, = 0. Now any isometry «: M — M gives rise to a diffeomorphism
a: O(TM) — O(TM), and @*0 = 0, @*® = w. Conversely, suppose we have
a diffeomorphism g: O(TM) — O(TM) with *8 = 0. If ¢ is any curve in
the fibre of O(TM) at p, then for all 7 we have m.c¢'(t) =0, and thus

0=8(c'(1)) = B*0(c' (1))
= 8(B.c’ (1))

= 0=mfuc’'(t) = (T o P o) ().
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Thus 7o Boc is_constant. This shows that B takes fibres to fibres, so there is a
map ¢: M — M withm o f =aom. Moreover, if u = (uy,...,un) € O(TM)
and Y, € O(TM), satisfies 7Y, = u;, then 0'(Y,) = 8]"., S0

5 = B8 (Y.)
= 6i(,8*Yu)
= i component of 7,f,Y, with respect to 8(u)
=7 7 Vel 777 M)
—v v e T T T AW,
Thus B must be
Bu)y = (axttn, ..., XxUn),

ie., B = @. In particular, & is an isometry. Thus we see that the existence of
an isometry o: M — M is equivalent to the existence of a diffecomorphism
B: O(TM) — O(TM) such that p*6' = 8'. Hence it is also equivalent to the
existence of a diffeomorphism 8: O(TM) — O(TM) such that B*6' =9 and
ﬂ*d)j- = (oj We have just seen how to decide whether such a § exists, since
the 8" and wj. are everywhere linearly independent and span the 1-forms, and
similarly for the ' and (I)j The first step is to compute the d®’ and d(oj. in
terms of the 8" and w;. We already have the structural equations (pg. II.329),

oy de' = —> o} n8’
J

by dol = - o} Aot +
k
:—Zwi/\wf—ZA,-jklﬂk/\()l, say.
k k<l

These functions A;jx; are the first set which we have to examine. Now if
s = (Xi1,...,Xy) is an orthonormal moving frame, then its dual forms and
connection forms are 6’ = 5*8" and w; = s*@}. So s* of equation (2) gives

] j k k 1
da)]’-_—_—Za),’(/\a)j —Z(Aijklos)g N
k k<l
On the other hand, we have
i_ i k i
da)j = Za)k Aof + Q)
k

=-Y wprof + > (R(Xe, X0 X; X0k A6l
k k<l
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Thus we sce that
Aijrt(u) = —(R(ug, up)uj, u;) = Rui, uj, ug, up).

The next set of functions which we nced to look at are those appearing in the
expansion

dAgi =Y (e + Y Ay, 0"
[TR% I
Taking s* of this equation, and evaluating at a tangent vector X of M, we get

X(R(X:, X, X, X1)) = X(Ajjia o 8) = d(Agjrg o s)(X) = s*(dAija)(X)
=30 ) oslef(X) + Y [Aiku o s104(X).
n,v

Since

X(R(X;, Xj, Xie, X1)) = (VRWX;, Xj, Xy, X1, X)
+ R(VxX;,.. )+ R(X;, Vy X;,... )+,

we see that we must have

dAijir =Y Apjrr@f + -+ > Aijrpef + > Aijrr 0%,
23 23 23

where
Aijiet, ) = (VR)Y(uj, uj, g, up, uy).

Similarly, we get
dAjjklu = Z Avjkt,w @7+ "FZ Aijkv,uw;)"'z Aijkl,vw;i"'z Aijk,u®”,
v v v v

where
Aijit o) = (VVRY i, tj upe, tp, iy, Uy),

and so on. So we see that after computing a finite number of the functions
R.VR.VVR.... we can finally decide if the desired isometry « exists (provided
we can keep track of what in the world we are doing, which doesn’t seem very

likely).
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ADDENDUM 4
BETTER IMBEDDING INVARIANTS

There is a theory, due to Burstin, Mayer, and Allendoerfer, which shows that
certain tensors are a complete set of invariants for submanifolds M" C N™
of a manifold N of constant curvature. (As in the theory of curves, we have
to impose certain conditions on M, which say, roughly speaking, that at each
point M bends in the same number of directions.) One almost never sees any
applications of this theory nowadays, but perhaps that is partly because the
classical expositions make it so inaccessible. In our presentation, we will first
consider a special case of the general problem, so as not to be overwhelmed
with details at the beginning.

For a Riemannian manifold (M, { ., )), the “Fundamental Lemma of Rie-
mannian geometry” tells us that there is a unique connection V on TM which
is compatible with the metric and also symmetric. The following Lemma gives,
under certain conditions, an analogous characterization of the normal connec-
tion D on the normal bundle Nor M of M in N.

65. LEMMA. Let M C N have normal bundle Nor M and second funda-
mental form 5. Suppose that s: M, x Mp — Mt is onto for all p. Then the
normal connection D in Nor M is the unique connection § such that

(1) 8 is compatible with the metric in Nor M:
XUE n) = Bx& n) +(£.8xn) for sections &, n of Nor M,

(2) & satisfies the Codazzi-Mainardi equations:
L(R(X,Y)Z) =[8x(s(Y,Z)) = s(Vx Y. Z) — s(Y.Vx Z)]
C By (s(X, Z)) — s(Vy X. Z) — (X, Vy Z)].

PROOF. Consider the expression
(8x5(Y1.Y2).s(Z1, Z3)) — (By,s(X, Y2).5(Z1, Z2))
— (8y,5(Z1, Z2).5(X ., Y2)) + (82,5(Y1, Z2), s(X, Y2))
+ (82, 5(X. Ya),s(Y1, Z2)) — (6x (21, Y2), 5 (Y1, Z3)).
Condition (2) shows that each row can be expressed in terms of the vector fields

X, Y;, Z;. But condition (1) shows that the sum of the two terms involving dy,
or 8z, can also be expressed in this way. Thus we can write

&) (8xs(Y1.Y2),5(Z1,Z2)) — (Bxs(Z1,Y2),s(Y1, Z2)) = - .-,
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where ... can be expressed in terms of the vector fields. So we have as well
(3) (8xs(Ya, Z1),s(Zy, V1)) = (8x$(Z2, Z1),s(Yo, V1)) = -+
Adding (3) and (3'), we obtain

4) (Sxs(N1,Y2),8(Z1, Z2)) — (8x$(Zy, Z2),s(N1, 1)) = -+

But by (1) we also have
@) (8xs(M, Y2),5(Z1, Z2)) + (8xs(Zy, Z2),s(N, Vo)) = -+
So by adding (4) and (5) we obtain

(8xs(Y1,Y2),5(Z1,Zy)) = .

Since s: M, x Mp — Mpl is onto, this shows that 8x,s(¥1,Y2) is uniquely
determined by X,, Y1, Y2. Since every section of Nor M is a linear combination,
over the C® functions, of sections of the form s(Y;, Y2), this shows that 8 1s
uniquely determined. ¢

Remark: Naturally we are mainly interested in the case where N has constant
curvature, in which case the left side of (2) is 0. Now given any bundle w: E —
M with a metric { , ), and a symmetric section s of Hom(TM x TM, E), we
can consider the “Codazzi-Mainardi equations”

[SX(S(YvZ)) - S(VXYvZ) — S(Yv VXZ)] =
By (s(X,Z)) —s(Vy X, Z) —s(X,Vy Z)].
The proof of Lemma 65 shows that if s: M, x M, — @~ ! (p) is always onto,

then there is at most one § compatible with { , ) which satisfies this equation.
However, there may not be any such § (unless s is always one-one).

Now for a submanifold M C N we will denote the induced metric ( , ) on M
by Fo, and define a tensor F; by

Fi1(X1, X2, Y1, Ya) = (s(X1, X2),5(Y1, 12)).

66. PROPOSITION. Let M, M C N be connected submanifolds of a com-
plete simply-connected manifold N of constant curvature. Suppose that the

second fundamental forms s: M, x Mp — M,* and 5: M, x M, — Mgt are
onto at all points. Let ¢: M — M be a diffecomorphism such that

(]5*?70 = Fo and (]5*}?1 = Fi.

Then ¢ is the restriction of an isometry of N.
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PROOF. First of all, since ¢* Fo = Fo, we have
) d(VxY) = V. x Y.

Now let { Xy} be any set of vectors in M), which span M), and let Xy = 0u(Xy) €
Mg (p). Consider the vectors s(Xq, Xpg) € M,*, and the corresponding vectors

5(Xa, Xp) € My (p*. By hypothesis, we have
(S(X(Xa Xﬂ)v S(X)NXS)) = (E(X_aaX_ﬂ)a E(X_VaX_S))

Since the second fundamental forms are onto Mt and My ()", this implies
(Problem 25) that there is a unique inner product preserving isomorphism
Mpl — ]l71f(p)l which takes s(Xy, Xg) to 5(Xa, )?ﬂ). This isomorphism cannot
depend on the { Xy}, for if we also have spanning vectors {¥q}, we can consider
the set { X} U {¥Ya}

By applying this construction for all p & M, we obtain a bundle isomorphism
¢: NorM — Nor M covering ¢ such that ¢ preserves inner products and
second fundamental forms:

(2) (@(E),p() = (&, 1) for sections &, n of Nor M
3) F(s(X,Y)) =5(de X, Y.

We claim that ¢ also preserves the normal connections:

(4) $(Dxt) = Dy, x ($(£))-

To prove this we note that since every section of Nor M is uniquely of the form

¢(£), and every tangent vector of M is uniquely of the form ¢, X, we can define
a connection 8§ on Nor M with

8s.x (H(§)) = $(Dx¥&).

Now the connection D is compatible with the metric and satisfies the Codazzi-
Mainardi equations; applying the equations (1)-(3), we find that § is compatible
with the metric and satisfies the Codazzi-Mainardi equations (for M). Hence
8 = D, by Lemma 65. This proves ().

The desired result now follows from Theorem 20. %

When we have a manifold M C N whose second fundamental form does
not fill up the normal bundle, we will have to differentiate more times, precisely
as in the case of curves. Notice that the subspace of Np spanned by My and
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sp(Mp x Mp) C M, can also be described as the space spanned by all X}, and
'x, Y for vector fields X, Y on M. But we can also consider V'y, (V'y Z), etc.,
and thereby obtain more vectors in Np. To simplify the notation, we will write

V(X,Y)=VyY
V(X.Y.Z)=Vx(V'yZ), et.

We define the k™ osculating space Osck M, C N, of M at p to be the subspace
of N, which is spanned by all

Xl(p)s V/(XlaXZ)(p)s e V/(Xls"'st)(p)s

for vector fields X1,..., Xx on M. Thus the 1* osculating space Osc! M, is
just M,. It will also be convenient to define Osc® M, to be the {0} subspace
of M,.

A submanifold M C N will be called nicely curved if the dimension of each
osculating space Osck M, is the same for all p € M. (A curve ¢ in N is nicely
curved if and only if it has the property that if some curvature function kg is
non-zero at one point, then ki is non-zero everywhere) Henceforth we will
consider only nicely curved submanifolds M C N. It is easy to see that for
each k we then have a vector bundle Osc* M over M, whose fibre over p is
Osck M, If & is a smooth section of Osc* M, then & is locally a sum of terms
f-V'(Xi,...,X,) for smooth f and X;, and r < k. Since

Viy(fV X, . X)) =X(f)-V(X,.... X))+ [-V(X, X1,..., Xp),
we see that

(%) & a section of Osc* M — V’ng e Osckt! M,.

It is easy to see that if Osck M = Osc**' M, then also Osc* ' M = Osc* P2 M
= ... . So there is some £ > 1 with

OSCOMEOSCIME-~-§OSC£M=OSC£+1M=-~.

The letter £ will always have this significance. Notice that Osc? M, need not be

all of Np; the dimension of Osct M, (for any p € M) will be called the formal
imbedding number #(M) of M.

67. PROPOSITION. If M C N is nicely curved, then the distribution p —
Osct M, on M is parallel along every curve in M (as defined on page 28).

Consequently, if N is a manifold of constant curvature, and M is connected,
then M is contained in some #(M)-dimensional totally geodesic submanifold
of N (but not in any lower dimensional totally geodesic submanifold).
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PROOF. To prove the first part, it obviously suffices to work locally. In a neigh-
borhood U of any point p € M we can choose smooth linearly independent
sections &1, ..., Exm) of Osct M. For a curve ¢ in U, let V,, be the vector field
along ¢ given by V(1) = £u(c(#)). Then (%) says that

D'V,

Tﬂ € Osc"*! My = Osc! Mgy

thus there are smooth functions f,» such that

D'V,
dt = Xv:fquv-

Now let W be any vector field along ¢ with D'W/dt = 0. Then

d D'w D'V,
- v,y ={—" s
ar'" W) < di ’V">+<W’ dt >

= (0, V) + <W, Zf,wVv>

= Z f/w(Wa Vo).

This is a system of differential equations for the functions (W, V,). One solution
is (W,V,) = 0 for all u. So by uniqueness of solutions we see that if W(0) is
perpendicular to Osct M, (), then W(z) is perpendicular to Osc® M for all .
This proves that Osct M is parallel along c.

The second part follows from Corollary 11. &

We now define the k" normal space Nor* M » of M at p to be the orthogonal
complement of Osc® M, in Osc**! M,. Thus we have

Osck*! M, = Osc* M, ® Nor* M,.

Notice that Nor® M,, is just M, while Nor* M}, has dimension 0 for k > £ 1.
It will also be convenient to let Nor™' M, be the {0} subspace of M,. Each

Nor¥ M, C N, has an orthogonal complement in Np. and thus we have two
projections

Tk Ny, — Nork M,

1%: N, — orthogonal complement of Norf Mp in Np.
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Notice that T® = T: N, - M, and 1° = 1: N, — M, (but note that
Tk goes into a subspace of Mt for k > 0). We shall actually use only the
projections TK.

For nicely curved M C N we clearly have, for each &, a vector bundle Nor* M
whose fibre at p is Nor¥ M,. The bundle Nor® M is just the tangent bundle
TM, while the bundles Nor* M for k > 0 are all subbundles of the normal
bundle Nor M. There are natural Riemannian metrics { , ) on all bundles
Nor* M, since they are all subbundles of (TN){M.

The 1% normal space Nor! M,, is the subspace of N, spanned by all s(Xj, Y;)
for X,,Y, € M,,. In general, given vector fields X1, ..., Xg41 on M, consider

TRV (X, X))

It is easily checked that this expression is linear in each X; over the C™ functions
(compare pg. II1.4). So its value at p depends only on the values of the X; at p
and we can define

KXy Xeg,) = TRV (X0, . X)) (p) € Nork M,

for any vector fields X; extending X;,. Clearly Nor¥ M), is spanned by the
image of s¥. It seems reasonable to let s° denote the identity map of M, into
Nor? M, =M,

68. LEMMA. If M C N, where N has constant curvature, then s* is symmet-
ric.

PROOF. First we have
V' (X, X X )(p) = V(X1y o Xk, Xi) ()
= V'(X1, .. Xk10 Xk Xea D (p) € Osck M,

so Tk of the left side is 0, which proves that sk is symmetric in Xx and Xg4.
We also have, for example,

VXt Xkt X X)) (p) = V(XL X Xk X)) (p)

=V'(Xi... . Xi—2. Vi (Vi X)) = Vi, (Vi X)) (p)
=V'(Xi.. ..  Xi—2. Vi xa Xk + R (X<t Xe) Xie) ().
Since R'(Xx_1, Xx) Xk 41 is tangent to M, this is in Osck™! M, so again Tk

of the left side is 0. Similarly, s* is symmetric under interchange of any two
adjacent arguments. ¢
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For vector fields X),..., Xx41 on a nicely curved submanifold M C N we
can write

S OX o X)) = V(XL X)) TE, £ a section of Osck M.
Then

since V'y & € Osck+! M, by (x), on page 166. Thus we have
() TSR (X X)) = 55T G, X () X ().

Now suppose we have vector ficlds {¥,} which span the tangent space of M n
a neighborhood of p. Every clement of Nor' M,, for example, can be written
as

anﬂ -s(Yalp), YB(P))-

This expression is usually not unique (even if the Yq(p) are linearly indepen-
dent). But suppose that we have constants ¢yg with

Y capr s(Yalp), Yp(p)) = 0.
Let 4 be a collection of pairs (a, B) such that
{s(Xa(p), Xp(p)) : (@, B) € &}

is a basis of Nor! M,. Since M is nicely curved, it follows that {s(Xa(q), Xp(q)):

(a,B) € 5} is a basis of Nor' M, for all points ¢ in a neighborhood of p. Now
consider the section

Y cap 5 (Ya, Yp)

of Nor' M, where the cap denote constant functions. In a ncighborhood of p
we can write

S cap s Yp) = D fup-5(Ya,Yp)

(a.B)esd

for unique smooth functions fyp. Clearly fog(p) = 0. Applying V'x, to the
above equation we thus obtain

D s Vias(Ya Yo = Y Xp(fap) - s(Ya(p), Ya(p)) +0
(a.Bres

€ Nor! M,.
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Consequently,
0= cap T2Vx,5(Yar Yp) = ) _cap- 5(Xp, Ya(p), Yp(p)) by (+x).
Thus we see that
Y ap s(Ya(p), Yp(P) =0 = Y cap - 5(Xp, Ya(p), Yp(p) = 0.

It follows that there is a well-defined map from Nor' M), to Nor* M, under
which

Y cap SYalp). Yp(P)) = D cap - s(Xp, Ya(p), Yp(p))-

This map doesn’t depend on the choice of {¥,}, for if we also have spanning
vector fields {Z4}, we can apply the above argument to the collection {¥y} U
{Z4}. The argument clearly works for all k, so we see that there is a well-defined
bilinear map

sk M, x Nor¥ M, > Norkt! M,

such that

KX, (X1 s Xiwr,)) = S5 X, X1y Xiir,)-

Now suppose we have any section § of Nor® M. Locally £ can be written as
a sum of terms f - sX(X1,..., Xx41). Since

Vi, (f - s5(Xt, ooy Xew) = Xp () -5 (X0, Xieq,)
+ f(p) - Vi, sk (X1, ..., Xeq),

we see that

TV, (f 55 (X X)) = f(p) - TV VK (X X,
Then (*x*) shows that
(%) TV £ =sF(Xp.8)). £ a section of Nor* M.

Now we will consider all the other components of V'y & for § a section of
Nor* M. First we note
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69. LEMMA. If £ is a section of Nor* M and X, € M,, then
V'x,€ € Nor¥™! M, ® Nor¥ M, & Nork*! M,.

PROOF. Since & is a section of Osc*™' M, we have Vix,€ e Osck*t? M,. Now
if 5 is any section of Osc’ M for j < k, then (§,7) =0, so

0= X,((&,m) = (Vx,E.n(p) + (E(p), V'x,n).

If we also have j < k — 1, then V'x,n € Osck M, so (£(p).V'x,n) = 0, and
hence (V& 1(p)) = 0. 4

Thus we see that for a section & of Nor¥ M we can write
Vg6 = T (Vg 8) + TH(Vx, §) + T (Vy, 8).
The third term of this decomposition is already given by (x#x). For the first

term we have a result which generalizes Proposition 12.

70. PROPOSITION. If & is a section of Nor* M and X, € Mp, then the
vector Tk"(V’XpE) € Nork™! M, satisfies

(T (V' %, ), 1p) = (Vx, £, 11p) = —(E(P).s* ™ (Xp, mp))
for all n, € Nor¥~! M,.

Consequently, T¥=1(V'y, &) depends only on X, and &,.
PROOF. If nis a section of Nor¥~!' M extending 7,, then (§,7) =0, so

0= X,((£. ) = (Vx, £ np) + (E(p), V'x, 1)
= (V'x, £, 1p) + (E(p). TEV'x, ),

since £(p) € Nor¥ M), by assumption. Now apply (+*x). <
For any vector &, € Nor¥ M, we can now let
Af (Xp) = =T (Vx, ),
for any section & of Nork M extending &, so that we have a map

A’E‘p: M, — Nor*~! M,
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satisfying
(A5 (Xp), 1p) = (Eps8* ! (Xpump)).

(Note that for kK = 0 we are dealing with the 0 map.) For convenience, we will
somctimes write

AX(Ep Xp) for AL (X)),
Fimally, for the expression Tk(V’XpE) we introduce a new symbol,
Dkxpé = TK(V'x, ), £ a section of Nork M.

It is casy to check that DX is a connection on Nor* M which is compatible with the
metric { , ) on Nor* M. We can now write our dccomposition of V'y & as

The Frenet Equations:
V'x,§ = —Af (Xp) + Dy & +55(X,.6),
for £ a section of Nor® M and X, € M,.

The terms Algp(X,,) and s¥(X,,&,) are completely determined by the maps

sk=1 sk and sk*!. These Frenet equations essentially contain the Frenet equa-

tions for a curve when M is I-dimensional; in general, they contain the Gauss
equations (for & = 0) and (part of) the Weingarten equations for k = 1.

71. THEOREM. Let M" M" C N™ be connccted nicely curved submani-
folds of a complete simply-connccted manifold N of constant curvature. Let
¢: M — M bc an isometry. Suppose that for all k& > 1 there are bundle
isomorphisms ¢ : Nor* M — Nor* M covering ¢ which preserve mner prod-
ucts, second fundamental forms s¥, and connections DX, Then there is an
isometry A of N such that ¢ = A|M and PF = A, Norf M.

PROOF. Wc obviously want to reducc this to Theorem 20. Noticc first that
since Osct M, = Nor® M,®- - & Nor/ ™! M. and similarly for M, the formal
imbedding dimension #(M) must equal #(M). Taking into account Propo-
sition 67, we see that there s no loss of generality in assuming that #(M) =
#(M) = m. Then the bundle isomorphisms ¢'.. ... ¢'~' combine to givc a
bundle isomorphism ¢: Nor M — Nor M. Clearly ¢ preserves inner prod-
ucts, sccond fundamental forms 5%, and connections D, In particular ¢ takes
the second fundamental form s (= s!) to 5§ (= 5'). To prove that

() ¢(Dx§) = Dy, x($(£))



Higher Dimenstons and Codimensions 173

for all sections & of E. it suffices to consider separately sections & of Nor* M.
Then the Frenet equations give

Dlx& +sl(X.§) k=1

Dyt =LV’ =
xE =LV { —AE(X) + DRE+SE(XE) k> 1

with Correspondmg formulas for D¢*X ¢(E) Smce ) prcsenes DX, as well as A

and s¥ (for they are determined by sk=1 5% and sk), we see that equation ()
does indeed hold. ¢

Now we need certain equations satisfied by the connections D*. We will state
these in terms of vector fields on M and sections of Nor* M. After the proof we
will give another formulation, in terms of tangent vectors in Mp, and vectors in

Nor¥ M, which will make the result appear as a genuine generalization of the
Codazzi-Mainardi equations for D.

79, THEOREM. Let M C N be nicely curved. Then for all vector fields X, ¥
on M and sections & of Nor* M (k > 0) we have

The Generalized Codazzi-Mainardi Equations:

ThH RI(X, Y)E = [DFH 1y (5K (Y. 6)) — s5 (Vx ¥, §) — s* (Y, Dy )]
_ DRy sk (X, 8)) — sK(Vy X, E) — sF (X, DR 6L,

When N has constant curvature, the left side is zero.

PROOF. By the Frenet equations we have
ViyE = —AK(Y) + DYy +s5(Y.6).
Since A’E‘(Y) is a section of Norf ™! M., Lemma 69 implies that
TEHY Uiyt = TEHIVy DK & + THHV sk (1. 6).
Using (s#x) on page 170. and the defmition of D**+! we thus have

gy TEHY Vv E = sK(X, Dk 8) + DFF x (55 (Y. 6)).
() ThH Y/, Uy = sk (Y, DK €) + DFFly(sH (X, 6)).

We also have, by (##:x),

TEHY y i = sK([X.Y).8),
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and thus
2) TEHV x viE =s5(Vx ¥, §) —sF (Vy X, 6).

Substituting (1), (1), (2) into the formula R'(X,Y)§ = V'xV'y& — V'y V'€ —
V'ix,y1§, we obtain the desired result.
When N has constant curvature Ky we have

R(X,Y)E = Ko[{Y,6) X — (X, §)Y],

which is tangent to M. So TEHIR(X,Y)E =0.

It 1s easily checked that in these generalized Codazzi-Mainardi equations,
each of the expressions in brackets is linear in X, Y, and & over the C* functions,
and thus its value at p depends only on X,,Y,,&,. To give this value ex-
plicitly, we note that we can consider s* as a section of the bundle Hom(TM x
Nor¥ M, Norkt! M). Using the connections V, D¥* and D¥+' on TM, Nor¥ M,
and Nor**! M, we can define a natural connection V on this bundle (compare
page 37 for the case k = 0). It is easily seen that Theorem 72 can be written

TR (X, Yp)6p = (Vi) (X5.65) = (Vr,85) (X, 65)
Xp, Y, e My, and §, € Nork M,.
Now we can state the proper form of Lemma 65.
73. LEMMA (FUNDAMENTAL LEMMA OF RIEMANNIAN SUBMAN-
IFOLD THEORY). Let M C N be nicely curved. Then the set of normal

connections DX in Norf M is the unique set of connections 8K on Nor¥ M such
that

(Iy 8% is compatible with the metric in Nor® M:
X&) = (8kX§, n + (E,éer;) for sections &, 1 of Nor* M,

(2) The 8 satisfy the Codazzi-Mainardi equations:

TEHIR(X,Y)E = [8K Ty (sK(Y,8)) — sK(Vx Y, &) — sk (Y, 85, 6)]
— [y 55 (X, 8)) — sK(Vy X, &) — sk (X, 85,6)].



Higher Dimensions and Codimensions 175

PROOF. We will show that if §¢ = D¥, then §¥*+! = Dk+1 Since §° = V = DO,
this will prove the result. We begin by considering the expression
(& sk (11, 6), sK(Z,m)) - F sk (X, 6), s (2, )
— (8 sk (Z1,m), sF(XLE)) + (8K z, 55 (1, ), sF(x, €))
H(8 1 2 s5 (X, €), sK(Y, ) — (85 xsk (24, 8), sK (v, n)),

where &, 1 are sections of Nor* M. As in the proof of Lemma 65, we are led to
the conclusion that we can write

(K ysk (11, 8), s5(Z, ) — (T xsk(Z21,8), sK(Ym)y = ..,

where ... can be expressed in terms of X, Y, Z,§, n,8k = D¥ In particular,
if we choose & = sk(Ya, ..., Yis2) and n = sK(Z,, ..., Zk+2), then we obtain
3) (s, Yes2), STU(Z0 L Zis)

— (N ZL Y, Vi), ST N, 20 Zi)) =
We will abbreviate the left side of this equation by
Y, Y25 Zus ooy Ziwa) =20 Y2, Y Y, 2o, Zia )

Now consider the following expressions (the pattern becomes apparent by look-
ing at the terms after the — signs):

{YlaYZa Y3a---a Yk+2’ ZlaZZa Z3a"'aZk+2}

—{Z, Y2, Vs, Y V1, 20, 23, Ziy2d
{YZa Zla Y3a ) Yk+2’ ZZ’ YlaZ3a .. "Zk+2}

- {223 ZlaY3a"'9Yk+2; Y23 YlaZ3a-"’Zk+2}

{Y3,Z2,Z1,.... Yi42: 23, Y2, Y1, ..., Ziksa}
—{Z3, 23, Z1,.. . . Yie2: Y3, Yo, Y1, ..oy Zit2)

{Yk+1aZka""Zlv Yk+2:Zk+1’Yka---aY1’Zk+2}
A Zkts s Z1, Yigo: Yigte oo Y1 Ziy2)
{Yk+2, Zk+1,..., Zl:Zk+2, Yk+1,..., Y]}
—AZks2s - Z1; Yiqa, ..., 114
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Notice that each term after a — sign is the same as the term on the next line,
since s¥*1 is symmetric. So adding all the equations (3) having the above ex-
pressions on the left we obtain

(4) Sy sF N, V), SKTUZ0 L Ziesa))

— (TN Z L Zig), ST N Y =
But by (1) we also have

(5) S sk, Yea), 5T (Z0 L Zks2))

+ (K s TN Zy, L Zeg), ST ) =
So by adding (4) and (5) we obtain
(%) sk (YY), SSTNZ0 L Ze)) =

Since Nor* ™' M,, is spanned by image sk this proves, as in Lemma 65, that
8K+ is uniquely determined. <

Now for a manifold M C N we define tensors i by
‘?Tk(Xl""’Xk-l-l’Yl""’Yk-l-l) = (Sk(Xl"'-’Xk-l-l)’ Sk(Yl"'-’Yk+l))'

If Xi,..., X, € M is a basis, then we can form the nk+l x gkl

(‘f(?k(Xil"'"Xl'k+1’XJ'1""’Xjk+1))'

matrix

It is easy to see that this matrix is positive semi-definite and that its rank 1s just
the dimension of* Nor* M,

74. THEOREM. Let M, M C N be connected nicely curved submanifolds of
a complete simply-connected manifold N of constant curvature. Let ¢: M —
M be an isometry such that

O Fr = Fi for all k.

Then ¢ is the restriction of an isometry of N.

* For those who know about tensor products of vector spaces this can be expressed more
simply. We can regard s as a linear map sk My @@ My, > Nor¥ M,.s0 Fi 15 a
bilinear map Fx: (M, ® -+ @ Mp) x (Mp ® --- @ M) — R. The matrix considered
above is the matrix of this bilinear map with respect to the basis {X;, ® -+ - ® X} of
M,® - ®M,.
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PROOF. The preceding remarks show that the dimension Nor* M must equal
the dimension of Nor* M. Since s is onto Nor* M, the procedure used
in the proof of Proposition 66 allows us to construct bundle 1somorphisms
PF Nor* M — Nor® M which preserve inner products and second funda-
mental forms s%. Again arguing as in Proposition 66, but using Lemma 73 in
place of Lemma 653, we see that the ¢k also preserve the connections D*. So
we can apply Theorem 71. ¢

We would also like to discuss when a given set of tensors {Fx} on a man-
ifold M come from an imbedding of M in a complete manifold N of con-
stant curvature. The Codazzi-Mainardi equations represent only one set of
integrability conditions, and we still have to consider the other components of

" V'yE — V'yV'xE — Vix yjE. If & is a section of Nor® M, then the only
components we have to consider are T&=2 . , Tk+2 where T**! is already
taken care of by the Codazzi-Mainardi equations.

First consider T¥*2. From the Frenet equations

V'yt = —AE(¥) + Drg + % (7, 8)

we obtain
TE2Y VipE = TEH2V/ sk (Y, &) = sFT1 (X, sF(1,8)) by (sxx).

Also

TER2Vy Vg€ = sFH1(y, sk (X, £))

TF2V' 1 x, 1€ = 0.
So we have

T2 R/(x, Y )E = sFH (X, sk (1, ) — sk H1 (1, sk (X, 8)).

In a space of constant curvature, the left side is 0. On the other hand, the right
hand side is clearly always 0, since s*2 is symmetric. Thus we do not obtain

any new condition for imbedding in a manifold of constant curvature by looking
at Tk+2,

Next consider T¥=2. The Frenet equations give us [recall the alternative
notation AX(&: X) for A’E‘(X)]
TE2V/y Uyt = —TH2V/x Af(Y) = AF 14k (V) X)
TE2Vy Vixt = —TF2Vp 4§ (X) = A7 (4g(X):Y)
Tk_ZV/[X.Y]E =0.
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So we obtain
TE2R(X,Y)E = AFHAE(Y ) X) = A1 AE(X):Y).

In a space of constant curvature the left side is 0 (this is clear for k& > 2,
since R'(X,Y)E is tangent to M; it is true even for k = 2, since R'(X,Y)§ =

Ko[(Y, €)X — (X,§)Y], and (X,£) = (Y,&) = 0). On the other hand, for any

k=2

section 1 of Nor“™ we have

(AR (AR (Y ) X)) = (AE(Y), 571 (X))
= (& 5" G,
so we see that the right side of our equation is always 0. So, once again, we

obtain no new conditions for imbedding M in a manifold of constant curvature.
Now consider T¥~!, We have

TEIy Uiy = —TH IV AR (Y) + THI Wy DRy &
= —DF 'y A (Y) - A (DYy8: X)
THIVy Vix € = =Dy Af (X) — A5 (D8:Y)
TE 'V x,nE = AKX, Y]) = —A§(VxY) + AL (Vy X).
Thus we obtain
—THIRI(X,Y ) = [D¥ 'y AE(Y) — AX(D*y§Y) — AE(Vx V)]
— [DF 'y AF(X) — AF (DR & X) — AE(Vy X)),

Taking the inner product with a section 7 of Nor*¥~! M, we obtain the equiva-
lent equation

(@  —(R(X,Y),n) =[(DF 'y AE(Y),n) — (DXe§, 571 (¥, m)

— (£,s* 71 (Vx Y, )]
— [(DF 'y Ak (X)), n) — (DRyE KT (X )

— (&, s (Vy X,m)]
But we also have

(AE(Y),n) = (&,55(Y, m))
= X((AK(Y),n) = X, s (V. m)
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= (D*'x AE(Y),n) + (AE(Y), D¥~'xn)

= (D*x&,s* 7 (Y. ) + (£, D*xs* (¥, n))
= (DF'x AR(Y), ) — (D*x&, "' (Y, m))

= (&, D*xs* (Y. m)) — (&, 571 (v, D* 'y ).

Therefore the right side of (a) can be written

[E, DFxs 1Y, ) — (&,s5 7' (Y, D*'xm)) — (&,sF ' (Vx ¥, )]
— [{&, DFysk Tl (x, )y — (5,851 (X, DXy ) — (&,sF T (Y X, )]
= (R'(X,Y)n, &), by the Codazzi-Mainardi equations.

So equation (a) follows from the Codazzi-Mainardi equations; we obtain no
new conditions by looking at T*~!.
Finally, we have to look at T¥. We have

TEV'y V'y e = —TEV x AK(Y) + TEV y DYy £ + THVxs (1, 8)
= —sk=1(x, Ak (Y)) + DXy DRy& — A (55 (1, 6); )
TEV'y Vixé = —sF71(Y, AE (X)) + D¥, DRy — A¥' (s* (X, £); 1)
TV x,1E = DXy pif.
So we obtain
(b) TER(X,Y)é = D%, D¥ & — D*, D*¢& — DXy 1§
+sF7N AR () — s A ()
+ AR sk (X, 8)Y) — AR (Y, 6): ).

When k = 0, the terms involving sk=1 do not appear. In this case, if we take
£ = Z to be a section of Nor® M = TM we obtain

R(X.Y)Z = RX,Y)Z+ A" (s(X,Z):Y) - A'(s(Y,Z); X)

I

(R(X,Y)Z,W)=(R(X,Y)Z, W)+ (s(X,Z),s(Y,W)) — (s(X, W),s(Y,Z))

ie.,, Gauss’ equation. But for & > 0 we obtain an unsavory hybrid between
Gauss’ equation and the Ricci equations. We can obtain a nicer looking set of
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equations by considering the bundles Osck M. There is a projection TH): N, —
Osc* M, defined by means of the orthogonal complement of Osc* M, n Ny,
and we can thus define a connection D% on Osc* M by

DElye = TRV g £ a section of Osck M.
This connection has a curvature tensor R defined by

RK(x, v)g = p¥y pKlyg — plKly plly e — DKy v

75. PROPOSITION. Let M C N be nicely curved. Then for all vectors
X,Y e M, and € € Osc* M, we have the

Generalized Gauss Equation:
THR (X, Y)E =
RM(X,Y)E + AR5 (X, TFg) Y) — ARF (v, TH1e), x).
Soforé, ne Osck M, we have
(R'(X,Y)E,n) = (RM(X, )& ) + (F 71 (X, TF1e), 647 (v, T )
_ (Sk—l (Y, Tk—lé), Sk—l (X, Tk—l 77))
PROOF. We have
Vvt = DIy E 4 TEV'yE
= DWys + THVy TH g
= DMyg +* 71y, TH ).

Therefore
'y V'yte =D¥ly DKy g + 5~ (x, TA-1. DI yg)
+ DWlysk =1y, T*1g) + 0.

So
m TRV V'ys = DMy DIy g + DWys*~(r, TH g

— D[k]X D¥lye + Tk—lV/Xsk—l(Y. Tk=1g)

= DKy plye — AR (s* (¥, s*7'6) ).
Also
2) TRV V'xE = DMy DMys — AX* (X TH16)Y)
(3) TRV x v)& = DM x vik.

Equations (1)—(3) give the result. <



Higher Dimensions and Codimensions 181

Although we derived Gauss’ equation from scratch, it is important to note
that it is formally equivalent to equation (b) on page 179, in the following sense.
For a section & of Osck M we could define Dy ¢ as

DWIye =[DO% T + (X, TO%))
+[-ANTE X) 4+ D'x T +5'(X,8)]

+ [ AR (TR 2 X)) + DR T2 4 6572 (X L))
+ [—Ak—](Tk_]E;X) + Dk_]XTk_]E].

Then the equations of Proposition 75, together with the Codazzi-Mainardi
equations, imply equations (b) on page 179: the verification of this claim 1s
left to the reader. So the Codazzi-Mainardi equations and Gauss’ equation are
the full set of integrability conditions for the Frenet equations. But we still have
a lot of work to do before we can decide when a set of tensors {F; } on M come
from an imbedding of M 1n a space of constant curvature.

First we claim that if £ has its usual significance, then

RUX,Y)E=THR (X, Y)E

= 0, when N has constant curvature.

This follows immediately from Proposition 67, which shows that DY = V' on
Osct . We could also note that RE! = REH and that the terms A4+ which
then arise in Gauss' equation are 0, since they lie in Nor* M,.

Now we have to establish certain important identities for the curvature tensors
R analogous to those for R = R, Recall that we have

1) RIX.Y)Z+R(Y.X)Z =0

2) (RIX.Y)Z. W)+ (RIX.Y)W.Z) =0

(3) SIR(X.Y)Z} = R(X.Y)Z+ R(Y.Z)X + R(Z.X)Y =0
(4) (R(X.Y)Z. W)+ (R(ZZ.W)X.Y) = 0.

When sve are dealing with a submanifold M of another Riemannian mani-
fold N. these identities follow immediately from Gauss’ equation

(R(X.YYZ.W)=(R(X.Y)Z, W)+ (s(X.Z).s(Y,W)) — (s(Y,Z),s(X.W)),

and the corresponding identities for R’. Similarly, we have
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76. PROPOSITION. Let M C N be nicely curved. Then

(1) R¥(x,Y)e + R¥(Y, X)E =0
(2) (RM(X,Y)E, ) + (RBI(X, Y)n, &) =0
(3) SR¥(x,Y)-s¥2(Z,0)y=0 ¢ eNorkF2 M,

) SYURWX,Y) - sFNZy, . Z), SFTT WL W) =0

where &' indicates a cyclic sum over (Y, Zy,..., Zg, Wi,..., W)

@) 0= (R¥ (X, Y1) s*"(Xa,..., Xep1)s 571 (Vas o Vi)
+ (R¥Y( Xy, Ya) - 5"V, X, Xiew)s 857 (X0, Yy, Yieqn))
+ (R¥Y( Xy, ¥3) - 57 (Y1, Yoy Xy s Xia)s s5 7 (X0, X2, Yay oo, Yed))

+ (R Xy, Vi) - 557 (L V), 570G, L X)),

Moreover, these identities follow formally from Gauss’ equation for R¥ (and
the properties of the curvature tensor R’ for the ambient manifold).

PROOF. An easy computation. ¢

More important for us will be the (second) Bianchi identity

S{(VzR)(X,Y, W)} =0
[where we write R as (X, Y, W) — R(X,Y, W)].

Although we have derived this identity for the curvature tensor of a (symmetric)
connection on the tangent bundle, it is actually more general:

77. PROPOSITION. Left V be a connection on TM, with torsion tensor 7,

3

and let D~be a connection on a bundle w: E — M with curvature tensor R =
Rp. Let V be the natural connection on the bundle Hom(TM x TM x E, E)
determined by the connections V on TM and D on E. Then

SU{(VZR(X.Y,6)}+ S{R(T(X,Y), Z)E} = 0.
In particular, if T = 0, then
S{(VzR)(X,Y,£)}.

PROOF. Exactly the same as the proof on pp. 11.244-245, replacing W by §
throughout. <
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Note that when E is TM, the connection V is just denoted by V, in conformity
with previous usage.

28. COROLLARY. Let M C N be nicely curved, and let V be the natural
connection on Hom(TM x TM x Osck M, Osck M) determined by the con-
nections V on TM and D1 on Osck M. Then

() SUVz RM (X, Y,6)) =0.
In addition,

@ SV, REY (X, 1,857 (X Xien),s 5Ny, Ve ) =0

where 3" indicates a cyclic sum over (Xi,..., Xice1, Y155 Yes1).

Moreover, equation (2) follows formally from (1), Gauss’ equation for R and
the fact that the connection D1 on Osc® M is compatible with the metric (and
the properties of the curvature tensor R’ for the ambient manifold).

PROOF. To obtain equation (2), we apply X to both sides of equation (4) in
Proposition 76. We have, for example,

XURM(X, Yy, 557 (Xas ooy Xew))s 8571 (Yas Yagn)
— (DR (RKI (X, Y, 5 (X Xieg)), 857 (Vo Vi)
+(REXY, Y1 K (X Xee))s DPxs T (s Yes),

which by Corollary I1.6.5 1s

— (Vx REY(X, Y557 (X, Xiea), s5 7100 Vi)
+(RE(Vy Xy, Y, 5K (X X))y 87 (Y2 Vi)
+ (RMI(Xy, Vi Y, s (X Xee)s 857 (e Yien)
(RO, Yy, DR s (X, Xiea), 57 (0 Vi)
(RE(X, Y, 55T (X Xiea)), DFs* T (s Vi)

Using (1) we can replace the term involving (%X R¥1) by two terms, involving
Vx, R¥] and Vy, R¥1. After performing this substitution, and summing all the
terms thus arising from equation (4) of Proposition 76, everything cancels out
except for the terms which constitute equation (2). <>
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Corollary 78 will play an especially important role in our theory. To begin
with, consider the case R = RUI which depends only on the connection V
on TM. In the Remark after Lemma 65, we pointed out that for any bundle
w: E — M with a metric { , ) and a symmetric section s of Hom(TM x
TM, E), we can consider the “Codazzi-Mainardi equations”™ for a connection §
on E. The proof of Lemma 65 shows that if § is to be compatible with the metric
{ . ) and also satisfy this equation, then {5xs(Y1.Y2),s(Z}, Z,)) is completely
determined, by equation (x) in the proof. However, if we are given a § which
does satisfy (%), it is by no means clear that § is compatble with the metric
and satisfies the Codazzi-Mainardi equations. To see what i1s happening here,
we need to examine the formulas much more closely. Returning to the proof
of Lemma 65 one can see that when explicitly written out, equation (3) in the
proof reads

(Sxs(N. Y2).5(Z1. Z3)) = (8xs(Z1. Ya),s(Y1, Z3))

= (s(Vr, X, Y1) —s(Vx 11, Vo) + s(X, Vy, Yo) — s(Y1,Vx 12) [ s(Z), Z3))
—(s(Vz,Y1,Y2) = s(Vy, Z,. Y2) + s(Y1,Vz, Z2) — s(Z1.Vy, Z5), s(X, 13))
+ (s(VxZ1,Y2) —s(Vz, X, Y2) + 5(Z1,.VxY2) = s(X.Vz Y2), s(Y1, Z2))
+ N((s(X.12).5(Z1.Z2))) — Z1({s(X, Y2), (Y1, Z3)))

— §(X. V1. Y. Z1.Z5). say.

