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NOTATION

In the following definitions, the first number indicates the chapter in which the notation is
introduced, and the second number indicates the section within the chapter.

Ulu)

u(f) u(f)

Uex
R(s)

U,e U,

U(R), U( H)

% (p € R(G))

m{p
M (s)
Po

J U(s) du(s), where U is a continuous

unitary representation of a group G and
u is a bounded measure on G: 21.1

f f(s) U(s) dB(s), where B is a Haar

measure on G, and fe ZG, B): 21.1
mapping u+—s U(u): 21.1

left regular representation f (¢, x f)
21.1

direct sum of two continuous linear
representations: 21.1

real (resp. quaternionic) linear repre-
sentation corresponding to a complex
linear representation U: 21.1, Problem 9
minimal two-sided ideals of the complete
Hilbert algebra LY(G), for G compact:
21.2

identity element of a,: 21.2

the integer such that a, is isomorphic to
M, (C): 212

elements of a,: 21.2

the matrix (n, 'm®(s)): 21.2

index of the trivial ideal a, = C: 21.2
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R G
Z( ), Z/ RGN

By

ry

W(G, T), W(G), W
w.A

S(G, T), S(G), S
Ga

U,

ngy tu,:21.3
the index such that y, = ¥,: 21.3

class ) d,-p of a finite-dimensional
peR

linear representation: 21.4

ring of classes of continuous linear rep-
sentations of G: 21.4

bilinear form (u, v)—= Tr(U,(u) - U, (V))
associated with a linear representation U
of a Lie group: 21.5

bilinear form (u, v)— Tr(p(u) - p(v)) as-
sociated with a homomorphism of Lie
algebras p : g — gl(F): 21.5

Killing form (u, v)— Tr(ad(u) - ad(v))
of a Lie algebra a: 21.5

kernel expy !(e) of the exponential expy:
t—» T, where t is the Lie algebra of the
torus T: 21.7

dual of the lattice I'r, in t*: 21.7

Weyl group 4°(T)/T, where T is a maxi-
mal torus of G: 21.7

‘w™ (1), for we W and Ae t*: 21.8

set of roots of G with respect to T: 21.8
subspace of g, consisting of the vectors
x such that [u, x] = a(u)x for all ue t:
21.8

subgroup x, (1) of T, where y,(exp(u)) =
eV foruet: 21.8

hyperplane «~*(0) in t: 21.8

element of W acting on t by reflection in
the hyperplane u,: 21.8

simple U(sl(2, C))}-module of dimension
m+1:219

root decomposition of a complex semi-
simple Lie algebra g: 21.10 and 21.20
element of b such that a(h) = ®(h, h?):
21.10

element of b such that a(h,) =2 and
h,€[g,, 8-4]: 21.10

elements of g,, g_,, respectively, such
that [x,, x_,] = h,: 21.10
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Sp(2n, C), sp(2n, C)
SO(m, C), so(m, C)

A,,B,.C,D,
P(G, T), P(G), P

e, s e

S(IT)

z[p)™

NOTATION ix

bijection A+— A — A(h,)« of h* onto itself:
21.10

Lie subalgebra Ch,® Cx,® Cx_,:
21.10

numbers such that [x,, x;] = N, 5%, 4,
when o + f e §:21.10

union of the hyperplanes in t with
equations a(u) =2min, neZ: 21.10,
Problem 2

bijection A— 4 — v,(4)a, for a reduced
root system § in F: 21.11

Weyl group of S, generated by the o,;
2111

Cartan integers vg(a) = 2(B|a)/(B|B) for
o, fe S: 21.11

set of a € S such that a(x) > 0: 21.11
basis of 8, namely the set of indecom-
posable elements of 8] : 21.11

set of positive roots, relative to a basis
B of S: 21.11

root system formed by the v, € F*: 21.11
basis of 8" consisting of the v,, a € B:
21.11

1 Y 211

Ae 8+

linear form on t= @ RiE, < M,(C)

s=1

such that ¢,(iE,,) = id,,: 21.12

complex symplectic group and its Lie
algebra: 21.12

complex special orthogonal group and its
Lie algebra: 21.12

Lie algebras of the classical groups: 21.12
lattice 2nil"* of weights of G with respect
to T: 21.13

character exp(u)> e” of T, where p € P:
21.13

Y e, where IT is an orbit of the Weyl

pell

group W in P: 21.13
set of W-invariant elements of Z[P]: 21.13
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UG > UT ’ DG/T

Mg, My, Mgy

p=np+

W,
Uy &

{Pl’ P2 .-

Q(a)
o;

Spin (m)

e+ mB

- Py

hg,,where {f,,..., B} isa basis of S: 21.14
sef of A€ tf such that A(h,) € Z for all
a € S, or equivalently such that A(h;) e Z
for1 <j<I:21.14

Weyl chamber in it*, consisting of the 4
such that A(h)) >0 for 1 <j<[:21.14
order relation on it* equivalent to

A=porp—A=y+ Zcﬂ,,wnthyelc*

and ¢; > 0 and not all zero 21.14
reflection 5,0 A—A—Ai(h)B; for
1<j<i: 21 14
hyperplane in it* with equation
Ath,) =0:21.14
set of W-anti-invariant elements of Z[P]:
21.14
Y. det(w)e™ ?, where pe P: 21.14
weW
set of weights 1€ P which are regular
linear forms: 21.14
S(IT), where IT is the W-orbit of
pePnnC:21.14
)= [] (e¥* — e ¥?):21.14
ae 8+
set of regular points of the maximal torus
TcG: 2115
invariant volume-forms on G, T and
G/T: 21.15
invariant measures corresponding to the
volume-forms vg, vy, vg7: 21.15
highest root in S, relative to the basis
={By. ..., Bi}: 21.15, Problem 10
affine Weyl group: 21.15, Problem 11
hyperplane with equation a(u) = 27k in
it: 21.15, Problem 11
basis of it dual to {f,, B,, ..., B}
21.15, Problem 11
sublattice P(G/Z) of P(G) generated by
the roots a € §: 21.16
fundamental weights (1 <j < ) relative

to the basis B of S: 21.16
simply connected covering group of

SO(m) (m > 3): 21.16
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set of self-adjoint automorphisms of E:
21.17

set of positive self-adjoint automor-
phisms of E: 21.17

G, a simply connected compact semi-
simple Lie group; g, = Lie(G,);
8 = (8.,)¢; ¢« the conjugation of g for
which g, is the set of fixed vectors:
21.18

simply connected complex Lie group
with Lie algebra g: 21.18

conjugation of g which commutes with

c,. 21.18

real vector subspaces of g, on which
co(x) = x and ¢y(x) = — x, respectively:
21.18

subalgebra of invariants of c4: 21.18
image of ig, under the mapping
iu—expg(iu): 21.18

G, the Lie subgroup of G,R consisting
of the fixed points of ¢ such that
0,=¢o; Ko=GonG,; Pp=Gon P:
21.18

G,/D, a group locally isomorphic to G,:
21.18

K, = Ko/D; P, =image of p, under
€xpg,: 21.18

G./(C n Gy), C the centre of G,: 21.18
Ko/(C n Gy): 21.18

subgroup of fixed points of g,, the auto-
morphism of G, obtained from ¢ on
passing to the quotient: 21.18

image of ip, under expg,: 21.18
lexicographic ordering: 21.20

maximal commutative subalgebra of p,:
21.21

maximal commutative subalgebra of g,
containing aqy: 21.21

subset of 8§ consisting of the roots which
vanish on ia,: 21.21
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CHAPTER XXI
COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS

It is rarely the case in mathematics that one can describe explicitly all the
objects endowed with a structure that is characterized by a few simple
axioms. A classical (and elementary) example is that of finite commutative
groups (A.26.4). By contrast, in spite of more than a century of effort and an
enormous accumulation of results, mathematics is still very far from being
able to describe all noncommutative finite groups, even when supplementary
restrictions (such as simplicity or nilpotency) are imposed.

It is therefore all the more remarkable that, in the theory of Lie groups,
all the compact simply connected Lie groups are explicitly known, and that,
starting from these groups, the structure of compact connected Lie groups is
reduced to a simple problem in the theory of finitely generated commutative
groups ((16.30.2) and (21.6.9)). The compact simply connected Lie groups
are finite products of groups that are either the universal covering groups of
the “classical groups” SO(n), SU(n), and U(n, H) (16.11) (and therefore
depend on an integral parameter) or the five “exceptional” groups, of
dimensions 14, 52, 78, 133, and 248. We shall not get as far as this final result,
but we shall develop the methods leading to it, up to the point where what
remains to be done is an enumeration (by successive exclusion) of certain
algebraic objects related to Euclidean geometry, subjected to very restrictive
conditions of an arithmetic nature, which allow only a small number
of possibilities (21.10.3) (see [79] or [85] for a complete account).

These methods are based in part on the elementary theory of Lie groups
in Chapter XIX, and in part on a fundamental new idea, which dominates
this chapter and the next, and whose importance in present-day mathema-
tics cannot be overemphasized; the notion of a linear representation of a
group. The first essential fact is that where compact groups are concerned
(whether they are Lie groups or not) we may restrict our attention to finite-
dimensional linear representations (21.2.3). The second unexpected

1



2 XXI COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS

phenomenon is that where compact connected Lie groups are concerned,
everything rests on the explicit knowledge of the representations of only two
types of groups: the tori T" and the group SU(2) (21.9). Roughly speaking,
these are the “ building blocks ™ with which we can “construct ” all the other
compact connected Lie groups and obtain not only their explicit structure
but also an enumeration of all their linear representations (21.15.5).

The interest attached to the compact connected Lie groups arises not
only from the esthetic attractions of the theory, which is one of the most
beautiful and most satisfying in the whole of mathematics, but also from the
central position they occupy in the welter of modern theories. In the first
place, they are closely related to a capital notion in the theory of Lie groups,
namely that of a semisimple group (compact or not), and in fact it turns out
that a knowledge of the compact semisimple groups determines all the
others (21.18). Since the time of F. Klein it has been recognized that classical
“geometry” is essentially the study of certain semisimple groups; and E.
Cartan, in his development of the notions of fiber bundle and connection,
showed that these groups play an equally important role in differential
geometry (see Chapter XX). From then on, their influence has spread into
differential topology and homological algebra. We shall see in Chapter XXII
how—again following E. Cartan—it has been realized over the last twenty-
five years that the study of representations of semisimple groups (but now on
infinite-dimensional spaces) is fundamental in many questions of analysis,
not to speak of applications to quantum mechanics. But the most unex-
pected turn has been the invasion of the theory of semisimple groups into
regions that appear completely foreign: “abstract™ algebraic geometry,
number theory, and the theory of finite groups. It has been known since the
work of S. Lie and E. Cartan that semisimple groups are algebraic (that is,
they can be defined by polynomial equations); but it is only since 1950 that it
has come to be realized that this is no accidental fact, but rather that the
theory of semisimple groups has two faces of equal importance: the analytic
aspect, which gave birth to the theory, and the purely algebraic aspect, which
appears when one considers a ground field other than R or C. We have not,
unfortunately, been able to take account of this second aspect; here we can
only remark that its repercussions are increasingly numerous, and refer the
reader to the works [80], [81], [74], [77], and [78] in the bibliography.

1. CONTINUOUS UNITARY REPRESENTATIONS OF
LOCALLY COMPACT GROUPS

(21.1.1) Let G be a topological group, E a Hausdorff topological vector
space over the field C of complex numbers. Generalizing the definition given
in (16.9.7), we define a continuous linear representation of G on E to be a
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mapping s— U(s) of G into the group GL(E) of automorphisms of the
topological vector space E, which satisfies the following conditions:

(a) U(st)= U(s)U(t) for all 5, 1 € G;
(b) for each x € E, the mapping s+ U(s) - x of G into E is continuous.

It follows from (a) that U(e) = 1 (where e is the identity element of G)
and that, for all s € G,

(21.1.1.1) U(s™') = U(s)™ .

If E is of finite dimension d, the representation U is said to be of dimen-
sion (or degree) d, and we sometimes write d = dim U.

The mapping U, that sends each s € G to the identity automorphism 1,
is a continuous linear representation of G on E, called the trivial
representation.

A vector subspace F of E is said to be stable under a continuous linear
representation U of G on E if U(s)(F) = F for all s € G; in that case, the
mapping s+ U(s) | F is a continuous linear representation of G on F, called
the subrepresentation of U corresponding to F.

A continuous linear representation U of G on E is said to be irreducible
(or topologically irreducible) if the only closed vector subspaces F of E that
are stable under U ate {0} and E. For each x#0 in E, the set
{U(s) * x : s € G} is then total in E (12.13).

(21.1.2) In this chapter and the next, we shall be concerned especially with
the case where E is a separable Hilbert space. A continuous unitary represen-
tation of G on E is then a continuous linear representation U of G on E such
that for each s € G the operator U(s) is unitary, or in other words (15.5) is an
automorphism of the Hilbert space structure of E. This means that the
operators U(s) satisfy conditions (a) and (b) of (21.1.1), together with the
following condition:

(c) (U(s) x|U(s) - y)=(x|y)forallse Gandall x, y € E.

In particular, U(s) is an isometry of E onto E, for all s € G, and we have
(21.1.2.9) U(s)™! = (U(s))*
for all s € G.

(21.1.3) (i) When E is finite-dimensional, condition (b) of (21.1.1) is equiv-
alent to saying that s U(s) is a continuous mapping of G into the normed
algebra .#(E) (relative to any norm that defines the topology of E); for it is



4 XXI COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS

equivalent to saying that if (u(s)) is the matrix of U(s) relative to some bgsis
of E, then the functions u, are continuous on G. On the other hand,ifEisa
separable Hilbert space of infinite dimension and U is a continuous unitary
representation of G on E, then U is not in general a continuous mapping of
G into the normed algebra #(E) (Problem 3).

(i) When E is finite-dimensional, a continuous linear representation U
of G on E is not necessarily a continuous unitary representation relative to
any scalar product (6.2) on E. For example, if G = R, the continuous linear

representation
0
U:x (1 )
x 1

of G on C? is not unitary, relative to any scalar product on C?, because any
unitary matrix is similar to a diagonal matrix (15.11.14) (cf. Section 21.18,
Problem 1).

(21.1.4) Throughout the rest of this chapter we shall consider only separable
metrizable locally compact groups, and as in Chapter X1V the phrases “ locally
compact group” and “ compact group” will mean ** separable metrizable locally
compact group™ and “ metrizable compact group,” respectively.

Let G be a locally compact group, u a bounded complex measure (13.20)
on G, and U a continuous unitary representation of G on a separable
Hilbert space E. For each pair of vectors x,y in E, the function
s+ (U(s) - x|y) is continuous and bounded on G, because |U(s) - x| =
x| ; it is therefore u-integrable, and by (13.20.5) we have

(21.1.4.1) < lull - Al Iyl

j(U(s) - x]y) du(s)

Since E may be identified with its dual, it follows that there exists a unique
vector U(u) - x in E such that

w19 s = Wi 51
for all y € E, and this allows us to write (13.10.6)

(21.1.4.2) Uu) x = j(U(s) © x) du(s).

It is clear that this relation defines a continuous endomorphism U(u) of E,
since (21.1.4.1) implies that

(21.1.43) U@ < |-
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In particular, we have
(21.1.4.4) Ule,) = U(s)

for allse G.
The relation (21.1.4.2) is sometimes written in the abridged form

(21.1.4.5) Up) = J Ufs) du(s).

(21.1.5) We recall (15.4.9) that the set M{(G) of bounded complex mea-
sures on G is an involutory Banach algebra over C, the multiplication being
convolution of measures, and the involution ui— ji. When a left Haar mea-
sure B has been chosen on G, the normed space L{G) may be canonically
identified with a closed vector subspace of M4(G), by identifying the class f
of a f-integrable function f with the bounded measure f- 8, since || f - B|| =
N;(f) (13.20.3). By the definition of the convolution of two functions in
ZLG) (14.10.1), LY{G) is a subalgebra of M{(G) if we define the product of
the classes of two functions f, g € Z¢(G) to be the class of f » g. If in addition
G is unimodular (14.3), L¢(G) is a two-sided ideal in M{G), and the
transform of the measure f-f under the involution u— g is f- B
(14.3.4.2). We may therefore consider L{(G)as an involutory closed subalgebra
of MY(G), the involution being that which transforms the class of f into
the class of f

We deduce from this that if G is unimodular, then for each representation
(15.5) V of the involutory Banach algebra L¢(G) on a Hilbert space E, we
have

(21.1.5.1) V(DI = Nu(f)

for all f € Z¢(G). For if G is discrete, this is just (15.5.7) because the identity
element ¢, of ML(G) then belongs to LYG). If G is not discrete, it is im-
mediately seen that 1 may be extended to a representation on E of the
involutory Banach subalgebra A = LL{G)@ Ce, of M{(G) by putting
V(f-B+4)=V(f)+1-1g, and (15.5.7) can then be applied to this
algebra with identity element.

(21.1.6) Under the assumptions of (21.1.4), the mapping pu— U(u) is a rep-
resentation (15.5) of the involutory Banach algebra MHG) on the Hilbert
space E. If in addition G is unimodular, the restriction of u— U(u) to L¢(G) is
nondegenerate.

It follows immediately from (21.1.4.4) that U(e,) = 1g. To prove the first
assertion, it remains to show that U(u » v) = U(u)U(v)and U(ji) = (U(u))*,
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where p, v are any two bounded measures on G. If x, y are any two vectors in
E then by definition (14.5) we have

"

(U *v) - x|y)= | (U(s) - x]y) d(p * v)(s)

LY

_ j (U(ow) - x]y) du(o) dv(w)

" j (U0 x| (UE)* - 3) dufe) dv(w)
_ f (UO) - x| (UE)* ) duo)

- j(U(v) (UG ¥)]y) duo)

= (UU) - x|y)

by virtue of the Lebesgue-Fubini theorem, and this proves the first relation.
Next, using the fact that the operators U(s) are unitary, we have

((U@)* - x|y) = (U(g) - y|x)

"

= | (U(s) - y]x) dpls)

”

= | (Uls) " y|x) da(s)

= [we) - xy) dats
= [ W xly) i)
= (U() - x|y)

by the definition of the measure ji (15.4.9), and this proves the second
relation.

In particular, for each s € G and each bounded measure i on G, we have

(21.1.6.1)  Ule, * p) = U(s)U(u), Uu * &) = U()U(s).

Let (V,) be a decreasing sequence of neighborhoods of e in G, forming a
fundamental system of neighborhoods of e. For each s € G and each n, let u,
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be a positive-valued function belonging to »#°(G) with support contained in
sV, and such that j u, df = 1. For each x € E and each ¢ > 0, there exists an

integer n such that
(21.1.6.2) JU() - x — U(s) - x| <e
for all t € sV,,. We have then, for all y € E,

(Ul B = U6 x13) = [ (V10 x = UG x]) ) )
and the inequality (21.1.6.2) therefore implies that
[U(u, - B) - x — U(s) - x|| e

If there existed a vector x # 0 such that U(f- ) - x = 0 for all functions
fe £LG), we should therefore have U(s) - x =0 for all s € G, which is
absurd (take s = e). The restriction of the representation u+— U(u) to L¢(G)
is therefore nondegenerate.

By abuse of language, we shall call the restriction of u+— U(u) to L{(G)
the extension of U to LL(G), and we shall denote it by U,,,. For fe Z¢(G),
we shall write U(f) instead of U(f - B) or U(f).

(21.1.7) Let G be a unimodular, separable, metrizable, locally compact group.
Then the mapping U U,,, is a bijection of the set of continuous unitary
representations of G on E, onto the set of nondegenerate representations of the
involutive Banach algebra L(G) on E. Furthermore, in order that a closed
vector subspace F of E should be stable under all the operators U(s) (s € G), it
is necessary and sufficient that it should be stable under all the operators U(f)
for fe ZLG) (or just for f e A (G)).

We have seen in the course of the proof of (21.1.6) that, for each s € G
and x € E, the vector U(s) - x is the limit of a sequence U(u,) - x with
u, € X (G). This shows already that the mapping U+ U ,, is injective, and
that if a closed subspace F of E is stable under the operators U(f) (where
fe LYG) or fe #(G)), then it is stable under the operators U(s) (s € G);
and the converse follows directly from the definition of U(u) (21.1.4). It
remains to show that, for each nondegenerate representation V of L¢(G) on
E, there exists a continuous unitary representation U of G on E such that
V =U,,. Let H be the vector subspace of E spanned by the vectors
V(f) - x, where f e Z¢{(G) and x € E; then the hypothesis on V signifies that
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H is dense in E. Let s € G, and define the sequence of functions (u,) as in the
proof of (21.1.6); then for each fe LL(G) we have (14.11.1)

limN;(u, * f—¢, xf)=0

n—tao

and consequently (21.1.5.1)
lim | V(u)V(f) — V(e, * f)| = 0.

n=+oo

This shows that for each y € H, ie., each linear combination Y V(f,) - xi,
k

the sequence (V(u,) - y) has a limit in E, namely, ) V(g * f;) - x,. Let
k
U(s) - y denote this limit. It is clear that the mapping U(s): H — E so defined

is linear and such that for each f e £¢(G) we have
21.1.7.9) Uls) o V) = Vi, *f),

which shows also that U(s) maps H into itself.

Also, by (21.1.5.1), we have || V(u,)| < N(u,) = 1 for all n, and therefore
|U(s) - y|| < |y| for all y € H; hence U(s) extends uniquely to a continuous
operator on E, which we denote also by U(s). Clearly we have ||U(s)| < 1.
We have to show that s+ U(s) is a continuous unitary representation of G
on E. If 5, t € G, then by virtue of (21.1.7.1) we have

Ulst) o V(f) = Vieq #f) = Ve, * (& * 1))
= Us) o Ve, » ) = U)o U(D) » V()

from which it follows immediately that U(st) - y = U(s) - (U(t) - y) for all
y € H and hence, by continuity, U(st) = U(s)U(t) in L(E). Next, it follows
from (21.1.7.1) that U(e) is equal to the identity mapping on H, and there-
fore also on E. Finally, since |U(s) - x| < ||x|| and [|[U(s™") - x|| £ x, we
have also || x| £ ||U(s) - x| and therefore | U(s) - x| = ||x|| for all x € E, so
that U(s) is a unitary operator.

It remains to show that V = U,,,. Let f, g € £(G); from the definition
of convolution and the Lebesgue-Fubini theorem it follows that for each
he Z&(G) we have

(211.7.2) hfegy= jf (5)Xh, &, * g> dp(s).

For each pair of vectors x, y € E, the function fie (V(f) - x|y) is a contin-
uous linear form on 2{(G), hence is of the form fim (h,f) for some
h e Zg(G) (13.17.1). Hence, by virtue of (21.1.7.2), we may write
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V(1) - (V) 9)]y) = (VT + ) x])
- j 6V, » g) - x]y) dB(s)

= j (U(s) - (V(g) - x)|y)f (s) dB(s)

= (U(f) - (V(g) - x)]y),

from which we conclude that (U(f) - z|y) = (V(f) - z|y) for all z € H and
y € E, and hence that U(f) = V(f) because H is dense in E.

(21.1.8) The study of the continuous unitary representations of a unimodu-
lar group G is therefore entirely equivalent to that of the nondegenerate
representations of L¢(G). Hence we may transfer to the former all the ter-
minology introduced in (15.5) for the latter. In particular, two continuous
unitary representations U, U, of G on spaces E |, E, are said to be equiva-
lent if there exists an isomorphism T of the Hilbert space E, onto the Hilbert
space E, such that U,(s) = TU,(s)T~* for all s € G. This is equivalent to
saying that U,(f)= TU,(f)T"' for all functions fe #¢G): in other
words, (U, )., and (U,).,, are equivalent in the sense of (15.5). To say that U
is irreducible is equivalent to saying, by virtue of (21.1.7), that U, is topolog-
ically irreducible. Finally, if E is the Hilbert sum of a sequence (F,) of closed
subspaces stable under U, then U is said to be the Hilbert sum of the
subrepresentations corresponding to the F,,.

(21.1.9) Example. Suppose that G is unimodular. For each s € G and
each fe £%G), the function y(s)f = ¢, » f (14.8.5) belongs to £%(G), and
we have N, (g, » f) = N,(f). Hence we may define a unitary operator R(s)
on L%(G) by mapping the class of f to the class of ¢, * f. Further, it follows
from (14.10.6.3) that s— R(s) is a continuous unitary representation of G on
LZ(G). This representation is called the regular (or left regular) representa-
tion of G. It follows from (14.9.2) that for each bounded measure y on G we
have R(u)-§=(u+g)~ for all ge £%G), and in particular that
R(f) g=(f*g) for all fe LLG). The representation R,,, is called the
regular (or left regular) representation of L¢(G) on LE(G). It is injective,
because it follows immediately from regularization (14.11.1) that if f « g is
negligible for all functions g € #2(G), then f is negligible.

(21.1.10) Let E,, E, be two Hausdorff topological vector spaces over C,
and let U,, U, be continuous linear representations of G on E, E, , respec-
tively (21.1.1). Generalizing the terminology of (21.1.8), we say that U, and
U, are equivalent if there exists an isomorphism T: E; — E, of topological



10 XXI COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS

vector spaces such that U,(s) = TU,(s)T ' for all s € G. When E, E, are
Hilbert spaces and U, U, are continuous unitary representations, it can be
shown that this definition is equivalent to that given in (21.1.8) (Problem 4).
The direct sum of two arbitrary continuous linear representations U,, U, of
G is defined to be the continuous linear representation U of Gon E; x E,
defined by U(s) - (x;, x;) = (Uy(s) - x;, U,(s) - x,). If E; and E, are finite-
dimensional and U,(s), U,(s) are identified with their matrices relative to
(arbitrary) bases of E;, E,, respectively, then U(s) is identified with the
U, (s)
0
finite number of continuous linear representations of G is defined in the
same way. A continuous linear representation of G on a finite-dimensional
space is said to be completely reducible if it is equivalent to a direct sum of
irreducible representations.

matrix ( U(:s))’ and we write U = U, @ U,. The direct sum of a
2

PROBLEMS

L. Let E be a normed space, G a (separable, metrizable) locally compact group, and s— U(s)
a mapping of G into the group GL(E) such that U(st) = U(s)U(t) for all s, t € G. Let A be
a dense subset of E such that for each x € A the mapping s— U(s) - x is continuous on G.
(a) Show that the function si— || U(s})|| is lower semicontinuous on G and that

tutsnf s JUE) - VO]
for alls, t€G.
(b) Deduce from (a) that for each compact subset K of G the set {U(s):se K} is

equicontinuous on E (use (12.16.2)). Deduce that the mapping (s, x)+ U(s) - x of G x E
into E is continuous.

2. Let E be a separable normed space and D a denumerable dense subset of E; let G be a
locally compact group and let s+— U(s) be a mapping of G into GL(E) such that U(st) =
U(s)U(t) for all s, t € G. Suppose also that for each x € D the mapping s+— U(s) - x of G
into E is measurable (relative to a Haar measure on G).

Let V be a symmetric compact neighborhood of e in G. Show that there exists a
compact subset K of V, with measure arbitrarily close to that of V, such that the mapping
s+ | U(s)] is lower semicontinuous on K (13.9.5). Deduce that this mapping is bounded
on K (same method as in Problem 1). Show, by using (14.10.8), that there exists a
neighborhood W < V of e in G such that the mapping s— [|U(s)|| is bounded on W, and
deduce that the mapping (s, x)— U(s) - x of G x E into E is continuous.

3. Let G bean infinite (metrizable) compact group, endowed with normalized Haar measure.
Show that for each s # e in G there exists a function f € £2(G) such that N,(f) = 1 and
N,(y(s)f — /') = /2. Deduce that the regular representation s R(s) of G on L3(GY) s not
a continuous mapping of G into the Banach algebra #(L3(G)).
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4. Let G be a locally compact group, let E; and E, be separable complex Hilbert spaces, U,

and U, continuous unitary representations of G on E,, E,, respectively, and let
T: E, —» E, be an isomorphism of topological vector spaces such that U,(s) = TU,(s)T~*
forall se G.
(a) There exists an isomorphism T*: E, - E, of topological vector spaces such that
(T x,|x;)=(x,|T* - x,)forall x, € E, and x, € E,. (T* is the adjoint of T;cf. Section
15.12, Problem 1.) The operator T* - Ton E, is self-adjoint, positive, and invertible, and
there exists a unique self-adjoint positive invertible operator 4 such that A2=T*- T
(15.11.12). Show that A2U (s) = U (s)4? for all s € G, and deduce that AU ,(s) = U,(s)A4
for all s € G. {Use the approximation of t'/? by polynomials, together with (15.11.8.1).)
(b) Show that T- A™! =S: E, - E, is an isomorphism of Hilbert spaces, such that
U,(s)=SU,(s)S ! forall s e G.

5. (a) Let E be a separable Hilbert space and 4 an unbounded self-adjoint operator on E. If

U is a unitary operator on E that leaves dom(4) stable and is such that U - (4 - x) =
A-(U-x) for all xe dom(A), show that U(dom(A))=dom(4), and that for each
bounded, uniformly measurable function f on R, the operator U commutes with the
continuous self-adjoint operator f(A) (notation of (15.12.13)). In particular, if 4 is not a
homothety, there exists a closed vector subspace F of E, other than E and {0}, which is
stable under U.
(b) Let G be a locally compact group and let s— U(s) be an irreducible continuous
unitary representation of G on E. Show that if A is an unbounded self-adjoint operator on
E, such that dom(A4) is stable under the representation U and such that U(s) - (4 - x) =
A (U(s) - x) for all s € G and all x € dom(A), then A is necessarily a homothety. (This is
the topological version of Schur's lemma.)

6. Let G be a locally compact group and let U,, U, be continuous unitary representations of
G on separable Hilbert spaces E,, E,, respectively. A continuous linear mapping
T: E, -+ E, is an intertwining operator for U, and U, if TU,(s) = U,(s)T for all s € G.
Then T* (Problem 4) is an intertwining operator for U, and U,.

Suppose that U, is irreducible. Suppose also that there exists a nonzero unbounded
closed operator T from E, to E, (Section 15.12, Problem 1) such that dom(T’) is dense in
E, and stable under U, and such that T - (U,(s) - x) = U,(s) - (T - x) for all x € dom(T)
and all s € G. Show that dom(T*) is dense in E, and stable under U, that dom(T*T) is
dense in E, and stable under U, and that T*T is self-adjoint. (Consider the Hilbert sum of
E, and E,, and the operator S defined on dom(T) @ E,, which is equal to T on dom(T)
and zero on E,.) Deduce from Problem 5 that there exists a constant ¢ # 0 such that
T*T = cl, and hence that dom(T) = E, and that T is an isometry of E; onto a closed
subspace of E,. Hence U, is equivalent to a subrepresentation of U, .

7. Let E be a finite-dimensional real vector space. If G is a topological group, a continuous
(real) linear representation of G on E is any continuous homomorphism of G into GL(E).
(a) Let F = E, be the complex vector space obtained from E by extension of scalars;
identify E with the (real) subspace of F consisting of all x ® 1 with x € E. Theneveryze F
is uniquely of the form z=x + iy where x, y € E. Define a mapping J: F+F by
J + (x 4+ iy) = x — iy, where x, y € E; then J is a semilinear bijection, and J? = I; also E is
the set of z € F such that J - z = z. If s— U(s) is a continuous (real) linear representation
of G on E, the mapping s— V(s) = U(s) ® 1.is a continuous linear representation of G on
F, such that V(s) - J =J - V(s) for all s G.
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(b) Conversely, let F be a finite-dimensional complex vector space, and let J be a semilin-
ear bijection of F onto F such that J? = I If F , is the real vector space obtained from F by
restriction of scalars, then J is an involutory automorphism of F . I E is the eigenspace of
this automorphism for the eigenvalue 1, then iE is the eigenspace for the eigenvalue — 1,
and consequently F may be identified with E,. Show that if s+ V(s) is a continuous
linear representation of G on F such that ¥(s) - J = J - V(s)for all s € G, then there exists
a contintious (real) linear representation U of G on E such that V may be identified with
s U@ 1.

Let F be a finite-dimensional left vector space over H, the division ring of quaternions. If G
is any topological group, a continuous (quaternionic) linear representation of G on F is any
continuous homomorphism of G into GL(F).

(a) Identify the quaternions of the form a + bi (a, b € R) with complex numbers, so that
every quaternion a + bi + ¢j + dk is expressed as (@ + bi) + (¢ + di)jandH=C® Cjisa
left vector space of dimension 2 over C. Let E = F ¢ be the complex vector space obtained
from F by restriction of scalars. If we define J - z = jz for each vector z € E, then we have
J - (A2) =A{J - 2) for all 4 € C, so that J is a semilinear bijection of E onto E such that
J? = —I. A quaternionic continuous linear representation s+ U(s) of G on F can be
considered as a continuous linear representation of G on E, and we have U(s) ' J =
J-U(s)forallse G.

(b) Conversely, let E be a finite-dimensional complex vector space, and let J be a semilin-
ear bijection of E onto E such that J2 = —I. For each vector z € E and each quaternion
A+ yj (where A, p € C), put (4 + wj)z = Az + p(J - 2). This defines on E a structure of left
vector space over H such that if F denotes this left vector space then Eis Fic. If Uis a
continuous linear representation of G on E such that U(s) - J = J - U(s) forall s € G, then
U can be regarded as a quaternionic continuous linear representation of G on F.

For finite-dimensional real (resp. quaternionic) continuous linear representations of a
topological group G, the notions of equivalent representations, direct sum of representa-
tions, and irreducible representations are defined exactly as in (21.1.1) and (21.1.10), by
teplacing the field C by R (resp. H) throughout. If U is a continuous linear representation
of G on a finite-dimensional complex vector space, satisfying the condition of Problem
7(b) (resp. 8(b)), we denote by U™ (resp. U'™) the corresponding real (resp. quaternionic)
linear representation.

(a) Let U, V be two equivalent complex linear representations of G, so that if E, F are the
respective spaces of the representations U, V, there exists a linear bijection T of E onto F
such that ¥(s) = TU(s)T ! for all s € G. Suppose that there exists a semilinear bijection
Jy (resp. Ji) of E (resp. F) onto itself such that J} = efzand J} = el (Wheree = +1)and
U(s)g = Jg Uls), V(s)J = J¢ V(s) for all s € G. Show that there exists a linear bijection S
of E onto F such that V(s) = SU(s)S ™! for all s € G and also SJ = J..S. (Put

1 1
T=3(T+0eTIgY), T = (T=JpTJ),

and show that there exists a real number ¢ such that T" + £T” is a bijection.) Deduce that
if ¢ = 1, the representations U™ and V™ are equivalent, and that ife = — | the representa-
tions U™ and V'™ are equivalent.

(b) Let U be a complex linear representation of G on a (finite-dimensional) complex
vector space E, and identify each automorphism U(s) with its matrix relative to a fixed
basis of E. In order that U should satisfy the condition of Problem 7(b) (resp. 8(b)), it is
necessary and sufficient that there should exist an invertible complex matrix P such that
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U(s) = PU(s)P~ " for all s € G, and such that PP = PP = | (resp. — /). (For any complex
matrix A = (a;;), 4 denotes the complex conjugate matrix (@;;)) In particular, the represen-
tation U is equivalent to the complex conjugate representation s— U(s) (denoted by U).
(c} Conversely, let U be an irreducible complex linear representation of G on E that is
equivalent to its complex conjugate. Then U satisfies one and only one of the conditions of
Problems 7(b) and 8(b); in other words, one of the representations U'®, U™ is defined, but
not the other. (Use (b) and Schur’s lemma (A.22.4).) Moreover, whichever of the represen-
tations U™, U™ is defined is irreducible.

(a) Let U beacomplex linear representation of G on a finite-dimensional vector space E.
For each s € G, U(s) is also an automorphism of the real vector space E,; obtained from E
by restriction of scalars; let U, denote the real linear representation so defined. Show that
the complex linear representation si— U a(s) ® ¢ is equivalent to the direct sum of the
representation U and its conjugate U. (Observe that if (e} is a basis of E over C, the
vectors ¢ = e, ® | + (ie;) @ i) and €] = §(e; ® 1 — (ie;) ® i) form a basis of B, ® C over
C)

(b) Deduce from (a) that if U is irreducible and not equivalent to its conjugate U, then
Uy is irreducible.

(c) Suppose that U satisfies the condition of Problem 8(b), so that the quaternionic linear
representation U™ is defined. Show that if U is irreducible, then so also is U . (Use (a)
and observe that if V is an irreducible real linear representation, then W=V ® I is
irreducible, and W™ is not defined.)

(d) 1f V,, V, are inequivalent irreducible real linear representations of G, show that there
exists no irreducible complex linear representation that is equivalent to a subrepresenta-
tion of s— V,(s) ® 1. and also to a subrepresentation of s Vy(s) ® 1. (Use Schur’s
lemma (A.22.4).)

(e) Deduce from above that the finite-dimensional irreducible real linear representations
of G are all obtained (up to equivalence) from the finite-dimensional irreducible complex
linear representations U of G, by taking U™ whenever this is defined, and otherwise
taking U . Furthermore, if the irreducible complex representations considered are pair-
wise inequivalent, then the same is true of the irreducible real representations obtained
from them.

(f) State and prove the analogous results for irreducible quaternionic linear
representations.

Let U, V be two finite-dimensional continuous complex linear representations of G, and
let W(s) = U(s) ® V(s) (A.10.5). If the representations U™ and V® (resp. U™ and V'")
are defined, then W'® is defined; and if U'™ and V"™ are defined, then W™ is defined. State

14
and prove the analogous results for the representations s— /\ U(s) (A.13.4), and the
representations s+— S°U(s) defined by symmetric powers (A.17). If U™ (resp. U™) is
defined, then we have '(U®)~! = (\U™!)® (resp. {(U™)~' = (U~ 1)™).

Let G and H be two topological groups and let (s, t)— U((s, t)) be a continuous linear
representation of G x H on a finite-dimensional complex vector space E. Suppose that U
is irreducible and that the representations s+ U((s, ¢')) and 1+ U((e, t)) of G and H,
respectively, on E are completely reducible (e, ' being the identity elements of G, H,
respectively). Show that there exists an irreducible representation V of G and an irreduc-
ible representation W of H such that U is equivalent to the representation

(s )= V(s) @ W(r).

(Use Schur’s lemma.)
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13. Let G be a separable, metrizable, locally compact group and let A be its modulus (14.3). If
B is a left Haar measure on G and if for each function f € #HG)weputf* =f- A~',show
that the transform of the measure - 8 under the involution ps i of M{G) is f* - .
Extend the results of Section 21.1 to nonunimodular locally compact groups.

2. THE HILBERT ALGEBRA OF A COMPACT GROUP

(21.2.1) In this section, G denotes a (metrizable) compact group and f the
Haar measure on G with total mass 1 (we recall that compact groups are
unimodular (14.3.3)). If f, g € #2(G), the function f * g is continuous on G
and satisfies

(21.21.9) I f* gll = N2(f)Na(g)
by virtue of (14.10.7). It follows that
(21.21.2) N, (f * 9) < N,(f)N,(g),

so that L(G) is a separable Banach algebra with respect to convolution and
its Hilbert space structure. Also we have N,(f) = N,(f) since G is unimo-
dular, and therefore LY(G) is a Banach algebra with involution. In fact, it is a
Hilbert algebra (15.7.5), relative to the scalar product in LZ(G). For the
condition (15.7.5.1) follows immediately from the definition of the involu-
tion and of the scalar product, having regard to (14.3.4); and (15.7.5.3)
follows from (21.2.1.2). The condition (15.7.5.4) is a consequence of regulari-
zation (14.11.1). Finally, condition (15.7.5.2) takes the form

(21.21.3) (frg hy=Lg.f*h)

for allf, g, h € LG); when g is continuous, this formula is a special case of
(14.9.4.1), and for arbitrary g the result follows by continuity, because of
(13.11.6) and (21.2.1.2).

(21.2.2) A function h e LG) is said to be central if its class in L(G)
belongs to the center of this algebra. This signifies that for all functions
f€ LLG), the functions f + h and h « f are equal almost everywhere; but
they are continuous functions, and therefore they are equal (since § has
support G (14.1.2)). In other words, for all s € G we must have

Lf(t“)(h(st)  h(ts)) dB(e) = O
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This is possible only if h(st) = h(ts) for all ¢ in the complement of a negligible
set (depending on s) (13.14.4); if in addition h is continuous, then this negli-
gible set is necessarily empty, again because the support of f is the whole of
G (14.1.2). Hence the continuous central functions on G are the continuous
functions h which satisfy

(21.2.21) h(sts™')=h(t)  forall s teG.

We remark that the classes of these functions belong also to the center of
M(G); this follows immediately from (14.8.2) and (14.8.4).

(21.2.3) (Peter-Weyl theorem) Let G be a metrizable compact group. The
complete Hilbert algebra LL(G) is the Hilbert sum of an at most denumerable
family (a,), < g of finite-dimensional simple algebras; each a,, is isomorphic to a
matrix algebra M, (C) and is a minimal two-sided ideal in L¢(G). The elements
of a, are classes of continuous functions on G; the identity element of a,, is the
class of a continuous function u,, such that ﬁp = u,; and the orthogonal projec-
tion of LG) onto a, (6.3.1) maps the class of a function f to the class of
f * u, = u, = f. Consequently, for all f ¢ LG) we have

(21.2.3.1) J=YI*u),

peR

the right-hand side being a convergent series in L4(G), regardless of the way in
which the elements of R are arranged as a sequence.

Since LZ(G) is complete, it is the Hilbert sum of an at most denumerable
family (a,), . of distinct two-sided ideals that are topologically simple Hil-
bert algebras and annihilate each other in pairs (15.8.13). Everything there-
fore reduces to proving that each a, is finite-dimensional. For each a, will
then be the Hilbert sum of a finite number of minimal left ideals, each of
which is generated by an irreducible self-adjoint idempotent, and the sum of
these idempotents will be the identity element of the algebra a,. If v is a
function whose class is this identity element, every element of a, will be the
class of a function of the form f * v, hence continuous (21.2.1). The remaining
assertions of the theorem then follow from (15.8.11).

In view of (15.8.15), it will be enough to prove the following assertion:

(21.2.3.2) Each closed two-sided ideal b # {0} in LYG) contains a nonzero
element of the center of L{(G).
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We shall use the following remark:

(21.2.3.3) For a closed vector subspace b of L(G), the following conditions
are equivalent:

(@) b is a left ideal in LE(G);

(b) b is stable under the regular representation of L{(G) on LYG)
21.1.9);

(c) for each function f whose class is in b, and each s € G, the class of

g * f=7(s)f lies in b.

The equivalence of (b) and (c) is a particular case of (21.1.7), applied to
the regular representation. It is clear that (b) implies (a); on the other hand,
LG) is dense in L¢(G) (13.11.6) and the mapping fio f * g of £¢(G) into
ZL¥G) is continuous for all g € LE(G) (14.10.6), whence (a) implies (b).

There is of course an analogous statement for right ideals in L(G).

We now come to the proof of (21.2.3.2). We shall first show that b
contains the class of a continuous function f, not identically zero. For if g is a
nonnegligible function whose class belongs to b, then the class of g g also
belongs to b; but g * g is continuous (21.2.1) and (g * §)(e) = (N,(g))* > 0
(14.10.4). We may therefore take f = g * g. Next consider the function

(21.2.3.4) h(t) = Lf(sts‘ 1) dB(s).

Since the function (x, y, z)~ f(xyz) is uniformly continuouson G x G x G
(3.16.5), it follows immediately that h is continuous on G, and since h(e) =
f(e) # 0, h is not identically zero. For all x € G we have

(21.2.3.5) h(xtx~1) = Lf((sx)t(sx)' ) dp(s)
= h(t)

because f is right-invariant. It remains to show that the class of h belongs to
b. Now LZ(G) is the Hilbert sum of b and its orthogonal supplement b+,
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which is also a two-sided ideal (15.8.2); hence it is enough to show that
(h|w) = 0 for all w € b*. We have

1wy = [ we) aseo j f(sts~1) dBs)

= (ape9 f w(e)f(sts™") dBe)

= [ ases) j w(s~ 1)/ () dB(e)

Y

by the Lebesgue-Fubini theorem and the left- and right-invariance of g.
Since w € b', the class of ¢ * w * ¢,_, also belongs to b* by virtue of

(21.2.3.3), hence by definition we have J.W(s“ts)f(t) dp(t) = 0, and the

proof is complete.

(21.2.4) By virtue of (21.2.3) it is convenient to identify each element of an

ideal a, with the unique continuous function in the class, and this we shall do

from now on.t For each p € R, choose once and for all a decomposition of a,

as the Hilbert sum of n, minimal left ideals [; = a, * m; (also denoted by I{),

pairwise isomorphic and orthogonal, where each m; (1 £ j < n,) is a mini-
3

mal self-adjoint idempotent, so that u, = ) m;. Also let (a;), < jsn, DE @
=1

Hilbert basis of ;, such thata; € m; » a, * m,. Then from (15.8.14) we know

that all the numbers (m;|m;) are equal to the same number y > 0, and that

X X
aj #aj=})mj, aj *a}-=‘yml.
Now put, for each pair of indices j, k,
-1 X
mjk = y aj * a,‘

(so that m;; = m;); then we have
(21 .2.4.1) mﬂ‘ * a,, = 5“,(11-
where 8, is the Kronecker delta. We shall also write m{®’ in place of m;;.

+ More generally, from now on we shall identify each continuous function f on a locally
compact group G, belonging to one or other of the spaces Z(G, §), LG, B), Z2(G, B)
(where 8 is a left or right Haar measure on G), with its class in the corresponding space
LYG, B), LYG, B), LZ(G, B). This can cause no confusion because f is the only continuous
function in its class, since the support of # is the whole of G.
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(21.2.5) With the notation of (21.2.4):

(@) For each index j, the m;; (1 £ i £ n,) form an orthogonal basis of 1.

(b) my= 'hm My * My = O5my .

© (my|my) = n,, mle) = n,8,; for all pairs (i, j) (so that y = n; ). The
functions n; '*m{® (1 £ i, j < n,,p € R) therefore form a Hilbert basis (6.5) of
the Hilbert space LY(G).

(d) Let M(s) = (n, 'm(s)) for all s € G; then the matrices M ,(s) satisfy
the relations

@1.250)  M,(st)= MM, (1), M,(s™") = (M,(s))*,

so that s« M (s) is a continuous unitary representation of G on C", relative to

no
the Hermitian scalar product ) &,i;.
=1

The assertions in (a) and (b) are immediate consequences of the
definitions in (21.2.4), since the a; € [, and the m, are pairwise orthogonal.
Since a, is a Hilbert algebra, we have

(m,jlmu) = 'y_z(ai * ajla, * (!lj) = y-z((xll- * a,-laj * a!) = (ml |ml)-

To calculate this number we remark that for each index k the function
t— my(st) belongs to I, for each s € G (21.2.3.3) and can therefore be written
in the form

(2125 malst) = 3 oIl

On the other hand,

malt) = (mys + mod(e) = Lm,l(rx)m—“(x) 4B(x),

hence in particular my(e) = (m;, |m,), and by putting r = e in (21.2.5.2) we
obtain, using the orthogonality properties of the m;;,

(21.25.3) my(s) = (my | my)euls)-

Next, putting s=¢"! and i=k =1 in (21.2.5.2), we obtain by use of
(14.10.4)

(m, Iml) =m,(e) = j”g:lcu(s)m
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and therefore, using (21.2.5.3)

’Zlmlj(s)mlj(s) = (my |m,)*.
=
Integrating over G, we finally obtain

(m1|m1)2 = "p(m1|m1)

which proves (c); and then the relations (21.2.5.1) follow immediately from
(b) and (21.2.5.2) and (21.2.5.3).