Following the proof a little further along, we arrive at the explicit formula

20xs(N. Y2).8(Z1,27)) =E(X. Y. Y2, 21, Z)) + E(X . Y2, Z1, 25, YY)
+ X((s(Y1. Y2).s(Z1, Z2))).
Now we can form
28pys(V, X)), s(Y,Z)) — 2{8ps(U., X),s(Y,Z))

=86, V.X.Y.Z)
+&WU,X.Y,Z,V)
-8V, U, X,Y, 2)
-8V, X, Y, Z U)
+Us(V, X)) s(Y,ZN) = V{s(U, X),s(Y,Z)))

=VHs(U, X),s(Y,Z)W) = Y({(s(U, X),s(V,Z))) + -~

+ X(sU.Y)s(V.ZW) — Z({s(U.Y). s(X, V) + - -
—Us(V, X)), s(Y.Z)) = Y(Us(V. X),s(U,Z)) + - -
- X((s(V.Y),s(U. 2+ Z({s(V.Y)s(X. U +---
+ UV X)s(Y,Z)) = V({{s(U.X),s(Y, Z)))
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= S{Z{s(X,U),s(V.Y)) = (s(X, V), s(Y.U)D} + - -
where Z indicates a cyclic sum over (X, Y, Z)
{Z(RX. V)V UD+ -+
{VZ(RIX.Y)V).U) + -
{VZRN(X, Y. V), U +---.
We have not troubled ourselves to write down all the - -+ terms, but, as you may
suspect, when we apply Corollary 76(2) [for k = 1] we find that this equation
comes down to precisely the Codazzi-Mainardi equations! In deriving this, we
use only Gauss’ equation for R, and the fact that V is compatible with the
metric (and properties of R’ for the ambient manifold).

Similarly, we may form

2By s(X1, X2),s(Y1, Y2)) + 2(s(X3, X2),8xs(11, 12))
=&(X, X1, X2, 1, 1)
+ &(X, X2, 11, Y2, X1)
+ (X, Y1, Y2, X1. X2)
+ E(X. Y2, X1, X2, 1)
+2X((s( X1, X2),5(Y1.Y2)))
= X, ((s(X. X2),s(Y1, ¥2)) — Yi({s(X, X2),s(X1, Y2))) + -+
+ Xo((s(X, Y1), s(Ya, X)) — Ya({s(X, Y1), s(X2, X)) + -
+ Y ((s(X, Ya). s(X1, X2))) — Xi({s(X, Y2), s(Y1, X2))) + -+
F Yo ((s(X, X1), s(X2, V1)) — Xa((s(X, X1), (Y2, Y1) + -
+2X({s(X1. X2),s(Y1,Y2)))
= "X, ((s(X, X2).s(Y1. Y2)) — (s(X.Y2),s(Y1, XDy + -
where 2 indicates a cyclic sum over (X, X2. Y1, Ys)
= —Z"{Xi((R(X. YD X2, YD)} + -+
—Z"{(Vx, (R(X. Y1) X2), Ya)} + - -
= —Z"{(Vx, (X, Y1.X2). Yo)b + -
When we apply Corollary 78(2), it turns out that evervthing on the right side

of this equation cancels, except the term 2X ({s(X}. X2),s(Y1,Y2))). So we see
that § is compatible with the metric!

-
L
-
=
-
o

1l

More generally. we have

79. PROPOSITION. The fact that DK satisfies the Codazzi-Mainardi equa-
tions and is compatible with the metric follows formally from equation (%) in
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the proof of Lemma 73, Gauss’ equation for R+ and the fact that D* is
compatible with the metric (and the properties of R’ for the ambient manifold).

PROOF. An abominable calculation. <

We are finally ready to consider the general imbedding question. The sit-
uation is rather complicated, and we will merely outline the results, without
going into details. We are given a simply-connected manifold M” and tensors
F0,...,F¢_1 on M, the tensor F; being covariant of order 2(k + 1) and sym-
metric in the first k + 1 arguments, in the last k + 1 arguments, and under
interchange of the first k¥ 4+ 1 arguments with the last k 4+ 1 arguments. We as-
sume that Fp is positive definite, and thus a Riemannian metric on M; we will
also denote Fo by ( , ). For k > 1 we assume that F is positive semi-definite of
constant rank ;> 0. Setm = n+r  +---+re_;. We want to know when these
tensors come from an immersion of M into a given complete m-dimensional
manifold N of constant curvature Ky. As usual, we can reduce this to a local
problem, so we assume that M is diffeomorphic to R”, and we choose a basis
Xi,..., X, for the vector fields on M. For 1 < k < £ — 1 we take as our “kt®
normal bundle” E¥ = M x R*. Similarly, for our “k*® osculating bundle” O*
we take the trivial bundle whose fibre over pis 0%, = M, @ E',®--- @ E¥~,,.
Fach E* has rk natural sections p — (p, (0,...,0,1,0,...,0)), and we give Ek
the Riemannian metric which makes these orthonormal; these metrics will all be
denoted by { , ). We now define sk TM x ... x TM — E* rather arbitrarily.
By hypothesis, the n¥*! x n*+! matrix

(ﬁk(Xil""’Xl'k+1’Xj1""sXJ'k+1))

has rank r; at each point. Making M smaller if necessary, we can assume that
there is a set 48 of exactly ry (k + 1)-tuples (ay,...,a41) such that the cor-
responding 7; rows of this matrix are everywhere linearly independent. Then
for (ay,...,2k41) € 8 we define sk(Xo[1 s+ s Xay,,) to be one of the ry natural
sections of E* (choosing an arbitrary correspondence between the elements
of & and the ry natural sections of E*). There is now a unique way to define
sk(X,-I s-+.+ Xi,,,) In general so that

k k brog
(" (KXo Xip " (X X ) = Fr(Xays .0, X

fgrn

Xivseoo s Xjp)-
Now we would like to define maps

sk: TM x EF — EK+1
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such that
Sk(Xi,Sk(Xil, R} Xik+1)) = Sk+1(Xl', Xl'l’ BRI Xik+|)-
But in this abstract set-up there is no way to prove that this map is well-defined.
Instead we have to assume
@) For each i and j, the n**! x 2n**! matrix
(FeXigr s Xigars Xits -+ X ) Fet X Xigs - Xy s X5 Xy X))
is of rank rx. [The (k + 1)-tuple (i1,...,ix41) determines a row of this
matrix, and the (k+1)-tuple (ji, ..., jk4+1) determines 2 different columns. |

With this assumption we can define sk We can thus also define the maps Aé‘
for £ an element of Ek.

Now we want to define connections D* on the EX*. Consider first D!. The
proof of Lemma 73 tells us that we have to define D! so that

(ar) (D'x;s'(Xiy, Xip), 8" (X, Xj,)) = Ev(Xi Xiy, Xigs Xy, Xi),
where Ej is some explicit expression we could work out. In order to know that
we can define D! so that this formula holds, we must assume
(Iy) For each i,iy, iy, the n? x 2n? matrix
(J‘71(Xh1, Xhz, le, ij)a El(Xi, Xil’ XiZ’ Xj[a ij))
is of rank ry. [The pair (h1,h;) determines a row, and the pair (ji, j2)
determines 2 columns.]

With this assumption we can define D' so that equation (a;) holds.

Of course, we already have the connection D® = V on TM determined by
the metric Fo = ( , ), and we want to assume that its curvature tensor R = RU
satisfies

(R'(X,Y)Z,W)
= (R(X,Y)Z, W) + (s" (X, Z),s' (Y, W)) — (s"(X, W), s'(Y, Z)),

1.€.

(ML) Ko-[(X, W) (Y. Z) - (X, Z) - (Y, W)]
= (R(X,V)Z, W)+ F(X,Z,Y,W) - Fi(X, W.Y, Z).
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Proposition 79 then shows that D' satisfies the Codazzi-Mainardi equations
and is compatible with the metric in E'. We can now define D! on O? by the
formula on page 181, and it therefore makes sense to assume the generalized
Gauss equation for R, Actually, it suffices to assume the special case

0 = (REI(X,Y)s' (X1, X2),s" (11, Y2))
+ (SZ(Xv le XZ)vSZ(Yv Ylv YZ)) - (SZ(Yv le XZ)vSZ(Yv Ylv Y2))7

Le.,
() 0 = (RE(X,Y)s' (X1, X2),5' (Y1, Y2))
+372(X’X13X23Y3Y13Y2) - erZ(YvXIvXZvaYI’YZ)'

Now we want to define D? so that

(aZ) (DZX,'SZ(Xl'lvXizsXi3)v52(Xj1vXj2sz3))
= Ez(X,', Xilv Xizv Xi3v le’ XjZ’ XjS)’

where Ej is an explicit expression we could work out (it involves D!, but we
already have an expression for D'). In order to know that we can define D? so
that this formula holds, we must assume

(Iy) For each i,iy, 12,13, the n3 x 213 matrix

(P2(Xnis Xno Xng, Xjio Xjns Xi3)s E2(Xi, Xiy, Xy, Xigs X0 X, X5y))

19
is of rank r3.

With this assumption we can define D? so that (az) holds. Then Proposition 79
shows that D? satisfies the Codazzi-Mainardi equations and is compatible with
the metric in E2. We can now define D! on 0 and it makes sense to as-
sume the Gauss equation for RB!. Continuing in this way. we can formulate
conditions

Mg) 1<k <€-—1
(Illg) 1 <k <€—-1

Finally. we can formulate
(IVy RE =0,

Standard arguments about integrability conditions show that if the conditions
M. (Lot {dIIg)}. and (IV) hold, then the tensors Fp. .. .. Fi_1 on M come
from an timmersion of M into N.
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PROBLEMS

1. Let /: R" — R" be a map with (f(v), f(w)) = (v,w), where { , ) 152
non-degenerate inner product on R”. Show that

(f (Ciaiei), flep)) = (T aif (e, fle)
for all j, and conclude that f is linear.

9. Consider R"t! with the metric

—dx®@dx® +dx' @dx' + -+ dx" @ dx".

(a) For the Levi-Civita connection (compare pg. I1.342), the geodesics are the
ordinary straight lines.

(b) If g: R"*! — R"*! is an isometry (with respect to ths metric) with g(0) =0
and gso = identity, then g = identity. [This can also be derived, as in Problem
1-5, from an appropriate generalization of Corollary II.7-13 ]

() If f: R+ — Rt §s an isometry with f(0) =0, then [ = fo.

(d) Every isometry of R"*! is of the form p +— A(p)+q for A € O'(n +1),
and g € R*H!.

3. Determine the geodesics of H" by the same method used for S in Chapter
1.9 (reflection through a 2-dimensional plane P C R"*+! is an isometry).

4. A linear fractional transformation is a map

az+b
cz+d

Z =

a,b,c,d e C, ad —bc #0,

of the extended complex plane C U {oo} to itself.

(@) The set of all linear fractional transformations is a group under composition.
(b) For distinct zy, 22, z3, the transformation

N 2—22/21—22
Z—23 21— 23

takes =) to 1, and z; to 0, and z3 to oo.
(c) There is a linear fractional transformation taking any three distinct points
21,22, 73 € C U {oo} to any other three distinct points wy, w, w3.
(d) If a linear fractional transformation keeps 1, 0, and oo fixed, then it is the
identity.
(¢) There is a unique linear fractional transformation taking =1, 22, 23 t0 1,0,00.
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(f) The transtormation of part (c) is unique.

(g) The linear fractional transformations which take the real axis to itself are
precisely those with a,b,¢,d € R.

(h) The linear fractional transformations which take the upper half-plane onto
itself are

az+b

cz+d’

f(z) =
a,b,c,d € R and ad — bc > 0. We can then clearly assume that ad ~ bc = 1.

5. For distinct zy, 23, z3, the cross ratio (z, z1, z2, z3) 1s defined as

z— 2y Z1 — 2y
(z,21,22,23) = ;

zZ— I3 21—23’

thus (z, 21, 22, z3) is f(z) where f is the linear fractional transformation taking
Z1,22,23 to 1,0, 00.

(a) If g 1s a hinear fractional transformation, then
(8(2),8(21),8(22),8(23)) = (2,21, 22, 73).

(b) If & = arg w denotes an angle between the positive x-axis and the ray from 0
to w, so that w = |w|e’®, then -

I —1I Z1 — 22
arg(z,z1,22,23) = arg —arg ———
Z—o3 21 — 23

=0, — 6, in the picture below.

1y
(5]

-3

Conclude that (z.z1.22.23) is real if and only if .21, 22,23 lie on a circle or
straight line.

(€) A linear fractional transformation takes circles and straight lines into circles
and straight lines.
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6. In this problem we will use the notation on pages 319f.

(a) The metric on the upper half-plane can be written

dz®d:z
()=
(Im z)
(b) For the linear fractional transformation f* of Problem 4(h), we have
Imz
I =—

f_a az+b\ 1
27 9z \ez+d)  (cz+d)?

. _ _ Lo dz
fr2) = df = fedz+ frdf=
R dz

S =df = =

(c) Conclude that f is an isometry of the upper half-plane.

(d) There is such an isometry taking any given point z to any other. Hunt:
Consider the linear fractional transformation taking zj, 22, z in the figure below
to wy, Wa, w.

L\ s £y @\
7

22 wq w2

(e) In the B? model, the linear fractional transformations keeping S = bound-
ary B? fixed are isometries, and there are such isometries taking any point to
any other. Conclude that these isometries are all the orientation preserving
isometries of B2, by noting that rotations about the origin are linear fractional
transformations.

(f) The geodesic circles around 0 in B? are clearly ordinary circles. Conclude
that all geodesic circles are ordinary circles, and that the same result holds
the upper half-plane. (The converse can be proved exactly as in the higher
dimensional case.)

7. (a) In the upper half-plane, the distance between z; = ¥ + iy and 22 =

X+iysis
/,Vz dy
»no ¥

where zo = x and =3 = oc.

d(z1,22) =

= \log )—ZI = |log(zo, 21,22, 231
N
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(b) Let z1, 2, be any two points of the upper half-plane and let the semi-circle
through z;, z3 perpendicular to the x-axis meet the x-axis at zg and z3. Then

d(zy,z2) = |log(zg, 21, 22, 23)|.

(¢) Similarly, find the formula for d(zy,z3) in BZ.

8. (a) The only geodesic maps f: R” — R” defined on all of R” are the affine
maps. Hint: Assume f(0) = 0, and recall the parallelogram law for addition,
as on pg. II1.211.

(b) Every geodesic map from S"* to $"T is of the form ¢! o A o ¢, where
¢: S" — R" is the standard geodesic map, and A: R" — R”" is affine.

9. In this Problem we will determine all geodesic maps f: U — V where U
and V are open subsets of R”. We will use material from projective geometry—
the reader is referred to Hartshorne {1} for all terms and theorems.* We need
the fact that every A = (¢;;) € GL(n + 1,R) determines a geodesic map
A: P" — P" and that every such map comes from some 4 € GL(n + 1,R),
unique up to multiplication by a real number. If we regard R" C P”, then the
action of 4 on R” is easily seen to be Ax', .. ..x"y = (', ..., y™), where

n
E aijx? 4 ajns1
=1

E (1n+l,jxj + dntt,n+1
j=1

(points where the denominator vanish go into the line at infinity). We will also
use Desargue’s Theorem and its converse (= its dual).

(a) Given any point O € R” and three lines /j,/3./3 through O which mter-
sect U, show that there is a Desargue configuration with all other points in U.
[Hint: In the figure at the top of the next page, points 4. 4’, and P are fixed,
while B and B’. and C and C’, are chosen close together.] Conclude that the
lines containing the f(/; N U) are concurrent. Thus show that there 15 a well-
defined extension f: P" — P with the property that it P e I; N /3 where [y
and /> mtersect U, then fT(P) is the intersection of the lines containing f(/;NL")
and f(/> N U). Show also that f' 1s one-one and onto.

(b) Let P, Q. R be three collinear points of P”. In the figure on the bottom of
the next page. we first choose 4.4’ € U, and then B, B’ € U, so that the lines

*For an analvtic derivation see Scheflers {1: V.2, 429432},
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AA’ and BB’ intersect at a point O € U. Show that we can also arrange for
QA and RB to intersect at a point C € U and for RB’ and Q 4’ to intersect
at a point C’ € U. Then show that 44" and BB’ and CC’ intersect at O € U,
so that we have a Desargue configuration with all points except P, Q, R in U.

Conclude that f(P), f(Q), and f(R) are collinear.

(¢) Every geodesic map f: U — V.where U,V € R™ are open connected sets,
is the restriction of some map 4 for A € GL(n + 1, R).
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(d) Every geodesic map from H" into H" is of the form ¢~ Yo Ao ¢, where
¢: H" — B"(1) is the standard geodesic map, and A: B"(1) > B"(1) is a
geodesic map which takes B"(1) into B"(1).

10. (a) Let f: P2 — P2 be a geodesic map which takes a circle £ € R* € P2
into itself. Show that f is determined by knowing f(P), f(Q), f(R) for distinct
points P, Q,R € . Hint: Consider the tangent lines at P and Q, which
intersect at some point S.

(b) Show that there is such an f for any given values of f(P), SO, f(R).
(You will need to use the fact that a conic is determined by 3 points and 2
tangents—see a book on projective geometry which treats conics.)

(c) Parts (a) and (b) show that the group of all geodesic maps f: P? — P? with
f(Z) = Z has dimension 3. Using Problem 9, conclude that every geodesic
map of H? onto itself is an isometry.

(d) Generalize to higher dimensions. Also consider the geodesic maps of S”"
onto itself.

(e) Use the geodesic maps H" — B"(1) and B"(2) — B"(1) to describe an
isometry between H" and B"(2).

11. For vectors vi,. .., Un—1 in R™, we define vy X --- X vpy—1 to be the unique
vector with
U1
(v X -+ X U1, w) = det :
Um—1
w

for all w € R™.

(a) If T: R™ — R™ is an orientation preserving isometry, then
T(vy X -+ X V1) = T(v1) X -+ X T(Up—1).

(b) Show how to define vy X - - - X Uppy for v1,. .., Um—1 in an oriented m-dimen-
sional vector space V with an inner product { , ).

12. (a) Let ¢ be an arclength parameterized curve in (N, { , )), with «p,...
km—1 = 0. and Frenet frame vy,...,vp—1. Using v, = v, as a trivialization of
the normal bundle of image ¢, show that

I (vi,v) = k165
Br(vi) = —kr18;_y +Kr8p
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Hence II” and B: are expressible in terms of «q,...,km—1, and conversely,
K1,-..,Kkm—1 are expressible in terms of the II” and g5 .

(b) Derive Corollary 4 from Theorem 20.

(c) Prove the assertion on page 51 by showing that ¢ o ¢ = ¢ for every curve

c: [0,1] = M with c(0) = p.

13. Let M", M" c §™ c R™*! with corresponding covariant differentiations
V,V', V' and V, V', V' (as in the proof of Theorem 27). Let ¢: M — M be an
isometry, and ¢: Nor M — Nor M a bundle isomorphism covering ¢ between
the normal bundles in $™ which preserves ( , ), s, and D. Let v be the unit
normal on $™.

(a) The normal bundle Nor M of M in R”*! has fibre Myt = ML OR-v(p),

and similarly for Nor M. Define ¢: Nor M — Nor M extending ¢ by d(p) =
v(¢(p)). Then ¢ is inner product preserving.
(b) The second fundamental form s of M in R™+! s given by

S(X,Y) =s(X,Y)+ (X, Y)v,

and similarly for M.
(c) The normal connection D of Nor M is given by

Dy& = Dyé& & a section of Nor M
DXv = 0,

and similarly for M.

(d) The bundle isomorphism ¢ preserves s and D, so there is a Euclidean mo-
tion A: R™+! — R™ with ¢ = A|M and ¢ = A,|Nor M.

(¢) From the action of $ on v(p) conclude that 4 keeps 0 fixed, so that it also
represents an isometry of $™.

(f) Treat the case of two manifolds M", M" C H™ similarly.

14. Let (M, { , )) be asin part (2) of Theorem 19, except with Gauss’ Equation
as on page 55, with Ko = 1. Let w: E — M be the bundle whose fibre at p is
w'(p) ® R, and extend { , } to ametric { , } by

{(v’a)’ (IU’ b)} = {U, l‘U} + ab'
Define a symmetric section ¢ of Hom(TM x TM,E) by

6 (X,Y) = (a(X,Y), (X, YD),
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and define a connection § on E compatible with { , } by

dx& =6x& & a section of E

SxC =0 where { is the scct_i?n
((p=0.1H)ecw  (p)®R.

(a) Gauss’ equation, in the form with Ko = 0, holds for ¢.

(b) The Codazzi-Mainardi equations hold for Vo.

(c) The Ricci equations hold for Rs, o, Ag.

(d) Let f: M — R™*! be the isometric immersion given by Theorem 19, for

M,E, { , }, 0,8 Regard f as an imbedding (by working locally), and let v be

the vector field f({) on f(M). Then for all tangent vectors X,Y of f(M) we

have

(S(X,Y),U):<X,Y) - V/Xv:—X_

(e) Let p € f(M) be a fixed point. Changing f by a translation, we can
assume that v(p) = —p (identifying tangent vectors of R™*! with elements of
R™+!as usual). Let ¢: [0,1] = f(M) be a curve with ¢(0) = p. Then

dv(c(t)) _

d[ —C (I)a

and consequently v(c(t)) = —c(t) for all t. Conclude that f(M) C §™.
(f) Treat the case Ko = —1 similarly.

15. The Lie algebra gl(m, R) has as a basis the matrices Eg which have zeros
everywhere except for a 1 in column a and row B, so that

(EByo = 858F.

Let {Wf} be the dual basis, and let lﬂf be the left invariant 1-forms on GL(m. R)
which extend the g//f.

(@) Show that
m
dyl ==Y vl Ayl
y=I1

either by computing the brackets of the Eﬁ and using the first equation on
pg- 1.396, or. more easily. by using the last equation on pg. . +0-+.



Higher Dimensions and Codimensions 197

(b) The Lie algebra o(m) has as a basis the matrices Eg —Ej o< B. The
dual basis 1s

B_ o
0) w-rB s

Define ¢£ = —¢g for @ > B and ¢ = 0. Note that equation (1) still holds.
Verify that we now have

dq;a =_Zq;5/\q;g‘

y=1
(¢) Derive Theorem 19 as a consequence of Theorems 1.10-17 and 1.10-18.

16. Use Problem L. 7-14(a) to show that the even powers of A in the character-
istic polynomial x(A) of A4 can be expressed in terms of the determinants of the
2 x 2 submatrices of A.

17. For a hypersurface M C R"*!, generalize Proposition 2-6 so as to express
the (n + 1) fundamental form in terms of the first # fundamental forms and
the elementary symmetric curvatures.

18. For an immersion f: M" — R"*! with normal map Ny = vo f, show that
we still have

My =1y, = ~1ln,.
19. Let ¢ be a curve in a hypersurface M C N of a manifold of constant

curvature Ko, and let X be a vector field of N along M. Then Vi X is

always a multiple of ¢/(s) if and only if the ruled surface {exp, ;) X (c(s))} has
constant intrinsic curvature Kj.

20. Let 0: S — {north pole} — R” be the version of stereographic projection
in which S” denotes the standard unit sphere around 0.

(a) For this o we have

1 n
p p
0(1)): (l_pn+1""’l_pn+l)
-1 .)_( 2! 23" Zi(_l'i)z—l)
R VI ST e I SRS ST
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(b) Let c¢: [0,27] — R” be a curve, parameterized proportionally to arclength,
which goes once around a circle centered at 0 and passing through y, so that ¢
has squared length |y|2. Then (67! o ¢)’ has squared length

4|y)?
[1+ 1y

Thus o~!, multiplies lengths of tangent vectors at y by 2/(1 + Iy12).

21. Leto: S2 — CU{oo} be stereographic projection, where S is the standard
unit sphere around (0,0, 0).

(a) If Rg is rotation of S? through an angle of € around the z-axis, then o o
Rgoo~!: CU{oo} > CU{oo} is just z > €'z,
(b) If R} is rotation through an angle of 6 around the y-axis, calculate that
oo RIG oo~ is

(1 4+ cos8)z —sin6
w (sin@)z + (1 +cos@)’

(¢) The group SO(3) is generated by all Rg and Rj. (A direct proof can be
given, or one can note that SO(3) is 3-dimensional, and the Rg and R:p do not

commute.) The group of all 4 x 4 complex matrices (‘C’ Z) satistying the con-

ditions on page 109 is also 3-dimensional. Conclude that this group 1s precisely
the group of all 6 0 Ao o~ for 4 € O(3).

22. Consider B?(2), with the metric on page 7. From pg. IL. 301 we see that
the geodesic circle of radius r is given by

¢(8) =2 tanh g(cose,sine) 0<6 <2

(a) Calculate that
lc’(8)} = sinhv,

(b) Then verify the formula for I given on page 118.

23. (a) For a coordinate system . v on a 2-dimensional Riemannian manifold.
show that the formula on page 132 can be written

af af af af
) G_L — F‘_f ) E"_f _ F‘_f

. 1 a du v a v du
Af=—— ——7F7+—7""++—| ———"
W | du %% v W
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where W = VEG — F2,

(b) If (u,v) is isothermal (this means that £ = G and F = 0; compare

pg. 11.297), then . T,
f - E (51;3 + m) .
(c) A coordinate system (x,y) on a 2-dimensional Riemannian manifold 1s
isothermal if and only if Ajx = Ay and Aj(x, y) = 0.
(d) If (x, y) is an isothermal coordinate system, then Ax = Ay = 0.
(€) If Ax =0, then there is locally a function y with

px_phx oo
dy = ou av du + ou v v
w w
(here E, F,G are the components of ( ,) in the (u,v) coordinate system).
The functions x and y satsfy Ajx = Ay and Ay(x,y) = 0, so (x,y) 1s an

isothermal coordinate system.

24. Let h be a function on a 2-dimensional Riemannian manifold such that the
sets h = constant give a foliation of the manifold.

(a) Suppose that there is an isothermal coordinate system (x, y) such that one
family of parameter curves lie along the curves i = constant; thus x = f o h
for some function f. Use Problem 23 to show that

Ah-(f' oh)+ Ajh-(f"oh)=0.
Hence Ah/Ah is some function composed with 4.
(b) Conversely, if Ah/Ayh = F oh for some function F, and we set x = foh
for e e—fp,
then Ax = 0, and the function y of Problem 23(e) satisfies
A])f‘ = 8—2fFA1h.

(¢) So

1
(1= ﬂ(d11®d11+ezfp dy ® dy).
1

(d) If we have equations (a) and (b) on page 153, then the corresponding metrics
are

—

5 2K ® dK + 2 g @ dv)

, : _(dK ® dK + o2l di ® dr).

So there is a one-parameter family of isometries between the surfaces.
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(¢) There 1s a function x with

1

dx®dx=foK

dK ® dK,
and similarly for x. Hence, each surface is isometric to a surface of revolution

(see formula (4) on pg. II1.158).

25. Let V and W be two inner product spaces of the same dimension. Let {v,}
be an indexed set of (not necessarily distinct) vectors which span V, and let {v,}
span W. Suppose that

(Ups va) = (l_)p, 1_)0) fOr all pP,0.

Show that 3~ cpv, =0 = Y ¢,b, = 0, and conclude that there is a unique
inner product preserving isomorphism ¥V — W which takes v, to v,.



CHAPTER 8
THE SECOND VARIATION

n this chapter we return to the study of the calculus of variations, and tro-

duce an important (essentially classical) construction, which has surprisingly
significant consequences for differential geometry. Recall that the calculus of
variations was first invoked in order to find paths which locally minimize the
length function L for a Riemannian manifold M. In the course of our investi-
gations we found that the energy function was more convenient to work with,
and that the critical paths for the length function are precisely the same as those
for the energy function, except that the latter are necessarily parameterized pro-
portionally to arclength. These critical points for E are, of course, the geodesics
on M, and at present we know only that sufficiently small pieces of geodesics are
paths of minimal length.

We now want to develop conditions which determine when a given geodesic
is, in its entirety, a path of smaller length than nearby paths. We recall one fact
from Problem 1.9-31: For a piecewise C® curve y: [a,b] — M we always have

(L < (b —a)ER(y),

with equality precisely when y is parameterized proportionally to arclength.
From this it is easy to see that a geodesic y has minimal length among all nearby
paths between y(a) and y(b) precisely when it has minimal energy among all
such paths. Thus we lose no information by restricting all our considerations
to the energy function E.

We begin with a brief summary of the results which we already have. Consider
a piecewise C* path y: [a,h] — M and a piecewise C* variation & : (—&,€&) X
[a,b] = M of y. We define

0
W) = a—a(O, 1) the “variation vector field”
u

1 .“
Vi) = % the “velocity vector field of y
A() = 7 V(1) the “acceleration vector field of y7,

201
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and if ¢ =1y < --- <ty = b includes all discontinuity points of V, we set
AV =VEH) -VE) i=1,...,N—1
AV =Vi(toh)
AV ==V(nT).

We then have the following formula (Theorem II.6-14) for the “first variation”
of E:

dE@w)| [ S .
Sal = —/a (W), @) di — ;W(m,miw,

for varations keeping the endpoints fixed, the sum can be written from 1 to
N — 1. From this formula we found that y is a geodesic (A(r) = 0) if and only
if y 1s a critical point for E.

Recall that if f: M — R is a real-valued function, then f,: M, — R,
may be determined as follows. Given X, € M,, we choose a path ¢: (—¢,¢) —
M with ¢'(0) = X,; then

d
u=o dif

df (c(u))

f+(Xp) = tangent vector of focat0= 7
u

f(p)

This suggests some notation which 1s exactly analogous, except that we will be
sloppy and throw away the uninteresting d/dt term. For any piecewise C*
vector field W along y, we define

dE(a(u))

E*(W)I du

3
u=0

where a 1s some piecewise C* vanation of y with W as its variation vector field.
The first vanation formula shows that the right side depends only on W, so that
E.(W) is really well-defined; the formula also shows that F is linear. Perhaps
we should explicitly make the observation that any piecewise C* vector field W
1s the variation vector field of some a; for example, we can take

a(u,t) =expu - W(r).
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As this example shows, we can even arrange for o to be a variation keeping
endpoints fixed if W(a) = W(b) = 0. The notation E,(W) suggests that
piecewise C* vector fields W along y may be thought of as “tangent vectors”
to the curve y. Actually, it will be convenient to restrict this terminology to
those W which vanish at ¢ and b. So if € denotes the set of all piecewise C*
paths y : [a,b] = M between two fixed points p and ¢, we will define Q,, the
“tangent space of £ at y”, to be the vector space

Q, = {W: W is a piecewise C* vector field along y with W(a) = W(b) = 0}.

We know that if E: © — R has a minimum, or even a local minimum, at y,
then y must be a geodesic, so E,: Q, — R must be 0. This is a necessary condi-
tion, analogous to the necessary condition D; f(x) = 0 for a function f: R" — R
to have a local maximum or minimum at x € R”. We also want to find sufficient
conditions for a geodesic ¥ to be a minimum for E; as a guide, we will first
recall what is known in the case of functions f: R" — R.

In the one variable case, there are very easy sufficient conditions for a function
f: R — R to have a local maximum or minimum:

(I) If f'(x) =0and f”(x) > 0, then f has a (strict) local minimum at x.
) If f'(x) =0and f”(x) <0, then f has a (strict) local maximum at X.

To prove (1), for example, we simply note that if f'(x) =0and f”(x) > 0, then
we must have f'(x +#4) > 0 for small A > 0, and f'(x +h) < 0 for small h < 0,
So f is strictly decreasing in some interval (x — &, x], and strictly increasing on
some interval [x,x + £). We also obtain, automatically, the following partial
converses:

(') If £ has a local minimum at x, and f”'(x) exists, then f”(x) > 0.

(2"} If f has a local maximum at x, and f”(x) exists, then f”(x) <0.
[Proof of (I'): If we had f”(x) < 0, then f would have a strict local maximum
at x, by (2), contradicting the hypothesis that it has a local minimum at x.]

For functions f: R? — R, the situation becomes more complicated. We cer-

tainly cannot expect to conclude that a critical point x of f is alocal minimum
simply because

Dy 1f(x)>0 and D>y f(x)>0;

this condition merely implies that x is a local minimum for f along the lines
through x which are parallel to one of the axes. We would need the much
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stronger condition (Problem 1) that cvery second order directional derivative
of f is positive,

d2

2 flx+1v)>0 all v € R2.

t=0

If we use mixed partial derivatives, then we have a simple sufficient condi-
tion that a critical point x be ather a (strict) local maximum or a (strict) local
minimum, namely

i da(¥i£4m)>u

dx;0x;

We have essentially already proved this in Chapter 2, for this inequality is exactly
the condition that x be an elliptic point of the surface {(xy, x2, f(x1,x2))}, and
therefore lie on one side of its tangent plane at x; this tangent plane is just the
(x1, x2)-plane, since x 1s a critical point. If condition (I) 1s sausfied, we can
then distinguish between a local maximum and a local minimum merely by
examining the sign of 92f/9(x;)? at x. If, instead of condition (), we have
92

(ID det (%(x)) <0,

0x;0x;
then x definitely is not either a local maximum or minimum for f. This
also follows from the considerations of Chapter 2, for in this case the surface
{(x1, x2, f(x1,x2))} lies on both sides of its tangent plane. When the determi-
nant 1s 0, we are 1 the borderline case where no conclusions can be drawn.
Essentially the same considerations hold for functions f: R” — R, except that
it 1s no longer so easy to find out if the eigenvalues of

()
0x;0x; Y

all have the same sign, which is precisely the condition that f have either a
local maximum or a local miimum at x.

Notice that the analogues of (') and (2') require no modification: If f: R" —
R has a local minimum at x. then surely

d?

- /(\ + IU) > 0
dr?

t=0

for all v € R” for which this limit exists. In fact, if the opposite equality held
for some v € R”. then f would have a strict local maximum at x along the line
{x+rv:1r e R}
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Our aim now is to see what information we can get when we generalize
these considerations of elementary calculus, and examine the second derivative
d2E(@(u))/du?(0), for all variatons a of a geodesic y : [a,b] > M; classically,
this second derivative was called the “second variation” of E. Our remarks
about n-dimensional calculus might suggest that it would be even more useful
to consider “mixed partial derivatives”, and even if they don’t suggest it, mixed
partial derivatives do turn out to be the thing to look at. We first define a
2-parameter variation o of y to be a function

a:U x[a,b] > M,

for some neighborhood U of 0 € R?, such that

() a(0,1) = y(1)

(2) there is a partition a = fp < --- < ty = b of [a,b] so that & is C*° on
each U x [t;—1, 4]

We say that  is a variation keeping endpoints fixed if

(3) For all u € U, we have

a(u,a) =y(a)
a(u,b) = y(b).

As before, we let @(u) be the path ¢ +— a(u, ). A 2-parameter variation « of y
gives rise 1o two “variation vector fields” Wy and W; along y, defined by

da
I

Notice that the W; may be only piecewise C* vector fields along y even if y
itself is everywhere C™.

1. THEOREM (SECOND VARIATION FORMULA). Let y: [a.b] > M
be a geodesic. with velocity vector field V(1) = dy/dt. andleta: Uxla.b] > M
be a 2-parameter variation of y. with variation vector fields

oo
Wi(r) = E{-_(O‘O,t)-
1
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Choose a =19 < --- < ty = b to include all discontinuity points of DW;/d1,
and let

DWW, DWW, DW,
Ay dl: 1(1+)_ l(’t) i=1...,N-1
t
DWW, DW1
A= = (t0%)
I)WG I)WG
tN—:E—'z (N )
Then
?E(a(u b D*W,
I E@w) :-/ <W2(t) + R(W (1), V(z))V(z)>
duy du; (ui,u2)=(0,0) a

— Z<W2(h) Ay DW‘>

=0

(When « is a variation keeping endpoints fixed, the sum can be written from 1
to N —1)

PROOF. By the first variation formula (Theorem I1.6-14), we have
b N
Da
B N T T )
Us=0 2 \dup 0Ot ot P dus at
where all terms on the right side are to be evaluated at (1, u;,0). So
b1'D 8a Doa b18a D Doa
=— —_— — dt—/ —, — —— ) dt
Ur=0 « \duy du, dr dt 2 \Ouy duy 9t Ot

—Z D da i D Jo
du, duy’ By az duy’ 8u1 far

i=

AE (a(u))
8“2

?E(a@(u))
8u18u2

()

Now when u; = 0 we have

D du

-—(1,0,0 0 d Aa—a(IOO)—O
at )= an g T

since 1 +— «(,0,0) = y(z) is a geodesic. So the first and third terms on the
right side of equation (1) are zero for u; = 0. After a simple manipulation with
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the fourth term we then have

b D D
= _/ <W2(t),-——V> dt
(u1,u2)=(0,0) a duy ot
Y DW,
DM LADNVESE)
i=0 !

where all terms on the right are now evaluated at (7,0, 0). Now we can use
Proposition IL.6-10 to write

O2E (a(u))
8u18u2

(2)

D D DD__(aaaa

B Ve K2V = RWL V)V,
duy 9t 01 duy aul’az) W)

Moreover, Proposition 11.6-9 gives us

DV D oo D ou D

= Wi,

duy  Oup 0 910w  dr

so we have
DD D*W,
du; ot dit?

Substituting into (2), we obtain the desired result. <

+ R(W, V)V

Suppose we are given two piecewise C vector fields Wi and W3 along a
geodesic y : [a,b] — M. We can always find at least one variation ¢« with these
as variation vector fields, namely

a(uy,uz,t) = explus Wi (1) + uz Wa(0)].
Extending the notation introduced previously, we define

2E (a(u))
E**(WlaWZ)z a8 )
310U |(uy,u3)=(0,0

for any variation @ with variation vector fields Wy and Wa; the second variation
formula shows that E..(W;, W) does not depend on the choice of a. The
notation E (W), W) is used only when W, and W, are vector fields along a
geodesic; otherwise the second derivative will depend on the choice of « (com-
pare pg. 1.161 and Problem 1.5-17). It is clear from the second variation for-
mula that E,, is bilinear. It is also true that E,, is symmetric, E..(W,W,) =
E o (Wy, W1): this is not at all clear from the second variation formula, but it
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follows immediately from the fact that E(&(u)) is a C* function of u, and
consequently
2E(@(u)) 02E(a(u))
Qu duy  OQuaduy

The second variation formula reveals a hitherto unsuspected significance of
curvature, and turns out to be responsible for many of the deeper consequences
which we will be able to draw from assumptions about the curvature of M. We
begin the program which will uncover these results by formulating questions
about local minima for E in terms of E,,. Notice thatif «: (—¢,e)x[a,b] > M
1s a l-parameter variation of y, and we define a 2-parameter variation § by

ﬂ(ulauZat) :a(ul +u23t)s

then
%E (@ (u))
ou?

_QE(Bw)

ou10us

u=0

(u1,u2)=(0,0)
If y has variation vector field W, then § clearly has variation vector fields
Wi = W, = W. Consequently,

2E (@(u))

= En (W, W).
5202 (W, W)

u=0

Thus, if y is going to be a local minimum for energy, then we must have
Eq(W, W) >0 forall W e Q,. Briefly expressed:

If y 15 a local minimum, then E,, is positive semi-definite.

We also hope that y actually will be a local minimum whenever we have the
strict inequality E,, (W, W) > 0 for all non-zero W € Q,,. Briefly expressed:

If E,. is positive definite, then we fAope that y is a local minimum.

Our approach to this problem will be somewhat roundabout; we first investigate
the vector fields W € @, which satisfy E.(W,W,) = 0 for all W, € Q,, and
hence represent something of a borderline between positive definiteness and
positive semi-definiteness.
A piecewise C* vector field W along y is called a Jacobt field if it satisfies
the “Jacobi equation”
2

dr?

+ R(W, V)V =0, V =dy/dr.



The Second Variation 209

In a coordinate system this equation becomes a linear second order differential
equation. Or, if we choose parallel vector fields Y, ...,Y, along y which are
orthonormal at 0, and hence orthonormal everywhere along y, and set W) =
3= fH(#)Yi(t), then our equation becomes

dei n ; j '
0=W+Zaj(z)f ) i=1,....n,
j=1

where a; = (R(Y;,V)V,Y;). The solutions of this equation are everywhere Cc™®
and, since the equation is linear, every solution can be defined on all of y. It
is also clear from the linearity of the equation that the set of all Jacobi fields W
along y forms a vector space. The dimension of this vector space 1s 2n, since
each Jacobi field W is determined by its initial conditions

DW
W(O), 7(0) c My(o).

2. PROPOSITION. Let y: [a,b] — M be a geodesic and let W € Q.
Then W is a Jacobi field if and only if

E**(Wv WZ) =0

for all W, € Q.