(21.2.6) The center of the Hilbert algebra Li(G) is the Hilbert sum of the
1-dimensional subspaces Cu, (p € R). In particular, if G is commutative, all the
ideals a, are of dimension n, = 1.

That the u, belong to the center of L(G) follows from the facts that u,, is
the identity element of a, and that a, * a,, = {0} whenever p # p’. Con-
versely, if the class f of a function f belongs to the center of L%(G), then so
also does the class of f » u, € a,, hence f » u, = ¢, u, for some scalarc, € C;
now apply the formula (21.2.3.1).

(21.2.7) The classes of the complex constant functions form a two-sided
ideal of dimension 1 in L3(G) (14.6.3), which is therefore of the form a, . It is
called the trivial ideal. The corresponding linear representation M, of
dimension 1 is such that M, (s) = 1 for all s € G, that is to say, it is the trivial
linear representation (21.1.1). For each p # p, in R, we have

(21.2.7.9) j m®(s) dB(s) = 0
G

since the subspaces a, and q,, are orthogonal.

(21.2.8) (i) Iffand g are continuous complex-valued functions on G, then

(21.2.8.1) fxg=>) ( Y g g|m®)(f * mg;))),

peR \1<i,jSn,

the series on the right being summable for the topology of uniform convergence.
(i) The functions m® (p € R, 1 <1, j < n,) form a total system in the
space of continuous functions on G, for the topology of uniform convergence.
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(i) Identifying continuous functions with their classes in L%(G), we may
write

1
g= X —(g|mPm

peR,1<i, jsn, "p

the series on the right being summable in LE(G), because the functions
n, '?m® form a Hilbert basis of this space. Now form the convolution
product of both sides with f; since #i+— f * u is a continuous mapping of
L(G) into ¥(G) (21.2.1.1), we obtain the formula (21.2.8.1).

(i) It follows from regularization (14.11.1) that for each continuous
function g on G there exists a continuous function f on G such that
| f* g — g| is arbitrarily small. Now, for each p € R, the functions f  m{?’
belong to a,, and therefore are linear combinations of the mi
(1 £ h, k £ n,) with complex coefficients. This completes the proof.

PROBLEMS

1. Let E be a finite-dimensional complex vector space, E* its dual, G a topological group, and
U a continuous linear representation of G on E. For each pair of vectors x € E, x* € E*, the
function s (U(s) - x, x*) is continuous on G; it is called the coefficient of U relative to
{x, x*) and is denoted by c,(x, x*). For all t € G we have

¥(t)cp(x, x*) = cylx, "U@ ™" - x*),  8(t)ey(x, x*) = ey (U(r) - x, x*).

If we identify U(s) with its matrix (u;(s)) relative to a fixed basis of E, then the functions
cy(x, x*) are linear combinations of the u, . We have

Cy-r(x* x) = Ey(x, x*),  cplx, x*) = cplx, x*).

(a) Let ¥ (U) (or ¥ (U)) denote the vector subspace of € (G) spanned by the coefficients
of the continuous linear representation U of G. If U,, U, are equivalent, then ¥'(U,) =
¥'(U,); also ¥" (U~ ') = ¥'(U)and ¥ (U) = ¥"(U).If U,, U, are finite-dimensional contin-
uous linear representations of G, then ¥ (U, @U,)=7¥(U,)+» (U, and
Y (U, ® U,}) =¥ (U,)¥(U,) the vector subspace of € o(G) spanned by the products ¢, c,,
where ¢, € ¥'(U,) and ¢, € ¥'(U,). The vector subspace ¥ (U) has finite dimension
< (dim U)? and is stable under left and right translations fi—y(s) f, f— 8(s)ffor all s € G.
Conversely, if E is a vector subspace of ¢ ¢(G) that is stable under left translations fi— y(s) f
and is finite-dimensional, and if we denote by U(s) the endomorphism fi— y(s) fof E, then U
is a continuous linear representation of G on E, and E = ¥"(U). A function f € €(G) is
called a representative function on G if the vector subspace of ¥(G) spanned by the
left-translates y(s)f of f, for all s € G, is finite-dimensional. The representative functions on
G form a subalgebra #(G) (or #(G)) of €J{G), which is the same as the subalgebra
generated by the coefficients of all the finite-dimensional continuous linear representations
of G.

(b) Let U be a continuous linear representation of G, of dimension n < o0, and let U’ be
the continuous linear representation of G on ¥"(U) defined by U'(s) - f = y(s)f. Show that
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U is equivalent to a subrepresentation of U'. If U is irreducible, U’ is the direct sum of n
representations equivalent to U. Give an example of a reducible representation where this is
not the case (cf. (21.1.3)). Deduce that if U is irreducible and if U, is a finite-dimensional
continuous linear representation such that ¥°(U,) = ¥ (U), then U, is the direct sum of m
representations equivalent to U, where m < n.

(c) Extend the above definitions and results to finite-dimensional continuous real linear
representations (Section 21.1, Problem 7); in place of ¥"¢(U) and #8(G) we have ¥ " (U)
and #,(G).

Let G be a metrizable compact group.

(a) Show that the algebra #.(G) of complex representative functions is the direct sum of
the two-sided ideals a, (p € R), and that the algebra #,(G) consists of the real and imagi-
nary parts of the functions belonging to #(G).

(b) Let M be a subset of #(G). The set H of elements 1 € G such that 8(r) f = f for all
Se€M is a closed subgroup of G. Show that the set of functions g € #,(G) such that
y(t)g = g for all t € H is the left ideal b of #(G) generated by M. The functions belonging
to b may be canonically identified with continuous functions on G/H, and b may be
identified with the intersection of #JG) with € (G/H) (considered as a subalgebra of
%€c(G)); also b is dense in €(G/H). (Use the Stone-Weierstrass theorem.)

(c) Let K be a closed subgroup of G. Show that every function in #(K) is the restriction
to K of a function belonging to #G). (Consider the set of functions in #(K) that are
restrictions to K of functions belonging to #(G) and use (a) above, with G replaced by K.)
If b is the left ideal in #(G) that is the intersection of #(G) with € (G/K), show that K is
equal to the subgroup H of elements € G such that y(t)f = ffor all f € b. (Observe that a
function belonging to b that is constant on K is constant on H.)

Let G be an infinite compact group. With the notation of (21.2.3), if p, g are two functions
defined on R, with values > 0, we write p = o(g) to mean that for each ¢ > 0 there exists a
finite subset J of R such that p(p) < eq(p) forallpe R — 1.

(a) Show that for each function f € £%(G), the operator R(f) is a Hilbert-Schmidt opera-
tor on L(G), and that the mapping fi— R(f) is an isometry of the Hilbert algebra LY{(G)
onto a closed subalgebra of the Hilbert algebra ,(L#(G)) (15.4.8). In particular, for all
f. g € £L(G), the operator R(f)R(y) is nuclear (Section 15.11, Problem 7), and we have

Tr(R(f)R(g)) = X Tr(R(f s g o up)) = (f]9).

PEeER

(b) We have |R(f * u,)[|, = Ny(f * u,) = o(1) and N_(f * u,) = o(n,) for all fe L%G).
(Use (a) above and the relation f « u, = f % u, + u,.)

{c) Give an example of a continuous function on G such that R(f) is not nuclear. (Take
G=T)

(d) Show that |R(m{)| =1 and |[R(m{P)[, = n,. (Observe that the eigenvalues of
R(m!®') + R(m%') are known.)

(e) Let fe £YG). Show that R(f) is a compact operator on LYG) and that
IR(f * uy)]| = o(1). (Use the fact that LY{G) is dense in Li{G), the inequality (21.1.4.3), and
(a) above.) Deduce that |R{f * u,)]|,; = N,(f = u,) = o(n,) and that N_(f » u,) = o(n}).

Let M be a compact differential manifold and G a compact group acting continuously on
M such that, for each s € G, the mapping x+ s * x is a diffeomorphism of M.
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{a) Show that for each real-valued function f belonging to the Banach space &'"’(M} of
C!-functions on M (17.1), there exists a function u € #g(G) (Problem 2) such that, if we put

filx) = J W)/ (s~ * x) dBs)

(where # is a Haar measure on G), f, is of class C* and the norm || f — f, || is arbitrarily small
in £'"(M). (Use regularization, together with Problem 2.) If fis of class C", where r is a
positive integer or + oo, then so also is f,,. The set of functions x— f,(r - x) as t runs through
G is then a finite-dimensional vector space.

(b) Show that there exists an embedding F: M — R" and a continuous homomorphism p
of G into the orthogonal group O(n, R) such that F(s - x) = p(s) - F(x) for all s € G and all
x € M. (Start with an embedding x+ (f,(x), ..., f,(x)) of M in R" (16.25.1). Show first that
there exists u € #B,4(G) such that, if g; = (f}), (in the notation of (a) above), the mapping
x++(g,(x), ..., go{x)) is an immersion, not necessarily injective. There exists then a finite
open covering {U,) of M such that the restriction of this immersion to each U, is an
embedding. Next show that there exists v € #,(G) such that, if h, = (f}),, the relations
hyx) = h{y) for 1 < i < n imply that x and y belong to the same U,. Finally consider the
finite-dimensional vector space spanned by all the functions x+ g,(t * x)and x+ h(r - x)as
1 runs through G.)

Let M be a compact differential manifold and G a compact Lie group acting differentiably
on M; let x be a point of M and S, the stabilizer of x in G.

(a) Show that there exists a submanifold W of M, contained in a neighborhood of x and
containing x, which is stable under S, and which is such that T (W) is a supplement in
T,(M) to the tangent space T (G - x) to the orbit of x. (Use Problem 4 above, or Problem 6
of Section 19.1.)

(b) LetV beasubmanifold of G, passing through e and such that the tangent space to V at
e is supplementary in g, = T,(G) to the Lie algebra T (S,) of S,. Show that there exists a
relatively compact open neighborhood U of e in V and a relatively compact open neighbor-
hood K of x in W such that the mapping (s, y)—s * yof U x K into M is a diffeomorphism
onto a neighborhood of x in M, and such that K is stable under S,. Deduce that
s K n K =9 for all s € US, not belonging to S, .

(c) Deduce from (b) that there exists a relatively compact open neighborhood K' < K of x
in W having the following properties: (i) K’ is stable under S,; (ii) the mapping (s, y)—s - y
of U x K’ into M is a diffeomorphism onto a neighborhood of x in M; (iii)s - K' n K' =0
for s ¢ S,. (Use Problem 4.) Such a set K’ is called a slice of M at the point x (for the action
of G on M). Show that for all ze K’ we have S, = §,.

If M is a pure differential manifold and G is a Lie group acting differentiably on M, let

L(G, M) denote the set of conjugacy classes in G of the stabilizers of the points of M (two

stabilizers being in the same class if they stabilize two points of the same orbit). We shall _
show that, if G and M are compact, the set L(G, M) is finite. The proof will be by induction

on dim(M) = n.

(a) Show that if the result is true for every differential manifold M of dimension n — 1,

then L(G, R") is finite for all compact subgroups G of O(n) (apply the hypothesis to S, _,).

(b) There exists a finite number of slices K, (1 £ i £ r) of M (Problem 5) relative to points

x; of M, such that M is the union of the sets G - K,. Deduce from (a) that each of the sets

L(S,,, K,) is finite, and show that L(G, G - K,) is finite by using Problem 5(c).
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7. Let G be a compact Lie group. Show that there are only finitely many conjugacy classes of
normalizers of connected Lie groups immersed in G. (Consider the projective space P(A(g,))
corresponding to the exterior algebra on the vector space g,, and the action of G on this
compact manifold induced by the adjoint representation of G on g,, and apply the result of
Problem 6.)

8. Let G be a compact group and § the Haar measure on G for which the total mass is 1. In
order that a sequence (x,) of points of G should be equirepartitioned relative to the measure
B (Section 13.4, Problem 7) it is necessary and sufficient that, for each p # p, in R, we
should have

N
lim N Y M(x,)=0.
Noaw Ni=1

(Use (21.2.8) and (21.7.1).) In particular, for a point s € G to be such that the sequence
{s").» o is equirepartitioned relative to B, it is necessary and sufficient that 1 is an eigenvalue
of none of the matrices M (s) for p # p,. (This condition implies that G is commutative.)

3. CHARACTERS OF A COMPACT GROUP

We retain the hypotheses and notation of (21.2). For each p € R and
each s € G, let

(21.3.1) Xols) = 1 uy(s) = 1 Y. m®(s).
hy Ny j=1

The function , is called the character of the compact group G associated
with the minimal two-sided ideal a,.

The character x,, associated with a, (21.2.7) is the constant function
Zpo(s) = 1 for all s € G. It is called the trivial character of G.

The following properties are immediate consequences of (21.2.3) and
(21.2.5):

(21.3.2) Every character ), is a continuous central function on G; in other
words

(21.3.2.1) Xolsts™') = 2,(t)  forall s, teG.
We have

(21.3.2.2) %) =x(s)  forall seG,
and

(21.3.2.3) o * Xp = ;} Xo -
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The characters form a Hilbert basis of the center of L{G), indexed by R.
In other words,

— _j0 if p#p,
(21.3.24) J KelS)ls) dBE) = e
and if f is any central function in LG), then
(21.3.2.5) J= Zk(f | X2 = anp(f * %)
pe pe

in L4G). Furthermore, we have

(21.3.2.6) Jx,,(s) dp(s)=0  forall p+#p,.

Finally, for each s € G,

(21.3.2.7) Xp(s) = Tr(M (s))

and in particular

(21.3.2.8) xole) =n,.

(21.3.3) Iff, g are continuous complex-valued central functions on G, then
(21.3.3.9) fxg= pgln(ylx.,)(f * %)

the series on the right being summable for the topology of uniform convergence.

This follows directly from (21.2.1.1) and the fact that the y, form a
Hilbert basis of the center of L(G) (21.3.2).

(21.3.4) The functions y, (p € R) form a total system in the space of contin-
uous complex-valued central functions on G, for the topology of uniform
convergence.

For each continuous central function f, f * x, is a scalar multiple of x,, .
Taking account of (21.3.3), it is enough to show that for each continuous
central function g, there exists a continuous central function f such that
I f * g — g|| isarbitrarily small. We shall first establish the following topolog-
ical lemma:

(21.3.41) (i) Let G be a metrizable topological group and K a compact
subset of G. For each open neighborhood U of the identity element e of G, there
exists a neighborhood V < U of e, such that tVt~' < U for all t € K.
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(ii) In a compact metrizable group G, there exists a fundamental system
of neighborhoods of e that are invariant under all inner automorphisms. If T is
such a neighborhood, there exists a continuous central function h = 0, with

support contained in T, and such that j h(s) dB(s) = 1.

(i) Let U, be a neighborhood of e such that U3 = U. For each s € G,
there exists a neighborhood V, of ¢ in G such that sV s~ ! = U,; by continu-
ity, there is therefore a neighborhood W, of s such that tV_ ¢! < U for all
t € W,. There exist a finite number of points s; € K (1 £ j < m) such that the
W, cover K; if we put V= (1) V_, we shall have rVt~' < U for all 1 € K.

(i) We may apply (i) wijth K = G. The union T of the tVt ! as ¢ runs
through G is then a neighborhood of e contained in U and invariant under
all inner automorphisms.

To construct the function h, choose a continuous function f = 0, with
support contained in T, and such that f(e) > O; then let

W) = c Lf(sts‘ ') dB(s)

where ¢ is a suitably chosen positive constant. The proof that h satisfies the
required conditions is the same as in (21.2.3).

The proof that for any given continuous central function g, the number
|k« g — g| can be made arbitrarily small by suitable choice of a continuous
central function h, now follows from the lemma (21.3.4.1) and regularization
(14.11.1).

(21.3.5) (i) For each element s+ e in G, there exists p € R such that

1o(8) # xole).
(ii) The intersection of the kernels N, of the homomorphisms s+ M (s),
as p runs through R, consists of the identity element alone.

(i) If not, it would follow from (21.3.4) that f(s) = f (e) for all contin-
uous central functions f on G, contradicting (21.3.4.1).
(ii) 1t is enough to remark that s € N, implies that y,(s) = x,(e).

(21.3.6) For all characters x of G we have
(21.3.6.1) 1(8)x(t) = xle) Jx(usu' 't) dB(u)

forall s, t e G.
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From the definition of y,, we have

1
Aplusu™'t) = - Y musu™ ')
o i

=i T el )

by virtue of (21.2.5.1), and therefore

jXp(“S“_ 't) dB(u) = ' Z;'; kmjh(s)mki(t)f m;(umy(u™ ") dB(u)
= Z Oin Bixm(s)myi(t)

3=u} - t=w‘ - QS‘J -

o J

mjj(s)mii(t) = niXp(s)Xp(t);

making use of (21.2.5).

(21.3.7) The mapping that sends the class of a function f € LE(G) to the
class of its complex conjugate fis clearly a semilinear bijection of the algebra
LZ(G) onto itself, which is an automorphism of its ring structure. This auto-
morphism therefore transforms each minimal two-sided ideal a, into
another minimal two-sided ideal, which we denote by a;. If in general X
denotes the matrix whose entries are the complex conjugates of those of a
matrix X, then we have M (s) = M_(s) forall s € G, and for the correspond-
ing characters we have

(21.3.7.9) 1= Tp-

The relation a, = a; is therefore equivalent to the character y, taking only
real values on G.

Particular Cases: 1. Commutative Compact Groups

(21.3.8) Let fe £¢G) be nonnegligible and such that, for all se G,
f(st) =f(s)f(¢) for almost all t € G. This means that in L%(G) the subspace
C - fis stable under all the mappings §+ (¢, * g)", and hence is a minimal
closed left ideal of dimension 1 (21.2.3.3). This is possible only if this ideal is
one of the a, such that n, = 1, and then fis equal almost everywhere to the
corresponding character x,. These characters are called the abelian charac-
ters of G. We have just seen that they are the only continuous homomor-
phisms of G into C*; the image of G under such a homomorphism, being a
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compact subgroup of C*, is necessarily contained in U (the unit circle in C*),
because C* = U x R*%, and R* contains no compact subgroup other than
{1}

If the compact group G is commutative, every character of G is abelian,
because the algebras a, are commutative. The classes of the characters of G
then form a Hilbert basis of L(G) (21.2.5), and every continuous function on
G is the uniform limit of a sequence of linear combinations of characters
(21.3.4).

(21.3.9) Every character of the group U" is of the form

(21.3.9.1) (o Loy L 00 - G
where ky, ..., k, are integers (positive, negative, or zero). The only character of
U" that takes only real values is the trivial character (ky =--- =k, =0).

The group U" is isomorphic to T", hence to R"/Z". If u is a continuous
homomorphism of R"Z" into T=R/Z, and if ¢: R">RYZ" and
i/: R — R/Z are the canonical homomorphisms, then u = ¢ is a continuous
homomorphism of R" into R/Z, and therefore (16.30.3) factorizes as y » v,
where v is a continuous homomorphism of R" into R. By restricting v to each
of the subgroups Re; of R" (where (e) is the canonical basis of R") and using
(4.1.3), it follows that v is a linear mapping of R" into R. Moreover, since
u(p(Z")) = {0}, we must have v(Z") < Z, and therefore each of the v(e;) must
be an integer k;. This completes the proof.

Observe that if we apply to the group U" the theorems (21.3.2) and
(21.3.4) we regain, in view of (21.3.9), the facts that the orthogonal system
((")e z 1s total in L(U)(7.4.3), and that every continuous function on U" is
a uniform limit of trigonometric polynomials (7.4.2).

Particular Cases: 11. Finite Groups

(21.3.10) If G is a finite group, the algebras M{(G), L&(G) and L(G) all
coincide with the group algebra of G over C, which is also denoted by C[G]
(14.7.4), and all the elements of this algebra may be considered as contin-
uous functions on G. Let C, ..., C, denote the conjugacy classes of G (with
C, = {e}), that is to say, the equivalence classes for the relation:

there exists t € G such that s = tst™ !

between elements s, s € G. It follows from the definition (21.2.2.1) that each
central function is constant on each set C;, and from (21.3.4) that the central
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functions are in this case linear combinations of characters. Since the latter
are linearly independent, we see that the number r of conjugacy classes C; is
equal to the number of characters of G and to the dimension of the center of
C[G]

Letp;, P2, ---» p, denote the elements of R, and for brevity let x;;denote
the value taken by the character y,, on the class C;. If g is the order of G and
h; the number of elements in the class C;, the orthogonality relations
(21.3.2.4) take the form

l r
(21.3.10.1) p Y heXadp = 0y (1Zi,jgr)
k=1

In other words, the r x r matrix
(21.3.10.2) (M9~ )1 <iksr

is unitary. We obtain other orthogonality relations by expressing that the
transpose of (21.3.10.2) is unitary:

r

(21.3.10.3) YaTa=0 if k+1,
i=1

(21.3.10.4) Y =g/
i=1

These formulas can also be written as

(21.3.10.5) 3 x5t ™) = 0

peR

if s, ¢ are not conjugate in G, and

(21.3.10.6) 2 | 25) > = g/hu
pekR
if s € C,.
Since e is not conjugate to any other element of G, by putting t = e in
(21.3.10.5) and taking account of (21.3.2.8) we obtain

(21.310.7) Ynx(s)=0 if s#e.

peR
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Of course, if we put s = e in (21.3.10.6) we obtain the relation

(21.3.10.8) Y n=g,

peR

which also follows from the fact that L¢(G) is the direct sum of the a,,.

PROBLEMS

1L

Let G be a metrizable compact group. Show that the center of the Banach algebra M ((G) of
measures on G is the closure of the center of LY{(G), in the vague topology.
Show that:

(a) If the representations M, and M, = M, are not equivalent, then I 2p(s?) dB(s) = 0.

(b) If the representation MY is defined (Section 21.1, Problem 9), then J 2,(s%) dB(s) = 1.
(c) If the representation M{" is defined (Section 21.1, Problem 9), then
| 2,057 dB(s) = — 1.

(Use the orthogonality relations for characters and observe that if M'P (resp. MUY) is
defined, there exists a unitary matrix U such that M (s) = UM _(s)U~! for all s € G, and
‘U = U (resp. ‘U = —U) (cf. Section 21.1, Problem 9).)

Let G be a finite group.

(a) Show that for each character x of G and each s € G, the complex number x(s) is an
algebraic integer.t (Consider the eigenvalues of U(s), where U is an irreducible representa-
tion of G with character y, and remark that each element of G has finite order.)

(b) Deduce from (a) that the number of elements of a conjugacy class C, in G divides the
order g of G. Give a direct proof of this fact.

(c) The characteristic functions e, of the subsets C; of G form a basis of the center of C[G]
for which the coefficients in the multiplication table are rational integers > 0. Deduce that if
we put M (e;) = 4,1, then the complex numbers 4; are algebraic integers (remark that the
image of the center of C[G] under M, is a finitely generated Z-module). Show that for each
conjugacy class C; in G the number n;' ¥ Xo(s) is an algebraic integer, for each p e R.

s€C;
(d) Deduce from (a) and (c) that each n, divides the order g of G (use (21.3.10.1)).
Let G be a finite group. For each s € G, let 1(s) denote the number of elements u € G such
that u? = 5. Show that

ts)= 2 vip)te(s)

peR

t See R. Godement, Algebra, Hermann (Paris) 1968, p. 560.
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where

vp)=- 3 2(s%)

1
9seG
(which is equal to 1, 0 or — 1, by Problem 2).

S. Let G be a finite group. With the notation of (21.3.10), show that each of the numbers 3 x,
k=1

is a rational integer = 0. (Decompose into irreducible representations the representation of
degree g (the order of G) defined on the vector space C[G] = C® by U(s) €, = e,,-1.)

6. Let G be a finite group.

{a) For each pe R and each se G, we have |y, (s)] < n, (cf. (22.1.3.5)); we have
Xo(s) = n,, if and only if s lies in the kernel N, of M ; and | x,(s)| = n, ifand only if the coset
of s in G/N,, belongs to the center of this group. (Consider the eigenvalues of M (s).)

(b) Suppose that for some conjugacy class C; in G, the number h; of elements of C | is
prime to n,. Show that for each s € C, either y,(s) = 0 or |x(s})| = n,. (Deduce from
Problem 3(c) that the number x,(s)/n, is an algebraic integer, and usc (a) above.)

{c) Suppose that C; # {e} and that the number of elements in C, is a prime power. Show
that there exists p # p, in R such that |y (s)| = n, for s € C;. (Use (21.3.2.6) and the fact
that n_y,(s) is an algebraic integer.) Deduce that G cannot be a noncommutative simple

group.

7. Let G be a finite group of order p°g®, where p and g are prime numbers. Then G is solvable
(Burnside’s theorem). (Argue by induction on the order of G, by considering a Sylow
p-subgroup of G, which has a nontrivial center.t Consider the number of elements conju-
gate in G to an element # e of this center, and use Problem 6(c).)

4. CONTINUOUS UNITARY REPRESENTATIONS OF
COMPACT GROUPS

(21.41) Let G be a compact group and let V be a continuous unitary re-
presentation of G on a separable complex Hilbert space E. Then (with the
notation of (21.2)}):

(i) For eachp € R, the operator V(u,) (21.1.4.2) is an orthogonal projec-
tion of E onto a closed subspace E, of E, and E is the Hilbert sum of the E,.

(i) Each subspace E, is stable under V, and the restriction of V to E, is
the Hilbert sum of a ( finite or infinite) sequence of irreducible representations
of G, each equivalent to M ((21.2.5) and (21.3.7)).

(i) Since u, * u, = u, and #, = u, (21.2.3), V(u,) is a continuous opera-
tor on E which is idempotent and Hermitian (21.1.6), hence (15.5.3.1) is an

t See J.-P. Serre, Representations linéaires des groupes finis, Paris (Hermann), 1967.
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orthogonal projection. Further, since u, * u,, =0 if p'#p, we have
V(u,) o V(uy,) = 0, and therefore the images E, of the projections V(u,) are
pairwise orthogonal closed subspaces. To show that E is the Hilbert sum of
the E,, it is enough to show that the sum of the subspaces E,, is dense in E.
Now, we know that as f runs through £ ¢(G) and x runs through E, the
vectors V(f) - x span a dense subspace of E (21.1.7). Since the continuous
functions are dense in £¢G), and since [|[V(f)] £ N,(f) (21.1.4.3), it fol-
lows that the V(f) - x already span a dense subspace of E as x runs through
E and fruns through the space % (G) of continuous functions on G. But iff
is continuous, then for each ¢ > 0 there exists a finite linear combination
Y c®m® such that | f— ) c¢®m{®| < e (21.2.8), and a fortiori
L5.e LI

[10- 5 cpving)

iie

< Nl(f— ) cﬁ?'mﬁ;”) <e
LihLe

Since m® = u, » m®, we have V(m{®)= V(u,)V(m®), and therefore the

vector i c®V(m®) - x belongs to the sum of the E,. This shows that the

sum of tilg E, is dense in E.

(ii) That each E, is stable under V follows from the fact that the u,
belong to the center of the algebra M(G). If V, is the restriction of Vto E,,
then V,(u,) = 0 for p’ # p, because u, * u, = 0. The restriction of (V,),,, to
the algebra L{(G) may therefore be considered as a nondegenerate represen-
tation of the algebra a, on E; it follows therefore from (15.8.16) that this
representation is the Hilbert sum, finite or infinite (according as the dimen-
sion of E, is finite or not), of irreducible representations each equivalent to
the representation U,, in the notation of (21.2.4). But it follows from the
definition of U, (15.8.1) and from (21.1.9) that U, is the restriction of R,,,
to a,. Now we have

(e, * myy)(t) = my(s™'t) = . 2 migs™my (1)
Ry j=1
by (21.2.5); this shows that relative to the basis of [, formed by the n, 'm;,
(1 £i < n,y), the matrix of R(s) is ‘M (s™') = M ,(s) = M4(s) by (21.2.5).

(21.4.1.1) If G is a commutative compact group, every continuous unitary
representation of G is therefore a Hilbert sum of one-dimensional representa-
tions (21.3.8).

(21.4.2) With the same notation, if E, # {0}, the irreducible representation
M is said to be contained in the representation V; if E is of finite dimension
d,n, > 0 (resp. of infinite dimension), then M is said to be contained d,
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times (resp. infinitely many times) in V, and d,, is called the multiplicity of M ;
in V. The M such that d, > 0 are also called the irreducible components of
the representation V.

It follows from (21.4.1) that every irreducible continuous unitary re-
presentation of G is equivalent to one of the representations M, and that M,
is contained n,, times in the regular representation (21.1.9) of G.

(21.4.3) A continuous linear representation U of a compact group G on a
finite-dimensional complex vector space E (21.1.1) may always be con-
sidered as a continuous unitary representation, because there exists a posi-
tive definite Hermitian form on E (in other words, a scalar product (6.2)) that
is invariant under the action (s, x)— U(s) - x of G on E (20.11.3.3). For
compact groups there is therefore no loss of generality, where finite-
dimensional continuous linear representations are concerned, in restricting
consideration to unitary representations. If, for such a representation U, we
identify U(s) with its matrix relative to a fixed basis of E that is orthonormal
with respect to the scalar product referred to above, we have (21.1.2.1)

(21.4.3.1) U(s) ="'U(s)"* ='U(s™ ).

(21.4.4) Let V be a continuous unitary representation of a compact group G
on a vector space E of finite dimension d, and suppose that for eachp € R the

irreducible representation M, is contained d,, times in V, so thatd = Y d n,.
peR
Then, for all s € G, we have

(21.4.4.1) Tr(V(s)) = Y dyx,(s).

peR

This follows from (21.3.2.7) and the fact that Tr(PUP~') = Tr(U) for any
square matrix U and invertible matrix P of the same size.

(21.4.5) Two finite-dimensional continuous unitary representations V,, V, of
a compact group G are equivalent if and only if Tr(V,(s)) = Tr(V,(s)) for all
seG.

This follows immediately from the formula (21.4.4.1) and the linear
independence of characters (21.3.2).

(21.4.6) Let V', V" be continuous linear representations of a topological
group G on spaces E', E” of finite dimensions d', 4", respectively. Then it is
clear that the mapping

(21.4.6.1) VRV s> V(s)® V'(s)
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is a continuous linear representation of G on the vector space E'® E” of
dimension d'd”. This representation is called the tensor product of V' and V",
and we have ((A.10.5) and (A.11.3))

(21.4.6.2) Tr(V'(s) ® V'(s)) = Te(V'(s)) Tr(V"(s)).

In particular, if G is compact we may form the tensor product M, ® M o for
any two elements p', p” of R, and then by (21.4.4.1) we have

(21.4.6.3) Yo Xor = 2. Coprlp
P

where cj,,. is the number of times the representation M, is contained in
M, ® M,., and is therefore a nonnegative integer. Since the Xp are linearly
independent over C and a fortiori over Z, we see that the subring of €¢(G)
generated by the characters of G is a Z-algebra; its identity element is the
trivial character, the characters y, form a basis over Z, and the multiplication
table is given by (21.4.6.3).

(21.4.6.4) For each p € R, the trivial representation (21.2.7) is contained in
M,® M, = M,® M,; for if it were not so, then by (21.3.2.6) and (21.4.6.3)
we should have

[ 1ty as) = [ 1 o=,
which is absurd.

(21.4.7) Since any irreducible representation V of G is equivalent to a
representation M, for a unique index p, we shall say (by abuse of language)
that p is the class of the representation ¥, and we write p = cl(V'). The class
po of the trivial representation is called the trivial class. The class p is called
the conjugate of the class p.

If V is a finite-dimensional continuous unitary representation of G, and if
for each p € R the representation M, is contained d, times in V, then the

element ) d, - p of the Z-module Z® of formal linear combinations of
peR
elements of R with integer coefficients is called the class of the representation

V, and is written cl(V). The relation cl(V,) = cl(V,) therefore signifies that
the representations V, and V, are equivalent, which justifies this terminology.
We say also that the class p is contained d, times in cl(V), or that d, is the
multiplicity of p in cl(V).
Conversely, every element ) d, - p of Z® in which the coefficients d,
peR



34 XX!| COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS

are positive or zero is the class of a linear representation of G, namely the

Hilbert sum of a family of m = ) d, irreducible representations, contain-
peR
ing d, representations equal to M, for each p € R. It is clear that the bijec-

tion pr—» %, extends by linearity to an isomorphism of the Z-module Z®
onto the subring of ¥(G) generated by the characters of G. Transporting
the ring structure back to Z® by means of the inverse of this isomorphism,
we define on Z™ a structure of a commutative ring, for which p, is the identity
element and the multiplication is given by

(21.4.7.1) PP =) b, p
P

For this ring structure we have
(21.47.2) cl(V, ® V,) = cl(Vy) - cl(V3)

for any two finite-dimensional continuous linear representations V,, V, of G.

By abuse of language, the ring Z™® just defined is called the ring of classes
of continuous linear representations of G. (The abuse of language lies in the
fact that a linear combination of the elements of R with integer coefficients is
the class of a representation only if all the coefficients are > 0.) Also we shall
sometimes write R{G) in place of R.

For example, if G = U" (isomorphic to T"), it follows from (21.3.9) that
the ring of classes of linear representations of G is isomorphic to the subring
Z[X,,....X,, X1 ' ..., X, '] of the field of rational functions Q(X,, ..., X,) in
n indeterminates over the field Q of rational numbers.

(21.4.8) With the notation of (21.2.4), the formula (21.2.3.1) may be writ-
ten as

7= 5 (S mpr )

peR

Now we have, by definition,

(/' » m®)(s) = j FOmPEs) dB(e),

and therefore

307w =y Te{ [ 1m0 doto)
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Also we have M(t7's) = M (t~')M (s), and

j FOM) dBle) = M)

by virtue of (21.1.4.2) and the fact that G, being compact, is unimodular.
Hence, for all fe #(G), we obtain the formula

(21.4.8.1) f= Y n, Te(M (M)

peR

where the series on the right converges in #Z(G), no matter how the ele-
ments of R are arranged in a sequence. The function p— Mp(f), defined on
R and taking its values in the space of all complex square matrices, is
sometimes called the * Fourier transform” of f, and the formula (21.4.8.1) is
the “ Fourier inversion formula for compact groups” (cf. Chapter XXII).

PROBLEMS

1. Let G, H be two compact groups. Show that the ring Z®C*H of classes of continuous
linear representations of G x H is isomorphic to the tensor product Z®E) @ ZRH (cf,
Section 21.1, Problem 12).

2. LetPyo,,0,,...,0,)bethe polynomial with rational integer coefficients that expresses
the sum X4 + -+ + X of the kth powers of m indeterminates in terms of the elementary
symmetric functions g, = ¥ X, X, '+ X, of these indeterminates (the summation is over

ji
all strictly increasing squé:nces ji1 <j, < <j,of h £m indices). Let U be a finite-
dimensional linear representation of a compact group G and consider the element of
Z®S) given by

(+) Pk(cl(U), cl(/z\ U)‘ cl(/m\ U))

(Section 21.1, Problem 11). Consider also the canonical homomorphism y of Z®®»
into €(G), which maps p € R(G) to x,. Show that the image under y of the element ()
above is equal to the function s Tr(U(s")).

3. Let G be a locally compact group and let U be a continuous unitary representation of G
on a separable Hilbert space E. Let #(U) denote the algebra of intertwining operators of
U with itself (Section 21.1, Problem 6), i.e., the algebra of continuous operators T € .Z(E)
such that TU(s) = U(s)T for all se G.
The representation U is said to be primary if the center of #(U) consists only of the
homotheties of E, and isotypic if it is primary and if there exists a nontrivial irreducible
subrepresentation of U.
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(a) For U to be primary, it is necessary and sufficient that the center of #(U)
contain no orthogonal projection other than 0 and 1. (Observe that the center is a closed
self-adjoint subalgebra of #(E), and use the Gelfand-Neumark theorem.)

(b) For U to be isotypic, it is necessary and sufficient that U should be equivalent to
a (finite or infinite) Hilbert sum of equivalent irreducible representations. (To show that
the condition is necessary, consider a closed subspace F of E that is stable under U and
such that the restriction V of U to F is irreducible. If W is the restriction of U to the
orthogonal supplement F* of F, which is assumed to be # {0}, deduce from the fact that
the projection Pg cannot belong to the center of #(U) that there exists a nonzero inter-
twining operator between V and W (Section 21.1, Problem 6), and hence that Wcontains a
subrepresentation equivalent to V; then use induction. To show that the condition is
sufficient, E being now the Hilbert sum of subspaces F, stable under U and such that the
restrictions U, of U to the F, are equivalent irreducible representations, consider an
orthogonal projection P + Q belonging to the center of #(U); show that there exists at
least one index k such that P - P, +# 0, and deduce that P - PF‘ # 0 for all indices j, and
thence that P = 1;.)

(c) If U is equivalent to a Hilbert sum of irreducible representations all equivalent to
the same representation V, show that the number n (finite or + o) of these representations
is finite if and only if #(U) is of finite dimension over C, and that this dimension is then n’.
(Use the topological version of Schur’s lemma (Section 21.1, Problem 5).) Furthermore,
every subrepresentation W of U is a Hilbert sum of representations equivalent to V. (With
the notation of (b) above, let L < E be the subspace of the representation W there exists at
least one index k such that the orthogonal projection of F, on L is nonzero. Deduce that
there exists a nonzero intertwining operator between U, and W, and use Section 21.1,
Problem 6, to obtain a subrepresentation of W equivalent to U,; then proceed by
induction.)

Let G be a unimodular locally compact group. A continuous unitary representation of G
on a separable Hilbert space E is said to admit a discrete decomposition if it is a Hilbert
sum of irreducible representations.

(a) Let R(G) be the set of equivalence classes of irreducible continuous unitary
representations of G. Let U be a continuous unitary representation of G on E, and
suppose that E is a Hilbert sum of subspaces E, such that the restriction U, of U to E, is
irreducible. For each p € R(G), let M be the Hilbert sum of the E, such that U, is in the
class p. The nonzero M, are called the isotypic components of E. Show that for every
irreducible subrepresentation V of U, the space of V is necessarily contained in one of the
M,, and that V is then of class p, so that M, may be defined as the smallest closed
subspace of E that contains the spaces of all the irreducible subrepresentations of U of
class p (and is therefore defined independently of the decomposition (E,) chosen). (Use
Problem 3(c) above and Section 21.1, Problem 6.) If the restriction of U to M, is the
Hilbert sum of n, representations of class p, where n, is finite or + oo, this number n, is
called the multiplicity of p in U (or in the class of U).

(b) Let U be a continuous unitary representation of G on E that has the following
property: for every closed subspace F of E stable under U, there exists a closed subspace L
of F that is minimal among those that are stable under U. Show that U admits a discrete
decomposition. (Argue by induction, as in (15.8.10).)

(c) Let f, be a sequence of continuous functions on G satisfying the conditions of
(14.11.2). Let U be a continuous unitary representation of G such that, for each n, the
operator U(f,) is compact. Show that U admits a discrete decomposition into irreducible
representations and that, for each p € R(G), the multiplicity of p in U is finite. (Show that
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the criterion of (b) above is satisfied. If F < E is closed and stable under U, there exists an
integer nsuch that the restriction of U(f,) to Fis # 0. Consider an eigenvalue 4 # 0 of this
restriction, and the corresponding eigenspace M, which is finite-dimensional. For each
vector x # 0 in M, let P, be the smallest closed subspace of E that contains x and is
stable under U. If P_ is the Hilbert sum of two U-stable subspaces Q and R, show that
P, ~ M is the Hilbert sum of Q n M and R ~n M, and hence deduce that there exists
x € M for which P_ is minimal. Furthermore, if the subrepresentation of U corresponding
to P_is of class p, then n is at most equal to the dimension of M)

Let G be a unimodular locally compact group, and let U be a continuous unitary represen-
tation of G on a separable Hilbert space E. For each pair (x, y) of points of E, the function
s (U(s) - x|y), which is continuous and bounded on G, is called the coefficient of U
relative to (x, y), and is denoted by ¢,(x, y). For each bounded measure u on G, we have
el Uu) - x, v) = culx, y) + frand cy(x, Ulu) - y) = Ji = cy{x, y). If J is a semilinear bijec-
tion of E into itself such that (J - x|J - y) = (x| v) (we may take J(e,) = e,, where (e,)is a
Hilbert basis of E), let U denote the continuous unitary representation s~ JU(s)J " ! of G
on E, which is well-defined up to equivalence. Show that cp(x, y) = cy(x, ¥).

(a) Suppose that U is irreducible and that there exist two nonzero vectors x, y in E
such that the function ¢,(x, v) belongs to L3(G). Then ¢;,(x, U(g) - y) belongs to LY(G), for
every bounded measure u on G. Deduce that the set of z € E such that ¢, {x, z) € LY(G)isa
dense vector subspace F of E, and that the linear mapping z+ ¢, (x, z) of F into L(G) is
closed (Section 15.12, Problem 1). Use Section 21.1, Problem 6, to show that F = E and
that U is equivalent to a subrepresentation of the regular representation R of G on L3(G);
also that ¢,(x, ) belongs to L(G) for all pairs x, y in E.

(b) Show that, for each function fe #(G), the coefficient cg(d. f) of the regular
representation R belongs to LYG) for each § € LYG). Deduce that all the coefficients of
an irreducible subrepresentation of R belong to L{(G). An irreducible continuous unitary
representation of G is said to be square-integrable if it is equivalent to a subrepresentation
of the regular representation of G.

(c) Show that if at least one irreducible unitary representation U of G is square-
integrable, then the center Z of G is necessarily compact. (Observe that the function
[ep(x. ¥)| on G x G is invariant under left and right translations by elements of Z.)

Let G be a unimodular locally compact group, U an irreducible unitary representation of
G on a Hilbert space E, and assume that U is square-integrable (Problem 5).
(a) Forall x, y, X",y in E we have

{culx, Vel ) =dg Hx] x')m

in L(G), where d,, is a number > 0 that depends only on the equivalence class of U.
(Observe that, as a result of Problem S, the mapping S,: z+— cy(x, z) is an intertwining
operator between U and the regular representation R, and consequently S¥. S, is a homo-
thety in E, by virtue of Schur's lemma; in other words, there exists a constant a(x, x')
such that

(co(x. ¥} eu(¥'s ¥)) = alx, XYy |¥).
Show on the other hand that
{eulx ¥)]eulxs 3)) = (co(vs X) | euly, x))

by using the fact that G is unimodular.)
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The number d,, is multiplied by a~* when the Haar measure f on G is replaced by af.
When G is compact and f§ is the Haar measure with total mass 1, the number d;; is equal to
the dimension of the representation U.

(b) Deduce from the Banach-Steinhaus theorem that there exists a constant b> 0
such that Ny(cy(x, y)) < b x| - |y| for all x, y in E.
(c) Let A, B be two nuclear operators on E (Section 15.11, Problem 7). Show that

'f U(s)AU(s)™" dB(s) = dg ! Tr(A),
{ Tr(U(s)AU(s)~ ' B) dB(s) = dg ' Tr(A) Tr(B),

f Tr(AU(s)"!) Tr(BU(s)) dB(s) = d* Tr(AB).

{Observe that there exists a Hilbert basis (e,) of E and a sequence (f,) of vectors of norm 1
in E such that, forall x € E,wehave 4 - x = Y 1,(x|e,)f,, where Y. [4,| < o, and use (a)

and (b) above.)

Let U, U’ be two square-integrable irreducible unitary representations of G on separable
Hilbert spaces E, E', respectively. Show that if U and U’ are inequivalent, then every
coefficient of U is orthogonal in L2(G) to every coefficient of U’. (Consider on E’ x E the
sesquilinear form (x, x)— (cy{x', @')|cy(x, a)); show that it is continuous (Problem
6(b)) and that it can be written in the form (x’, x)—(x’| 4 - x), where 4 is a continuous
operator from E to E'; finally prove that A is an intertwining operator of U with U’.)

Given two Hilbert spaces E, and E,, a continuous operator T: E; — E, is said to be a
Hilbert-Schmidt operator if the operatoron E,; @ E, thatisequalto Ton E, and Oon E, is
Hilbert-Schmidt (15.4.8). The space ¥,(E,, E,)c Z,(E,®E,) of Hilbert-Schmidt
operators from E, to E, is a Hilbert space.

For each x, € E, and x, € E,, letu, ,, denote the linear mapping ze— (z|x,)x, of E,
into E,. This mapping belongs to &,(E,, E,), and we have fju, , [, =|x,| - [x,[. If
(a,) (resp. (b,)) is a Hilbert basis of E (resp. E,), then the u, , form a Hilbert basis of
#,(E,. E,)

(a) Let Gy, G, be two locally compact groups and let U, (resp. U,) be a continuous
unitary representation of G, (resp. G,) on a separable Hilbert space E, (resp. E,). For
5;€ Gy, 5,€G,, and T e &,(E,, E,), show that the mapping U ,(s,)TU,(s,)” ", which
we denote by U(s,, s,) - T, belongs to #,(E,, E,), and that U(s,, s,) is a continuous
unitary representation of G, x G, on the Hilbert space #,(E,, E,).

(b) Suppose that U, and U, are irreducible. Show that U is irreducible. (Remark that
the closed subspace of #,(E,, E,) generated by the transforms U,(s,)u, ,, where a # 0in
E, and b # 0 in E,, contains all the elements u, , for y € E,; likewise for the transforms
u, , U,(s,).) The restriction of U to the subgroup G, x {e,} of G, x G, is then an isotypic
unitary representation (Problem 3), a Hilbert sum of representations equivalent to U, the
multiplicity of the class of U, in this restriction being equal to the dimension of E,.
Likewise for the restriction of U to the subgroup {e,} x G,.

Let G be a unimodular locally compact group, and let U be a square-integrable irreducible
continuous unitary representation of G on a Hilbert space E (Problem 5). Let M, be the
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closed vector subspace of L%(G) spanned by the coefficients (Problem 5) of U. It is stable
under the operators y(s) and 8(s) for each s € G.

(a) Let U’ be another square-integrable irreducible representation of G. Show that if
U’ is equivalent to U, then M, = M, so that M, depends only on the class p of U, and is
therefore also denoted by M, . If on the other hand U’ is not equivalent to U, then the
subspaces M, and My, are orthogonal. If (¢;) is a Hilbert basis of E, the elements
Ji = di*cyle;, e,) form a Hilbert basis of M.

(b) Define a continuous unitary representation (s, t)+~ V(s, t) of G x G on My by
V(s, t) - cy(x, ¥) = v(s) 8{t)cy(x, y). Show that this representation is equivalent to the con-
tinuous unitary representation (s, t)— W(s, t) of G x G on the Hilbert space L,(E) of
Hilbert-Schmidt operators on E, defined by W(s, t)- T = U(s)TU(t)"' (Problem 8).
Deduce that V is irreducible, and that the restriction to M, of the regular representation R
is a Hilbert sum of irreducible representations equivalent to U, the multiplicity of U in this
decomposition (Problem 4) being the dimension of E.

(c) Let f be a function in #4G), with compact support, and let P be the orthogonal
projection of L2(G) onto the subspace M ;. Show that U(f )} is a Hilbert-Schmidt operator
on E and that |U(f)], £ di/*N,(P - f). (Use the basis () of My to calculate N,(P - f}.)
(d) Let LYG), be the closed subspace of LHG) that is the Hilbert sum of the
subspaces M, as p runs through the set of equivalence classes of square-integrable irredu-
cible representations of G. Show that L(G), contains every closed subspace F of L(G)
that is stable under y(s) (resp. 8(s)) for all s € G and is minimal with respect to this
property among nonzero subspaces. (Let P be the orthogonal projection of L{(G) onto F.
If V is the irreducible representation that is the restriction of R to F, calculate the
coefficients ¢, (f, P+ g) for fe F and g € #(G).)

Let G be a locally compact group and let U be a continuous linear representation of G on
a finite-dimensional complex vector space. Assume that the coefficients ¢y (x, x*) (Section
21.2, Problem 1) belong to £%4G).

(a) Show that there exists on E a (nondegenerate) Hermitian scalar product @ that is
invariant under U (same method as in (20.11.3.1)).

(b) Deduce from (a) that the group G is necessarily compact. (Observe that the
coefficients of the matrix of @, relative to a basis of E, belong to £L(G).)

(a) Let G be a topological group, let U be a continuous linear representation of G on a

complex vector space E of dimension d, and let V,, be the trivial representation of G on a

vector space F of dimension n. Let W be the representation s— U(s) ® Vy(s) of G on

E ® F. Show that if n > d, there exists no vector z € E ® F such that the vectors W(s) - z
d

(s € G) generate E® F. (Write z in the form ) x;® y;, where the x, form a basis of E,
j=1

and the y; belong to F.)

(b) Let G be a compact group. With the notation of (21.4.1), if V is the Hilbert sum
of g < n, representations equal to M, then there exists a totalizing vector x, in the space
E of the representation V (in other words the vectors V(s) - x, for s € G span E). (Reduce
to the case where E is the sum [; + 1, + -+ + 1 in a, and V is the restriction 1o E of the
regular representation. Show that we may take x, = my, + m,, + --- + m_, by showing
that no nonzero vector in E is orthogonal to all the V(s) - x,.)

(c) Let G be a compact group. Show that a continuous unitary representation V of
G on a separable Hilbert space E is topologically cyclic if and only if, for each p € R, the
multiplicity of M in V is < n,. (To show that the condition is sufficient, we may assume
that E is the Hilbert sum of left ideals b, = a,, where p runs through a subset R’ of R,and
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V is the restriction to E of the regular representation. If x, € b, is a totalizer for the
restriction of V to b,, consider a vector xo = 3, ¢,x,, where 3 &lfx,[? < o and
peR’

£, >0)

peR

5. INVARIANT BILINEAR FORMS; THE KILLING FORM

(21.5.1) From now on in this chapter we shall consider only (real or
complex) Lie groups. By a linear representation of a real Lie group G on a
finite-dimensional real or complex vector space E we shall mean (as in
(16.9.7)), unless the contrary is expressly stated, a Lie group homomorphism
(hence of class C*) s U(s) of G into GL(E). (If E is a complex vector space,
we consider GL(E) as equipped with its underlying structure of a real Lie
group.) By virtue of (19.10.2), this notion in fact coincides with the notion of
continuous linear representation (on a finite-dimensional complex vector
space) introduced in (21.1).

If G is a complex Lie group, a linear representation of G on a finite-
dimensional complex vector space E is by definition a homomorphism of
complex Lie groups s+ U(s) (hence a holomorphic mapping) of G into
GL(E). One must be careful to distinguish these representations from linear
representations of the underlying real Lie group G on E; every linear
representation of G on E is also a linear representation of G, but the
converse is false.

Let E be a finite-dimensional real vector space, and let E¢, = E @ C be
its complexification. Every endomorphism P of E has a unique extension to
an endomorphism P® l¢c of E¢), such that (P® I¢) - (x® () = (P x)®(
for all x € E and all { € C (A.10.6). The matrix of P relative to a basis (e;) of
E is the same as the matrix of P ® 1 relative to the basis (¢;® 1) of E¢,. It
follows immediately that every linear representation s+ U(s) of a real Lie

group G on E extends uniquely to a linear representation s— U(s) ® 1 of G
on E,.

(21.5.2) Given any linear representation s+ U(s) of a real (resp. complex)
Lie group G on a finite-dimensional real or complex (resp. complex) vector
space E, we have a derived homomorphism u— U _(u) of the Lie algebra g, of
G into the Lie algebra gI(E). For each w € g,, we have (19.8.9)

(21.5.2.1) Ul(exp(w)) = exp(U ,(w)).
If G is a real Lie group and E a real vector space, the derived homomor-

phism of the representation U ® 1¢ of G on E ¢, (21.5.1) is the homomor-
phism ur U, (u) ® 1¢ of g, into gl(E,) = gl(E) ®g C.
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We remark also that if F is a finite-dimensional complex vector space, a a
real Lie algebra (of finite or infinite dimension) and p: a — gl(F) 2 homo-
morphism of real Lie algebras, then the mapping p¢,: u® (- p(u){ is a
(C-linear) homomorphism of the complexification a¢) = a ®¢ C of a into
gl(F) that extends p.

(21.5.3) Let s+ U(s) be a linear representation of a real (resp. complex)
Lie group G on a finite-dimensional real or complex (resp. complex) vector
space E. Canonically associated with U is the following bilinear form on the
real (resp. complex) vector space g, X g,

(21.5.3.1) By: (u, v)> Tr(U ,(u) o U, (V).

From the symmetry Tr{(PQ) = Tr(QP) of the trace it follows that the form
By is symmetric, but it can be degenerate. Furthermore, it is invariant under
the action (s, u)— Ad(s) - u of G on g,: for by (16.5.4) and (19.2.1.1) we
have

U (Ad(s) - u) = Ad(U(s)) - U,(u) = U(s)U ((w)U(s) ™",

and the relation
(21.5.3.2) By(Ad(s) - u, Ad(s) - v) = By(u, v)
therefore follows from the symmetry of the trace.

(21.5.4) In general, let ® be any R-bilinear mapping of g, x g, into a real
vector space E that is invariant under the action (s, u)— Ad(s) - v of G on
g, then, for all u, v, w in g,, we have

(21.5.4.1) O([w, u], v) + O(u, [w, v]) = 0.

For by hypothesis we have, for all t € R,
®(Ad(exp(tw)) - u, Ad(exp(tw)) - v) = ®(u, v);

if we now differentiate both sides of this relation with respect to t at r = 0, we
obtain (21.5.4.1) by use of (8.1.4) and (19.11.2.2).

(21.5.5) More generally, if a is a Lie algebra over R (resp. C) and F is a
finite-dimensional vector space over R (resp. C), then to each Lie algebra
homomorphism p: a — gI(F) we may associate a symmetric bilinear R-form
(resp. C-form) on a x a by the formula

(21.5.5.1) B,(u, v) = Tr(p(u) = p(v)).
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Since p([u, v]) = p(u) o p(v) — p(v) o p(u), the symmetry property of the
trace shows again that we have

(21.5.5.2) B,(ad(w) - u, v) + B,(u, ad(w) - v) =0
for all u, v, w € a.

(21.5.6) Consider a finite-dimensional real or complex Lie algebra a, and
its adjoint representation u+> ad(u), which is a homomorphism of a into
gl(a). We denote by B, or simply B the symmetric bilinear form correspond-
ing to this homomorphism according to (21.5.5); it is called the Killing form
of the Lie algebra a. By (21.5.5.2) we have

(21.5.6.1) B([w, u], v) + B(u, [w, v]) =0.

If o is any automorphism of the Lie algebra a, we have o([u, v}]) =
[a(u), 6(v)], or equivalently ¢ - ad(u) = ad(o(u)) - o in End(a). From this
and the symmetry of the trace we deduce immediately that

(21.5.6.2) B(a(u), o(v)) = B(u, v).

(21.5.7) If b is an ideal in a Lie algebra a, the restriction to b x b of the
Killing form B, is the Killing form B,.

By hypothesis, for each x e b, we have ad(x) - a = b; hence, for x and
y € b, if we put U = ad(x) - ad(y), we have U(a) < b. If we now calculate the
trace of U by means of a basis of a consisting of a basis of b and a basis of a
subspace of a supplementary to b, we see that this trace is equal to that of the
restriction of U to b.

It should be remarked, however, that there is no simple relation between
the Killing form of an arbitrary Lie subalgebra of a, and the restriction to this
subalgebra of the Killing form of a.

(21.5.8) If Gis a (real or complex) Lie group, g, its Lie algebra, the Killing
form of g, is called the Killing form of G.

(21.5.9) Let G be a connected Lie group with center {e}, and let U be a
linear representation of G on a finite-dimensional vector space, such that the
bilinear form By is nondegenerate. Then there exists a pseudo-Riemannian
structure on G whose metric tensor g satisfies g(e) = By, and which is
invariant under left and right translations by elements of G (20.11.8).
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6. SEMISIMPLE LIE GROUPS. CRITERION OF SEMISIMPLICITY FOR
A COMPACT LIE GROUP

(21.6.1) A finite-dimensional real or complex Lie algebra a is said to be
semisimple if its Killing form (21.5.6) is nondegenerate. A real or complex Lie
group is said to be semisimple if its Lie algebra is semisimple.

If a is a finite-dimensional real Lie algebra, any basis of a over R can be
canonically identified with a basis of its complexification a,, over C. Con-
sequently, the Killing form B, _ of a, has the same matrix relative to this
basis as does the Killing form B, . It follows immediately that if a is semisim-
ple, so also is its complexification, and conversely.

On the other hand, if a is a complex Lie algebra and a, the real Lie
algebra obtained from a by restriction of scalars, then we have
B, = 2#(B,). For if u is an endomorphism of a finite-dimensional complex
vector space E, and if u, is the same mapping u considered as an R-linear
mapping, then it is easy to verify that Tr(u,) = 2(Tr(u)) (16.21.13.1). Hence
it follows that if a is semisimple, so also is ag: for by taking a basis of a that is
orthogonal relative to B,, we see from the remarks above that B,, has
signature (n, n) if n = dim¢(a), and therefore is nondegenerate.

(21.6.2) Let a be a real or complex semisimple Lie algebra.

(i) The only commutative ideal in a is the zero ideal.

(i) Foreachidealbin a, the subspace b* of a orthogonal to b with respect
to the Killing form B, is an ideal of a, supplementary to b, and the Lie algebras
b and b* are semisimple.

(i) Let ¢ be a commutative ideal in a. For each y € a, we have
ad(y) - ¢ < c and therefore ad(x) - (ad(y) - ¢) = {0} for all x € ¢. On the other
hand, ad(x) - (ad(y) - a) = ¢, because x € ¢. If we compute the trace of
U = ad(x) o ad(y) with the help of a basis of a consisting of a basis of cand a
basis of a subspace supplementary to ¢, it follows that we obtain O: in other
words, B,(x, y) = 0 for all x € ¢ and y € a. Since B, is nondegenerate, this
forces x = 0.

(i1) It follows immediately from (21.5.6.1) that if b is an ideal in a, then
so also is b*. Hence b n b* is an ideal in a, and we shall show that it is
commutative. Indeed, if u, v are any two elements of b n b*, then by
(21.5.6.1) we have B,(w, [u, v]) = B,([w, u], v) =0 for all we a, because
[w, u] € b and v e b*. Since B, is nondegenerate, it follows that [u, v] =0,
which proves our assertion. Hence, by virtue of (i) above, we have
b n b* = {0} and therefore b + b* = q, so that b and b* are supplementary
ideals. The restrictions of B, to the nonisotropic subspaces b and b* are
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therefore nondegenerate, so that b and b* are semisimple Lie algebras, by
virtue of (21.5.7).

We shall show later that, conversely, a finite-dimensional real or complex
Lie algebra that has no nonzero commutative ideals is semisimple (21.22.4).

From (21.6.2) it follows immediately that:
(21.6.3) The center of a semisimple Lie algebra is {0}.

In particular (19.11.9), every semisimple Lie algebra over R (resp. C) is
the Lie algebra of a real (resp. complex) semisimple Lie group, and there is a
one-to-one correspondence between semisimple Lie algebras and simply con-
nected semisimple Lie groups (up to isomorphism).

A finite-dimensional real or complex Lie algebra is said to be simple if it
is noncommutative and if it contains no ideals other than itself and {0}.

It can be shown that if a is a simple Lie algebra over C, then the Lic
algebra g4 obtained by restriction of scalars is also simple (Problem 1). On
the other hand, if g is a simple Lie algebra over R, then the Lie algebra g,
over C obtained by extension of scalars is semisimple, but not necessarily
simple (Problem 1).

(21.6.4) Every semisimple Lie algebra g is the direct sum of a finite number of
ideals g; (1 £i £ r), each of which is a simple Lie algebra, and which are
mutually orthogonal with respect to B,. Every ideal of g is the direct sum of a
subfamily of (8:)1<i<.-

The proof is by induction on the dimension of g. Let a be a nonzero ideal
of g of smallest possible dimension; by virtue of (21.6.2), g is the direct sum
of a and the ideal a*, which implies that [a, a*] = {O}. Every ideal in the Lie
algebra a is therefore also an ideal in g, and therefore by hypothesis the Lie
algebra a contains no ideals other than a and {0}. Since moreover a is not
commutative (21.6.2), it is a simple Lie algebra. By applying the inductive
hypothesis to the semisimple Lie algebra a*, the first assertion is established.
If now b is any ideal in g, then b n g; is an ideal in g;, hence is either g; or {0}.
If a is the sum of the g; contained in b, then a* is the sum of the remaining g;,
and we have b=a@¢, where ¢ =b n a'. Since b n g, = {0} for each
g; < a*, we have also [b, g;] = {0} for these g;, hence [b, a*] = {0} and s0 a
fortiori [¢, ¢] = {0}. But since the Lie algebra a* is semisimple, it has no
nonzero commutative ideals (21.6.2), so that ¢ = 0 and therefore b = a.

(21.6.5) Every semisimple Lie algebra g is equal to its derived algebra D(g).
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This is obvious if g is simple, because by definition D(g) cannot be zero.
The general case now follows from (21.6.4).

(21.6.5.1) With the notation of the proof of (21.6.4), the ideals a and a* are
orthogonal relative to any invariant symmetric R-bilinear form ® on g
(21.5.4). For, by virtue of (21.6.5), it is enough to show that forall x, y € a
and z € a* we have ®([x, y], z) = 0; but by (21.5.4.1) this is equivalent to
®(x, [y, z]) = 0, and since y € a and z € a* we have [y, z] € a n a* = {0}

(21.6.6) A Lie group is said to be almost simple if its Lie algebra is simple. It
follows from (21.6.4) that a simply connected semisimple Lie group G is
isomorphic to a product of simply connected almost simple Lie groups G;.
The only connected Lie groups immersed in G that are normal in G and of
positive dimension are the products of subfamilies of the G ; they are closed
in G. It follows from (21.6.3) that the center of a semisimple Lie group is
discrete, and from (21.6.5) that the commutator subgroup of a semisimple Lie
group is an open subgroup (19.7.1).

This last result shows in particular that a connected semisimple Lie group
G is unimodular, since the kernel of the modulus function s+— Ag(s) contains
the commutator subgroup of G.

(21.6.7) Every derivation (A.18.2) of a semisimple Lie algebra g is inner
(A.19.4).

Let D = Der(q) be the Lie algebra of derivations of g (A.19). Since the
center of g is {0} (21.6.3), the image ad(g) of g under the adjoint representa-
tion x+— ad(x) is a Lie subalgebra isomorphic to g, and therefore semisim-
ple; moreover, since ad(Du) = [D, ad(u)] for ue g and De D (A.19.4),
ad(g) is an ideal of D. Consider the subspace a of D that is orthogonal to
ad(g) relative to the Killing form By (which a priori might be degenerate).
Since the restriction of By to the ideal ad(g) is the Killing form B, (21.5.6),
and since this form is nondegenerate, it follows that the intersection
a n ad(g), which is the subspace of ad(g) orthogonal to ad(g) relative to
B.yq . 18 zero. Also, by (21.5.6.1), a is an ideal of D, and therefore
[a, ad(g)] = a ~ ad(g) = {0}. Consequently, for D € a and u e g, we have
ad(Du) = [D, ad u] =0, and since the mapping x+— ad(x) is injective, it
follows that Du =0, hence D = 0 and so a = {0}. This proves that By is
nondegenerate and that D = ad(qg).

(21.6.8) Let G be a connected semisimple (real or complex) Lie group. Then
the image Ad(G) of G under the homomorphism s+ Ad(s) is an open subgroup
of the group Aut(g,) of automorphisms of the Lie algebra of G.
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For this image is a connected Lie group immersed in Aut(g,), whose Lie
algebra is ad(g,) (19.13.9); but the latter is equal to the Lie algebra Der(g,) of
Aut(g,) by virtue of (21.6.7) and (19.3.8). Hence the result, by (19.7.1).

(21.6.9) Let G be a connected (real) Lie group, C its center and g its Lie
algebra. The following conditions are equivalent :

(@) The quotient group G/C is compact.

(b) G is isomorphic to a product R™ x G,, where G, is compact.

(c) The Lie group G, the universal covering of G, is isomorphic to a
product R" x K, where K is a simply connected semisimple compact group.

(d) The Lie algebra g is the direct sum ¢ @ D(g) of its center ¢ and its
derived algebra D(g), and the restriction to D(g) of the Killing form B, is
negative definite.

When these equivalent conditions are satisfied, D(g) is isomorphic to the
Lie algebra of K; the center Z of K is finite; G is isomorphic to G/D, where D
is a discrete subgroup of R" x Z; the center C of G is isomorphic to
(R" x Z)/D; and the center of G/C consists only of the identity element. The
subgroups Ad(G), Ad(G), and Ad(K) of Aut(g) may be identified with the same
(compact) open subgroup of Aut(D(g)) (itself a direct factor of Aut(g)), and are
isomorphic to G/C and to K/Z.

The commutator subgroup 2(K) of K is equal to K, and the commutator
subgroup 2(G) of G may be identified with the group K/(D n Z) (and is
therefore compact).

Clearly (b) implies (a). We shall first prove that (a) implies (d).

The homomorphism s+ Ad(s) of G into Aut(g) = GL(g) has kernel C
(19.11.6) and therefore factorizes as G — G/C % Aut(qg), where v is an injec-
tive homomorphism of Lie groups (16.10.9). If G/C is compact, then so also
is its image Ad(G) under v, and v is therefore an isomorphism of G/C onto
the compact Lie subgroup Ad(G) of Aut(g) ((19.10.1) and (16.9.9)). Hence,
by (20.11.3.1), there exists a positive definite symmetric bilinear form ® on
the vector space q that is invariant under the canonical action of Ad(G) on g.
It is clear that Ad(s) - ¢ = {0} for all s € G (19.11.6); the subspace ¢* of g,
which is the orthogonal supplement of ¢ relative to @, is therefore also stable
under every automorphism Ad(s) of g, hence is an ideal in g (19.11.3). But
since Ad(G) may be canonically identified with a closed subgroup of the
orthogonal group O(®), its Lie algebra ad(g) is identified with a Lie subal-
gebra of the Lie algebra o(®) of O(®). Relative to a basis of g that is
orthonormal with respect to @, the matrix (a;) of the endomorphism ad(u)
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of g, where u is any element of g, satisfies a,; = —a; (19.4.4.3). It follows
that

By(u, u) = Tr((ad(u))?) = Z O ji Ot j = _Z aj £ 0;

and, moreover, that we have B,(u, u) = 0 only if ad(u) = 0, hence if u € «.
The restriction of B to the ideal ¢* is therefore negative definite. By virtue of
(21.5.7), this shows that the Lie algebra ¢* is semisimple, hence equal to its
derived algebra (21.6.5); and since [¢, g] = {0} by definition, we have also
D(g) =[g, g] = ¢-.

Next we shall prove that (d) implies (c). Clearly it is enough to show that
il t is a semisimple real Lie algebra, such that the Killing form B, is negative
definite, then a simply connected Lie group K whose Lie algebra is isomor-
phic to  (21.6.3) is necessarily compact. Now, since B, is invariant under the
adjoint action of K on 1, the subgroup Ad(K) of Aut(f), which is closed
(21.6.8), may be identified with a closed subgroup of the orthogonal group
O(B,), hence is compact (16.11.2). On the other hand, the Lie algebra ad(f) of
Ad(K) is isomorphic to t and therefore has center {0} (21.6.3). Hence the
center of Ad(K) is discrete, and it follows from Weyl’s theorem (20.22.5) that
the Lie group K, which is the universal covering of Ad(K), is also compact.

We go on to prove the assertions in the second and third paragraphs of
(21.6.9). From (16.30.2.1) we have G = G/D, where D is a discrete subgroup
of the center R" x Z of G = R” x K. In view of (21.6.8) and the fact that
every automorphism of g leaves ¢ and D(g) stable, these assertions (except
for those relating to the derived groups) follow from (20.22.5.1). The derived
group 2(K) has Lie algebra D(f) = f(19.12.1), and because K is connected it
follows that 2(K) = K. We deduce that 2(G) = K, and since 2(G) is evi-
dently the canonical image of 2(G), it is therefore equal to the canonical
image of K, which is isomorphic to K/(D n K) = K/(D n Z) (12.12.5).

Finally, we shall prove that (c) implies (b). Let p be the order of the
center Z of K. The projection of the group D on R" is a discrete group,
because the inverse image in R" x Z of a compact neighborhood of 0 in R" is
a compact set, and therefore intersects D in a finite set. It follows (19.7.9.1)
that D is finitely-generated, and hence the set of z” as z runs through D is a
subgroup D’ of D n R”, of finite index in D (and a fortiori in D ~ R”). By
(19.7.9.1), the group R"/D’ is therefore isomorphic to a product R™ x T*™ ™,
and hence G/D’ is isomorphic to R™ x G, where G'=T""" x K is
compact. Furthermore, D/D' is a finite subgroup of the center of G/D’, and
since R™ has no finite subgroup other than {0}, it follows that D/D’ may be
identified with a finite subgroup C’ of the center of G'. Hence G/D, being
isomorphic to (G/D’)/(D/D’), is isomorphic to R™ x G, where G, = G'/C’
is compact.
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Remarks

(21.6.10) (i) Since {0} is the only compact subgroup of R™, the subgroup
G, of G = R™ x G, is a maximal compact subgroup of G.

(i) If a real Lie algebra g satisfies condition (d) of (21.6.9), it is isomor-
phic to the Lie algebra of a compact connected Lie group, namely the group
T" x K (in the notation of (21.6.9)). It follows that this condition character-
izes the Lie algebras of compact connected Lie groups. Since the Lie algebra
D(q) is semisimple, it is equal to its derived algebra. The same argument as
in (21.6.5.1) then shows that ¢ and D(g) are orthogonal with respect to any
invariant R-bilinear form on g.

(i) The discrete subgroups of the group R” x Z are easily determined
(Problem 7), and therefore the structure of compact connected Lie groups is
essentially reduced to that of simply connected semisimple compact Lie
groups.

(iv) It can be shown (Section 21.11, Problem 12(b)) that, under the
conditions of (21.6.9), the group Ad(K) is of finite index in Aut(K), and the
latter is therefore compact.

(v) Inview of (19.16.4.3), a connected Lie group G is unimodular if and
only if Ad(G) is unimodular. Since every compact group is unimodular
(14.3.3), it follows from (21.6.9) that every connected Lie group G, such that
the quotient of G by its center is compact, is unimodular.

PROBLEMS

L. (a) Let a beasimple Lie algebra over C. Show that the Lie algebra a ; over R is simple.
(Observe that if b is an ideal in the semisimple Lie algebra a5, then [a, b] = b.)
(b) Let a be a simple Lie algebra over R. Show that the Lie algebra a (, over Cis either
simple or the direct sum of two isomorphic simple algebras. (Let ¢ be the semilinear
bijection of a,¢, = a @ ia onto itself such that ¢(x + iy) = x — iy for all x, y € a. Show first
that if V is a complex vector subspace of a,, such that ¢(V) = V,and if W = a n V, then
V = W ®iW. Deduce that if b is an ideal of a,¢, other than q, then we have

b n c(b) = {0}, b noa={0}, ac) = b @ c(b),

and that b is a simple Lie algebra over C.)

{c) Let a be a simple Lie algebra over C. Show that the Lie algebra (a;3),c, over C is the
direct sum of two simple Lie algebras, each isomorphic to a. (For each x € q, consider the
element #{x ® | + (ix)® i) € (a;3) ® g C.)

2. (a) In order that a finite-dimensional real Lie algebra g should be the Lie algebra of a
compact Lie group, it is necessary and sufficient that for each u € g the endomorphism
ad(u) ® 1 of g, be diagonalizable and that its eigenvalues be pure imaginary. (Argue as in
(21.6.9).)
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(b) Deduce from (a) that if g is the Lie algebra of a compact group, then every Lie
subalgebra b of g is also the Lie algebra of a compact group; in particular, b cannot be
solvable unless b is commutative.

Show that the Killing form of a real Lie algebra g of positive finite dimension cannot be
positive definite. (Use Problem 2, by noting that ad(u) ® i is a self-adjoint endomorphism
relative to the form B, .)

(a) Let g be a real or complex Lie algebra, b a semisimple ideal of g. Show that g is the
direct sum of b and the centralizer 3(b) of b. (Use (21.6.7).)

(b) Let g be the Lie algebra of a compact Lie group and let n be an ideal in g. If ¢ is the
center of g, show that

n=mncdnn Dg)

(consider the Killing form of n), and deduce that there exists an ideal w’ in g such that
g=ndun’

(c) Let g be a real Lie algebra and n an ideal in g; suppose that n and g/u are the Lie
algebras of compact Lie groups. Show that g is the Lie algebra of a compact group if and
only if g is the direct sum of n and another ideal. (Use (b).)

(a) Let G be a connected Lie group, g its Lie algebra, | a semisimple subalgebra of g, and
H the connected Lie group immersed in G corresponding to fy. Show that if the center of H
is finite, then H is closed in G. (Use Section 19.11, Problem 4.) (Cf. Section 21.18, Problem
18.)

(b) Let G be a connected, almost simple, noncompact Lie group with finite center. Show
that there exists no nontrivial continuous unitary linear representation of G on a finite-
dimensional complex vector space.

(a) Let g be a finite-dimensional (real or complex) Lie algebra. Show that the sum a of all
the semisimple ideals of g is a semisimple ideal of g (and hence is the unique largest
semisimple ideal of g), and deduce that the number of semisimple ideals of g is finite.
(b) Use (a) and Section 21.2, Problem 7, to show that in a compact Lie group G the
number of conjugacy classes of connected semisimple Lie subgroups of G is finite.

Let A be a finite commutative group. Then every discrete subgroup of R” x A is of the
form EB (isomorphic to E x B), where B is a subgroup of A, and E is a subgroup of
R" x A such that the restriction to E of the projection R* x A — R"is an isomorphism of E
onto a discrete subgroup of R" (hence isomorphic to Z* for some p < n).

Let G be a Lie group for which the number of connected components is finite, and let G,
be the identity component of G. Suppose that Lie(G) = Lie(G,) = g is the Lie algebra of a
compact group. Show that G is the semidirect product of a maximal compact subgroup K
and a normal subgroup V isomorphic to R™ for some m; also that K n G, is the identity
component of K, and that G, is the direct product of K n G, and V. (Use (21.6.9) and the
fact that the group Ad(G) is compact. By considering a scalar product on g that is
invariant under Ad(G), we may assume that in the decomposition G, = V x K, of G, as
the direct product of a subgroup V isomorphic to R™ and a compact connected group K,
the Lie algebra of V is orthogonal to that of K,, for the scalar product in question, and
hence that V is a normal subgroup of G. Then use Section 19.14, Problem 3.) Under what
conditions is the subgroup K (resp. V) above unique?
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Let N be the nilpotent Lie group consisting of all 3 x 3 matrices (x,;) such that x;; = 0 if
i<jand x;=1fori=1,2,3 Let G, be the closed subgroup of N consisting of the
matrices (x;;) for which x, , and x,, are rational integers, and let H, be the subgroup of G,
consisting of the (x,)) for which x, = x,; = 0 and x, ; is a rational integer. Show that the
Lie group G, /H, has infinitely many connected components; its center Z, which is also its
commutator subgroup, is compact and connected, and is also the identity component of
G, and is the largest compact subgroup of G; but G is not the semidirect product of Z with
any other subgroup.

Let G be a connected Lie group. Define inductively 2'°(G) = G, and 2'7(G) to be the
closure of the commutator subgroup of 2"~ 'YG), for p 2 1. Show that if 2'%(G) is
compact, then 2'®*'NG) is compact and semisimple, and that G = 9'?*"(G) - H, where
H is the identity component of the centralizer of 2**!YG) in G. The group
@'®*1(G) n H is finite and commutative, and 2'?(H) is contained in the identity com-
ponent of the center of H. Show that the connected Lie group N/H, = G, (in the notation
of Problem 9) is such that 2(G,) is compact, but that the Lie algebra of G, is not the Lie
algebra of a compact group.

(a) Let G bea connected Lie group, g its Lie algebra. Show that if the closure of Ad(G) in
Aut(g) is compact, then the quotient of G by its center is compact, and consequently
Ad(G) is compact. (Observe that there exists an Ad(G)-invariant scalar product on g.)
(b) In order that a connected Lie group G should be such that the quotient of G by its
center is compact, it is necessary and sufficient that for each neighborhood U of e in G
there should exist a neighborhood V = U of e such that xVx~! = V for all x € G. (The
condition is necessary by (21.3.4.1). To show that it is sufficient, use (a) above, by proving
that the closure of Ad(G) in End(g) is contained in Aut(g).)

Let G be a nondiscrete, almost simple Lie group, and G, its identity component. Show
that each normal subgroup N of G either contains G, or is contained in the centralizer
Z(G,) of G,, which is the largest discrete normal subgroup of G. In particular, if G is
compact, then Z(G,) is finite, and there are only finitely many elements s € G such that
Ad(s) is the identity mapping.

Let G be an almost simple compact Lie group of dimension n 2 1. For each s € G, each
integer m = 1 and each neighborhood V of e in G, let M(s, m, V) denote the set of elements
of G of the form

EN IO ) E (PR ) R CM A e

where x, ..., x,., ¥y, ..., y, belong to V.

(a) Show that if s € G is such that Ad(s) is not the identity mapping of the Lie algebra g
of G, and if m Z n, then for each neighborhood V of e the set M(s, m, V) is a neighborhood
of e. (There exists a vector a € g such that b = Ad(s) - a — a # 0. Show that there exist
elements x,, ..., x,, in V such that the sequence (Ad(x)) - b), ;<. contains a basis of g.
Then consider the mapping

(@1 oos 2y Yoo V) (200 0207) 7 (2 s )2 )

of G?™ into G, and its tangent linear mapping at the point (x,, ..., X, &, ..., €).)
(b) Let U be a neighborhood of e in G and let m bean integer = 1. Show that there exists
an element se€ G such that Ad(s) is not the identity mapping and such that
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M(s, m, G) = U. (Argue by contradiction, using the compactness of G and Problem 12.)
{c) Let G, G’ be almost simple compact Lie groups and let ¢: G — G’ be an (a priori not
necessarily continuous) isomorphism of abstract groups. Show that ¢ is in fact an isomor-
phism of Lie groups. (Apply (b) to G’ and (a) to G.)

14. Let G be a compact connected Lie group of dimension n, and let (u| v) be a scalar product
on the Lie algebra g,, invariant under the operators Ad(s) for all s € G (20.11.3.1); also let
Ju|? = (u]u). This scalar product induces canonically a Riemannian metric tensor g on
G, invariant under left and right translations (20.11.8), and for which the geodesic trajec-
tories are the left-translates of the one-parameter subgroups.

(a) Let t+ x(r) = exp(tu) be a geodesic passing through e, and let y € G. Put z(f) =
x(t)yx(—t). Show that

Z(t) = —x(t)y - (1, = Ad(y™")) - u) - x(—1)
(Use (16.9.9) and the relations x'(r) = x(t) - w = u - x(r) (19.11.2.2)). Deduce that
2O, = (1, — Ad(y™")) - ul.

(b) By means of the scalar product (u]|v), the group Ad(G) may be identified with a
subgroup of O(n) = U(n). Consider on U(n) the function s 8(s) defined in Section 16.11,
Problem 1. For each x € G put §(x) = 6(Ad(x)); then we have 0 < d(x) < n, and

Sx~)=d(x),  Syxy !y =d(x),  b(xy) < 8(x) + ()

for all x, y € G, and 8(xz) = d(x) for all z in the center of G.
Let d(x, y) be the Riemannian distance on G defined by the metric tensor g (20.16.3).
Show that for any two points x, y € G we have

dle, (x. y)) £ (2 sin § 3(y)) - d(e, x).

(Yoin e to x by a geodesic arc of length d(e, x) (20.18.5), and then use {a) above and the
definition of #(s) in Section 16.11, Problem 1.)

15. Let G be an almost simple connected Lie group, N an arbitrary normal subgroup of G.
(a) Consider the Lie subalgebra 1, of g, = Lie(G) associated with N by the procedure of
Section 19.11, Problem 7(b). Show that if N # G, we have n, = {0}.

(b) Show that if N # G, then N must be contained in the center C of G (and con-
sequently G/C is a simple group). (If x € N, apply Section 19.11, Problem 7(c) to the
mapping y— yxy~ 'x ! of G into N.)

7. MAXIMAL TORI IN COMPACT CONNECTED LIE GROUPS

(21.7.1) A compact, connected, commutative Lie group is necessarily iso-
morphic to a group T" (19.7.9.2). For brevity’s sake, such a group will be
called an n-dimensional torus.

In a compact Lie group G, a connected closed commutative subgroup T is
a Lie subgroup of G (19.10.1), hence is a rorus. We say that T is a maximal
torus in G if there exists no torus in G that properly contains T.
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(21.7.2) A connected Lie group H immersed in a compact Lie group G is a
maximal torus of G if and only if its Lie algebra by, is a maximal commutative
subalgebra of the Lie algebra g, of G.

In view of the canonical one-to-one correspondence between Lie subal-
gebras of g, and connected Lie groups immersed in G (19.7.4), it is enough
to show that if b, is a maximal commutative Lie subalgebra of g, , then the
corresponding subgroup H is necessarily closed in G. If this were not the
case, its closure H=H’ in G would be a compact group (hence a Lie
subgroup (19.10.1)), connected (3.19.2) and commutative (12.8.5); con-
sequently its Lie algebra fy, would be commutative and would contain b,
properly: contradiction.

(21.7.2.1) The condition in (21.7.2) may also be put in the following equi-
valent form: the commutative subalgebra by, is equal to its centralizer 3(b,) in
g.. For it is clear that b, is maximal if this condition is satisfied; and,
conversely, if b, is commutative and u € 3(b,), the vector subspace f), + Ru
of g, is a commutative Lie subalgebra, and therefore if I, is maximal we must
have u € b,, and hence 3(b,) = b,.

(21.7.3) Every connected commutative Lie group H immersed in a compact
Lie group G is contained in a maximal torus of G.

The Lie algebra b, of H is commutative, hence is contained in a maximal
commutative Lie subalgebra of g, (for example, a commutative subalgebra
whose dimension is maximal among those which contain },). The result now
follows from (21.7.2) and (19.7.4).

(21.7.4) Every compact connected Lie group G is the union of its maximal
tori.

Since (21.7.3) may be applied to the one-parameter subgroups of G, the
result to be proved is equivalent to the assertion that the exponential map-
ping expg is surjective. Now, there exists on G a Riemannian structure for
which the one-parameter subgroups are the geodesic trajectories passing
through e (20.11.8). Since G is compact and connected, the proposition is
therefore a consequence of the Hopf-Rinow theorem (20.18.5).

(21.7.5) The importance of the tori in a compact Lie group is that one
knows explicitly all their linear representations (21.3.8). By virtue of (19.7.2)
and (19.8.7.2), the Lie algebra of the commutative real Lie group (C*)" may



7. MAXIMAL TORI IN COMPACT CONNECTED LIE GROUPS 53

be canonically identified with the real vector space C", and the exponential
mapping is

(21.7.5.1) (25 ooy z) (€7 ..., €7).

The Lie algebra of the subgroup U" of (C*)" is therefore the subspace iR" of
C", and the exponential mapping of iR" into U" is the restriction of (21.7.5.1)
to iR"; its kernel is therefore the discrete subgroup 2riZ" of iR". Every charac-
ter y of U", being a homomorphism of U" into U, has therefore a derived
homomorphism, which is an R-linear mapping «: iR" — iR such that, by virtue
of (21.5.2.1),

(21.7.5.2) A€, ..., &%) = gmidr it

for all (¢, ..., &,) € R". This implies that we must have
a(2rim,, ..., 2nim,) € 2niZ

for all (m,, ..., m,)eZ". Conversely, if this condition is satisfied, the
mapping (i&,, ..., i&,)r e ) factorizes as

&y, ..., i) (€9, ..., eién),_’f_, PIUII

where y is a character of U".

By transport of structure, it therefore follows that if T is an n-dimensional
torus and t its Lie algebra, the exponential mapping expy is a homomorphism
of Lie groups from t (regarded as an additive group) to T, the kernel I'; of
which is a lattice in t, that is to say, a free Z-module that spans the real
vector space t. The characters of T are the continuous mappings y of T into
U such that

(21 753) X(CXP(U)) = e2mivlw)

for all u € t, where ¢ € t* is an R-linear form on the vector space t such that
¢(u) is an integer for all u € I'y. These linear forms constitute a lattice ['} in
the real vector space t*, called the dual of the lattice I't (22.14.6). The
elements of the lattice 2nil'} in the complexification t%, of t* are called the
weights of T they are therefore R-linear mappings of t into iR < C, namely
the derived homomorphisms of the characters of T.

If now V: T — GL(E) is a linear representation of T on a complex vector
space E of finite dimension m, it leaves invariant a scalar product (6.2) on E
(21.4.3); and E is the Hilbert sum, relative to this scalar product, of subspaces
E, (1 £ k £ m) of complex dimension 1, such that for all x € E, we have

(21.7.5.4) V(s) - x = yuls)x
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where x, is a character of T (21.4.4). Bearing in mind (21.7.5.3) and
(21.5.2.1), we see therefore that the derived homomorphism V,:t - gl(E) =
End(E) is such that

(21.7.5.5) Vo(u) - x = a(u)x

for all ue t and x € E, (1 £ k < m), where o, is a weight of T. We remark
that the o, are not a priori necessarily distinct, for distinct values of the index
k.

(21.7.5.6) There exists ug, € t such that Ker(V,(uy)) is the intersection of all
the kernels Ker(V,(u)) in t, as u runs through t.

Since t is not the union of any finite number of hyperplanes (12.16.1),
there exists an element u, € t such that a,(u,) # 0 for all the indices k such
that the linear form o, is not identically zero. This clearly proves the proposi-
tion (A.4.17).

(21.7.6) The study of the structure of a compact connected Lie group G
and of its linear representations rests entirely on the consideration of the
restrictions to the tori in G (and especially to the maximal tori) of the linear
representations of G (on complex vector spaces). Let g be the Lie algebra of
G. Up to the end of Section 21.12, we shall study from this point of view the
extension of the adjoint representation of G to the complex vector space
8¢ = a®,C, that is to say (21.5.1) the homomorphism

(21.7.6.1) s Ad(s) ® 1¢

of G into GL(g,(,). If we consider the restriction of this homofnorphism to a
torus T in G, its derived homomorphism is the restriction, to the Lie algebra
t of T, of the homomorphism

(21.7.6.2) u—ad(u) ® ¢

of g into gl(g,¢,) (19.11.2). Applying (21.7.5.6) to this restriction, we obtain:

(21.7.6.3) If t is the Lie algebra of a torus T in the compact Lie group G,
there exists a vector ug € t such that 3(t) = 3(u,) in g.

We shall use this result to prove the fundamental theorem on the conju-
gacy of maximal tori:
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(21.7.7) Let G be a compact connected Lie group, T a maximal torus in G,
and A a torus in G. Then there exists an element s € G such that sAs ' T
(which implies that sAs™' = T if A is a maximal torus).

Let g, t, a be the Lie algebras of G, T, A, respectively. Since all three
groups are connected, it follows from (19.7.4) and (19.2.1.1) that it is enough
to prove the following proposition:

(21.7.7.1)  There exists s € G such that Ad(s) - ac t.

By virtue of (21.7.6.3), there exists a vector u € a and a vector v € t such
that 3(a) = 3(u)and 3(t) = 3(v). Consider a scalar product (x |y) on g that
is invariant under the action (s, x)— Ad(s) - x of G on g (20.11.3.2); for this
scalar product and the corresponding norm | x| = (x|x)'/2, the function
st || Ad(s) - u — v||? is continuous on the compact group G, hence attains
its minimum at some s € G (3.17.10). We shall show that Ad(s,) - u € t; this
will imply, by virtue of the commutativity of t and by transport of structure,
that

te 3(Ad(so) - u) = Ad(so) - 3(u) = Ad(s0) - 3(a) = 3(Ad(so) - a)

and consequently that the vector subspace t + Ad(sy) - a of g is a commuta-
tive Lie subalgebra. But since t is maximal among such subalgebras, it
follows that Ad(sy) - a = t, which will establish (21.7.7.1).

By replacing u by Ad(sy) - u, and a by Ad(so) - a, we may assume (be-
cause of the invariance of the scalar product) that s, = e. Let us express that,
for each x € g, the derivative of the function of a real variable

t— |Ad(exp(tx)) - u — v|?
vanishes at 1 = 0. Since the derivative of t+— Ad(exp(tx)) - uat ¢ = Ois [x, u]
(19.11.2), we obtain by use of (21.5.4.1)
0=2(x, u]|u—v)=2(x|[u, u—v])
for all x € g; in other words, [u, v] = 0 and therefore u e J(v) = J(t).
Q.E.D.

(21.7.7.2) In particular, any two maximal tori of G have the same dimen-
sion; this dimension is called the rank of the compact connected Lie group G
or of its Lie algebra g. If G is a compact semisimple Lie group, g = @ g, the

J
decomposition of its Lie algebra as a direct sum of simple algebras (21.6.4),
and t; a maximal commutative subalgebra of g;, then it is immediately
verified that t = @ t; is equal to its centralizer in g, so that the rank of g is

J
the sum of the ranks of the g;.
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(21.7.8) Let G be a compact connected Lie group and T a maximal torus in
G. For.each x € G, there exists s € G such that sxs™' e T.

For x lies in some torus in G (21.7.4).

(21.7.9) Let G be a compact connected Lie group. For each torus A in G, the
centralizer Z(A) of A in G is connected. Moreover, for eachs € Z(A), A U {s}
is contained in a maximal torus of G.

Let s € Z(A); the centralizer Z(s) of s is a Lie subgroup of G, and its
identity component H is a compact connected subgroup of G. There exists a
maximal torus T of G containing s (21.7.8), and by definition we have T ¢ H
and A « H; moreover, T is clearly a maximal torus of H. By (21.7.7), there-
fore, there exists an element h € H such that A « T’ = hTh™!, and therefore
T is contained in the identity component of 2°(A). But we have hsh™! = s by
definition of H, hence s lies in the identity component of Z(A); and T' is a
maximal torus of G -containing A and s. Q.E.D.

In particular:

(21.7.10) In a compact connected Lie group G, every maximal torus is equal
to its centralizer, and is therefore maximal in the set of all commutative sub-
groups of G.

It should be noted, however, that the set of commutative subgroups of G
in general contains maximal elements that are nor tori (Problem 1).

(21.7.11)  The center of a compact connected Lie group G is the intersection
of the maximal tori of G.

Since G is the union of its maximal tori (21.7.4), their intersection is
contained in the center C of G. Conversely, if T is any maximal torus of G,
then CT is a commutative subgroup of G containing T, hence is equal to T
by (21.7.10), so that Cc T.

(21.7.12) For each element s of a compact connected Lie group G, the iden-
tity component of ¥ (s) is the union of the maximal tori of G that contain s.

Clearly this identity component (2(s)), contains every maximal torus
that contains s. Conversely, if x € (Z(s)), , then x belongs to some maximal
torus A of the compact connected Lie group (2 (s)), (21.7.4); but since A isa
torus in G, there exists a maximal torus T of G containing both A and s,
because by definition s € Z(A) (21.7.9).
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We remark that the centralizer of an arbitrary element s € G is not
necessarily connected (Problem 1).

(21.7.13) An element s in a compact connected Lie group G is said to be
regular if it belongs to only one maximal torus of G, and singular if it belongs
to more than one. Likewise, an element u of the Lie algebra g, of G is said to
be regular if it belongs to only one maximal commutative Lie subalgebra,
and singular if it belongs to more than one (see (21.8.4.2)).

It follows from (21.7.12) that an element s € G is regular if and only if the
identity component of Z (s) is a maximal torus. An equivalent condition is that
the dimension of % (s) is equal to the rank of G; for Z(s) contains at least one
maximal torus T, and if the dimension of Z(s) is equal to that of T, then T
must be open in Z(s) (16.8.3.3), hence is the identity component of Z(s).
Likewise, in order that u € g, should be regular, it is necessary and sufficient
that the centralizer 3(u) should be a maximal commutative subalgebra. For
this condition is clearly sufficient; and conversely if u is regular and t is a
maximal commutative subalgebra that contains u, then 3(u) cannot contain
any element v ¢ t, otherwise the commutative subalgebra generated by u
and v would be contained in a maximal commutative subalgebra distinct
from t.

(21.7.14) Let G be a compact connected Lie group. If u is a regular element
of the Lie algebra of G, then the centralizer Z (Ru) in G (19.11.3) is a maximal
torus of G.

For if A is the torus in G that is the closure of the one-parameter
subgroup corresponding to Ru, we have Z(A) = Z(Ru) ((19.11.6) and
(12.8.6)). Since Z(A) is connected (21.7.9), its Lie algebra is the centralizer of
Ru (19.11.6), and the proposition follows.

(21.7.15) Let G be a compact connected Lie group. Every maximal torus T of
G is open (hence of finite index) in its normalizer A" (T) in G.

Let H be the identity component of the Lie group .4°(T), and for each
s € H let ¢, denote the automorphism x+— sxs~! of T. The argument of
(19.14.4) shows that the mapping s+— o is a Lie group homomorphism of H
into the group Aut(T). But Aut(T) is discrete (19.13.6) and H is connected,
hence o, is the identity mapping for each s € H (3.19.7). In other words, H is
contained in the centralizer of T, hence H = T (21.7.10).

(21.7.16) With the notation of (21.7.15), the finite quotient group
W(G, T) = #(T)/T is called the Weyl group of the compact connected Lie
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group G, relative to the maximal torus T. For each se G, we have
A (sTs™1) = sA7(T)s~ ! by transport of structure, hence W(G, sTs ') is iso-
morphic to W(G, T). By virtue of the conjugacy theorem (21.7.7), the Weyl
groups corresponding to the various maximal tori of G are all isomorphic;
any one of these Weyl groups W(G, T) is called the Weyl group of G, and
denoted by W(G), or simply W. The group W(G, T) acts differentiably on T
in a canonical way: every element w € W(G, T) is the coset of an element
s € A'(T), and we define w - t = sts™ !, which is independent of the choice of
representative s € w, because T is commutative. Since Z(T) = T (21.7.10), it
follows that W(G, T) acts faithfully on T.

(21.7.17) Let G be a compact connected Lie group and T a maximal torus in
G. If two elements t,, t, of T are conjugate in G, there exists an element
we W(G, T) such that t, =w - t,.

We have t, =st;s~! for some se G, and we have to show that
t,=nt;n" ! for some ne A4 (T). The torus T is contained in Z(t,) and
Z(t,), hence Z(t,) also contains the torus sTs™!. Hence, if H is the identity
component of Z(t,), both T and sTs~! are maximal tori in the compact
connected Lie group H, and therefore there exists an element i € H such
that sTs™! = hTh™! (21.7.7). It follows that h™'sT(h"'s)™! = T, so that
n=h"'se #(T);and since h € Z(t,),wehave h~!(st; s *)h = t,, thatis to
say,nt;n"! =1,.

(21.7.18) Let G be a compact connected Lie group and C' a closed subgroup
of the center C of G. Then, if T is a maximal torus of G, the quotient group
T/C' is a maximal torus of G/C'; also A (T/C') = #'(T)/C', and the Weyl
group W(G/C', T/C') is isomorphic to W(G, T).