PROOF. If W € Q, is a Jacobi field, then the second variation formula shows
immediately that

b N-1
EenW, W) = = [ (2,00t = 3 (Wat0,0) =0
a i=1
Conversely, suppose that W € Q, and that E (W, W) =0 for all W3 € 2.
Choose ¢ = fg < -+ < tn = b so that each W|[t;_1,%] 15 smooth, and let
£ [a,b] = [0,1] be a C* function with f(#;) =0and f >0 otherwise. If we

define ,
- (D*W
W, = f- ( Tt R(W,V)V).
then
b D2W N DW
0= EW(W, W) = —/ f” e + R(W, V)V dt—z O,A,,—d—t— ,
a i=0
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This implies that

| D*w
1) prp

+ R(W, V)V =0 on each (t;i_1, ),

so each Wi[t;_y, 1] is a Jacobi field.
Next choose W; to be any vector field along y with Wy (a) = W5(b) = 0 and
Wi(t;) = Ay DW/dt fori =1,..., N — 1. Then by (I) we have

b N

0= Ew(W, W) = —/ (W,0)dr =)

a

DW ||

A, ——
it

3

i=l1

so each A, DW/dt = 0. This means that the Jacobi fields W|[z#;_y, ] for two
consecutive intervals have the same values of DW/dt on the intersection of
the intervals. Since a Jacobi field is determined by its initial values, this shows
that W is actually a Jacobi field on all of y. #

Notice that there may not exist any non-trivial Jacobi fields W along y which
vanish at both @ and & (indeed we hope to find conditions under which E,.,
1s positive definite, which certainly excludes the possibility of non-zero Jacobi
fields). When there is a non-zero Jacobi field W along y with W(a) = W(b) = 0,
we say that @ and b are conjugate values along y, and we define the multiplicity
of a and b as conjugate values to be the dimension of the vector space consisting
of all such Jacobi fields. We also say that y(a) and y(b) are conjugate points
of y, but this terminology is ambiguous when y has self-intersections.

Since a Jacobi field W is determined by its initial values W(a), DW /dt(a)
at any point a, the multiplicity of two conjugate values @ and b is clearly < n.
Actually, it is always < n—1. To prove this, we just have to produce a Jacobi field
along y which is 0 at ¢ but nowhere else. The vector field W) = (1 — a)V (1)
has this property; 1t is a Jacobi field because

DW DV
= V) + @ —a)w = V),

D*wW DV
RW, V)V = — t—a)R(V, V)V =0.
2 T RWVIV = = 4 —a)R(V. V)

More generally, we have

3. PROPOSITION. Let y be a geodesic, with velocity vector field V = dy/dt.
() The vector field £V along y is a Jacobi field if and only if f is linear.
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(2) Every Jacobi field W along y can be written uniquely as fV + wit,
where [ is linear and W+ is a Jacobi field perpendicular to y.

(3) If a Jacobi field W along y is perpendicular to y at two points a and b,

then W is perpendicular to y everywhere. In particular, if W(a) =
W(b) =0, then W is perpendicular to y everywhere.

PROOF. (I) If W = fV, then D*W/dt* = f"V, so the Jacobi equation for W

15
,_ D'w
T dr?

+ RW, VYV = f"V + fRV, V)V = f"V.
(2) Given a Jacobi field W along y, we can write W = [V + W+ for some f

and some vector field W+ perpendicular to y. The Jacobi equation for W gives

D*wW D2w+
0= RW, V)V = "V
(a) TEREN W=+ —3

+ R(WL, V)V,
Now

pwi D*w+i
_wi _ _
0_(W,V)=>0-—< T ’V>=>0__< I ,V>

and we also have
0= (R(WL, V)V, V).

So (a) implies that /” = 0, and therefore that W+ is a Jacobi field. Uniqueness
is obvious.

(3) Write W = fV + WL asin (2). Then the linear function f must satisfy
fla)= f(b)=0. So [ =0. %

Proposition 3 shows that for the purposes of investigating conjugate values,
we need consider only perpendicular Jacobi fields. In particular, when M 1s a
surface, and Y is a unit normal vector field along the geodesic y: fa,b] — M,
any normal vector field W can be written uniquely as W = gY. We have
DY/dt = 0, since y is a geodesic and Y makes a constant angle with the
parallel vector field dy/dt. So the Jacobi equation for W becomes

g' MY +gRY @), Vu)V(E) =0,
which is equivalent to

g’ )+ g((RY @), VNV (), Y(@) =0,
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since we obtain 0 = 0 when we take the inner product of the original equation
with V. When the tangent vector V = dy/dt has length 1, we can write our
equation as

g"()+ K(y(1)) -g(t) =0,

where K 1s the Gaussian curvature; this is the classical “Jacobi equation” for M.
The next theorem, bastcally due to Jacobt, gives a geometric way of obtaining

Jacobi frelds.

4. PROPOSITION. Let y: [a,b] — M be a geodesic and let o: (—¢,¢) X
la,b] = M be avariation of y through geodesics, so that each @(u): [a,h] > M
1s also a geodesic. Then the variation vector field W(z) = da/ou(0,1) is a Jacobi
field along y.

PROOF. Since @ is a variation of y through geodesics, we have
D da

o or
Therefore
D D iu D D du (801 801) Ja

—, = | = P iti .6-10
TN by Proposition I1.6

" Budt 8 o1 du o1
D? da da Jua du
N (5‘ 57) ar
which shows that da/du is a Jacobt field. &

by Proposttion I1.6-9,

Thus one way of obtaining Jacobi fields is to move geodesics around. In

i 2

particular, if' y is a great semi-circle on $”, joining two antpodal points p
and ¢. then a rotation of S" keeping p and ¢ fixed vields a variation vector
field along y which is a Jacobi field vanishing at p and ¢. Since we can rotate
in n — 1 different directions, the points p and ¢ have multiplicity n — 1, the
theoretical maximum.
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S

)L

5. PROPOSITION. Every Jacobi field along a geodesic y : [a,b] — M 1s the

variation vector field of a variation of y through geodesics.

PROOF. First suppose that y lies completely inside an open set U C M such
that any two points p,q € U are joined by a unique geodesic in U, depending
smoothly on p and g, of length d(p, g). Given two vectors W(a) € M, and
W(b) € M, ), choose curves ¢q,¢p: (—&,&) — U such that

ca(0) = y(a) cp(0) = y(b)
el (0) = W, cp'(0) = Wp.

Define a: (—&,€) x [a,b] = M by letting &: [a,b] — M be the unique geodesic
in U from cq(u) to cp(u) of length d(cq(u), cp(u)). Then W(r) = da/ou(0,1) 1s
a Jacobi field along y, by Proposition 4. To show that all Jacobi fields arise in
this way, simply consider the map

®: {Jacobi fields along y} — M) © My @s)
given by
W= (W(a), W(b)).

We have just shown that @ is onto. Since the domain and range of ® both have
dimension 27, the linear map ® must also be one-one. Thus W is determined
by W(a). W(b): this shows that when the above construction is applied to W(a)
and W (b). the resulting Jacobi field da/du (0. 1), obtained by a variation through
geodesics. is precisely the given Jacobi field W.

For a general geodesic y. we note that for sufficiently small 8, the restricted
geodesic y|[a.a + 8] will lie in an appropriate set U. bv Theorem L.9-14. This
gives us a variation through geodesics @: (—¢.€) x [¢.a + 8] with da/0u(0,1)
equal to the given Jacobi field W(t) for t € [a.a + 8]. Using compactness of
[a.b]. it 1s easy to see that if & is made sufficiently small. then each ge_odesic
@(u) can be extended to a geodesic @(v): [a.b] — M. Then (u.1) — a(u)(f)
is the required variation through geodesics. <
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An examination of the proof of Proposition 5 shows that if W is a Jacobi
field along a geodesic y: [a,b] - M with W(a) = 0, then we can even find a
variation «: (—&,¢) x [a,b] = M of y through geodesics such that

?ﬁ(o,t) = W()
du

a(u,a) =y(a) for all u € (—¢,¢).

However, if W(b) = 0 for some other point b, we may not be able to choose a
so that we also have a(u, b) = y(b) for all u; we will merely have this condition
“up to first order”, that is,

du
—(0,b) = 0.
Bu( b)

Thus a conjugate point of p = y(a) is a place where some I-parameter family
of geodesics starting from p “nearly” intersect. This description of conjugate

q

P

points shows why they should play such an important role in the study of local
minima for length, for it is easy to give an intuitive argument to prove that a
geodesic y : [a,b] = M cannot locally minimize length if there is some 7 € (a,b)
conjugate to a. In fact, suppose we have another geodesic n from y (a) to y(7)
with nearly the same length as y|[a, t]. Then y has nearly the same length as
followed by y|[r, b]. But this compound curve has a corner, and can clearly be

b b

made shorter by replacing the corner with a minimal geodesic. Therefore. y is
not a curve of minimal length. This reasoning turns out to be perfectly valid,
provided that one works infinitesimally:
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6. THEOREM. Let y: [a,b] = M be a geodesic, and suppose that there is a
number T € (@, b) which is conjugate to a along y. Then there is some W € €,
with E.(W,W) <0. Consequently, y is not a local minimum for E.

PROOF. Since t is conjugate to ¢ along y, there is a non-zero Jacobi field J
along y such that J(a) = J(r) =0. Let J be the vector field along y with
Joy=J@) a<ti<rt
J()=0 1<1<b.
Notice that the discontinuity of DJ/dt at Tis
A DJ
dt

the inequality following from the fact that J(t) = 0, but J is non-zero. Choose
a vector field X along y which vanishes at a and b and which satisfies

DJ
= 'gt—(f) # 0,

(1) (X(1), A, DJ/dt) = 1.

Now let ¢ be a small number and consider the vector field

¥,

We have
1 o~ ~
E (W, W) = 25**(J, T) = 2EsnlJ, X) + * Eanl( X, X).

Using the second variation formula, this becomes
Epe(W, W) = 0 = 2X(2), A DT d1) + ¢ Exa (X, X)
= 2+ 2EL(X,X) by

For sufficiently small ¢ this is negative, which proves the first part of the theorem.

We have really already observed that the first part of the theorem implies
the second. but we repeat the reasoning here. Suppose we have W € £y with
E.(W.W) < 0. Consider the variations

a(u,t) =expuW(r)
Bluy,uz,t) = aur + us,t) = exp(u; + ur)Wi(t).
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‘Then
PE@w)|  _ EBw)
dut e Oujduy

(uy,u2)=(0,0)

= E**(W> W) < 0.

So u — E(a(u)) has a strict relative maximum at u = 0. Therefore y is not a
relative minimum for E. ¢

Notice that the first part of this proof makes crucial use of the discontinuity
of DW/dt, which 1s closely related to the kink in the “intuitive proof”. (Once
we have obtained this W, however, we can always smooth it out to obtain an
everywhere C™ vector field W with E..(W,W) < 0.)

Our next hope 1s that a geodesic does minimize length among nearby paths
if there are no conjugate points. In order to consider this case, we first need a
result which contains essentially the same information as Propositions 4 and 5,
but in a form that is much easier to use; for simplicity, we state it for a geodesic
defined on [0, 1].

7. THEOREM. Let y: [0,1] — M be a geodesic with y(0) = p € M and
Y'(0) = v € M), so that y can be described as ¢ > exp v for the map

exp = exp,: Mp —> M.
Then 0 and 1 are conjugate values for y if and only if v 1s a critical point of exp.

PROOF. Suppose that v is a critical point for exp. Then exp, (X) = 0 for some
non-zero X € (M), = the tangent space of M, at v. Let ¢ be a path in M,
with ¢(0) = v and ¢’(0) = X, and define

o(u.t)y =exptc{u) 0<rt<l.

Then a 1s a variation of y through geodesics, so the vector field

expic(u)
u=0

W) = 0
" du

is a Jacobi field along y. We clearly have W(0) = 0. and also

)
W(l) = 8(_1( exp (i) = exp, '(0)

u=0

=exp, X =0.
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Moreover,

DW(O) 0 tc(u)
—0)=—| — c(u
dt ot |, Ou uz(,CXp
D te(u) by P ition I1.6-9
= — —| exptc(u roposition I1.6-
5|0 91,0 xp y Propositi
0 ()
=— c(u);
o |—g

this last expression is the covariant derivative of the vector field u +— ¢(u) along
the constant curve # — p. Hence

DW fen

In particular, W is not identically 0, which shows that 0 and 1 are conjugate
values for y.

Now suppose that v is hot a critical point for exp. If Xp,..., X, € (Mp),
are n linearly independent vectors, then exp,(X1),...,exp,(Xn) € M, are
also linearly independent. Choose paths ¢y, ...,c, in My with ¢;(0) = v and
¢i’(0) = X;, and consider the variations

a;(u,t) =exptci(u),

with variation vector fields W;. Then the W; are Jacobi fields along y which
vanish at 0. Moreover, the W;(1) = exp, (X;) are independent, so no non-trivial
linear combination of the W; can vanish at 1. Since the vector space of Jacobi
fields along y which vanish at 0 has dimension exacty 7, it follows that no
non-zero Jacobi field along y vanishes at 0 and also at 1.

Since the points in M, where exp, is zero form a closed set, Theorem 7 shows
that the numbers 7 conjugate to 0 along a geodesic y: [0,00) — M also form
a closed set. In particular. if there is any such 7. then there is a first T conjugate
to 0. Actually: much more is true. for the set of t conjugate to 0 consists only of
isolated points, so there are only finitely many t conjugate to 0 in any interval
[0,5]. We will not prove this here. but it is included in another result which we
will state later on.

It is now a simple matter to prove the local length-minimizing property of a
geodesic y : [a,b] = M satisfving the condition that no number t € (¢.b] is a
conjugate value of @ along y. For simplicity. we will call such a y a geodesic
“without conjugate points™.
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8. THEOREM. Let y: [a,b] — M be a one-one geodesic with no conjugate
points. Then y has strictly smaller length than all sufficienty nearby paths
between p = y(a) and g = y(b) (except for those which are merely reparame-
terizations of y).

PROOF. By reparameterizing, we may assume that [¢,b] = [0,1]. If v = ¥'(0),
then by Theorem 7 the map exp = exp,: M, — M is regular on the set
{tv:0 <t <1} C M,. By Lemma I.9-19 there 1s an open set U > L on which
exp is a diffeomorphism. The result then follows from Problem 1.9-29. «»

Remark: Theorem 8 clearly remains true even for geodesics y with self-intersec-
tions, provided that “nearby” paths refer to paths ¢ with ¢(7) close to y(¢) for
all 7.

Let us test out Theorems 6 and 8 on the 2-sphere S2(r) of radius r, with
y: [0, L] = S?(r) a portion of a great circle starting from a point p. We take y

p
to be parameterized by arclength, so that V' = dy/dt has length 1. Proposi-
tion 3(3) shows that in order to investigate conjugate points along y, it suffices
to consider Jacobi fields which are perpendicular to y. If Y is a unit normal
vector field along . then the Jacobi equation for W = gV is (compare page 211)

" 1 _
g (1) + 58 =0.
The solutions vanishing at # = 0 are all multiples of

t
g(t) = sm —,
,
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which has its first positive 0 at 7rr. So if L > mr, then y contains a conjugate
point, and Theorem 6 shows that y does not locally minimize length. This is
casy to see from the picture; in fact, in this case the intuitive proof of Theorem 6
works exactly. If L < 7r, then Theorem 8 shows that y does locally minimize
length.

We have exactly the same situation for any compact surface of revolution M,
when we take p to be one of the points where M intersects the z-axis I;. The

Y

p p

geodesics through p are the meridians, and it is clear, just by looking at the
picture, that the only point conjugate to p along any geodesic is the other
point g of M N I . Geodesics which do not reach g are local strict minima for
length, and geodesics which extend past g are not local minima.

In this example it is clear that a geodesic y which does not reach g 1s actually
a minimum among all paths. [Proof: A minimum path between p and the other
end of y exists, since M is complete, and this path must be a geodesic; we know
what all geodesics through p are, and y is clearly the shortest.] However, it 1s
easy to concoct examples where the non-existence of conjugate points implies
only that y is a local minimum for E. For example, we can round off the edges
of the surface shown below (the boundary of part of a spherical wedge). Since
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the surface is a sphere in a neighborhood of y, it is still the case that no two
points of y arc conjugate, and Theorem 8 stll applies. On the other hand,
there is clearly a shorter path between p and g if the wedge is thin enough.

A little more interesting situation arises for an ellipsoid. For the geodesic y
shown below, the first point ¢ conjugate to p along y occurs past the point p’

on the opposite end of the axis. (To establish this fact one has to examine the
Jacobi equations for y with some care.) If 7 is a point between p’ and ¢, then
the portion of y between p and r is a local minimum for E, but clearly not
a global minimum, since the extension y’ of y in the other direction past p
has shorter length from p to r (on the other hand, y’ is the only other geodesic
from p to r which is shorter than y).

Notice that Theorems 6 and 8 do not cover the case where b is the only
point in (a,b] which is conjugate to a. This is the borderline case for which
no conclusions can be drawn. It may happen, first of all, that y is a local
minimum for length, but not a strict local mmimum. This is illustrated, of
course, by taking y to be half of a great circle on the sphere S2. Now consider
an ellipsoid, with three uncqual axes @ > b > ¢, and let p be a pomt at one end
of the largest axis. The figure on the opposite page shows the conjugate pomts
of the geodesics starting from p (it is the envelope of these geodesics—compare
the Addendum to Chapter 3): this set is a curve with four cusps. The geodesic
from p to A is a strict global minimum. while the geodesic gomng from p to p’
and then on to B 1s a strict local minimum.

The next result complements Theorem 8 so that it appears to parallel The-
orcmn 6 more closely.

9. PROPOSITION. Let y: [a.b] — M be a geodesic without conjugate
pomts. Then E, (W. W) > 0 for everv non-zero W e Q.
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PROOF. Theorem 8 (and the Remark following it) implies that E(W, W) > 0.
For if E. (W, W) < 0, then y would not be a local minimum for E (by the
argument in the proof of Theorem 6).

Now suppose we had E, (W, W) =0 for some non-zero Wi € Q,. Then
for any W, € €, we would have

0 < Ex(W) + ¢ W2, W1 + cW2)
= 0 4 20 Exu(W1, W2) + ¢ Evu (W2, W2).
Since this is supposed to be true for all ¢, it is clear that we would have to have

E,..(W;, W) = 0. Thus W; would be a Jacobi field, contradicting the fact that b
1s not a conjugate value of a. <

More generally, we have the following result, which plays an important role
later on.

10. COROLLARY. Let y: [a,b] — M be a geodesic without conjugate
points, W a Jacobi field along y, and X a piecewise C vector field along y
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with
X(a) = W(a), X(b) = W(b).

Then
Eo(X,X) = E (W, W),

and equality holds only when X = W.

PROOF. The second variation formula shows that for all piecewise C* vector
fields W, along y we have

b

DW
dt

() Ew(W, W)= <Wz, —

DW DW
= <W2(b)s W(b)> - <W2(0), d—t(a)>'

a

Moreover, since X — W € @, Proposition 9 shows that

OS E**(X—W,X— W)
= E**(Xs X) + E**(Wa W) - 2E**(W3 X)

pwW\|? pw\|?
=E..(X,X W, — )| —2{(X,— by (1
b
DwW .
=E**(X,X)-—<W,7t—> since W = X ata and b
a
=En(X,X)— E. (W, W) by (1) again.

Moreover, it is clear that equality holds only if X — W =0. &

Theorem 6 and Proposition 9 show that for a geodesic y: [a,b] — M, the
existence of conjugate points is practically equivalent to the existence of vector
ficlds W € Q, with E,.(W, W) < 0:

(A) If there is some t € (a,b) conjugate to a, then there is some W € Q,
with E,(W, W) < 0 (Theorem 6};

(B) 1f there is some W € @, with E (W, W) < 0, then there is some
T € (a,b] conjugate to a (Proposition 9).

We will see later that it can be verv convenient to replace questions about con-
jugate points by questions about vector fields W e @, with E, (W, W) < 0.
Actually; the situation is even better than we have indicated. because state-
ment (B) can be strengthened: if E,.(W, W) < 0 for some W € Q. then there
is T € (a,b) conjugate to a. In fact, there is a far-reaching generalization of
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these results. We say that E,, is negative definite on a subspace V C Q, if
E.(W,W) < 0 for all non-zero W € V, and we define the index of E,, to
be the largest dimension of any subspace V C 2, on which Exs is negative
definite (compare page 3). Then we have the celebrated

MORSE INDEX THEOREM. The index of Eys for a geodesic
v: [a,b] = M is the number of 1 € (a,b) which are conjugate to 4,
cach conjugate value being counted with its multiplicity. Thus index is
always finite.

In terms of the index of E ., our Theorem 6 can be reformulated as follows:
if the number of conjugate values is > 1, then the index i1s > 1. For the Morse
Index Theorem we need the more general assertion, that the index of (E!)xx
increases by at least v as ¢ passes a conjugate value T with multiplicity v. This is
the only point in the proof that does not involve simple general considerations,
and it may be handled by essentially the same trick which was used 1n the
present proof of Theorem 6. I hope that by clearing this path right up to the
proof of the Index Theorem, I may have enticed you into reading the proof
in Milnor {2}, which also describes some of the beautiful applications of these
differential geometric ideas to topology.

In order to obtain interesting differential geometric consequences of our foun-
dational results, we need to find hypotheses which imply something about the
solutions of Jacobi equations. These hypotheses usually involve the sectional
curvature K(P) of 2-dimensional subspaces P C Mp; recall that K(P) =
(R(X,Y)Y, X) for orthonormal X,Y € P. Clearly all sectional curvatures
of M are <0 if and only if (R(X,Y)Y,X) <0 for all pairs X, Y of vectors at
the same point of M.

11. PROPOSITION. If all sectional curvatures of M are < 0, then no two
points of M are conjugate along any geodesic.

PROOF. If y is a geodesic with velocity vector field V' = dy/dt, and W is a
Jacobi field along y, then

D*W + R(W, V)V =0
dt? ’ -
SO )
D-W
<——dt2 ,W> = —(R(W,V)YV,W) =0.

Therefore

d [DW \_[DW L\ [DW DW\_
dr \ dr° T\ drr” dr > dt |77

which means that (DW/dt, W) is increasing.
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Now if W vanishes at two points, 7o and #;, then (DW/dt, W) vanishes at fg
and 11, so (DW/dt, W) must be 0 on the interval [to,11]. This clearly implies
that DW/dt also vanishes at 7o. Hence W = 0. ¢

Although Proposition 11 shows that all geodesic segments on M are local
minima for length, this does not mean that they are necessarily global minima.
In fact, if we consider a compact surface M with everywhere negative curvature
(Chapter 6, Addendum 1}, it is clear that no geodesic y: R — M can be a global
minimum for length on arbitrarily large segments.

The most interesting consequence of Proposition 11 is obtained by combining
it with the following general result.

19. THEOREM. Let M be a complete, connected, n-dimensional Riemann-
jan manifold, and let p be a point of M such that no point of M is conjugate
to p along any geodesic. Then exp = exp,: M, > M is a covering map. In
particular, if M is simply-connected, then M is diffeomorphic to R".

13. COROLLARY (HADAMARD-CARTAN). A complete, simply-connect-

ed, n-dimensional Riemannian manifold with all sectional curvatures < 0 1s
diffeomorphic to R”.

PROOF. The Corollary follows immediately from the Theorem and Proposi-
tion 1. To prove the Theorem, let { , ) be the Riemannian metric on M, and
consider the tensor exp*( , ) on M. Since there are no points conjugate to p,
the map exp, is always one-one, so exp*( , ) is a Riemannian metric on Mp.
We claim that M, is complete in the metric exp*( , ). To prove this, we just
note that the straight lines through 0 in M, are clearly geodesics for the met-
ric exp*( . ), since their images under the local isometry exp: M, — M are
geodesics in M. Since all geodesics through 0 € M, can be defined for all #, it
follows from Problem 1.9-43 that M, is complete. The Theorem then follows
from

14. LEMMA. Let M and N be connected Riemannian manifolds with M
complete, and let ¢: M — N be alocal isometry. Then N is complete and ¢
is a covering map onto N,

PROOF. Let py € M. Given a geodesic y: (—¢.6) — N with y(0) = ¢(po).
let ¢ be the geodesic in M with ¢(0) = po and D’ (0) =y’ (0). Then y =¢ec,
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since ¢ is a local isometry. Since ¢ can be defined on all of R, we can extend y
to all of R as ¢ c ¢. Thus N is complete. by Problem 1.9-43.

To prove that ¢ is onto N it suffices to prove that ¢(M) 13 closed (for ¢(M)
is open, since ¢ is everywhere regular). Let ¢ € @(M). and let V be a convex
neighborhood of 0 in Ny on which exp, is a diffeomorphism. There is a point
q' € exp, (V) of the form ¢’ = ¢(p’) for p’ € M. Let y be the geodesic in
equ(V) with y(0) = ¢" and y(1) = ¢. Consider the geodesic ¢ in M with
c(0) = p’ and ¢4c'(0) = ¥'(0). Then y = ¢ oc, as before. The point p = ¢(1)
is defined and ¢(p) = ¢(c(1)) = y(1) = ¢. Thus (M) C ¢(M), so $p(M) is
closed. Hence ¢ 1s onto V.

The proof that ¢ is a covering map will be similar to the proof that appears
on pp. [11.258-259. Tor fixed g € N, let

V={Y e Ny |IY| <2} CN,g
be a neighborhood of 0 in N, on which exp, is a diffeomorphism. Suppose
that p € ¢~'(¢g). Consider the map
S =exp, o gpr o (exp, (V)7
1 equ(V) — expp({X e M, | X| <2¢}) CM;
this map is defined since M is complete. It is easy to see that
¢ expp({X e M, : | X| < 2e}) — exp,(V)
is a diffeomorphism with inverse f. Now let
W =exp,({Y € Nyt IY |l < e}) C N,
and for each p € M, let
W, = expp({X eM,: |X|<e)CT M.
We claim that
o~ my= | W
ped='(q)
In fact, given p’ € $~1(W). let y be the geodesic in W of length d(¢(p").q)
with y(0) = ¢(p’) and y(1) = ¢. Let ¢ be the geodesic with ¢(0) = p' and
P+c'(0) = y'(0). Then ¢ is defined on [0. 1]. since M is complete. and gpec =y
on [0.1]. In particular. p = c(1) € »'(g). and it is easy to see that all points
of ¢([0.1]) are in W,. Thus p’ = c(0) € Wp.

To complete the proof we just have to show that the W, are disjoint. Now if

W, N Wy, # 0. then we clearly have

p2 € oxp,, (1X € Mp, 2 | Xl < 2e}).

But we know that ¢ is a diffeomorphism on this set. Since d(p1) = d(p2). 1t
follows that p; = p2. %
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Proposition 11 is but a special case of more general results involving manifolds
whose sectional curvatures satisfy certain inequalities. These results all follow
from one theorem, but the mere statement of this theorem tends to overwhelm
one with its complexity. So we will approach it rather gingerly by first proving
special cases, all of which represent important steps in the historical evolution
of the final result.

The first theorem of this type depends on a surprisingly simple proposition
about second order differential equations. Remember that a solution ¢ of such
an equation is determined by ¢(a) and ¢’(a). Consequently, a non-zero solu-
tion ¢ must have 1solated zeros.

15. THEOREM (THE STURM COMPARISON THEOREM). Let f and 4
be two continuous functions satisfying f(z) < h(¢) for all ¢ in an interval /, and
let ¢ and n be two functions satisfying the differential equations

1) 9"+ fp=0
(2) ' +hnp=0

on I. Assume that ¢ is not the zero function, andlet a,b € I be two consecutive

zeros of ¢.

(I) The function n must have a zero in (a, b), unless f = h everywhere on [a, b]
and 7 is a constant multiple of ¢ on [a, b].

(2) Suppose that we have n(a) = 0, and also 7'(¢) = ¢'(a) > 0 [which can
be achieved by choosing a suitable multiple of 7, and changing ¢ to —¢, if
necessary). If 7 is the smallest zero of 7 in (a, b], then

o(t) = n(t) fora<t<rt,

and equality holds for some 7 only if f = h on [a,1].

S e

a 1\ /
n
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PROOF. Equations (1) and (2) give
3) ¢"n—n"¢=(h— f)¢n.

Suppose that n were nowhere zero on (a,b). It is easy to see that there is no
loss of generality in assuming that

4) n,¢ >0 on (a,b).
Then (3) gives
0<¢"n—n"9,

SO

b b
G) 0< / o'n—n'¢p = / (¢'n—n'¢)
= ¢'(b)n(b) — ¢'(a)n(a), since ¢p(a) = ¢(b) = 0.

On the other hand, (4) clearly implies that

) ¢'(a) >0, ¢'(b) <0
n(a),n(b) >0

} = ¢'(b)n(b) - ¢'(a)n(a) < 0.

If / # h, then we actually have strict inequality in (5), which contradicts the
second part of (6). This contradiction shows that n must have a zero on (a, b).

If f =h on [a,b], then equality holds in (5), and the first part of (6) implies
that we must have 1(a) = n(b) = 0. Since ¢ and 7 then satisty the same second
order equation on [a, b] and ¢(a) = n(a), the solution n must be a constant
multiple of ¢ on [a, b].

Now suppose that n(a) = 0 and 7'(a) = ¢'(a) > 0. If 7 is the smallest zero
of nin (a,b), then ¢,n > 0 on (4, 1), so (3) gives

0<¢"n—n"¢g=@n—n¢)  onl(a,r1).

This implies that
0<¢'n—n'¢  on(a1),

since [¢'n — n'¢](a) = 0. Using positivity of 7 on (a, ) again, this gives

(7) 0< (%) on (a,1).



228 Chapter 8

But
t (¢
im 29 im 29 b D Hopial’s Rule
t—a n([) t—a n’([) ‘
=1, by assumption.
Therefore
? > on (a,1),
n

which is the desired inequality. The proof of the final statement is left to the
rcader.

Remark I Since ¢'(a) and 1'(a) exist, and n'(a) # 0, we really used only a trivial
case of 1’ Hopital’s Rule; we could have simply written

(1) — pla)
i o) . o) —¢la) _ . t—a
im — = lim ————— = lim ————
t=an(r) toant)—nla) 1=a () —nla)
I —a
_ ¢ _ |
n'a)

Remark 2: In our applications, we will be interested only in the case where
n(a) = 0. The reasoning for part (1) is then unnecessary, because part (2) shows
that ¢ > 7 on any interval (a, T) on which ¢,n > 0; this clearly implies that 7
vanishes somewhere on (a,b]. Moreover, if b were the first zero of 7, then
we would have ¢(b) = n(b) = 0, so we would have f = & on [a,b], by the
final statement in part (2). Nevertheless, part (1) is still of interest; here is one
consequence:

16. COROLLARY. If ¢; and ¢, are two linearly independent solutions of the
equation

"+ fo =0,

then the zeros of @, alternate with the zeros of @,.

A particularly simply instance of Corollary 16 is provided by the equation
Vv’ 4 1/r? = 0. where r > 0 is a constant. The solutions of this equation can all
be written in the form y(t) = bsin(a +1/r). The zeros are always 7r apart. so
the zeros of two linearly independent solutions alternate with each other. This
simple equation serves as a standard with which we can compare the Jacobi
equation.
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17. THEOREM (BONNET). Let M be a surface, and y: [0, L] > M a geo-
desic parameterized by arclength. Let ¥ > 0 be a constant.

() If K(p) < 1/r* for all p =y (1), and y has length L < 77, then y contains
no conjugate points.

() If K(p) > 1/r* for all p = y(1), and y has length L > 7, then there is a
point T € (0, L) conjugate to 0, and therefore y 1s not of minimal length.

(3) If M is connected and complete, and K(p) > 1/r*for all p € M, then M
is actually compact, with diameter < mr.

PROOF. (1) Let Y be a unit vector field along y with (V,Y) = 0, where V 1S
the unit vector field V = dy/dt. The Jacobi equation for the vector field ¢Y 1s
(compare page 211)

¢" (1) + K(y(1)) - (1) = 0.
The simpler equation

" l
n (’)+7§'7(’) =0

has the solution n(z) = sinz/r. Since K(y(1)) < 1/r? by hypothesis, the Sturm
comparison theorem shows that the first equation cannot have a solution ¢
vanishing at 0 and at L < 7, since n has no zero n (0, L).

(2) Let Y be as in part (1), and consider a vector field n¥. The Jacobi equation
for nY 1s

n"() + K(y(@)) - n(t) =0,

and the simpler equation
" l
¢ (1) + 59(1) =0
r

has the solution ¢(z) = sinz/r which vanishes at 0 and at 7r. Since 1/r? <
K(y(1)), the comparison theorem shows that any Jacobi field n¥ must have a
zero on the open interval (0,777) C (0, L). So if we choose any non-zero Jacobi
field nY along y with n(0) = 0. then this Jacobi field will also vanish at some
7 € (0, L); thus t 1s conjugate to 0.

(3) Any two points p,q € M can be joined by a geodesic y of minimal length
(Theorem 1.9-18). Then the length of y must be < 7r, by part (2). So M
is bounded, with diameter < nr. Since closed bounded sets In a complete
manifold are compact, it follows that M itself is compact. <
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I do not know whether Sturm ever saw this beautiful application of his the-
orem (he died in 1855, the same year that Bonnet published the result), but in
his lectures he is supposed to have referred to it as the theorem “whose name I
have the honor to bear”.

Bonnet’s Theorem fairly cries out to be generalized to higher dimensional
manifolds, but a direct approach leads us into difficulties. The single normal
vector field Y along y has to be replaced by n — 1 vector fields Y1,..., Ya_1.
Even if we choose Yi,..., Ya_1 to be parallel, everywhere orthonormal vector
fields along y, the Jacobi equation for }_; ¢;¥; reads

Yo" OYilt) + Y i) - R0, V)V (1) =0,

which is equivalent to a spstem of ordinary differential equations

;" (1) + 3 () (RYi(1), V)V (1), Y;(D)) =0,

and these equations do not even involve the sectional curvature directly. It 1s
clear that we will have to approach this problem with a little more finesse.
One way to extend the results of Bonnet’s theorem to higher dimensions 13
by an artful use of Synge’s inequality (Corollary 1-7). Suppose first that K(P) >
1/r? for all 2-dimensional P C M, ), and that y: [0, L] — M has length L >
nr. Let Y be a parallel vector field along y which is everywhere perpendicular to
the parallel vector field V = dy/dt, and let S C M be a surface containing y
whose tangent space at cach point y(t) is spanned by V(1) and Y(r). Then

\% Y

Synge’s inequality shows that the Gaussian curvature of § at y (1) is the same
as the sectional curvature of M for the plane spanned by V(1) and Y (r). So
the Gaussian curvature of S at y(¢) is > 1/r%. Bonnet’s theorem then shows
that there is a point T € (0, L) conjugate to 0 along y. Of course, this means
that 7 is a conjugate value for 0 in the supface S. To conclude that there is a
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conjugate value in M itself, we must use the following indirect line of reasoning:
Since T € (0, L) is a conjugate value for 0 in S, the geodesic y 1s nol a local
minimum for length in S. Therefore it is certainly not a local minimum for
length in M. Therefore, some o € (0, L] must be a conjugate value for 0 in M.
Applying this result to y([0, L] for mr < L’ < L, we see that actually some
o € (0,L'] C (0, L) is conjugate to 0 along y in M.

In the previous paragraph, we had to choose the surface S so as not to
decrease K, and then we had to show that the choice of S made no difference
for the final conclusion. If we instead try to analyze the case where K(P) < 1/r?
and y has length L < mr, then we certainly don’t care whether K is decreased,
but our choice of S will be much more dependent on the desired conclusion.
Suppose, then, that y contained a conjugate point T € (0, L]. We might as well
assumne that L itself is conjugate to 0 along y, since we can always work with
v 1[0, 7]; for the same reason, we might as well assume that L is the smallest value
conjugate to 0. Then there is a variation « of y through geodesics in M, whose
variation vector field W(z) = da/du(0,t) vanishes only at 0 and L. Consider
the surface S formed by the image of @. Synge’s inequality shows that the

\S

Gaussian curvature of S is < l/r2 along y, and then Bonnet’s theorem shows
that ¥ cannot contain a conjugate point on S. But y clearly does contain a
conjugate point on S, because the &(u) are also geodesics on S, so the variation
vector field of @ is also a Jacobi field along y on S. We seem to have obtained
a contradiction, and thereby shown that y cannot contain a conjugate point
1 € (0, L). The trouble with this argument is that only an excess of generosity
could lead one to call S a surface, as the map « is definitely not an immersion
at (0,0) or (0, L). The idea of the proof is basically sound, however, and leads
to the desired result if one reasons a little more carefully (Problem 2).

We have not bothered to bestow upon this reasoning the dignity which might
accrue to it as the official proof of a theorem, because the results, and even
better ones, can be obtained in a more systematic way. In fact, we shall present
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two new methods of generalizing Bonnet’s theorem. These two methods dif-
fer significantly in their basic philosophy, but they both depend on a certain
construction, similar to one used above, which is best set forth in a separate
Lemma. This very general sounding Lemma involves geodesics in two differ-
ent manifolds, although in applications one of the two is always taken to be a
sphere. (In the statement and proof of the Lemma, we will not use subscripts to
distinguish the norms || || and covariant derivatives D /dt in the two manifolds,
since it should always be clear which manifold we are working in.)

18. LEMMA. Let M, and M, be two manifolds of the same dimension #,
and let y;: [a,b] — M; be arclength parameterized geodesics in these two
manifolds. Then there is a vector space isomorphism

®: {piecewise C™ vector fields along y,}

— {piecewise C*® vector fields along y,}

such that for all ¢ € [, b] we have

Dd(X)
dt

(0 If Dd—/tY 1s continuous at Z, then
2) (X)), n' (1) = (2(X) (1), »y' (1)),
3) XN = 12X,
} B ’ DO(X)

dr
it being understood that the last equation refers to left and right hand limits at
discontinuity points.

1S continuous at ¢/,

(
(

4 DX(I
()lw )

o]

PROOF. Pick some fixed 10 € [a,b]. Let ¢: (M1)y () = (M2)y,,) be any

norm preserving isomorphism with ¢(y,’(t9)) = y,'(tp). Then we can define
G (Mr)y, (1) = (M2)y,(0)

by parallel translating a vector in (My)y, () along y; to ¥, (%), applying ¢, and
then parallel translating along y, to (M2)y, (). We then define ®(X) by

O (X)(1) = ¢ (X(1)).

We can also describe ®(X) as follows. Let Y1,..., Y, be parallel, everywhere
orthonormal vector fields along y; with Y;(19) = y,' (%), and let Z,, ..., Z, be
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parallel, everywhere orthonormal vector fields along y, with Z(z) = vy (to).

If
P OEDINALIAG

i=1
for certain functions f;: [a,b] — R, then

QX)) =Y fit)Zi(1).
i=1

This shows that ®(X) is C* everywhere that X is, and that
(X(1), ' (1) = /i) = (RX)W), 2 (1))

n

X012 = [HOF = 12O

i=1
DX _" s | PRX)
“d,—(’) =Y A0 —]l -

®
. o

i=1

In our first generalization of Bonnet’s Theorem, we will consider the index
of a geodesic, instead of the number of conjugate points it contains. Recall
(page 223) that the index of y is > 0 if and only if there is some W & Q, with
E (W, W) <0.

19. THEOREM. Let M; and M, be two manifolds of the same dimension #,
and let y;: [a,b] — M; be geodesics parameterized by arclength. For each
t € [a, b], suppose that for all 2-dimensional P; C (Mi)y, (), the curvatures K;
satisfy
Ki(P)) < Ky (Py).
Then we have
index y; < index ;.

In particular, if E, (W), W) <0 for some Wy € 2, then also £ (W5, Wh) < 0
for some W, € §2,.

PROOF. Let W be a piecewise C* vector field on y;, and let @ be the map n
Lemma 18. The second variation formula shows that

b
1) E(W.W)= —f (ROW(), V)V (1), W) di

b D2W N DW
_/a <W(z), 3 (t)> dt—;<W(t,-),A,,7t—>.
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Now we also have

d D*W
d’<W(1) (1)> <——(1) (l)> <W(’)’W(’)>'

Integrating this equation between #;_; and ¢ for each 7, and adding the results,
we obtain

- DW bipw  Dw b D'w
_;<W(zi),m—d—,i>=/a <7(z),7(z)> ar+ | <W(z) (,)>

So equation (1) can be written

D
E (W, W)=/ {<——LK(1), (1)> (R(W(l),V(l))V(l),W(l))} di

From the properties of the map @, and the hypotheses on K, we see that
Eu(W, W) =2 E.(Q(W), P(W)).

So, if V C Q,, is a subspace on which E,, is negative definite, then ®(V) C €,
is a subspace of the same dimension on which E,, is again negative definite.
Thus the index of y, is certainly at least as large as the index of y,. <

20. COROLLARY (THE MORSE-SCHOENBERG COMPARISON
THEOREM). Let M be a Riemannian manifold of dimension n, and let
y:[0,L] — M be a geodesic parameterized by arclength. Let r > 0 be a
constant.

(1) If K(P) < 1/r*forall P C M, (1), and y haslength L < mr, then the index
of ¥ i1s 0, and y contains no conjugate point. [Note that Proposition 11 is a
special case.]

(2) If K(P) = 1/r% for all P C My, and y has length L > mr. then there is
a point t € (0. L) conjugate to 0. and y 1s not of minimal length.

PROOF. (1) We apply the Theorem with M; = M and M, = n-sphere S"(r)
of radius r. choosing y; to be y, and y,: [0, L] — S"(r) to be anv geodesic
parameterized by arclength. We find that

index y < index y;.

Now the index of y, is certainly zero, since y, contains no conjugate points,
and Proposition 9 applies (all we reallv need is the fact that E. (W, W) = 0
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for W € Q,,, which follows from Theorem 8). Consequently, index y = 0.
Theorem 6 implies that no number t € (0, L) is conjugate to 0 along y. We
can also conclude that no number t € (0, L] is conjugate to 0 along y, by
extending ¥ to y: [0,L'] - M with L < L' < 7r, and applying the result
to y.
(2) We apply the Theorem with M = S"(r) and M = M, this time choos-
ing y, to be y. We obtain

index ¥, <indexy.
But the index of y; is at least 1, since y; contains a conjugate point, and The-
orem 6 applies. Consequently, index y > 1. This shows that y does contain a
conjugate point T € (0, L] (Proposition 9 or Theorem 8 again). Applying this
result to ¥|[0, L], with mr < L’ < L, we see that y contains a conjugate value
T €(0,L). &

For the case where K > 1/r%, we can obtain a stronger result, involving the
Ricci tensor Ric, introduced in Chapter 7.G.

91. THEOREM (MYERS). Let M be an n-dimensional Riemannian mani-
fold, and y: [0, L] = M a geodesic parameterized by arclength. Let 7 >0 be
a constant, and suppose that

—1
— Ric(y'(1),y' (1)) = nr—z for all ¢,

and that y has length L > 7r. Then there 1s a point t € (0, L) conjugate to 0,
and y is not of minimal length.