Recall that C is contained in T (21.7.11). If n: G - G/C’ is the canonical
homomorphism, and if n(s) belongs to the normalizer of n(T) = T/C’, we
have n(sts™!) € n(T) for all ¢t € T, and therefore sts™! € C'T = T, whence
s € A°(T) and thus A" (T/C’) = #'(T)/C". It is clear that n(T) is a compact
connected commutative subgroup of G/C’, hence is a torus. Let U be a
compact connected commutative subgroup of G/C’ containing n(T) = T/C’;
then U « #(T/C') = #'(T)/C’, hence n~*(U) is a compact subgroup of G
such that T < z~'(U) « #'(T). By (21.7.15), T is open in n~!(U), hence
T/C' is the identity component of U = n~*(U)/C'". Since U is connected, we
have T/C' = U, and hence T/C’ is a maximal torus in G/C’. Finally,

W(G/C', T/C') = #(T/C)/(T/C) = (¥ (T)/C)(T/C") = #(T)/T
=W(G, T)
up to canonical isomorphism ((12.12.2) and (19.10.2)).
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PROBLEMS

1. Let G be the rotation group SO(4k, R), where k > 1. Let V be a vector subspace of
dimension 2k in R*, V* its orthogonal supplement, and let s be the automorphism of R**
such that s(x) = x for x € V and s(x) = —x for x € V*; then s € G. Let H (resp. H') be a
hyperplane in V (resp. V*), and let ¢ be the automorphism of R** whose restriction to V
(resp. V) is the orthogonal reflection with respect to H (resp. H’). We have t € G and
ts = st. Let S be the centralizer of s in G, and S, the identity component of S. Show that
det(u|V) > O for all u € Sy and hence that t ¢ S,. Deduce that S is not connected, and that
the commutative subgroup generated by s and ¢ is not contained in any maximal torus of
G.

2. Let G bea Lie group, g its Lie algebra, and ® a G-invariant symmetric R-bilinear form on
g % g (21.5.4). Let K be a compact subgroup of G. Let x, y be elements of g; show that
there exists an element ¢ € K such that ®(u, [Ad(r) - x, y]) =0 for all ue f = Lie(K).
(Argue as in (21.7.7.1).)

3. Let G be a compact Lie group, g its Lie algebra, and m a vector subspace of g such that
{[u, v], w] € m for all u, v, w in m. Let G’ be the identity component of the normalizer
A'(m) of m in G (19.11.3), and let t be a maximal element of the set of commutative
subalgebras of g contained in m. Show that for each commutative subalgebra a of g
contained in m, there exists an element s € G’ such that Ad(s) - a = t. (Argue as in
1.7.7))

4. Let G be a Lie group, s an element of G, and g the Lie algebra of G. Let n be the union of
the kernels of the endomorphisms (Ad(s) — 1,)* of the vector space g, for all integers k > 1.
Show that i is a Lie subaligebra of g. Let N be the connected Lie group immersed in G
corresponding to the Lie algebra n. Show that the mapping (s, t)— sxts ™! of G x N into
G is a submersion (16.7.1) at the point (e, e). (The vector space g is the direct sum of nand
a subspace m such that the restriction of Ad(s) — I, to m is an automorphism of this
subspace (11.4.1). Calculate the tangent linear mapping at the point £ = 0 of the mapping

¢ exp(u)x exp(¢v) exp(—Su)

of Rinto G, for ue nand ve m.)

5. Give a proof of (21.7.4) without using the Riemannian structure of G, but using instead
(21.7.7) and proceeding by induction on n = dim(G). (Given a maximal torus T of G,
show that the union E of the conjugates of G is open in G. For this it is enough to show
that E is a neighborhood of any point s € T; distinguish two cases, according as s belongs
or does not belong to the center of G. In the second case consider the identity component
of the centralizer of s in G, and use the inductive hypothesis and Problem 4.)

6. Let G be a compact connected Lie group, T and T’ two maximal tori in G. Let A (resp. A’)
be a subset of T (resp. T') and let & be an automorphism of G such that g(A) = A’. Show
that there exists s € G such that so(a)s ™' = a(a) foralla € A and such that se(T)s~! = T".
(Consider the maximal torus T” = ¢(T) and the identity component of the centralizer of A’
in G.)

In particular, there exists an inner automorphism of G that transforms T into T' and
fixes the elements of T n T".
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7. Let G bea compact connected Lie group and N a closed normal subgroup of G. Show that
if there exists a maximal torus T of G such that T »n N = {e}, then N = {¢}. (Consider a
maximal torus S of N, and use (16.30.2.2).)

8. Let G be a compact connected Lie group.
(a) If H is a connected closed subgroup of G, every maximal torus of H is of the form
T ~ H, where T is a maximal torus of G.

The Weyl group W(H, T n H} is isomorphic to the quotient F/F’, where F is the

subgroup of W(G, T) that leaves T n H stable as a whole, and F’ is the normal subgroup
of F that fixes T n H elementwise.
(b) If N is a closed normal subgroup of G, every maximal torus of G/N is of the form
TN/N, where T is a maximal torus of G (use Section 21.6, Problem 4). If in addition N is
discrete, every maximal torus of G is the inverse image of a maximal torus of G/N under
the canonical homomorphism (use (16.30.2.2)).

9. Let G be a compact connected Lie group, T a maximal torus in G, and N its normalizer in
G. Then G (resp. N) acts differentiably on G (resp. T) by inner automorphisms; let E and
F be the respective orbit spaces (12.10) and n: G - E, n": T = F the canonical mappings.
If j: T > G is the canonical injection, there exists one and only one continuous mapping
fi F = E such that nt - j = f o '. Show that f is a homeomorphism of F onto E.

10. Let G be a compact connected Lie group and T a maximal torus of G. Show that the
manifold G/T is simply connected, and that if G’ is a compact connected Lie group, locally
isomorphic to G, and if T’ is a maximal torus of G, then G/T and G’/T’ are diffeomorphic.
(Reduce to the case where G and G’ are semisimple, and use Section 16.30, Problem 11.)

8. ROOTS AND ALMOST SIMPLE SUBGROUPS OF RANK ONE

Throughout this section, G denotes a compact connected Lie group, T a
maximal torus of G, g (resp.t) the Lie algebra of G (resp. T), and
W = W(G, T) the Wey! group of G relative to T. Since W may be identified
with a group of automorphisms of T, it acts linearly and faithfully on t via
the derived automorphisms. To be precise, if s is a representative of w € W in
A(T), we have w - u = Ad(s) - u for all u € t. Since w is now an automor-
phism of the real vector space t, its contragredient ‘w ™! is an automorphism
of the dual t* of t; we shall write w - 4 in place of 'w™!(4) for 4 € t*, so that
we have (w - u,w- 1) = {u, 1) forall u e t and A € t* and W acts linearly
on the vector space t* by the rule (w, ) w - A

(21.8.1) Consider again the linear representation s— Ad(s)® 1¢ of T on
the complex vector space g¢, =g ® g C = g® ig, and the derived homo-
morphism u— ad(u) ® 1 of t into gl(g,c,). It follows from (21.7.5) that there
is a finite set 8 < 2mil'¥ of nonzero weights of T (also denoted by $(G, T) or
§(G)) such that the complex vector space g, is the direct sum of a vector
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subspace g, > t, and vector subspaces g, , each of the latter being nonzero
and corresponding to a weight a € S. Furthermore, for each u € t we have

(21.8.1.1) [u,x]=0
for all x € g4, and
(21.8.1.2) [u, x] = a(u)x

forallxe S and all xe g,.

In fact, go = t @ it = t¢,, the complexification of t, because if x = y + iz
with y, z € g, the relation [u, x] = 0 for u € t implies that [u, y] = 0 and
[u, z]=0 for all uet, and therefore y et and z e t, since t is its own
centralizer in g (21.7.2.1).

The weights a € 8 are called the roots of G relative to T, or of g relative to
t.

(21.8.1.3) The roots « € S are the only R-linear mappings 4 of t into C that
are not identically zero and are such that for some x, # 0in g.,, we have
[u, xo] = A(u)x, for all u et (A.24.4).

(21.8.2) Let ¢ be the semilinear bijection of the complex vector space g,
onto itself defined by c(y + iz) =y — iz for y, z € g. The real subspace g
(resp. ig) is therefore the set of all x € g, such that ¢(x) = x (resp. ¢(x) =
—x). It is clear that [u, ¢(x)] = c([u, x]) for all x € g,¢,and all u € t; hence it
follows from (21.8.1.2) that, for all x € g, and all u € t, we have [u, ¢(x)] =
a(u)e(x) = —a(u)c(x), since a(u) is pure imaginary. Consequently, if « is a
root, so also is —a, and we have g_, = c(g,)-

(21.8.3) Consider a root a = 2mip, where ¢ is an R-linear form on t. For
each x, € g,, the two elements

(21.8.3.1) Yo =X, +c(X), 2, =i(x, —c(x,))

belong to g, and as x, runs through a C-basis of g,, the y, and z, form an
R-basis of (g, ® g_,) n g. For each u € {, we have

(21.8.3.2) [uw, y.] =2np(u)z,, [u, z,]= —27np(u)y,.

Since the center ¢ of g is contained in {, it follows from these formulas that ¢ is
the set of vectors u € t such that a(u) =0 for all . € 8.
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Moreover, since (Ad(exp(u)) ® 1¢) * x, = e?"Wx, (21.7.5.1), we deduce
from (21.8.3.1) that

(21.8.3.3)
Ad(exp(u)) * y, = cos(2np(u))y, + sin(2np(u))z, ,
Ad(exp(u)) - z, = —sin(2np(u))y, + cos(2rp(u))z, .

From these formulas we obtain a characterization of the regular elements of
G (resp. g) (21.7.13) that are contained in T (resp. t):

(21.8.4) In order that an element uet be regular, it is necessary and
sufficient that it belong to none of the hyperplanes u, = u_, = a~(0) in t,
where o € S.

In order that an element s € T be regular, it is necessary and sufficient that
it belong to none of the subgroups U, = U_, = x; '(1) in T, where y, is the
character of T defined by y,(exp(u)) = @ foruetand ae S.

If u belongs to none of the u,, it follows from (21.8.3.2) that the image of
g under ad(u) is the sum of the subspaces g N (g, @ g-,), where a € S;
hence its kernel has the same dimension as t (A.4.17), and since this kernel
contains t it coincides with t, and therefore u is regular (21.7.13). Conversely,
if u € u,, the kernel of ad(u) contains t ® ((g. ® g_,) N @), hence u is singu-
lar (21.7.13).

Likewise, if s lies in none of the subgroups U,, then the set of vectors in
g that are fixed by Ad(s) ® 1 is precisely t,, because in each of the g, the
restriction of Ad(s) ® 1¢ is multiplication by y,(s). Since Ad(s) fixes all the
elements of the Lie algebra of 2(s), this Lie algebra is equal to t, and
therefore s is regular (21.7.13). Conversely, if s € U,, then Ad(s) fixes the
vectors belonging to (9, ®g-,) N g, and therefore (19.11.2.3) the Lie
algebra of Z(s) has dimension strictly larger than the rank of G, and s is
singular.

More precisely, this proof shows that the Lie algebra of 2 (s) is the direct
sum of t and the subspaces (g, ® g_,) » g for all roots a such thats € U, . If
the number of these roots is 2k (it is an even number because U _, = U,), we
have therefore

(21.8.4.1) dim(Z(s)) = | + 2k

where [ is the rank of G. (We shall see later (21.10.3) that in fact the two sides
of (21.8.4.1) are equal.)
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For each « € S, the group U, is a compact subgroup of T, of dimension
I — 1, and u, is its Lie algebra. It should be remarked that U, need not be
connected (Problem 2).

(21.8.4.2) Inorder that u € t should be such that exp(u) is a singular element
of G, it is necessary and sufficient that a(u) should be an integer multiple of 2mi
for some root a € S. In order that u should be such that exp(u) lies in the
center of G, it is necessary and sufficient that a(u) should be an integer multiple
of 2xi for all roots a € 8.

This follows from (21.8.3.3).

(21.8.4.3) For each u € t, the set consisting of 0 and the «(u), « € S, is the
set of eigenvalues of the endomorphism ad(u) ® 1¢ of g, It follows there-
fore from (19.16.6) that the set of elements u € t such that the tangent linear
mapping T (expg) is not bijective is the set of u € t such that ar least one of
the numbers a(u), o € 8§, is a nonzero integer multiple of 2ri.

(21.8.5) For each root o € S and each element x, + 0ing,, the two elements
Y., 2, 0f g defined in (21.8.3.1), and the element h? = [y,, z,] (which belongs
to t), form a basis of the Lie algebra of a connected closed subgroup K, of G,
locally isomorphic to SU(2, C). Furthermore, — ia(h?) > 0.

The Jacobi identity shows that, for each u e t,

[u, b2] =[u [y, 2]} = [y, [w z]] = [z, [w, y.]] = 0

by virtue of (21.8.3.2). Since t is its own centralizer in g, it follows that h? € t.
Now let (u|v) be a G-invariant scalar product on g (21.4.3). Bearing in
mind (21.5.4.1) and (21.8.3.2), we have

(21.85.1) (u|h?) = (u][y,, z.]) = ((u, y.]| z.) = 2no(u)(z,] z,).

Since z, # 0, we have (z,| z,) # 0; since the linear form ¢ = (2ni) ™' is not
identically zero on t, we have h? # 0; and therefore from (21.8.5.1) we
obtain

(21.8.5.2) i(h? | h?) = a(h?)(z, | z,),

so that a(h?) # 0, and —ia(h?) > 0
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We have therefore shown that the three vectors h?, y,, z, form a basis of
a Lie subalgebra f, of g, for which the multiplication table is as follows:

[he, y,] = —ia(h?)z,,
(21.8.5.3) [he, z,] = ia(h®)y, .

[ya > za] = hg
We now recall that the compact connected Lie group SU(2, C) = SU(2)
(16.11.3) has as Lie algebra the Lie subalgebra su(2) (over R) of
gl(2, C) = M,(C) consisting of the antihermitian matrices S (i.e., matrices S

such that 'S + S = 0) with trace 0 ((19.4.3.2) and (19.7.1.1)). It is im-
mediately seen that the three matrices

. i 0 0 i 0 —1
(21.8.5.4) 1H=(0 _i), Y=(i 0), Z=(1 0)

form an R-basis of this Lie algebra, and that the multiplication table is

[iH, Y] = 2Z,
(21.8.5.5) [iH, Z] = —2Y,
[Y, Z] = 2iH.

If we now observe that by (21.8.5.2) the number
a, = — la(hg)

is strictly positive, it is clear that we may define an isomorphism ¢ of su(2)
onto f, by the formulas

. 2., 2 2
U(lH)za—ha, G(Y)___Fya’ a(Z)=aT/2~za.

It is immediately verified that no matrix # Al in M,(C) commutes with each
of H, Y, and Z, and therefore the center of su(2) is {0}, so that the compact
group SU(2) is semisimple, with discrete and therefore finite center (in fact,
it is easily shown that the center consists of + I). Moreover, SU(2) is simply
connected (16.30.6), hence the groups locally isomorphic to SU(2) are com-
pact (in fact, there are up to isomorphism only two of them, namely SU(2)
itself and its quotient by its center, which is isomorphic to SO(3)). The
connected Lie group K, immersed in G that has f, as its Lie algebra is
therefore compact with respect to its proper topology, hence is closed in G
(3.17.2).
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It follows immediately from (21.8.5.5) that RiH is a maximal commuta-
tive subalgebra of su(2), and consequently (21.7.7.2) SU(2) and the K, are
almost simple groups of rank 1.

(21.8.6) If v is any automorphism of G, it is clear by transport of structure
that »(T) is a maximal torus of G. The derived automorphism v, of g
transforms t into the Lie algebra of v(T), and the contragredient ‘v, ! of this
automorphism therefore transforms the lattice of weights of T into that of
v(T), and the set S of roots of G relative to T into the set of roots of G
relative to »(T).

In particular, taking v = Int(s), where s € .A"(T), these remarks show that
the Weyl group W = W(G, T) leaves invariant (globally) the lattice of weights
of T and the set S of roots of G relative to T. For each w e W we have,
evidently,

(21.8.6.1) (W@ 1)) = 8-
Furthermore:

(21.8.7) There exists an element r, € K, belonging to the normalizer 4°(T),
whose coset s, modulo T in the Weyl group W acts on t as the orthogonal
reflection in the hyperplane u, (relative to any G-invariant scalar product on
g), mapping h? to —h?.

We shall show that we may take r, = exp(¢y,) for a suitably chosen real
number {. We have (19.11.2.2)

a zn

Ad(r,) = exp(¢ ad(y,)) = ¥ (ad(y.))

in the algebra End(g). Now, for each u € u,, we have

ad(ya) U= _[u’ ya] = —ia(u)za =0

by definition, hence Ad(r,) - u = 0; also, if we put a, = —ia(h?)> 0 as
above, it follows from the formulas (21.8.5.3) that

Ad(r,) - h? = cos(—a,&)h? + sin(—a,é)z, ,

and therefore, if we put & = n/a,, we obtain Ad(r,) - hY = —h?. Hence, for
this value of &, the automorphism Ad(r,) leaves invariant t = u, @ Rh? so
that r, € #°(T) (19.11.4); and since h{ is orthogonal to u,, relative to any
G-invariant scalar product on g by virtue of (21.8.5.1), it follows that the
restriction of Ad(r,) to t is the orthogonal reflection in the hyperplane u, .
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(21.8.8) The definition of the roots involves only the Lie algebra g and a
maximal commutative subalgebra t of g (21.8.1). Since any one of these
subalgebras can be transformed into any other by an automorphism of g
(21.7.7), it follows that the set of roots, up to automorphisms of g, depends
only on g and is therefore the same for any two locally isomorphic compact
connected Lie groups. Moreover, if we canonically decompose g as the direct
sum ¢ @ D(g) of its center ¢ and its derived algebra D(g) (21.6.9), we have
t=c@t, where t' is a maximal commutative subalgebra of D(g). Also
80 = o ® (D(8))), and it is immediate that ¢, is the center and (D(g)),c)
the derived algebra of g¢,; and by decomposing an element x € g, relative to
this direct sum, it follows from (21.8.1.2) that the component of x in ¢, is
zero, so that the g, are contained in (D(g)),c, . Finally, for each root « € S, we
have a(u) = 0 for all u € ¢, so that « may be identified with its restriction to
t'. The result of these considerations is that the set of roots of g relative to t
may be identified with the set of roots of D(g) relative to t, so that in the
study of the roots of a compact connected Lie group G we may assume
without loss of generality that G is semisimple (or even semisimple and
simply connected).

PROBLEMS

1. Every quaternion of norm 1 can be written uniquely as x + yj, where x and y are complex
numbers such that |x|? + |y|* = 1. Show that the mapping

X
X+yj'—'( - {)
-y %

defines an isomorphism of the Lie group U(1, H) onto the Lie group SU(2, C).

2. With the notation of (21.8.4) and (21.8.5), show that the group U, has two connected
components if K, is isomorphic to SU(2, C), and is connected if K, is isomorphic to
SO(3, R).

3. With the notation of (21.8.1), show that for every symmetric C-bilinear form @ on
8(c) X 8(c)» the spaces g, and g, are orthogonal relative to ® if a + f # 0, and g, = t¢, is
orthogonal to g, for each x € 8.

4, Show that a singular element of a compact connected Lie group lies in infinitely many
maximal tori.
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9. LINEAR REPRESENTATIONS OF SU(2)

The study of the roots of a compact connected Lie group G is based on
the existence of the subgroups K, of G, locally isomorphic to SU(2) (21.8.5).
In this section we shall show that it is possible to describe explicitly all the
linear representations of SU(2). This result, applied to the restrictions to the
subgroups K, of the linear representation s— Ad(s) ® 1¢ of G on g, will
enable us in Section 20.10 to derive certain properties of the set $ of roots of
G, on the basis of which it is possible to describe explicitly all possible sets of
roots.

(21.9.1) We recall that if G is a connected, simply connected, real Lie
group and E is a finite-dimensional complex vector space, the mapping
ViV, is a bijection of the set of linear representations of G on E, onto the
set of (R-linear) homomorphisms of the Lie algebra g, of G into the Lie
algebra gl(E) = End(E) (19.7.6). By virtue of (21.5.2.1) and the connec-
tedness of G, a complex vector subspace F of E is stable under V if and only
if it is stable under V, .
Furthermore, from any R-linear homomorphism of Lie algebras

p:g.— gl(E),

we obtain a C-linear homomorphism p® l¢: g, ®g C— gl(E) of the
complexification of g, into gl(E), and we obtain in this way a bijection of the
set of R-homomorphisms of g, into gl(E) onto the set of C-homomorphisms
of g, ®x C into gl(E), the inverse bijection being the restriction p’'— p’| g,
(21.5.2); equivalently, a complex vector subspace F of E is stable under p if
and only if it is stable under p ® 1.

Finally, if g is the Lie algebra of a (real or complex) Lie group, and p is a
Lie algebra homomorphism of g into gl(E) = End(E), then (19.6.4) p extends
uniquely to a homomorphism of associative algebras U(p): U(g) — End(E),
which makes E into a left module over the enveloping algebra U(g) of g; to
say that a complex vector subspace F of E is stable under p therefore signifies
that it is a U(g)-submodule of E.

From these remarks it follows that a linear representation V of a com-
pact Lie group G on a finite-dimensional complex vector space E is irredu-
cible if and only if E is a simple U(g, ®5 C)-module, where the module
structure on E is defined by U(V, ® 1¢).

Moreover, for every linear representation V of the compact group G on a
finite-dimensional complex vector space E, the module E is a direct sum of
simple U(g, ® g C)-submodules. Among these simple submodules there may
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appear trivial U(g, ®y C)-modules, corresponding to the trivial representa-
tion of G (21.1.1): in such a submodule, the product of any element of the
module by any element of g, ®, C is zero.

(21.9.2) The three matrices Y, Z, H (21.8.5.4) are clearly linearly indepen-
dent over C in M,(C), and therefore form a basis of the complexification of
su(2). Another, more convenient basis consists of the three matrices

(21.9.2.1) H=((1) _(1)),
xe=-yzsm = (0 ).

X~ =4z -iv)= (‘1’ g)

from which it is clear that the complexification of su(2) is sl(2, C) (19.7.1.1).
The multiplication table for this basis is
[H, X*]=2X",
(21.9.2.2) [H, X )= -2X",
[X*, X"]=H.

If p: sl(2, C) — gl(E) is a C-homomorphism of sl(2, C) into the Lie algebra
gl(E), where E is a finite-dimensional complex vector space, we denote by
(P, x)— P - x the corresponding U(sl(2, C))-module structure on E (21.9.1)

(so that P is a sum of noncommutative monomials in H, X*, and X~ with
complex coefficients).

(21.9.3) For each integer m = O there exists an irreducible linear representa-
tion of SU(2) on a complex vector space L,, of dimension m + 1, which has a
basis (e;)o< j<m for which the U(sl(2, C))-module structure of L,, is defined by
the formulas

(21.9.3.1) H:e=(m—2e,,
Xt eg=(m—j+1)e;_y,
X_ * e]= (j+ 1)8}4,‘

(with the convention that e_, = e,,,, = 0). Every irreducible linear represen-
tation of SU(2) is equivalent to one of these representations.
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Consider a linear representation V, not necessarily irreducible, of SU(2)
on a nonzero finite-dimensional complex vector space E. For each 4 € C, let
E, denote the subspace of all vectors x in E such that H - x = Ax.

The set P of complex numbers 4 such that E; # {0} is the finite set of
eigenvalues of the endomorphism V, (H) of E. It follows from (21.7.5),
applied to the maximal torus of SU(2) for which RiH is the Lie algebra, that
E is the direct sum of the E, for 4 € P.

(21.93.2) IfxeE;, then X* -xe E;,,and X~ - xe E;_,.

For by virtue of (21.9.2.2) we have
H- (X" - x)=[H,X*]"x+X*" (H-x)=(A+2)X" - x,
H- (X" x)=[HX]"'x+X -(H- x)=A-2)X"-x.

An element x € E is said to be primitive for the eigenvalue A € P if x # 0
and if

(21.9.3.3) H-x=2Ax, Xt -x=0.
We then have:

(21.9.3.4) There exists a primitive element in E.

Let z be a nonzero element of some E, . Not all of the vectors (X *)" - z
(n = 0) can be different from 0, otherwise by virtue of (21.9.3.2) they would
all belong to distinct eigenspaces E,, which is absurd. Ifk > 0 is the smallest
integer such that (X *)*! -z =0, the vector x = (X *)* - z is primitive for
the eigenvalue 4 + 2k.

(21.9.3.5) Let M be a (not necessarily finite-dimensional) complex vector
space, (P, z)— Pz a U(sl(2, C))-module structure on M, and let x # 0 be an
element of M satisfying (21.9.3.3). For each integer j 2 0, put x; = (X ") - x/j!

(i) For each integer j = 0, we have
(21.9.3.6) H:x;=(4-2j)x;,
X7 x;=0+ Uxjuy
X" oxj=A—j+ )x;_,

with the convention that x_, = 0.
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(i) If M is finite-dimensional, then A is an integer m 2 O, the subspace F
of M spanned by the x; is a simple U(sl(2, C))-submodule, and the correspond-
ing irreducible linear representation of SU(2) is equivalent to that defined by
(21.9.3.1).

The first of the formulas (21.9.3.6) follows from the calculation in
(21.9.3.2), and the second follows from the definition of the x;. As to the
third, it is true by hypothesis when j = 0, and we proceed by induction on
j = 1. By use of (21.9.2.2) and the first of the formulas (21.9.3.6), we obtain

JXTex;=(XTX") x;-,
=[X* X ] x4 X (X x50)
=H-x)_, +(A—j+2)X" x;_,
=(A-2/+2+(G—1)A—j+2)x;,
=jA—j+ Dx;_4.

The x; belong to eigenspaces of H corresponding to distinct eigenvalues of H
in M, hence the nonzero x; are linearly independent. Consequently, if M is
finite-dimensional, there exists a smallest integer m 2 0 such that x,,,,; = 0;
by (21.9.3.6), we then have 0= X * - x,,,, = (A — m)x,,, whence A = m. The
subspace F spanned by the m + 1 vectors x; (0 < j £ m) then has these
vectors as a basis, because they are all nonzero and hence linearly indepen-
dent. The formulas (21.9.3.6) show that F is a U(sl(2, C))-submodule of M.
To show that F is simple, we remark that if F' is a nonzero submodule of F, it
is a vector subspace of F that is stable under the endomorphism z+=H - z,
hence is a direct sum of a certain number of 1-dimensional eigenspaces Cx;
of this endomorphism (A.24.3); in other words, there exists at least one
index j € [0, m] such that x; € F’. But then, since m — j + 1 # O for all j such
that 0 £ j £ m, the third of the formulas (21.9.3.6) shows that x, € F’, and
the second that x, € F’ for 0 < k £ m, so that finally F' = F.

It remains to show that for each integer m = 0, the formulas (21.9.3.1)
effectively define a homomorphism of sl(2, C) into gl(L,,) for which L, is a
simple U(sl(2, C))-module. The first point amounts to the verification that

H- (X" e)—X"(H ¢e)=2X" "¢,
H'(X‘.ej)_X_I(H'ej)='_ZX_'ej;
X" (X" -e)=—X" (X" -e)=H e,

which is a simple calculation. Finally, the proof above that F is simple shows
that L, is simple, and the proof of (21.9.3) is therefore complete.
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(21.9.4) Let V' be an arbitrary continuous linear representation of SU(2) on
a finite-dimensional complex vector space E, and let p = V, be the derived
homomorphism. Then E is the direct sum of r simple U(sl(2, C))-
submodules E, ..., E,, with E, isomorphic to L, , say. From (21.9.3) we
deduce immediately the following simple rule for determining the integer r
and the integers m,: r is the dimension of the kernel N of the endomorphism
p(X ™) of E; this kernel N is stable under the endomorphism p(H), and the
eigenvalues (each counted according to its multiplicity) of this endomor-
phism of N are precisely the numbers m, .

Another characterization of the number r, which follows from the first of
the formulas (21.9.3.1), is that it is the sum of the multiplicities of the
eigenvalues 0 and 1 of p(H).

PROBLEMS

e 0
1. In the almost simple compact Lie group SU(2) = G, the matrices r(t) = ( 0 _“),
e

where € | = [—n, n] < R, form a maximal torus T of G. For each central function fon G,
put f°(t) = f(r(t)). For fto belong to #*(G) it is necessary and sufficient that f°(r) sin? ¢
belong to .#'(I), and we have

j f(s) dmgls) = :t J_n FO(t) sin?t dt

(21.15.4.2).
(a) Let x,, denote the character of the irreducible representation of G on L,,. Then
o sinfm+ 1) =™ om— 2
)= ———— = .
xml1) a1 ,-=Zoe

For each fe ¥'(G) we have (f|x,) =2 Y ¢, ,;, Where ¢, is the coefficient of ¢ in the
j=0

Fourier series of the function °{t) sin? 1.

(b) Let p be a real number such that 0 < p < I, and leta, = (n + 1) — (n — 1)? for each

integer n = 1. Then the series

n=

g,(1)=2+ Y a, cos nt
1

converges for each 1 that is not an integer multiple of 2z, and its sum belongs to % '(1)
(Section 22.19, Problem 10(c)). Hence there exists a central function f, € #!(G) such that
S5(e) sin? t = g, (r). Deduce (by taking p close to 1) that the majorations of Section 21.2,
Problem 3{e) cannot be improved by replacing the exponents of n, by smaller exponents.

(c) There exists a continuous central function h on G such that k°(t) = Y n~? cos n’t.

n=2
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With the notation of Section 21.2, Problem 3, show that the family of numbers N_.(h » 1)} is
unbounded.

2. With the notation of Problem 1, show that

XmXn = Xm+n + Am+n-2 ++ 1|m-n| '

10. PROPERTIES OF THE ROOTS OF A COMPACT
SEMISIMPLE GROUP

(21.10.1) Let K be a compact, connected, semisimple Lie group, t its Lie
algebra, and t a maximal commutative subalgebra of {. Let g denote the
complexified Lie algebra f,, h its commutative subalgebra t,, and S the
set of roots of f relative to t. By abuse of notation, for each root x € § we
shall denote again by « its extension a ® 1. to a C-linear form on b; these
linear forms are called the roots of g relative to . The complex Lie algebra g,
its commutative subalgebra b, and the finite set § < §* — {0} of linear forms
have the following properties:

(A) There exists a decomposition of g as a direct sum of nonzero com-
plex vector subspaces:

(21.10.1.1) g=b®(@ga)

ae 8

such that for each h € ) and each x € g,, we have
(21.10.1.2) [h, x] = a(h)x.

(B) There exists a nondegenerate symmetric C-bilinear form ® on the
vector space g such that

(21.10.1.3) O([x, y), z) + Oy, [x, z]) =0

for all x, y, z € g; also, for each root « € S, there exists h? € j such that
(21.10.1.4) a(h) = ®(h, h?)

for all h e b, and

(21.10.1.5) a(h?) # 0.
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(C) The center of g is {0}.

Property (A) has in effect been established in (21.8.1); property (C)
follows from the hypothesis that K is semisimple (21.6.3). As to (B), take any
K-invariant R-bilinear scalar product on f (21.4.3), and extend it to a sym-
metric C-bilinear form ® on ¢, = g: this is always possible, and in one way
only (note that @ is not a hermitian scalar product). The existence of the
element h? satisfying (21.10.1.4) and (21.10.1.5) then follows from (21.8.5)
and (21.8.5.1).

In view of later applications (Section 21.20), in this and the following
section we shall not make use (unless otherwise stated) of the fact thatgand b
arise by complexification of the Lie algebras of a compact semisimple group
and one of its maximal tori; we shall use only the properties (A), (B), (C)
listed above.

(21.10.2) (i) If«, B are two roots in S such that a 4+ B # O, then g, and g,
are orthogonal relative to ®. In particular, g, is totally isotropic, for each
a€S.

(i) Foreacha € S, we have —a € 8, and g, and g_, are totally isotropic
subspaces of the same dimension. Each of the subspaces b, g, ®Pg_, is
nonisotropic.

(i) For eacha € S, and each x € g,,y € g_,, we have

(21.10.2.1) [x, y] = ®(x, y)h?.

(i) fxeg,,yegs heb, then by (21.10.1.3) and (21.10.1.2) we have
O([h, x], y) + ®(x, [h, y]) =0, and hence (x(h) + f(h))®(x, y) = 0. Since
a+ B #0, there exists he b such that a(h) + f(h) # 0, and therefore
o(x, y) = 0.

(ii) The same proof shows that b is orthogonal to g, for each a € S;
furthermore, if the roots a, § are such that  # a and g # —a, then gz and
g, are orthogonal to g, @ g_, . In other words, g is the direct sum of h and
the distinct subspaces g, ® g_, (x € S), which are mutually orthogonal; each
of these subspaces is therefore nonisotropic, and since each g, is totally
isotropic by (i), the assertions in (ii} are consequences of the elementary
properties of nondegenerate symmetric C-bilinear forms.

(iii) Since the restriction of ® to b x b is nondegenerate, by (ii), the
element h? satisfying (21.10.1.4) for all h € by is unique. If x € g,andy e g_,,
then by (21.10.1.2) and (21.10.1.3) we have, for all h e b,

®(h, [x, y]) = ®([h, x], y) = a(h)®(x, y) = ®(h, D(x, y)h)
and (21.10.2.1) follows from this, since the restriction of ® to h x b is
nondegenerate.
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(21.10.2.2) With the convention that g, = {0} for 4 € h* whenever 1is not a
root, we have [g,, a5] © g,+, for any two roots a, § (cf. (21.10.5)). For it
follows from the Jacobi identity that

[h’ [X, y]] = [[h- x]’ y] + [X, [h9 Y]]

= («(h) + B(h))[x, y]
forallhe b, x € g,,y € g4, and the result therefore follows from (21.8.1.3).

(21.10.3) (i) For each a € S there exists one and only one element h, € |
belonging to [g,, §-,] and such that

(21.10.3.1) afh,) = 2.

The spaces g, and b, = [g,, §_,] = b are one-dimensional. For each non-
zero x, € g, there exists one and only one element x_, € g_, such that

(21.10.3.2) [x,,x_,] =h,
and we have
(21.10.3.3) [h,, x,]=2x,, [h,,x_,]=-2x_,,

so that the subspace s, = Ch, ® Cx,® Cx_, of g is a Lie subalgebra of g
isomorphic to sl(2, C).

(i) The set S of roots has the following properties:

(Sy) S spans the vector space h*.

(S;) For each o€ S, the linear mapping o,: Ar— A — A(h,)a is an involutory
bijection of b* onto itself, not equal to the identity mapping, and S is stable
under o, .

(S3) For each pair a, B in S, the number B(h,) is an integer (positive, negative,
or zero).

(S4) For each a € S, the only element of the form ta (wheret € C and t # 1)
belonging to S is —a.

(i) Since the restriction of ® to g, ® g_, is nondegenerate (21.10.2(ii)),
it follows from (21.10.2.1) that the vector space [g,, §_,] is one-dimensional.
It is clear that the only element h, in this space that satisfies (21.10.3.1) is
h, = 2(x(h?))~'h?. For each x, # 0 in g,, by virtue of (21.10.2(ii)) and the
elementary properties of nondegenerate symmetric bilinear forms, there
exists an element y € g_, such that ®(x,, y) # 0. By multiplying y by a
suitable nonzero scalar and using (21.10.2.1), we obtain an element
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x_, € g_, satisfying (21.10.3.2), and then the relations (21.10.3.3) follow
from (21.10.3.1). For each x, #0 in g, and each x_, € gq_, satisfying
(21.10.3.2), the subspace s, = Ch,® Cx,® Cx_, of g is therefore a Lie
subalgebra isomorphic to <l(2, C) (21.9.2). Next, suppose that dim(g,) > 1,
and hence also dim(g_,) > 1. Then the hyperplane in g with equation
®(x,, y) = 0 would have nonzero intersection with g_,; in other words,
there would exist a vector y # 0 in g_, such that [x,, y] = Oand [h,, y] =
—2y, by virtue of (21.10.2.1). But this would mean that, for the homomor-
phism u—ad(u) of s, into gl(g), y was a primitive element (21.9.3) for the
eigenvalue —2 of ad(h,), contrary to (21.9.3.5). The uniquenessof x_, € g,
satisfying (21.10.3.2) is now evident.

We shall henceforth identify the Lie algebra s, with sl(2, C), by identify-
ing h,, x,, and x_, with H, X*, and X, respectively (21.9.2.1).

(if) If the vector subspace of h* spanned by § were not the whole of hy*,
there would exist h = 0 in b such that a(h) = 0 for all roots « € §; hence h
would belong to the center of g, contrary to hypothesis. This establishes (S, ).

Let o, f € S and let y be a nonzero element of g;. Then [h,, y] = f(h,)y,
so that f(h,) is an eigenvalue of ad(h,) in g. By virtue of the identification of
s, with sl(2, C), it follows from (21.9.3) that fi(h,) is an integer p, which
proves (S;).

It follows from the relation a(h,) =2 that the linear mapping o,:
A4 — A(h,)a of b* into itself is such that 62 = 1. With the identification of
s, with sl(2, C), the U(sl(2, C))-submodule of g generated by the element y
above may be identified with one of the modules L,, (21.9.3), the element y
being identified with e;, where p=m—2j (A244). Now define
z=(ad(x_,))”-yif p=0,and z= (ad(x,))”? -y if p < 0. By virtue of the
formulas (21.9.3.1), in all cases z is a nonzero multiple of ¢;, , = ¢,,_;, and
we have z € g;_,, by (21.10.2.2). This shows that f — px € S, and proves
(S,):

If « and B = ta both belong to 8, it follows from (S;) and (21.10.3.1) that
2t € Z. Since « = 1~ 'f, we may assume that 0 < |¢| < 1, and then the only
possible values of r are +3, + 1. Suppose that # € S is such that 28 € S, and
let y be a nonzero element of g,4; then [hy, y] = 2f(h,)y = 4y # 0. Now
3 =2f+ f is not a root, hence from (21.10.2.2) ad(x,) - y = 0. But since
h; = [x;, x_;], we have

ad(h,) - y = ad(x,)ad(x ) - y) — ad(x_;) - (ad(x;,) - y)

= ad(x,)(ad(x_;) - y).
By (21.10.2.2) again, ad(x_,) - y € g,; since g, is one-dimensional, it follows
that ad(x_,) - y is a scalar multiple of x;, so that ad(x,) - (ad(x_,) - y) = 0.
This contradicts the previous calculation that ad(hy)-y =4y # 0, and
thereby proves (S,).
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(21.10.4) With the notation of (21.10.3), let a, B be two roots that are not
proportional to each other, and let p (resp. q) be the largest integer 2 0 such
that B — pa (resp. B + qua) is a root. Then B + ke is a root for all integers k
such that —p < k < q; also B(h,) = p — q, and ad(x,) is a bijection of g, .,
onto Qg 4s1pfor —p<ksq-—1

Let E denote the vector subspace of g that is the direct sum of the g;,,,
for all integers k € Z such that f + ka is a root. With the identification
(21.10.3) of the subalgebra s, of g with sl(2, C), it follows from (21.10.2.2)
that E is an U(sl(2, C))-module. Since the g, ., such that  + ko is a root are
one-dimensional, and since all the numbers B(h,) + ka(h,) = B(h,) + 2k are
all distinct and of the same parity, it follows immediately from (21.9.4) that E
is simple, hence isomorphic to L, for some integer m = 0. Hence E is the
direct sum of m + | subspaces g4.,,, With a £ k < b, where a and b are
rational integers such that b—a=m, +kae S for a£k=<bh, and
B(h,) + 2a = —m, B(h,) + 2b = m. Since the interval [a, b] of Z contains 0,
we have a= —p <0, b=q 20, and B(h,) = p — q. Finally, the last asser-
tion of the proposition follows from the second of the formulas (21.9.3.1).

(21.10.5) If a, B are two roots, then

(21.10.5.1)  [a,, 05] = {0} if a+ pisnot aroot,

(21.10.5.2) (80 + 85] = 8usp if o+ Bisa root.

The first assertion has already been proved (21.10.2.2). If « + 8 is a root,
then with the notation of (21.10.4) we have ¢ = 1, and ad(x,) is a bijection of
gs onto g, 4, by (21.10.4).

(21.10.6) When g, b and § arise from a compact connected semisimple
group K and a maximal torus of K, as at the beginning of this section, we
can say more about the properties of the elements h,, x,, and x_, of
(21.10.3). Starting with an element x; # 0 in g,, we have c(x))e g_,
(21.8.2); writing y, = x + c(x.), z, = i(x; — c(x)) as in (21.8.3), we obtain
the formulas (21.8.5.3), with —ia(h?) = a, > 0, from which we deduce

(21.10.6.1) [2x;, —2¢(x;)] = a, h,

where h, = —2ia; 'h? € it satisfies (21.10.3.1). It follows that the vectors
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x, = 2a; V2%, x_, = —2a; "2c(x,) satisfy the relation (21.10.3.2), and are
such that
(21.10.6.2) x_, = —c(x,)

By virtue of (21.10.5), we may write
(21.10.6.3) [x,, %3] = N, 5%,

for all pairs of roots «, f such that « + f# is a root. Since [c(x,), c(x,)] =
c([x,, x4]), it follows from (21.10.6.2) that

(21.10.6.4) N s=-N,,

ifa + f e S. It may be shown (21.20.7) that it is possible to choose the h,,
X,, X_, such that the numbers N, ; are real.

A basis (over C) of g = {,¢, consisting of elements x, satisfying the condi-
tions of (21.10.3) and also (21.10.6.4) for which the N, gare real, together with
an R-basis of it, is called a Weyl basis of g (cf. Section 21.20).

We remark also that the linear mapping Ao s, - A of h* onto itself,
defined by the element s, of the Weyl group constructed in (21.8.7), is the
same as the mapping g,: A— 4 — A(h,)a, which features in (S,) of (21.10.3):
for it follows immediately from (21.8.7) that (s, - A)(u) = A(u) for ue u,,
and (Sa ’ '{)(ha) = —l(ha)'

PROBLEMS

1. Let G be a compact connected Lie group and G’ a connected closed subgroup of G; let g, g’
be the Lie algebras of G, G’; let T be a maximal torus of Gsuchthat ' =T~ G'isa
maximal torus of G’ (Section 21.7, Problem 8), and let t, t' be the Lie algebras of T, T'.

Show that every root of G’ relative to T’ is the restriction to t’ of at least one root of G
relative to T. (Observe that g, is stable under Ad(t) for all r € T', and that g,(, is the direct
sum of t,¢, and the g,., where o' runs through the set of restrictions to t' of the roots of G
relative to T, and g,. denotes the sum of the g, for the roots a whose restriction to t' is «’.)

2. With the notation of Problem 1, assume that T' = T, so that G’ has the same rank as G.
Then every root of G’ relative to T is also a root of G relative to T, i.e., $(G') = $(G).
(a) Suppose that G is the product of almost simple compact groups G, (1 < i < r), T being
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the product of maximal tori T, = G;. Show that G’ is necessarily a product of connected
closed subgroups G o> T, of G;. (If G; is the projection of G’ in G;, use the fact that every
x € G’ is of the form yty~ !, where r € T and y € G’, and deduce that the projection x; of x in
G; belongs to G'.)
(b} The Lic algebra g,¢, is the direct sum of g, and the g, for the roots a € $(G) ~ $(G').
Show that the subgroup of G consisting of the elements s € G such that the restriction of
Ad(s) to g, is the identity mapping, for each a € §(G)— S(G’), is the largest normal
subgroup of G contained in G'. (Consider the homogeneous space G/G'.)
{c) Let D(G) denote the union of the hyperplanes in t described by the equations a{u) =
2nin, where o € S(G) and n € Z; D(G) is also the inverse image under exp; of the set of
singular elements of T (21.8.4.2). Define D(G') in the same way. In general, if A is the union
of a family of hyperplanes in t consisting of a finite number of families of parallel hyper-
planes, a point of A is called special if it lies in a hyperplane of each of the parallel families.
The special points of D(G) form the inverse image under expg of the center of G.
Deduce from (b) that if G is almost simple and if A is the union of the hyperplanes
contained in D(G) but not in D(G’), then every special point of A is also a special point of
D(G) (i.e, its image under expg lies in the center of G). Deduce that if G’ # G, then
dim(G') £ dim(G) — 2 rank(G) (where rank(G) = dim(T)).

3. With the notation of (21.8.4), show that the union of the conjugates of a subgroup U, in G
is the continuous image of a compact manifold of dimension dim(G) — 3. (Use the fact that
dim(Z(U,)) = dim(T) + 2.) Deduce that the set of regular points of G (21.7.13) is a dense
open subset of G (cf. (16.23.2)).

11. BASES OF A ROOT SYSTEM

(21.11.1) Let F be a complex vector space of finite dimension n. A finite
subset S of F that does not contain 0 is called a reduced root system in F if it
satisfies the conditions (S,), (S,), (S3), and (S,) of (21.10.3), with h* replaced
by F and the C-linear forms Ai— A(h,) replaced by C-linear forms v, on F, so
that g,(4) = 4 — v,(4)a.

In this terminology, we have proved in (21.10.3) that the set $ of roots of g
relative to b (or of K relative to T, if we had started with a compact con-
nected semisimple group K and a maximal torus T of K) is a reduced root
system in h*. Conversely, it can be shown that every reduced root system is
(up to isomorphisms of complex vector spaces) the set of roots of a compact
connected semisimple Lie group K, whose Lie algebra is determined up to
isomorphism by the root system. Moreover, it is possible to describe ex-
plicitly all reduced root systems (and hence all compact connected Lie
groups). We shall not give the proofs of these facts, for which we refer to [79]
and [85]; our purpose in this section is to deduce from the definition some
properties of reduced root systems that are useful in the theory of compact
connected Lie groups.
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(21.11.2) Let S be a reduced root system in a vector space F of dimension n
over C (21.11.1).

(i) The vector subspace F, over R spanned by $ has dimension n, and the
real vector subspace of the dual F* of F spanned by the forms v, is of dimension
n, and may be identified with the dual F§ of F,.

(i) There exists a scalar product (A|u) on Fq, with respect to which the
R-linear mappings a,. A—A—v,(A)a of Fy into itself are orthogonal
reflections in hyperplanes, such that a,(¢) = —a, and the group W g of ortho-
gonal transformations of F, generated by the a, is finite.

The restrictions 12 of the linear forms v, to F are real-valued, because by
hypothesis the numbers v,(f) (¢, § € S)are integers, hence F, is stable under
the mappings A— 4 — v,(4)a. Since S spans F, any endomorphism of F,,
that fixes each element of S is the identity mapping; consequently the res-
triction mapping wi—w|$ of Wg into the group of all permutations of § is
injective, and therefore W g is finite. Hence there exists a scalar product (4 | u)
on F, that is invariant under W g (20.11.3.1); each element of W4 is therefore
an orthogonal transformation relative to this scalar product. In particular,
since o, is an orthogonal transformation that is not the identity and that
fixes the points of the hyperplane M, in F,, given by the equation v2(1) = 0, it
is necessarily the orthogonal reflection in this hyperplane M,. Next, by
expressing o2 as the identity, we obtain v (4)(v?(x) — 2)a = 0, and since v? is
not identically zero on F, (because F, spans F), we have vl(«) = 2 and
o,(o) = —a; this implies that « is orthogonal to M,, and consequently o, is
the reflection
(21.11.2.1) aa:}n——»/l-—zlodﬂa,

(x]o)

which shows that v2(4) = 2(x|A)/(a|a). If j: Fy — F¥ is the bijective linear
mapping canonically associated with the scalar product, so that the image of
peFy under j is the linear form A (u|i) on F,, then we have
j(2a/(x]a)) = v2. Since S spans F, the linear forms v (x € S) span F¥. It
remains to be shown that the dimension of F, over R cannot exceed n; if we
had n + 1 elements o, (1 £k <n+ 1) of S linearly independent over R,
there would exist n+ 1 complex numbers ¢,, not all zero, such that
n+1 n+1
Y ¢, = 0, and therefore ) ¢, vy(e,) = O for all § € S. Now, the numbers
k=1 k=1
vg(a,) are real, and therefore this system of linear equations in the unknowns
¢, has a nontrivial solution (c{) consisting of real numbers, because it has a
nontrivial solution consisting of complex numbers. Since the 10 span F¥, we

n+1
should therefore have Y cpa, = 0, contrary to hypothesis.

k=1
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(21.11.3)  With the notation of (21.11.2), the numbers

(21.11.3.1) n(B, a) = 2B|2) _ n(f) (% BesS)

are integers such that
(21.11.3.2) 0 £ n(B, a)n(a, B) < 4,

and we have n(B, a)n(a, B) = 4 only when f= ta. If a, B are distinct and
n(B, &) > 0, then o — B is a root.

With the notation of (21.11.1), we have seen in the proof of (21.11.2) that

2(6]«) _
(«]o)

and therefore n(f}, «) is an integer, by virtue of (S;). The inequality
(21.11.3.2) is a direct consequence of the Cauchy-Schwarz inequality, which
also shows that the equality (8|ax)* = («|«)(8|B) holds only when 8 = ta
with t € R, and by virtue of (S,) this implies that 8 = to. If n(8, ) > 0, we
cannot have f = —a and therefore, if « and g are distinct, the product
n(B, a)n(a, B) can take only the values 1, 2, 3; consequently one of the num-
bers n(B, a), n(a, ) is equal to 1. Interchanging « and B if necessary (which
replaces o — f by its negative f — «), we may assume that n(a, f) = 1, and
then o4(a) = « — B is a root, by virtue of (S,).

va(B) = n(B, a),

(21.11.3.3) Since we have

(21.11.3.4) a.(B) = B — n(B, a)a

for each pair of roots «, §, and since 8 spans F, it follows that the reflections
o, are uniquely determined by the integers n(f, ). Hence the same is true of
the linear forms v,, which are therefore independent of the choice of invar-
iant scalar product (4| ).

(21.11.4) We shall now change notation, and henceforth denote by E the
real vector space F3¥, so that its dual E* (the space of R-linear forms on E) is
canonically identified with the real vector space spanned by S.
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(21.11.5) Let S be a reduced root system and E* the real vector space
spanned by S. There exists a subset B of S that is a basis of E* over R and is
such that for each root § € S, the coefficients my, in the expression

(21.11.5.1) B= Y mya

2eB

are integers, all of the same sign.

Such a subset B of S is called a basis of the reduced root system S.

Since E is not the union of any finite set of hyperplanes, there exists x € E
such that a(x) # O for all « € S. Let S denote the set of roots « € 8 such
that a(x) >0, so that $=8] U (—8]), and S} N (—-8})= . A root
a e S} will be called decomposable if there exist two roots f, y in 8] such
that « = f + y, and indecomposable otherwise. We shall prove (21.11.5) in
the following more precise form:

(21.11.5.2) For each x € E such that a(x) +# O for eachroot a € S, the set B,
of indecomposable elements of 8] is a basis of 8. Conversely, if B is a basis of
S, then B = B, for each x € E such that a(x) > 0 for all roots « € B.

We shall first show that each root belonging to 8 is a linear combina-
tion of elements of B, with coefficients that are integers = 0. Suppose then
that this is not the case, and let I = 8 be the nonempty set of roots that do
not have this property. Then there exists a root « € I for which a(x) > 0
takes the smallest possible value; since B, n I = ¢J by definition, we have
a ¢ B,, hence there exist 8,y € S such that o = 8 + 7. It follows that
a(x) = B(x) + y(x) and B(x) > 0, y(x) > 0, so that

B(x) < afx) and (%) < afx),

and therefore f ¢ 1 and y ¢ I. But then a = f + y ¢ I, by the definition of 1,
and we have arrived at a contradiction.

Next, we shall prove that
(21.11.5.3) If «, B are distinct elements of B, , then (a|B) < 0.
For otherwise it would follow from (21.11.3) that y = « — § was a root,

and therefore either y € 8] and a = 8 + y would be decomposable, or else
—y€ 8 and f = a + (—y) would be decomposable.
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Now suppose that a subset A of E* and an element x of E are such that
A(x) > 0forall A € A, and (4|p) < 0 for any two distinct elements 4, u of A.
Then the elements of A are linearly independent over R. For otherwise we
should have two disjoint nonempty subsets A’, A” of A and a relation

(21.11.5.4) Yai= Y bu=v

AE A’ e A

in which the a, are all > 0, the b, all = 0, and at least one of the a, or the b,
is nonzero. But then it follows from the hypotheses and from (21.11.5.4) that
vivy= Y  ab(Alp) =0

(4, n) € A’ X A7

and therefore v = 0. Consequently 0 = v(x) = ) a,A(x), and since a; 2 0
AeA’
and A(x) > 0 for all 1 e A, we must have a; = 0 for all 1 € A’; similarly

b, =0 for all u € A”, and we have a contradiction.

We have therefore now proved by these considerations that B, is a basis
of 8. Conversely, if B is any basis of 8§, then B is a basis of the vector space
E*, hence there exists in the dual space E an element x such that a(x) > 0 for
all « € B. Consider any one of the elements x € E having this property. Let
S* be the set of roots that are linear combinations of elements of B with
coefficients that are all integers = 0; clearly 8" =< 8}, —8* < — S}, and
since by hypothesis $=8* U (-8%)=8] U (—8]), it follows that
§* =8} If for some roota e Bwehad a = f + y with B, y € S, it would

follow that « = Y (mg; + m,;)A, where the coefficients m,; and m,; are
ieB

integers > 0 and at least one of the m,, (resp. m,;) is > 0; consequently

Y (mg, + m,;) 2 2, whereas this sum must be equal to 1, because B is a
AeB

basis of E*. Hence B = B, , and since both B and B, are bases of E*, we have
B=B,.

If B=B,,theset 8" = 8 (resp. — $*) s called the set of positive (resp.
negative) roots, relative to B; it is the set of roots f e § such that in
(21.11.5.1) all the integers mg, are = 0 (resp. < 0).

(21.11.5.5) With the notation of (21.11.1), if § is a reduced root system in
F, the set 8" of linear forms v, is a reduced root system in the dual space F*,
and is called the dual of S. For 8” does not contain 0, because g, # 1 for all
o € S, and it spans F*, by (21.11.2). The transpose ‘o, is the linear mapping
ur—u — u(a)v, of F* into itself, which is an involutory bijection. Further-
more, if 6,(8) = y € S, where « and B are roots, then we have o, = 0,050, *;

a L]
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writing this relation in the form 0,0, = 6,0,, we obtain v; = v, — v,()v,,
that is to say, 'e,(v,) = vs, so that the set §" satisfies (S,). The verification of
(S3) is immediate, and (S,) follows from the fact that if « and ta are roots,
where t € R, then o, = g,,, and conversely. It is clear that, if we identify F**
with F, we have (8¥)" = S.

If now B is a basis of S, the set B¥ of elements v,, where a € B, is a basis
of 8. For, using the bijection j defined in (21.11.2), we may identify " with
the set §' of elements o' = 2a/(x¢|a) of F, where a € S, and B with the set
B’ of elements o with o € B. We have B =B, for some x e F*, by
(21.11.5.2), and since the relations a(x) > 0 and o'(x) > 0 are equivalent, it
follows that S.* is the set of o for which « € §;. Now if three roots
a, B,y € S, are such that o' = §' + 7, then we have o = t, f + ¢,y with
t, > 0and t, > 0, and therefore (since §” and y" are not proportional to each
other) there are at least two nonzero components of « with respect to the basis
B, in other words o ¢ B. This shows also that B’ is contained in the set B/, of
indecomposable elements of S§."; these two sets have the same number of
elements, hence B’ = B/, and therefore B’ is a basis of 8§’ (21.11.5.2).

(21.11.6) Let B be a basis of the reduced root system S. For each root o € B,
the reflection o, (21.11.2.1) leaves invariant the set 8% — {a} of positive roots
(relative to B) other than a, and transforms a into —a.

Let 8 be an element of §*, other than a; we have f = Y mg; A, with
AeB
coefficients mj,, that are integers = 0. There exists y # a in B such that

mg, > 0, otherwise we should have g = my,  and therefore § = a by virtue of
(S4). This being so, if ' = a,(B) = f — n(f, a)a, the coefficients my,; in the

decomposition ' = Y mg,4 are all integers of the same sign, and by
ieB
definition we have my, = my, > 0; hence ' e 8.

(21.11.7) Let B be a basis of S, and let

(21.11.7.1) 5! y A
2,

-

be half the sum of the positive roots (relative to B). Then we have
(21.11.7.2) 6.(0) =0 —«

for all roots a € B. (In other words, v,(8) = 1 for all « € B.)
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For if §, is half the sum of the roots u € 8* — {a}, then it follows from
(21.11.6) that ¢,(8,)=6,, and therefore, since & =4, + 4a, that
6,0)=6,—4a=56—a.

(21.11.8) Let S be a reduced root system, B a basis of S, and W g the finite
group generated by the orthogonal reflections o, (21.11.2.1) for all 2 € S.

(i) For each x € E, there exists we Wg such that a(w - x) = 0 for all
o€ B.
(i) For each basis B’ of S, there exists w € W g such that w(B') = B.
(iii) For each root B € S, there exists w € W g such that w(f) € B.
(iv) The group Wg is generated by the reflections o, for a € B.
(Here w - x is by definition equal to 'w™!(x).)

Let Wy denote the subgroup of Wg generated by the g,,a € B. We shall
prove (i) by showing, more precisely, that there exists an element w € Wy
such that a(w - x) = O for all « € B. If 6 denotes half the sum of the positive
roots relative to B, choose w € W g so that the number é(w - x) is as large as
possible. For « € B we have then 4(w - x) = d((s,w) - x). But since
6;'=0,, we have §((o,w)  x) = (0,(6))(w - x) = 6(w : x) — a(w - x) by
virtue of (21.11.7.2), whence a(w - x) = 0.

Likewise, we shall prove (ii) by showing, more precisely, that there exists
an element w € Wy such that w(B’) = B. Since B’ is a basis of E*, there exists
x’ € E such that «’(x’) > 0 for all ' € B'; from the definition of a basis of S,
it follows (21.11.5) that A(x’) # O for all A € S. By virtue of (i), there exists
w € Wy such that a(w - x’) 2 0 for all « € B, that is to say, such that

(W™ @))(x) 2 0;

and since A(x’) # 0 for all 1€ S, we have (w™ !(a))(x’) > O or equivalently
a(w - x') > 0 for all « € B, which as above implies that A(w - x') # 0 for all
A€ S. Hence, with the notation of (21.11.5), we have B=B,,., and
B’ = B,,, by (21.11.5.2); by transport of structure, it follows that B = w(B’).

We shall now prove (iii), again by showing that there exists an element
w € Wy such that w(f) € B. Let L be the hyperplane in E given by the
equation f(x) = 0. Since L is not the union of any finite number of subspaces
of codimension 2, it follows from (S,) that there exists x, € L such that
y(xo) # O for all roots y # +B. Hence there exists a number ¢ > 0 and a
point x € E sufficiently close to x, so that f(x) = ¢ and |y(x)| > ¢ for all
roots y other than + f. With the notation of (21.11.5), we have therefore
p € B, by the definition of B,; hence, by virtue of (ii), there exists an
element w € Wy such that w(B,) = B, and therefore w(f) € B.
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Finally, to establish (iv), it is enough to show that o, € W for each root
B € S. But by virtue of (iii) there exists w € Wg such that w(B) € B, and since
Oy = Wogw™ ', we have a5 = w™lo, ,we Wy Q.E.D.

(21.11.9) When g, b and S arise from a compact connected semisimple Lie
group K and a maximal torus T of K, as in (21.10.1), the complex vector
spaces F, F* defined in (21.11.2) are, respectively, h* = t* @ it* and
bh=t@it, and the real vector spaces E* = F;, and F} are, respectively,
it* and it. If we choose a K-invariant scalar product (x|y) on f (20.11.3.1),
we obtain from it canonically an R-isomorphism j of t onto t*, for which j(x)
(where x € t) is the linear form y+— (x| y); and then by transport of structure
a scalar product (A|p) on E*, by defining (A|u) = (j~'(id)|j~(in)). It is
clear that this scalar product is invariant under the Wey! group W of K with
respect to T, acting faithfully on E* (21.8.6). We have already remarked
(21.10.6) that the reflections o, corresponding to the roots a € $ (21.11.2.1)
are precisely the elements s, of the Weyl group defined in (21.8.7). In other
words, with the notation of (21.11.8), we have Wg c W. In fact:

(21.11.10) Under the conditions of (21.11.9), we have Wg = W.

Let x be an element of the normalizer /' (T)of T in K, and letw e W =
A'(T)/T be the corresponding element of the Weyl group. Clearly, if B is a
basis of S, so also is w(B), by transport of structure; since W acts transi-
tively on the set of bases of $ (21.11.8(ii)), it follows that by multiplying w by
a suitable element of W¢ we may assume that w(B) = B. Let ue E = it be
an element such that «(u) > 0 for each root « € B (21.11.5.2). Since w per-
mutes the roots in B, it follows that (w™' - a)(u) > O for all a € B, in other
words a(w-u)>0. Let m be the order of w in W, and let

m-1
z=m"' ) w* ucE; then we have w- z = z, and «(z) > O for all x € B;
k=0

this implies, as we have seen (21.11.5), that g(z) # O for all roots f € S.
Hence iz € t is regular (21.8.4); and since Ad(x) - iz = iz, it follows from
(21.7.14) that x € T and therefore that w is the identity. Q.E.D.

The proof just given also shows that the relation w(B) = B implies that
w = 1; in other words:

(21.11.10.1) The Weyl group of K relative to T acts simply transitively on
the set of bases of the root system of K relative to T.
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Remarks

(21.11.11) (i) Under the conditions of (21.11.9), the reflections g, defined
in (21.11.2.1) are the same as the reflections A+ s, - 4 (21.10.6) and therefore
may be expressed in the form

21.11.11.1) A=A = A(h,)a
where h, is as defined in (21.10.3.2). We have therefore

2(x]4)

(21.11.11.2) A(h,) = @l

for all A € it*, and consequently
(21.11.11.3) n(B, «) = p(h,)

foralla, e 8.

The integers n(a, B), for the elements a, S of a basis of S, are called the
Cartan integers of S (or of the Lie algebra t or g, or of the group K). They are
independent of the basis chosen, because any basis can be transformed into
any other basis by the action of the Weyl group.

The vectors h, € it form a reduced root system $Y, the dual of S
(21.11.5.5); the Weyl group of §* may be canonically identified with W.

(1) Under the conditions of (21.11.9), if « and B are roots such that
B # +a, and if k is an integer such that § + jaisarootfor j=0,1, ..., k,
then we have k < 3. For by replacing g by § — pa for some p > 0 if neces-
sary, we may assume that § — « is not a root; it follows then from (21.10.4)
that k < — f(h,), and the assertion is a consequence of (21.11.3).

(i) Under the conditions of (21.11.9), if B is a basis of S and if o, f are
two roots belonging to B, such that («| ) = 0, then « + f is not a root. For
we have g(h,) = 0, which, in the notation of (21.10.4), implies that p = q;
hence if ¢ = 1 we should have also p = 1, and then § — « would be a root,
contrary to the definition (21.11.5) of a basis of a root system.

(iv) Again under the conditions of (21.11.9), let T = @ T, be the decom-

i
position of t as a direct sum of simple algebras (21.6.4). From (21.7.7.2), if t;

is a maximal commutative subalgebra of I;, then t = @ t; is a maximal
i
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commutative subalgebra of t. It then follows directly from the definitions
(21.8.1) and from the fact that [I;, f,] = O for j # h, that if §; is the root
system of {; relative to t;, then the union S of the §; is the root system of
relative to t. Note that if a € §; and f € S,,, where j # h, then n(«, f) = 0.
Finally, it is clear from the definition (21.11.5) that if B is a basis of the root
system §;, then the union B of the B; is a basis of S.

PROBLEMS

1. (a) With the notation of (21.11.3), let « and § be two roots in S such that« # + §,and let
& be the angle (between 0 and n) between the two vectors a, 8 (relative to the scalar
product (4]u)). Show that if we write |4 = (4|4)"2, the following cases exhaust all the
possibilities, for ||8] 2 |«|:

(i) n{e, B)=0, n(B, «) =0, 0=14n

@) nl B =1 nBa)=1  8=in |B]=]ql.
(i) nle B)=~1, nfoa)=—1, O0=4%xn |B]=]a|
(iv) n@p)=1  n(fa)=2, O=in |B]=12qf.
) nle )= -1, n(fa)= -2, O=4n |B]=1/2e|
i) nB)=1 nBa)=3  O=in |B] =30l
(i) ns B)= -1, n(fa)= -3, O8=4n |B]=13|

(b) If p, q are the integers defined in (21.10.4) and if « + B is a root, show that

(ﬁ+a|ﬂ+a)=p+l
818 q

(Consider the various possibilities.)

(c) Show that if |la| = ||8| and if § is irreducible (Problem 10), there exists w € W 4 such
that w(a) = B. (Observe that by replacing a by one of its transforms under W4, we may
assume that (x|f)+# 0, and then n(x, ) =n(B, «), and we may also assume that
n{a, B) > 0. Consider the subgroup of W generated by o, and g, and use (a) above.)

2. Show that the only reduced root systems in a two-dimensional vector space over R are the

following:
8 B Bra
/2 /3
-a a -a a
0 0
-8 -g-a -8

Ay x A, A,
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28+ 3a
B Bta piaq
8 B+ al B+ 2a 8 +3a
4
- "/ o -a /Ga
0
-g-2a|--a ~B
—8- - -8-3
B-2c —p-a 8 B-3a
-28-3a
B, G,

for each of which («, B) is a basis. (Use Problem 1 and (21.10.4).)

Let ay, a,, ..., «, be linearly independent roots in a reduced root system S.
(a) Suppose that a root a € S is of the form

a=ciay + 0+ 0, =y 0, — =0,

where the c; are real numbers = 0. Show that there exists at least one integer j € [1, r] such
that a — a; is a root if j < p, and such that a + a; is a root if j > p. (Assume the contrary,
and show that it leads to («|a) < 0.)

(b) Suppose now that the c; are integers 2 0. Show that there exists a sequence of indices
(o)1 <xss between 1 and r, and a sequence (¢,), ., ., Of numbers equal to + 1, such that the
linear combinations

gy, £ 0y +E,0 .. B0 F e+ B,

are roots, the last one being equal to a.

(c) In particular, if B is a basis of § and a is a positive root of S (relative to B), then there
exists a sequence (x,, &,, ..., a,) of roots belonging to B such that a,, a, + a,,
o, +a, +az,..., % +a, + -+ a, are roots, the last one being equal to a.

Let G be a compact connected Lie group and T a maximal torus of G; let $(G) be the
corresponding root system and 8 a subset of $(G). Show that for there to exist a con-
nected closed subgroup G’ of G containing T, such that §' is the root system $(G') of G’
relative to T, it is necessary and sufficient that the following conditions should be satisfied:

(i) There exists a subset B' of §, consisting of linearly independent roots, and such
that every element of §' is a linear combination of elements of B’ with rational integer
coefficients.

(i) Every linear combination of elements of §' with rational integer coefficients that
belongs to 8(G) belongs to §.

(To show that condition (i) is necessary, use Problem 3(b) together with (21.10.5.2). To
show that the conditions are sufficient, consider in the Lie algebra t of T the union A of the
hyperplanes given by the equations a(u) = 2nin, where « € $' and n € Z, and the set P of
special points of A (Section 21.10, Problem 2). Show that the identity component G’ of the
centralizer of P in G (i.c., the subgroup of elements s € G such that Ad(s) - z = z for all
z € P) has the required properties, by showing that there exists no root « € §(G’) that does
not belong to §' and is such that (2mi)~ '«(z) is an integer for all z € P: consider in turn the
cases where a is linearly independent of B’, and where it is linearly dependent on B'.)
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A connected closed subgroup G’ # G, with rank equal to that of G, is necessarily the
identity component of the centralizer in G of its center. If there exists no connected closed
subgroup G” of G such that G’ ¢ G” < G, with G” distinct from G’ and G, then G’ is also
the identity component of the centralizer in G of any element of its center that does not
belong to the center of G.

Show that G’ is also the identity component of the normalizer of its center in G. (Note
that the group of automorphisms of a compact commutative Lie group is discrete.) In
order that G’ should be the identity component of the centralizer of an element of its
center, it is necessary and sufficient that there should exist a special point of D(G’) that is
not contained in D{G).

Let S, 8§ be reduced root systems in real vector spaces E*, E'*, respectively, and let B, B’
be bases of 8, §', respectively. Suppose that there exists a bijection ¢ of B onto B’ such
that n{e(a), @(f)) = n(a, B} for all pairs %, § € B. Show that there then exists a unique
linear bijection f of E* onto E'* that extends ¢ and maps § onto §'. (Consider the
reflections o, and o, )

Show that if B is a basis of a reduced root system S, then B is the only basis of § that
consists of positive roots relative to B.

Let G be a compact connected group, G, a connected closed subgroup of G, and T a
maximal torus of G such that T, = T n G, is a maximal torus of G,; let g, g,, 1, t, be the
Lie algebras of G, G,, T, T,, respectively. For each root 4 of G, relative to T, let R(4)
denote the set of roots a € §(G) whose restriction 1o t, is equal to 1 (Section 21.10,
Problem 1).

(a) If yuis a root of G, that is the transform of 4 under an element of the Weyl group of
G . show that R(x) is the transform of R(4) under an element of the Weyl group of G
(Section 21.7, Problem 8).

(b) Foreachroot i € 8(G,), let K, be the corresponding almost simple subgroup of G,
of rank 1(21.8.5). Show that there exists a connected closed subgroup G, of G containing
T, whose root system $(G,) consists of the integral linear combinations of the roots
belonging to R(4) that are roots of G (Problem 4), and that K, is contained in G;,.

(c) The subgroup G, is said to be nice if it is contained in no connected closed subgroup
G’ # G of rank equal to the rank of G. Show that the center of G, is then the intersection
of G, with the center of G. (Consider the identity component of the centralizer in G of an
element of the center of G,.) In particular, if G is semisimple, every nice subgroup of G is
semisimple.

(d) If G, is a nice subgroup of G, and if G, is a connected closed subgroup of G,
containing G, and distinct from G or G, show that the ranks of G, G, and G, are all
distinct. (Show that if the ranks of G, and G, were equal, then G, and G, would have the
same center; then use Problem 4 to obtain a contradiction.)

(e) Let B(G,) be a basis of the root system $(G,), and let L be the union of the sets R(p)
for p € B(G,). Show that for each root 2 € ${G,), the roots « € R(A) are integral linear
combinations of the roots belonging to L. (Observe that there exists an element
w € W(G,) such that w - 1 = p belongs to B(G, ). and that w is a product of reflections s,
with y € B(G,); on the other hand, s, is the restriction to t, of a product of reflections
s, € W(G,) c W(G) (see (b) above), and for each root f§ € §(G), the vector s,(8) — B is an
integral linear combination of roots belonging to R(y).) In particular, if G, is nice, every
root in $(G) is an integral linear combination of roots belonging to L. (Consider the
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connected closed subgroup G’ of G containing T, whose root system $(G’) consists of the
integral linear combinations of roots belonging to the union of the sets R(4), for
i€ 8(G,))

Let G be a compact connected semisimple Lie group, B = B(G) a basis of the root system
S(G) of G relative to a maximal torus T, with Lie algebra t. A diagonal of G (relative to B)
is by definition a line in t defined by a system of linear equations of the form

Bi(x) = By(x) == Bi(x) =0, Bisi(x) = = Byix),

where B = {8,, B, ..., B;}. A diagonal is principal if k = 0 (or, equivalently, if it contains a
regular element of t). A diagonal always contains a special point of D(G), other than the
origin (Section 21.10, Problem 2).

Under the general hypotheses of Problem 7, let R, be a principal diagonal of G,
containing points u € t such that, for each of the roots f; (1 £j <) of B(G), we have
—if(u) 2 0. Let B(G,) = {p,, ..., ps} be a basis of $(G,) such that p,(x) = --- = p,(x)
are the equations defining R,. Show that if G, is a nice subgroup of G, every root
belonging to the union of the R(p,) (1 <j < h) is of the form B, , + m B, + - + m, B,
where #,, ..., B, are the roots of the basis B(G) that vanish on R, the index j satisfies
1 £j<1—k and the m, (1 S r £ k) are integers 2 0. (Observe that the point z ¢ R, at
which all the roots p; take the value 2ni is a special point of D{G), and use Problem 7(c).)
Deduce that R, is a diagonal of G.

If R, is a principal diagonal of G, then k = 0 and the R(p,) form a partition of B(G).
When this is so, the restriction to t, of a root « of G is never identically zero, and there
exists a root p of G, such that « is a positive integral linear combination of the roots
belonging to R(p). (Observe that the trace on t, of the hyperplane given by the equation
a(z) = 0 must be one of the hyperplanes p(x) = 0 (1 £ £ h), by expressing a (resp. its
restriction to t;) as a linear combination of the g, (resp. the p ).) Deduce that the restric-
tion of « to t, is a scalar multiple of a root belonging to 8(G,). If G, is a nice subgroup of
G and R, is a principal diagonal of G, then G is said to be a principal nice subgroup of G.

Let G, be a principal nice subgroup of G. With the notation of Problem 8, let {1 | u) be the
scalar product on it} induced by that on it*.

(a) Show thatif(p, |p,) = 0, then (f’|f”) = Oforall #' € R(p,)and §” € R(p,). (Observe
that, by virtue of Problem 8, the restriction of g’ + p” to t, cannot belong to $(G,), and
therefore §' + B” is not a root of G.) Deduce that if G is almost simple then so also is G .
(b) Let p,, p, be two roots belonging to B(G,) such that (p; [p,) # O (and hence
(o1 |ps) < 0), so that p = p, + p, is a root of G,. We may assume (Problem 2) that the
reflection s, interchanges p and p,; s, is the restriction to t, of an element w € W(G, )
(Problem 7(b)), and w interchanges R{p) and R(p,). If R(p,) = {«,, ..., &,}, show that for
eachj=1,2,...,nthereexistsarooty, € R(p,)such that w - a; = a; + y,, and that if j # h
the vector w - a; — @, does not belong to R(p,). (Consider the restrictions of a;and w - a;
to t;.) Deduce that («; |y) = 0 for all y # y; in R(p,).

() With the hypotheses and notation of (b}, show that for each root y € R(p,) there
exists at least one root a; € R(p,) such that y = y,, so that the number of elements of R(p,)
is < n. (Use (b) above.) Furthermore, if y and ' are distinct elements of R(p,), then
{(r|v) =0. (Express that (w - a,|w - a,) = (a,|a,)) In particular, if |p, | = |p, ], then
R(p,) and R(p,) have the same number of elements, and we have («;]|y,) <0, and
(@;]n) = (v1vs) = (o;]74) = O for j # h.
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(a) Let S be a reduced root system and B a basis of $. Suppose that there exists a
partition (B,, B,) of B such that (4|u) = 0 for each 4 € B, and each u € B,. Show that
every positive root (relative to B) is a linear combination (with integral coefficients > 0) of
roots that all belong either to B, or to B,. (Use Problem 3(c) to argue by induction,
proceeding as in (21.11.11(iii)).) Deduce that $ admits a partition (S,, S,), where S,
(resp. 8,) is a reduced root system with basis B, (resp. B,).

(b) A reduced root system § is said to be irreducible if the action of the Weyl group W
on the vector space spanned by 8 is irreducible. If G is a compact semisimple Lie group,
show that the root system $(G}) is irreducible if and only if G is almost simple. (Use (a)
above.)

(c) Let S be an irreducible reduced root system spanning a real vector space E*, and let
(4| 1) be a scalar product on E* that is invariant under the Wey! group W. Show that
every W ginvariant bilinear form on E* x E* is a scalar multiple of (4|u). (Any bilinear
form ® on E* x E* can be written uniquely as (4, p)+— (u(4)|u), where u is an endomor-
phism of E*. If ® is Wg-invariant, then u commutes with all elements of W, and in
particular with the reflections o,. Deduce that u leaves fixed the lines Ra, and hence that
there exists a scalar ¢ € R such that the kernel of u — ¢ - | is nonzero, hence is equal to E*
by virtue of the hypothesis of irreducibility.)

Let S be a reduced root system.
(a) Show that there exists, on the real vector space E* spanned by S, a unique scalar
product—-called the canonical scalar product—satisfying the relation

(+) (Alu) = Y (| A)a|n)

2e S

for all 4, p e E*. (Use Problem 10 to reduce to the case where § is irreducible, and
consider the bilinear form

(4w 3 (] e p)

2e 8§
where (A|u) is any W g-invariant scalar product on E*.)
(b) Show that for the canonical scalar product we have
Y (a¢|a) = dim(E*).

ae$
{Observe that if M is the matrix with entries (4| u) where 4, y € 8, then M? = M, and the
rank of M is equal to dim(E*).)
(c) 1f S is irreducible, show that there exists a constant y($) such that

A {
] (i‘ {a f,(:)li’) = y(s)(i I/l)-

(Consider the bilinear form (4, )Y A(hg)u(h.).)
xe 8

(a) Let G be a compact connected semisimple Lie group # {e}, and let T be a maximal
torus of G. If v is an automorphism of G such that v(T) = T, and such that 'v ! fixes each
of the roots of G relative to T, show that the automorphism u = v, ® 1 of g, is such that,
with the notation of (21.10.3),

u(xﬂ) = vl xl
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for all roots « € $(G), where the v, are complex numbers of absolute value 1 and satisfy
the relations

(*) vowo,=1  vv=v,, if a+pe 8$(G)

Show that there exists an element u € t such that &Y = v, for each a € $(G). (Observe
that, in view of the relations (), it is enough that &*™ = v, for each root « in a basis of
$(G).)

(b) Deduce from (a) that the Lie group Aut(G)/Int(G) is finite. (Use the conjugacy
theorem.)

(c) Deduce from (b) that for any compact connected Lie group G, the Lie group
Aut(G)/Int(G) is discrete. (Use (19.13.3).)

(d) Show that if G is semisimple and if v € Aut{G) s such that o(T) = T, then there exists
x € G such that Int(x) - v fixes each point of some one-parameter subgroup of G. (Argue
as in (21.11.10).)

Let S be a reduced root system.

(@) Let B be a basis of §. Two roots a, f € B are said to be linked if (x|} # 0, or
equivalently if the Cartan integers n(a, ) and n(f, «) are £ — 1. Show that there exists no
sequence (a,, ..., &) of distinct elements of B such that «; and «,,, are linked for

1gigr—1,

and such that &, and «, are also linked. (Il 2 = a; + a; + *** + a,, show that the hypothesis
would imply that (4|4) £ 0, by using (21.11.5.3).)

(b) Deduce from (a) that there exists a root a € B that is linked to at most one other root
in B. (Consider a sequence of maximum length («,, ..., a,) of roots in B such that «, is
linkedtoa;,, for 1 <i<r-1)

(c) Suppose that B has at least two elements. Show that there exists a partition of B into
two nonempty subsets B', B” such that no two roots of B’ or of B” are linked. (Prove that
this result is true not only for B but more generally for any subset F of B containing at
least two elements, by induction on the number of elements m of F and by observing that F
also has the property (b) above.)

(d) Let ay, ..., a, be distinct elements of B. Show that in the Weyl group W all the
products o, @, , "0, . where m is any permutation of {1, 2, ..., r}, are conjugate.
(Observe that if o; and a; are not linked, then g, and 6,, commute. Then show more
generally that if a;+— u(a)) is a mapping into any group T" such that u(«,) and u(a;) com-
mute whenever «; and «; are not linked, all the products u(a,,,) -** u(a,,,) are conjugate in
I". Prove this result by induction on r, by using (b) above and reducing to the case where
%y is linked to at most one other «;, and then to the case where this a; (if it exists) is
.- 1) in this case, observe that the inductive hypothesis may be applied to the elements
Ogtys -+ Onp— 1) and the mapping u that coincides with w on a,,,, ..., &,,_ ; and is such
that &' (ay, - 1)) = ey, - 1) (o))

Let S be a reduced root system spanning a vector space E*, and let B={8,,..., §} bea
basis of 8. For every permutation = of {1, 2, ..., I}, the product Gs.0 " Op is called a
Coxeter element of the Weyl group Wy,

(a) The conjugacy class in W g of a Coxeter element depends neither on the permutation
n nor on the choice of basis B (cf. Problem 13(d)).

(b) Suppose that B is numbered in such a way that §,, ..., §, are pairwise orthogonal
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and .. ..., /i are pairwise orthogonal (Problem 13(c)). Put o' =6, 0, -~ 0, and
0" =a, - a,.s50that ¢ = g'¢" is a Coxetcr element; o’ is the orthogonal symmetry
with respect to the subspace V' of E* orthogonal to . 8,, ..., ,,and ¢” is the orthogonal

symmetry with respect to the subspace V” of E* orthogonal to §,,,. ..., fi,. so that
E* = V'@ V". Deduce that no cigenvalue of ¢ is equal to 1. (Observe that if a'(4) = 6”(4),
then 4 — ¢'(4) = A — ¢”(4) is orthogonal to both V' and V")

(c) The order hof 6 in W is called the Coxeter number of S. The characteristic polyno-
mial P(T) of o may be written as

! 2mim;
P(T) =[] (T—exp - !),
i= h
where m, ..., m are integers such that 0<m <m,<-<m <h Show that
m;+m,_;=hfor | <£j<l and that m, > 0. (Use the fact that the coefficients of P(T)
are real.)

Let F be a real vector space of dimension [ and let U’, U” be two supplementary subspaces
of respective dimensions r and / — r. Suppose that F is equipped with a scalar product
(x|v). Lete,, ..., e, be an orthonormal basis of U',and e, ,, ..., e, an orthonormal basis
of U”. Relative to the basis (e, ..., ¢) of F, the matrix of the bilinear form (x|y) is
A = ((e;| €)1 < j.x<s it is positive definite.

{a) Suppose that {¢;]e,,,) <0 for each pair of indices j, k such that 1 £j<r and
lskg!l—-r1fz e U and z” e U” are two nonzero vectors and il ¢ is the angle between
them, show that the smallest value of | + cos 8 is the smallest eigenvalue 1, of the matrix
A (15.11.7).

(b) Suppose in addition that there exists no partition of {1, 2, ..., I} into two subsets I, I
such that (e;|e;) = 0 for all i e I and j e I'. Show that the eigenspace N(4,) of the self-
adjoint operator u on R’ defined by the matrix A is one-dimensional, spanned by a vector
all of whose components are positive. (If (£)),,, is a vector in N(4,), ie, a vector
orthogonal to R’ relative to the positive semidefinite quadratic form with matrix
A — Aol = (a;;) on R', observe that the vector (|£;|) also belongs to N(4,). by showing that -
Y oaglé]  |€| £ Y a8, and then that if I is the set of indices i such that &; # 0, we

iy
have a;|¢,|s0forielandj¢ Land |a;|¢ =O0forj¢ 1. Conclude that either I =

orl=1{1,2,....0)
(c) Under the hypotheses of (b), deduce that there exists a unique vector

Z,=fl€| +”'+ire'

in U’ and a unique vector z" = ¢, e,y + -+ + & e, in U” such that [2] = [|z"]| = 1,
the &; are all positive, and the angle 6 between z' and z” satisfies 1 + cos 8 = 1o. Show
that the line Rz" (resp. Rz’) is the orthogonal projection of Rz’ (resp. Rz”) on U” (resp. U’).
{Use the minimal property of cos 6.)

(d) Let V' (resp. V") be the orthogonal supplement of U’ (resp. U")in F. If (f}}, ¢ ;5 is the
basis of F such that (e;]| f,) = §;, (Kronecker delta), then f}, ..., f, form a basis of V" and
fre1s -+ fya basis of V'; also e; is the orthogonal projection of f;on U (1 £ j < r)ande,,
the orthogonal projection of f,, jon U” (1 = j < | —r). Let x’ (resp. x") be the vector in V”
(resp. V') whose projection on U’ (resp. U") is z' (resp. z”). The plane P = Rz’ + Rz" is also
equal to Rx’ + Rx". If ¢’ (resp. s”) is the reflection in V' (resp. V"), then P is stable under s’
and 5", and s'| P, s” | P are the reflections in the lines Rx’, Rx”, respectively. If C is the set of
vectors y € F such that (¢;|y) > 0for 1 <j </ then we have x' € C, x" € C,and P~ C is
the set of linear combinations ax’ + bx” with @ > 0 and b > 0.
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With the hypotheses and notation of Problem 14, suppose in addition that 8 is irreducible
{Problem 10). Let C be the set of 2 € E* such that (8,|1) > 0for | < j £ 1(21.14.4). For
each element w € Wy, either w(C) = C or w(C) n C = ¥ (21.11.10.1).

(a) By using (21.11.5.3) and Problem 15, show that there exist y € V' and y" € V" such
that ¢’ and ¢” leave invariant the plane P = Ry + Ry, and that ¢'|P, ¢”|P are the
reflections in the lines Ry’, Ry”, respectively; also P n C is the set of linear combinations of
y' and y" with positive coefficients. Show that the restrictions to P of the transformations
belonging to the subgroup W' of W, generated by ¢’ and ¢” form a group of order 2h;
deduce that o [P is a rotation through 2n/h, and that m, = 1.

(b) Show that the only roots in S that are orthogonal to y’ (resp. y") are §,, ..., B, (resp.
Brv1r -5 B)). (Observe that if « is orthogonal to y, then « is a linear combination of
By, ---, B,, by using (21.11.5); observe also that 5 («) is a linear combination of 8,..., f,,
for 1 £ j £ r.) Deduce that the intersection of P with a hyperplane orthogonal to a root of
$ is necessarily the transform of Ry’ or Ry” by an element of W', and that the number of
roots in § is hl.

(c) Let ¢ be an eigenvector of 6 ® 1 in P®,C corresponding to the eigenvalue
exp(2mi/h). Show that (¢ |a) # 0 for each « € 8. (Use (b) above and observe that ¢ cannot
be of the form cn with n € P and c € C)

(d) A root 8 € S is said to be pivotal (with respect to ¢} if § > 0 and 6(f) < 0. Show that
the pivotal roots are 6, = g, 0, _, *** a5 (B) (1 £ k £ 1) (use (21.11.6)) and deduce that
the 6, form a basis of E* (use (21.11.2.1)). If w, (1 £ k < ) are the elements of C such that
(w,|B;) =0, then (1 —¢™ ') @, = 6,. Deduce that two distinct pivotal roots 8,, 6,
cannot be in the same orbit in § under the action of the cyclic subgroup of W g generated
by o (use (21.14.7.1)). Show that every orbit in S under this subgroup contains a pivotal
root (consider the sum of the elements of the orbit), and deduce that there are exactly |
orbits, each with h elements.

(e) Show that, for each root « € S, we have

By _
2 01p

b (o|a)

(Use Problem 10.)
(f) Show that for each positive integer m less than h and prime to h, the complex number
exp(2mim/h) is an eigenvalue of g. (Observe that the matrix of ¢ relative to the basis

{B1, B .. B}

has integer entries, and use that fact that cyclotomic polynomials are irreducible over Q.)

Let G be a compact Lie group, not necessarily connected, and let G, be its identity
component. Suppose that there exists an element a € G whose centralizer is discrete.

(a) Show that the connected component of a in G consists of conjugates of a. (Show that
the mapping x+ xax™* of G, into G is a local diffeomorphism.)

(b) Deduce from (a) that G, is commutative. (If not, there would exist z € G, such that
Int(za) leaves invariant a maximal torus of G, and the corresponding root system; now
use Problem 12(d).)

(a) Let G be a compact connected semisimple Lie group # {e}. Show that for each
automorphism v of G, the subgroup of fixed points of v is not discrete. (Apply Problem 17
to the compact Lie group Aut(G), using Problem 12 and the fact that the center of G is
discrete.)
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(b} Let G be a noncommutative compact connected Lie group, and let ¢ be an automor-
phism of G. Show that the identity component U of the subgroup of fixed points of v is
such that every maximal torus of U is contained in a unique maximal torus of G, and
therefore contains regular elements of G. (Let V be a maximal torus of U, and let Z be the
identity component of the centralizer of V in G. Show that U n #(Z) is discrete, and use
(a) to deduce that 2(Z) = {e}.) Hence show that there exists a maximal torus T of G that is
globally invariant under v, and a basis of the root system of G relative to T that is globally
invariant under v. (Consider a regular element of G that belongs to U and is arbitrarily
close to e.}

19. Let G be a compact connected semisimple Lie group # {e}, let v be an automorphism of G,
let F be the closed subgroup of fixed points of v, and let F, be the identity component of F
(so that Fy # {e}, by virtue of Problem 18(a)). Then every connected component of F
contains regular elements of G (21.7.13). The proof is as follows:

(a) Let xeF be a singular element of G. Then the identity component Z(x), of the
centralizer of x is not commutative (21.8.4). Show that a maximal torus S of the identity
component of F n %(&(x),) has dimension 2 |. Let U be the identity component of the
intersection Z'(S) N Z(x) of the centralizers of S and x, which is globally invariant under
v, and has rank equal to the rank of G (21.7.9).

(b) Show that U is a maximal torus, by proving that its derived group %(U) = {e}. For
otherwise 2(U) n F would contain a torus S’ of dimension = 1, and S8’ would be a torus
in Z(x) n F containing S properly.

(c) Show thatitis not possible that all the elements of xS = Sx should be singular in G (cf.
(21.8.4.1)).

12. EXAMPLES: THE CLASSICAL COMPACT GROUPS

(21.12.1)  The groups U(n) (= U(n, C)) and SU(n) (n 2 2).

We shall show that the group T of diagonal matrices diag((,, ..., {,),
where each {; € U, the unit circle in C (so that T is isomorphic to U”) is a
maximal torus in U(n). The Lie algebra u(n) of U(n) is the Lie subalgebra of
gl(n, C) = M, (C) consisting of the antihermitian matrices, i.e., the matrices X
such that ‘X = — X (19.4.3.3); it has an R-basis consisting of the n matrices
iE,, (1 £ r £ n) and the n? — n matrices E,; — E,, and i(E,, + Eg)

(1Sr<ssn),

so that the complexification of u(n) is gl(n, C). The n matrices iE,,
(1 £r < n) form a basis of the Lie algebra t of T. Since [iE,,, E, ] = iE,,,
[iE,,, E,] = —iE,,, and [iE,,, E ] = 0 when p # r and q # r (19.4.2.2), we
may write, for any h € {,

(21.121.1) [h, E, ] = (e,(h) — &,(h))E,,
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for 1 £r, s £ nandr # s, where¢,(iE,,) = id,, (Kronecker delta). This shows
immediately that t is a maximal commutative subalgebra of u(n), and the
center ¢ of u(n) is the subalgebra Ril consisting of the pure imaginary mul-
tiples of the unit matrix; u(n) is the direct sum of ¢ and the Lie algebra su(n)
of the group SU(n), consisting of the matrices in u(n) with zero trace, and t is
the direct sum of ¢ and the maximal commutative subalgebra t' of su(n)
generated by the matrices i(E,, — E,). It follows from (21.12.1.1) that the
roots of u(n) relative to t are the R-linear mappings of t into iR

(21.12.1.2) Uy = €, — & (A=rsZnrs).

The roots of su(n) relative to t’ are obtained by identifying the a,, with their
restrictions to t' (21.8.8). If we write g = sl(n, C), the complexification of
su(n), and b = t,, then with the notation of (21.8.1) we have g, = CE,,,
and the element h, € h(21.10.3)is E,, — E;. It is immediately verified from

the definition (21.11.5) that the set of roots

(21.12.1.3) Bo=0, 11 =6 — €4y (1srgsn-1)

is a basis of the root system, for which the positive roots are
(21121 4) ¢, —e,= 8, + Booy + -+ By (1sr<sghn).

It follows also from these facts and from (21.11.11.3) that the Cartan integers
are given by

n(ﬂr!ﬁs)=0 if |T—S|;2,

(21.12.1.5)
n(ﬂr+l’ ﬂr)zn(ﬁr9ﬂr+l)= -1 (lérén—z)

It follows that the group SU(n) is almost simple (21.6.6). Indeed, from

(21.12.1.5) it is clear that the interval [1, n — 1] of N cannot be partitioned

into two nonempty subsets A, B such that n(B,, ,) = 0 whenever r € A and

se B; for if re A, then we must also have r+ 1€ A if r£n—2, and

r— 1 e A if r = 2. The assertion therefore follows from (21.11.11).

Finally, it follows from (21.12.1.5) that the reflection o, (21.11.11),
where 1 £ r £ n — 1, interchanges ¢, and &,,, and fixes the other ¢,; hence
the Weyl group may be identified with the symmetric group S, of all permu-
tations of [1, n}.

(21.12.2) The group U(n, H) (n = 2).
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We shall identify the division ring of quaternions
H=R®Ri®Rj@ Rk

with C @ Cj, so that jz = Zj for z € C, and the conjugate of the quaternion
x + yj (x, ye C) is X — yj. The group U(n, C) is then identified with the
subgroup of U(n, H) consisting of the unitary matrices with entries in the
subfield C of H. We shall show that the maximal torus T of U(n, C)
defined in (21.12.1) is also a maximal torus of U(n, H). The Lie algebra
u(n, H) of U(n, H) consists of the antihermitian matrices X € M,(H), i.e., the
matrices X satisfying ‘X = — X (19.4.3.2). Observe now that any matrix
X eM,(H) can be written uniquely in the form U + Vj, where

U, Ve M,{C);
the relation ‘X = — X is equivalent to the two relations
(21.12.2.1) 'U=-U, V=V

Next, it is easily verified that the mapping ¢: M,(H) - M,,(C) defined by
u v

2.2 Vi) = o
(21.12.2.2) o(U + Vi) (_V U)

is an injective homomorphism of R-algebras. Since gl(n, H) (resp. gl(2n, C)) is
just M,(H) (resp. M,,(C)) with Lie algebra multiplication [X, Y] =
XY — YX, it follows that ¢ is also an injective homomorphism of the real
Lie algebra gl(n, H) into the real Lie algebra gl(2n, C).

We shall from now on identify u(n, H) with its image under ¢. Then the
Lie algebra t of T has an R-basis consisting of the matrices i(E,, — E, .+, n+,)
for 1 £ r < n, and the Lie algebra u(n, H) has an R-basis consisting of this
basis of t and the matrices

Ey—Eq—Epvsnirt Evirnss (I1=r<s=n)
HE + Ey = Eyvsner = Envrinss) (1ST<s=n),
Eneo st Egr—Eney— E s (1srss=<n)

(Epir s+ Enes o ¥ E nis+ Egnyy)  (1Srsssn)

It follows as in (21.12.1) that the complexification of u(n, H) may be
identified with the Lie subalgebra of gl(2n, C) consisting of the matrices

u w
1223 Y =
(21.12.2.3) (V _,U)
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such that 'V = V and 'W = W, the matrix U €M, (C) being arbitrary. It is
immediately verified that these matrices Y are those which satisfy the rela-
tion'Y-J+J Y =0, where

(21.12.2.4) J = (_ 0 I"),

and consequently the complexification of u(n, H) may be identified, by
virtue of (19.4.3.3), with the Lie algebra sp(2n, C) of the complex symplectic
group Sp(2n, C), consisting of the matrices Z € M,,(C) that satisfy the
relation

(21.12.2.5) ‘Z-J-Z=1.