PROOF. Choose parallel, everywhere orthonormal vector fields Yi,...,Yn
along y with ¥y = V. Let Wi(1) = (sinmt/L)Y;(t). Then

0 dtz

L\ [n?
=f0 (smf) [Lz (RCY (1), Vi (D) Y (0), Y(r))]

Summing for i = 2....,n, we obtain

n L B
ZE**(W,-.W,-):f (smf) [("—Lli + Rietri@). 1| dr

By hypothesis, the term in brackets is < 0. so some E (Wi, Wi) is < 0. Thus y
1s not of minimal length and there is T € (0, L) conjugate to 0 (same reasoning
as in Corollary 20). <

L DZW,
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Remark: If y: [0, L] — S"(r) is a geodesic parameterized by arclength, and Y
is any parallel vector field along y which is perpendicular to y, then W(r) =
(sinmt/L)Y (1) satisfies Ey (W, W) < 0. The vector fields W; in the above proof
come from such vector fields W by means of the map ® of Lemma 18. This
may make the proof of Myers’ theorem somewhat less mysterious.

The next result reproduces the reasoning in the third part of Bonnet’s the-
orem, together with an observation of interest only in the higher dimensional
case.

22. COROLLARY. Let M be a complete connected n-dimensional manifold
with

—1
—Ric(X, X)> =~

for all unit vectors X, where r > 0 is a constant. (This hypothesis holds, in par-

ticular, if K(P) > 1/r? for all plane sections P.) Then M is actually compact,
with diameter < . Moreover, the fundamental group of M is finite,

PROOF. The proof of the first part is exactly the same as in Bonnet’s the-
orem. To prove that the fundamental group of M is finite, we simply con-

sider the universal covering space 7: M — M of the Riemannian manifold
(M, {,)). Clearly (M,n*( , )) is complete, and its Ricci curvature also satis-
fies — Ric(X, X) > (n—1)/r?2 for all unit vectors X. Therefore M is compact. <

Although Theorem 19 certainly generalizes Bonnet’s theorem very nicely,
we do lose some information in this approach. Roughly speaking, we have
generalized to higher dimensions only the first part of the Sturm comparison
theorem, telling us that our Jacobi field (W) must vanish somewhere on (a, b);
we have not generalized the second part by comparing [|[®(W)|| with |W| up
to the first zero of ®(W). Such information 1s provided by

23. THEOREM (THE RAUCH COMPARISON THEOREM). Let M,
and M; be two manifolds of the same dimension n, and let y;: [a,b] = M; be
geodesics parameterized by arclength such that

(I) no number t € (a,b] 1s a conjugate value of 0 along y; in M, or along
¥, in Ms.

Let W; be Jacobi fields along y; such that
(2) Wia) =0,
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o 7] -

ool

(4) W; is perpendicular to y;.

For all ¢ € [a, b], suppose that for all 2-dimensional P; C (M;)y, (), the curva-
tures K; satisfy

(5) Ki(P)) < Ky(Py).
Then
W) = WAl forallt € [a,b].

PROOF. If W, = 0, the theorem is trivial. If W; is not the 0 vector field, then
Ws(1) # 0 for all t € (a,b), since ¥, has no conjugate points. Naturally, Wi (1)
is also non-zero for all # € (a,b). It obviously suffices to prove that

0 L) _
t—0 (W3, Wz)([)

d (W, Wi)(1)
(2) d[m >0 fort e (a,b).

o,

Wa, DW2>(I)

DWl D*W,

{2 (2
2

<DW2,DW2><> (e 2N

by L’Hépital’s Rule
=1, by hypothesis (3).

To prove (1) we note that

§

lim (W, W) ()
10 (Wa, Wa) (1)

=lim ——
t—0

by L'Hopital’s Rule

(Note that the first use of L’'Hopital’s Rule is a genuine one, necessitated by
the fact that we need to look at (W;, W;), rather than |W;|. The second use,

however, represents the same trivial case which occurs in the Sturm comparison
theorem.)

Equation (2) is equivalent to

DWW,
; > (W, W) - { W,

DW-
(W, Wa) '<W1, 2>-

dt
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so for each fg € (a, b) it suffices to show that

9/ <W DWi\ () s 2w, P2 (to)
(29 1,7(0)_0 > 0),

where ¢ = [[W) (o) ||/ W2(10)]]-

But, since the W; arc Jacobi fields, and W;(a) = 0, the second variation formula
shows that

<W,-, %> (to) = Exs (Wi, W),
where I/T/, = W;l[a, to}-
Therefore, we just have to prove that
(2") E(Wi, W1) = 2 Eu (Wa, Wa).

Consider the map @ of Lemma 18, constructed for the geodesics y;[0, o).
Since W;(fy) are both non-zero, and orthogonal to y;, we can obviously define ®
so that

3) (W) (to) = Wato).
In the first part of the proof of Theorem 19 we showed that
) Ei(Wi, Wh) 2 Eqa(@(Wh), (W)

On the other hand, we have ﬁ/z(a) = @(Wl)(a) = 0 by hypothesis (2) and

the norm preserving property of @, while cﬁ/z(to) = @(Wl)(to) by (3). So
Corollary 10 yields

(5) Ep(®(W)), ®(W)) = E,ulcWa, cWh)
= ('ZE**(WL WZ)

Equations (4) and (3) togethcr give the required cquation (2”). «

Unless vou have become totally lost in these generalitics, it should be clear
that Theorem 23 can also be used to prove the results of Corollary 20. Rauch
actually used his comparison theorcm to prove a much more striking result.
concerning “8-pinched” manifolds. These arc Ricmannian manifolds satisfyving

A < K(P) < A
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for all 2-dimensional subspaces P C M, at all points p € M; here 4 is a
constant, which we can assume is 1 if we are willing to multiply the metric ( , )
by a constant. Rauch proved that if M is complete and simply-connected,
and §-pinched for a certain § ~ .74, then M is homeomorphic to a sphere.
Improvements by Berger and Klingenberg have established the

SPHERE THEOREM. Let M be a complete, simply-connected Rie-
mannian manifold of dimension » whose sectional curvatures K(P)
satisty

< K(P) <1

for some constant § > 1/4. Then M is homeomorphic to S”.

It is known that for even n this result breaks down if we allow § = 1/4. We
will not go into the rather detailed proofs of this and related recent results,
which together would make up a good sized monograph. A large selection is
coherently presented in Gromoll, Klingenberg, Meyer {1}, and references to a
few more will be found in the bibliography.

One of the most striking recent results completely clarifies the requirement in
many of our theorems that the sectional curvatures should not only be positive,
but also bounded away from 0. Naturally, this latter condition can fail only
when the manifold M is not compact; but in this case the structure of M is
completely determined:

THEOREM (GROMOLL-MEYER). If M is a connected, com-
plete, non-compact n-dimensional manifold with all sectional curva-
tures positive, then M is diffeomorphic to R".

Although we must omit the proofs of these theorems, we can prove an older
and easier, but still very striking, result about the topology of manifolds whose
sectional curvatures are all positive. We begin with a lemma that will also be
used later on.

24. LEMMA (SYNGE). Let M be an orientable even-dimensional Riemann-
jan manifold with all sectional curvatures positive. Let y: [¢,b] — M be a
geodesic which is closed [that is, y(a) = y(b) and y'(a) = y'(b)]. Then there
is a variation a: (—&, &) x [@,b] — M of y such that all curves &(u) are closed
curves with length @(u) < length y for u # 0.
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PROOF. Let V = y'(0)* C M, be the (n — 1)-dimensional subspace of all
X, € M, which are perpendicular to y’(0). Define ¢: V — 'V to be the
result of parallel translation around y. Then ¢ is a norm preserving linear
transformation, with matrix A satisfying AA4' = 1 (where A" is the transpose
of A), so detg = +1. Moreover, since M is orientable, it is easy to see that
¢:V — 'V must be orientation preserving, so that det¢ = +1. Since the
dimension of "V is odd, the characteristic polynomial of ¢ has at least one real
root, so ¢ has a real eigenvalue, which clearly must be 1. Moreover, the
complex eigenvalues occur in conjugate pairs A, A with AL > 0. The number of
real eigenvalues 1 is therefore odd, and their product is positive, so at least one
must be +1. Consequently, ¢ leaves some vector field fixed: ¢(Xp) = Xp for
some X, € V. This means that parallel translation of X}, around y produces a
vector field X along y with X (a) = X (b).

yl(a) = y(b)

Let a: (—¢,€) x [a,b] — M be a variation of y with variation vector field
da/0u(0,1) = X(t). Since X(a) = X(b), we can clearly choose a so that
a(u,a) = a(u,b) for all u, which means that each @(u) is a closed curve. Ap-
plying the second variation formula, and remembering that DX /di = 0, we
find that

b
Eue(X,X) = — / X (1), REX(@), VOV (@) di

<0, by the hypothesis on sectional curvatures.

This means that for sufficiently small # # 0, the curves @(u) have smaller energy
than y. &

With this Lemma we can easily prove the following result, provided that we
accept an “intuitively obvious” fact, whose proof will come soon afterwards. We
will temporarily use the term “closed path” for a continuous path ¢: [0,1] - M
with ¢(0) = ¢(1); the term “smooth closed path” will be used for a smooth path
¢: 0,1} — M with ¢(0) = ¢(1) and ¢’(0) = ¢'(1).
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25. THEOREM (SYNGE). Let M be a compact, connected, orientable, even-
dimensional Riemannian manifold with all sectional curvatures positive. Then
M is simply-connected.

PROOF. Pick a point p € M and suppose that 7;(M, p) # 0. Let ¢: [0,1] —
M be a closed path with ¢(0) = ¢(1) = p, representing a non-zero element of
m(M, p). We say that a closed path y is in the same free homotopy class as ¢
if ¢ and y are homotopic, considered simply as maps from S! into M.

CLAIM. There 1s a closed curve y: [0,1] — M in the same free
homotopy class as ¢ which has smaller length than any other closed
curve 1n this free homotopy class.

If we accept this claim, then it i1s clear that ¥ must be a smooth closed geodesic.
For every sufficiently small segment of y must coincide with a geodesic, since
geodesics are the smallest paths between sufficiently close points.

The proof is now immediate, for we obtain a contradiction by applying
Synge’s Lemma to y. <

Before we proceed with the proof of the Claim, we add a few remarks. The
hypothesis that M is compact can be replaced by the hypothesis that M 1s com-
plete and has sectional curvatures bounded away from 0, by Corollary 22. In
fact, the Theorem of Gromoll-Meyer (page 239) shows that compactness can
be replaced by completeness alone. The hypothesis that M is orientable 1s clearly
necessary, as shown by the projective spaces P, with n even. However, one can
easily show (Problem 3) that if M is not orientable, then (M) = Z3. The ne-
cessity of assuming that M is even-dimensional is shown by the projective spaces Py
with 7 odd. Without this assumption we must content ourselves with showing
(Problem 3) that if M is a compact, connected odd-dimensional manifold with
all sectional curvatures positive, then M is orientable.

We will now give two different proofs of the Claim. The first of these, the
official proof, uses a few facts about covering spaces. and is generally considered
to be quite clegant. The second proof is a more typical example of the sort of
“direct methods™ which one can sometimes use in order to establish that solu-
tions to calculus of variation problems actually exist, instead of merely finding
conditions on the presumed solution; it is similar to arguments first used by
Hilbert for that sort of question (and similar arguments could be used to give
an alternative demonstration that a minimal geodesic exists between any two
points in a complete manifold). That, I feel, is one good reason for including it;
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it also turns out that this proof is no harder than the first proof if the details are
handled intelligently.

26. PROPOSITION. If (M.{ ,)) is a non-simply-connected compact Rie-
mannian manifold, then every free homotopy class contains a curve of minimum
length.

FIRST PROOF. Let M be the universal covering space of M and 7 : M- M
the projection; the Complete Riemannian metric 7*( , ) on M gives an ordi-
nary metric d on M. Recall that a homeomorphism ¢ : M — M withmogp =7
is called a “covering transformation” or “deck transformation” of M. The set D
of all deck transformations is in one-one correspondence with (M, p) for any
p € M, and d is invariant under the action of D.

Given a closed path ¢: [0,1] = M, let ¢: [0,1] — M be a lifting, starting at
some point q € 77 (0)). Then

¢(1) =68(q) = 8(¢(0)) for a unique § € D.

To see how this § depends on the choice of ¢ € 7 ~1(¢(0)), we note that any
other point g € 7 “1(¢(0)) 1s ¢ (g) for some ¢ € D, and that the hifting ¢ of ¢
starting at ¢(q) is just ¢ o ¢. This means that

i) = (E(1) = d(8(q) =po8od™ (d(q) = p o8 0d™ (E(0)).

Thus:

(1) The conjugacy class {$p3¢~"' : ¢ € D} does not depend on the choice of
g€ (c(0).

We also claim:

(2) If ¢;: [0,1] = M is freely homotopic to ¢, then it determines the same
conjugacy class.

For, we have a map H: I x I — M with
H(:.0) =c(1)

H(t 1) =)
H(,s) = H(l.s).

Let H~bc a lifting of H. and define ¢(r) = ﬁ(l, 0) and ¢ (1) = H(1,1). We
have H(1,s) = §(s)(H(0.5)) for some §(s), and all §(s) must be the same 8. by
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continuity. Thus both ¢ and ¢, determine the same conjugacy class {pSp~ " :
¢ € D}.

Finally, we claim:

3) If »,v2: [0,1] — M are paths with y;(1) = §(y;(0)), then 7 o y; 1s freely
homotopic to 7 © ;.

To prove this, we let y: [0,1] — M be a path from y,(0) to y,(0). Then § o ¥
is a path frgm 71 (1) to y5(1). So we can define a continuous map H : ([0, 1] x
[0,1]) = M as follows:

o H =y, here

H =y here —> «— H =380y here

N H = ¥ here

Since M is simply-connected, we can extend this to a map H: [0,1] x [0,1] —
M. Then 7 o H: [0,1] x [0,1] — M satisfies

7o H,s) =mo H(1,s) for all s € [0,1].

So 7 oy, 1s freely homotopic to 7 o y,.
Now let {¢p8¢~! : ¢ € D} be the conjugacy class corresponding to our given
free homotopy class, and define A5 M — M by

hs(q) = inf{d(q,$3¢ ' (q)) 1 ¢ € D};

this is well-defined, since it clearly depends only on the conjugacy class of §.
Notice that for each g there is some ¢ (depending on ¢) such that

hs(q) = d(q, ¢3¢~ (q@));

this follows from the fact that D acts discretely. Itis also clear that /15 1s mv. ariant
under the action of D. It follows that /15 takes on its minimum on M: for there
is a compact set K C M with 7(K) = M. and consequently D(K) = M, which
means that the minimum of /5 on K is also the minimum on all of M. Say
that /15 takes on its minimum at ¢go € M, and that

hs(qo) = d(go. Podpo" (q0))-
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Let ¥ be a minimal geodesic in M from qo to ¢odo~ (o), with length y =
hs(qo). Then also
length 7 o y = hs(qo).

The curve 7 o y is in the given free homotopy class, by (3). If ¢ is any other
curve in the free homotopy class, and ¢ is any lifting, starting at some point ¢,
then &(1) is w8y ~!(g) for some ¥ € D, and consequently

length ¢ = length & > d(q, ¥8¥ " (¢))
> hs(q) = hs(qo) = length o y.

SECOND PROOEF. Since M is compact, there is a finite open cover Uy, ..., U,
of M by geodesically convex sets. By the Lebesgue covering lemma, there is
¢ > 0 such that any set 4 with diameter < ¢ lies entirely in some Uj,.

A closed curve ¢ in M will be called special if there 1s a sequence po, p1,. ..,
PN = po of points in M such that

(i) for each j, the points p;_;, p; both lie in some U,
(1) ¢ is the union of minimal geodesics ¢; joining p;j_; to p;.

Given an arbitrary closed curve ¢: [0,1] — M, there is always a special closed
curve ¢ in the same free homotopy class as ¢, with length /(¢) < /(c¢). To prove
this, we consider the cover {¢~!(Uy)} of [0, 1]. The Lebesgue covering lemma
implies the existence of a sequence 0 = fp < --- < fy = 1 such that each
[ti—1,¢;] 1s contained in some ¢~Y(U,); this means that the restriction c|ltj-1, ]
1s contained in Uy. We can then let ¢ be the union of the minimal geodesics

in Uy joining pj_y = ¢(tj—) to p; = c(t;). Itis clear that /(¢) < /(c). Since
each Uy is geodesically convex, it is also clear that ¢ 1s homotopic to c.

Now consider a particular free homotopy class of closed curves. The set
of lengths of all closed curves in this free homotopy class has a greatest lower
bound / > 0. Our aim is to find a closed curve ¢ in this free homotopy class
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with length /(c) = /. We can certainly find a sequence ¢® of curves in this free
homotopy class with

1) (D) — 1
we might as well assume that we also have
) 1(cP)y <2l foralli.

Finally, we can clearly assume that
(3) each ¢ is special.

Now in the definition of a special closed curve, no bound was placed on
the number N of division points involved. However, if the N for any of our
curves ¢ is sufficiently large, then we can always find a new ¢, in the same
homotopy class, and with no larger length, but with a smaller N. To see why
this is so, consider the [N /2] curves

V1

v = ¢@ from po to pa

Yy = ¢@ from p; to py

If any one of these curves has length < ¢, then it lies entirely in some Uy, so we
can replace it by a single minimal geodesic, thereby reducing N. Clearly:

if [(c) < [%] ¢, then some y, has length < ¢, so N can be reduced.
Using (2), we find:

if 21 < [%] g, then some y, has length < €, so N can be reduced.
Phrasing this slightly differently, we have:

if N > 2(2?1 + 1). then N can be reduced.

Since this is true for all curves ¢, we can assume that all curves ¢ have
N < 2(2l/e + 1). Since extra points can always be stuck in, we can actually
assume that

) 2!
4 each ¢ is special with N = Ny = |:2 (; + 1)] )
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The remainder of the proof is now very simple. Let

Po(i), Pl(i), S PNo(i) = Po(i)

be the points determining ¢*). Since M is compact, we may assume, by taking
subsequences, that for each j = 0,..., Ny we have

lim pj(i) =pjeM.
=0

Joining the pairs pj_y, p; by minimal geodesics, we obtain a closed curve c.
Clearly

No No
1©) =Y d(pjmr, py) = Jim 3 d(pia?, pi®)
j=1 Jj=1

N 0y —
= l_l_1)ngol(c )=1.

To prove that ¢ is in the same homotopy class as the ¢, we will carry out the
construction a wee bit more carefully. We assume first that the original choice
of the Uy was made so that there are geodesically convex sets Wy D U,. Now
consider a fixed j. For each i, the points pj_l(i),pj(i) both lie in some U,.
Since there are only finitely many Uy, one of them, Uyjy say, must contain
both p;_1') and p;\¥) for infinitely many i. By taking a subsequence, we can
assume that all p;_;') and p;’ are in Uyj). There are only finitely many j to
consider, so by taking subsequences we may assume that

all pj ) and p;'¥) are in some Us(j)s Jj=1,...,Nop.
This clearly implies that
pi—1 and pj are in Uyjy C Wy J=1... Np.

Using geodesic convexity of the Wy, it 1s easv to see that ¢ is homotopic to
any ¢ o

[We now reinstate the normal terminology, and use “closed curves™ for curves
¢: [0.1] = M with ¢(0) = ¢(1) and ¢'(0) = ¢'(1).]

We will end this chapter by considering a natural problem of deceptively
simple appearance, which to this dav remains unsolved. This problem will lead
us to the study of “cut points™, which are related to, but still quite different from.
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the conjugate points which we have been considering all along. We have seen
(Corollary 22) that a complete connected manifold with all sectional curvatures
> 1/r? has diameter < mr. It is natural to assume that in a similar way, a
complete manifold with small sectional curvatures should have large diameter—
if all K(P) < 1/r?, then M should have diameter > nr. A counterexample to
this conjecture is provided by projective space Py, with constant curvature = 1,
and diameter only m/2. And clearly, the larger the fundamental group, the
smaller we might expect the diameter to be. An extreme case is represented by
the torus, with infinite fundamental group. If we give the torus a flat metric,
then K < 1/r2 for every r > 0; on the other hand, we can also arrange for
the diameter to be as small as we like. With the added hypothesis of simple
connectivity, the conjecture still seems reasonable:

A complete, simply-connected, manifold with all K(P) < 1/r? should
have diameter > mr.

One might expect to construct a proof of this conjecture along the following
lines. We choose two points p,q € M at maximum distance apart, and consider
a minimal geodesic y: [0, L] — M which joins them. If ¥ has length L < 7r,
then we extend y to 7: [0,L'] — M with L < L' < nr, and the extended
geodesic 7 has no conjugate points, since K(P) < 1/r?. Thus y is a local
minimum for length. Since p and ¢ were already at the maximum distance
apart, we might expect a contradiction to emerge from this construction. Of
course, it can’t, because we haven’t used simple connectivity anywhere. The
case of an ellipsoid shows where the problem lies. If y 1sa geodesic joining the

two furthest points p and ¢. and extending somewhat further bevond ¢ to ¢
then y is certainly not the shortest path between p and g'. But it &5 the shortest
path among nearby paths. since y contains no conjugate points. It seems clear
that there is little hope of attacking this problem if we consider only conjugate
points. since they only give us information about the local length minimizing
property of geodesics. and our problem is a global onc.
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The notion of a cut point was made precisely in order to deal with global
minimizing properties of geodesics. For simplicity, we will deal only with the case
of a complete Riemannian manifold (M, ( , )), and we willletd: M x M — R
be the ordinary metric on M determined by the Riemannian metric { , ).
Suppose we have a geodesic y: [0,00) — M starting at a point p = y(0) in M,
and parameterized by arclength. Consider the set

A={>0:d(p,y(1) =1}
={t > 0:y|[0,¢] is a minimal geodesic}.

Itis clear that either A = (0,00) or else A4 is a set of the form (0,4]. If A = (0, 4],
we say that y(a) is the cut point of p along the geodesic y, while if 4 = (0,00),
we say that p has no cut point along y. The cut locus C(p) C M of p is
then defined to be the set of all points which are cut points of p along some
arclength parameterized geodesic starting from p. We also define the cut locus
a(p) of pin M), to be the set of all vectors aX € M), for which X 1s a unit
vector and expaX 1s the cut point of p along the geodesic yx(r) = exptX.
Thus C(p) = exp(a(p)). On the other hand, we define the conjugate locus
of pin M, to be the set of all vectors aX € M, for which X is a unit vector
and a is the first conjugate value of 0 along yy. A particular ray in M, may
contain neither a point of the conjugate locus nor a point of the cut locus. But
if it contains a point aX of the conjugate locus, then by Theorem 6 it must
also contain a point a’X of the cut locus, with @’ < a; briefly expressed, the cut
point comes before or at the first conjugate point.

Notice that if M is compact, then there is certainly a cut point along every
geodesic; but there may not be any conjugate points, as is shown by the case of
a compact surface of everywhere negative curvature.

Suppose now that M is a simply-connected compact Riemannian manifold
with all sectional curvatures K(P) < 1/r%. If there is any point p € M for
which the cut locus C(p) in M, and the conjugate locus in M, intersect, say
at a vector v, € Mp, then the diameter of M, must be > nr. For, on the one
hand, the geodesic  — exp v, is a minimal geodesic from p to ¢ = expvp.
so d(p.q) = |lvpll; and on the other hand, the point g is conjugate to p, so
llvpll > r by Corollary 20.

Notice that the point ¢ need not necessarily be the point furthest from p. For
example, in the figure at the top of the next page, demonstrating the case of the
ellipsoid on page 221, the cut locus of p is the portion of the geodesic from A
top'toC;soqis A or C.
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cut locus

conjugate locus

Unfortunately, it is not known whether such a point p always exists on a
simply-connected compact manifold M. There are only partial results in this
direction, and before giving one of them we will need to develop some basic
properties of cut points.

One simple remark is sufficiently important to list as a separate result. Sup-
pose that y: [0,00) — M is a geodesic and ¢ = y(to) comes strictly before the
first cut point. Then, of course, any other geodesic @ from p to g must have
length w > to. But actually the strict inequality holds:

97. PROPOSITION. Let M be complete, let y: [0,00) — M be a geodesic
parameterized by arclength, and let (1) come strictly before the cut point y(a)
(if there is one). Then any other geodesic w from p = y(0) to ¢ = y(to) has
length @ > fo.

PROOF. Suppose lengthw = to = length y|[0,%]. Choose & > 0 so that
v1[0, 20 + €] is also minimal. Then y[0,7 + €] has the same length as w fol-
lowed by ¥1[t. 20+ €]. But this compound curve has a corner, so it can be made

shorter, and therefore y|[0, 7 + €] is not of minimal length, a contradiction. <
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Notice that this argument does not work if y(#) is the cut point. In fact,

28. PROPOSITION. Let M be complete and let y: [0,00) — M be a geo-
desic parameterized by arclength, with cut point y(a). Then at least one of the
following holds:

(1) The number a is the first conjugate value of 0 along y.

(2) There are at least two minimal geodesics from p = y(0) to ¢ = y(a).

PROOF. Choose a sequence ay > az > a3 > ... with

(N lim a; = a.
=00

Let b; = d(p,y(ai)) < a; and let X; be unit vectors in M, such that
! = exptX; 0<t<b

is a minimal geodesic from p to y(a;). Naturally, all X; are distinct from X =
y'(0). Then we also have

(2) lim b; = lim d(p,y(a;)) =d(p,y(a)) =a.
=00 =00

Equation (2) shows that the vectors b; X; are contained in a compact subset

of M,. Choosing a subsequence if necessary, we can assume that

(3) lim b; X; = aY, Y € M, a umit vector.

=0
Since expaY = lim expb; X; = lim y(a;) = y(a), the geodesic
=00 =0

t— exptY 0<t<a

is a minimal geodesic from p to g. So if X # Y we have situation (2). To
complete thie proof we just have to show that if X = Y, then the nuniber a
st be corjugate to 0.

Now it X =Y, then lun b;X; =aY =aX = lin1 ¢; X. But

=00 =0

H exp(b; Xi) = y(a;) = expla; X).

So every neighborhiood of a X contains infinitely many pairs b; X;. a; X o which
exp las the sae value; and these vectors a; X and b; X; are definitely distinet
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(since the X; are different from X, or, just as conclusively, since bi <a < aj). So
a X must be a critical point of exp. Thus Theorem 7 shows that @ is a conjugate
value of 0 along y. %

Proposition 28 can be used to derive several other facts about cut points. First
of all, we have

29. PROPOSITION. In a complete manifold M, if ¢ is the cut point of p
along a geodesic y from p to g, then p is the cut point of g along the geodesic y
obtained by traversing y in the opposite direction.

PROOF. The hypothesis implies that y is a minimal geodesic from p to ¢. So y
is minimal from ¢ to p; consequently, the cut point of 7, if there is one, occurs
past or at p. Now y must satisfy one of the two alternatives in Proposition 28.

q

P

f(‘“ cut point here

(1) If ¢ is conjugate to p along y, then of course p is conjugate to ¢ along y.
The cut point must then occur before or at p. So it must occur at p.

(2) If there is another minimizing geodesic from ¢ to p, then again p must be
the cut point, since Proposition 27 shows that there cannot be another minimal
geodesic to a point strictly before the cut point. <

Consider now the “sphere bundle” S (M) of M, consisting of all unit tangent
vectors at all points of M this is a submanifold of the tangent bundle TM. Let
R* = R U {00} be the real numbers together with some other set “00”. The
ordering < on R can be extended to R* by defining a < oo for all a € R. We
give R* the order topology (a basis consists of all sets of the form (a.b) C R,
together with all sets of the form (a,00] = (a,00) U {oc}.) We now define a
function p: S(M) — R* by

a >0 if aX is the cut point of p along
wXx) = the geodesic yy (1) = exptX
00 if yy has no cut point.
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30. THEOREM. If M is a complete manifold, then the function p: S(M) —
R* is continuous.

PROOF. Let X1, X2, X3,... be asequence of unit vectors in S(M) converging
to a unit vector X € M, and suppose that a; = u(X;) did not converge to
a = p(X). Since the values of u lie in the compact set {&¢ € R* : o > 0},
we can assume, by choosing a subsequence, that a; converges to some o € R*
with @ # a. Suppose for the moment that @ 1s in R (and consequently all but
finitely many a; are in R). Then a; X; converges to o X. Now it 1s clear from
the definition of p that
d(p,expa; X;) = a;.
So
d(p,expaX) =d(p, lim expa; X;)
1—>00
= lim d(p,expa; X;)
=00
= lim a; = a.
=00

This shows that the geodesic ¢t — exptX is minimizing on [0, «], and conse-
quently @ = pu(X) > «. If @ = oo, it 1s easy to see that we must again have
a > «a. So 1n order to derive a contradiction from the assumption that ¢ # «,
we can assume that ¢ > «. Thus we are assuming that the vectors a; X; ap-
proach the vector @ X with @ < a. This means, in particular, that exp, is not
singular at o X, since a conjugate point cannot come before a cut point.

By choosing a subsequence of our sequence, we can assume that either each
y;(t) = exp(ta; X;) satisfies (1) of Proposition 28, or else that each y; satisfies (2).
If each y; satisfies (1), then exp, is singular at each a; X;. Hence exp, 1s singular

at o X = lim a;X;, a contradiction.
i—00

If each y; satisfies (2), then there are unit vectors ¥; # X; such that exp(a;Y;)
= exp(a; X;). Since exp 1s a diffeomorphism on some open neighborhood U of
o X, these vectors a;Y; must lie outside U. By choosing a subsequence, we can

assume that Y; approach a unit vector Y at p. Clearly Y also lies outside U, so
Y # X. But

d(p.expaY) = lim d(p,expa;Y;)
=00
= lim d(p.expa; X;)
=00
= lim g; = .
=00
This shows that # = exprY is another minimal geodesic from p o exp(aX).

Since exp(eX') comes before the cut point, this cannot occur, according to
Proposition 27. &
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As a particular consequence of Theorem 30, the map u: Mp — R* 1s con-
tinuous for each p € M. Therefore the set

E(p) ={tv:ve Mpisaunit vector and 0 <t < u(v)}

is clearly homeomorphic to an open n-dimensional cell.

31. THEOREM. Let M be complete. Then exp: M, — M maps E(p)
diffeomorphically onto an open subset of M, and M is the disjoint union of
exp E(p) and C(p).

PROOF. Clearly exp, is one-one on E(p), since there are no vectors w € E(p)
with expw conjugate to p. To see that exp is one-one on E(p), consider
wi, ws € E(p), with [w;]l < [lws]l, say. If we had exp w; = expw, = g, then
the geodesic (1) = exprw; would have length from p to ¢ less than or equal
to that of the geodesic y (1) = exp?wy. This contradicts Proposition 27, since g
comes before the cut point of y.

We next claim that exp E(p) and C(p) are disjoint. If not, then there is
we E(p)and u € C~’(p) with expw = expu = q. If |lull < [wl|, we have the
same contradiction as before. If |lw] < |lu]l we stll have a contradiction, for
then ¢ — exptw would be a geodesic from p to g shorter than the geodesic
t — exp tu, which 1s minimal since u € E(p).

Finally, let ¢ be any point of M. Then there is an arclength parameterized
minimal geodesic y (1) = exptv from p = y(0) tog = v(a). Clearly a < u(v).
Soave E(p)orav e C~’(p). o

39. COROLLARY. If M is complete, and p € M, then M is compact if and
only if every geodesic through p has a cut point. In particular, if every geodesic
through M has a conjugate point, then M is compact.

PROOF. We already know that if M is compact, then every geodesic through p
has a cut point. On the other hand, if every such geodesic has a cut point, then
a(p) C Mpis homeomorphic to S"=1 and E(p) VU G(p) is a compact set. So
M =exp(E(p)VY C(p)) is also compact. %

One reason that the cut locus C(p) is so important is that most of the topo-
logical properties of M are concentrated in C(p). For it is easy to see that
there is a deformation retraction of M —{p} into C(p)—we just push points of
exp E(p)—{p} along geodesics through p until they hit C(p). Thus the homo-
topy groups 7 (C(p)) and singular homology Hy (C(p)) groups are isomorphic
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to (M — {p}) and H (M — {p}), respectively; and there are well-known re-
lations between these groups and (M) and Hi(M).

Another simple consequence of Theorem 30 is:

33. COROLLARY. If M is complete, then the distance d(p, C(p)) between p

and 1ts cut locus is a continuous function of p.

We are now beginning to approach our goal, although it may not look like
it. We first prove the following important lemma, which improves on Proposi-
tion 28 when y(a) 1s a special point in C(p).

34. LEMMA. Let p be a point in a complete manifold M and let ¢ be a point
of C(p) closest to p. Then at least one of the following holds:

() The point g is conjugate to p along some minimal geodesic from p to g.

(2) There are exactly two minimal geodesics from p to ¢, and their tangent
vectors at g are negatives of each other, so that together they give a
geodesic beginning and ending at p.

PROOF. Suppose (1) does not hold. Then by Proposition 28 there are at least
two minimal geodesics y; and y, from p to q. We will show that the tangent
vectors of any two such y; and y, are negatives of each other at g; this clearly
implies in addition that there is not a third minimal geodesic y5 from p to g.
Let K; be a “cone” formed by the points on all geodesics of length d(p, g)
whose tangent vectors lie in a neighborhood of y,” at p; and define K, simi-
larly. The set E(K,) of all the endpoints of the geodesics making up K is a
hypersurface containing g. If the tangent vectors of y; and y, are not negatives
of each other at ¢, then &(K) crosses the corresponding hypersurface &(K>).

E(K
/(1)

Kl\
A ek
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It follows that there 1s a point r with
€ [Ki — E(K)] N [Kay — E(K>)].

Now r is joined to p by a geodesic 7 lying in K|, and a geodesic y, lying
in K3. Since ¢ is the point of C{(p) closest to p, the point r must come strictly
before the first conjugate point on both y; and y,. But this is impossible by
Proposition 27. «

When the point p of Lemma 34 is very special we can say even more.

35. LEMMA. Let p be a point in a complete manifold M for which the dis-
tance d(p, C(p)) is smallest, and let g be a point of C(p) closest to p. Suppose
that ¢ is not conjugate to p along a minimal geodesic from p to ¢. Then there
is a closed geodesic made up of two minimal geodesics from p to g.

PROOF. Since q is a point of C(p) closest to p, there are, by Lemma 34,
exactly two minimal geodesics y; and y, from p to ¢, and their tangent vectors
are negatives of each other at ¢. But our hypotheses imply also that p 1s a point
of C(g) closest to g. So there are also exactly two minimal geodesics from g
to p, namely y, and y, again, and their tangent vectors are negatives of each
other at p. «»

36. THEOREM (KLINGENBERG). Let M be a compact simply-connected
even-dimensional Riemannian manifold whose sectional curvatures satisfy 0 <
K(P) for all 2-dimensional P C My, for all ¢ € M. Then for some point
p € M, the cut locus C(p) in M, and the conjugate locus in M, intersect.

Consequently, if we also have K(P) < 1/r? for some r > 0, then M has
diameter > mr.

PROOF. Let p be a point for which d(p.C(p)) has the smallest value, L sav,
and let ¢ € C(p) be a point closest to p. We claim that ¢ is conjugate to p
along a minimal geodesic. Suppose it were not. Then by Lemma 35, there 1s a
closed geodesic y: [0.1] - M. of length 2L. made up of two minimal geodesics
from p to ¢. By Synge's Lemma, there is a variation a: [0.£) X 0,11 - M
of & such that all @(«) are closed curves of length < 2L for u > 0. This means
that for each & > 0. the set of points {a(u, )} i1s the image under expgy(, o) of a
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set 8, in E(a(u,0)); this set 4, is a closed curve, since expy, o is a diffeomor-
phism on E(a(u,0)). But the points of y are not all in exp,, E(p). Instead, the
set {y (1)} — {g} is the image of a set in E(p); this set consists of two open rays
from 0 € M, to two vectors v, —v € M,. We will show that such a situation
cannot arise.

Ma(u,o) M,

v

] —v

Su

Let 4 = |J 44, and consider the set C of all points in 4 corresponding to
u>0
points of the form «o(u,1/2) for u > 0. We claim that C 1is connected. This is

a(u1)

{a(u,1/2) : u > 0}
q a(uz)

because the map
U expa(u’o)"l(a(u, 1/2))

is continuous, where expa(u’o)_l denotes the inverse of the map expy, q):
E(a(u,0)) — M. Similarly, if C, 1s the set of all points in 4§ corresponding
to points of the form a(u,1/2) for 0 <u < %, then C, 1s also connected.

Now consider the set B, of points in 4§ corresponding to points of the form

a(u,t) for te(%—%,%+%) and 0<u<%.



The Second Variation 257

The set B, is also connected: it consists of the union of connected sets in 4, for
O<u< %, and each of these contains a point of the connected set Cy.
Finally, consider the set
B=()Bn
n

As a decreasing intersection of compact, connected sets, it is also connected. It
is clear that it is completely contained in M), and that it contains both v and —v.
Therefore it must contain some other vector w € M. But then it 1s easy to
see that t — exptw is another minimal geodesic from p to ¢, contradicting
Lemma 34. <
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PROBLEMS

1. Suppose that f satisfies the condition for second derivatives on page 204.

(a) Show that if f is composed with a suitable rotation, then the corresponding
matrix (9% f/9x;0x;) is diagonal (compare pg. II.50).

(b) Conclude that f has a local minimum at x.

(©) For f(x,y) = (y — x})(y — 2x?), show that f has a strict local minimum
along every straight line through x, but that f does not have a local minimum
at x.

2. (a) Prove the following “delicate Sturm comparison theorem”: Let f and 4
be two continuous functions f < h on an open interval (a,b), and let ¢ and n
be two functions satisfying

n 9"+ fp=0

(2) n +hnp=0

on {a,b). Assume that ¢(r) # 0 for t € (a, b), and that
11m Pl1) = 11m ¢(t) =0.

t—>a

Then n must have a zero on (a, b), unless f = h everywhere on (a,b) and n 1s
a constant multiple of ¢ on (a,b).

(b) In the situation considered on page 231, let V' = dy/dt, and let Y be the unit
vector ficld along y1(0, L) which is perpendicular to V and tangent to image o
along y|(0,L). Let W = fV 4 ¢Y be the decomposition of Proposition 3
for image @; note that f and ¢ have (left- and right-hand) limits 0 at 0 and L.
Conclude that f = 0 and that ¢ satisfies the hypotheses of part (a). Thus obtain
a contradiction, demonstrating that we cannot have L < mr.

3. (a) Let M be a non-orientable C* manifold. Let M be the set of all ori-
entations p, for My, for all p € M, and define x: M — M to be the map
which takes cach of the two orientations of M, into p. Show that M has a
natural C® structure that makes 7: M — M a 2-fold covering space of M.
and that M is orientable.

(b) If M is a compact. connected. non-oricntable, even-dimensional Riemann-
ian manifold with all sectional curvatures positive. then m (M) ~ Z;.

) Let ¢.y: [0.1] = M be freely homotopic closed curves, and let ¢.y: [0. 1]
> M be curnves with w2 ¢ = ¢ and w o 7 = y. Then ¢(0) = (1) if and only
if 7(0) = p(1). Hence if M is non-orientable. then there is a closed curve
¢: [0.1] - M of minimal length such that ¢(0) # ¢(1).

(d) If M is a compact. connected. odd-dimensional Riemannian mianifold with
all sectional curvatures positive, then M is orientable.



CHAPTER 9

VARIATIONS OF
LENGTH, AREA, AND VOLUME

he classical calculus of variations was extended, quite soon after its incep-

tion, to deal with problems in several variables. In this chapter we will
use these methods to study n-dimensional submanifolds M C (N™,( , )) with
minimal n-dimensional volume. Thus the material of this chapter may be re-
garded as a generalization of the study of geodesics which was carried out in
Chapter 1.9 and in Chapter 8 of this Volume. One big difference, aside from
the greater difficulties to be encountered, is the fact that our results are truly
extrinsic—all our theorems will be about the submanifolds of N, not about the
structure of N itself.

When we look for curves which have the shortest length among all curves be-
tween 2 fixed endpoints, we find that the only possible candidates are geodesics
(provided that we parameterize all curves proportionally to arclength). For the
2-dimensional analogue of this situation, we replace the two fixed endpoints in
our Riemannian manifold (N, { , )) by a compact 1-dimensional manifold Mo
(diffeomorphic to a finite union of circles). We then consider all immersed com-
pact 2-dimensional manifolds-with-boundary M satistying dM = My. Among
these, we seek one which has minimum arca; by the area of an immersed sur-

<K

My "

face f: M — N we mcan the integral over M of the (2-dimensional) volume
element dA4 determined by the induced metric f*( . ) (when M 13 oriented,
we can consider d4 to be a 2-form). Our approach to this problem will be sim-
ilar to our approach in the analogous 1-dimensional casc: we will find “critical
points™ for the area function. One important difference is that no particular
parameterization of M will play a favored role.

(108
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Before we try to find a general formula for the “variation of area”, we will
first investigate the case of surfaces in R?, which leads to an extraordinarily
rich theory, of a very special sort. At first, we will not even consider general
immersed surfaces-with-boundary, but only immersions f: D — R?, where
D C R? is a compact 2-dimensional manifold-with-boundary. By a variation o
of f we will mean a C*® function a: (—¢,6) x D — R?* with a(0, p) = f(p)
for p € D; for each u € (—¢,¢), we then define the function a(u): D — R3
by a(u)(p) = a(u, p). Since f = @(0) is an immersion, the same must be true
of a(u) for sufficiently small u (one needs compactness of D to prove this), so
with no loss of generality we can assume that all @(#) are immersions. As in
the previous chapter, we define the variation vector field W by

d
W(p) = —a“ (0, p);
Uu

notice that W(p) € R*s(p), so that W is a “vector field along [
In almost every differential geometry book under the sun, the only variations
considered are those of the form

A

(D) au,t1,t2) = f(t1, ) +u-9(n, 1) - N, 12),

where N(t1,12) is the unit normal at f(#,72), and ¢ is some C*® function.
Thus @ is a very special sort of “normal variation” —each curve u — (4,1, 12)
is a straight line normal to the surface f, and the variation vector field W is just

W, ) = ¢(h,12) - N(t1,12).