A basis of sp(2n, C) over C is therefore formed by the n matrices
E,—E,i nsr (1 Zr=n), which form a basis of the complexification
b =t of t, and the 2n* matrices

En+r.s+En+s.r! Er.n+s+Es,n+r (1 r

E,—E

IIA
IIA
v

A

n),
n+s,n+r (lér,s§n,r:#s).

Let ¢, (l £ r £ n) be the C-linear forms on b defined by the equations
€(Egs — Enygn+s) = 0 (1 £ 5 < n). Then we have

rs

(21.12.2.6)

[ Eyerot Eve ] = —(eo() + W) (Eper. o + Eres )

[ By + Eomsr] = (6, (0) + 2i(R)(E, o + Es ) "
[ B,y = Epey o] = (eh) — 0B — Eyesne) (LS rsSmrts)

(1

A
IA
liA

r N

for all h € h. This shows on the one hand that b is a maximal commutative
subalgebra of sp(2n, C) (and hence that t is a maximal commutative subal-
gebra of u(n, H)), and on the other hand that the roots of sp(2n, C) relative
to b (or of u(n, H) relative to t) are the 2n? linear forms

(Q1.1227) +2, (1=r<n), te, te, (1Sr<sZn)

s

If we put

(21.12.2.8) B.=¢—¢,, (1Srsn-1) B =2,
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then we have the formulas
& —&=f+B i1+ + B, (r <s),
e e, =P+ + By + 2B+ 201+ + 28, + B,
(r<szn-1),
e ten=P+ "+ By + B, (rsn-1),
2, =2+ 2B+ 2B+ B, (rEn—1),
which show that the n roots (21.12.2.8) form a basis of the root system; the
positive roots corresponding to this basis are

(211229 2, (1=r<n), €

Also we have
hﬂ, = Err - En+r.n+r - Er+1,r+l + En+r+l.n+r+l (1 sSrsn-— 1)’
h[},, = Enn - EZn, 2n

and therefore the Cartan integers are

n(B, . B;) = if |[r—sl22 (1srsn-1),

= +1 P = T Sr=n-— 2),

(21.12.2.10) (B, Brer) = nlBysrs Br) = — 1 (1Srsn-2)
n(,[))n—h ﬂn) = - l’ n(ﬂn ) /3,,‘ l) = —2,

n(ﬂ,,,[f,)=0 (lgrén_z)

The same proof as in (21.12.1) shows that U(n, H) is almost simple.
Moreover, it is easily checked with the help of (21.12.2.10) that the reflection
o, (21.11.11) interchanges ¢, and ¢, , 1, and fixes the other &, for

I1€£rn—-1,

while o, transforms ¢, into —¢, and fixes the other ¢. It follows that
the Weyl group is the semidirect product (19.14) of the commutative group
{—1, 1}" and the symmetric group &,, for the action (n, u)—»n - uof S, on
{—1, 1}"definedby m - u =1 (uy,...,u,) = (Ug-1(1ys > Ug-14)- Tts Order is
therefore 2" - n!.

When n = 1, the formulas above show that sp(2, C) is isomorphic to
sI(2, C), hence U(1, H) is isomorphic to SU(2). This can also be proved
directly (Section 21.8, Problem 1).

(21.12.3) The group SO(2n) (n = 2).
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The mapping that takes each endomorphism u of C" to the same u,
considered as an endomorphism of R?" (16.21.13.1), is an injective homo-
morphism of the R-algebra M,(C) into the R-algebra M,,(R), under which
the image of a matrix (z;) e M,(C), with z, = x; + iy;, is the matrix
(Z ) € M,4(R), where

Z = (xjk —)’jk)

Vik X jk

The image of the group U(n) under this homomorphism is a subgroup of
SO(2n), which we shall identify with U(n). We shall show that the maximal
torus T of U(n) defined in (21.12.1) is a maximal torus of SO(2n). The Lie
algebra so(2n) of SO(2n) consists of all real skew-symmetric matrices X
(19.4.3.2), and its complexification is therefore the Lie algebra of all complex
2n x 2n skew-symmetric matrices. By virtue of (19.4.3.3), this is the Lie
algebra so(2n, C) of the complex special orthogonal group SO(2n, C), consisting
of the complex matrices Z € M, ,(C) of determinant 1, such that'Z - Z = I,,.
A basis over C of so(2n, C) is formed by the n matrices

H, =iEj -y, 20— Ep 20-1) (1=r<hn),

which form a basis of the complexification b = t¢, of the Lie algebra t of T,
and by the following 2n(n — 1) matrices:
M _Msr’ Nrs—Nsr

rs

where 1 £r,s<n, r# s, and

Mrs = E2r—l. 25— 1 + EZr. 2s + i(EZI. 2s-1 EZr—l, 23) = 'Msr ’

(21.12.3.1) )
Nrs = E2r—l, 2s—1 E2r. 2s I(EZr, 2s—1 + EZr— 1, 25) = ’Nsr .
Let ¢, (1 =r < n) be the C-linear forms on b defined by the equations
e{H,) =6, (1 £ s < n). Then we have
h’ Mrs - Msr =& h) — Ss(h))(M,s - Msr)’
(21.12.3.2) [ 1= (e(h)

[hv Nrs - Nsr] = (8,('1) + ss(h))(Nrs - Nsr),

for 1 £r,s £ n,r+sand all h € b. To verify these formulas it is enough to
observe that [H,, M,]=M,,, [H,, N,J] = N,,, and to use the relations
(21.12.3.1) together with H, = —H, = 'H,. This shows firstly that § is a
maximal commutative subalgebra of so(2n, C) (and hence that t is a maxi-
mal commutative subalgebra of so(2n, R)), and secondly that the roots of
o(2n, C) relative to b (or of so(2n, R) relative to t) are the 2n(n — 1)
linear forms

(21.12.3.3) te, + & (I=r<s=shn)
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If we put
(211234 B, =¢,—¢,,, (1=2rsn-1), Bo=¢,_1+6E,,

then we have the formulas (for n > 4)

gt =8+ B+ + B (r<s),

gte,=p 4+ + Py + 2B+ 20+ + 2B+ Buy + B

(r<s=n-=2),
bty =B+ B+ + By (rsn-2)

Gt e, =B+t B2+t ph, (r<n-=-2)
which show that the n roots (21.12.3.4) form a basis of the root system; the
positive roots corresponding to this basis are

(21.12.3.5) g+ &, (I1=r<s=n).

Also we have
hy, =H,—-H,,, (12rsn-1)

h/l,.:Hrhl +Hn’

from which we obtain the values of the Cartan integers for the basis
(21.12.3.4):

(B, . B
(Brv s

)= n(B,, B,) for all r, s,

B,)
(21.12.3.6) n(B,, B,+1)

)

)=

0 (1€rgn—-3s2r+2),

(1£rsn-2),

”(/))n 2 ﬁn
n(ﬂn 1> ﬁn

0.

From these formulas, a proof analogous to that of (21.12.1) shows that
SO(2n) is almost simple if n 2 4. Furthermore, the reflection g, interchanges
¢,and ¢, , , and fixes the remaining ¢, for I £ r £ n — 1, while g, transforms
&,_, into —¢,, &, into —¢,_ |, and fixes the other ¢,. From this it follows that
if E is the subgroup of the multiplicative group {— 1, 1}" consisting of the
elements (uy, ..., u,) such that u, u, --- u, = 1 (a subgroup that is isomor-
phicto {—1, 1"1 l) the Weyl group is isomorphic to the semidirect product
of E with the symmetric group &,, the action being the same as in (21.12.2).
The order of the Weyl group is therefore 2"~ - n!
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For n = 3, it may be shown that so(6) is isomorphic to su(4); for n = 2,
that so(4) is isomorphic to the direct sum su(2) @ su(2) (Problems 1 and 2).

(21.12.4) The group SO(2n + 1) (n=2).

The mapping M,,(R) —» M, , ,(R) defined by

u o

U ( 0 1)
is injective and maps SO(2n) onto a subgroup of SO(2n + 1); we shall
identify SO(2n) with this subgroup. Then the maximal torus T of SO(2n)
defined in (21.12.3) is also a maximal torus of SO(2n + 1). For the
complexification of the Lie algebra so(2n + 1) of SO(2n + 1) is again the Lie
algebra so(2n + 1, C) of complex skew-symmetric matrices (and is the Lie
algebra of the complex special orthogonal group SO(2n + 1, C), defined as in
(21.12.3)). With the notation of (21.12.3), a basis of so(2n + 1, C) may be

obtained from the basis of so(2n, C) defined in (21.12.3) by adjoining the 2n
matrices

i _ .
PP =E; 1 —Ezsr, 2001 t ’(Ezr,2n+1 ~Ejuii,20)

for which we have
(21.12.4.1) [h, P}] = Fe(h)P}
for all h e h. This proves our assertion and shows that the roots of the

so(2n + 1, C)

relative to b (or of so(2n + 1) relative to t) are the 2n? linear forms
(21.1242) +¢, (1=rsn), +e,+e, (1Sr<s=n)
If we put
(21.12.4.3) B.=¢—¢,, (1sr=n-1), Pp,=¢
then we have
8r=Br+ﬂr+l+“'+ﬁn (lérén)s
Cr—8s=ﬁr+ﬂr+l+“.+ﬂs'l (1_§r<s§n),

£r+£s=ﬁr+.“+ﬂs—l +2ﬁs+2ﬂs+l ++2Bn

(1=sr<s=sn),
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showing that the n roots (21.12.4.3) form a basis of the root system, the
positive roots for this basis being

(21.12.4.4) e, (1sr2n), ¢

Furthermore, we have
hg,=H, ~-H,.,, (1=rsn-1),
h,, =2H,,

and therefore the Cartan integers are

nB, B)=0 if |r—s|z2  (1=rsn-1)
(/}r’ﬁr+l)= (Br+1’ r)=—l (1§r§n—2),
(21.12.4.5)
(n l’ﬂn)= n(ﬂn’ﬁn~l)= -1,
(ﬁn’ ) 0 (1§r§n—2)

One shows as in (21.12.2) that SO(2n + 1) is almost simple and that the
Weyl group is isomorphic to the semidirect product of {—1, 1}" and &,.

For n = 1, the formulas above and in (21.12.1) show that so(3) is isomor-
phic to su(2); also, using (21.12.2), that so(5) is isomorphic to u(2, H)
(Problem 1).

(21 12.5) In the four cases studied above, the scalar product on it* defined
(¢;]£) = 0 (Kronecker delta) is invariant under the action of the Wey!

group

(21.12.6) The complex Lie algebras sl(n, C), so(2n + 1, C), sp(2n, C), and
so(2n, C) are denoted, respectively, by A,_,, B,, C,, D, (n = 2). We have
seen that, with the exception of so(4, C), they are simple. It can be shown
that, apart from these Lie algebras, there are (up to isomorphism) only five
other complex simple Lie algebras, of dimensions 14, 52, 78, 133, and 248
[85). They are known as the exceptional complex simple Lie algebras.

An almost simple compact Lie group that is locally isomorphic to one of
the groups of the four types studied in this section is often called a classical
almost simple compact group.

PROBLEMS

1. (a) Identify the exterior square /\? (C*) with the vector space C®, by identifying the basis

ey Ane,, e, A€y, €3A€, e€3A €, € Ae,, €, Ae,
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of A\? (C*) (where (e, e,, €3, ;) is the canonical basis of C*) with the canonical basis
e, ey, €ey,€e,, e, e
6

of C. If two bivectors x, y € /\? (C*) are identified in this way with the vectors Y &'e),

ji=1
6

Y, n’e;, then the 4-vector x A y is equal to B(x, y)e, A e, A e; A e, where
=

B(x, y)=élr’4+"lé4 +§2Y]5 +"2¢5 +§3’76+'7366-

Consider the mapping that transforms each u eSL(4, C) into A\?u. Show that
u— A? uis a surjective homomorphism of the Lie group SL(4, C) onto a group isomorphic
to the orthogonal group SO(6, C), with kernel {I, —1I}, so that SL(4, C) is a two-sheeted
covering of SO(6, C). (To show that the homomorphism is surjective, consider the dimen-
sions of the two groups.)

(b) Show that the restriction of ur— /A\? u to SU(4) is a surjective homomorphism onto a
group isomorphic to SO(6, R) = SO(6). (Observe that SU(4) is the subgroup of all
u € SL(4, C) having the following property: if ¥ is the antilinear mapping (relative to
complex conjugation) of C* onto its dual space (C*)* such that y(e;) = e} for 1 £j <4,
where (e*) is the basis dual to (e), then You='u"'oy. Express that
(A2 9) = (AT = (A () o (A §)

{c) Show that the subgroup of SL(4, C) consisting of the linear mappings u such that A? u
fixes the coordinate £° of each bivector x € /A? (C*) may be identified with the symplectic
group Sp(4, C), and its image under u— A2 u with the orthogonal group SO(S, C). By
restricting to U(2, H) < Sp(4, C), we obtain a homomorphism U{2, H) - SO(5), which
makes U(2, H) a double covering of SO(5).

For each pair of matrices (U,, U,) in SL(2, C), let ¢(U,, U,) denote the automorphism
X+ U, X -'U, of the vector space M,(C), identified with C* by identifying the matrix

1 g2
(—53 54) with the vector (&', &2, &3, £4). Show that ¢ is a surjective homomorphism of

SL(2, C) x SL{2, C) onto a group isomorphic to SO(4, C), with kernel consisting of (1, I)
and (—1, —1I),so that SL(2, C) x SL(2, C) is a double covering of SO(4, C). Show also that
the restriction of ¢ to SU(2} x SU(2) is a surjective homomorphism of this group onto a
group isomorphic to SO(4). (Same method as in Problem 1.)

Show that apart from the isomorphisms
B,~C,, D,~A @A, D, >~ A,,

which follow from Problems 1 and 2 (or which may be obtained directly from the explicit
descriptions of these Lie algebras), there exist no other isomorphisms among the algebras
A,..,B,,C,, D, for n2 2. (Consider the systems of Cartan integers of these Lie algebras.)

Let G be an almost simple compact connected Lie group. Show that if G, is a principal nice
subgroup of G (Section 21.11, Problem 9), the Lie algebra of G, cannot be isomorphic to
su(n + 1) or so(2n) for n 2 2. (Observe that for these Lie algebras, all the roots have the
same length.)

Let G be a classical compact group. Suppose that G has a principal nice subgroup G,
(Section 21.11, Problem 9) that is also a classical group, of rank 2 3. The complexified Lie
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algebra of G, is necessarily of type B, or C, (Problem 4), hence there exists a basis
{p1, -1 pu} Of S(G,) such that h2 3, fip, | = [lpol == llpa-s [l (p;]p;+1) <0, and
{p;lp) = 0if |k — j| > 1. Then the sets R(p,), ..., R(p,_,) all have the same number n of
elements (Section 21.11, Problem 9).

(a) Show that n £ 2 (use Section 21.11, Problem 9(a) and (c).)

(b) Show that if n =2, the inclusion G; = G is one of the two canonical inclusions
SO(2h + 1) = SU(2h + 1), U(h, H) = SU(2h). (Use Section 21.11, Problem 9(b).)

(c) Show that if n = 1 the inclusion G, G is the canonical inclusion

SO(2k + 1) = SO(2h + 2).

(Same method.)

6. In the Lie algebra so(7), the three roots

1= & Y2 =8 — & Y3 = —&; —¢&;3,

form a basis of the root system. Let t, be the plane in t on which the linear formy, — y, =
€, + &, + £, vanishes. Show that the restrictions to t, of the roots of so(7) form a reduced
root system of type G, (Section 21.11, Problem 2). Show that there exists a principal nice
subgroup of SO(7) whose root system relative to t, consists of these restrictions.

LINEAR REPRESENTATIONS OF COMPACT CONNECTED
LIE GROUPS

13

We recall that, until the end of this chapter, by a linear representation of a
compact Lie group is meant a continuous (or, equivalently, C* (19.10.12))
linear representation on a finite-dimensional complex vector space.

(21.13.1)  Every compact Lie group G has a faithful linear representation.

In other words, bearing in mind (20.11.3.1), there exists an integer N > 0
such that G is isomorphic to a Lie subgroup of U(N).

Consider the set of irreducible representations s+ M (s) of G (p € R)
(21.2.5). It is enough to show that there exists a finite subset J of R such that
the kernels N, of the homomorphisms s+ M (s) for p € J intersect only in e,
for the Hilbert sum of the representations s+— M (s) for p € J will then be
faithful. Now there exists an open neighborhood V of e in G that contains no
subgroup of G other than {e}. To see that this is so, let W be an open
neighborhood of 0 in the Lie algebra g, of G, such that expg is a diffeomor-
phism of W onto an open neighborhood of e in G (19.8.6). We may assume
that, relative to some norm that defines the topology of g,, the open neigh-
borhood W is defined by || x| < a. Then the neighborhood V = exp(3W) of e
in G has the required property: for if x # 0 belongs to W, there exists
a smallest integer p>0 such that (p+ 1)|x| >4a, and necessarily
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(p + 1)x e W; if now there were a subgroup H # {e} of G contained in V
and such that s = exp(x) € H, then we should have

s?*! = exp((p + 1)x) € H,

contradicting the fact that (p + 1)x € W and (p + 1)x ¢ §W.

Now the intersection of the kernels N, for all p € R, consists only of e
(21.3.5), and hence the intersection of the closed sets N, n (G — V) (p e R)
is empty. Since G is compact, it follows from the Borel-Lebesgue axiom that
there exists a finite subset J of R such that the intersection of the sets
N, n (G — V) for pe]Jis empty. The set ﬂ, N, is then a subgroup of G

. pe
contained in V, hence consists only of e by the construction of V, and the
proof is complete.

(21.13.1.1) We remark that this proof shows in fact that every compact
metrizable group G, in which there exists a neighborhood of e containing no
subgroup other than {e}, is isomorphic to a subgroup of a unitary group
U(N), hence is a Lie group (cf. Section 19.8, Problem 9).

(21.13.2) Let G be a compact Lie group and U a faithful linear representa-
tion. Then every irreducible linear representation of G is contained (21.4.2) in
a tensor product of a certain number of linear representations equal to U and a
certain number of linear representations equal to its conjugate U (21.4.3).

Putcl(U) = Y d, - p (21.4.7), where d, > 0 for all p belonging to a finite
€l
subset J of R. Then d(U)= Y d,p.

€l

Suppose that there exists :)’ € R such that the proposition is false for the
representation M,,. This means that the subring of Z® generated by the
classes p € J and their conjugates § is contained in a Z-module of the form
Z™®), where R < R and p’ ¢ R'. It follows from the Peter—Weyl theorem
(21.2.3) that x,, is orthogonal to all the functions m{®, p € R'. Consequently,
if we put U(s)®™ @ U(s)®" = (p{7-"(s)) for each pair of integers m 2 0, n 2 0,
such that m + n 2> 1, the function x,, is orthogonal to all the functions p{’ ™.
Moreover, since the trivial representation is contained in U ® U (21.4.6.4),
the class p’ cannot be the class of the trivial representation, and therefore y,,
is orthogonal also to the constant functions (21.3.2.6). But by the definition
of the tensor product of matrices, among the functions p{i " there appear all
the monomials with respect to continuous functions that are elements of the
matrix U or of U. By hypothesis, these functions separate the points of G,
hence the complex vector subspace of ¢ ¢(G) spanned by the constants and
the p{™: ™ is dense, by the Stone-Weierstrass theorem (7.3.1). Since the con-
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tinuous function y, is not identically zero, we arrive at a contradiction
(13.14.4), which proves (21.13.2).

(21.13.3) Ler G be a compact Lie group and H a closed subgroup of G. Then
every irreducible linear representation of H is contained in the restriction to H
of a linear representation of G.

Let U be a faithful linear representation of G (21.13.1). Clearly its restric-
tion V to H is faithful, hence every irreducible linear representation of H is
contained in some representation of the form V®™ ® V®" (21.13.2); since
this representation is obviously the restriction to H of U®™ ® U®", the
proposition is proved.

(21.13.4) Let G be a compact connected Lie group and T a maximal torus
in G. (This notation will be in force up to the end of Section 21.15.)

As we have already remarked (21.7.6), the study of the linear representa-
tions of G is based on the study of their restrictions to T. In the first place, a
linear representation of G is uniquely determined, up to equivalence, by its
restriction to T. Clearly it is enough to consider irreducible representations,
and since up to equivalence such a representation is entirely determined by
its character (21.4.5), it is enough to show that if two characters y’, y” have
the same restriction to T, then they are equal. We shall in fact prove a more
precise result: for this purpose, we remark that if f'is a continuous central
function on G (21.2.2), its restriction to T is a continuous function which, by
definition (21.2.2.1), is invariant under the Weyl group W of G relative to T.

(21.13.5) The mapping that sends each continuous central function on G to
its restriction to T is an isomorphism of the complex vector space of continuous
central functions on G, onto the complex vector space €(T)V of continuous
complex functions on T that are invariant under the Weyl group W.

The fact that the mapping f—f |T is injective is immediately obvious.
For each x € G is of the form sts~! for some s € Gand t € T (21.7.8), hence
f(x) =f(t) because fis central. To show that fi—f | T is surjective, suppose
we are given a function g € 4 ¢(T)¥; let us first show that we may define a
function fon G by the condition f'(sts™') = g(t) for all t € T and s € G. For
this purpose, we must verify that if ¢, t, are two elements of T that are
conjugate in G, then g(t,) = g(r,); but by virtue of (21.7.17), there exists
w € W such that t, = w - t,, and the result follows from the W-invariance of
g. It remains to be shown that the function f, so defined, is continuous (itis a
central function by definition).

If f were not continuous, there would exist a sequence (x,) of points of G,
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converging to a limit x € G, and such that f(x,) does not converge to f(x).
We may write x, = s,t,5, !, where t, € T and s, € G, and because both G
and T are compact, we may assume, by passing to a subsequence of (x,), that
(t,) has a limit ¢t € T, and (s,) a limit s € G. But then x = sts™!; we have
f(x,) = g(t,) and f (x) = g(t), and the hypothesis on (x,) contradicts the con-
tinuity of g.

(21.13.6) We recall (21.7.5) that the characters of the maximal torus T are
the functions ¢ with values in U, such that £(exp(u)) = ™ for all u e t,
where p is a weight of T. The weights of T are R-linear functions on T, with
values in iR, which take values belonging to 2xiZ at the points of the lattice
7, the kernel of expy = (expg)|T. These functions form a lattice 2nil'},
which we denote by P(G, T) or P(G) (or simply P) and call the weight lattice
of G (with respect to T). If u,, u, are two points of t such that exp(u,) =
exp(u, ), we have therefore eP“? = ¢P*2; this leads us to write ? (or s+ e?¥)
by abuse of notation, for the character ¢ corresponding to the weight p,
whenever there is no risk of confusion.

Consider a character y of G. If U is an irreducible representation of G
with character y, the restriction of U to T is a Hilbert sum of one-
dimensional representations, and the restriction of y to T may therefore be
written uniquely in the form

(21.13.6.1) Y n(p)e?

peP

where each n(p) is an integer 2 0, and is zero for all but a finite number of
values of p € P; it is the multiplicity (21.4.2) of the representation s+ P - 1
in the representation U |T. This number n(p) is called the multiplicity of the
weight p in the character y (or the representation U), and we shall say that p
is contained in y (or is a weight of U) if n(p) > 0.

For each element w of the Weyl group W, we have n(w - p) = n(p)
(21.13.5). This leads us to consider functions of the form (21.13.6.1) in which
the integers n(p) are of arbitrary sign and satisfy the relations n(w - p) = n(p)
for all w e W. It is clear that these functions form a free Z-module, having as
a basis the sums

(21.13.6.2) S(I) = ¥ e

pell

where IT runs through the set P/W of orbits of W in P.
Since the characters e? of T are linearly independent (21.3.2) and since,
for any two weights p/, p” € P, we have ¢ - ¢?” = ¢?'* ", the set of all linear
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combinations Y. n(p)e®, with arbitrary integers n(p) € Z, may be identified

eP
with the algebrz Z|[P) of the additive group P over Z. The Z-module having as
basis the S(IT), for all I1 € P/W, is therefore the subalgebra Z[P]¥ of W-
invariant elements of Z[P].

It follows therefore from (21.13.5) that the Z-algebra generated by the
characters of G, which may be canonically identified (21.4.7) with the ring
ZREG of classes of linear representations of G, is canonically isomorphic to a
subalgebra of Z[P]¥. In general, the basis elements S(IT) of Z[P]¥ are not the
restrictions of characters of G, as can be seen already from the example of
the group SU(2), for which we know explicitly all the irreducible representa-
tions (21.9.3) and the Weyl group, consisting of two elements (21.12.1). We
shall nevertheless show that the canonical homomorphism of Z®©) into
Z[P]V is always bijective (21.15.5).

(21.13.7) Let V be a linear representation of G, and suppose that the
restriction to T of the function s+ Tr(V(s)) is of the form S(IT) for some
orbit IT € P/W. Then it follows immediately from (21.4.4) and (21.13.6) that
the representation V is irreducible and that S(II) is the restriction to T of its
character.

PROBLEMS

1. Let G be a compact subgroup of GL(n, R). Show that if A and B are two compact G-stable
subsets of R" with no common point, there exists a polynomial P € R{T , ..., T,] such that
|P(x)| <4 forall xe A, |P(x)— 1| <4 forall xeB,and P(s- x) =P(x) for all s € G.
(Apply the Weierstrass—Stone theorem and integration with respect to a Haar measure on
G)

2. Deduce from Problem 1 that if G is a compact subgroup of GL(n, R) there exists a family of
polynomials P, € R[T,,, ..., T,,] in n? indeterminates, such that G is the set of matrices
s € GL(n, R) = R" such that P,(s) = 0 for all a.

3. Let G be a compact Lie group and H a closed subgroup of G. Show that there exists a
neighborhood U of H such that there is no subgroup K of G contained in U that contains H
properly. (Use (16.14.2) and argue as in (21.13.1) for the case H = {e}.)

4. Let G be a compact Lie group and H a closed subgroup of G. Show that if H # G there
exists at least one irreducible representation of G, other than the trivial representation,
whose restriction to H contains the trivial representation. (Assume that the result is false
and show, by use of (21.3.4) and (21.2.5), that for all continuous functions fon G we should

have j fdmg = j fdmy, where mg and my, are the normalized Haar measures on G, H,
G H

respectively; use this to obtain a contradiction.)
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5. Let G be a compact Lie group and H a closed subgroup of G. Show that there exists a
continuous linear representation U of G on a finite-dimensional complex vector space E
such that H is the stabilizer of some point of E (for the action of G on E defined by U). (We
may assume that H # G. For each closed subgroup F that properly contains H, let V. be an
irreducible representation of F, other than the trivial representation, whose restriction to H
contains the trivial representation (Problem 4), and let U be a linear representation of G
whose restriction to F contains Vi. Let Hp = H be the stabilizer of a point # 0in the space
of Vi. Show that the intersection of the subgroups Hp is equal to H, and observe that this
intersection is also the intersection of a finite number of the Hy, by using Problem 3.)

14. ANTI-INVARIANT ELEMENTS

We shall first study in more detail the structure of the algebras Z[P] and
Z[P]¥, by using the properties of root systems. We shall require the follow-
ing lemma:

(21.14.1) Let u, v be two linearly independent elements of P. If an element
® € Z[P] is divisible by | — e“ and by 1 — ¢, then it is divisible by the product
(1—e"(1 - ¢e").

The Z-module P is isomorphic to Z’ for some r > 0.If (jy, ..., j,) are the
coordinates of u with respect to a Z-basis of P, and if d > 0 is the highest
common factor of the j, (1 < k < r), we may write u = du,, where the coor-
dinates of u, are relatively coprime. The elementary theory of free Z-
modules (A.26.6) shows that there exists a basis (u,, ..., #,) of P containing
u,. The projection of v on Zu, @ Zu, @ --- ® Zuy, is nonzero, by hypothesis;
by applying the same argument to this projection, we may assume that u,,
..., u, have been chosen so that v = mu, — nu,, where m, ne Zand m # 0.
Since the ring Z[P] is isomorphic to the ring

A=Z[X, ... X, X7, ..., XY

(21.4.7), it follows that we are reduced to showing that if an element @
of this ring is divisible by X{ — 1 and by X7 — X1, then it is divisible by their
product. Furthermore, since the X, are invertible in A, we may assume that
m > 0, and since we have ® = (X{ — 1)®, with ®, € A, we may also assume
that @, is a polynomial in X, with coefficients in the ring

B=2Z[X;, X3, ... X, X7 L X34 .., X, 1)
The Euclidean algorithm then enables us to write

O, = (X7 -XDN®, + (¥, X5+ + ¥, )
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where @, € A and the '¥; belong to B. By hypothesis, the product
(21.14.1.1) X4-1)¥ X3 '+ +¥,_y)

is divisible by X7 — X1. If the '¥; were not all zero, we should be able to
substitute for X,, X5, ..., X, nonzero complex numbers z,, z5, ..., z, such
that z4 # 1 and such that the value of at least one of the coefficients
Wz, z3, ..., z,) were # 0. Under this substitution, (21.14.1.1) would
become a nonzero polynomial of degree <m — 1 in X, with complex
coefficients, divisible by X% — z%; and this is absurd.

We remark that the lemma (21.14.1) applies equally to the ring Z[cP],
.where ¢ is any nonzero real number.

(21.14.2) If g = ¢ @ D(g) is the canonical decomposition of the Lie algebra
g of G as the direct sum of its center and its derived algebra (21.6.9), the Lie
algebra t of T takes the form t = ¢ @ t', where t' is a maximal commutative
subalgebra of D(g). We have seen (21.8.8) that the root system 8§ c it'* of
D(g) relative to t' may be identified with a finite subset of the lattice of
weights P(G) (t'* being identified with the annihilator of ¢ in t*). We shall
suppose that a basis B={f,, ..., #;} of § (21.11.5) has been chosen. The
elements h, of it for & € S, form a reduced root system S§", the dual of §
(21.11.11). For simplicity we shall put h; = h, ; we recall (21.11.5.5) that the
h; form a basis B" of the root system S$", and also a basis of the real vector
space it'.

(21.14.3) The weight lattice P = P(G) is contained in the set P(g) of C-linear
Jorms A ont ¢ suchthat A(h)) € Z for 1 £ j < I. (Since each h, € 8 is a linear
combination of the h; with integer coefficients, this condition is equivalent to
requiring that A(h,) should be an integer for all roots o € S.)

For each p € P(G), ¢” is a character of T. By virtue of (21.13.3), there
exists a linear representation U of G on a vector space E such that for each
h € t, the complex number p(h) is an eigenvalue of the endomorphism
U,(h) of E (we identify U, with its extension U, ® 1¢ to g.c)). With the
notation of (21.10.3), we may apply (21.9.3) to the restriction of U, to each
subalgebra s, c g, isomorphic to sl(2, C), and conclude that p(h,) is an
integer for each « € 8.

Since the dual tf, of t may be identified with cf, @ t& (c* being
identified with the annihilator of t' in t*), P(g) may be identified with
c, @ P(D(g)), where P(D(g)) < it'* is the lattice dual (21.7.5) to the lattice
in it’ generated by the h;.
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(21.14.4) In the real vector space it* = ic* @ it'*, the set C (or C(g)) of
linear forms A such that A(h;) >0 (1 £j <) is called the Weyl chamber
relative to the basis B of . Since the h; form a basis of the real vector space
it', the closure C of C in it* is the set of linear forms 4 such that A(h;) > 0 for
1 £j < 1. We have C(g) = ic* + C(D(g)) and C(g) = ic* + C(D(g)).

(21.14.5) Let L be the set of linear forms A € it* that can be written
!
A=y+ Y c;B;, where y € ic* and the c; are real numbers 2 0, not all zero.

=1

If we pu; L, =L u {0}, it is clear that L, + L, = L,, aL., = L, for all real
a>0, and Ly n (—Ly)={0}. The relation u— 1€ L, is therefore a
(partial) ordering on it*, which we denote by A < u. The relation 4 < p is
equivalent to A + v < u + viorall v € it*, and to ad < au for all real a > O;
and the relation A > 0 is equivalent to A € L.

The positive roots (relative to the basis B) in the sense of (21.11.5) are
therefore exactly those which are > 0 in the ordering just defined. This
justifies the terminology.

(21.14.6) (i) The Weyl chamber C is contained in the set L of forms > 0.
For any W-invariant scalar product (i|u) on it*, we have (A|pu) > 0 for all
pairs of forms A, u such that A€ C and > 0.

(il) The Weyl chamber C (resp. its closure C) is the set of linear forms
A€ it* suchthatw - A < A (resp.w - A < A)forallw # 1 in the Weyl group W.

(i) By virtue of (21.11.11.2), the Weyl chamber C may also be defined as
the set of A € it* such that (1|8;) > Ofor 1 < j < . In view of (21.11.5.3), the
relation C = L is a cons  uence of the following lemma:

(21.14.6.1) Ina real Hilbert space E, let (B,); < ;< be a finite free family such
that (B;| B:) < O whenever j + k. Then, if A= Y c¢,B, is such that (A|B,) =0
=1
for 1 < j<n,wemust havec;20for 1 <j<n
The result is obvious if n = 1, and we proceed by induction on ». It is not

possible that ¢; < O for all j, because it would then follow that (4 |c B0
for all j, and therefore

(14 = j;(llc,-ﬂf) <0,
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so that A = 0, contradicting the hypothesis that c; # 0 for all j. Suppose
therefore, without loss of generality, that ¢, = 0. Then,for 1 <j < n— 1, we
have

Cl(ﬂllﬂj) + cn—l(ﬂn—llﬁj) 2 _cn(ﬁnlﬁj) 20,

and by applying the inductive hypothesis to ¢, f; + - + ¢,_1 Bu—1, WE
deduce that c; 2 O for 1 = j < n.
If >0, it follows from the definition (21.14.4) that we may write
lj

p=7y+ Y t;f,,whereyeic*and t; > Ofor 1 <j </ and at least one of the
j=1

i
tjis > 0. Ifthen 2 € C, we have (A|u) = } tj(4|B;) > O, because (1|8;) > 0
~

J
for1=j=sl

(i) Ifw-A<Aforallws1in W, then in particular (21.10.6) s, - 4 =
A — A(h)a < 4 for all positive roots a, which is possible only if A(h;) > 0 for
1£j£1, in other words if 2 € C. To prove the converse, put s; = s, for
1 £ j < 1; then W is generated by the reflections s; (21.11.8), and we shall
argue by induction on the smallest number p such that w can be written in
the form w = s, 5;, -+ 5;,. The result is clear if p = 1; suppose therefore that
it is true for all products of at most p — 1 reflections s;, and put w = w's; ,
where w' =s;,5;, -+ 5; _,. Then we havew - A =w'- 2~ A(h; )w' - B;. We
distinguish two cases, according as the root w’ - §; is positive or negative. In
the first case, the hypothesis A(h;)> 0 implies that w - 2 < 4. Consider
therefore the second case, and let r be the least integer such that forallk > r
the root a, = s, s;,,, *** 5;,_, * B, is positive. This number r always exists (if
we agree to put r = p and a, = f; when a, <Ofor 1 £k < p— 1), and we
have r>1 because w'-f; <0. By definition, we have « >0 and
#_y=s;,_, <0, and by virtue of (21.11.6), this is possible only if
a,=pf;,_,- Now put wy=s; s, ,, wy=s; "5, _,, so that
w =w;s, wy,andw, - B; = B, _.Sincew,s,w;'=s,, ., forall roots a,
we have w,s; =5, , w, and therefore

L - 2 = .
w= WSjp— wlsj’_IW2 = W1W2,

in other words, w can be written as a product of p — 2 reflections s;, and
hence w4 < 4 by virtue of the inductive hypothesis. For the relations
w4 < 4 and A € C, the proof is the same.

(21.14.6.2) Let A € it* be such that A(h;) is an integer 2 Ofor1 < j < I (or,
equivalently, such that A(h,) is an integer > 0 for all positive roots « (relative
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to B), since the h; form a basis of the root system $" formed by the h,
(21.11.5.5)). Then for each w € W we have

I
(21.14.6.3) wod=24-— 3 np;
j=1

J

where the n; are integers = 0. We may proceed by induction as in the proof
of (21.14.6(ii)), since the result is obvious when w = s;. With the same nota-
tion, the case in which w' - §; is a negative root can be eliminated, because w

is then a product of p — 2 reflections s;; and if w' - B, is a positive root, we
i
may write w' - B; = 3 n}f;, where the nj are integers 2 0, and w' - A =
j=1

i
A— 2 n;B; where the nj are integers > 0. From these two equations we

j=1
obtain (21.14.6.3), with n; = mjA(h; ) + nj.

(21.14.6.4) It follows from (21.11.5.3) that if there are two roots 8;, f, € B
such that (8;|B,) # 0, then they cannot belong to C. In all the examples
considered in (21.12), with the exception of SU(2), none of the basis roots
therefore belongs to C.

(21.14.7) Foreachroota € S, let H, be the hyperplane in it* defined by the
equation A(h,) = 0. A linear form A € it* is said to be singular if it belongs to
at least one of the H,, and regular if it does not. Clearly the Weyl group
transforms regular forms into regular forms, and singular forms into singu-
lar forms.

(21.14.7.1)  For each regular linear form A € it*, there exists one and only one
element w of the Weyl group W such that w - A € C. For each linear form
A € it* there exists one and only one w - A in the W-orbit of A that belongs to C.

Suppose first that 4 is regular. We may write A = y + u, where y € ic* and
u € it'*, and since y(h,) = 0 for all « € S we have u(h,) # Oforalla € 8. It
follows then from (21.11.5.2), applied to the dual root system §V, that u
defines a basis B, of §". By virtue of (21.11.8), there exists w € W such that
w(By)=B"; and since w(B;)=8,., and w-y =y, this implies that
w - A € C, by definition. The uniqueness of w follows from the same argu-
ment, in conjunction with the fact that W acts simply transitively on the set

of bases of 8" (21.11.10.1).
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Now let 4 be any element of it*, and let A, be a regular linear form. Since
the number of hyperplanes H, is finite, the linear form A + t(A, — 4) is
singular for only finitely many values of t € R, and we may therefore assume
that it is regular for 0 <t < 1. Let w e W be such that w - 4, € C; since
w (4 + t(o — A)) is regular for 0 < ¢ < 1, all these linear forms belong to C,
and therefore w - 4 must belong to the closure C.

If A e C and if there were an element w € W such that w - 1 € C and
w - A # A, we should have w - 1 < 1 by (21.14.6), hence w - 1 < . But since
A=w"!-(w- A), the same argument shows that w - 4 > A, which is absurd.

(21.14.8) (i) The half-sum 6 of the positive roots of § (21.11.7) is such that
o(h;)) = 1for 1 £j <1, and hence belongs to C n P(g).
(i) Every element of P(q) n C is of the form 6 + p, where p € P(g) n C.
(iii) For each pe P n C, the set of linear forms g € P n C such that
g = pis finite.

(i) Wehaveseenin (21.11.7) thats; - 6 = 6 — 6(h;) - B; = 0 — B, hence
oth)=1for1 <<l

(if) If 1 e P(g) n C, we have A(h;) > 0 for | < j < land moreover A(h))
is an integer, hence A(h;) = 1 for 1 £ j < I. Consequently p = 4 — § is such
that p(h;) = 0 for all j, hence p € P(g) n C. The converse is obvious.

(iii) Since p— g =0 and p, q are in C, we have (p|p—q) =0 and
(glp—q) =0 (21.14.6), so that (¢|q) = (p|q) < (p|p). But since P is a
discrete subspace of it*, its intersection with the closed ball with center 0 and
radius (p|p)'/? is finite (3.16.3), whence the result.

(21.14.8.1) If the compact connected group G is semisimple, the set P(g) is
also discrete, because ¢ = {0}. The proof of (iii) above then applies without
any modification to show that, for each pe P(g) n C, the set of
q € P(g) n C such that g £ p is finite.

(21.14.9) The elements of the Weyl group, considered as endomorphisms
of it*, belong to the orthogonal group relative to the scalar product (4|u),
hence have determinant equal to + 1. An element ® of the free Z-module
Z[P] (or of Z[cP], where ¢ is a nonzero real number) is said to be anti-
invariant under W if w - ® = det(w)® for all w e W. For each p € P, the
element

(21.14.9.1) J(eP) = Z det(w)e” "

weW
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of Z[P] is anti-invariant, because for each w' e W we have
w-J(e)= Y det(w)w -e”?)

weW
= Y det(w)e™™»
weW

=det(w') ), det(ww)e™™?
weW

= det(w')J(e”).

(21.14.10) (i) If the weight p € P is a singular linear form (21.14.6.3), we
have J(e?) = 0.

(ii) As p runs through P n C, the elements J(e?) form a basis of the
Z-module Z[P}Y of anti-invariant elements of Z[P].

(i) Suppose that p(h,) = 0 for some root « € S; then we haves, - p = p,
where s, is the corresponding reflection. If W’ is a set of representatives of the
left cosets of the subgroup {1, s,} in W, we have

J(e?)= ) (det(w)e* P + det(w's,)e™ " P)

weW’
=0

because det(w's,) = —det(w’) and (W's,) - p=w' - p.
(i) To say that an element Z z,e? of Z[P] (where z, € Z for all p e P)

is anti-invariant means that z,,. , = det(w)z for allw € W, and consequently
the J(e”) generate the Z-module Z[P]*¥. It follows from (21.14.7) that the
group W acts freely on the set P, of weights that are regular linear forms, so
that J(e?) # O for all p € P,,; furthermore, each W-orbit in P, intersects C

in exactly one point (21.14.7), hence the J(e?) with pe PN C =P, N C
are linearly independent over Z. In view of (i), this proves (ii).

The results of (21.14.10) apply unchanged to Z[cP] if ¢ > 0.

(21.14.11) Givenan element ® = Z z, e of Z[P], we shall say that z,e” is

the Ieadmg term of ® if z, #0 and 1f p’ < p for all other p’ € P such that
z, # 0. It is clear that if z, b is the leading term of @, and if @' = Z z,elis

another element of Z[P], with leading term z €%, then z, z, e?*%is the leadmg
term of ®®'. This definition and this remark apply w1thout change to Z[cP],
c>0.

It follows from (21.14.7) that each orbit I € P/W intersects C in exactly
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one point p. For p € P n C we therefore denote the sum S(IT) by S(p). Since
w - p < plorallwe W (21.14.6), it follows that e” is the leading term of S(p).
Every element ¥ of Z[P]¥ that has leading term z,e” may therefore be

written uniquely in the form ¥ = z,S(p) + Y z,5(q), where z, and
qeP nC,g<p
the z, are integers.

(21.14.12) Since the roots « € S belong to P (21.14.2), the element

(21.14.12.1) A= J] (2 - e *?)

ae 8+

(where S* is the set of positive roots, relative to the basis B) belongs to
Z[1P), but not necessarily to Z[P] (cf. (21.16.10)). We have

2114122) A= [] (1—e %) =€ [] (= 1);

xe 8§t ae 8§+

by virtue of (21.14.8), this shows that A belongs to Z[P(g)] in any case, and
that e~? A belongs to Z[P]; moreover the first of the formulas (21.14.12.2)
shows immediately that ¢’ is the leading term of A (21.14.11). By virtue of the
formula (21.14.12.1), A is anti-invariant. Indeed, it is enough to show that
s;*A= —Afor 1 £j <1, because W is generated by the reflections §;, in
the notation of (21.14.7); but by virtue of (21.11.6), s; changes the sign
of the factor ef/2 — ¢~ #/2 and permutes the other factors of A, whence
the result.

(21.14.13) (i) We have A = J(€®) in Z[P].

(i) For each weight p e P n C, the element J(e?*?)/J(€’) is an invariant
element of Z[P), with leading term equal to e”.

(iii) For each pe P n C, let ¥, be an element of Z[P]Y with leading
term equal to e”; then the ¥, form a Z-basis of the Z-algebra Z[P]¥. (In
particular, this is so for the elements J(e?*?)/J(€’).)

(i) Since A is anti-invariant and belongs to Z[4P), it is a linear combina-
tion with integral coefficients of the J(e?) with g € P n C (21.14.10); but
since e~® A € Z[P], we must have g — & € P for each of the J(e%) appearing

in A with a nonzero coefficient; hence A = Y° z,J(e?*?), with z, € Z. The
pePnC

coefficient of e?*% in A is therefore z,. Now,forpe P~ Cand p#0,p + 5
is not comparable with & with respect to the ordering if p € ic*, and is 2 §
otherwise. Since all the terms of A other than ¢® are of the form z,e? with
q < 6, we must have z, =0 for p# 0, and z, = 1.
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(i) Since w-0—6€P for all we W (21.11.7), it follows that
e~ %J(e?*?) belongs to Z[P]. Hence, by virtue of (21.14.12.2) and (21.14.1), it
is enough to show that e ~°J(e?*?) is divisible by each of the elements | — e *
with « € 8* (bearing in mind that no two distinct elements of 8" are
proportional). If W’ is a set of representatives of the right cosets of the
subgroup {1, s,} in W, we have

e ()= Y det(w — e W D)ed
w e W/

where g = p + 8. But since q € P(g), we have w' - g € P(g) and therefore
s, " (W q)=w - q— m(w)x, where m(w’) is an integer. We reduce therefore
to showing that 1 — e~ ™ is divisible by 1 — e~ *in Z[P] for all integers n € Z.
This is clear if n 2 0, and if n < 0 we have only to remark that 1 — e ™ =
e "(e™ — 1), and that e™* is invertible in Z[P].

Now put J(eP*?)/J(e®) = ) z,¢', and let u be a maximal element of the

reP

finite set of r € P such that z, #+ 0. We shall show that § + u is maximal
among the elements v € 4P such that the coefficient of e* in J(e?*%)is # 0.
Indeed, if z,¢' is a term of J(e®) other than e’ then t < 4; if we had
t+r>6+u, it would follow that r>u+ 6 —t > u, contrary to the
hypothesis that u is maximal. Since p + 6 € C, we have p+ 5 > w - (p + 9)
forallw# 1 in W (21.14.6), and consequently e”*? is the leading term of
J(eP*?); hence u = p and z, = 1, and e” is the leading term of J(e?*?)/J(e’).
(iii) The hypothesis 1mpl1es that for each p € P n C we may write

(21.14.13.1) ¥Y,-Sp) = Y z,,S(g)

qeP nC,g<p

We shall first show that the ¥, are linearly independent. If not, there would
exist a finite nonempty subset I of P n C, and for each p € I an integer
¢, # Osuch that ) ¢,'¥, =0, and therefore, by (21.14.13.1),

pel

(21.1413.2) Zlcp(S(PH Sz, s(q))=

qeP nC,g<p

There exists in the finite set I a maximal element r. For each p € I distinct
from r (resp. eachge P n Csuch that g<rorg<pforpeland p+#r)
there cannot appear in S(p) (resp. S(g)) a term in ¢ with a nonzero
coefficient, because this would imply that r < p (resp.r < g<rorr £ q < p)
by virtue of (21.14.11), contradicting the definition of r. Hence we cannot
have ¢, # 0, which proves our assertion.
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Next we shall prove that each S(p), for pe P n C, is a linear combina-
tion of the ¥, with g € P n C. Suppose that this were not the case, and let
Po € P n C be an element for which the assertion is not true. Since the set of
weights p < p, in P 1 Cis finite (21.14.8), we may assume that p, is minimal,
in other words, that for each pe P ~ C such that p < p,, S(p) is a linear
combination of the ¥,. But then the relation (21.14.13.1), with p = p,,
would show that the difference ¥ ,, — S(p,) was a linear combination of the
¥, with g € P n C, and we should arrive at a contradiction.

15. WEYL'S FORMULAS

(21.15.1) Let G be a compact connected Lie group, T a maximal torus of G.
Then the C* mapping (s, t)—sts™' of G x T into G is a submersion (16.7.1)
at all points (s, t) such that t is regular (21.7.13).

For each s, € G, we have sts™! = so((sg 's)t(sg *s) ™ !)sg !; therefore,
since x+— sy xso ! is an automorphism of G, it is enough to prove the propo-
sition at the point (e, t) of G x T. Let t be the Lie algebra of T and let m be
the subspace of the Lie algebra g of G that is the direct sum of the
(8, @ g_,) N g (in the notation of (21.8.1)) and supplementary to t. Since the
exponential mapping is a diffeomorphism of a neighborhood of 0 in g onto a
neighborhood of e in G, it will be enough to show that the C* mapping
¢: (u, t)—exp(u)t(exp(u))~! is a submersion of m x T into G at the point
(0, tp) when 25 € T is regular. Since the dimensions of m x T and G are
equal, it comes to the same thing to show that the tangent linear mapping
Too,.0)(@) is injective (A.4.11). The tangent vectors in T, ,(m x T)are of the
form (v, to - w) with v € m and w € t. Let us apply (16.6.6) to the functions
@(0, -): t—t and (-, ty): u—exp(u)to(exp(u))~!: the second of these is the
composition of the left translation z+—1t,z, the mapping (x, y)— xy of
G x G into G and the mapping u— (t5 ' exp(u)to, exp(u)~!) of m into
G x G. Using the formulas of (16.9.9), we obtain

(21.15.1.1) T, (@) (v, 8o - W) =15 - (Ad(t5 ") v — v + w).

If this tangent vector is zero, then w = v — Ad(t;!) - v belongs to both t
and m, because the choice of m ensures that it is stable under Ad(r) for all
t € T; consequently w=0 and v = Ad(tg') - v. But the second of these
relations implies that v = 0, by reason of the hypothesis that ¢, is regular
(21.8.4), and the proof is complete.
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(21.15.2) For each t' € T, we have (st')t(st')”! = sts™* for all s € G and
t € T, because T is commutative. If n: G — G/T is the canonical projection,
it follows therefore that the mapping (s, t) sts™! factorizes as

X1y

(21.15.2.1) GxTEZS(GT)xT -G

where f is of class C* ((16.10.4) and (16.10.5)). Let T, be the set of regular
points of T; it is a dense open subset of T, whose complement N is the union
of the tori U, of dimension dim(T) — 1, as a runs through the set $* of
positive roots of G relative to T (with respect to an arbitrary basis B of the
root system S) (21.8.4). Hence (G/T) x N is negligible in (G/T) x T
(16.22.2), and it follows from Sard’s theorem that the compact set
S((G/T) x N) is negligible in G (16.23.2). Next, the restriction of f to
(G/T) x T,,, is a submersion of this open set onto an open subset V in G, by
virtue of (21.15.1) and (16.7.5). Finally, the mapping f is surjective by
(21.7.4), hence G is the union of V and f ((G/T) x N), from which it follows
that the complement of V is negligible.

Let W be the Weyl group of G relative to T. We shall show that
(G/T) x T, is a covering of the open set V, with Card(W) sheets, the projec-
tion being the restriction of f. For this purpose, we shall show that W acts
differentiably and freely on (G/T) x T,,, so that the orbits are precisely the
intersections of this submanifold with the inverse images f ~*(x)for x € V. In
the first place, since W permutes the roots (21.8.6), it leaves T, stable and
acts differentiably on this manifold by virtue of (16.10.4) and the definition
of W (21.7.16). Next, the normalizer A"(T) of T in G acts on G/T on the
right, by the rule n(s) - x = n(sx) for s € G and x € A#'(T), because we have
sTx = sxT since x normalizes T. Furthermore, if x’ = xt, where t € T, then
n(sx’) = n(sx), and therefore for each coset w e W = A"(T)/T we may define
n(s) - w as the common value of n(sx) for all x € w. It is clear that this action
of W on G/T is differentiable (16.10.4) and free, because the relation n(sx) =
n(s) implies that x € T. We now define a left action of W on (G/T) x T,,, by
the rule w- (a(s), t) = (n(s) - w™!, w-t) for weW, s€G, and teT,,.
Clearly this is a free action of W. Moreover, if sts™! = s't's’"!, where
s, s’ € Gandt, t' € T, there exists w € W such thatt' = w - ¢ (21.7.17),and it
follows that n(s’) = n(s) - w™'. The restriction of f to (G/T) x T,,, therefore
factorizes as

reg

(G/T) X T,y = ((G/T) x T,/ W BV,

and since f maps each open set in (G/T) x T, to an open set in V, the
mapping f, is a homeomorphism of the orbit space ((G/T) x T,.,)/W onto
V. But since the restriction of f to (G/T) x T, is a submersion, we deduce
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from (16.10.3) that the orbit manifold exists, and that f; is a diffeomorphism.
The result now follows from (16.14.1).

(21.15.3) With the notation of (21.15.1), let | = dim(T) (the rank of G), and
2n = dim(G/T) = dim(m). Let v; and vy denote the translation-invariant
volume forms on G and T, respectively, corresponding (16.24.1) to the nor-
malized Haar measures mg and my on G and T, respectively. We shall show
that there is a canonically determined volume form vg,r on G/T, invariant
under the action of G. For this purpose, we observe that the tangent space

T,(G/T) may be canonically identified with g/t, and hence also with the

supplement m of t in g. The image of a 2n-vector z € /\ T.(G/T) under the
2n

diffeomorphism x—s - x is A Ty(n /\ T,. o(G/T); it depends
only on the point s - n(e) € G/T, not on s e G. For the relation s - n(e) =
s' - m{e) is equivalent to s’ = st for some r € T, and we therefore have to see
2n

that A T(n) (r-z) =2 Now, for each vector uem, we have
T,fl(n) “(u-t7') = u, with the identification made above, and therefore

T(n): (t-u)=Ad(t)-uem (since m 1is stable under Ad(t)); but
t— Ad(t)|m is a homomorphism of T into the orthogonal group of the
restriction to m of an Ad(G)-invariant scalar product on g; since T is con-
nected, the determinant of Ad(t)|m is necessarily equal to 1, and therefore

we have
2n

2n
AT -(-z)=/\ Ad(t) - z=z
Let now e* be a 2n-covector on m such that e* A vT(e) = vg(e) (we are
+1
1dent1fymg e* and vr(e) with their canonical i lmages m /\ g* under /\ pry

and /\ pr,); for each s € G the 2n-covector s - e* € /\ T, . e(G/T) depends
on x = s n(e) and not on s, by the remarks above and (19.1.9.1). We may
therefore define vgr(x) = s - e*. We denote by mgy the positive measure on
G/T corresponding to Vg (16.24.1), which is therefore G-invariant.

By abuse of notation, we denote by UG/T Avp the volume form on

(G/T) x T that is equal to /\ pry(vgr) A /\ ‘pr,(vg), to which corresponds
the product measure mgy @ my. For the C* mapping f defined in
(21.15.2.1), f(vg) is a (2n + l)-form on (G/T) x T, and we may therefore
write

(21.15.3.1) f(vg) = © - (vgT A VY)-

t The use of the letter T (with indices) to denote tangent spaces and tangent linear map-
pings should not be confused with the use of the same letter (without indices) to denote a
maximal torus in G.
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We propose to calculate the numerical function ® on (G/T) x T. For this
purpose, we first remark that since f(n(s), t) = sf (n(e), t)s™! by definition
(i.e., f o y(s) = Int(s) o £, where y(s) denotes the diffeomorphism

(x, )= (s x, 1)

of (G/T)x T onto itself), by transport of structure we have also
(s vg s )=5"Y(vg)and s - vg - s~! = vg since G is unimodular. Also
$ * Vg = g/t and therefore we see that for all s € G we have

(21.15.3.2) O(n(s), t) = O(n(e), t).

If as before we identify m and T,,)(G/T), the calculation in (21.15.1) shows
that

Tenerolf) - (Vo t- W)=t (Ad(t™}) - v— v+ w)

for v € i and w € t, since Ty(expg) is the identity mapping. The definition
of 'f (vs) (16.20.9.3) and the choice of e* then show that

(21.15.3.3) O(n(e), t) = det((Ad(t™*)|m) — 1,,).

Now take in m the basis consisting of the vectors y, and z, defined in
(21.8.3), for a € S*. Relative to this basis, Ad(t~')|m is defined by the
formulas (21.8.3.3), with exp(u) replaced by ¢~ *. Since
COS 0 - 1 Sin 0 _ _ .2 l _ i0/2 _ -"9/2 2
“sind  cosf— 1 =2(1 —cos B)=4sin* 40 = |e e 2|2
it follows from the formula (21.14.12.1) that we have
(21.15.3.4) O(n(e), exp(u)) = |A(—u)|> = |A(w) %

This shows in the first place that the restriction of fto (G/T) x T, is a local
diffeomorphism onto V that preserves the orientation, when (G/T) x T and
G are oriented by the forms vgr Avy and vg, respectively. Secondly, we
deduce Weyl's integration formula:

(21.15.4) Considering the function |A|* = ] |e* — 1|* as a functionon T
ae 8§+

(21.13.6), for each continuous complex-valued function g on G we have

(21.15.4.9)

LG(S) dmg(s) = (Card(W))™"* L/T Lg(f (x, ) |A@)[* dmgyr(x) dma(t),
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and if g is a central function (21.2.2)
(21.15.4.2) j g(s) dmg(s) = (Card(W))~! J‘g(t)lA(t)|2 dmq(t).
G T

Apply the formula of successive integrations (16.24.8.1) with
(G/T) x T, in place of X, V in place of Y, the restriction to V of the
(2n + I)-form gvg in place of {, and the inverse image (g o f) - /f (vg) of this
restriction in place of v. Each of the fibers f ~!(y) is a finite set of cardinality
Card(W) (21.15.2), and at each point (x, t) of this fiber, v/{(y) is the number
1 by virtue of (16.21.9.2); hence we have

fvg(s) dmg(s) = (Card(W))~! J;/T L g(f (x, 1)) | A(t) |* dmg,7(x) dm(t).
But since the complement of V in G and the complement of (G/T) x T, in
(G/T) x T are negligible (21.15.2), we may replace V by G and T, by T in
this formula, which gives (21.15.4.1). In particular, putting g =1 and
remembering that mg is normalized, we obtain

1= (Card(W) mandGT) | | dn).

Treg

Since A =J(¢) =¢* Y det(w)e” ®~%ont, and since the w - 6 — § are pair-
weW
wise distinct weights in P = 2#iT¥%, it follows from the orthogonality rela-

tions for characters (21.3.2.4) applied to T that
J [A(t)|* dmy(t) = Card(W)
T

and consequently that mg(G/T) =1 (cf. (22.3.7.4)). If now g is a central
function, we have g(f(x,t)) =g(t) for all x e G/T, and the formula
(21.15.4.2) follows from (21.15.4.1) applied to g, together with the above
evaluation of mg,(G/T) and the Lebesgue-Fubini theorem.

We can now describe completely the characters of a compact connected
Lie group G in terms of the weight lattice P = P(G) and the half-sum 4 of
the positive roots:

(21.15.5) (Weyl's theorem) The mapping that sends each character x,, of G
to its restriction x,|T is a bijection onto the set of elements J(e?*%)/J(e°) of
Z[P]¥, where p runs through the set P(G) n C, and each of the weights
p € P(G) n C has multiplicity 1 in the character y, to which it corresponds.
The canonical mapping Z®©" — Z[P]¥ is a ring isomorphism.
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For each weight p € P n C, let g, denote the unique continuous central
function on G whose restriction to T is J(e?*?)/J(¢”) (21.13.5). Then the g,
form an orthonormal system in LYG, mg). For since A = J(¢%), it follows
from Weyl's integration formula (21.15.4.2) that

(21.155.) | g,g,dmg = (Card(W))™* | (e™*3(e”**))(e2T(e"™?)) dim.

As w runs through W, the weights w - (p + &) — J are all distinct (21.14.5),
and if p # gand g € P n C, all the weights w - (g + 8) — 9 are distinct from
the weightsw - (p + 8) — § (21.14.7). By virtue of the orthogonality relations
for the characters of T (21.3.2.4), the right-hand side of (21.15.5.1) therefore
vanishes if p # q. Furthermore, when g = p, since e %J(e?*?) is a linear
combination of Card(W) characters of T with coefficients 1 1, the right-
hand side of (21.15.5.1) is equal to 1.

This being so, it follows from (21.14.13(iii)) and (21.13.6) that we may

write
LIT=Y n(p)J(er*?)I(e),

peP nC

where the n(p) are integers =0; by (21.13.5), this implies that
Xo= ., n(pg,. Since IG |20 > dmg =1 (21.3.2.4), it follows therefore

peP nC
from the orthonormality of the g, that Y. (n(p))? = 1, and hence we have
peP ~nT

n(p) = 0 except for one weight p, e P n C, for which n(ps) = 1. Con-
sequently x, = g,,, and the weight p, occurs with multiplicity 1 in the
character y,, because e’ occurs with coefficient 1 in J(e?**%)/)(¢’)
(21.14.13(ii)).

In view of (21.14.13(iii)), the proof will be complete if we show that each
g, is a character of G. If it were not so, there would exist a weight
po € P n C such that g, were orthogonal to all the characters of G, by the
previous part of the proof. Since g,, # 0, this would contradict the fact that
the characters of G form a Hilbert basis of the center of LG, mg) (21.3.2).

A class of irreducible representations p € R(G) is therefore determined
by the highest weight p € P(G) contained in y,. This weight p is called the
dominant weight of the class p (or of any representation in this class), relative
to the chosen basis B of S. Every weight p e P ~ C is therefore the domin-
ant weight of a unique class p € R(G). Moreover, we have

(21.15.5.2) If p is the dominant weight of p, the other weights contained in y,

are all of the form p — Y n;B;, where the n; are integers 2 0.
i
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If 4, | T = Y n{q)e’, we have

geP

(21.15.5.3) e?J(e?) - Y n(g)et P = e PH(eP¥d),

qeP

Since e °J(¢%) is a polynomial in the e~#/(21.14.12.2), it is enough to show
that e~ ?*9]J(eP*?) is also a polynomial in the e %, for it will then follow
from (21.15.5.3) that if n(g)# 0 we must have g —p=7) z,8; with

J
coefficients z; € Z, and since we know that g < p, the z; must all be < 0.
From the definition of J(e”*?), it is enough to verify that forallre P n C
and all w e W, the weight r — w - r is a linear combination of the §; with
coefficients that are integers 2 0. But this result is precisely (21.14.6.2), since
the numbers r(h;) are integers 2 0.

(21.15.54) For peic* we have w-p=p for all we W, hence
J(eP*%)/1(e®) = eP. These are the only weights p € P(G) such that the charac-
ter e” of T is the restriction of a character of G. Forif pis such thatw - p=p
for all w e W, then p must be orthogonal to all elements w - u — u € it, for
all u € it and all w e W, but these elements span it’ because s, - h, = —h,,
and therefore we must have p € ic*.

(21.15.5.5) Let p’, p” be two classes of irreducible representations in R(G),
with dominant weights p’, p”, respectively. Since e” (resp. e””) is the leading
term in y, | T (resp. ,.|T), it follows that e”*#" is the leading term in the
restriction to T of the product g, x,.. If p is the class of irreducible represen-
tations with dominant weight p’ + p”, it follows therefore that p is contained
in p'p” with multiplicity 1, and that every other class p, € R(G) contained in
p'p” corresponds to a dominant weight < p’ + p”.

(21.15.6) The dimension of the representations in the class p € R(G) with
dominant weight pe P ~n C is given by the formula (Weyl's dimension
formula)

(21.15.6.1)
n, = n(p+5|a)/n(5|a)= 11<P+5"'«>/H<5,"a>
ae 8§+ xe 8§+

ze §t ae $t
(where (A|u) is a W-invariant scalar product on it¥).

The problem here is to calculate the value of the character y, at the
identity element of G (21.3.2.8), i.e., to calculate the value of J(e?*%)/J(¢’) at
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the identity element of T (21.15.5), or equivalently at the point 0 € t, by
considering the elements of Z[P] as functions defined on t. We shall calculate
the value of J(e?*%)/J(¢’) at a point of the form ih,, where h, is the element
of it defined by the relation A(h;) = (4|8) for all A € it*, and ¢ is a nonzero
real number; and then we shall take the limit of this as ¢ — 0. Now, for each
linear form q € P, the value of J(e%) at the point &ih, is by definition
2. det(w)e™ %9, ie, it is the value of A =J(e’) at the point ¢ih, € t,
weW
where h, is the element of it defined by the relation i(h,) = (4|q) for all
A € it*. From the formula (21.14.12.1) for A, we therefore have

(21.15.6.2) A(¢ihy) = n (efbtaley2 _ g=idtala)2),

ae 8§t

a function of £ whose principal part, as £ - 0, is [ | (i¢(g|«)). The formula
ae 8+

(21.15.6.1) now follows immediately.

PROBLEMS

1. Let G be a compact connected group, and let P be the weight lattice of G (relative to a
maximal torus T), § c P the root system of G relative to T, and W the Weyl group of G.
Let V be an irreducible representation of G, and let p be a weight of V.

(a) Leta € S, and let I be the set of integers t € Z such that p + t« is a weight of V; let
n(p + ta) be the multiplicity of this weight in V. Let b (resp. —a) be the largest (resp.
smallest) element of 1. Prove that I = [—aq, b] and that a — b = p(h,). (Consider the res-
triction of ¥ to the subgroup K, of G (21.8.5) and use (21.9.3).)
(b) Show that for each integer u € [0, a + b] we have s, - (p + (b — u)a) = p — (a — u)a,
and hence that the weights p + (b — w)a, p — (a — u)a have the same multiplicity in V.
(c) Show that the function t n(p + ta) is increasing in the interval [—a, 4(b — a)] and
decreasing in the interval [4(b — a), b). (Use (21.9.3).)
(d) A subset X of P is said to be S-saturated if, for each p € X and each root a € S, we
have p — ta € X for all integers ¢ lying between 0 and p(h,) inclusive.

Show that every S-saturated subset of P is stable under the Weyl group. For each
integer d 2 1, the set of weights p of V with multiplicity n(p) = d is S-saturated. (Use (c).)

2. With the notation of Problem 1, let E be the complex vector space of the representation V.
Then E is a simple U(g,c,)-module (21.9.1), hence is generated by any v # 0 in V.
(a) For each weight p of V, let E,, be the set of vectors v € E such that h - v = p(h)o for all
h € b; then E is the direct sum of the E, as p runs through the set of weights of V. Show
that for each root a € 8, either p + « is not a weight of ¥, in which case x, - E, = {0}, or
elsex, E, cE,,,.
(b) Let B be a basis of §, and leta,, ..., a, be the positive roots in § relative to this basis.
Let p be a weight of V such that none of the weights p + o, (1 £j < n) is a weight of V.
Then every weight of V is of the form ¢ =p—m o, — - — m,a,, where the m, are
integers 2 0, and p is the dominant weight of V. (If v # 0 is a vector in E, remark that v
generates E as U(g,c,)-module, and use the basis (21.16.3.4) of U(g)).)
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3. The notation is the same as in Problems 1 and 2. Let Y bea subset of P;anelementpe Y

is said to be S-extremal in'Y if, for each root « € §, we haveeitherp + a ¢ Yorp—a ¢ Y.
{a) Let p be the dominant weight of ¥, and let X be the set of weights of V. Show that the
S-extremal elements of X are the transforms w - p of p under the Weyl group. (Let g be an
S-extremal element of X; without loss of generality, we may assume thatge P n C.Ifais
a positive root, show that in the notation of Problem 1 we must have b = 0, and then use
Problem 2.)
(b) Show that X is the smallest S-saturated subset of P that contains p. (If X' is this set,
we have X' < X by virtue of Problem 1(d). Assume that X # X', and choose in X — X’ a
maximal element g (relative to the ordering defined by B). Then there exists a positive root
a such that ¢ + a € X; deduce that, in the notation of Problem 1, we have ¢ + ba € X', and
hence (by using the definition of a saturated subset and Problem 1) that g € X', whichisa
contradiction.)

4. With the same notation, show that for each weight g of V other than the dominant weight
p, we have (9]q) S (p|p) and (g + 6|q + 8) < (p + &|p + 8). (Reduce to the case where
g€ P~ C, and use (21.14.6).)

§.  With the same notation, show that there exists a weight in X that is the smallest element of
X relative to the ordering defined by B, and that this smallest weight has multiplicity 1.
(Observe that there exists an element w, in the Weyl group that transforms B into — B.)

6. With the same notation, show that for each finite nonempty 8-saturated subset X of P,
there exists a linear representation V of G such that X is the union of the sets of weights of
the irreducible components of V. (For each p € X consider the weight w - p that lies in
P n C (21.14.7) and the irreducible representation with dominant weight w - p.)

7. (a) With the same notation, let p € P and let X be the smallest S-saturated subset of P
containing p. Prove that the following conditions are equivalent:

(@) X=W:p
(B) (al9)=(p|p)foralige X.
(y) For all roots o € § and all integers ¢ between 0 and p(h,) inclusive, we have

(p—ta|p —te) 2 (p|P).
(8) For all roots a € 8, p(h,) is equal to O, 1, or —1.

(To show that (y) implies (5), observe that (p — p(h,)x|p — p(h,)x) = (p|p) and that the
Euclidean ball is strictly convex. To show that () implies (), observe that for eachw € W,
(w - p)(h,) is also equal to O, 1, or — 1, and deduce that for each integer ¢ lying between 0
and (w - p)(h,) inclusive, w - p — ta is equal to either w - p or (s, w) - p.)

Deduce that every nonempty S-saturated subset Y of P contains an element p satisfy-
ing these conditions.
(b) Let U be an irreducible representation of G, let E be the representation space of U,
and let p be the dominant weight of U. Show that the following conditions are equivalent:

(x) p satisfies the equivalent conditions of (a) above.
(B) All the weights of U are of the form w - p for some w e W.
(y) For each root « € S and each v € E, we have (x,)? - v=0.

(To show that (x) and (B) are equivalent, use Problem 3(b). To show that () implies (y),
use Problem 2(a). To show that if there exists « € 8§ such that p(h,) = 2 we cannot have
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(x2) - v =0 for all v € E, consider the restriction of U to the subgroup K, of G (21.8.5) and
use (21.9.3).

(a) On the model of the algebra of formal power series (A.21), show that it is possible to

define a Z-algebra Z[[P ~]] whose elements are * formal sums™ 3 ¢, e? (where A € it*), the
psi

multiplication being defined by

( ) cpe’)( ¥ c'pe") = 3y ( Y cqc;) e’
psaA psSu PSAtu \gtr=p

With the notation of Problem 2(b), for each weight p € P let v(p) denote the number of
systems of integers (m,, ..., m,) € N"such that p=m,a; + -+ + m,a, (so that v(p) is the
“number of partitions of p into positive roots ™). To say that v(p) > 0 means that pis a
linear combination of positive roots with coefficients that are integers > 0. Then we have

1/ [T=-e= Y viple*

aec 8§t peP
in the ring Z[[P"]).
(b) For each weight pe P n C, show that the multiplicity n,(q) of a weight ¢ in the
irreducible representation with dominant weight p is given by the formula

M na)= % det(w) v(w - (p+0)—(q+9))

weW

(Use (a) above and Weyl's theorem.)

(c) Deduce from (b) that for each weight g # p of the representation with dominant
weight p we have

nlg)=— ¥ det(w) ng+6—w:d)

weW, w#l

(Use the formula (1) with p = 0.)

(d) Let p, be the class of irreducible representations of G with dominant weight
pe P ~ C. Show that the formula (21.4.7.1) can be written explicitly as

PP, = 2 clbgrp,

reP o

where

@ cpary= L detww) vw: (p+38)+w (g +8)— (r+25))

weW. weW

(Observe that by virtue of (21.4.6.2) we have

©) S clp. g, i) = ( 5 n,(s)e*)J(e“")

rePnC seP

and note that for r e P n C, w - (r + 6) does not belong to P n C; consequently ¢(p, g, r)
is equal to the coefficient of & ** in the right-hand side of (3).)
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9. With the notation of Section 21.15, take as scalar product (A]#) on it* the canonical scalar

10.

11,

product (Section 21.11, Problem 11). Show that if the representations of the class p € R(G)
have dominant weight p € P ~ C and dimension n, (given by (21.15.6.1)), then

Y (q16)* = Fan,((p + 6{p + 8) — (5]9))

where the sum on the left-hand side is over all the weights ¢ of p, counted according to
their multiplicities. (Expand the right-hand side of (21.15.6.2) and y,(¢ib,) as far as terms
in &3,

Let G be an almost simple compact connected Lie group.

(a) With the notation of Section 21.14, let B be a basis of S. Show that for the ordering
defined by B there exists a highest root y=n, B, + +-* + n,§,, such that for each other
root a=p B + -+ pP,in S, we have p, < n;for | <j < (Observe that the adjoint
represehtation of G on g, is irreducible, and consider its dominant weight.) The root
lies in C, the Weyl chamber relative to B, and we have {a|«) < (u|p) for all roots « € S.
Also, for each root « > 0 other than p, the Cartan integer n(a, u) is equal to 0 or | (use
Section 21.11, Problem 1).

(b) Let h, be the half-sum of the h, € it for all positive roots a. For each root
a=p B+ +pPh, we have alh))=p, +p,+ - +p=4%Y nx ). (Use

eS8
(21.11.5.5) and (21.11.7).)
() Ifp=nB,+ -+ npis the highest root (relative to B), show that

n+o4m=h~1,

where h is the Coxeter number. (Use Section 21.11, Problem 16(e), and observe that
n(a, 1)? = n{a, p) for all roots a > 0.}

Let G be an almost simple compact connected Lie group, and retain the notation of
Problem 10. For each « € 8 and k € Z, let u, , denote the affine hyperplane o« ™ ! (2nk) in it.
Also let {p,, ..., p;} be the basis of it dual to the basis B = {8,, ..., B} of it*, so that
B{p.) = &, (Kronecker delta). Then the element h, e it (Problem 10) is equal to
P+ +p (cf (21.165.2).)

The Weyl group W, considered as a group of automorphisms of the vector space it, is
generated by the reflections s,: ur— u — a(u)h, (21.8.7), where a € S.
(a) The group W, generated by the orthogonal refiections in the affine hyperplanes u, , is
called the affine Weyl group. Show that W, is the semidirect product of W by the group P,
generated by the translations u+— u + 2rh,, « € S (or, equivalently, by the translations
u—u + 2rth;, 1 < j < ). (Observe that the translation u u + 2rh, is the product of the
reflections in the hyperplanes u, , and u, ,, and that W leaves invariant the root system
S$" formed by the h,.) The group W, leaves globally invariant the union of the hyper-
planes u, .
(b) The set C* of vectors ue it such that f(u) >0 for 1 £j <1 is called the Weyl
chamber of 8" (relative to the basis B), and the set A* of vectors ue C* such that
u(u) < 2m, where p is the highest root of $ relative to B (Problem 10) is called the principal
alcove of C*. Show that A* intersects none of the hyperplanes u, ,. The set A* is the
interior of the simplex constructed on the vectors 2np,/n; (1 £j £ 1) (14.3.10).
(c) Show that if an element of W, fixes a vector z not lying in any of the hyperplanes u, ,,
then it is the identity element of W,. (The element of W, in question is the product of an
element w € W by a translation u— u + h of Py, and must satisfy w - 2 = z + h; deduce
that exp{iw - z) = exp(iz) and use (21.7.14).)
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(d) Deduce from (c) that the only element of W, that leaves A* globally invariant is the
identity. (Remark that the subgroup W, of W, leaving A* globally invariant is finite, and
consider the barycenter of the transforms under W, of a vector in A*.)

(¢) The connected components of the complement in it of the union iD(G) (Section
21.10, Problem 2) of the hyperplanes u, , are called the alcoves of S. Show that each alcove
is of the form v(A*) for a unique element v € W,. (The uniqueness follows from (d) above.
To prove the existence of v, take a point x in an alcove and a point a € A*; consider the
point y of the W -orbit of x that is nearest to &, and show that y € A*. To do this, show
that y and a lie on the same side of each of the “ walls” of A*, i.e,, the ! + 1 hyperplanes
ug o and u, ) o
(f) Show that each point of G is conjugate to a point of the form expg(iu), where u € A*.
(Observe that exp(2rih,) = e for all roots a, and use (¢) above and (21.8.7).)

{(8) Show that, for 1 < j </, the points of the form 2ntp, with 0 < ¢ < 1 that belong to
iD(G) are the points 2rp,/m, where | < m < n;. (Use Section 21.11, Problem 3(c}.)

We retain the hypotheses and notation of Problem 11, and the notation of (21.10.6).
Suppose that the vectors x,, together with a basis of it, from a Weyl basis of g, (21.10.6).
Consider the vector h, € it, and take an element in g of the form

1
2= 3 (2%, — ;%)
=1
withz;eC(1£js1)
(a) Show that if we put

1
¥ = Y ilz; X+ Zx_p),
=1

which belongs to g, then we have
[ithy, 2] =12, [ihy, 2]= —2,

and
:
[z, 2]=2i} z;Z/h, .
=1

(Use the fact that §; — f, is not a root.) Show that we may choose the coefficients z; # 0so
that [z, 2'] = 2ih,. The vectors ih,, z, and 2’ then generate. a three-dimensional Lie
subalgebra 1, of g, which is the Lie algebra of an almost simple compact subgroup K, of
G.

(b) Show that K, is a principal nice subgroup of G, of rank 1. (If G’ is a connected closed
subgroup of G that contains K, and T, and if g is its Lie algebra, observe that gi¢, must be
the direct sum of h = t.¢, and a certain number of subspaces g,, and that the sum of these
8, must contain z and z'; note also that the g, ,and g_, must occur among these g,,
because the z; are # 0.)

(c) Show that a nice subgroup of G of rank 1 that contains a regular element of G is
necessarily conjugate to the group K, (use Problems 8 and 12 of Section 21.11). Such a
subgroup is called miniprincipal.

(d) Let G, be a connected closed subgroup of G. Show that for G, to be a principal nice
subgroup of G, it is necessary and sufficient that G, contain a miniprincipal subgroup K,
of G. (To show that the condition is necessary, consider a miniprincipal subgroup K{ of
G, and use Section 21.11, Problem 8 to show that a principal diagonal of Kj is a principal
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diagonal of G. To show that the condition is sufficient, observe that if G, is a connected
closed proper subgroup of G, containing K, then the rank of G, cannot be equal to that
of G,, by virtue of Section 21.11, Problem 7(d), and conclude that K, is miniprincipal in
G, by virtue of the fact that an element of G, that is regular in G is also regular in G .}
(e} Let ¢ be an automorphism of G. Show that there exists an element z € G such that
Int(z) - ¢ fixes all the elements of a given miniprincipal subgroup K, of G. Deduce that
there exists a finite subgroup F of Aut(G) such that Aut(G}) is the semidirect product of its
identity component Int(G) and F.

Let G be an almost simple compact connected Lie group. With the notation of Problem 11,
if o is a Coxeter element in the Weyl group W 4 (Section 21.11, Problem 14), there exists an
element s € .4°(T) such that the restriction of Ad(s)® ¢ to t., is equal to that of the
contragradient 'a ™! of 6. For each root « € S, Ad(s) ® 1, transforms g, into 8o - Deduce
that the eigenvalues of this transformation on the stable subspace ) g, are hth roots of

2e S
unity, each occurring with multiplicity / (Section 21.11, Problem 16(d)); the eigenvalues of
Ad(s) ® 1¢ on t¢ are the complex numbers exp(2rim /h) (Section 21.11, Problem 14(c)).
The element s is called a Coxeter element of G (relative to T). Show that any two such
elements are conjugate in G. (Use the fact that | is not an eigenvalue of ¢.)

Let G be an almost simple compact connected Lie group, and retain the notation of
Problem 1. Each Coxeter element of G (Problem 13) is regular in G and of finite order,
equal to h. Show that each element s € G that is regular and of order h is conjugate to a
Coxeter element, and that no regular element # ¢ in G has finite order < h — 1. (We may
assume that s = exp(iu), where u lies in the principal alcove A* (Problem 11) in it. Use the

fact that s" = e to show that f(u)=2np,/h with p; a positive integer, and u(u) =
i

2n( Y, p;n;)/h; then express that u(u) < 27 and use Problem 10(c) to deduce that p; = 1 for
j=1
1 £ j < land hence that u = (2n/h)h, (Problem 10(b)).

With the same hypotheses and notation as in Problem 13, let s € 47(T) be the Coxeter
element considered there. Since s is regular in G, it is contained in a unique maximal torus
T of G. Let {’ be the Lie algebra of T', let §' be the corresponding root system, and let
{81, ..., By} be a basis of §". If hg € it' is such that §i(hy) = 1 for 1 £ j £ I, we may assume
that s = exp(iw’) with u' = (2n/h)h;, (Problem 14). For each integer j # 0, let o’ denote the
direct sum of the g,.forall o' € § such that o’ = p, f) + - + p, i withp, + - + p,=j,
so that we have a = {0} if | j| 2 h. Also put aj, = tig, so that g,¢, is the direct sum of the
a;. For all x € a, we have [h;, x] = jx.

(a) Show that

dim a) + dim a)_, = dim o} + dim a;_; = [ + ¢(j)

for 0 < j £ h— 1, where (j) is the multiplicity of exp(2nij/h) as an eigenvalue of ¢ (and
therefore ¢(j) = 0if j is not one of the m, (Section 21.11, Problem 14)). (Use Problem 13.)
(b) Let b; =t n (aj+aj_,), so that b, is the eigenspace of ¢ for the cigenvalue
exp(2nij/h), and dim b, = @(j). We have b, = {0}, and b, contains a regular element x
(Section 21.11, Problems 14(b}and 16(c}). Let g, (resp. g’ ) denote the direct sum of the a]
with j > 0 (resp. j < 0), so that g, is the direct sum of ¢, , g, and a;. Let 7, and n_
denote the projections of g,¢, onto g', and g'_ defined by this direct sum decomposition.
Then by definition we have x = n,(x) + n_(x), m,(x) = Y, ryxy, and n_(x) =rx'_,,
>0
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where {x.} is a basis of g,., and y' is the highest root of the system $',and r;, r are complex
numbers. Show that the r;are all # 0. (Note that the centralizer of x in g,¢, is t (), and that
[x5, x_5]=0for k#0, and [x_,., x_g]=0.) Putting e = n,(x), deduce that there
exists an element f € g_ such that [e, f] = h;, [hg, e] = e, and [h;, f] = —f.
{c) The vector subspace s of g,¢, spanned by e, f, and hj is a Lie subalgebra isomorphic
to sl(2, C). Show that g,,, considered as U(s)-module corresponding to the adjoint re-
presentation restricted 10 s, is the direct sum of | simple U{s)-modules that are odd-
dimensional as complex vector spaces. (Observe that all the eigenvalues of ad(hp) are
integers, and use (21.9.3).)
(d) Show that the mapping =, , restricted to t,, is injective. (Observe that b, = {0} and
that ad(z) is nilpotent for each z e g'_, whereas ad(u) is not nilpotent for u # 0 in t,,.)
Show that 7, (t,g) is contained in the kernel of ad(e). (We have [x, u] = 0 for u € t¢;
deduce that [ (x), 7 ,.(u)] = 0, by writing x = n,(x) + n_(x) and u = (u) + n_(u).)
Deduce that n,{tq) is equal to the kernel of ad(e) (use (c) above).
(¢) Deduce from (d) that the image of ¢', + aj under ad(e) is g, , and hence that the
image of o} under ad(e) is a}, . Hence, by using (b) above, obtain Kostant’s formula
o(j) = dim a) — dim a},,
for0Lj<h-1
(f) Show that the [ simple U(s)-modules into which g, splits have dimensions 2m; + 1
(1 £j £ 1), where the m, are the integers defined in Section 21.11, Problem 14(c). (Note
that the kernel of ad(e) is the direct sum of the n,{t,) » a), and that in o the restriction
of ad(hy) is multiplication by j; then use (21.9.4).)

Let G be an almost simple compact connected Lie group, and let T be a maximal torus of

G. We retain the notation of Problem 11.

(a) The identity component of the centralizer 2(s) in G of an arbitrary element s € G is

conjugate to that of the centralizer of an element of the form exp(iu), where u lies in the

closure of the principal alcove A*.

(b) Let & be the set of connected closed proper subgroups of G. The identity components

of the centralizers Z (s) that are maximal elements of § are the conjugates of certain of the

identity components (2 (exp(2zitp,))),, where 1 £j <! and 0 <t < 1/n;. (Use Section

21.11, Problem 4.)

{c) 1 n; =1, theidentity component G’ = (Z(exp(2nitp,))), is the same for all r such that

0 <r < 1, and is maximal in §. (Observe that if G" > G’ i3 a connected Lie subgroup,

distinct from G or G', then $(G") must be equal to $(G’), by using Problem 10(a).) The

center of G’ is 1-dimensional.

(d) If n;>1 and is not a prime number, the group G’ = (Z(exp{2zitp,))), is not a

maximal element of &, for any value of r such that 0 < ¢ < 1/n;. (It is sufficient to consider
]

the case t = 1/n; the roots in §,(G’) are the roots in 8, (G) that are of the form ¥ m, B,,
k=1

where my=n; or my=0. If n;=ab where a, b are integers > 1, and if
G" = (Z(exp(2nip,/b)))s, show that $(G") > $(G') and that 8(G") contains at least one
root that does not belong to $(G’), by using Problem 11(g).)

(e) 1fn,> landis prime, then G’ is maximal in &. (Argue by contradiction, by supposing
that G’ « G” = (Z(exp(2=niv))), with G” distinct from G’ and G. We should then have

i

v =Y a,p,, where the a, are integers except for a, = g/n;, where q is not a multiple of n ;.
k=1

If r is an integer such that gr = 1 (mod n)), consider the centralizer of exp(2nirv) and thus
obtain a contradiction.) The group G’ is semisimple.

(f) Describe the maximal elements of & that have rank equal to the rank of G, when G is
an almost simple classical group.
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16. CENTER, FUNDAMENTAL GROUP, AND IRREDUCIBLE
REPRESENTATIONS OF SEMISIMPLE COMPACT CONNECTED
GROUPS

Throughout this section, G denotes a compact connected semisimple Lie
group, so that its center Z is finite and is contained in all the maximal tori of
G (21.7.11). All other notation is the same as in Sections 21.13-21.15.

(21.16.1)  The lattice P(G/Z) of weights of G/Z relative to T/Z is the lattice
Q(g) generated by the roots o € S (and is therefore a free Z-module with
basis any basis B of 8), and Z is isomorphic to the quotient

P(G)/P(G/Z) = P(G)/Q(s)-

Since the center of G/Z consists only of the identity element (21.6.9), the
adjoint representation of G/Z is faithful; hence (21.13.2) every irreducible
representation of G/Z is contained in the tensor product of a certain number
of linear representations equal to Ad ® 1. and a certain number of linear
representations equal to its conjugate. By definition, the restriction to T of
the character of an irreducible representation contained in Ad® I is a
linear combination of characters of T of the form ¢*, where a is a root
(21.8.1). These remarks, coupled with (21.15.5), show that P(G/Z) = Q(g).
Next, the groups T and T/Z have the same Lie algebra t, and the exponential
mapping expy;z is the composition of the canonical homomorphism
T — T/Z with expy; consequently the lattice I'y; (21.7.5) is the inverse image
expr '(Z), and Z is isomorphic to I'rz /T'y. The elementary theory of free
Z-modules (A.26.5) then shows that Z is also isomorphic to I'f/T'¥,,, i.e. to
P(G)/P(G/Z).

(21.16.2) The result just proved may be applied to the universal covering
group G of G; if D is the center of G, then G/D is isomorphic to G/Z, and G
is isomorphic to G/Z;, where Z is a subgroup of the center D of G
(16.30.4); also Z is isomorphic to D/Zg (20.22.5.1). It follows that the fun-
damental group n,(G) is isomorphic to P(G)/P(G), hence to I'1/T'y,, where
T, is the maximal torus of G that is the inverse image of T.

Since G has the same Lie algebra as G, it follows that P(G) is contained
in the lattice P(g) (21.14.3). But from the fact that G is semisimple and
simply connected, it follows that P(G) = P(g). In other words:

(21.16.3) Let G be a simply connected compact semisimple group and g its
Lie algebra. Let P(g) be the lattice of linear forms A € it* such that A(h,) is an
integer for all « € 8 (i.e., the lattice dual to the lattice in it having as basis the
h; (21.14.2) for 1 < j < I). Then P(G) = P(g).
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Let p # 0 be a linear form belonging to P(g). It is enough to construct a
linear representation V of G on a finite-dimensional complex vector space E,
such that there exists a vector x # 0 in E with the property that
V(exp(u)) - x = e"¥x for all u e t (21.13.6). Since G is simply connected, it
comes to the same thing (19.7.6) to define a C-homomorphism of Lie
algebras p: g, = gl(E) such that, for all ue b = t @ it, we have

(21.16.3.1) p(u) - x = p(u)x.

If U denotes the enveloping algebra U(g,c,) (19.6.3), it again comes to the
same thing (21.9.1) to construct a left U-module E of finite dimension over C,
and an element x # 0 in E such that

(21.16.3.2) (u—p(u)-1)-x=0

forallueb.

Since P(G) and P(g) are both invariant under the action of the Weyl
group, we may, by replacing p by w - p for a suitably chosen w € W, assume
that p € C, or in other words that

(21.16.3.3) m;=p(h) =0 (rgj=)).
The construction of E is in several steps.

(A) Arrange the positive roots (relative to B) in a sequence (%) <y<n-
With the notation of (21.10.3), the algebra U has a basis over C consisting of
the elements

by
An

(21.16.3.4) x,, x%

2, xa_..a" hcll hf‘xZ{ x:; S x
where the g, b,, and ¢; (1 £ k< n, 1 £j <) are arbitrary integers = 0
(19.6.2). Let U_ denote the vector subspace of U generated by the basis
elements (21.16.3.4) for which b, =0for 1 S k< nandc;=0for1 <j< |,
and let U, denote the vector subspace generated by the basis elements
(21.16.3.4) for which a, = 0 for 1 < k < n. Then the vector space U may be
identified with U_ ® U, (A.20.2). We remark that the elements x, for
ae 8" and the h; for 1 £j< [ form a basis of a Lie subalgebra b of the
complex Lie algebra g,, because if « and B are any two positive roots, we
have [x,, x,] = 0if« + B is not a root, and [x,, x;} € g, , = bifa + fisa
root (21.10.5). The vector subspace U, of U may therefore be identified with
the enveloping algebra U(b) (19.6.2).
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Let u denote the left ideal of U generated by the elements

(21.16.3.5) x, (lZ£kgn), u—p(u)-1 (ueb)

&

Let M be the quotient U-module U/n. We shall first show that

(21.16.3.6) The U-module M is nonzero, and if v is the canonical image in M
of the identity element 1 of U, then M has a C-basis consisting of the elements

dn
—an

(21.16.3.7) XU, ox - p

~ay

where the exponents a, (1 < k < n) are arbitrary integers = 0.
The elements (21.16.3.5) belong to Uy; let 1y be the left ideal of U, that
they generate. Clearly we have

(211638) n= U- ®C g U/" = U_ ®C (Uo/no).

To prove (21.16.3.6), it is enough to show that U, /i, is 1-dimensional over
C. Now, we may define a C-homomorphism of Lie algebras 6: b — C by
setting 8(u) = p(u) for ue b, and 6(x,) =0 for x € S*; we have only to
verify that 8([u, x,]) =0 for ue hand a € $*, and this follows from the fact
that [u, x,] is a scalar multiple of x,. Since p # 0, the homomorphism
0 extends to a surjective homomorphism 8: U(b) — C (19.6.4), the kernel
of which evidently contains 1y ; but since the h; commute with each
other, every element h§ - hi'x? -~ xi» is congruent modulo 1, to
p(hy ) - p(h)"x5! -+ xi" (and hence to 0 unless all the integers b, are zero),

and therefore the kernel of 8 is equal to n,, which proves our assertion.

(B) For each uel) we have ux_, — x_,u= —o(u)x_, in the
algebra U, from which it follows immediately by induction on a, + -*- + a,
that

(21.16.3.9)
we (o) = (p(u) - ayo () = — g (W)(X, X, )
in the module M and since we have (21.11.5)

!
(21.16.3.10) a= Y diB;

j=1
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where the d,; are integers = 0, we may write

(21.16.3.11)

u-(x@,, o x®, - o)=(p(u) — ny By(u) — = mByu))(x,, cox?,, - v)
where

(21.16.3.12) n; = id,(jak.

For each multi-index n = (n;) € N, put

(21.16.3.13) Pa=pP—m By — " —np,

so that py = pand p,, < p (for the ordering defined in (21.14.6)) for all n # 0.
Next, for each g € P(g), let M(g) be the vector subspace of M consisting of
the vectors z satisfying

(21.16.3.14) u-z=gq(u)z
for all u € b. Then:

(21.16.3.15)  The vector space M is the direct sum of the M(q) for all q € P(g)
such that q < p: the subspaces M(q) are finite-dimensional, and M(p) is 1-
dimensional. For each root a € S, we have x, - M(q) = M(q + «).

The first assertion is a consequence of what has already been established;
by virtue of (21.16.3.6), M is the direct sum of the M(p,) for n € N, and
M(q)={0! if g is not one of the forms p, (A.24.4). For each given
n = (n) € N, there is only a finite number of systems of integers a, = 0
(1 £ k £ n) satisfying the equations (21.16.3.12), hence the subspaces M(p,)
are finite-dimensional; also it is clear that the only element of the basis
(21.16.3.7) that belongs to M(p) is v, and hence M(p) is one-dimensional.
Since [u, x,] = a(u)x,, (21.16.3.14) implies that

(21.16.3.16) u-(x, - z)=x, - (u-z) + [u, x,] - z = (g(u) + a(u))(x, * 2),
which completes the proof.

(C) The integers m; being those defined in (21.16.3.3), we shall now
show that:
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(21.16.3.17) The U-submodule N of M generated by the | elements
(21.16.3.18) xmtt (1gj=))

does not contain v; moreover, for each z € M and each index j € [1, 1], there
exists an integer s 2 0 such that x*, -z € N.

We first remark that in the algebra U, every element x, (resp. x_,) for
ae€S' is a linear combination of products x, x,,---x, (resp.
x_, x_,, " x_,), where (y,, ..., 7,) is a sequence of roots all belonging to

the basis B = {B,, ..., f,}. Indeed, this is obvious if « € B; if not, « is of the
!

form Z d;B; with each d; an integer = 0 (21.11.5), and we can proceed by

j=

induction on Z d;. By hypothesis, we have « = 4 + p, where 1 = Z d;p;

Jj=1
1

and u = Z d}B; are two roots in §* with Z dy < Z d; and Z dj < Z d;
J= =1 i= ji=1
(21.11.5); hence x, is a scalar multiple of [x, , x,] = xix x x,1 (21.10.5),

and our assertion follows from the inductive hypothesis.

To prove the first assertion of (21.16.3.17), it will be enough to show that
N is contained in the sum of the M(g) with ¢ < p. In view of what has
already been established, and the form of the elements of the basis
(21.16.3.4) of U, this will result from the following properties:

(1) Forueband ae S we have
(21.16.3.19) u- (x5 - v)=(p(u) + re(u))(x} - v)

by induction on r, starting from (21.16.3.16).