The decision to ignore more general variations is partially justified by the follow-
ing observations. In the first place, if we are given a variation @ : (—&,&) x D —
R3 of £, then we can usually find a new variation f: (—=¢',¢') x D — R? of f
such that

0
{a) ;(0, p) 1s perpendicular to f(D),
‘

(b) the surfaces @(u)(D) and B(1)(D) are always the same, even though the
paranieterizations & () and Bu) may be different.
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To do this, we assume that the surfaces @(u)(D) are all disjoint, and we consider
the curves, parameterized by arclength, which are orthogonal to all the surfaces
@()(D). Then we let B(u, p) be the unique point of &(u)(D) which lies on

Blu, p)
a(u)(D)—

f(D)
f(p)

the curve passing through /(p). Thus we can usually assume that our variation
vector field W is perpendicular to /(D). In the second place, when we take
the derivative at 0 of the areas of the surfaces @ (u) (D), we naturally expect that
the answer will depend only on W, exactly as in the case of arclength. If this
expectation is correct, then we can even assume that « is of the form (I). This
line of argument, intuitively reasonable as it may be, is perhaps not very satisfy-
ing. But we will have adequate opportunity to consider more general variations
later on, when we re-examine surfaces immersed in an arbitrary Riemannian
manifold. So for the time being, let us indulge in the classical simplification,
which makes the calculations so much more manageable.
For the special variation given by (1) we have

o of 3¢ N [all partials on the right
(2) a_ti(u’ ) = 8—t, Tu at N+u-o- evaluated at (1, #2)].
Let
a Jo
(3) gij(u)(n,n) = (u h.0)s 3 (u n,1)),

so that the functions g;;(u) are the components of a()*( , ); in particular,
then, g;; = gi;(0) are the components of f*{ , ). Since

of N\ _ <§J_"_,N>=o,
ot ag ot

equations (2) and (3) give

gij(u) = gij — 2udlij + utagj(u),
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where (u.11.12) — a;j(u)(t1,12) is some continuous function. From this we
obtain

det g;;(u) = det g;j — 2uglgnla + gl — 2g12lia] + u*b(w)
= (det g;;)[1 —4ugp H] + u*b(u), by formula (B) of Chapter 3;

in this equation, (1) is a function having the same property as the a;; (u). Itis
now easy to see that

ou

detg,-j(u) = ——4¢Hd€t &ij,

u=0

from which we obtain

g Vdet gij(u) = —2¢ HV det gj;.
u

u=0

Let us denote by A(@(u)) the area of the immersed surface a(u): D — R3.
Then

dA(a(u))
du

d
= — / v/ det g,-j(u) dh dh
u=0 du u=0JD
Vdet gij(u) dny dty

_/ d
B Dauu:O

= —/ 29 Hv det g;j dty dity
D

volume element on D for
- _/D2¢HdA’ dA = the metric f*( . ).

We are now ready to draw a conclusion.

1. PROPOSITION. Let M be a compact 2-dimensional manifold-with-bound-
ary, and f: M — R? an immersion such that f(dM) is a given compact
I-manifold My € R3. If M is a critical point for the area function, among all
such immersions, then M must be a minimal surface (H = 0 everywhere). In
particular, if M has the minimum area among all such surfaces, then M is a
minimal surface.
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PROOF. Suppose that H(p) # 0 for some p € M, say H(p) > 0. Choose a
neighborhood D of p so small that H(g) > Oforall g € . We can assume that
f(D) is also the image g(D) for some immersion g: D — R3 of a compact
2-dimensional manifold-with-boundary D C R%. Let ¢: D — R be a C®

f(D) =g(D)

(o)

f(p)

M()/v

function which is > 0 on D and = 0 in a neighborhood of dD. We can then
define a variation « of f by letting

au, p) = f(p) peD
a(u,p) = f(p) +u-6(p)-N(p), for j=g~'(f(p), peD.
Formula (x) shows that

dA(@(u))
du

=—f 20 H dA,
u=0 D

where H(#,t2) is the mean curvature H at fV(g(t1,12)). Since H>0 every-
where on D, and since ¢ is > 0 on D, but is not identically 0, the integral is
positive; this is a contradiction. ¢

In the statement of Proposition 1 we have deliberately not claimed that a
minimal surface actually is a critical point for the area function. We found that
H = 0 is a necessary condition for a critical point by considering variations o
which, first of all, vanish outside a small region, and, second of all, are normal
to the surface. It is conceivable (well, just barely) that if we considered arbitrary
variations, we would obtain another condition more stringent than H = 0. So
we will have to wait a bit before we can assert with assurance that minimal
surfaces are precisely the critical points for the area function. On the other
hand, the second part of Proposition 1 is already the best we can hope for:
among those surfaces with boundary Mo, the one with minimum area must
be a minimal surface; but we would not expect every minimal surface to have
this property, any more than we expect every geodesic to be the shortest length
between its endpoints.
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The next result only begins to suggest how special minimal surfaces are.

2. PROPOSITION. Let M be an immersed surface in R* with normal map
N: M — S?. If M is minimal, then N is conformal (angle preserving) at all
points where K # 0. Conversely, if N is conformal, and M is connected, then
either M is a minimal surface, with K < 0 everywhere, or M is part of a sphere.

PROOF. Recall (Lemma II.7-20) that the map N 1s conformal at p if and only
if there is ((p) # 0 such that

0 (NuXp, NuYp) = p(p)(Xp, Yp) Xp, Yp € Mp.

We will make use of the third fundamental form III of M, which was defined
in Chapter 2:

= (N*Z(Xp)sYp), for X,,Y, € M,.

By Proposition 2-6 we have
(2) I —-2H -1+ K -I=0.

Suppose first that M 1s minimal. Then (2) gives IIl = —K - I, which shows
that (1) holds with @(p) = —K(p); hence N is conformal when K(p) # 0.

Conversely, suppose that N 1s conformal, so that 1t satisfies (1) for some func-
tion p which 1s non-zero, and hence obviously positive. Then (2) gives

(K+p)-1—2H .1 =0.

At a point p with H(p) # 0 we can therefore write II(p) as a multiple of I(p),
which means that p 1s an umbilic. At a point p with H(p) = 0, we have
K(p)=—p(p) <0, s0 p cannot be an umbilic. In short,

p 1s an umbilic if and only if H(p) # 0.

The set of umbilics is thus open. But it is also closed. So either: no points
are umbilics, and H = 0 everywhere; or all points p are umbilics, and these
umbilics are not flat points (since H(p) # 0), so M is part of a sphere. «

Back in Volume II, pg. 297, we mentioned that every 2-dimensional Rie-
mannian manifold M is locally conformally equivalent to the plane: around
each point p we can choose an “isothermal” coordinate system for which we
have g;; = pé;;. Addendum 1 contains a proof of this result for general Rie-
mannian 2-manifolds. On the other hand, Proposition 2 provides an easy way
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of introducing isothermal coordinates around any non-flat point p of a minimal
surface M. We need only find a conformal map o §% — {point} — R2, and
then o o N will be the required isothermal coordinate system in a neighborhood
of p. But we already know such a conformal map o, namely stereographic
projection. It will be convenient to use the second version of stereographic
projection, given on page 107. Recall that

a b
o(a,b,c) = (1 — l—c)

o' (x y)——-( 2x 2) P Ayl :
’ X4y X2y T+

Naturally, we can find a conformal map S2 — {g} — R? for any other point ¢
merely by first rotating S? so that g goes to (0,0, 1).

Unfortunately, this method does not work at a flat point. To include such
points we can, of course, appeal to the result of Addendum 1, valid for all
surfaces. However, for minimal surfaces there is a considerably casier argument
that still works at all points.

3 PROPOSITION. Isothermal coordinates can be introduced around any
point of a minimal surface M C R3.

PROOF. We can assume that M is the graph of a function h:U— R, forU C
R2. so that M is the image of the map f(x,p) = (x, 3, h(x, ). Introducing
the classical notation

_ oh _ oh
D=5y 1= ay
ah 0%h a%h
r= s = : = —
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and using equation (B’) on pg. II1.137, we have

n (14 ¢>r —2pgs+ (1 + pPH =0.
Setting
W=vVi+p +4°

we note that

3 (1+42 d (pgy P 5 5

and similarly

0 0 2
3 () 5 () =0

This means that we can locally find functions @ and g with

( doa 14 p? ( B _rq
) a) aix W c) ax W
da  pq ap 1+ ¢°
(b) = d —= )
ay w ay w

Consider the transformation of Lewy:
T(x,») = (x +a(x,y), y + B(x, ).

Its Jacobian is

1 2
1+ ‘}‘:VP fvvq
J(T)(x,y) = > b
P9 141t
w w
with determinant ) )
24+ pc+y
2428 T 5
W >
So T has an inverse locally. and
J(TNT () = [H(Tx. 9]
- 14 ¢* _rq
_ 1 w w
det J(T)(x. 1) Pq - 1+ pz
w w
14+ W +¢2 —pq
= ( ! P4 ) for some C.
—pyg 14+ W + p?
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So

J(f o T™NT(x,3) = J()x, p) - J(TNT(x, )

1 0 )
1+ W+ ~
_clo 1 ( q P9 )
- g 14+ W+ p?

P 4
1+ W +4? —-pq
=C- -pq 1+ W+ p?
p+pW q+qW
It is easy to check that the two column vectors in this matrix are orthogonal,
and that they have the same squared length

(4 pr+ QW +2+ p* +4%).

Thus f o T~" is conformal, and its inverse is the desired isothermal coordinate
system. ¢

The reader has probably noticed the similarity between this proof and the
proof of Jérgens’ Theorem (7-45). As a matter of fact, that proof of Jorgens’
Theorem was motivated by manipulations with the minimal surface equation,
and the original application of Jorgens’ Theorem itself had been to reprove a
result about minimal surfaces:

4. THEOREM (BERNSTEIN). Planes are the only minimal surfaces R?
which are the graph of a function A: R?2 > R.

PROOF. Suppose we have a function h: R? — R satisfying equation (1) in the
previous proof. Then the functions o and B of equation (2) are defined on all
of R? (since R? is simply-connected). From (b) and (c) of equation (2) we see
that there is a function ¢: R? — R with

o =« and ¢y = B.
Together with (a) and (d). we then have

L+ p? r4 _l+g

¢xx = W ¢xy = W

which implies that

PrxPyy — (Bxy)? = 1.
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Jorgens’ Theorem implies that

1+ p? P4 1 +4°
w w’ w

are constants. A simple exercise then shows that p and ¢ must be constants. «»

The manipulations of the past few pages were undoubtedly unpleasant (not
to say, slightly unmotivated), but they were really worth the trouble, because
isothermal coordinates play such a vital role in the study of minimal surfaces.

5. PROPOSITION. If f: M — R? is a minimal immersion, and (u!, u?) is

an 1sothermal coordinate system on M, then

aZfi aZfi '
duldu'!  Ouou? 0 (=123

Conversely, if this equation holds for a collection of isothermal coordinate sys-
tems covering M, then f is a minimal immersion.

PROOF. By equation (7) on page 136 we have
Af =2HN,

where N is the normal map, and A is the Laplacian. Therefore f is minimal
if and only if Aft =0fori = 1,2, 3. Since our coordinate system (', u?) is
isothermal, Problem 7-23 shows that

. 1 aZfi aZfi
Aft =— >
/ E (aulaul * 8u28u2)

Let us rephrase Proposition 5 just slightly. If u = (¢',u?): U - V C R? is
an isothermal coordinate system on U C M, and f: M — R? is a minimal
immersion, theu each real-valued function ¢ = f'ou~!: V — R satisfies
“Laplace’s equation”

azgi azgi
+

5 T

where 9/dx and 3/31 denote the ordinary partial derivatives it R2. Now at
this point complex analvsis contes rushing i, waving its hands excitedly iu its
eagerness to eulighten us. It is a well-kitown result that locally any such function
is the real part of a complex analytic function; we recall the argument briefly.
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Suppose that g satisfies Laplace’s equation

92 2
which we can also write as ] ]
(Gy) _°C5)
dx dy
According to Proposition 1.6-0, there is locally a function A such that
oh g doh  0g
ax Ay 3y ox

But these are just the Cauchy-Riemann equations for g + iA, showing that this
function is complex analytic, with real part Re(g + ih) = g. The converse is
even easier: If g is the real part of a complex analytic function g + ik, then the
Cauchy-Riemann equations immediately lead to Laplace’s equation for g.

A minimal surface M can thus be represented locally by

(x,y) > ®(x,y) = (Re gy (x +iy), Regy(x +iy), Regs(x + iy)) € R,

where the ¢; are complex analytic functions, and @ itself is the inverse of an
isothermal coordinate system. As one consequence of this representation, we
see that every minimal surface in R? is automatically real analytic (C®).

The fact that ! is an isothermal coordinate system can just as well be ex-
pressed by saying that @ is conformal, and hence by the following two equations
for the vectors 9®/dx,0®/dy € R*:

IO 30\ [00 P 30 a<p>_0
ax ox [ \dy ay ax’ay|

Since the complex derivative ¢’ is given by

d Re ¢ +I_31m¢k

(X + 1) = =50 o
dRedr .0Regx
= ox - ay
ddk  Jdk
= T — I_a?"

our pair of equations for ® is equivalent to the one complex equation ) (Px)?
= 0; in terms of the functions ¥, = ¢4’ we can thus write our conditions as

Y2 4+ Y+ ¥t =0

Now we can describe the solutions of this equation explicitly.
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6. LEMMA. Let V C C be open, let g be meromorphic in V, and let f be
analytic in V with a zero of order at least 2m at each point where g has a pole
of order m. Then the functions

! .
=>/1=g), o= ’Ef(l +gY),  Yi=fg

are analytic in V and satisfy Y2 + y»% + ¥32 = 0. Conversely, every triple
Y1, V2, Y3 of analytic functions satisfying v + 2 + y32 = 0 on V can be
represented this way.

PROOF. The first half of the Lemma is a direct calculation. Suppose, con-

versely, that we are given functions ¥; satisfying the equation ¥ 2422 +132 = 0,
which we can also write in the form

1) (Y1 — i) (Y + iYn) = =y’

If 43 1s the 0 function, we choose g = 0 and f = 2y;. If ¥3 is not the 0
function, then yr; — iy, is also not the 0 function, so we can define

. ¥3
2 =V~ 1y, =
2) S = —iy, R
with f analytic and g meromorphic. Then equation (1) gives
(3) ‘//1+i‘//2=L3.2=—fg2-
Y1 — iy

Equation (3) together with the definition of f in equation (2) shows that the ¥;
have the desired form. Equation (3) also shows that fg? is analytic, so f must
have a zero of order at least 21 at each point where g has a pole of order m. &

It is now a simple matter to give a representation of minimal surfaces, due to
Enneper and Weierstrass, which plays a major role in the theory.

7. THEOREM. Every point of a minimal surface M C R? is in the image of
some conformal map ®: V. — M C R where V C C is a simply-connected
open set. Each such conformal map @ is of the form @ = & (¢ ,). where

CD(/g) (x.1) / fw)d — g(w) )2) dur + ¢
cD(fg) (x.v) / fa)(d + gu)?) dw + ez

P(rp) (1) = Re/ S)gw) dw + c3.
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In these equations, the ¢; are real numbers, g is meromorphic on V, aud f is
an analytic function on V vanishing precisely at the poles of g, the order of the
zero being exactly twice the order of the pole; the integrals are taken along any
path from a fixed point xo + iyg € V' to the point x +iy.

Conversely, every such @y g) is a conformal map into a minimal surface.

PROOF. We have already seen that there is a conformal map ®: V — M C R?
given by

(1) ok (x, y) = Re g (x +iy),

for complex analytic functions ¢ satisfying

(2) Y @) =0.
k

By Lemma 6 we have

1 I
3) o/ =3/0-g),  ¢'=3/0+g),  $'=e
where f has a zero of order at least 2m at each point where g has a pole of
order m. We just have to show that the order of f is exactly 2m at such a
pole. Now if we had ¢,"(x + iy) = ¢,(x +iy) =0, then we would also have
@3’ (x + iy) = 0 by (2). Since

. , do* 9ok
4) S (x+iy)=—F— —i—7—,
dx ay

this would mean that 8®/dx = 0d/dy = 0 at (x, y), contradicting the fact
that ® is conformal (and hence an immersion). So ¢x'(x + i) # 0 for k =1
or 2 (or both). Then equation (3) implies that the order of f is at most 2m at
a pole of g of order m.

Conversely, consider ® = ®(s,4) where f and g have the stated properties.
Then we have equation (1), where the ¢ are given by (3), and hence satisfy (2).
It follows from (2) and (4) that

5 d0 90\ (3 90 a0 §g>_0
ax’ax /| \oy ay/’ ax’ay |
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Now our hypotheses on f and g imply [by (3)] that ¢;" and ¢," are nowhere
zero, and thus that ®/dx and d®/dy are nowhere zero. Since they are also
orthogonal, by (5), they are linearly independent, so the map @ is an immersion,
and thus a conformal immersion into its image. Since the ®¥ are the real parts
of complex analytic functions, they satisfy Laplace’s equation, so ® is also a
minimal immersion, by Proposition 5. <

In order to connect this with the differential geometric properties of minimal
surfaces, we need the following additional information, which will also explain
the significance of the poles of g.

8. PROPOSITION. For the immersion ® = ®y,¢y of Theorem 7, the metric
®*( , ) on V has components g;; = j8;j, where

/()11 + |g<z)|2)]2

u(z) = [ 2

[this expression will approach some limit at z if z is a pole of g].
If N is the normal map of &, then

2Reg(z) 2Img(z) |g(@)|* - 1) 5
N = , , S
(=) (Ig(z)|2+l 2P +1 gl +1) €

[=(0,0,1) € S? if z is a pole of g].

PROOF. Since ® is conformal, we have g;; = ud;;, where
_ 9P od\ [0d 4P
F=\ox x|~ ay’ ay /|’

, , adk ok
G x+iy)=—— —i—-—
ax d)

Using

and equation (3) of the previous proof, this gives

! 118! 7
“(:)=§Z|¢k/(5)|2 _ |:|f( N1+ 12 )] '
K

2
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We also see that at points where g does not have a pole, we have

¢ 0o
— X

ax a—y = (I{C ¢l/*RC ¢2/’RC ¢3/) X —(Im ¢]/,Im ¢2/,Im ¢3/)
= (Re¢y Imp,’ — Re gy’ Imgy’, ...)
= (Im ¢,¢3,Im ¢3¢, Im ¢16,)

|S120 + gl

From this we compute that

b0 99| _[1/10+1eMT _
ox ~ dy| 2 =

which we should have known anyway, and finally get

a<1>xa<1>
ax = oy _(ZReg 2Img |g|2—l)
\acb acb‘_ g2+ 1" g2+ 1" |gl2+1)

ax "y

As we approach a pole, this clearly approaches (0,0, 1), since g — 00. <

The representation in Theorem 7 is not unique, because there are many
different conformal maps ®: V. — M. If &;: Vi — M are two conformal
maps, then the map

A= o®: U >R U =&, H(@2(V2)),

from the open set U C R? into R2, is conformal with respect to the usual
Riemannian metric on R2. It is easy to see (Problem 4-9) that such conformal
maps « are precisely the one-one complex analytic maps « and their conjugates.
Conversely. if we are given @(sg0 V. — M in Theorem 7, and a one-one
analytic or conjugate analytic map a: W — V, then ®(spyoca: W —> Mis
another conformal map into the same minimal surface, and it must have the
same form, with different f and g. One can obtain the new f and g by making
the substitution w = a(u) in the integrals of Theorem 7.
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The non-uniqueness in Theorem 7 is not really much of a problem, for we
have already seen that there 1s practically a canonical way to select a conformal
map ®: V — M which covers a given point p of an imbedded minimal surface
M C R?® We only have to assume that p is not a flat point, and also that
v(p) # (0,0,1) € S2. Then v(U) C S? — {(0,0, 1)} for some neighborhood U
of pand 0 ov: U — V C C is conformal, where o: S? — {(0,0,1)} — C
is stereographic projection. Hence we can choose v oo7!: V — R? as our
conformal map, and Theorem 7 shows that there are f and g with

vloo™ = @1y, or N=vod, =0
But the formula in Proposition 8, together with the formula for 6~! on page 265,
shows that N = o~ precisely when g(z) = z for all z. We therefore have a
representation of M in the following form (traditionally written with omission
of the constants ¢;):

o' = Re/ %F(w)(l —w?)dw
(%) d? = Re/ ;—'F(w)(l + w?)dw (F nowhere 0).
o} = Re/ F(w)w dw

We could also have obtained this representation in a different way, by beginning
with the formulas for ®(r,) in Theorem 7 and then making the substitution
w = g~ (u); in other words, we could find the formulas for ®(.¢yog~!. Notice
that a local inverse g~! exists around z precisely when z is not a pole of g and
g'(2) # 0; the first condition is equivalent to v(®(z)) # (0,0, 1), and it is easy
to sec that the second condition is equivalent to v, being one-one at ®(z).

The representation (x) is especially nice to work with. Problem 1 gives the
choices of F which lead to the helicoid, the catenoid, and Scherk’s minimal
surface; if we take the simplest case of all, F(w) = 1, we obtain Enneper’s
surface, which seemed so mysterious when it was first introduced in Chapter 3.
Naturally, the geometric information given by Proposition 8 now simplifies con-
siderablv. If ®F is given by (%), then

N=vodr = o1
(%) O V= puldx Q@ dx +dv @ dy),

|F(2)12(1 + |21)?
7 .

where p(z) =
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Notice in particular, that for real 0, the minimal surfaces ® = ®,—io f,

. 1
ol = Rce_'B/EF(w)(l —w?)dw
®? = Rce_m/ %F(w)(l +w?)dw

o = Rce_iB/ Fw)wdw,

are all locally isometric, the isometry being given by
®,_iop(z) = Po—iop(2).

In general, we call two connected minimal surfaces associated if they have this
representation for the same F and real 6 and ¢. It suffices to have this for some
small piece of each surface, since minimal surfaces are analytic. We also define
two planes to be associated surfaces (these are the only minimal surfaces where
the representation (x) cannot be achieved [except at isolated points}). Associated
minimal surfaces are not only locally isometric, but can also clearly be made
part of a continuous family of isometric surfaces. With the proper choice of F
we obtain (Problem 1) the continuous family of isometric surfaces between the
catenoid and helicoid which is pictured on pg. IIL171.

On first consideration, it seems to be a pure stroke of luck that the catenoid
and helicoid are not only isometric, but also associated. However, there’s defi-
nitely more to it than that:

9. THEOREM (H. SCHWARZ). If two minimal surfaces are isometric, then
one of them is congruent to an associated surface of the other.

PROOF. 1If one of the surfaces is a plane, the other must be also; for # = 0 and
K = 0 implies that both principal curvatures are 0. So we will assume neither
is a plane. We can then represent them as

f=®p: V>R
g:dDG:W—>R3.

By hypothesis, there is a map a: V' — W such that the correspondence ®p(z)
— ®g(e(z)) is an isometry. We want to show that after changing the second
minimal surface by a congruence we will actually have @ = identity. Then rela-
tions (x*) will show that |F(2)| = |G (2)]. and the maximum modulus principle
applied to G/ F will imply that we have G = ¢~ F for some real 6.
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The third fundamental form will play a role. Since the surfaces f and g o
are minimal, Proposition 2-6 gives

M, = —(K o /)y
Moy = —(K g 0 ) goq.

On the other hand, Iy = Iz, by hypothesis, and therefore Ko f = Ko g ca
by the Theorema Egregium. So

Iy = lgeq.
But by Proposition 2-7 we have
Iy = Iy, = -1y, N; = normal map of f
Mlgow = Iy, = —1ln, N3 = normal map of g o .
We thus find that
Iy, =1In, and Iy, =1p,.

The Fundamental Theorem of Surface Theory then implies that Ny and N,
are the same up to a congruence. So if we change our second surface by a
congruence we can assume that Ny = Ny, But then (xx) gives

o7 (z) = o7 (a(2)).

So we must have a(z) = z. &

We conclude with one curious phenomenon concerning the representa-
tion (%). This representation was supposed to depend only on the imbedded
minimal surface M, but this is not exactly the case, for it also depends on the
choice of the normal map v, or equivalently, on the choice of an orientation
for M. So while v gives rise to the map ®f with

) vodbp=0"" defined on some V C C,

the map —v will give rise to a map ® with

1

{2) —vo®pr =0~ defined on some W C C.

Since @ and @ are conformal maps into M, inducing opposite orientations.
there must be a conjugate analytic map «: W — V such that

(3) Sr(z) = Of (a(2)) e W.
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This means that for all z € W we have

o Na(2)) = —v(Pg (a(2)) by (2)
= —v(¢r(2) by (3)
= —O’_I(Z) by (1)

Thus we must have

a(z) =o(-07'(2))

Writing equation (3) in terms of (¥), we thus obtain

-1z

Re /z F(w)(1 — w?) dw (+ constant) = Re/ Fw)(1 —w?)dw

1z
= Re (/ Fw)(l —wz)dw)

-1z —————
=Re/ F(w)(1 — w?) dw

—1/z —
= Re/ F(w)(1 — w?) dw,

which, using substitution, yields

Re/z F(w)(1 — w?) dw (+ constant) = Re/z F (—l_) (1 — Lz-l_z) dw
w w?w

We obtain two other equations in a similar way, but, as one would certainly
hope, these equations all lead to the same relation:

This F gives the exact same surface as F, but it induces the opposite orientation
on M. _

Now the interesting thing is. that there are functions F which equal F, the
simplest example being

..4_1

1z
FQ)=1-— ="
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This choice of F leads to Henneberg’s minimal surface

lw*—1
1 _ o - _ 2
¢_Re/2 e (1 -w)dw
Fwt — 1
¢2:Re/%w — (1 + w) dw
w
4
—
¢3=Re/w — du.
w

The map ® can be defined on all of C — {0} (we don’t even have to restrict
ourselves to a simply-connected domain, since all integrands have residue 0 at 0,
so the integrals are independent of the path); however, ® is not an immersion
at +1, £/, the points where F is zero. Using stereographic projection, we can
identify C — {0, £1, i} with $? minus three pairs of antipodal points, the points
+1, £/ occurring on the equator of S2. Since

Pr(z) = Pp(a(z)) = P (0(~07"'(2)) = Prlo(—0~"(2))),

the map ®f o 07 ': §2 — R3 is invariant under the antipodal map, so our
surface is the image of the projective plane punctured at three points. The

figure below shows the image of a symmetric strip around the equator of S$2.

Py 'P

1

P Py

The equator maps onto the vertical segment 4 B, with the pair of points cor-
responding to £i mapping onto the upper endpoint, and the pair £1 onto the
lower. The boundary circles of the strip each map into the closed curve which
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intersects itself at points Py, . .., Pa. The points of the segment A B are all dou-
ble points of the immersion, but the surface crosses itself in a funny way along
this line—it contains two congruent helicoid-like surfaces, with AB common
to both.

The final figure below shows an imbedded Mébius strip lying inside the im-
mersed surface.

Physicists, by the way, would not be surprised to learn that there are minimal
surfaces in the shape of a Mébius strip. If one dips an appropriately bent piece
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of wire into a soap solution, then a soap film will be formed in the shape of this
surface (actually, one always obtains the sort of film pictured on the left; after
the middle sheet is pierced, the soap film snaps back into the Mobius strip). If

one neglects the slight effect of gravity, then any soap film ought to be a minimal
surface, since the surface tension makes the film contract as much as possible.
Considerations of this sort were first introduced by the blind experimental
physicist Plateau, who gave a much more elaborate discussion of the problem,
taking into account the thickness of the films. His writings gave rise to the
Plateau problem, to prove that every imbedded circle in R? is the boundary
of an immersed disc which has minimum area among all such immersed discs;
this very difficult problem was first solved by Jesse Douglas and Tibor Rado.
Douglas’ methods work just as well for higher dimensions, and his work won
him the Field’s medal in 1936. We will not even enter into a discussion of this
work, which is almost purely analytic in nature, but descriptions of the methods
used may be found in several references in the bibliography. There are many
questions related to Plateau’s problem, some of which have led to the invention
of powerful new techniques. Notice, for example, that Plateau’s problem is in
some ways not even the natural question to ask, since it is concerned only with
surfaces homeomorphic to a disc. Thus the solution of the Plateau problem for
the curve pictured above will not be the Mébius strip, but a surface like the one
shown below. Probably the simplest way to picture this surface is to make a piece

IS
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of wire in the right shape and dip it into a bubble solution (the two loops should
be rather further apart than in the previous picture). It is fairly easy to find a
shape that gives both a Mébius strip and a disc, depending on how it 1s dipped
in. Since the two different soap films have unequal areas, this shows us that we
should slightly revise our criterion for the shape of a soap film spanned by a
given wire loop. The film need not have a minimum area—a local minimum
should suffice. A surface which is a critical value, but not a local minimum,
would presumably correspond to a position of unstable equilibrium—the shght-
est disturbance would cause the soap film to change shape; presumably such
films could never occur in practice (in addition, of course, all sorts of physical
considerations might rule out other surfaces on practical grounds).

If the wire loop is equipped with a pair of handles, then by gently pulling the
two parts of the loop apart one can see the film jump from a Mébius strip to
a disc, presumably at the point where the Mébius strip is no longer in stable
equilibrium. Even for those who are willing to get involved in all the analysis
necessary for the Plateau problem, experiments like this can be as instructive as
they are fascinating, and provide convincing evidence for assertions that are still
not mathematically provable; the interested reader should consult Courant [1].
And even if you are not eager to get your hands all soaped up, there is one
description of simple experiments that you simply cannot afford to miss. This
is a series of lectures by Boys {1} which treats soap films and soap bubbles, the
mathematical correlates of which we will study a little later on. They were given
to an audience of children in the good old Victorian days, and are among the
best science writing ever produced. I seriously suggest that you put down the
silly stuff you are presently reading, rush right out to purchase Boys’ little gem
of a book, and get high on physics for a while.

* k%

Returning to purely mathematical questions, we now seek a formula for the
variation of area when we are dealing with an arbitrary variation of an im-
mersed surface f: M — N, in a general Riemannian manifold (N, { , )). We
would even like to find the variation of n-dimensional volume for an immersion
f: M" — N™ (but at least we will not worry about maps and variations which
are only piecewise C*®). As a start in this direction, we consider a simple general
problem from the classical calculus of variations in several variables. Suppose
we are given a (suitably differentiable) function

F-RPxRxR'"—> R

and a compact n-dimensional manifold-with-boundary D C R". We seek,
among all functions g: D — R with prescribed values on dD, one which will
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maximize (or minimize) the quantity

J(g)
:/ F(t, ..., th,g(ty, .. ), Dig(ti, ... th)s- .., Dug(ty,....tp))dt ... dt,
D
= / F(t,g(1),Dg())dt ... dt,, in abbreviated form.
D
This is a direct generalization of the problem considered on pg. 1.316. For any

variation a: (—€,&) x D — R of g, we compute the variation of J as follows.
It will be convenient to denote a typical point in the domain of F by

(te,..., [ S 1 S Vn) or, even more briefly, by (t,x,y).
Then
dJ(a(u)) d / duo
_— = — Fiu, 1), —(u, b)) dn ... dt
du ueo dul,—oJD a(u.1) ot (w.1) ! "
oo oo oo
— dsfor —, ..., —
<3[ stands for 3[1’ s 3tn>
d
:/ [— F(t,o(u, t) (u t))] dn ..
D dbl u=>0
=/D[——(0 1) - ——( )+Z » 8 —(o)] dn ...dt,,
where
d d
0 * = (11 ..... th,g(ty, ..., ), %(zl ..... ), ..., a—i(n ..... t,,)).
Introducing the abbreviations
oo
u)(t) = —(0,[)
ou
oF . .
(2) A@t) = ——j(o) (all of these are functions on D)
Bi(1) = 3—1,(.)

we can write
dJ(@(u))

du

n
ow
= w-A + ———-B-:Idt/\---/\dt.
/D|: l.gah ' ! "

u=0
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We now have to pull an integration-by-parts-type trick on the second term in
the integrand. We do this by considering the (n — 1)-form @ defined by

n
(3) w:Z(—l)"“(w-B,-)dtl/\---/\37,-/\---/\411,,.

i=1
Since

n

" 0B, 3
dw:[w'zﬁ]d“/\m/\dt" + [Za—l:Bi]dll/\---/\dln,

i=1 i=1

we have

n

dB;
= w - A—§ —L )} | dr A---Adz,,+f dow

i=l1

~. 3B; ]
= w-|A- —Vldty A Andty, + w.
fu[ ( ;ati) : aD

From the definition of @, we see that @ = 0 on 8D if « is a variation keeping
the boundary fixed. So g is a critical point for J if and only if

dJ(a(u))
du

n

Ju aB,
- = Aa=-S"ZZ NV dn A Adiy
4o fD[au(O’t) ( X:: a1 )] nnend

1

_ dJ(a(u))
0= du

for all variations a keeping the boundary fixed. From this we easily see that g
must satisfy the equation

that 1s,

aF "\ °F .
(%) K(o) - IXZ; TR (o) =0. where o is given by (1).

This is the classical analogue of Euler’s equation (Theorem 1.9-8).
As a particular example. we take n = 2. and let

€3] F(ti.t.x, 1. 2)=Vv1i+ _1'12 + ,1'22.
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so that
/ 2 2 dg
J(g) = 1+ g1" + g2" dh diy &=
D ot
= VEG - F?2dndn by formulas (A’) on pg. 111.137.
b Y Pg

Thus J(g) is the area of the imbedded surface
S(n,0) = (0,12, g(11,12)).

Avartation @ : (—¢,¢) x D — R of g gives rise to a variation §: (—¢,¢) x D —

R? of the imbedding f, defined by
Blu,t1,12) = (1,12, @(u, 11, 12)).

This variation 8 1s perpendicular to the (1, f2)-plane, instead of being perpen-
dicular to the surface M = f(D); it has variation vector

Wi, ) = (0,0, w1, 2)) fty 1)

This is the one other kind of variation sometimes encountered in differential
geometry books, and the kind which is alwavs used in books on the calculus of
variations. Indeed. this particular example was chosen by Lagrange to illustrate
the general methods which he had developed (1760) for the calculus of variations
in several variables. In this case, equation (4) gives

aF oF ¥i

R L —
ax 8‘1',' Vi+ },‘12 + ‘1,22



Variations of Length, Area, and Volume 285

so equation (x) becomes

LBy (B)=0  R=Vitglted,

an \R/) "9, \R

which boils down to exactly the equation

(1+g)gn — 2182812+ (1 + g22)g22 =0

which we found in the proof of Proposition 3; it was only in 1776 that Meusnier
interpreted this equation in terms of the mean curvature of f.
We will also be interested in the 1-form @ which we obtain in this case;
from (2) and (3) we see that
w-gi

—— dt, — 282 .
R R

We will express @ in terms of the form @ on M = f(D) with @ = [*w. We
have

w((1,0,81)) = w(f* (a%)) = (0,00, (-2, -=20))

w((0,1,82)) = w(f* (a%)) = (01,8, (-5 -2 0)).

But

w-gy W-& g 8 1
- ’__—’0 = \—F5> "7 p 0’0’
( R R ) ( R’ R R) x(0,0,w)
=v x W,
where v is the normal vector. So for all X € M) we have

w(p)(X) = (v(p) x W(p),X)
= (W(p) x X,v(p))
=(TW(p) x X,v(p)), TW(p) = tangential component of W(p).

If dA is the 2-dimensional volume form on M, then we have
o(X) =dA(TW, X).
Using the notation introduced on pg. 1.227, we can thus write

w=TW_dA.
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Without going through the calculations, we merely state that if we take an
arbitrary » and let

F(tla--'atnaxayla"-syn) = Vv 1 +Zl yl'zs

so that J(g) represents the n-dimensional volume of the imbedded n-manifold
{f(t1,. .. tn, g(t1,. .. tn))}, then the (n — 1)-form w is f*w, where the (n —1)-
form w on M is defined by

w=TWlidV dV = volume element on M.

This (n — 1)-form @ will be very important when we look for an invari-
ant description of the variation of n-dimensional volume for an immersion
/' M" — N. We have always expressed length or area as an integral involving
a coordinate system, and calculated the derivative with respect to the variation
parameter u by using “Leibniz’ Rule” to bring the derivative inside the integral
sign. Before we go any further, we will need an invariant description of this
procedure.

Suppose we have a C* 1-parameter family of k-forms on an n-manifold
(-with-boundary) M; thus, for each u € (—¢,¢), we have a k-form I'(u) on M.
For each p € M, the map u — TI'(u)(p) € Qk(Mp) into the vector space
Qk(Mp) then has a derivative, which at each u 1s again an element f‘(u)(p) €
Qk(Mp). Thus a C*® I-parameter family of k-forms u — I'(4) on M gives rise
to a new C* l-parameter family of k-forms u I'(u) on M.

10. PROPOSITION (LEIBNIZ> RULE). Let M be a compact oriented

n-dimensional manifold-with-boundary and u — T'(z) a C* I-parameter fam-

ily of n-forms on M. Then
/ T'(u) =/ I (o).
u=uyvM M

PROOF. Let O be a finite cover of M by open sets V each contained in
¢([0.1]") for some orientation preserving singular n-cube ¢: [0,1]" — M. Let
® = {¢; } be a partition of unity subordinate to this cover. Then

/ ¢V'F(“):/ (¢ oc)-c*T(u).
M [0,1]

d

du
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It is easy to see that the ordinary Leibniz’ Rule implies that

quy-r(u):f (¢VOC)-c*r(uo)=f oy T (o).
u=uy v M [0,1]7 M

d
du
Since

fM T =Y. fM ¢y - T,

{¢p}

and similarly for f f‘(uo), the result follows.
M

Now consider a compact oriented n-dimensional manifold-with-boundary M,
anda C® map a: (—e,&) x M — N, where (N,{ , )) 1s a Riemannian man-
ifold. We will assume that each @(u): M — N is an immersion. Then the
metric @(u)*( , ) on M determines a volume element I'(x) on M; using the
given orientation of M, we can consider this to be an n-form on M, which we
call the volume form. What we want to determine 1s

d
f I'(u).
u=0JM

du
According to Proposition 10, it suffices to determine I'(0). For this we do not
even need M to be compact.

11. THEOREM (VARIATION OF VOLUME FORMULA). Let f M-
N be an immersion of an oriented n-dimensional manifold (-with-boundary)
M into a Riemannian manifold (N™,( , )) and let a: (—&,&) x M — N be
a variation of f through immersions, with variation vector field W. If T'(u)
is the volume form of M determined by the metric @(u)*{ . ) and the given
orientation of M, then

) = —(W.n-n)-T©) +d(TW 1T(0))

where 7 is the mean curvature normal of the immersion f. [Notice that there
is a slight abuse of notation here: at each p € M. the vector TW really denotes
the unique vector X € M, with fu(X)=TW at f(p).]

PROOF. The theorem involves two n-forms on M which we have to prove are
equal at all points of M. Let us first consider a point po € M where W{po) is
not tangent to f(M). By choosing a sufficiently small neighborhood V of po,



288 Chapter 9

and decreasing ¢ if necessary, we can then assume that : (—=¢,6) x V. — N is
an imbedding

a(3)(v)

Sv)
a(=5)v)

It will be convenient to identify V with f(V), so that f = @(0) is just the
inclusion map i: ¥V — N. On some open set containing image o, we can
choose an orthonormal moving frame X,..., Xp, Xp+1,..., Xm such that

(1) Xj(a(u, p)) is tangent to the submanifold a(u)(V) 1<j<n
(2) X,(a(u, p)) is normal to the submanifold a(u)(V) n+1<r<m.

If ¢',....¢", ¢" !, ..., ¢™ are the dual I-forms, then clearly

% a@)* (@' Ao A"y =T )
2) a*(’)=0 n+l1<r=<m.

Now the variation vector field W, defined along V, is the restriction of the

vector field W = da/du defined along all of image o. We can further extend w
to a vector field defined on some open set containing image o; we will use the
same symbol W for this extension. Associated to this vector field W is a certain
local 1-parameter group of local diffeomorphisms {p,}: recall (Chapter 1.5) that

pu(q) is the result of following for time u the integral curve of W that starts at qg.
Clearly the integral curve of W that starts at a point p € V is just u — a(u, p).
So

pulp) = alu, p) =a)(p), peV.

It is therefore clear that if Y is a tangent vector of V, then

(3> pu*(i*Y) :&(”)*(Y)-
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Now let us recall the Lie derivative (pp. L.150, 174, 234): if w is a k-form
on N, then L is another k-form defined by

o1
Lyw(Zy,....Zk) = }11_r)n0 7 (w(PreZ1s- s praZi) — (Zy, ... Zi)] -

We claim that

(4) L) = i*"{Li@"' A - Ad™)}.
The proof of this will be quite straightforward. We adopt the abbreviation
O =¢'A---A@" If Yy,...,Y, are tangent vectors of V, then we have

. 1
royn,....Y,) = llii»noz [C(h){(Yy,....Yn) — ryYy,..., )]
1
= lim - (&)@ (¥, ... o) = " O (V1. V)] by (I')
1
= IEI—rPOE [q)(&(h)*Yl, cee s&(h)*Yn) - o3, .. si*Yn)}

.1 . . . .
= 111—% Z [d)(ph*l*Yls ooy PralnYn) — O3, ... sl*Yn)} bY (3>

= Lﬁ;d)(i*Yl, oo ik Yn),
which proves (4).
The reason for bringing in the Lie derivative is that we have some useful
formulas for it. In particular (pg L. 235), we have

Lyw= W _ido +d(W_w).
Substituting this into (4) we obtain
(5) T0) = "W _1d®} + di*{W 1 d}).

We will show that the two terms on the right are precisely the terms appearing
in the statement of the theorem.

We first compute d® = d(¢' A--- A ¢") by using the first structural equation
for N, which will bring in the connection forms wg 1 <ap <mtfor N
associated to ¢!, ... .¢™:

j=1

=Z(—1)f+‘¢‘A---A(—ch{ A¢“)A---A¢”
j=l a=1

=Xn: i AN ZRSRR

j=1r=n+l
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Soif Yi..... Y, are the tangent vectors of V with i,Y; = X; along V, then
(7) W IdoyY,. ... Y,) =dd(W.X;..... Xy)
n m
=Y Y @A A AU A AW XL X,)
j=1 r=n+l1
n m
=" > MNP,
j=1 r=n+l

since (2) says that ¢”(X;) = 0 for i <n < r. On the other hand, we have

Vi Xi= > YAX) Xa=— Y ¥I(X)) Xa.
a=1

a=l1
)
n n m
nen= J-(Z V'X,-Xj) = Z(— > Vfr’(Xj)Xr),
Jj=1 j=1 r=n+l
and hence
n m
8) —(Won-m)y =Y Y ¢ (WYX,
j=lr=n+1
Equations (7) and (8) thus give
9) W 1ddy = —(W.n-n) T(0).
As for the other term in (3), if Y;... ., Y, -1 are tangent vectors of V, then we
have
W DY, Ye) = O(W. Y,k Yesy)
= (@' A AWk Ye)
=(@' A APNTW.i Y. ..., ivYn_1)
since each d)j(J.W) =0
=[TWIi*@' A Ad™Y, . ... Yoo1).
Thus

(10) PF{W Jdy=TW 1 T(0).
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This completes the proof of the theorem at any point po where W(po) 1s not
tangent to f(M).

The general case can be disposed of by a technical trick. Let N = N x R,
with the product Riemannian metric, which we also denote by ( , ), and define
o: (—e,¢) x M —> N by

a(u, p) = (a(u, p),u).
The new variation vector field W 1is
W(p) = (W(p),1),

where 1 denotes the unit vector field on R. Clearly W is not tangent to a(0)(M)
C N x {0}, so the theorem holds for . On the other hand, 1t 1s easy to see that
the new mean curvature normal 1 1s just

n(p) =0,

so that (W, ) = (W, n); thus the result for o implies the result for . <

12. COROLLARY. Let a: (—¢,€) x M — N be a variation of an immersion
f: M — N of a compact oriented n-dimensional manifold-with-boundary M
into a Riemannian manifold (N, ( , )). If V(@(u)) is the n-dimensional volume
of M determined by the metric @(u)*{ , ) and the given orientation of M, then

:—/ (W,n-r))dV+/ w,

where dV is the volume element determined by f*( , ) and w = W _1dV. In
particular, if @ is a variation keeping dM fixed, then

:—/ (W,nﬂ)dV
u=0 M

The immersion f is a critical point for V. among all immersions g: M —> N
with g = f on M. if and only if n = 0 everywhere.

dVi(a(u))
du

dVia(u))
du

PROOF. The first statement follows from Theorem 11, Leibniz" Rule. and
Stokes’ Theorem. If o keeps M fixed. then W = 0 on 9M. so also @ = 0
on dM: this proves the second statement. To prove the third. we can choose
W = ¢ - n. where ¢ 1s a C* function on M which is 0 on M and positive
on M — oM. &
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Notice that in the expression

—/(W,n-n>dV+/ o
M M

the first term depends only on the normal component LW of W; for we have
(W.n-n) = (LW,n - n), since n is perpendicular to f(M). This partially
confirms our suspicion that we need work only with normal variations. On
the other hand, in the term f;,, , only the tangential component TW enters;
roughly speaking, the integral measures how much the volume of M is changing
because of the way that the variation is expanding its boundary. In particular,
we see that fy,, @ is 0 not only when the variation keeps the boundary fixed, but
also when W is normal to M along the boundary. Consequently, if n = 0 on M,
then dV(&(u))/du‘uzo will be 0 for every variation which 1s perpendicular on
the boundary of M, not merely for those variations which keep dM fixed. Back
in our original equation () on page 262 we didn’t have any term involving an
integral over 3D precisely because we were dealing only with normal variations.
This leads to an interesting phenomenon in the case of minimal surfaces M C
R3. If v is the unit normal vector on M, then we can define a variation o of
the inclusion i: M — R? by

alu,p)=p+u-vip)

The various surfaces {a(u, p) : p € M} are called the parallel surfaces of M.

N

Since this variation « has W = v, which is everywhere normal to M, we must
have

dA(a(u))

=0.
du

u=0

But this equality does not necessarily mean that A(@(0)) is a minimum. In-
deed, as Problem 3-12 shows, each parallel surface has smaller area than M, so
actually A(@(0)) is a maximum! Something quite similar happens in the case
of geodesics on a surface of positive curvature. For example, on S 2 a portion
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of a great circle is longer than a “parallel” curve. The phenomenon for mini-
mum surfaces is analyzed in greater detail in Addendum 4, which considers the
second variation of volume.

Although we have derived the fundamental formula for the variation of vol-
ume in all dimensions, we will not proceed to discuss the analogues of minimal
surfaces in higher dimensions, except to say that this topic has generated much
interest in recent years. We should also mention that the study of minimal
hypersurfaces in spheres has also attracted much attention, and differs greatly
from the theory for Euclidean spaces. For example (Lawson [l}), every compact
orientable surface can be imbedded as a minimal surface in S*.

For the remainder of this chapter, we will discuss a few other topics involving
the variation of volume. We will often digress quite a bit from purely differential-
geometric matters, and unfortunately our remarks will not form a coherent
subject like the study of minimal surfaces.

Two special cases of Corollary 12 will form the starting point of our consid-
erations. Suppose first that M is simply a compact manifold with no boundary.
Then we have

0 dV(a(u))

du

=—/ (W,n-n)dV.
u=0 M

We can also apply Corollary 12 when M and N have the same dimension #,
so that M C N is a compact n-dimensional manifold-with-boundary in the
n-dimensional manifold N. In this case, M, = N, forall p e M,s0 T: N, —
M, is the identity, while L: N — N, is the 0 map. Consequently, 7 is auto-
matically 0, and we have only the boundary term left,

dv(a(u)) =/ .
u=0 M

du
It is easily checked that this can be written

W) [ av,
du u=0 oM ’

(In)
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where v is the outward pointing normal on M and d V,_; is the (n —1)-dimen-
sional volume element on dM. This formula is certainly reasonable, for when
we move each point p on M a distance ¢(p) along v(p). we add on a narrow
band whose volume is approximately [y, ¢ dV,_1.

Both formulas (I) and (II) are important for a discussion of the 1soperimetric
problem. The classical isoperimetric problem was to find the curve of fixed
length L which encloses the largest area; one naturally expects the answer to
be a circle. One can also seek the curve of smallest length which encloses a
fixed area; presumably the answer to this “dual” problem is also a circle. We
should also mention the problem of Dido, to find the curve of fixed length
between two points P and Q which, together with the straight line between P
and Q, encloses the largest area; the expected answer is an arc of a circle. These
classical problems have given rise to a whole class of problems in the calculus of
variations, known generically as “isoperimetric problems”. To illustrate this sort
of problem we will, for simplicity, stay in dimension 1. Consider two functions

F:RxRxR—->R and G RxRxR—R.

For a function f: [¢,b] - R we define
b
J(f)=/ F(, f(0), f'(0) dt

b
K(f) = / G, (), () dr.

Among all functions f: [a,b] — R with fixed values at @ and b, and a fixed
value J(f) = C. we seek the one which maximizes or mmimizes K(f). The
“dual” problem is to find that f with fixed values at @ and b, and fixed K(f) =
C’. which minimizes or maximizes J( /). This problem is approached by gen-
eralizing the methods which work for the corresponding problem in ordinary
calculus. a review of which is now in order.

Suppose we are given two differentiable functions j, k : R” — R, and we seck
the maximum or minimum of j on the set k~'(C). The method of “Lagrangian
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multipliers” states that if j attains its maximum or minimum on k~1(C) at the
point p, and p is not a critical point of k, then there is a number A such that

3 ok
| —(p)=r— j =
1y 8x,-(p) 8x,-(p) i=1,...,n.

The proof of this assertion has already been outlined in Problem 3-3, but it 1s
so crucial to the present discussion that it will be repeated here. We note that
the hypotheses on k imply that in a neighborhood of p, the set k='(C) C R" is
a hypersurface M, and that k,(X,) = 0 for X, € R", precisely when X € M).
Every such X, is ¢/(0) for some curve ¢ in M. It follows that j(c(¢)) has a

M =k7(C)

maximum or minimum at ¢ = 0, which means that j«(Xp) = 0. Thus the two
linear functions Jjx, k«: R"p — R have the property that ker ki C ker jy. This
implies that j, = Ak, for some A, which is equivalent to equation (.

Notice that if k attains its maximum or minimum on g~ !'(C’) at ¢, and ¢ 1s
not a critical point of j, then there is a number u such that

k. 9j
(2) a—i(q) = ua—);(q)-

Equations (1) and (2) are equivalent, since A,y # 0 (as p and g are not critical
points). Thus, if p is a maximum point of g on k~1(C) and we set C' = j(p),
then p is at least one of the candidates for the minimum point of k& on JHC).
If we simply look for critical points for j on k~1(C) and for k on j~(C"), then
these two “dual” problems are completely equivalent.

Let us apply these ideas to our two functions J and K. Suppose that the
maximum or minimum of J on K~1(C) occurs at a C 2 function f which is
not a critical point of K. Consider any variation «: (—é&,€) X [a,b] > Rof [
which keeps endpoints fixed. We know from formula (%) on pg. 1.319 that
dJ(c?z(u))/a’u|u=0 depends only on the function da/9u(0,7) on [a,b]. For any
C? function W on [a,b] with W(a) = W(b) =0, we define

dJ (@(u)) for any variation & of f

TreW) =401, with da/du(0.0) = W().
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Notice that there always is a variation o with this property, for example,
a(u,t) = f@t) + uW(r).

The same W can be used to give a variation of any function f, so the “ f” in the
symbol Jr.(W) is important. Nevertheless, since we will be considering only
one f, we will usually write simply J,(W) for convenience. We define K,(W)
in precisely the same way. We thus have functions J,, Ky V — R, where V is
the vector space of all C? functions W on [a, b] with W(a) = W(b) = 0. We
claim that J, (and likewise K,) is linear. To see this we choose two variations o
and a, with
%(0,1) = Wi(@),
u
and define the variation « by

a(u,t) =op(u,t) +ay(u,t).

Then 5
;@nzmm+%w
u
SO
4G
5y 1y = L)
u u=0
_d@w)| I @w)
- du u=0 du u=0’

as one sees by inspecting formula (%) on pg. 1.319,
= J*(Wl) + J*(WZ)

Homogeneity is proved similarly.

We now make the following

CLAIM. If K,(W) =0, then W = 0a/0u(0,t) for some variation o
with the property that each @(u) is in K~'(C).

Remember that, by hvpothesis, f is not a critical point of K. From a modern
point of view, our claim seems especially reasonable, for the set of all C? func-
tions ¢: [a,b] — R, with given values at @ and b, forms an infinite dimensional
manifold, and in a neighborhood of f the set K~!(C) should be a submanifold
of codimension 1; each “tangent vector” W at f with K,(W) = 0 is a tangent
vector to the submanifold X~1(C) and should therefore come from a “curve” &
in K~(C). The classical argument runs as follows.



Variations of Length, Area, and Volume 297

13. LEMMA. If K(f) = C, where the C? function f is not a critical poimt
of K, and K,(W) = Ky (W) =0, then W = da/du(0,1) for some variation
with the property that each @(u) 1s in K~1(C).

PROOF. Since f is not a critical point, there is W; with K,.(W;) # 0. Let
L:R?>— Rbe
L(r,s) = K(f +rW + sW)).
If we define
Blu,1) = ft) +uWi (),
then B is a variation of f with df/du(0,r) = W;(r) and Bw)= f+uW. So

KU b = KU 0L,

K, (W) = lim
u—0 U

Similarly,
oL
K. (W) = 8_(0’ 0).
r
Since
L(0,0)=K(f)=C

aL
as

the implicit function theorem shows that there 1s a C? function r — s(r), from
a neighborhood of 0 in R to a neighborhood of 0 in R, such that

) C=Lrs(r)=K(f+rW+s(r)W)) for small r.

Notice that the first part of the equation gives, upon differentiating with respect
tor,

dL aL , , ,
0=--00.0+ =5 (0,005°(0) = K (W) + K (W))s'(0) = K (W)s'(0),

and hence
s'(0) =0.

Thus. if we define the variation o by
a(u,t)y = f(t)+uW(r) + s@)Wi(r).

then each a(u) = f +uW 4+ s(@)W) is in K~1(C) by (). and also

9
a—z(o.r) — W)+ s OWi (1) = W(). %
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14. THEOREM (EULER’S RULE). If the maximum or minimum of J on
K~'(C) occurs at a C? function f which is not a critical point of K, then there

is a number A such that f is a critical pont of J —AK (and consequently the
Euler equations for J — AK hold for f).

PROOF. Consider the two linear functions J4, Ky: V. — R. If K (W) =0,
let & be the variation given by Proposition 13, with all @(#) in K~!(C). Since the
maximum or minimum of J on K~1(C) occurs at f, the function u + J(@(u))
has a maximum or minimum at 0, and consequently

dJ(a(u))

u=0
Thus ker K, C ker Jx. The vector space V is infinite dimensional, but it sull fol-

lows (Problem 3-2) that there is a number A with J, = A K, which is equivalent
to the assertion that f is a critical point of J — LK. «»

In Problem 1.9-19, we showed that the Euler equations actually make sense
and hold for a critical function of J which is only known to be C'. A similar
result holds for Euler’s Rule; because this strengthened form of the rule will be
so important for us, the details of the proof will be given here.

Let f be a C! function on [a,b], and let W be a C! function with W(a) =
W(b) = 0. Since we no longer have equation (xx) on pg I.319, we can no
longer define Jr.(W) quite as before. Instead we define

dJ(a(u))
du

b
u=0

JAW) = Jp (W) =

where o is the particular variation
au,t) = f(t) +uW(r).
The formula in Problem I.9-19 shows that

b oF ‘ tOF )
J*(W)=/ W/(f)[a—y(f,f(t)hf/(t))—/ 5?“’ f, f (t))dt} dr.

We define K, (W) similarly. Itis clear that J, and K, are linear. Notice thatif f
is a critical point of K, in the sense that dK(a(u))/du |u=0 = 0 for a/l variations o

keeping endpoints fixed, then surely K, (W) = 0 for all W. Conversely, suppose
that K,(W) = 0 for all W. Then Du Bois Reymond’s Lemma (see Problem
[.9-19) shows that

3G L 3G
PO f(t),f/(t))—f = f @), f1(@)dt = c,
) a Ox
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for some constant ¢. So for any variation @ keeping endpoints fixed we have

(pg 1.355)
dK(a(u))
du

b 52y do da
= el = - —(0
. c S 0,2)dt = c[au(o,b) au( ,a)]
=0-0.

Thus / is a critical point for K if and only if Ky,(W) = 0 for all W.

13". LEMMA. If K(f) = C, where the C! function f is not a critical point
of K, and K,(W) = 0, then W = da/3u(0,1) for some variation ¢ [not of the
special sort considered above] with the property that each a@(u)isin K~1(C).

PROOF. The proof of Proposition 13 goes through unchanged; all variations
constructed in the proof are of the special sort considered above, except for the
final variation a. ¢

14. THEOREM (EULER’S RULE FOR C' FUNCTIONS). If the maxi-
mum or minimum of J on K~1(C) occurs at a C! function f which is not a
critical point of K, then there is a number A such that f is a critical point of

J — XK (and consequently the Euler equations for J —A K make sense and hold
for f, by Problem I1.9-19).

PROOF. Let ‘W be the vector space of all C! functions W on [a, b] with W(a) =
W(b) = 0, and consider the two linear functions J,, Ky: W — R. If K.(W) =0,
let @ be the variation given by Proposition 13’. Then the function u — J(a(u))
has a maximum or minimum at 0, and consequently
dJ@w))
N du

u=0

b OF tOF
=/'Wm{@mfme»—/gﬂumxﬂmmﬂm
by Problem 1.9-19
= J.(W).

Thus ker K, C ker J,. So there is a number A with J, = AK, on 'W. This
means that

/ W(z)[ (1. 1), f(z))—/ o f(t)f(t))dt]

t
- f W [—(z,fm,f’(z))— / a—G(z,fm,f’(z))dz] dr
a a_}' a dx
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for all W € 'W. Du Bois Revmond’s LLemma then implies, as in the argument
preceding L.emma 13, that f is a critical point of J — AK. «

Notice that, as in the simpler case of functions on R”, the dual problem has
exactly the same critical points as the original.

Given a certain amount of trust, that similar results hold for functions f': [a, b]
— R™, we can finally tackle the classical isoperimetric problem. Consider an
imbedding f: S' — R? and let a: (—&,6) x S — R? be a variation of f
through imbeddings. For the length L(&(u)) of @(u)(S') we have, by formula (I)
on page 293,

dL(a(u))
du

= —/ (W,n)ds
u=0 St

= —/ (W,n) -« ds,
S1

where n is the principal normal of f and « is the curvature of f. For the area
A(a(u)) bounded by a(u)(Shy we casily derive, from formula (II) on page 293,

dA@ (1))
du

= (W,n) ds.
u=0 A

We want to find the imbedding f: S' — R? which maximizes A4 for fixed L.
Since f(S') cannot lie on a straight line, / is not a critical point for L. There-
fore Euler’s Rule shows that there is some A with

0=/ (Wonyds + X | (W.n) - -«ds
81 s1

:/ (W.m)[1 + Ax] ds,
S

for all variations W. It clearly follows that we must have 1 + Ak = 0, so x must
be a constant. —1/A. and f must be an imbedding as a circle.

[It is perhaps worth pointing out that for this problem one can give an el-
ementary proof that if L,(W) = 0 for some W, then there is a variation
a: (—e.€) x S' - R? of f with da/du(0.1) = W. for which each @(u)(S!)
has length L(0). In fact. if B is any variation with 98/01(0.7) = W(z). then we
can set
alu. 1) = % - Blu.t) € R?, L(u) = length of B(u)(S").
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We have
da B, L0
ap . ,
= —(0,1), since L'(0) = L, (W) =0;
ou
and
oy LO) —
length of @(u)(S") = L) length of B(u)(S")
L) . _
= _—L(u) L(u) = L(0),

as desired.]

We can also apply Euler’s Rule to the dual problem of finding the imbedding
f:S' — R? which minimizes L for fixed A. Since no f can be a critical
point for A, we find once again that f(S") must be a circle. Finally, consider
the problem of Dido, to join two fixed points P and Q by a curve ¢ of fixed
length L > d(P, Q) so that the area enclosed by ¢ and the line segment PQ
is a maximum. We consider an imbedding f: [a,b] & R? with f(a) = P
and f(b) = Q, and let a: (—¢,¢) x [a,b] — R? be a variation of f through
imbeddings. For the length L(@(u)) of @(u)([a,b]) we have, by formula (I) on

dL(a(u))

page 293,
b
— | (W,n)-«ds,
du u=0 */a

while for the area A(@(u)) bounded by &(u)([a,b]) and PQ, formula (II) on
page 293 reduces to

dA(a(u))

b
i u=0:/q (W,n)ds.

Euler’s Rule shows, once again, that f must have constant curvature, so that
£ ([a, b]) must be an arc of a circle. We find the same result for the dual problem.

There are, unfortunately, two difficulties with our solution of the isoperimetric
problem. We have been working with C ! curves, and we could have obtained
similar results for piecewise C! curves with a little more effort. But the obvious
class of curves to consider for the isoperimetric problem is the class of rectifiable
curves, the curves with finite length (defined as the least upper bound of the
lengths of inscribed polygonal curves). Moreover, we have merely found that
the circle is the solution of the isoperimetric problem if a solution exists; we have
not proved that the circle actually is a solution.
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Although this will lead us astray from the righteous path of differential geom-
etry, at this point I cannot resist the impulse to mention one of the extremely
clever solutions of the isoperimetric problem, involving no assumptions about
differentiability, which was given by the great geometer Steiner. Note first that
we might as well restrict our attention to convex curves, because the convex hull
C* of a nonconvex curve C has smaller length and encloses a larger area—a
suitable region C** similar to C* will then have the same length as C, and yet
still larger area.

Let us therefore consider a convex curve C which is not a circle. We will show
that it cannot be a solution to the isoperimetric problem. Choose two points A
and B on C which divide C into two curves Ci and C; of equal length, and let
R; be the region bounded by C; and the line segment AB. We can assume that
area R| > area R,; we claim that we actually have area R; = area R,. To prove

this, we reflect region Ry in the line 4 B, obtaining a region R;’ on the opposite
side. Then R;U R’ has area > the area of R;U R3, while its circumference is
the same. If C is a solution to the isoperimetric problem, then we must actually
have area R; U R’ = area R; U Ry, so we have area Ry = area R;’ = area R;.

Now since C is not a circle, we can choose 4 and B so that neither C; nor (2
is a semi-circle. Since area R; = area Rj, the region Ry U R’ with boundary
Cy U €y’ will be another solution to the isoperimetric problem, and it will also
not be a circle. In other words, we can assume that C is symmetric with respect
to AB.

Now there is a point P on Cy such that ZAPB is not a right angle; let Q be
the symmetric point on C. The region inside C is made up of the quadrilateral
APBQ together with 4 regions T1, ..., T4 as shown in the left half of the figure
on the top of the next page. In the right half of this figure we have drawn



Variations of Length, Area, and Volume 303
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a quadrilateral APBQ with AP = AQ = AP = AQ and BP = BQ =
BP = BQ, but with ZAPB and ZAQ B both right angles. Then on AP we
have drawn a region T} congruent to the region Ty in part (a), and regions
T, ..., T4 have been drawn similarly The new figure clearly has the same
mrcumference as the original curve C. On the other hand, it has larger area,

since the quadrilateral APBQ clearly has larger area than APBQ. Thus C
could not be a solution to the isoperimetric problem. This completes the proof
that a circle is the only curve which can be a solution to the isoperimetric
problem.

This ingenious proof, although it assumes absolutely nothing about the dif-
ferentiability of C, still has a defect, which, to be sure, Steiner would never have
worried about. This proof, like our previous one, shows only that the circle is
the solution of the isoperimetric problem, if a solution exists. In Blaschke {1}, {2},
one can find many rigorous solutions of the isoperimetric problem which avoid
this pitfall by showing that for a closed curve of length L, enclosing a region
of area A, we always have L? — 474 > 0, with equality only when the curve
is a circle. These proofs exhibit various degrees of ingenuity and elegance, but
there is also a straightforward, if somewhat lengthy, direct proof of existence,
which will be useful for us to examine.

Let (X,d) be a bounded metric space, and let C(X) be the set of all non-
empty closed subsets of X. The distance d(x,C) from a point x € X to a
closed set C € C(X) is defined as

d(x,C) = mmd(‘f ),

and we define the e-neighborhood V¢(C) of C as
V(C)=1{x:d(x.C) < ¢}.
Given (1, Cy € C(X). we then define

p(Cy.C2) =infle > 0: Gy C Ve ((2) and Gy C Ve (1)}



304 Chapter 9

It is easy to check that p is a metric, the Hausdorff metric, on C(X). When X
is compact, the corresponding topology on €(X) depends only on the topology
of X, not on the given metric d, since any neighborhood of C € €(X) contains
an e-neighborhood.

15. PROPOSITION. If (X,d) is compact, then so 1s (C(X), p).

PROOF. Given ¢ > 0, choose a finite number of sets A4;,..., A, of diameter
< ¢ which cover X. For each finite set F C {1,...,n} let

Ar={C eCX):CNAj #0 <> jeF}.

Then the sets Afr cover C(X) and have diameter < 2¢. This shows that
(C(X), p) is totally bounded.

Now let Cy, C,,. .. be a Cauchy sequence in (C(X), p). Let C be the set of
all x € X such that every neighborhood of x contains points from infinitely
many C,. The set C is non-empty, for if x, € C, and x is an accumulation
point of the sequence {x,}, then x € C. It is also clear that C is closed. We
claim that C = lim C,. Given & > 0, we first show that the C, are eventually
in the open e-neighborhood Vi (C) of C. For suppose that an infinite sequence
Ci,»Ciy, ... intersected the compact set X — Vg(C). Then we could choose
xi, € Ci, N[X — V;(C)]; some point x € X — V,(C) would be an accumulation
point of the sequence {x;, }, hence x € C, a contradiction. We also claim that C
is in V,(C,) for sufficiently large n. In fact, since C, is a Cauchy sequence,
there is some N such that C,, C Vg/2(Cp) for all m,n > N; this implies that
Ve/2(Cm) C Ve(Cy) for all m,n > N. Soif n > N and C 1s not contained in
V,(Cy,), then also C contains a point which is not in V;/2(Cy,) for all m > N,
which is clearly impossible. <

We will apply this result to the case where X is a closed disc in R%. The set
Con(X) C C(X) consisting of all non-empty closed convex subsets of X is easily
seen to be a closed, and hence compact, subset of C(X). If 4: C(X) — R
is the function A(C) = area of C (= Lebesgue measure of A, say), then 4 18
clearly continuous. Define L: Con(X) — R by L(C) = length of boundary C.

16. PROPOSITION. The function L: Con(X) — R is continuous.

PROOF. Tt p(Cy,C3) <&, then Gy C (1 +¢)-Cyand Gy C (1 +¢) - (i, 50 the
result follows from
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17. LEMMA. If y, and y, are convex curves with y; contained inside y,, then
length y; < length y,.

PROOF. The following picture shows that if P is a polygonal arc inscribed

in y;, then P is shorter than some polygonal arc P’ inscribed in y,. <

It is now an easy matter to prove the existence of a (convex) curve, with fixed
length Lo, of maximum area: We can clearly restrict our attention to convex sets
contained within a closed disc X of radius Lo; then the set L' (Lg) C Con(X)
is a closed subset of the compact space Con(X), so the continuous function A4
takes on its maximum somewhere on the set. This proof of existence, together
with Steiner’s argument, rigorously solves the isoperimetric problem. The dual
problem can be handled similarly. Its solution is also contained in our solution
of the original problem, for we now know that the relation L2 —4r4 > 0 always
holds, with equality only for circles, and this proves that the circle is also the
solution of the dual problem. It is also easy to derive this fact from the solution
of the original problem by using the similarities of the plane. Finally we mention
that the problem of Dido can be settled by similar methods; for instance, we
can consider the space of all closed convex sets which have a given line segment
PQ as part of their boundary.

I would now like to discuss briefly a line of argument which could be used
if Steiner’s argument were not available, and we had to rely solely on Euler’s
Rule. Clearly the only problem is to show that the solution of the isoperimetric
problem (whose existence we can prove) must be a C ' curve. The first step
would be to show that the solution curve has a tangent line everywhere. Now it
is well-known (Problem 2) that a convex function always has left- and right-hand
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derivatives, so we just have to show that our convex curve has no corners. If
our curve actually contained two straight line segments 4B and AC meeting
at an angle at A4, then it would be easy to show that it is not a solution to the

A

isoperimetric problem. For the two segments could be replaced by an arc of
a circle with equal length, but enclosing larger area, since such an arc 1s a so-
lution to the problem of Dido. One doesn’t really need the whole solution to
the problem of Dido to reach this conclusion, however, for a simple calculation
will show that the appropriate arc together with line BC encloses more area
than triangle 4 BC. (If we had worked out the calculus of variations argument
for piecewise C! curves we would have another way of seeing that the two seg-
ments can be replaced by some nearby curve of the same length, but enclosing
larger area.)) In the general case, the same idea can be made to work by an
approximation argument.

Now it is also easy to see (Problem 2) that if a convex function is everywhere
differentiable, then its derivative is automatically continuous. This shows that the
solution to the isoperimetric problem must be a C ! curve; Euler’s Rule then
leads to the conclusion that it must be a circle.

As differential geometers, we naturally think of generalizing the isoperimetric
problem to an arbitrary surface M. Given a variation «: (—¢,¢) x S! — M of
amap f: S' > M we now have

dA@w)|

dn |, —/SKW*')"S’
dL@w)|
|, —/SKWWS

= —f (W,a)kg ds,
Sl
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where u is the second member of the Darboux frame for f, and kg is the geo-
desic curvature of /. These formulas, together with a few ruthlessly suppressed
details which are necessary to transfer Euler’s Rule from R” to manifolds, show
that if f maximizes A for fixed L, then there is a constant A such that

0=f (Wou)yds+ X4 | (W, u)kgds
S! S!

=f (W,u)[1 + Ak, ds
Sl

for all variatons W. This implies that f has constant geodesic curvature. The
geodesic curvature was first invented by Minding, in 1830, when he obtained
this solution (for the problem of Dido, rather than the isoperimetric problem).
Minding dealt with surfaces in R?, and defined k, extrinsically, but he then
showed that it was a bending invariant; its present name was given it by Bonnet,
in 1848.

A rigorous discussion of the isoperimetric problem on an arbitrary surface M
is considerably more complicated than for the plane, if for no other reason than
because the problem itself is more involved. First of all, Euler’s Rule is not
always applicable, because there might be closed curves which are geodesics,
and consequently critical points for L. For example, on the surface M shown
below, the equator C of the smaller spherical part is not a critical point for

area among all curves with length equal to L(C). We can obtain a variation o
of C by moving C up distance # along geodesics perpendicular to C, and then
adding on a bulge to bring the length up to L(C). Then A(u) — A(0) is greater
than the area of M enclosed between two parallel planes at distance sin u (see
the third picture above), so

A(u) — A(0) > sinu

and consequently 4'(0) # 0.
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The figure below shows a curve C’ on M, with L(C’) = L(C), which &5 a
critical point for A among curves with this length. If we accept the fact that

’
' 5

c\,

a circle is a solution to the isoperimetric problem on the sphere, then C’ must
be a solution to the isoperimetric problem on M. Of course, we really have to
decide which of the two regions of M bounded by C’ should be maximized; if
we take the top region, then C’ actually minimizes. The necessity of making
this decision correctly is further illustrated by the fact that there is another curve
C” higher up with length L that is also a critical point for 4 among curves of
this length. In fact, if we make the wrong decision we might be led to say that
there are curves of length L bounding regions with area arbitrarily close to that
of M. This becomes quite critical if there is a closed curve of length L which

curve of given length L
bounding region of
large area

divides M into two pieces with the same area, as may happen for example on
a sphere.

I also suspect that in some cases the solution of the isoperimetric problem will
have to be a curve which intersects itself; as in the following picture; notice that

JAVA
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we want the curve to go around as much as possible of the part of the surface
with large curvature.

Finally, we point out that on most surfaces there will be just a few solutions
of the isoperimetric problem, and that they may be completely different curves.
In this respect the problem of Dido is more natural on a general surface; given
a geodesic segment y from P to Q, we would expect that among all curves ¢
from P to Q with given length L > d(P, Q) there is just one on each side of y
which maximizes the area enclosed by y and c.

I think that a reasonable approach to the isoperimetric problem on a compact
surface M is to consider only lengths L so small that a closed curve of length L
must be contained in a geodesically convex set. It is then clear that our solution
must be the boundary of a geodesically convex set, and there is no problem
deciding which region it bounds. All our previous considerations can be suitably
modified to show that a solution of the isoperimetric problem exists and is C',
so that it must have constant geodesic curvature. This proves, in particular, that
there are closed curves of constant geodesic curvature; proving this result directly
seems almost hopeless. By the way, it is a classical theorem that if every curve
of constant geodesic curvature is closed, then M must have constant curvature
(Blaschke {1}).

In this connection, an interesting experiment can be performed with a soap
film on a wire loop. If a small loop of thread held between two thin sticks is
dipped into the soap solution, it can then be thrust into the soap film without
breaking it. If the part of the soap film inside the thread is then broken, and

thread

the sticks are removed, the thread should take a form which is a solution to the
isoperimetric problem on the soap film. When one tries this experiment it turns
out that, unless the wire loop is very flat, the string always rushes off toward
the wire loop. no matter where it is placed. I take this to mean that there
are no curves of constant geodesic curvature on a non-flat minimal surface,
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but I haven’t the slightest idea how one would prove it. [Actually, as Osserman
pointed out to me, the experiment involves a rather more complicated problem,
since the shape of the surface changes as the thread moves.]

For our next application of Euler’s Rule we will work only in R?, and consider
the 3-dimensional isoperimetric problem, to find the surface of fixed area A
which encloses the greatest volume. Consider an imbedding f: $? — R?, and
let a: (—&,€) x §2 — R3 be a variation of f through imbeddings. For the area
A(a(u)) of @(u)(S?) we have, by formula (I) on page 294,

u=0 §2

- —/ 2H(W,v) dA,
SZ

dA(&(w))
du

where v is the normal of f(S?) and H is the mean curvature. For the volume
V(@(u)) enclosed by @(u)(S?) we have, by formula (II) on page 294,

=‘/ (W, v)dA.
u=0 S2

We want to find the imbedding f: $? — R3 which maximizes V for fixed A4.
Since the compact surface f(S?) cannot have H = 0 everywhere (Corollary
7-31), / is not a critical point for A. Therefore Euler’s Rule shows that there is
some A with

dV(a(u))
du

0:/ (W,v)dA + A 2H(W,v)dA:/ (W, v)[1 + 20 H]d A
S2

S2 S2

for all variations W. It clearly follows that f(S 2y must have constant mean curvature.

At this point we encounter new difficulties, for we first have to find all the
surfaces of constant mean curvature. This particular problem is interesting of
itself, quite apart from any connection with the isoperimetric problem. For one
thing, such surfaces are the possible shape for soap bubbles—the increased air
pressure within the bubble naturally makes it take a form which maximizes the
enclosed volume. We already know (Theorem 5-3) that a convex surface with
constant mean curvature must be a standard sphere. H. Hopf [l] proved that
an immersed surface homeomorphic to S? with constant mean curvature must
be a standard sphere. The proof of this is deferred to Addendum 2, since it
uses the existence of isothermal parameters, which is proved in Addendum 1.
Alexandrov [1] proved that any imbedded compact hypersurface of R"*! with
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constant mean curvature must be a standard sphere; this proof is presented in
Addendum 3. Alexandrov’s theorem holds just as well for hypersurfaces in the
hyperbolic space H™ or in an open hemisphere of $"+!'. It definitely fails
even for surfaces with H = 0 in the sphere $3, as we mentioned on page 294.

It was long unknown (Hopf’s Problem) whether every immersed compact hy-
persurface with constant mean curvature is a standard sphere, and although
this was widely suspected to be the case, the previous edition of this volume
mischievously suggested that “some one may some day blow a soap bubble n
the shape of an immersed torus”. As far as I know, no one has yet done that,
but in 1986 Wente [1] proved that there are indeed immersed tori with constant
mean curvature. His detailed proof combined methods from complex analy-
sis and recent results on partial differential equations. Noting symmetries in
computer-generated pictures of such immersed tori, Abresch [1] searched for
examples with one family of planar curvature lines, and was able to reduce the
problem to an ODE that can be solved explicitly in terms of elliptic functions.
Finally, Kapouleas [1], [2] proved that other surfaces could also be immersed
with constant mean curvature.

At first sight the isoperimetric problem seems easier, since it seems that a
solution ought to be convex. Proving this directly seems almost hopeless, how-
ever, for the boundary of the convex hull C* of a set C in R* may well have
larger surface area than the boundary of C. Of course, the volume of C* is also

AXE

larger than that of C —the big question is whether it 1s larger by enough. In
Blaschke {2} there is a proof that the sphere is the solution to the isoperimetric
problem provided that we restrict our attention to convex sets. In the general
case there is such an overwhelming multitude of problems, not least of which is
the difficulty of defining surface area, that we will say no more about the problem,
merely referring the interested reader to the bibliography.

To conclude this rather disconnected series of remarks, we shall very briefly
discuss a problem which requires for its solution even more elaborate machin-
ery than any yet mentioned, but which is of much greater interest to differential
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geometry. In his investigations of the “three body problem”, Poincaré was led
to consider simple closed geodesics on a compact convex surface M C R3.
Poincaré gave a rather long proof that at least one simple closed geodesic exists
on M, and then outlined a much more direct argument for the same conclu-
sion. Although many (probably hopelessly difficult) subsidiary results would be
required to make this argument into a complete proof, it is nevertheless an in-
teresting application of Euler’s rule for isoperimetric problems. We notice first
that 1f ¢ 1s a simple closed geodesic on M, then Theorem 6-5 implies that v o ¢
divides S? into two regions each of area 2. To establish the existence of such
a geodesic, we will consider the set of all simple closed curves y on M such that
v oy divides S? into two regions of equal area, and then among these choose
one, ¢: S' — M, of shortest length. We claim that ¢ must be a geodesic. To
prove this we consider a variation a: (—¢,e) x S' — M of ¢. For the length
L(a(u)) of a(u)(S') we have, by the formula on page 307,

dL(x(u))

(1) T

=—/SI(W,u)-Kgds.

u=0

Now extend f toamap f: D — M, of the unit disc into M, so that f(D) is
one of the regions bounded by f(S"); extend @ to a mapo: (—&e)x D —> M
similarly. Let A(@(u)) be the area of the image v(@(u)(D)) C S2. Then

A(a(u)) = / KdA,
a(u)(D)
where dA is the volume element of M and K is the Gaussian curvature of M.

It certainly seems reasonable that we should have

dA(a(u))

@) du

= | (Ko f){W,u)ds,
St

u=0

for A(a(h)) — A(@(0)) is the integral of K d A over a small band around f(ShH
whose width is given approximately by the function (W, u). To prove this rig-
orously. we write A(@(u)) as

A(a(u)) = / [Kcau)] - T'(u). ') =a@u)*dA.
D

Then

dA(a(u))
du

d
u=o AU

/[ch(u)]-r(u)
u=0JD
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il )
=/ [(— Koo‘z(u)i\-F(O)+/(ch)-F(O)
D ({u u=0 D
by Leibnitz’s Rule

-J,La

+ | (Ko /HY(WT(0) by Theorem 11
St

Kc&(u)] -T'(0) - / (Ko fYW.u)['(0)
D

u=0

=/S,(Kof"(WJ r()
=] (Ko f) - (Wu)ds.
Sl

Now if our curve ¢ is a solution to the isoperimetric problem of minimizing L
for fixed A = 277, then Euler’s rule says that there is a constant A such that

0=/ (W w)[AM(K o f) —kglds
St

for all variations W. This implies that kg = A(K o f). On the other hand,
applying Theorem 6-5 to f(D) C M, we obtain

—/ KgdS+27T=/ KdA=2m,
St f(D)

and thus
0:/ Kgds =X (Ko f)ds.
Si St

So if M has K > 0 everywhere, then we must have A = 0, and thus «; = 0;
consequently, ¢ is a geodesic.

In Blaschke {1; pp. 211-212} there is a further argument, due to Herglotz, to
show that M actually contains at least 3 closed geodesics. ! lowadays, all such re-
sults are proved by quite different. rigorous methods, of far greater generality—
see Klingenberg {1}.



314 Chapter 9, Addendum 1

ADDENDUM 1
ISOTHERMAL COORDINATES

As we mentioned in Volume II, the existence of isothermal coordinates on
any surface was first proved by Gauss, who resorted to a trick that works only
in the analytic case. Although we will treat the more general case also, Gauss’
proof will be given first, as it is interesting in its own right. First we need to
review some facts about differential equations. The equation

yi(x)= f(x,y(x))

is written classically as
dy
-5 = X, L]
=)
or even as

dy — f(x,y)dx =0.

Most elementary differential equations courses indicate that one method of solv-
ing this equation is to find an “integrating factor” for it, that is, a nowhere zero
function A such that A(dy — fdx) is exact, say

AMdy — fdx) = dg.

Then the solutions of the original equation are the same as the solutions of
dg =0, i.e., the curves g = constant. For example, to solve the equation

0= (x2y+x)dy+ (xy? — y)dx
=xdy — ydx+ xy(xdy + ydx),
we multiply by 1/xy, to obtain
dy dx
0= = 4Ly,
y ooox

with the solution
log »(x) —logx + x - y(x) = constant,

As a more interesting example, we consider the general first order linear equa-
tion

dy
ey =vix),
dx
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which we write as
[p(x)y — ¥ (x)]dx +dy =0.
In order for

)@ (x)y — M) Y (x)] dx + A(x) dy

to be exact, we need

d
P()y MY ()] = dr
y dx

or

dA dA
Mx)p(x) = - = 5= P (x)dx

=
- log)\:/qﬁ
= A:ef¢.

So we write our original equation as
d
S ety y = el
dx
which gives

L (el2y) = winel?,
ef¢y=/ef¢1//+C,

y=e—f¢(/ef¢1//+C).

315

Of course, only in the most fortuitous cases can one find an integrating factor
by inspection. What is theoretically more interesting is the observation that for

any 1-form

(%) w=adx+ Bdy

on R? with a(po),B(po) # 0, an integrating factor exists in a neighborhood

of po. To prove this, we consider the differential equation

(%) yix)=- é(x, y(x)).
(07
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Since —(B/a)(po) # 0, the integral curves of this differential equation form
a foliation in a neighborhood of py and there is a diffeomorphism 4 from a

<

neighborhood of pg to R? such that the integral curves go into the sets with 274
coordinate constant. Let

g(p) = 2 coordinate of h(p).

Then

tangent space at p of the solution curve

kerdg(p) = of (x+) going through p

kerw(p).

This proves that
dg(p) = A(p) - w(p)

for some A(p) £ 0.
Inn Problem I.6-9 we showed that the differential equation

Vi) = S () (" = complex derivative)

can always be solved if /1 C xC — C is complex analvtic. From this we easily
conclude, by modifving the preceding argument, that if @ and g arc complex-
valued functions on R? which are the restrictions of complex analytic functions
on C?. and a(po). B(po) # 0. then there i1s a complex-valued function A in a
neighborhood of pg such that

AMadx +Bdy)=dg

for some complex-valued function g: both A and g are the restrictions of com-
plex analvtic functions on C2. Now we can prove
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18. THEOREM. Let { , ) be a Riemannian metric on a neighborhood V' of
0 € R? whose components g;; with respect to the standard coordinate system
on R? are C? (= real analytic). Then there exists a C* isothermal coordinate
systern for ( , ) in a neighborhood of 0.

PROOF. Let X, X> be a C? orthonormal moving frame in a neighborhood
of 0, with dual 1-forms 6',6%. Then
(,)=0'®60'+60*®6%
and consequently the corresponding quadratic function || ||? can be written as
| 12=06" 6"+ 6% 6%
Let ¢ be the complex-valued differential form
¢ =0"+i6%, with ¢=0"—ib"

Then B

I =¢-¢.
If we construct Xy, X explicitly by applying the Gram-Schmidt orthonormal-
ization process to B/Bx',a/axz, then the coeflicients of X7, X2 will appear as
algebraic combinations of the gij. The same 1s thus true of 6',62%. Since the
gij are C, and hence the restrictions of complex analytic functions on C?, the

same is true for 81,62, So by the remark preceding the theorem, there is a
complex-valued function A such that

Ap=dg = rp=dg

for some complex-valued function g. This implies that

MNP =AAg - ¢ =dg - dg,
so that |

|12 = —dg - d3.
. E

If we write g = u+iv for real-valued u and v, then the Jacobian of (u,v): R? —
R? is not zero, for if it were, then dg would be zero, and hence || ||> would be
zero. Now

dg -dg = du -du + dv - dv,
)

1
2= = (du-du+dv-dv).
I AA( )
By polarization,
1
, )= —= (du®du+ dv®dv).
() M( )

The functions # and v are C® since g is the restriction of a complex analytic
function on C2. Thus (1. v) is the required C* isothermal coordinate system. ¢
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The proof of Theorem 18 when the g;; are not C* will be much more in-
volved. First we introduce some new classes of functions. A function f: R* —
R™ is said to satisfy a Hélder condition of order ¢ (0 < @ < 1) on U C R" if
there is a constant K such that

lf(p)— f@I <K-|p—ql® for all p,q € U.

Such functions are called C* functions, and a function f is C"* if all mixed
n™ order derivatives of f exist and are C%. We will eventually show that if
the g;; in Theorem 18 are C?, then there is a C'*® isothermal coordinate
system in a neighborhood of 0. We will also show that if the g;; are C" then
this same coordinate system is C"*1+%; in particular, if the g;; are C*®, so is
the coordinate system. There need not be a C! isothermal coordinate system
when the g;; are merely C°® (= continuous).

The condition that (u, v) be isothermal is

Zg,-j dx' @ dx’ = ( ,) = Mdu ® du + dv ® dv), some A > 0.
ij

To derive explicit equations for # and v, it is easiest to consider the dual metric
( ,)* on T*R?, which must satisfy

e (1) o(&) =
l_jg dx! ax/ R

Denoting (x', x?) by (x,»), setting

iy a b
(gj)_(b (_)a

and applyving our equation to the pairs (du,du), (dv,dv), and (du,dv), we
obtain

1

hi hi hi

(h auy” +2buuy +cuy” = - =avy” + 2bv vy + L'vyz
A

(2) atix U + 01 vy + 1505) + clyvy = 0.

LEquation (2) can be written

ty(avy + bvy) + 1y (bvy +cvy) =0,
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which implies that there is a function p with

uy, = plbux + cvy)
uy = —plavx + bvy).

Substituting into (1) we find that

p*(ac — b = 1.
We thus have the
Beltrami equations:
O e B U

as necessary and sufficient conditions that (#,v) be isothermal coordinates for
the metric { , ) = 37 j—; &ij dx' ® dx7.

At this point it becomes extremely convenient to introduce the notation of
formal complex derivatives. We will often denote a typical point of C = R2
by z, and z will also be used to denote the identity map z: C — €. We have
already used x, y: R2? — R for the coordinate functions on R?, so the equation
z = x + iy is a (true) equation concerning the three complex-valued functions
X,y,zon R2. Because of this equation we have

dz =dx+idy, dz =dx —idy.

Since any complex-valued differential on R2 can be written in terms of dx and
dy, it can also be written In terms of dz and dz. So for any complex-valued
function w on RZ, there are unique functions w; = dw/dz and wz = dw/az
with

dw=w;dz +wsdZ.

Substituting from the above equations, we have
dw = (w; + wz)dx + i(w; — wz) dy,

so that
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which gives

w; = %(wx —iwy) Wy = W, + W;

| , or Wz — W;
wz = 5(wx +iwy) Wy = ——.

The usual differentiation rules apply to the operators d/dz and 8/9z, and we
have

a a
E(Z):la £(Z)_O

’ (z)=0 ) (@) =1
—(Z) = —I(Z) = .
0z ’ 0z
It is also easy to check that we always have
Wzz = Wzz.

Another easily checked result 1s

The chain rule becomes

(wOC)z:(szC)'Cz‘*'(wEOC)'Z-z
(wol)s=(w08) L+ (wz o)L

[If we agree to write w; o { = wy and wz 0§ = Wy, then we have

(wOC)zsz'Cz‘*‘wE'gz
(w o)z =wg -z + wg - Lz

which looks a little nicer.]
Finallv. we note that it w = w+ /v for real-valued « and v. then the condition

1
0=w; = ;(ux +ive +iluy +iv,))

is equivalent to the Cauchy-Riemann equations

Uy = Uy, Uy = —Uyx.
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So ws = 0 if and only if w is complex analytic on U in this case it is also easy
to sce that

w, =w, the complex derivative.
Now suppose that u, v satisfv the Beltrami equations. If we set
w=u+iv,
we find that
2wsvac b2 = (b —ia +ivac—b?) v+ (c—ib- Jac=b7)v,,
2wzvac — b = (b +ia +ivac— b )ve+ (c+ib+ Vac = b2) v,

A short calculation shows that the coefficients of vy and vy on the right hand
sides of these two equations are proportional, and we have

wr c—a—2ib

Wz  ¢+a+2vac—b?

or

¢c—a—2b

= :
¢ +a+2vac—b?

() wz = fWz,

Conversely, it is easy to see that the Beltrami equations follow from (x). Notice
that if the gj; are C"t® then so arc a,b,¢ and hence . Moreover, |u| < L.
Notice also that we always have

2 2
HxUy — Uylx = |lw,|* — |wz]”.
So if w satisfies (%), then
2 2
UxVy — UyUx = Jw|“(1 — | pl%).
Since |u| < L. it follows that (u.v) has non-zero Jacobian at any point where
w; # 0.
The first major step on the road to our final result will be to prove that if g s

C® and |1(0)] < 1, then equation (x) has a C'** solution w in a neighborhood
of 0, with w-(0) # 0. In outline our proof will go as follows. We will let D(R)
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denote the open disc of radius R > 0. Suppose that f is C* in D(R). For all
z0 € D(R), define

Fay=—= [[ L axay  e=xrin

Z—ZQ

We will show that
(A) Fz(z0) = f(20).
We thus have a way of producing a function F with F; = f.
Now suppose for the moment that we have a function w satistying (). If we

define
F(zo) = // mEWE) gy 2 e DOR),

zZ— 29
D(R)
then (A) gives
F3(z0) = pn(zo)wz(z0) = wz(zo).

But this means that (w — F)z = 0, so w — F is complex analytic. Thus we have

w(zp) = // M(VZ)wZ( )d dy + g(z0),

D(R)

for some complex analytic function g. Conversely, if w satisfies this integral
equation for some complex analytic function g, then (A) shows that w satis-
fies (%), since gz = 0. We will solve () by showing that the equivalent integral
equation always has a solution.

In order to get to the proof of (A), we need a succession of simple lemmas.

19. LEMMA (GENERALIZED CAUCHY INTEGRAL THEOREM). Let
D C R? be a compact 2-dimensional manifold-with-boundary, and let f: D —

C be C'. Then
fd-=2i // fzdx dy.
aD 5
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PROOF. If f =u +iv for C! functions u,v: D — R, then

/f z:/ (u+iv)(dx+idy)=/ udx—vdy—i—i/ vdx +udy,
3D aD aD 3D

while

zz//fzdvdy—zz// (fx+lfy)dxd}~/ (= fy + if) dx dy

//( u, —vyx)dxdy + 1//(ux—vy)dxdy

The real and imaginary parts of these two expressions are equal by Stokes’
Theorem. «

Remark: We define the line integral [, f dZ as

/Cfdézfcf-(dx—idy).

It is easy to check that this definition is equivalent to the one usually adopted

in complex analysis books,
/fdz = (/fdz).
[ [

fr =(f2),

=[] o{ [ o)
D

:—21'/ fzdxdy.
D

Since

Lemma 19 gives

20. LEMMA (GENERALIZED CAUCHY INTEGRAL FORMULA). For f
and D as in Lemma 19. and z € interior D, we have

i z
F(o) = /() -——/ f(’ \dr.

7711 oD =
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PROOF. Let B(g) C D be a disc of radius ¢ around zg. Applying Lemma 19
to the function

on D — interior B(g),

// fz()d oo [ 1y / E
ap < — ~0 3B(g) = — Z0

D—int B(¢)

we have

Taking the limit as ¢ — 0, we find that

// f2(z ) d dy = f d4+2mf(70) D3
aD =

21. LEMMA. If zp € D(R), then

D(R)

PROOF. l.et D(R) be the closure of D(R) € C. Applying Lemma 20 to
Z: D(R) — C we have

1
Zo= — - — // dA dy,
2mi JoDR) £ — 2o

D(R)

and R
z R
dz = / ——dz =0,
AD@R) = — -0 DR =(z — Zo)

since the sum of the residues of R?/z(z — Zp) inside I D(R) is 0. «

22. LENIMA. If -9 € D(R), then

=

D(R)

d\ dyv + RZ.

PROOF. Since |z|> = ==, so that
9|-1?
P
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Lemma 20 now gives

R? 1 1 z
ol? = o a: - — [ dx dy,
2mi AD(R) £ — 20 T JD(R) 2 — 20
and X
R
— : dz = Rz. DX

2mi dD(R) 2 — 20
And now one somewhat more technical lemma.

23. LEMMA. Let 0 < €1,62 < 1, with &1 + &3 # 2. Then there is a constant
c(&1,¢€2), not depending on R, such that

// dxdy <« ) 1
<cle,69) ———
|z — 212781 - |z — 2} %2 ’ |21 — zp|2E1—¢2

D(R)

for all 21,23 € D(R) with z; 75 Z3.
PROOF. Let |zy — z5| = 28 and define
D,

D,
Dy = disc of radius § around z; Ds

D, = disc of radius § around z,
D3 = D(R) — (D1 U D).

Clearly

dx dy - 1 dxdy
|z =P8z =P T 82 ) [z - o
Dl Dl
| m s using polar
= — - r drdf coordinates
82—83 o o r2—s|
1 8

around o
—_ . . 8] l *
= 5 2r /0 r dr

1 5 881 2n 1
T g2-e2 CeT 5_1 - ;1— ' §2-e1—e2”
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Similarly, the integral over Dj is

2 1
< — =
- & 82—61—62

These bounds both have the desired form

1
clen ) e
Now we always have

|z —z1| €|z = 22| + |21 — 22| = |z — 22| + 26,

and consequently

z—z 25
S sty Fe
So on D3 (in fact on R? — D,) we have
zZ -2 268
:Z—Zzll B +—5_=3'
So
z—z7 |7 ' dx dy

|z — zy[4=e1—e2

e
lz =228 |z — P52
D;
< j2-e2 dx dy
|_ l|4 £1—€2
dx dy
2—¢5
= //| BT

R2-D,
. 3 using polar
<3 s’/ / perrer=3 gy coordinates
around
— 32 o 86]-%—61 2

2—81—-82

which is again of the desired form. <
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We are now ready to give the precise formulation of (A), which includes three
inequalities that are essential for proving that the equivalent integral equation
can be solved.

24. PROPOSITION. Let f: D(R) — C satisty

lf2) <M z € D(R)

| f(z1) = f(2)] < K|z) — 22|® 71,72 € D(R).
Define |

F(zo0) = ——f /@) dxdy, z0 € D(R).

b 4 z— 29
D(R)
Then
(a) Fz(z0) = f(2o)
(b) Fz(z0) = — if M dxdy.
b4 (z — 20)
D(R)

Moreover for all zg, 21,22 € D(R) we have

(c) |F(zo0)] <4RM
a+1
(d) | Fz(z0)l = — R*K
(e) |Fz(z1) — Fz(z2)| < CKlz1 — 2%,

where C is a constant that does not depend on R, or on the function f .
PROOF. For fixed zo, let
F() = F() = /(20)%,
so that by Lemma 21
Fy=-2 ff ﬂ—)i‘ﬁ dx dy.
b4 -—:
D(R)

We claim that the complex derivative F '(zo) exists and that in fact

F'(zg) = — 1 f M dxdy.

T (z — z0)?
D(R)
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To prove this we have to show that as # — 0, the same is true of

f(zo+h)—f(zo)+1/ ORNICIPNY
g

h (z — z9)?
D(R)

1 : : :
_ _;E/ [f(z)—f(ao)]'{z_z()_h B z—Zo} by

D(R)
f(2) f(ao)
d
| el
D(R)
_ // f(2) = f(z0) / f() (40)
(A—Z()—h)(a—a Z—A.())2
D(R) D(R)
_ / f(a)—f(lo){ 1 1 }dxdy
zZ—Zg z—zo—h z—2Zp
D(R)
td // f(z) = f(z0)
= — dx d
T (z—2z0)2(z—z9— h) ay
D(R)
td // | f(z) = f(z0)l
< dx dy
T n |z — zo|%lz — zo — h| ray
D(R)
K|h| // — 2%
< dx dv
= B ~0| F—z—h Y
D(R)
_ KA / / dx dy
o on |z — z0l>7%[z — 2o — Al
D(R)
K _
< ;|h| ce(a, 1) - [h2H1—2 by Lemma 23

K
= —c(a, 1) - |h]%.
7

This indeed approaches 0 as A — 0.
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Now since the complex derivative F'(zg) exists for all z € D(R), the ordinary
partials Fy, F) exist, and hence F; and F; exist. Moreover, since F is complex
analytic, from the definition of F we obtain

0= Fs(z0) = Fz(z0) — f(z0) - 1,
which proves (a). Furthermore
F'(z0) = F2(z0) = F:(z0) = 0,

which proves (b).
To prove (c), we note that

M 1
|F(Zo)|§—// .
b4 |z — zol

D(R)

K // I 1 ldx dy where D D D(R) is the disc
Z—Zy

dxdy

IA

of radius 2R about zg

M (¥ 2R using polar
= — / / —-rdrdf coordinates
r around zg

=4RM.

Similarly, for (d) we have

|Fo(z0)l = |— /'f() Szl dx dy by (b)

- z0)?
D(R)
K 1
< —// — ——dxdy
b4 |z — zo|2—® ’
D(R)

=% //1 e
s

2KQ2R)™
" .

il drdf



330 Chapter 9, Addendum 1

To prove (e) let z1, 22 be fixed, and define
{B: f(z1) = f(z2)

21— 22
F(z) = F(z) — Bz:.
If we set .
f(z)=f(z) -

then by Lemma 22 we have

F(ZO) = —;/ f(Z) dxdy — BR*.

zZ—2Zy
D(R)
So by (b) we have
f(Z) (Zo)
D(R)
Thus
ST PR | f@ =) @) - fz)
F.(z1) F,(20) = = // { (z — 21)2 (z — 22)2 } dx dy
D(R)

But we easily check that
f) = f(z).
Therefore
Fy(z1)) = Fz(z2)
1 ~ ~ 1 1
z_;/ [f(2) = /)] {(2—21)2 - (2_22)2} dxdy

D(R)

— —5)2z—z21 -2
/ [f(2) = fz0)] - (2 2)(2 1 Z)dxdy
(z —zD)2(z — 22)
D(R)
// [/(2) = fED] (21 = =)z = 21) + ( 2)]dxdv.
(c—21)2(z— ) .
D(R)

Now since
fE) = fz) = f) = f(z21) = Bz — 1)
I
£ = f(z2) = f(2) = f(z2) — B(z — =),
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we have

[/ () = JEE =20 + 2 — 22)]
=[f()— f(z1) = B(z —2)](z — 22)
+[f(z) — f(z2) = Bz — 22)](z — 21)
=[f(z) = fz))(z — 22) + [f(2) = f(z))(z — 21)
—2B(z — 21)(z — z2).

So we get

Fy(z1) = Fz(z) = — & ;22) ff (Zf(Z) mPACUEPN dy

—21)%(z — 22)
D(R)

_(a—2) ff [@ =) g,
b g (z

— )z — 22)2

D(R)

2B (z1 — 22)
+— — = —dxd
n ff C-m—m)
D(R)
=hL+5L+1s say.

Now

iy < =2 ff ~ dx dy
" b |z =217 - |z — 22

_ —z| K¢, 1)
IR SR P> ] b

by Lemma 23

K- cla,l1)
=——|za —|"
T

Similarly,
K -cla,l)
[12] < —n——|21 — %

13:§ff(——l-—— ! )dxdy
i -1 -2

D(R)
=2B(z; — Z2) by Lemma 21,

Finally,

331
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SO

13| < 2|B|- |z — 2.

We have
e - S

| B —
|21 — 2]

KIZ] — I a—l'

Theretore
|13] < 2K]|z) — 2%,

Thus

|Fo(z1) = Fo(z)| < || + L] + |13

< (constant) - K - |z; — z»|%.
From the definition of F we have
F.(z) = F.(z) — B,
so we have

| F2(z1) = Fz(z2)] < (constany) - K - |z — 23| + |B| - |2} — 2]
< (constant) - K - |21 — 5|% + K|z; — 5|*7' - |2y = =,
by the estimate for |B| above

SCK|zp— % &%

Instead of solving the equation
(%) Wi = pw;.

or the equivalent integral equation. for reasons that will appear later we will
instead solve the more general equation

(%) w: = pw: + yw + 4.
where p.y.8 are C¥ and |u(0)] < 1: moreover, we will show that solutions

exist with any given values for w(0) and w.(0). There is no loss of generality in
assuming that w(0) = 0:
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25. LEMMACHEN. If the equation
(%%) Wz = pw; + yw +4

has a C'*® solution in a neighborhood of 0, with arbitrary values for w(0) and
w,(0), for all C? functions u, y,8 with (0) = 0, then it also has such C'*¢
solutions for all C* functions u, y, 8 with | (0)| < L.

PROOF. Tor any function w, define w by
w(z) = w(z — u(0)2),

so that
w(z) = Wiz + u0)z).

The chain rule on page 320 gives

0 w,(z) = W, + 5 - u(0),
wz(z) = W - 1(0) + Wz,

where ., W; are to be evaluated at z + (0)z. Therefore
(%) wz = pw; +yw+4
if and only if
p(0) - Tz + Tz = p ()i + ()] +y (Dw (=) + 8(),

or
~ 2)—u0) \ o z 8(z
. (M) S 7 C R ) N
1= p(0)p(z) = p(O)p(2) I = (O)u(z)
= p()Wz + o (D)w(z) + t(2), sav,
where p(0) = 0. In this cquation Wz. W, are evaluated at =+ (0)=. Replacing =
by = — 1 (0)z, we get the equivalent equation

(%) {Irg(:):p(:—ﬂ()_):){ﬁ_;(:)—i-a(:—u(—O):){D(:)—i-r(:—m:).

which is of the same form as (%), with the coeflicient of wz being 0 at 0. So by
hypothesis we can solve for a C'+ function @ with any desired initial values

TO)=a.  @-(0)=h.
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This gives
w(0) = H(0) = 4,
while by equation (1)
w2(0) = i (0) + 1(0)i(0).
Using equation (¥%), we have
wz(0) = 0(0)W(0) + t(0) =6 (0) - a + 7(0),

SO
wz(0) = b + w(0)[o(0) - a + 7(0)].

So to solve (xx) for
w(O) = aa wZ(O) = b;

we just solve (xx*) for

w(0) =a

2(0) = b — n(0)[0(0)d + T(0)]. %
Since we will be solving the general equation
(%) w: = pw; +yw+48,  pu(0) =0,

we first want to find an integral equation equivalent to it. To do this we form

F(z) :—}l?// 12w (z) +y(2)w(z) +5(2) dx dy.

Z—Zp

D(R)
Proposition 24 gives
Fs=pw, +yw+686=w; if w satisfies (xx),
and hence (w — F); = 0, so that

w(ZO):_l//M(;xd}, _ l//dedy
T =10 T =20

D(R) D(R)

1 8(z
——//~ (3 dxdy + g(zo)
b4 =20

D(R)
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for some complex analytic function g. Conversely, of course, if w satisfies this
equation for a complex analytic g, then it satisfies (x*). By complicating our
integral equation, we can arrange that w(0) = g(0); clearly we just have to add

1// )
4 z
D(R)

to the right hand side. Similarly, if we add

L pEW) |
4 z

D(R)

to the right hand side, we will have w,(0) = g’(0); this follows from Proposi-
tion 24 (and the fact that ©(0) = 0). So we see that we can solve (xx*) for w with
any given values of w(0), w;(0) provided that we can solve the following equa-
tion for w, where g is any complex analytic function (actually it would suffice
to solve it for functions of the form g(z) = az + 5)

w(zo)
___// p2ws(2) // y@we) // 5,
B zZ—Zy z—Zp - _ ZO
D(R) D(R) D(R)
// M(z)wz(z) dedy+ L // y(é)w( )d s //(S(—Z)d i
D(R) D(R) D(R)
+ 2 i// pEw0) dxdy+i// yEw) dxdy+i// 9 e
” - 4 z i z
D(R) D(R) D(R)
+ g(z0).

Now the first integral involving § is a C!'™ function A, for Proposition 24 shows
that

Az =6 which is C* by assumption,
Az is C* by part (e) of Proposition 24.

The other two integrals involving § are just constants. So it certainly suffices
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to show that we can solve the following equation for C* functions u,y with
©#(0) = 0 and any C'** function A:

- wEw:) yEwe) ,
w(z0) = / /
——

D(R) D(R)

iffwdxdy+iffwdxdy
T z T :

Y D(R) D(R)

%// M(Z):lz)z(l) dxdy+%// y(zilf(Z)d J

D(R) D(R)

+h(20).

The integral equation (I) will be solved by the only method available to us,
namely, the method of successive approximation, which we have always formu-
lated in terms of the Contraction Lemma (I.5-1). First we need to concoct the
right space of functions to work with. Consider first the set

H(R,a) = {C*® functions w: D(R) — C}.

For w € H(R,a) we define

lw(z1) — w(z2)l
lwlg = sup |w(z)| + R*- sup ————
zeD(R) z1.5eD(R) 121 — 22l
21#£22

The first term sup |w(z)| insures that w, — 0 uniformly if {|w,(lg — 0. The
term sup |w(z1) — w(za)|/]z1 — 22|* is simply the “best” constant K in the defi-
niticn of w being C%; the fudge factor R is reasonable, for it insures that

lwllzg = W] where w(z) = w(R:z).

It 1s easy to check that

lwllg >0 for w # 0,
[Awlg = [A]- lwllr A eR.

lwr +wallr < willg + w2z
So we obtain a metric on H{(R.,a) by defining

distance from wj to wy = {jw; — w2l R,
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and it is casy to see that H(R,a) is complete in this metric. Finally, it is casily
checked that if wy, w, € H(R,«), then

lwiwallr < lwillg - w2l &
Next consider the set
H(R,a + 1) = {C**! functions w: D(R) — C}.
For w € H(R,a + 1) we define

llwllg = sup |w(z)| + R-[wllg + R-[lwzllr.
zeD(R)

It is once again easy to check that

llwliz > 0 forw #0
Awlliz = 1Al Nwllz
llwr +wallg < llwillg + lMwaliz,
and that H(R,a + 1) is a complete metric space with respect to the metric

distance from wy to wy = |||wy — wall|g.

Consider, for the moment, a function f: (=R, R) — R, and suppose that

et /10 = fx)

[x1 — x2]®

< K.
Defining

gls) = fx1 +s(x2—x1)) — fx2+s(x1 — x2)),
we have

g0) = f(x1) — f(xy), g(l) = f(x2) — f(x).

So the mean value theorem gives

1) —g(0
gl l)_g( ) — ¢'(&) £€(0,1)

=(x2—x1) - [/ = S ()] N. M2 € (X1, x32).

2[f(x2) — f(xD)] =

Thus

R¥|x; — xo| K|n — n2|®
) ’ Ra+l

_ Ky — x|

~ 2 R

K- |xp —x2|%.

R¥*|f(x1) — f(x2)] <

“Im = nal®

A
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or finally
R Lf(x1) = f(x2)l -

K.
X — x|~

For functions w: D(R) — C there is a similar argument, using Taylor’s formula
to estimate |g(1) — g(0)|. The answer involves the derivative Dw, which can be
expressed in terms of w; and wz. From this argument we easily see that there
1s an mnequality of the form

lwllg < (constant) - [|wfl &

26. PROPOSITION. Let u,y be C¢ functions in a neighborhood of 0 with
u(0) = 0, and let # be C**! in a neighborhood of 0. Then for sufficiently small
R > 0 there is a C**! function w: D(R) — C satisfying (I) for all zg € D(R).

PROOF. We suppose that w,y are C* in D(Rg) for some Rp < 1, and we will
henceforth consider only R < Ry. For w € H(R,« + 1), define the function
Sw on D(R) by setting (Sw)(zo) equal to the right side of (I) without the h(zo):
we will abbreviate this expression by

(Sw)(zo) = Li(z0) + Ia(20)
+ I3(z0)  + 14(20)
+ zo{1s5(20) + Is(20)}.

We make the crucial

CLAIM. There is a constant C’, depending only on «, and not on R,
such that

ISwllg < C"- R* - lwllg
forall w e H(R,a + 1).

Assuming this Claim for the moment, the remainder of the proof goes as
follows. Since R* — 0 as R — 0, there is clearly some R, such that for all
R < R, we have

ISwlig < C” - llwll,

where C” is a constant with

"<, |||h|||R'
3
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Define T: H(R,a +1) > H(R,a + 1) by
Tw=Sw+h.

If R < R,, then for all w with

3
llwllg < <llkllz
2
we have

ITwllr = NSw + Allg

A

< WSwlig + Al &

A=
3

1
S IAllR + Al =

IA

Mwllg + NAllg

IA

3
= —|lAll&-
54l

Thus, for R < R,, the map T takes the complete metric space
3
M= we HRa+1) : lwllr < 57z

into itself. Moreover, the map T: M — M is a contraction, for

ITw, — Twsllg = ISwr — Swallr

=S —w)llr < C" - llwr — wall&.
By the Contraction Lemma, there is some w € M with
w=Tw=Sw+h,

which 1s precisely the equation we want.
To prove the Claim we will use all the information in Lemma 24. First we
want to show that

11z < (constant) - R* - [Jwllix,

where the constant is independent of R. It clearly suffices to prove the same
inequality for each of

sup |11 (2)1, R -1z IR, R-[(I)zl R
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Let L be a number such that
() — ()] < L |z = 2%, 21,22 € D(Ro).
Since (0} = 0, it follows that
lu(z)l < LR%, z€ D(R), R=Ro

and therefore that
lpllg <2LR".

Thus for all z, 2y, z0 € D(R) we have
(1) () w:(2)| < pw,llr < lilir - lw:llg
<oy g Il

=2LR*™" - |lwllg,

@ lp(zwz(z1) — p(z2)wz(z2)l  lpw:lig - leellg - lw:ll g
|21 — z2|® - R T R«
- 2LR% - ||lwllg
- Re . R
=% llwlll & -

We can now apply the inequalitics of Proposition 24. Inequality (c) gives

(3) |I}(z)] <4R -2LR*™' - |lwl|g
=8L - R -||wllg,

which is the desired inequality for sup |7;(z)]. Inequalities (d) and (e) give

Ha+1

(4 R-1(I:(2)l = R

2L
R* - 7|”w”|R

ya+2

= L-R*-lwllz
o

\ RO+ [(11)(z1) — (1) z(22)] < RO . C

|21 — o2|®

2L
'F'“me
=2CL - R* - [lwllg:

these give the desived inequality for R - [(1})z||g. Finally, since (11)z = pz, the
necessary inequalities for R -{|(11)z || g follow immediately from (1), (2). We have
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therefore shown that
I71llg < (constant) - R* - [[lw]]| &
Now consider ;. We first note that for z € D(R) we have
ly@wE)| < llywlz < lylz-lwlg
< ¥l g, - (constant) - [lwll| & (see page 338).

This is a stronger inequality than (1): since 0 < R < 1 and 0 < « < | we have
1 < R*7! 5o we can write

I ly (2)w(z)] < (constant) - R*™" - [wlil .
Similarly, if z1,z2 € D(R), then
yEw) - yE)wE)l _ lywle _ Iyle-lwle

2/
#) |21 — z2|* - R R*
lyllr
< e % . (constant) - [|w|| g
< constant "| |||
= R R

Now (1), (2) give the inequality
l72llz < (constant) - R* - [[wll &

in the same way that (1), (2) gave the tnequality for ||| 71l z-
Since I3 is just a constant, I3(z) = I,(0), we have

I7sl& = 71Oz = [11(0)] < sup [[1(2)]
zeD(R)

< |I7illz < (constant) - R* - flwll&.

Similarly for /4.
As for the term z71s5(z) = z(11);(0), we have

|=C70):(0)] < [=z] - [(11)2(0)]

Il -
= |||/
R ([RAYIFS

< (constant) - R* - [lwlll .
R-1(11):(0)|l &
= R - |(11):(0)]

< (constant) - R* - |lwlll&. as above.

<R

Rz (1):(0)5: 11 »

Thus [|z(11):(0)|| g < (constant)- R*-|lw/|| g, and the term = I¢(=) works exactly

the same. o
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27. COROLLARY. If u,y,8 are C% functions in a neighborhood of 0, with
|1(0)] < 1, and a,b € C are any two complex numbers, then there is a cotl
function w in a neighborhood of 0 such that

Wi = pwz +yw +4
() w(0) =a
w,(0) = b.

In particular, there is a C'*% isothermal coordinate system around any point
of a surface with a C* metric.

PROOF. Proposition 26 and Lemmachen 25. &

Our next task is to show that if u,y, 8 in Corollary 27 are C"*%, then there
is a solution w of () which is C"*!%®_ First a technical lemma.

28. LEMMA. If fis C"*® (n > 1) on D(R) and we define

1 z
F(zp) = —;/ vf_( Z)o dxdy, zg € D(R),
D(R)

then F is C"H1+e,

PROOF. Induction on n. Consider first the case n = 1. By Proposition 24 we
have F; = f, so Fzis C'**. We just have to show that F; is C'** since this
then implies that Fy, Fy are C'7 so that F is C**®. Now we easily check that

0

1
- loglz — o|* =

b

Z— 2o

and therefore

1 0 1
F(zo) = - // —(flog|z - o) dydy + ;/ Jzlog|z — sl dx dy.
bR D(R)
Using the Remark after Lemma 19, we write this as

1 . _ 1
F(z) = — flog |z — ol2dz + — Sfzlog |z — sol*dx dy.
2mi 7

dD(R) D(R)
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We can now differentiate under the integral signs to obtain

) F.(z0) = f(Z) / [

z — Zo
BD(R) D(R)

The first integral 15 C* (since we can keep differentiating under the integral
sign); the second is C'*® by Proposition 24.

Now suppose the result holds for C"** functions, and let f be C"t1+ We
still have F; = f, so that F; is C"*'*® and we also have equation (1), in which
the first integral is C*°. Now f; is C"*® 5o by the induction assumption, the
second integral is C"*1+® Thus F, is C"1%% so F is C"T212 &

29. PROPOSITION. If u,y,8 are C"*? functions in a neighborhood of 0,
with |u(0)| < 1, and a,b € C are any two complex numbers, then there is a
C"*t1+ function w in a neighborhood of 0 such that

w; = pw; + yw +4
(%) w(0) =a
wz(0) = b.

In particular, there is a C"t1*% jsothermal coordinate system around an
p Y Yy
point of a surface with a C"** metric.

PROOF. Induction on n. The case n = 0 is Corollary 26. Now suppose the
result is true for n, and let u, y,8 be C"+1+%,

Case 1. y = 0. The motivation for the proof is the following. If w satisfies
(1) w; = pw; + 4,
then we should have

(wz)z = wzz = P(wz)z + pzwz +5;.

So we first solve this equation for w;. To be precise, we note that u, i, 8, are
C"*t® 5o since the result is assumed true for n, there is a function f satisfying

2) fr=ufe+puzf+6:

in some disc D(R); moreover, we can obtain any desired values for f(0) and
/z(0). [Notice that equation (2) contains f explicitly even though equation (1)
does not contain w explicitly.] Define W by

W(z0) = — % f :f—(::)o dxdy.

D(R)
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Then W is C"*2%% by Lemma 28, and by Proposition 24 we have
[ (z0) = Wz(z0) = Wa(z0) = f(20) = Walz0).
So
Wz): =Wz = fr=pufa+u-f+8:  by(l)
= (uf): +8; = (uW;); + ..
Hence (W;z — uW, — §), = 0. This means that we can write
(3) Wz(z) — p(2)W(z) — 8(z) = g(2),

where g is complex analytic. Let G be a complex analytic function with G;(Z) =
g(z), and let
w(z) = W) — G(2).

Then
w, = W,—-0
wz(2) = Wz(z) —g(G) = n(@)W:(2) +8(z) by (3)
= u()w:(z) +8(2).
Thus w is a C"t2+* solution of our equation. We also have
w(0) = W(0) — G(0)
wz(0) = W(0) = 1(0).

So we obtain the condition w;(0) = b by choosing a solution f of (2) with
S(0) = b. We can obtain w(0) = a since G is only determined up to a constant.

Case 2. General case. We look for a solution of the form w = e*o. We find that
the equation

(4 w: = pw; +yw+4
is cquivalent to
0:+ A:0 = o, + ur;0 + vo + e*s.

or
o(kz — Az — y) +0: = o, + e 8.

By Case 1, there are C"*2+® functions A. o satisfving
Az = ph; +v: A(0)=0. A-(0)=0
0: = uo: + e 8: 0(0) =a. o0-(0) =b.

Then w = e*o is C"H2+2 and satisfies (), and w(0) = a4, w,(0) = b. &
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Notice that Proposition 29 does not give a C* isothermal coordinate system
in the C* case; for although the equation w; = pw, will have C"1+% solutions
for all n, these solutions might be defined on smaller and smaller neighborhoods
of 0. But this is now easy to take care of. First let us note that if (#,v) is an
isothermal coordinate system, and f: C — C is complex analytic, with f’
never 0, then f o (u,v) is also an isothermal coordinate system, since f is angle
preserving. We can also prove this from our equation w; = pw,, for since
Jz =0, the chain rule gives

(fo w); = (fzow)- w,
(fow):=(f;ow) ws,

and hence we have (fow); = u-(f ow),. This argument can also be reversed,
allowing us to prove

30. PROPOSITION. If u is a C""* function with |u| < 1, and w is any
solution of

(*) Wz = HWg,

then w is C"'+® So if w is C®, any solution w is also C.
In particular, there 1s a C* 1sothermal coordinate system around any point
of a surface with a C*® metric.

PROOF. We know that around any point there is some C"1+® solution o of ()
which has an inverse around that point. So we can write

() w=foo
for some f. Then the chain rule gives

w, = (f;00)-0:+(fz0
wz = (f;00) 05+ (fz0

Since w is a solution of (). we have
(fz20)0z + (f2:0)0z = u[( fz 2 0)o; + (fz 2 0)0:].
Since o is a solution, this leads to

(2) (fzo0)[6: — uc:]=0.
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Since 03 = po, implies that

we see that

This is non-zero, since || < 1, and ¢ has non-zero Jacobian at the point in
question. It follows from (2) that f; = 0, 1.e., f is analytic. Then (1) shows
that w must be C"1F9 00, o
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ADDENDUM 2

IMMERSED SPHERES WITH
CONSTANT MEAN CURVATURE

Let f: U — M be an immersion (for U C R? open) which is conformal, so
that the components E, F, G of Iy satisty

E=aG, F=0

such immersions always exist by the results* of Addendum 1. From equation (B)
on pg. II1.136 we have
In —m?
E?
[ +n

1
(2) H:-2—(1q+k2)= Yol

(1) K =kiky =

A little calculation shows that the Codazzi-Mainard equations (pg. II1.56) be-
come

E
ly—mxzi(l+n):EyH

E
My — Ny = —Eg—(l+n) =—E.H.

But ;
n
E,H=—-EH,+ 2+ 2
[ +n Y y+2+2
ExH=—EHx+Ex+n7x,

so the Codazzi-Mainardi equations can be written

| —
( 7’1) +my = EH;
pe

| —
( 7’1) —my =—FH,.
2/

* At present we need Proposition 29 or 30, but we could make do with the much simpler
Theorem 18, since it follows from (hard) theorems on partial differential equations that
a surface of constant mean curvature must be analvtic (see pg V.147).
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If we detine the function ®: U — C by

4 q)_/_"
U ==

— [ -m,

then

—m? 5 U+n)
- -

|®? = +m +m? —In

= E*(H*-K) by ()and (2
= E*(k; — k2)?/4.

Thus the umbilics on f(U) are the image of the zeros of ®. Notice that if H
is constant, so that Hy = H, = 0, then equations (3) are precisely the Cauchy-
Riemann equations for ®; thus ® is complex analytic. So we immediatcly have

31. LEMMA. If M is a connected surface immersed in R? with constant mean
curvature, then either all points of M are umbilics, or else the umbilics are
1solated.

PROOF. Since the analytic function @ is identeally zero if its zeros have an
accumulation point, we see that for every p € M one of two possibilities must

hold:
(1) p has a neighborhood with no umbilics, except perhaps p,
(2) p has a neighborhood all of whose points are umbilics.
But the set of points p satisfying (1) is open, and so is the set of points p sat-

istying (2). Since M is connected, either (1) holds everywhere, or (2) holds
everywhere, o

Now consider the lines of curvature on M, or rather their images in U under
the map f~!' Formula (D) on pg 136 savs that a vector v = (ay.az) 1s
tangent to one of these curves if and only if

) I

ar= —ayax dp-

0 = det E 0 E
/ n n

= —E[—marl2 + (/ — myaja> + maf]

{.m_n evaluated at the point where v
is considered to be a tangent vector}.
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Thus v is tangent to [ /™! of] a line of curvature if and only if
—midx(v)}2 4+ (I —n)dx(v) dy(v) + m{dy(v)}2 =0.

We can write the left side of this equation as the imaginary part of a complex
number, namely

Im [1 ;n — i .m] Hdx ()} = {dy()}? + 2i dx(v) dy(¥)]

=Im ® - [{dx(v)}* — dy(v)* + 2i dx(v) dy(v)].

Introducing the complex-valued 1-form dz, as on page 319, we can thus write
our equation as

Im® - {dz(v)}* = 0.
For any complex number w # 0, we let arg w be some angle between the x-axis

and the ray from 0 tirough w, so that w = |w|e*#Y. Then the above equation
holds if and only if there is an integer m with

mr =arg ® - {dz(v)}?
=arg® 4+ 2argdz(v),

or
1 mi .
() argdz(v) = — 5 arg P + - for some integer m.

In a neighborhood of an isolated umbilic of our surface M with constant H
we consider the 1-dimensional distribution A formed by the multiples of the
principle vectors with the larger principal curvature, say. The index of this
distribution was defined in Addendum 2 to Chapter 4. We can now compute
it in terms of &.

32. PROPOSITION. let f: U — M be a conformal immersion into a sur-
face M of constant mean curvature H, with corresponding analytic function ®.
Suppose that p = f(0) is an isolated umbilic, so that ®(0) = 0, and conse-
quently

P()=a="+ - an #0, n>1

Then the index of A at pis —n/2.
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PROOF. We consider the distribution on U which is f~! of A. Let ¢: [0,1] —
U be a small circle around 0. To compute the index of the distribution at 0,
we must choose a continuous function 6 [0,1] — R such that 8(¢) is an angle
between the x-axis and the direction of the distribution at ¢(z); then the index
is [0(1) — 8(0)]/2m. First choose a continuous function ¢: [0, 1] — R such that
¢ (t) is an argument for ®(c(¢)). Then equation (x) shows that we must have

1 mmn
0(1) = —5¢(t) + N

where the integer m must be constant, by continuity. So the index in question
1s

1
Py E'E[¢(1)~¢(0)]-

But standard complex analysis results say that ¢(1) — ¢(0) = 2mwn. [Here is a
direct proof. Clearly [¢(1) — ¢(0)]/27 is just the degree of the map & from S'!
to C — {0} defined by

I I
S-lr(1) = 6(0)] = —

1
alr) = ——0lct)) = @1 +---]
=c(@)"[1 +d@)),
where we have

ld(1)] < 1 for a sufficiently small circle c.
Now

c(t)’
le(r) — ()" = le@)"d@)] < le(@)". «— alr)

So the line segment from ¢(¢)" to a(f) does not contain 0. This means that o
and t +> ¢(1)" are homotopic as maps from S1 to C — {0}. So they have the
same degree. But the degree of 1 = ¢(1)" isn.] <

All of this leads up to

33. THEOREM (H. HOPF). If M is an immersed sphere in R? with constant
mean curvature H. then M is a standard sphere.

PROOF. Ifall points of M were not umbilics, then by Lemma 31 there would be
only finitely manv umbilics. By Proposition 32, the index of A at each umbilic
would be negative. This contradicts Theorem +4-20, since x(M) =2 > 0. <
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ADDENDUM 3

IMBEDDED SURFACES WITH
CONSTANT MEAN CURVATURE

In this Addendum we will prove that a compact imbedded surface M C R?® with
constant mean curvature Hy must be a standard sphere. Essentially the same
proof works for imbedded hypersurfaces in R"*!, H"+! or an open hemisphere
of $"*!. The proof depends on a simple ingenious geometric construction,
together with analytic results (Theorems 10-17 and 10-20) from Addendum 2
to Chapter 10; the proofs of these theorems can be read right now, for they do
not depend on any material from Chapter 10 proper. These analytic results are
applied to the present situation as follows.

Consider a surface given as the graph of a function #: R? — R, and introduce
the standard abbreviations

Ok _oh
p - axa ‘1 - ay
0%h 0%h 0%h

= — = — | = —.
e S dxdy’ ay?

For the condition that the surface has constant mean curvature Hy we find,

from (B') on pg. 111.137, the equation

(%) 0= (1+¢*)r —2pgs+ (1 + p*)t — 2Ho(1 + p* +¢*)*/?
= F(P’(I"’asaf)~

Now let &1 and h3 be two solutions of (x), with corresponding partials py,...,1
and p),...,t2. If we denote the partial derivatives of F with respect to its 5
arguments as Fp, ..., F;, then at all points of R? we have

0= F(p1,q1,r1,51,11) — F(p2,92,r2,52,12)

1
d
:/ —F(tp1+(l—t)p2,...,tt1+(l—t)tz)dt
0 dt

1
2/0 (Pr = p2)Fp(®) + -+ (1 — 1) Fe(e) dr

where @ = (tpy + (1 — T)pa,..., 181 + (1 — T)2)
=A-(pr=p)+B-(q1—q)+C-(n—r)
+D-(sp =)+ E-(11 — 1), say.
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Setting # = hy — hy, and letting p.q,...,t now denote the partials of u, we see
that u satisfies the equation

(%) A-p+ B-g+C-r + D-5s + E-1t=0.

34. LEMMA. Let /4, and h; be two functions whose graphs are surfaces of
the same constant mean curvature Hy, both functions being defined either in
a neighborhood of 0 in R?, or in a neighborhood of 0 in the closed half-plane
{(x,y) : y = 0}. Suppose that /1; > h; in this domain, and that 4;(0) = /,(0).
If /1y and h; are defined only in the half-plane, assume also that 9/,/0x(0) =
0hy/0x(0). Then hy = hy in a neighborhood of 0, or in a neighborhood of 0
in {(x,p):y =0}

PROOF. Notice that for all (A, ) # (0,0) we have

FA2 4 Fodp + Fop® = (1+ 922 = 2pghp + (14 pPyp?
=22+ uP 4+ (gh — p)* >0,

where F,, Fg, F; are evaluated at any pomnt of R3. So we also have

1
CA2+ D+ Ep? = / Fr(0)A2 + Fs(o)Ap + Fr(o)u?dt
0

> 0.

Thus Theorems 10-17 and 10-20 apply to the solution u = /hy — hy of equa-
tion (k). &

For the geometric part of the proof, we first note that the standard spheres are
the only compact surfaces which have a plane of symmetry in every direction.
In fact.

35. LEMMA. If 4 ¢ R? is bounded and has a plane of symmetry 1 every
direction. then 4 is invariant under all rotations about some point * thence A
is a union of concentric spheres around *).

PROOF. Choose 3 mutually orthogonal planes Py. Py, Py which are planes of
svnmetry for 4. and let * be the unique point it Py N P, N P3. Let P be any
othier plane of symmetry. It is casy to see that if P does not go through . then
suitable compositions of the reflections through Py. P>, P3. and P will take anv
givelt poitt it 4 to points arbitrarily far from *. So i’ A is bounded. then we
must ltave * € P. Thus 4 is invariant under reflectiont through every plaue
through *. This implies that 4 is ivvariant under all rotations about *. &
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It is this symmetry property of spheres which we will establish for anv surface
of constant mean curvature.

36. THEOREM (ALEXANDROV). Let M be a compact surface imbedded
in R? with constant mean curvature Hy. Then M has a plane of symmetry in
every direction, so M is a standard sphere.

PROOF. We know (Theorem 1.11-14) that M is the boundary of some closed
domain D. We can assume that our direction is the z-axis, and that M is placed
so that it lies in the region where z > 0, and touches the plane = = 0. For each
a > 0, let P, be the plane z = a. The set of points of M which liec below P,
15 a “hump” H,. Lect Fla be the reflection of H, in P,. For sufficiently small

fau]

P

— H,
a > 0, the sct Fla will lie inside D. Consider the set of all b > 0 such that Fla

liesin D for 0 < @ < b. This set clearly has a largest element ¢. There are then
two possible cases, as illustrated below.

N
N

Case | Case 2

In the first case, there is a point p € ITIC N M which 1s not on P.. From
the definition of c¢. it is easy to see that ncar p the surfaces M and H, are the
graphs of two functions /1y, /1> with Ay > ha. Then Lemma 35 shows that M
and H, coincide in a neighborhood of p.

If there is no point p € H.N'M — P, then we must have the situation shown
n the second figure: for some point p € P.. the surface M has a vertical
tangent plane at p. The part of M which lies above or on P, is a surface-
with-boundary, and near p it can be represented as a function /1; on a closed
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half-plane perpendicular to the (x, y)-plane. Similarly, H, can be represented
as a function A3 on the same closed half-plane. This time we have Ay > Ay,
Lemma 35 shows that H, coincides near p with the part of M which lies above
or on P..

Now let K be the component of H, which contains the point p (in either

Case 1 or Case 2). This component K is the reflection in P, of a component
K C H.. The argument of the above two paragraphs, together with a simple
connectedness argument, shows that KcM But KUK C Mis already a

compact manifold. So we must have K U K = M. Thus M is symmetric with
respect to the plane P.. <

One of the most interesting aspects of this proof is the fact that constancy of
the mean curvature was used in such a weak way. There are numerous other
conditions which can be treated similarly; Alexandrov has a whole series of
papers on this subject. A somewhat later paper by Alexandrov [2] generalizes
Theorem 36 so as to allow many types of self-intersections of M. For example,
if M C R3 is a compact surface, bounding a domain D, and f: M — R?is an
immersion which can be extended to an immersion of D into R?, then f(M)
does not have constant mean curvature unless it is a standard sphere. Naturally,
the counterexamples of Wente, Abresch, and Kapouleas (page 311) cannot be
of this sort.
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ADDENDUM 4
THE SECOND VARIATION OF VOLUME

In this Addendum we will derive the formula for the second variation of
volume, and give some applications. The calculation itself is a real bitch, and
even the final formula is quite involved, so some preliminaries will be required.

1. For a submanifold M C N and a vector § € M,* we have the map Ag: M, >
M, with
{(4e(X),Y) = (s(X,Y),§).

Since Ag is symmetric, it has # real eigenvalues Ay, ..., A,. We will let

¥H(&) = Z)\iz = trace Agz.

i=1

If & denotes, instead, a section of the normal bundle Nor M, then Z5(¢) is a
function on M.

2. Given & € My*, we define the “partial Ricci tensor”

n

Ricy (§) = = D (R, X)) X;, 8),

i=1

where X,..., X, is an orthonormal basis of Mp; it 1s easily seen that this does
not depend on the choice of X,,..., X,. Naturally, Ricps (€) denotes a function
on M if & denotes a section of the normal bundle Nor M.

3. Recall from Addendum | of Chapter 7 that if W is a vector field tangent
along the manifold M, then div W is the function on M defined by

(div W)(p) = wrace(X, > Vx, W) = (Vy, W, X;).

i=1
where Xj,..., X, is any orthonormal basis of M,.

+. We also recall from this same Addendum that we have defined the Laplacian
A for a section ¥ of a vector bundle over a Riemannian manifold M ; to define
this we needed a connection on the bundle. For a submanifold M C N of a
Riemannian manifold N, we have the induced metric on M, and a connection D
on the normal bundle defined by

Dxyy = 1LV'yy, V' = the covariant derivative in N.
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Thus if ¥ is a section of the normal bundle, we have
n
Ay(p) = Z LV iy (LV'x;¥),
j=1
where X, ..., X, is an orthonormal moving frame with

Vx, Xj(p) =0, V = covariant derivative in M.

5. We will require the following properties of contractions X J @ and Lie deriva-
tives L zw:

for ¢ a k-form

(@ Zi@pAn=(ZJ P AN+ (=)o A(Z 1) [Problem 1.7-4]
(b) Lzprm=Lzpan+eonLzny

() Lzw=Z_ldw+d(Z _1w) [Problem 1.7-18]
(d) Lzdw=dLzw

() Lyjzow=Lyw+Lzw [Problem I.5-14]

() Lz(Y Jw)=[Z.Y]Jw+YJLzw %‘r‘;&’:rrfis?l“;(‘;}g
6. Finally, there is one important way that the second variation formula for
volume will differ from the second variation formula for energy. If a: (—¢,€) x
M — N is a variation of @(0) = f: M — N, and W(p) = da/ou(0, p) 13
the variation vector field, then our formula will involve not merely W, but also
W = da/du. We will define vector fields TW and LW along a by writing
W(u. p) = TW(u, p)+ _Lﬁ/(u, p), where TW(u, p) is tangent to a(u)(M) at
u(p) and _Lﬁ/(u, p) is orthogonal to a(u)(M) at u(p).

37. THEOREM. Let f: M — N be a minimal immersion of an oriented
n-dimensional manifold (-with-boundary) M into a Riemannian manifold
(N™.( .)). and let a: (—&.6) x M — N be a variation of f through mm-
mersions. Let W be the variation vector field, and let W = da/du. If T'(u)
is the volume form on M determined by the metric @(x)*( . ) and the given
orientation of M, then

['(0) = [Ricar(LW) — So(LW) — (LW ALW))] - T(0)
+ d(divTW - (TWIT(©0) + T[LW. TW]1T(0)).
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PROOF. We will regard this proof as a continuation of the proof of Theorem | ;
we will refer to equations (I)(10) in that proof, and therefore commence our
numbering of equations with (11). Once again we first consider a point py € M
where W(po) 1s not tangent to f(M). We choose V as before, and assume
that f is just the inclusion 7: V' — N. We will use all the notation introduced
n the proof of Theorem 11, and we will also introduce the abbreviations

(1) 07 = i*¢/ 1<j<n

Since our immersion is minimal ( = 0), equation (9) shows that
(12) i*{Z 1d®} =0 for all vector fields Z along V.
Using (6), we can write d® as
m n
3) d®= 3 ¢ Apy,  forpue =3 @' A AV A AP
r=n+l1 j=1
Then (12) becomes
m
Z 0"(Z)i*u, =0, using (a) on page 356 and i*¢" = 0.
r=n+1
Since this is true for arbitrary Z, we have
n
(14) "ur=0, andhence > Y/ (X;)=0  along V.
j=1
Now let us apply equation (5) to all u, not just ¥ = 0. We obtain
C(u) = a)*(W 1 d®) + a(u)*d(W 1 ®)).
As before, this implies that
(15) T(0) = i*{Ly (W 1 d®)} + i*{Ld(W 1 d)}
=i"{Lp(W_1d®)} +d*{(L;(Wi1®)}) by (d)

Once again we will show that the two terms on the right are precisely the terms
appearing in the statement of the theorem.

The first term is the one that will give us all the difficulties, and we will use
some preliminary tricks to make the calculations manageable. First of all, we
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want to be more particular in our choice of the moving frame X, ..., Xy, Xn11,
oo, Xm. We will assume that Xj(po), ..., Xn(po) is a basis of eigenvectors for
A1 w(py)> with corresponding eigenvalues Ay, ..., A,. This means that

Xidjk = (ALw(py)Xj(po), Xe(po))
= (s(Xx(po), Xj(po)), LW(po))

= (_I_V/Xka,_LW) at po
m
={ Y w;(Xk)X,,LW> at po
r=n+l
m
=— Y ¢ (W) -y (Xp) at po,
r=n+1
and consequently,
m
(16) 3 ¢ wityl =160 at po.
r=n+1

We still have considerable leeway in the choice of our moving frame X7, ...
X,n. We can replace it with a new moving frame X1,..., Xm defined by

m
X, = Z MExg,
B=1

where (Mf) is a matrix of functions such that

(i) (Mf) is always orthogonal, (Mf)_] = (Mg),
(i1) Mrj:Mj-’zo Il<j<n n+l<r<m,
(i) (ME(po)) =1.

Condition (i) means that the new moving frame is orthonormal, and condi-
tion (it) implies that (1) and (2) still hold. so that the X; are tangent to the
a(u)(V). while the X, are orthogonal. Condition (iif) means that the frame is
not changed at po, so that equation (16) still holds. The dual 1-forms ¢ are
related to the ¢f by

=) MEoP. 9%(po) = &% (po).
p=1
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so the corresponding connection forms lj_fg satisfy

dM{ AP + > ME A dg?

M=

YU = dg =

B=1 B=1 B=1
m m
=2 dM{ng? = 37 MIy)ngY
B=1 B,y=1
m m m
=Y > MydMPng® — > MEmIyE A g
B=1 =1 B,y,8=1
m m m
= —Z[ > MEMYyS — ZMf dMg] NG
B=1"y,8=1 8=1

Now 5 MgMgwf, 1s easily seen to be skew-symmetric with respect to o
and B, since 1/[3 = —Ilfsy. Since (Mf) 1s orthogonal and M(pg) = I, we also
have skew-symmetry for s MsﬂdM‘;S at po. So Proposition II.7-4 (which is
really a result about forms on a single vector space) shows that at pg we have
(iv) V5 (po) = Vg (po) — dMPE (po).

Now we claim that it is possible to choose ME so that

) dM] (po) = ¥](po) 1< jk<n
dM{(po) = ¥ (po) n+l<rs<m.

In fact, for every unit tangent vector X at pg we can define

M,Z(exth):exp(tw,{(X)) 1< jk<n
M (exptX) = exp(tl/fs’(X)) n+1<rs<m
M] =M =0,
where the exp on the right is the ordinary exponental of matrices. Then the
matrices (M) satshy (v); they also sausfy (i)—(ii). the matrices (M) and (M])
being orthogonal since thev are exp of skew-symmetric matrices. In connection

with (1v). we thus see that our moving frame can be picked so that it satisfies 1ot
only (16). but also

a7 {w,f(po)=o 1< jk<n

Ul(pe)=0 n+1=<rs<m.
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In addition to this special choice of the moving frame, we require another
preliminary move. We are trying to show that i*{LV’;(WJ d®)} is the first
term in the formula of the theorem. We notice that this term involves only the
perpendicular component LW of W. We can ease the strain of the calculations
by first proving that the same is true of the expression that we have to work
with. In the following lemma, TW and LW actually denote extensions of these
vector fields to a neighborhood of image «.

38. LEMMA. For a minimal immersion we have
ML (W 3d®)y = i*{L, 5 (LW 1 dd)).
PROOF. By property (c), which we stated before the theorem, we have
MLy (W 1d®)} = i{W 3 d(W 1 do)}.
Tor vector fields ¥ and Z in N, define
8(Y,Z)=i*{Y J1d(Z 1dd)},

so that _ o
i*{Li;(WJ dd)} = (W, W).

It is clear that 4 1s bilinear over R. We will show that (Y, Z) = 0 if either ¥
or Z is tangent along M. The lemma then follows by writing W=TW+1W.
Suppose first that Y is tangent along M. Then

8(Y,Z)=i*(Y Jd(Z 1 dd)}
=" Ly(Z1d®) -d(Y 1Z_1d®)} by (0.

Now equation (12) tells us that Z J d® gives 0 when applied to tangent vectors
of M. The same is clearly true for Y 1 Z 1 d®, since Y isitself tangent along M.
So

Y 4 Z 1dP} =0, and hence i*{d(Y 1 Z 1d®)} =0.
On the other hand, since Y is tangent to M we clearly also have

iI*{Ly(Z 1d®)} =0.

Thus 4(Y, Z) = 0.
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Now suppose that Z is tangent along M. We have

SY,Z)=i"{Y 2d(Z 1dd)}

=i*{Y 1 Lzd®} by ()
=i*{[Y,Z]1dd} + i"{Lz(Y 1d®D)} by (f)
=i*{[Y,Z]1dd}

+ M Z2dY 2dP)} + iY{d(Z 1Y 1dP)} by (¢)

— *[Y,Z]2d®} + S(Z,Y) + i*{d(Z 1Y 1dP)}.

The first term is 0 by (12). The second term is 0 by what we have already
proved. The third term is 0 for the same reason that i*{d(Y 1 Z 1d®P)} was 0
before. Q.E.D.

We are now finally ready to carry out the computation.
Step 1. We claim that
(18) L@y =0=i"{L 39"}, n+l<r<m
To see this, choose Y to be a vector field tangent to V and let i, Y = X. Then
i{Lp¢ 3 (Y) = Lo (X)
=d(W 1¢")(X)+ (W_de")(X) by (¢)
= X(¢" (W) +do" (W, X)
= X(¢"(W))
+[W(g (X)) — X(¢" (W) —¢"(IW,X]))]  bypg L2I5
=—¢"([W, X)]).

But if ¢!,...,7" is a coordinate system around po in V, then X s a linear
combination of da/dt!,...,da/dt",

“ Ja
;a’ atJ

oo da  OJu g 0
v ) = ) = (L ar) o

" Ju du _
W, X] = |:W, ;ajm} = _;W(a,-)é7 by pg. 1.156.

We have

SO
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Thus [W, X] is also tangent to V, so ¢"([W, X]) = 0. This shows that /*{L w®"
=0.
We also have
MLyt =~¢"((TW,X]) =0,
since [TW, X7 1s tangent to V. Hence *{L, z¢"} =0 also.
Step 2. For 1 < j < n, we have

I Lpdly = i*{d(W 1)y + (W _1de’} by (c)
= d(¢/ (W) —f*{fm R A¢“}
a=1

=d(@? (W) =Y Yl WMO*+ 3 ¢ (W)i*yl by (a).

k=1 a=I
Using (16) and (17) we see that
(19) MLp¢’y =d@’ (W) — 167 at po.
Similarly, we find that
(20) ML, pl =207 at po.

Step 3. Using the second structural equation to express di// in terms of the
curvature forms ¥}, we have

ULy Ul = AW ady ]+ id AW )y by ()

- —1'*{LWJ > wiA W} + LW W L d (] (AW)).
y=1

Because of equation (17), each term 5 A ¢/ always has one factor equal to 0
at po, so we obtain

21) MLyl =AW O+ d(yi (W) at po.

Step 4. Referring to (13) for the definition of 1, we now compute

n
. , 1 i
1*{LJ_W/lr}=1*{LJ_WZ¢ /\---/\W/\---/\q&”}
Jj=1
n
_ 1 Pk ~ ol ] n
=Y 0" A AL YA G
j=1

H
+Z[Z€)1/\---/\i*{LJ_WqS"}/\---/\i*gﬂ/\---/\H”}.

J=1"k#j
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Substituting from (20) and (21). and rearranging slightly, we have
n

f*{LJ_f{/Mr}ZZG' A APHLW WA A"
j=1

n
+Z[ZG'/\---/\—)\ka/\---/\i*wrj/\---/\9”]

J=1"k#Ej

n

+ 30N A Ad@ILW)) A AB" at po.
i=1

Notice that

n
Z[ZQ'/\---/\—)\ka/\---/\i*x//,j/\---/\9”}
=1 kA
n
=Z(Z—)\k)9'/\---/\i*x//,j/\---/\Q”.

J=1 Nk
n
But 3 Ax = 0, since our immersion is minimal; so > =ik = Aj. Thus
k=1 k%)

n
(22) L et =D 0 A AL WA A 6"
j=1
n
+ Y MO A AT A A"
ji=1

+ 30" A Ad@ LW A AE" at po.
ji=1

Step 5. We have
ULy (W 2 d®)} = *{L 5 (LW 1do)} by Lemma 38

= (LW _1d(LW 1d®)} by (c)
=i*{LW I L, 5d®} by (c) again

m

=y LW L 5" A by (13)
r=n-+1

m
= 3 LW (L pe" A
r=n-+1

m
+ Y LW ALy by (bl
r=n+1
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When we expand the first of these sums by (a), we obtain two terms, one involv-
ing i*u, and one involving i*{L, ;;¢"}. These will both be 0, by (14) and (18),
so we obtain

m

LW ade) = 3 iAW @ ALy Gu,)}
r=n+1

= Z " (W)i*{L, murt by (a).
r=n+1

Substituting in from (22), we obtain

(23) i*{LW(W_l dd)}

= Z ¢’(W)Ze‘ AL W A A

r=n+1

+ Z¢(W)Z)»]91 NPT A AT

r=n+l1

+ Z ¢ (W)Z@' CANdWY(LW)) A A 0" at po

r=n+l1
=51+ S+ S3, say.

Step 6. We will see what each of these sums gives when applied to the n-tuple
of vectors X1(po), ..., Xa(po).
Recall that
U/ (Xa, Xp) = (R'(Xe, Xp) Xy, Xj).

Thus we have

m n
SiXi, X = Y 9" W)Y W (LW, X)) at po
r=n+l1 j=1
m n
= Y W) (RUW, X)X, X)) at po
r=n+l Jj=1
m
== Y ¢ (W)R(LW. X)X}, X,) at po
r=n+l

= —(R'(LW, X;)X;, LW) = Ricar (LW)  at po.
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Hence
(24) S = RICM(.LW) -T(0) at po.
Next we have
SiXiso. o X)) = Y QTN LY (X)) atpo

r=n+l1 j=1

n

=53 Y W) atp
1

= r=n+1
= —Xn:Ajz by (16).
j=1
Hence
(25) S, =—Z,(AW)-T(©)  at po.

To evaluate S3, we note that d(w,j(_LW)) = Zd(l//,j (LW))(X;) - 6% So we

obtain

26)  S3(Xi,.... Xa)= Y (W)Y _d@](LW)X)  at po

r=n+1 j=1
=YY WXl (W) at po.
j=1r=n+l

Step 7. The coefficient of T'(0) in the statement of the theorem will clearly be
completely accounted for as soon as we show that

(27) S3(Xi... ., Xn) = —(LW,A(LW))  at po.

Equation (17) implies that (V'x, Xk, X;) = 0 at po. and hence that Vy, Xx =0
at po, where V is the covariant derivative in V. So

n
ALW) = Z LV (LVx, LW).
i=1
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Now
V’X].J.W:V’X,,( > ¢’(W)X,)
r=n+1
= Y XWX+ Y " (W)Vy X,
r=n+1 r=n+1
= > XK@ WNX+ Y ¢" (W)Y (X)) Xe,
r=n+l r=n+1 " oa=l
SO m m
LVxLW)= D X6 W)+ Y ¢ W)yl (X)X,
r=n+1 s=n+1
Hence

Vi LV lw)= Y Xj(Xj(¢'(W))+ 3 ¢S(W)¢;(Xj)).x

r=n+1 s=n+1

) G@ )+ Y @I YY) Xa.

r=n+1 s=n+1 a=I1

Using (17), we obtain*

LV (LVxlWw) = )" [X; (X (8" (WN))+ D ¢ (W)X, (Wl (X; )X, at po,
r=n+1 s=n+1

and therefore

(28) (LW, A(LW)) = ZZ "W)X (X (87 (W)

F Y FOON@IEN A

s=n+1
Z > 8T W)XG(X5(¢7 (W) at po.
J=1r=n+l1
since Yy = =5,

*Note that X (¥ (X)) need not be zero at po. even though ¢/ (X;) = 0 at po.
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We can find out something about the X;(¢” (W)) by writing (18) int the form
0= L 50"} = i"{dLW 1"} +i*{LW 1d¢"} by (c)

=d(¢"(W)) - l'*{.LWJ Zw; A ¢a}

= d(¢’ (W))—Zwkuww"+ Z ¢ (W)i*y; by (a).

s=n+1

This gives us

Xi(@" (W) ==y (LW) = Y " (W)Y](X));

s=n+1

using (17) we obtain

X;(X; (¢ (W) = =X; (0 (AW)) = Y ¢*W)X;(¥](X;))  at po.

s=n+1

Substituting into (28), we get

(LW, A(LW)) = Z Z " (W)X, (y] (LW))

j=1r=n+1

=30 W W)X (X))

j=1r,s=n+1

==Y 2 P MXWIAW)) at po, since ¥{ = =y

j=1r=n+l

This proves (27), and completes our calculation of the first ternt i (15).
The second ternt in (15) will not be nearly so bad. We have

(29) (L (W 2 @)} = i*{W 1 d(W 1 ®)} by (c)
=i"{W Ly} by (¢)

:i*{WJ Zqﬁl Ao ALy A"'A¢"} by (b).

To show that

(30)  *{Lp(W @)} =div TW - (TWJT(©0) + T[LW. TW]JT(0),
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it obviously suffices to show that both sides give the same result when applied to
any (n— 1)-tuple (X,..., X),..., Xu) at po. Since the X;’s enter symmetrically,
we can assume, by renumbering, that / = 1. Now (29) gives

L (W 3 @)} (Xa, ..., Xn)
=(Zd)'A---ALWWAm/\qﬁ”)(W,Xz,...,X,,) at po
j=1
=(Lpd' A APV, Xa, .., X))

n
+ 3@ A ALgel A AW, Ko, Xa)  at po.
—

In computing the first term, the only permutations of (W, Xa, ..., X,) that do
not give zero are interchanges of W with one Xj;; in the second sum only the
given order (W, X, ..., X,) produces a non-zero result. So

ML (W 3 @)} (X, ..., Xp)

= [(LW)(W) - ZMW)(LW)(X,-)]

j=2

+ 3" WL ) (X)) at po

j=2

= (Lpg" W)= ¢/ (W)(Lze") (X))

j=l

+9' W) Y (Lpeh) (X)) at po
j=1

[since j = 1 gives the same new term in each sum]

= (L") (W) - (LV~V¢‘)(Z¢J'(W)X,-)

j=1
+¢' (W)Y (Lpeh) (X)) at po
j=1
= (Lp¢" )AW)+ o' (W) Y (X587 (W) — 4] at po
j=1

[by (19)]
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= (Lo Y (LW) +0' (W) D X; (¢ (TW))

j=1
[since _; A; = 0]
= (W 2 d¢" Y (LW) +d(W 1 ¢" ) LW)

+¢' (W)Y X;(TW, X;))

j=1

= do (W, 1LW)+ LW(¢" (W)

+ o' (W)Y (Vi TW, X;) + (TW, Vx, X;)]

j=1

— W@ (LW)) — LW(¢' (W) — ¢' (W, LW]D] + LW (8" (W)

+o' (W) (Vx, TW, X))

j=1
[since }~; Vx; Xj = n = 0]

= —¢' (W, LW) +¢" (W)Y (Vx,TW. X))
j=l1
= (TILW, TW], X1) + (TW. X1) ) (Vx, TW, X))
j=1

369

at po

at po

at po

at po

This is exactly the value of the right side of (30) on X3, ..., Xa; we have thus

completed the calculation of the second term in (15).

Finally, we again dispose of the general case, where W(po) may be tan-
gent to V, by considering N = N x R, with the product metric, and the map

o (—&¢) x M — N defined by

a(u, p) = (a(u, p),u).

We recall that

W(p)=W(p),1) and n(p) = (n,0).

So @(0) is minimal if @(0) is. If R’ is the curvature tensor in N, then we have

Ricar (LW) = Ricp (LW, 1))
== Y (R'(LW, X)X, LW) = D (R'(L X)X, 1,

i=1 i=1
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for X1,..., X, an orthonormal basis of M. Using the fact that we have a
product metric, we easily find that

Ricp (LW) = — i(R’(lW, X)X, LW)
= Ri::]\/lj(lW).
The map s(p): M, x M, — M+ is obviously given by
s(p)(X,Y) = (s(X,Y),0), XY e M,
so the map A w is given by
(ALw(X).Y) = ((s(X,Y),0), (LW.1)) = (s(X.Y),LW) = (41w (X),Y).
Consequently,
2r(1LW) = (1L W).
We also have
A(LW) = A((LW, 1)) = (A(LW),0),
and hence
(LW, A(LW)) = (LW, 1), (A(LW),0)) = (LW, A(LW)).
Since we obviously have TW = TW, we have
divTW - (TWT(0) =divTW - (TW 1 T(0)).
Finally,
[LW, TW] = [(LW,1),(TW,0)]
=[1W, TW]+[1, TW]
=[LW.,TW],

the second bracket vanishing since there is clearly a coordinate svstem x!, . ...

x™. 7 on N with 9/0x! = TW and 0/0t = 1. Thus the result for o implies the
result for o, &

To integrate the result of Theorem 37 succinctly. we introduce the outward
pointing unit normal of 9M along f (see the picture on the next page): for
each ¢ € 9M. we define u(g) € Ny to be the unit vector tangent to f(M).
perpendicular to f(dN). and outward pointing. Recall (pg. 1.260) that the
orientation for 9M is chosen so that vy, ..., v,y is positively oriented at ¢ if
and only if p(g),vy,. ... va_y is positively oriented on M.
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39. COROLLARY. Let f: M — N be a minimal immersion of a compact
oriented #-dimensional manifold-with-boundary M into a Riemannian mani-
fold (N™,({ , )),and let @: (—&,6) x M — N be a variation of f through im-
mersions. Let W be the variation vector field, let W = da/du, and let i be the
outward pointing unit normal of M along f. If V(@(u)) is the n-dimensional

volume of M determined by the metric @(#)*( , ) and the given orientation
of M, then

drV(a(u))
du?

=/ [Ricar (LW) — S5(LW) — (LW, A(LW))]dV
u=0 M

+ (—1)"+'/8M[div TW (TW,p) + (TILW, TW], )14V,

where dV is the volume element determined by f*( , ), and dV"~! is the

induced volume element on M. In particular, if « is a variation keeping M
fixed, then

d?V(a(u))
du?

PROOF. Left to the reader. <

:/ [Ricpr (LW) — Zo(LW) — (LW, A(LW))]dV.
u=0 M

Problem 3 shows what our formula reduces to in the case of a geodesic
v:[a,b] — N. Here we will consider the case of a hypersurface M C N.
with i: M — N the inclusion map. Then LW = hv for some function A,
where v is a unit normal vector field. Since

_LV/X,.(I,)(_LV/‘,\']./H)) = -LV/Xi(p)(Xj (/I)U)
= X;(p)(X;(h)) - v.

we see that
(LW, A(LW)) = hAh.

where A now denotes the Laplacian on functions. computed by means of the
induced metric i*( . ) on M. So if £> denotes the sum of the squares of the
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eigenvalues of the symmetric map II: M, x M, — R, then our integral becomes
/ [h* Ricar(v) — 2%, — hAK]d V.
M

Suppose in particular, that we consider the variation by parallel surfaces, o (u, p)
= exp, u-v(p). Then h = 1 and (Problem 3-12) W(u, p) is always perpendicular
to a(u)(M); so the integral over M drops out, and we obtain

d*V(a
4V @) =/ [Ricar(v) — E,5]d V.
du2 u=0 M
If N has sectional curvatures > 0, then Ricps(v) < 0, so we obtain
9rry=
d<V(a(u)) <0
du? u=0 -

Moreover, we have strict inequality unless £; = 0, which happens only when
s = 0, so that our hypersurface is totally geodesic. Thus a non-totally geodesic
minimal hypersurface in a space of non-negative sectional curvature always has
greater volume than nearby parallel surfaces.

Now let us consider a minimal immersion f: M — R3 where M is a com-
pact surface-with-boundary. Let o: (—¢,¢) x M — R® be a variation of f
keeping dM fixed, such that W = AN for some function 4 vanishing on dM,
where N is a unit normal field. Then our formula becomes

S
0 % - /M[—hz(klz + ky2) — hAK]dA
u=0

where k1 and k, = =k are
the principal curvatures

=/ 2h2K — hAhldA
M

=/ [2h*K + Iy(grad h, grad h)] d A,
M

by Proposition 7-59.

In particular, consider a compact 2-dimensional manifold-with-boundary D C
R? and a minimal immersion ®: D — R3 given by

ol = Re/ ;F(w)(l —w?)dw

(%) d? = Re/ gF(w)(l +w?)dw

o} = Re/ Fw)w dw
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for a nowhere 0 complex analytic function F: D — C. For this immersion we

have (page 274)

(2) Ip=0"(, ) =pldxQ@dx+dy®dy),

|F()P0+ 127
4 L]

We can compute (Problem 5) that the curvature K for the metric ®*( , ) on D

is given by

where p(z) =

z=x4+1iy.

—16 .

o KO=raravems 7T

Suppose now that we have a variation & of ® which keeps 9D fixed, and such
that W(®(z)) = h(z) - N(z) for some function #: D — R with & = 0 on dD.
Using (2), we compute, from the last equation in the proof of Proposition 5, that

(? + ha*)(2)
|F@)P0+ 12)?

(5
Substituting (4) and (3) into (1), and remembering that the volume element d4
of 1 on D is

(4) I¢(grad h,grad h)(z) =

vdet(gi;) dx Ady = pdx Ady,

we obtain
dzA(&(u)) 8[h(x,y)]2

Notice that this expression does not involve the original map (x) at all; it involves
only the region D, and the function 4. If we recall (page 274) that N = ol
we see that D contains the unit disc B = {(x, y) : x>+ y* < 1} if and only if the
normal map N of ® covers the whole southern hemisphere of the unit sphere.

40. THEOREM (SCHWARZ-RADO). If the interior of D contains the unit
disc B = {(x,y) : x> 4+ ¥* < 1}, then there is a function #: D — R with 1 =0
on 8D such that
n f [1112 + hy? — —L] dxdy <0
D (T+x24307] 7

Consequently, for every nowhere 0 complex analytic function F: D — C, the
minimal surface ®(D) given by (x) does not have minimum area among all
nearby surfaces with the same boundary.

(Since the solution to the Plateau problem tells us that there is some minimal
disc with the same boundary as ®(S1), this proves that ®(S") is the boundary
of at least 2 different minimal surfaces.)
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PROOF. Let B(r) = {(x, ) : x> + v? <r?}, and define h": B(r) — R by

, X242 -2
) W(x,5) = X242 42
Set
8(h")?
¢ — ro\2 W 2 5 .
3) o= o - S ava

Substituting (2) into (3), we obtain the explicit formula

16(x* + y*)r 8(x* + y2 —r?)?
I(r)=/ 2 2} 24dxdy—/ 24 .2 2); 2, 2 7 dxdy.
B(r) (X + 2 +71?) B(r) (X2 + y2 +r2)(x2+ p2+ 1)

Making the substitution X = u -r, y = v - r, we get

16 2 2 8 2 2_12 2
I(r):/ (u* +v%) dudv—/ (u”+v )°r du dv.
g (U2 +v2+1)4 B (U2 +v2 + 1)2(u?r2 +vir2 4 1)2

Finally, computing 7'(1) by Leibniz’s Rule, we obtain

(u? +v? - 1)3
I'Y=16 | ——— " dud
) /B(u2+v2+1)5 v

< 0.

On the other hand, we claim that 7(1) = 0. To prove this, we use Proposition
7-39 and the fact that A" = 0 on dB(r) to write (3) as

8h"
I(r) =~ WA+ 0+ —:l dxdy;
(r) /B(r) I: 1 2t 2,2 )

then we just compute that the term in brackets is 0 for /i!.

Since I(1) = 0and 7’'(1) < 0. there is a number rg > 1 such that 7(+) < 0 for
1 <r < rg. Now there is some » with 1 < r < rg such that D D B(r). Define /1
on D by
h(x.r) (x.r) € B(r)

0 otherwise.

h(x.v) = {

This /1 has all the desired properties. except that the first partial derivatives of /1
are discontinuous on B(r). However. it is easy to see that we can round oft /1
to a C* tunction without changing the sign of the integral in (1). «
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PROBLEMS

1. Show that formula (x) on page 274 gives

1
a catenoid for F(w) = —
w

a helicoid for F(w) = 1_2
w

Scherk’s minimal surface for F(w) = 0 T
—w

2. Let f: R — R be convex.
(a) We have

f(x )_}llrif(; y J
ey o S = () T
[x )—ili}; h . , :

Py
\ 4

X x -?— h
(b) If f7(x) exists for all x. then f” is continuous. Hint: Consider & > 0, say,
with [f(x + k) — f(X)])/h < f'(x) + &

3. Lety: [a.b] — N be an arclength parameterized geodesic, with unit tangent
vector V = dy/dt. and let a: (—¢,€) x [a,b] — V be a variation, with variation
vector field W.

(a) If Z is a vector field along y with (V. Z) =0, then LV'y Z = Vv Z.

(b) A(LW) = D2LW/d:i?.

(c) We have

2 he' b 2
d L(az(ll)) =/ — <M .LW([)> _ (R/(W,V)V, W)(I)(I't
du u=0 Ja di?
b
+(VyTW. VY (TW. V) + ((LW. TW]L V)| .
(d) Let

B=(VyTW.V) (TW.V) + (LW.TW]LV)
= (Vp TW.TW) + (Viw TW. V) — (Ve LW. V).

Noting that TW is a multiple of V. say TW =&V, show that

(VrwlW. Vy=0 and (VpTW.TW)=(Vrw TW.V).
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Thus

B=(ViwTW. V) +(VuwTW, V) = (VwTW, V)
=(VwW.,V) — (Vi LW, V)
= (VwW, V) + (Vy LW, LW).

(e) Conclude that

d*L(a(u)) B bIDLW DLW /
Tu—o_/a< dir =’ di >_(R(WaV)V,W)(r)dr
b
+ (Vo W, V)| .

4. If M C R? is a minimal surface, then at any point p € M the Gaussian
curvature K(p) is given by
(Ve X, v X)

K(p)=—W for anyXeMp.

Hint: The numerator is III(X, X).

5. Consider a minimal immersion ®: V — R? given by (x) on page 274, so
that N =0 ~" and g;; = ud;;, where

_IF@P(+ 212

u(z) 2

Use Problems 4 and 7-20 to show that

5 2
K(z)= - (Tl:lz) /#(u)

_ —16
CFEP A+ 2

6. (a) Let M C R’ be a minimal surface with K < 0 everywhere, and con-
sider an imbedding f: U — M whose parameter lines are lines of curvature.
Using the formulas on pg II1.217, show that if k; > 0 is the positive principal
curvature. then

E(s,1) = S(s)/ki(s.1), G(s.t) =T(1)/ ki (s,0)
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for certain functions S, T > 0. Then show that there is a new imbedding with

1
E=G=—.
ki

Conclude that if { , ) i1s the metric on M, then

V—(’)

is a flat metric (Ricc).
(b) Let { , ) be a metric on a 2-dimensional manifold M such that K < 0 and
~/—K (, ) is flat. Thus there is a coordinate system (u, v) such that

y

1
V=K{,)=du®du+dv®dv — {, )= —({du@du+dv®dv
) v—K )
= g(du ® du + dv ® dv), say.

Using the formula on pg III1.217, show that

=5 l(5),+ (5).)

Then show that there is an imbedding f: U — R* with

Thus f(U) is a minimal surface isometric to M.
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trinsic, 86
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86
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normal, meai1, 71
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crte 318
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First order linear equation, general,
314
Fixed endpoints, 205
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126
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Fundaimental Lemnia of Riemannian
Submanifold Theory. 174



Gauss, C.F, 314
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closed, 312
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16
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Green’s Theorem, 132
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Index
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of E,s, 223
Index Theorem, Morse, 223
Inner product, Lorentzian, 2
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Formula, Generalized Cauchy, 322

Theorem, Generalized Cauchy, 323
Integrating factor, 314
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curvature, 86

Riemannian geometry, 128
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of conformal model of hyperbolic

space, 10

of hyperbolic space, 4
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bolic space, 13

Isomorphism, bundle, 48
Isoperimetric problem, 294 ff.
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Klingenberg, W., 239, 313
Klingenberg’s Theorem, 255
Kiihne, H., 38

Lagrange, J. L., 284
Lagrangian multipliers, 295
Laplace’s equation, 268
Laplace-Beltrami operator, 133
Laplacian, 128 ff, 143
Lashof, R. K., 82
Lawson, H. B., 293
Leibniz’s Rule, 286
Lewy (H.), transformation of, 113, 266
Lie algebra of S3, 97
Lima, E., 83
Limit sphere, see Horosphere
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314
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Liouville’s theorem, 9
Locus
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cut, 248
Lorentz group, 2
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Mainardi, G., see Codazzi-Mainardi
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Mean curvature, 65
normal, 71
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Meusnier. J. B., 285
Mever. W., 239
Milnor. J. W, 223
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Minimal surface
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Enneper’s, 274
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Henneberg’s, 278
Scherk’s, 274
Morse index theorem, 223
Morse theory, 82
Morse-Schoenberg Comparison Theo-
rem, 234
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Multipliers, Lagrangian, 295
Myers’ Theorem, 235

Negative definite, 223
Nicely curved, 166
Non-ruled flat surfaces in R™, 86
Normal
bundle, of submanifold, 33
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fundamental forms, 35
mean curvature, 65
outward pointing unit, 370
space, 167
variation, 260

O’Neil. B.. 127
Orthogonal systems of hypersurfaces in
R*, 8
Osculating
plane, 24
space, 166
Osserman, R., 310
Outward pointing unit normal. 370



Parallel

along curve, 28

curve, 293

surface, 292
Partial Ricci tensor, 355
Pinched (é-pinched), 238
Plateau, J., 280
Plateau problem, 280
Poincaré, H., 312
Positive curvature, 81 ff.
Principal

bundle isomorphism, 54

curvatures, 64, 70

for a normal vector, 71
directions, 64, 70
for a normal vector, 71

Product tori in S3, 109, 110
Projection

central, 17

stereographic, 5, 107, 265
Projective model of hyperbolic space,

19

Quaternions, 96

Rado, T., 280, 373; see also Schwarz-
Rado
Ratio, cross, 190
Rauch, H.E., 236
Rauch Comparison Theorem, 236
Ricai, G., 377
Ricci
equations, 38, 39, 41, 43
tensor, 120
partial, 355
Ricci-Kihne equations, 38
Riemannian geometry, intrinsic, 128
Riemannian Submanifold Theory,
Fundamental Lemma of, 174
Ruled surfaces

in Riemannian manifolds, 86
in R™, 85

Index
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flat, 86
Ryan, PJ., 123

Sacksteder, R., 82
Sasaki, S., 117
Scherk’s minimal surface, 274
Schoenberg, J. M., 234
Schwarz, H, 275
Schwarz-Rado Theorem, 373
Second
Bianchi identity, 182
fundamental forms, 35
variation formula, 205
of volume, 355
Serret-Frenet formulas, 21 ff.
Smooth closed path, 240
Soap
bubbles, 310
films, 280 ff.
Special closed path, 244
Sphere, 1
bundle, 251
geodesic, in hyperbolic space, 11, 13
Sphere theorem, 239
Steiner, J., 302
Stereographic projection, 5, 107, 265
Sturm, J.C.F, 230
Sturm
Comparison Theorem, 226
delicate, 258
Symmetric
curvatures, elementary, 65, 71
functions, elementary, 65
Synge’s Lemma, 239
Synge’s Theorem, 241
System of hypersurfaces in R", orthog-
onal, 8
S3
Lie algebra of, 97
product tori in, 109
translation in, 96
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Tangent space of Q aty, 203 Upper half-space mode! of hyperbolic
Theorema Egregium, 66, 70 space, 13
Three body problem, 312
Torus
flat, 106

product in S*, 109

Totally geodesic submanifolds of
hyperbolic space, 4, 11, 13

Transtormation

covering (= deck), 242

linear fractional, 189

of Lewy, 113, 266
Translation

in §3, 96

surface, 107
Two-parameter variation, 205

Variation, 260; see also Calculus of
variations
formula, second, 205
normal, 260
of volume formula, 287
second, 355
two-parameter, 205
vector field, 205, 260
Vector analysis, classical, 128
Vector field, variation, 205, 260
Vladimirova, S. M., 117
Volkov, Ju. A, 117
Volume
form, 287
variation of, formula for, 287
variation of, second, 355

Umbilic, 8, 72
hypersurface of R™ with all points,
8
submanifold of H™ with all points,
77
submanifold of R” with all points,
75 Warner, EW,, 83, 144
submanifold of ™ with all points, Weierstrass, K., 270
75 Weingarten equations, 33, 35
Unit normal, outward pointing, 370 Wente, H. C., 311