(2) Forl <k </ wehave xy, - (x%! - v) = 0. Indeed, if k # j, B, — B,
is not a root (21.11.5), hence [x,,, x_;] = 0 (21.10.5): in other words, x;,
and X_j,, commute in U, and the assertion follows from the fact that
x,, - v =0 for all k, by the definition of M. If k = j, we observe that (in the
notation of (21.10.3)) the algebra U(s, ) is a subalgebra of U, and that if we
apply the formulas (21.9.3.6) to the U(s, }-module generated by the element
v € M, we have

(21.16.3.20) x;, - (xZg, - v)=r(p(h;) — r + 1)(xZ5 - v)

for all r=1, and therefore when r=m; +1=p(h;)+ 1 we obtain

X, - (x mJH v) =



138 XXI COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS

(3) For 1 =k £1 we have, by definition,
x_g, " (xZ5)" - v) € M(q)
where g = p — (m; + 1)B; — B, by virtue of (21.16.3.15).

To prove the second assertion of (21.16.3.17), we need only consider the
case where

2T Xy Koy 7 Xy, " 0

in which the y, belong to B; when r = 0, the assertion follows from the
definition of N, and we proceed by induction on r. The only positive integral
values of k for which kf; + y, can be a root are 0, 1, 2, 3 at most (21.11.11).
In view of (21.10.5) we may therefore write

s+3

s+3 s+2
X_ﬂj X

-y = L Xy Xy i Xoyi-p; X-g;
” s+ 1 ” s
+ L Xoyi—2p; X=py F I Xy —3p; X2y,

for all integers s > 0, with scalar coefficients ¢, ., t, t and x, replaced by 0

s

if A is not a root. The result now follows from the inductive hypothesis.

(D) Now consider the U-module E = M/N. By virtue of (21.16.3.17),
the image v of v in E is not zero, and satisfies the relation u - & = p(u)v for all
u € b. It is therefore enough to show that E is finite-dimensional over C. Let
E, denote the canonical image of M(g) in E, for all ¢ € P(g) such that ¢ < p;
then E_ is finite-dimensional, and for each y € E, and u € h we haveu - y =
q(u)y; furthermore, E is the sum of the subspaces E, (hence in fact the direct
sum, cf. (A.24.4)). Hence we have to prove that E, = {0} for all but a finite
number of values of g€ P(g). This is a consequence of the following
proposition:

(21.16.3.21) IfE, # {0}, then also E,,., # {0} for all elements w of the Weyl
group W.

Assume this result for a moment. For each g € P(g) such that E, # {0},
there exists w € W such that w - g € C(21.14.5.1). Since E,, ., # {0}, we must
havew - ¢ < p (in fact, w - g must be one of the p, , cf. (A.24.4)). But the set of
p. such that p, e C is finite, because they satisfy p, < p (21.14.8.1). Since W
is a finite group, it follows that the set of g € P(g) such that E, + {0} is finite,
as required.

It remains therefore to prove (21.16.3.21). Let y # 0 be an element of E,.
It is enough to show that E, ., # {0} for w =s; (1 £ j £ I), because W is
generated by the s; (21.11.8). Consider the U(s, )-submodule F of E gen-
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erated by y: we claim that it is finite-dimensional over C. Indeed, it is clear
that the vector space F is spanned by the elements x“_,,/.x’,}j -y, where q, b are
integers > 0. But xj, - ye€ E ., by virtue of (21.16.3.15), and since by
definition and the fact that §;(h, ) = 2 we cannot have q + bfi; < p for more
than a finire number of integers b > 0, it follows that x,’}j -y = 0 for all but
finitely many values of b. It then follows from (21.16.3.17) that for each of
these values of b we have x? xzj -y =0 for all sufficiently large a, and
therefore F is indeed finite-dimensional. The U(s, )-module F is thus a direct
sum of submodules isomorphic to the modules L,, (21.9.3) (if we identify s,
with su(2)). By hypothesis, there is an element 3’ # 0 in one of these submo-
dules such that h; - y = g(h;)y’, and therefore it follows from the first of the
formulas (21.9.3.1) that there is also an element y” # 0 in this submodule
that belongs to an E, with ¢’ = q + kB, for some integer k € Z and ¢'(h;) =
—g(h;). This last relation may also be written as (g + q'|f;) = 0; now
(g + ¢') cannot be orthogonal to g, for ¢’ of the form g + kB;, unless g and
q are images of each other under the orthogonal reflection g, (21.11.2.1);
hence we have ¢' = s; - q. This completes the proof of (21.16.3.21) and hence
also of (21.16.3).

With the same notation, the results of (21.16.2) and (21.16.3) can be
stated as follows:

(21.16.4) Let G be a simply connected semisimple compact Lie group, Z its
center, g its Lie algebra, P(G) = P(g) the lattice of weights of G relative to a
maximal torus T of G, and Q(g) the sublattice of P(g) generated by the roots of
g (relative to T).

(i) The lattice P(g) is the dual in it* of the lattice in it generated by the
h,, which is the lattice (2mi)” '’y = (2ni)™ ' exps '(e) (21.7.5). The lattice
Q(g) is the dual of the lattice (2mi)™ ' expr '(Z).

(ii) There is a canonical one-to-one correspondence between the quotients
G, = G/D of G by a subgroup D of the center Z, and the lattices I'* in it* such
that Q(g) = I'* = P(g). If T, = T/D, a maximal torus of Gy, then I'* is the
dual of the lattice (2mi)™'T'1,, the quotient P(g)/T'* is isomorphic to the fun-
damental group n,(Gy), and T*/Q(g) is isomorphic to the center Z, = Z/D of
G,.

(21.16.5)  Since the h; (1 £ j £ I) form a basis of the lattice (2ni)™ 'I'y gen-
erated by the h, (21.11.5.5), the lattice P(g) admits as Z-basis the basis of the
vector space it* dual to the basis (hj), i.e., the basis consisting of the linear
forms @; (1 £ j < 1) such that

(21.16.5.1) ah)=05, (1<j k<)
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The w; (1 £j £ 1) are called the fundamental weights of g (or of the corre-

sponding simply connected group G) relative to the basis B of the root

system S. From the definition of P(g), all the elements of P(g) ~ C are linear
1

combinations Y n;m, in which the n; are integers = 0. By virtue of (21.11.7),
=1
the half-sum of the positive roots is given by the formula

(2116.5.2) 5=w1+w2+"‘+w,‘

This is the smallest element of P(g) n C (21.14.8).

It should be noted, however, that the w; are not necessarily minimal
elements of (P(g) — {0}) n C.

If p; € R(G) is the class of irreducible representations of G with domin-
ant weight m; (1 £ j < 1), the classes p; (or the representations belonging to
these classes) are called fundamental.

(21.16.6) Let G be a simply connected semisimple compact Lie group of rank
I. Then the Z-algebra homomorphism

(21.16.6.1) Z[X, X5, -, X)) ZRG)

which maps identity element to identity element, and each indeterminate X; to
the fundamental class p; (1 £ j < 1), is bijective.

We know from (21.15.5) that there is a canonical isomorphism
2R _, 7[P(g)]¥, because G is simply connected (21.16.3), and that the
elements v, = J(e?*?)/J(¢’) form a basis of Z[P(g)]* as p runs through
P(g) n C (21.14.13). Composing this isomorphism with (21.16.6.1), we
obtain a homomorphism of Z[X, ..., X;] into Z[P(g)]¥ that, for each multi-
index n=(n,...,n)eN, maps X,=X}---X' to the element
u, = vy - vy . Since in the expression of v, as a linear combination of the e
with g € P(g), the term e” is the leading term (21.14.13), it is clear that u, has
a leading term equal to e™®), where w(n) = n;m, + *** + n,@y;. As n runs
through N/, m(n) runs through the set P(g) n C, by virtue of (21.16.5.1) and
the definition of C. It follows therefore from (21.14.13) that the u, form a
basis of Z[P(g)]¥, and the proof is complete.

Remarks

(21.16.7) (i) It should be obsercd that the restrictions x, |T = Vg, =
J(e™ * %)/J(€®) of the characters of the fundamental representations are not
necessarily equal to the elements S(m)) (21.16.10).
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(1) Once the linear representations of a simply-connected semisimple
compact Lie group G are known, the linear representations of any quotient
G/D of G by a discrete subgroup of its center (i.e., of a Lie group locally
isomorphic to G) can be deduced: they are the representations obtained on
passing to the quotient from a representation U: G — GL(E) such that the
image of D under U is the identity element of GL(E).

Examples: The Fundamental Representations of the Classical Groups

(21.16.8) 1. Representations of SU(n). With the notation of (21.12.1), the
elements h; of the basis BY of §" are the matrices

Ejj—Ejiq j+1 (1<jsn-1);

the ih; (1 £j<n—1) form a basis of the Lie algebra t' of the maximal
torus T' =T n SU(n), the intersection of SU(n) with the maximal torus
T of U(n) defined in (21.12.1); the lattice 'y, the kernel of the expon-
ential mapping expy., has as a Z-basis the elements 2nih; (1 £ j < n —1);
the lattice 2nil'% = P(SU(n)) therefore has as a basis the fundamental
weights @; (1 £ j < n — 1), and we regain the fact that P(SU(n)) = P(su(n))
(21.16.3).

The restrictions &] to it’ of the n linear forms ¢; (1 < j < n) generate the
dual it'* of the real vector space it, and satisfy the relation

gty + o +e=0;

the &) for 1 £j < n— 1 form a basis of it* over R. A simple calculation
then shows that the linear form w; on it' (1 £j < n— 1) is given by the
formula

(211681)  wi=¢ +e -+, (1Sj<n—1)

n

The vector space it is the direct sum of it’ and ic = R }_ E;;; hence the dual
j=1

it'’* may be canonically identified with the annihilator of ic in it*, and with

this identification it is easily verified that

1 n
(21.16.8.2) A X (1£j<n)

n =1 B
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We shall now determine explicitly the irreducible representations of
SU(n) with dominant weights @; (1 < j < n — 1). Since the functions ¢ take
values belonging to 27iZ at the points of the lattice 'y, (generated by the
2nih;), we may identify e* with a function on T’ (21.13.6). Let U, be the
canonical injection s— s of SU(n) into GL(n, C); it is clearly a linear re-
presentation of SU(n), and its restriction to T’ is the Hilbert sum of n
one-dimensional representations on spaces Ca;, where (a;), ¢ ;<, is the can-
onical basis of C". The representation on Ca; maps s € T’ to the homothety

with ratio e/5), hence we have Tr(U,(s)) = Z e“) for s € T'; as a function

on T’ this is just the sum S(m,), because the Weyl group is equal to S,.
follows (21.13.7) that U, is irreducible; and from the expressions for the
roots forming the basis (21.12.1.3), that @, is indeed the dominant weight of
U, relative to this basis.

; .
For2 £ j < n— 1, we now define Uj(s) = /\ U,(s), so that U, isa linear
j
representation of SU(n) on the space /\ C" of dimension (n) The canonical
J

basis of this space consists of the j-vectors
aH - akl A akz AN akj

where H is the set of elements of the strictly increasing sequence of integers
ky <k, <-:-<k; in the interval [1, n], and H runs through all j-element
subsets of [1, n]. It is clear that the restriction of U to T’ is the Hilbert sum

n . . .
of () one-dimensional representations on spaces Cay, and that the re-
J

presentation on Cay, maps s e T to the homothety with ratio e*4(), where
£y = &, + &, + " + &, from this it follows that Tr(Us)) = S(w;). We
deduce as above that U is irreducible and that m; is its dominant weight.
It is easily verified (for example with the help of (21.8.4.2)) that the center
of SU(n) is the subgroup of T formed by the scalar matrices wl,, where w
runs through the set of nth roots of unity. We may also calculate directly
P(su(n))/Q(su(n)) by using the preceding results (21.16.4).

(21.16.9) I1. Representations of U(n, H). In view of the description of the
maximal torus T considered in (21.12.2), the elements 2nih; (1 < j < n) form
a basis of the lattice I'r; as in (21.16.8) we recover the fact that P(U(n, H)) =
P(u(n, H)) (21.16.3), and verify that

A
liA

(21.16.9.1) U7j=€1 +82+"'+£j (1 j n).
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Since U(n, H) is simply connected, the canonical injection
u(n, H) - sp(2n, C)

described in (21.12.2) corresponds to a linear representation U, of
U(n, H) on C*". If (a;); < j< 2,18 the canonical basis of C?", the restriction of
U, to T is the Hilbert sum of 2n one-dimensional representations on the
spaces Ca; (1 £ j < n); for 1 < j < n, the representation on Ca; mapsse T
to the homothety with ratio ¢°*, and the representation on Ca,.; maps
s € T to the homothety with ratio e~ **. From the description of the Weyl
group (21.12.2), it follows that the function s+ Tr(U,(s)) on T is equal to
the sum S(m,); hence U, is irreducible (21.13.7) with dominant weight @,.

J
Likewise, if we define Uj(s) = /\ U,(s) for 2<j < n, then U; is a linear
J 2
representation of U(n, H) on the space /\ (C?") of dimension ( jn)’ whose

canonical basis consists of the j-vectors ay . The restriction of U; to T is the

J
Ca,,: the representation on Cay maps each s e T to the homothety with

ratio ™%, where gy is defined as follows: if the elements of H are

2n . . .
Hilbert sum of ( ) one-dimensional representations of T on the spaces

kl<k2<<k1,

then ey = &, + &, + " + &, where g, = &, ifl1<k,<nandg, =—g,._,
ifn+ 1<k, <2n
However, when j > 2, the representation U so defined is not irreducible.
For example, since U(n, H) may be identified with a subgroup of the sym-
plectic group Sp(2n, C), it follows from (A.16.4) that U, leaves invariant the
2

bivector a; A a,,, + ' + a, A a,, in /\ (C*"). Nevertheless, we shall show
that the representation U; decomposes into a Hilbert sum of irreducible
representations, of which exactly one has @; as dominant weight (cf. Prob-
lem 3). Indeed, the dominant weights of the irreducible representations into
which U; splits must be certain of the ¢y; if we observe that ¢, > ¢,. in it* if
r <r,and that ¢, > —¢, for all r, r (21.12.2.8), we see that the set of weights
&y contains a greatest element, corresponding to the subset Hy = {1, 2, ..., j},
and that &y, = w;. Hence, among the irreducible components of the re-
presentation U, there is a unique V; whose dominant weight is ;. The

J
space E; of this representation is the subspace of /\ (C?") generated by the
transforms S - a,, of ay, by all symplectic matrices S € Sp(2n, C). By
construction, ay, is a decomposable j-vector corresponding to a totally iso-
tropic j-dimensional subspace of C2"; since the symplectic group acts transi-
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tively on the set of totally isotropic subspaces of dimension j < n, it follows

J
that E; is the subspace of /\ (C*") spanned by all the decomposable j-vectors
(called totally isotropic j-vectors), which correspond to the totally isotropic
subspaces of dimension j.

(21.16.10) 1I1. Representations of SO(m). With the notation of (21.12.3)
and (21.12.4), in both cases the lattice I'; has as a basis the 2niH; for
1 £j £ n. For SO(2n) we have

Hy=h;j+hj,, +-+h,_,+3h,_, +h)
1£j€n-2),
(21.16.10.1) f Sjsn=2)
Hn—l =5(hn—l + hn)’
Hn = ‘lz-(hn - hn—l)’

and for SO(2n + 1) .

H,=h;+h;, + - +h,_, +1ih, 1£jgn-1),
(21.16.10.2) H’ "l ok b (=) )

o

In both cases, we see therefore that SO(m), for m = 3, is not simply
connected (21.16.4). We denote by Spin(m) the Lie group that is the universal
covering of SO(m). If T, is the inverse image of the torus T in Spin(m), the
formulas above show that the lattice (2ni)~'I'y is generated by (2ni) ™ 'T'y,
and the element 4(h, — h,_,) in the case of SO(2n), and by (2=i)~'I'7, and
1h,, in the case of SO(2n + 1); in both cases, it follows that the fundamental
group m,(SO(m)) is a group with two elements (cf. (16.30.6)).

The fundamental weights are given by the following formulas, for
Spin(2n):

(21.16.10.3) By = 4+ 6y + By — &),
%( +'“+8n—2+8n—1+8n)’

and for Spin(2n + 1):

w,=¢, + " +¢ 1<jsn—-1),
(21.16.10.4) i | )
W, =36y + o+ ey g + &)
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Consider the canonical injection SO(m) — SO(m, C), which defines a
linear representation V; of SO(m) on C™. For j < m we obtain as in (21.16.8)

J
a linear representation V; = A V;; by composing these with the canonical
homomorphism Spin(m)—» SO(m), we obtain linear representations U;
(1 £j < m) of Spin(m). We shall now study these representations directly,
and show that for m=2nand j<n—1,0or m=2n+1 and j < n, the re-
presentation V; (and hence also U)) is irreducible. Let (a,); <, < be the
canonical basis of R™, identified with the canonical basis of C™; then the

J
canonical basis of /\ (C™) consists of the j-vectors
ag=a, Ay, A A A,

where H is the set of elements k; < k, <-:- <k; in the interval [1, m],

and H runs through the set of all j-element subsets of [1, m]. We shall
j

show (under the above restrictions on j) that the subspace F(z) of /\ (C™)
stable under V;, generated by an arbitrary j-vector z # 0, is the whole space

J
N\ (C™). Put =3 cyay, where ¢y € C; we shall argue by induction on
H

the number r of coefficients ¢y that are # 0. The assertion is obvious when
r = 1: indeed, for each permutation = € &,,, the automorphism of C™ that
transforms a, into ta,,, for 1 < k < m belongs to the image of SO(m) under
V,, provided that the product of the minus signs is equal to the signature of

J
n. Since F(z) contains the element ay of the canonical basis of A (C™), it

J
therefore contains also all elements a,,, and hence is the whole of A (C™).
Suppose now that the assertion has been proved for some value of r = 1, and
for all values < r, and suppose that the number of nonzero coefficients ¢y in
zis r + 1. Then there exist two distinct j-element subsets H, L of [1, m] such
that ¢y c. # 0. Let p be an element of L n [H. Next, since 2j < m, there
exists g € [1, m] that does not belong to H U L. The automorphism T of C"
that leaves a, fixed for k not equal to p or ¢, and transforms a,, into —a,and
a, into —a,, is in the image of SO(m) under ¥, and transforms a into itself,
a, into — a, , and each other ay, into + ay,. It follows immediately that in the
j-vector z + T - z, which belongs to F(z), the number of coefficients # 0 is
2 1 and = r; we may therefore apply the inductive hypothesis to complete
the proof.

Putb,,_, =a,,_, —ia,, b, =a, _, +ia,, for2r < m. When m = 2n,
the b, for 1 £ k < 2n form a basis of C2*; the restriction of ¥, to T is the
Hilbert sum of 2n one-dimensional representations on subspaces Cb,
(1 £k <2n), and the representation on Cb,,_, (resp. Cb,,) is the homo-
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J

thety with ratio e (resp. e~ *). For j < 2n, a basis of /\ (C?")is formed by the
j-vectors by =b,, A b, A---Ab,, where H is the set of elements
ky <k, <--- < k; in the interval [1, 2n], and H runs through all j-element
subsets of [1, 2n). Then the restriction of Vj(s) to T transforms by into
by, where ey = ¢, + &, + " + &, the & being defined by €3,_, =¢,
and &3, = —¢,. Since, for the ordering on it* (21.14.5), we have ¢, > ¢,. if
r<r,and g > —¢, for all r, r' € [1, n] by virtue of (21.12.3.5), it follows
that, for j < n — 2, the representation ¥; has dominant weight o;.

j
When m =2n + 1, a basis of A (C*"*!) is formed by the by defined
above and the by, A a,,,,, where H' is a subset of j — 1 elements of [1, 2n];
it follows as above that V; has dominant weight @; for j < n — 1.
For the irreducible representations of Spin(2n) with dominant weights
w,-, and m,, and the irreducible representation of Spin(2n + 1) with domin-
ant weight @,, see Problem 7.

PROBLEMS

1. With the notation of (21.16.8), show that the complex conjugate of the irreducible re-
presentation U is equivalent to U,_; (1 £j < n — 1).1fn = 2mis even, the representation
U® (Section 21.1, Problem 9) is defined when m is even, and the representation U™ is
defined when m is odd.

2. With the notation of (21.16.9), show that each of the representations U, (or V)) is equiva-
lent to its complex conjugate, U® is defined for even j, and U™ for odd j.

3. (a) Let B be a nondegenerate alternating bilinear form on C*"; let (e)); < ;< 2, be a sym-
plectic basis of C?", and let {e}), <;<2, be the dual basis, so that

= o* * 1 .i 4 ¥ *
B=etAel+ - +e}, el

2
in the vector space A\ (C2")*. Put

B*=e, ne,+ ' +e,_,Ae,

2
in the vector space A (C?"); the bivector B* is independent of the symplectic basis (e )
chosen.

For each subset H of [1, 2n], we have

(0 ne)rey=0 if 2-L2nH#Q,

(‘u-l Aey)ney=ey ey A °21) = @y ,(2j-1,2j}
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if {2j — 1, 2/} n H = &. If we consider C?" as the dual of (C>")*, we have likewise
(e}, rne}) tey=0 if 2-1,28n(H#Q,
(e, nelj)Jey=ey 15 1 f {2/-12}<H

(b) In the endomorphism ring of the vector space /\ {C*"), let Y* denote the mapping
z+— B _iz,and Y~ the mapping z+—+ B* A z;also put Z = [Y*, Y~]. For each subset H of
[1, 2n], let ¢} (resp. ¢;;) denote the number of subsets {2j — 1, 2j} contained in [H
(resp. H). Show that

Z ey = (o ~ oy )ey
(use (a) above). Deduce that
[z, Y*)=2Y*, [z, Y ]=-2vY"

and hence that the Lie subalgebra of gl(/\ (C*"))spanned by Y*, Y™, and Z is isomorphic
to sl(2, C).
(c) With the notation of (21.16.9), show that for each p € [1, n] the restrictions of Y * and

P
~ to A\ (C?") commute with all the automorphisms U (s). Use (21.9.3) to deduce that the

14
subspace E, of A (C?") spanned by the totally isotropic decomposable p-vectors consists
of the p-vectors z such that Y* -z =0 and Z -z = (n — p)z. Deduce that if p < n, the
mapping z— (Y™ )""?-z=(B*)""? Az (where (B*)" denotes the 2h-vector that is
the product of h factors equal to B* in the exterior algebra /\ (C?")) is injective on

r
/\ (CZn)_
P
(d) Hence show that, for p < n, /A (C?") is the direct sum of the subspaces

E,, (BY)AE, ,, (B¥?AE,_,

P

each stable under the representation U, and that the restriction of U to (B*)' A E,_,, is
irreducible and similar to V,_,, (Lepage’s decomposition). The dimension of E,, is

2n 2n

( p) (p - 2)
There exists a C-algebra C,, (the Clifford algebra) of dimension 2™, having a basis consist-
ing of the identity and all productsa a, a forl<i; <i,<-<i,<mwherethea,
(1 < j £ m) are m elements such that g} = 1 and a, ;a, = —a,a;whenever j # k (cf. Section
16.15, Problem 2). The algebra C,, is the direct sum of the vector subspace C,! spanned by
the products a; a;, - a; with p even, and the subspace C,, spanned by the analogous
products with p odd; also C,; is a subalgebra of C,,.
(a) If m is even, the center of C,, is C - 1, and the center of C; is spanned by 1 and
a,a, - a,. lfmis odd, the center of C,,isspanned by 1 and a, a, - a,,, and the center of
C,isC-1
(b) Let E be the C-vector subspace of C,, spanned by a, ..., a, and let ® be the
symmetric bilinear form on E such that ®(a;, a,) = &, (Kronecker delta). For each x € E,
we have x? = ®(x, x) - I and xy + yx = 2®(x, y) - 1 in the algebra C,,. Show thatif Aisa
C-algebra and fa C-linear mapping of E into A such that f(x)* = ®(x, x) - L forall x € E,
then f has a unique extension to a homomorphism of C,, into A.

(c) Show that there exists an isomorphism § of C,, onto the algebra opposite to C,, (i.e., f
is an antiautomorphism of C,,) such that p(x) = x for all x € E.
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(d) Let G be the group of invertible elements s € C,, such that sEs™ ! = E, and let
G* =G n C;} . For each s € G, let ¢(s) denote the linear mapping x+ sxs~* of E into
itself. Show that E n G is the set of vectors in E that are nonisotropic for ®, and that for
each x € E n G, —¢(x) is the reflection in the hyperplane in E orthogonal to x (relative to
®). Deduce that ¢ is a homomorphism of G into the orthogonal group O(®), whose kernel
is the set of invertible elements of the center Z of C,,. We have ¢(G) = O(®) if m is even,
¢(G) = SO(®) if m is odd, and ¢(G*) = SO(®) in either case.

(e) Foreachs e G*, show that N(s) = B(s)s is a scalar, and that s~ N(s) is a homomor-
phism of G* into C*.

With the notation of Problem 4, suppose that m = 2n is even, and put m; = a,;_, — ia,;,
p;=ay,_y +iay, for 1 £j< n The m; (resp. the p)) form a basis of a totally isotropic
subspace M (resp. P) (relative to ), and E is the direct sum of M and P. We may identify
M with the dual of P by identifying each m € M with the linear form p+— ®(m, p) on P. The
subalgebra of C,, generated by M has as a basis the elements my = m; m;, -+ m, for each
subset Hof I = {1, 2, ..., n}, the i, being the elements of H arranged in ascending order;
this subalgebra may be identified with the exterior algebra S = A M on the vector space
M.

Show that there exists a unique homomorphism p of C,, into the algebra End(S) of
endomorphisms of the vector space S, such that for each m € M the image p(m) is the
linear mapping z+— mz of S into itself, and such that for each p € P, p(p) is the interior
product i(p) (A.15.3), M being identified with the dual of P, and S with A M. (Use
Problem 4(b).) Put p,=p,p, - p,, and for each pair of subsets H, K of I, put
Zy.x = My pymy . Show that, for each subset L of I, we have p(z, «)m, = 0ifK # L,and
plzu x)mg = + my. Deduce that p is an isomorphism of C,, onto End(S), which is isomor-
phic to the matrix algebra M,.(C).

The vector space S is the direct sum of §* =S n C3,and S™ = S n C3,, having as
respective bases the set of m,, for subsets H with an even number and an odd number of
elements. The subalgebra p(C3,) of End(S) leaves invariant the subspaces S* and S~,and
is isomorphic to End(S*) x End(S~).

With the notation of Problem 4, suppose that m = 2n + 1 is odd; the algebra C,, may be
canonically identified with the subalgebra of C,, . , generated by the a, with j < 2n. Show
that the mapping y+ iya,, ., , of the vector space F c E spanned by the a; with j < 2n, into
the algebra C3,,,, extends to an isomorphism 8 of C,, onto C3,,, (use Problem 4(b)).
Deduce that C,,, , is isomorphic to the product of two algebras isomorphic to M,,(C).

With the notation of Problem 4, let E, be the real vector space spanned by a,, ..., a,,.
Then E, n G is the set of vectors # 0in E,. Let G, be the subgroup of G* generated by
the products of an even number of vectors x € E, such that N(x) = ®(x, x) = L.

(a) Show that G, is connected. (If x, y are two distinct vectors in E, such that ®(x, x) =
®(y, y) = 1, consider the plane in E, spanned by x and y, and a vector x' in that plane
orthogonal to x and such that ®(x’, x') = 1, and the vectors z = x cos ¢ + x’ sin t for
t € R.) Deduce that G, is isomorphic to Spin(m), by observing that ¢(G,) is isomorphic to
SO(m) and that ¢ makes G, a double covering of SO(m).

(b) Deduce from Problems 5 and 6 that for m = 2n the representations s— p(s)|S* and
5= p(s)|S~ are irreducible representations of Spin(2n) (identified with G,) of dimension
2"~ !: for m = 2n + 1, the representation s p(6~'(s)) is an irreducible representation of
Spin(2n + 1) of dimension 2".
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(c) If m=2n, put r(6))=a,;_,cos8,—a,sinb; for 1 £j<n Then the elements
a,r(0,)ayry(8,) - a,r,(6,) form a maximal torus T, of Spin(2n), whose image T = ¢(T)
is the torus described in (21.12.3), when ¢(G *) is identified with SO(2n). Form = 2n + 1,
the same torus T, (when C,, is canonically identified with a subalgebra of C,,,,) is a
maximal torus of Spin(2n + 1), whose image T = ¢(T,) is the torus described in (21.12.4).
In both cases, the vectors my, € S are eigenvectors for the restriction of p (orof p - 7 !) 10
T, In particular, for the vector m m, -+ m,, the corresponding weight is 1(e, + -*- + ¢&,):
in other words, for s=exp; u, where ue s0(2n), the corresponding eigenvalue is
d(e(u) + -+ + ¢,(u)). Likewise, for m;m,--m,_,, the corresponding weight is
L(e, + - +&,_; — ¢,). Deduce that when m = 2n + 1 the dominant weight of the irredu-
cible representation s— p(8~ (s)) is w,, given by (21.16.10.4); when m = 2n, if nis even the
dominant weight of s— p(s)|S* is @, and the dominant weight of s— p(s) | S~ is @, _ ; but
when m = 2n with n odd, the dominant weight of s+ p(s)|S* is w,_, and the dominant
weight of s p(s)|S~ is m, (where @,_, and o, are given by (21.16.10.3)).

Let (a;), < )< 2 be the canonical basis of C?”, and let ® be the symmetric bilinear form on
C?" such that ®(a,, a,) = §,,, so that O(®) = O(2n, C).
(a) Consider the basis (a,),,,,al50 as an orthonormal basis of R*", relative to the

restriction of ® to R*". Define a mapping T of (R*")" into A (R?") as follows: if x,, ..., x,
are linearly dependent in R?", then T(x, ..., x,) = 0; if they are linearly independent, then
we may write X, A X, A " A X, =y, Ay, A" AY,, where the vectors y; (1 £ j < n)
form an orthonormal basis of the subspace of dimension n in R*" spanned by the x;, and
A € R; then there exists an element u € SO(2n) such that u(a,;_,) = y,for 1 <j < n,and
we define T(x,, ..., x,) = Au(a,) » u(a,) A -*- A u(a,,). Show that this value depends
neither on the choice of the y; nor on the choice of u, and that T is an alternating n-linear

mapping, which therefore factorizes uniquely into (R2")" - /n\ (R™) —'+/n\ (R?"), where T is
a linear bijection. This bijection extends uniquely to a bijection of /n\ (C?") onto itself, also
denoted by 7. We have > =(—1)"- 1. For each u e SO(2n, C), we have 1o /\ (u) =

/\ (u) o t; but |fu € O(2n, C) has determinant equal to — 1, thent o /\ (w) = /\ (u) ot

Deduce that /\ (C?") is the direct sum of two subspaces F*, F~ of the same dimension,
such that the restriction of 7 to F* (resp. F ™) is the homothety with ratio 1 (resp. —1)ifn
is even, the homothety of ratio i (resp. —i) if n is odd.

(b) Put
m; = a;_, —iay, p; = &y + iay, m=mgAmM; A AM,,
m=m AMy; A AM_; AP,
Show that t(m,) = i"m,, t(mj) = —i"m].

If we define a totally isotropic n-vector in /\ (C?") (relative to ®) to be a decomposable
n-vector z corresponding to a totally isotropic subspace V, of C2", deduce from these
results that every totally isotropic n-vector belongs either to F* or to F~. Let N*
(resp. N7) denote the set of those which belong to F* (resp. F~) (cf. Section 16.14,
Problem 18). If z and 2’ belong both to N* or both to N~, show that V, n V_ has even
codimension in V, (and in V,); if on the other hand one of z, z’ belongs to N* and the
other to N7, then V, n V,, has odd codimension in V_ (and in V,).

(c) Show that the n-vectors belonging to N* (resp. N~) span the C-vector space F*
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{resp. F~), and deduce that the representation V, of SO(2n) on /\ (C*")(in the notation of
(21.16.10)) splits into two inequivalent irreducible representations on the subspaces F*
and F~, respectively. The dominant weights of these two representations are 2w, _, and
2w,. (To show that N* spans F* and N~ spans F 7, prove that N* u N~ spans the whole

space /\ (C*"), by using the irreducibility of the representation V,_, of SO(2n — 1).)

(a) For the group SO(2n + 1), the weight lattice P is generated by w,, ..., w,_, and 2am,,
and another basis of P is ¢, ..., &,. The elements of Z[P]¥ (21.13.6) are of the form

Gle, e, ..., e' e %),

where G(T,, T,, ..., T,,) is a symmetric polynomial with integer coefficients. In particular,
leta, (0 = j £ 2n) be the clementary symmetric functions of Ty, ..., T,,, i.e., the coefficients
of the polynomial (X + T,}(X + T,) - (X + T,,) in X. Then the character of the
representation V; (1 <j < n)is

ol e, ..., e e 4+ a; (e, e, L., e e )

Deduce that if p; is the class of the representation V;, the ring Z®” for the group
G = SO(2n + 1) is isomorphic to Z[p,, ..., p,}, the p, being algebraically independent
over Z.

(b) For the group SO(2n), the weight lattice P is generated byw, ..., m,_,, 2o,_,,and
2w,, and has as a basis ¢,, &,, ..., &,. Let # be the vector space of polynomials
G(T,,T,,..., T,,) with rational coefficients that are invariant (i) under the product of
transpositions that interchange T,_, and T,;_,, and T, and T,;, where i # j; (ii) under
the product of an even number of transpositions that interchange T;_, and T,,. The space
2 is the direct sum of the space #* of symmetric polynomialsin T, ..., T,, and the space
X~ of polynomials in »# that change sign under interchange of T,,_, and T,, (observe
that J# remains globally invariant when this interchange is made on every polynomial in
). Every polynomial in # ~ is of the form (T, — T, (T, — T,) - (T,,-, — T, )F,
where F € #*. Show that Z[P]¥ is the set of elements G(e, e™*, ..., &, ¢ *) where G
runs through the set of polynomials G(T, ..., T,,) with integer coefficients that belong to
. Deduce that the ring Z®©Y for the group G = SO(2n) is a free module over the ring
Z[p,, ..., p] (where p; is the class of the representation V,, the p; being algebraically
independent); a basis of this module is formed by 1 and the class p,¥ of the restriction of V,
to F* (in the notation of Problem 8). This implies the existence of a relation
() =a + Pp}, where a and B lie in the ring Z[p,, ..., p,].

Let G be a simply connected almost simple compact group. We retain the notation of
Section 21.15, Problem 11.
(a) Consider the composite mapping

1 x expy

g GM) x t =P Gy x T —— G

where f is the mapping defined in (21.15.2.1). Show that the affine Weyl group W, acts
differentiably and freely on (G/T) x (t — D(G)), and that g makes this space into a cover-
ing of the open subset V of G that is the image of (G/T) x T,,, under g. Use Section 21.15,
Problem 11{e) to show that (G/T) x (t — D(G)) is the disjoint union of the open sets
(G/T) x iv(A*), where v € W, and that the restriction of g to (G/T) x iv(A*) is a diffeo-
morphism onto V for each v € W,. (Note that the lattice (2ri) 'I'; is generated by the h,.)
(b) Show that none of the vertices of the simplex A*, other than 0, can belong to the
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lattice il"y. (Suppose if possible that there exists a vertex a; = 2zp;/n;of A* in il'y. Then

A* —a; = w(A*) for some w e W, show that if ue A*is sufficiently close to 0, we have

u # a; + w(u), and obtain a contradiction by observing that there exist s, and s, in G/T

such that g(s,, iu) = g(s,, i(a; + w(u))). Deduce that each orbit of W, in it meets the closure

of A* in exactly one point.

(¢) If Z is the center of G, show that Card(Z) — | is the number of integers n; that are
1

equal to 1 in the expression u = Y n;f;, where y is the highest root (Section 21.15,

j=1
Problem 10). (Observe that the vectors p, form a basis of the lattice (2ix)™" expy !(Z).)

(a) The hypotheses on G and the notation are the same as in Problem 10. Show that for
each automorphism v of G, the group F of fixed points of v is connected. (Use Section
21.11, Problem 19 to reduce to showing that each x € F that is regular in G is contained in
the identity component of F. Having chosen a maximal torus T in G, we may write
x = expy(iu), where u belongs to the principal alcove A*; we then have v, (u) — u = z,
where iz € exp; '(Z). Use Problem 10 to show that z = 0, and deduce that the one-
parameter subgroup consisting of the expy(iu) with £ € R is contained in F.)

(b) Give an example of an involutory automorphism of the group SO(3) whose set of
fixed points is not connected.

With the notation of the proof of (21.16.3), let n, and n_ be the Lie subalgebras of g,
spanned respectively by the elements x, (I Sk < n)and x_, (1Sk=n) Lete,,
denote the element (21.16.3.4), where a = (a,, ..., a,), b= (b;, ..., b)), c = (cyu ..., ).

(a) Let U° be the commutator of b in U, or equivalently the commutator of the subal-
gebra U(h) in U = U(g,c,). Show that U° has a basis consisting of the e, , . such that

Y ao =Y b,

k k

(b) Show that € = (n_U) n U® =U® n (Un,) is a two-sided ideal in U®, and that
U’=Up)@e

With the same notation as in Problem 12, for each integer r > 0 let U be the vector
subspace of U spanned by the e, , . such that

ay+ - +a,+b++b+c;+ -+ S

For each s € G the automorphism Ad(s) of g has a unique extension to an automor-
phism, also written Ad(s), of the algebra U, which leaves invariant each U", and
s— Ad(s)| U™ is a continuous linear representation of G on U, The derived homomor-
phism is u— ad(u), where ad(u) denotes the mapping z+— uz — zu of U® into itself (cf.
Section 19.11, Problem 1).

(a) Let [U, U] denote the subspace of U spanned by the elements [x, x'] = xx' — x'x for
all x, x" in U. Likewise let [g, U] denote the subspace of [U, U] spanned by all [u, x] with
u e g and x € U. Show that [U, U] = [q, U].

(b) If Z is the center of the algebra U, show that U = Z@ [U, U]. (Using (a) and the
complete reducibility of the linear representation s— Ad(s)| U of G, show that

U" = (Z n U")@ (U, U] n U).

If the component of x € U in Z is denoted by x*, show that (xy)" = (yx)' and that
(zx)' = 2x"ifze Z.
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{(c) Each element x =Y ¢ h¢ (where h=h¢ --- h§) in U(h) may be canonically
identified with the polynomial function

)'HH:(A) = Z Ct<l, hl)“ <2'! hl)“

on the dual b* of b, with values in C. For each irreducible representation V, of G on a
vector space E,, with dominant weight pe P(g), the homomorphnsm (V). ® L:
8¢ gl(E,) extends to a homomorphism R,: U(g(,) - End(E,) of C-algebras. For each
x € U, put E (x) = (dim E )" Tr(R(x)). Show that E (x) = Z,(x"). If ® is the cancnical
homomorphism of U° onto U(h) with kernel £ (Problem 12(b)), show that E (x) =
Hg(p) for all x € U. (Observe that if y € E, is such that R (u) - y = p(u)y forallu e b,
then we have R,(z) - y = H,(p)y for all ze Z, and R,(x) - y=0for all x e £

(a) With the same notation, put D(A) = [] <4, h,) for all 1€ bh* Show that for each

aeS*

b |
ue b and each A € b*, the series ) (1/n!)H,(A)is absolutely convergent in C, and that

n=0
= 1 . .
D + a)( 5 EH",().))( T det(w)e” “+°>-">)= D(e) 5 det(wlec™ .

(Use Weyl's formulas to show that the formula is true for all A = p e P(g), by using
(21.13.6.1) and the power-series expansion of e‘* ")

(b) Deduce from this formula that, for each integer n 2> 0 and each u € b, the rational
function on h*

(1) Z det(wiw - 4, u)”

D(l) we

is in fact a polynomial function, and is a linear combination of the polynomial functions
A H (1 — 8)for 0 £ g = n. Deduce from the same formula that each of the polynomial
functions A—H {4 — §) is invariant under the action of W on bh*. Consequently
A—H_(4 — 6) is invariant under the action of W on h*, for each x € U(h).

(c) Show that U(h)+ [U, U] = U. (Consider as in Problem 13 the representation
s— Ad(s)| U™ and show, by considering the derived homomorphism, that the image of
U(h) N U™ under Ad(s) is contained in [U, U] n U". Next, using the conjugacy of the
maximal commutative subalgebras of g, show that for each v € g there exists s € G such
that Ad(s) - v™ € U(b) for all m, and deduce that U(h) + [U, U] contains the vector sub-
space V of U spanned by the v™ for v e g and m 2 0. Finally, prove that this vector
subspace is the whole of U, by showing by induction on r that it contains all products
v;V, - v, of r elements v, e g. For this purpose, observe that for each permutation
ne &, the difference Vo) Vya) " V) — ViV2 - v, belongs to U®™Y, and that
(&yvy + -+ &, v,y € VA U™ for all systems of scalars &, ..., &,.)

(d) Deduce from (c) that if we put H2(4) = H (1 — §) for all' x € U(h), the mapping
2+ Hy,,, is a surjective homomorphism of the center Z of U(g) onto the algebra I(h, W) of
polynomial functions on h* that are invariant under the action of W. (Use the fact that
each function in I{h, W) is a linear combination of polynomial functions of the form (1).)

(a) With the same notation, there exists a canonical homomorphism

¥: Tgo)~ Ulgo)=U
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of the tensor algebra of g, onto the algebra U, which is the identity on g and
maps x®y — y® x to [x, y] for all x, y€ g,;. Show that the restriction of y to the
space $,(q.c) of symmetric tensors of order r on g, is an isomorphism of this vector space
onto a supplement of U*~" in U, and deduce that the restriction of y to the symmetric
algebra S(gc,) (A.17.5) is an isomorphism of vector spaces (but not of algebras) of S$(gc,)
onto U. For each s € G, the automorphism Ad(s) of g extends to an algebra automor-
phism, also denoted by Ad(s), of $(g,¢)). For each z e $(g,). we have y(Ad(s) - z) =
Ad(s) - ¥(2). Let I(g,c,. G) denote the set of elements of §(g,c,) that are invariant under
Ad(s) for all s € G. Show that the restriction of ¥ to I{g.,, G) is a vector space isomor-
phism of I(g.,, G) onto the center Z of U, but is not necessarily an isomorphism of
algebras (take G = SU(2)).

(b) For each linear form u* on the vector space g,,, let f(u*) be the element of g,¢, such
that B, (B(u*), v) = (u*, v) for all ve g, so that f is an isomorphism of the vector
space g%, (the dual of g,,) onto g.,. Show that the annihilator in g, of the subspace
n, + n_ of g, is mapped onto h by f, and may therefore be identified with the dual h* of
b. The isomorphism f extends uniquely to an isomorphism (also denoted by f) of the
symmetric algebra $(g%,) onto $(g,c,), which transforms $(h*) into S(h) = U(h). If 3 is
the ideal of ${g,,) generated by n, + n_, we have S(g,) = U(b) @ 3. If j is the homo-
morphism $(g,¢,) — U(b) defined by this decomposition, then f~!(3) is the kernel of the
restriction homomorphism i: $(g%,) = S(h*) obtained by considering $(gf,) (resp. S(h*))
as the algebra ol polynomial functions on g,c, (resp. b), and we have i = B~ ' cje B For
each s € G, Ad(s) acts on g, and extends to an algebra automorphism of S(gf,), again
denoted by Ad(s). If I{g%,, G) is the subalgebra of $(g¥.) consisting of the elements that
are invariant under Ad(s) for all s € G, then the image of 1(gf,, G) under 8 is I{g,¢,, G).
Likewise, if [(h*, W) is the subalgebra of $(h*) consisting of the elements that are invariant
under the action of W on b*, then the image of I(h*, W) under B is I(h, W) = U(h).

(c) For each linear representation V of G on a complex vector space, the polynomial
functions w— Tr((V,(u))") on g,c, belong to I(g%,, G), and their restrictions to b belong to
I(h*, W). Show conversely that every polynomial function in I(h*, W) is a linear combina-
tion of these restrictions. (Use the fact that the weights p € P(g) span the vector space h*,
and the isomorphism Z® - Z[P]¥ of (21.15.5).)

(d) Show that the restriction to I(gf%,, G) of the homomorphism i in (b) above is an
isomorphism of this algebra onto I(h*, W). (To show that i is injective, note that if i(f) = 0
for f€ I(gf%,, G), then f =0 on b and also on Ad(s) - b for each s € G, and use the conju-
gacy theorem. To show that i is surjective, note that if L is the set of all linear combinations
of the polynomial functions u— Tr((¥,(u)")} for all linear representations V of G, then
i(L) = I(b*, W) by virtue of (c) above.) Deduce that the homomorphism

J: Hgg, G) - I(b, W)
defined in (b) above is bijective.
(e) Show that the composite isomorphism
Z—— (a0, G) —— 1 W)

is the same as the isomorphism z+~» Hg,,, defined in Problem 14(d). (Show that for each r
these two homomorphisms define the same mapping of (Z n U™)/(Z ~ U™ ) onto
(I(h, W) ~ S,(h))/(I{(h, W) ~ S, _,(b)), and that this mapping is bijective; for this purpose,
use the basis (e, , ) of U defined in (21.16.3.4).)

Let E be a complex vector space of dimension n. If we identify the symmetric algebra
S(E*) with the algebra of polynomial functions on E, the group GL(E) acts on S(E*) by
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the rule (s - P}{x) = P(s™! - x) for ali P € S(E*), s € GL(E), and x € E. If G is a subgroup
of GL(E), denote by 1(E, G) the subalgebra of §(E*) consisting of the G-invariant polyno-
mial functions P, i.e., those for which s - P = P for all s € G. If G is finite, with order N,
then for each P ¢ S(E*) the polynomial function u(P) = N~' ¥ s - P is G-invariant. We

seG
have u(P) = P if P € I{E, G).
(a) Let P=P,+ P, +--- + P, be a polynomial function on E that is invariant under a
subgroup G of GL(E), where P, is the homogeneous component of degree j in P. Show
that each P, is G-invariant (consider P(tx) for t € C).
(b) Suppose that G is finite. A rational function R on E is said to be G-invariant if
R(s™! - x) = R(x) whenever both sides are defined. Show that R is then of the form P/Q,
where P and Q are G-invariant polynomial functions.
(c) The ring (E,G)=C®J,® - ®J, @ is graded, J, being the vector space
spanned by the P € I(E, G), which are homogeneous of degree  (by virtue of (a) above):
we define Jytobe C.Let 3, =J, @ - @ J,® -+, which is an ideal of I(E, G), and let 9 be
the graded ideal of S(E*) generated by J, .

Suppose from now on that G = GL(E) is a finite group, generated by orthogonal
reflections ry, ..., r, in hyperplanes in E (relative to a scalar product on E). In order that a
homogeneous polynomial function P of degree > 0 should belong to M, it is necessary and
sufficient that r;- P — P e 9N for 1 <j= m. (Observe that this condition implies that
s*P—Pe RNforall se G, and that u(P) e N.)

(d) LetU,,U,,..., U, be elements of J, such that U, does not belong to the ideal in
I(E, G) generated by U,, ..., U,. Let P, P,, ..., P, be homogeneous clements of S(E*)
such that P,U, + P,U, + - + P, U, = 0. Show that P, € 9. (Proceed by induction on
the degree of P,. If P is a constant, observe that )" u(P JU; = 0, and deduce that P, = 0.

In general, show that r;- P, — P, e Nfor 1 < é m, by observing that there is a linear
form L; # O such that r; - P — P is divisible by L;, for all P € S(E*).)

() Let (I,,1,,...,1)) be a minimal system of generators of the ideal N, consisting of
homogeneous invariant polynomial functions. Let d, > 0 be the degree of I,. Show that
I, ..., I, are algebraically independent over the field C. (Suppose not, and let
H(Y,,...,Y)e C[Y,, ..., Y] be a nonzero polynomial of smallest degree such that
H(l,, ..., 1) = 0; we may also assume that all the monomials Yj' --- Y;*appearing in H
are such that v,d 4 ---+v,d, has the same value. Then the invariants
H, = (@H/8Y,)(1,,...,1,) are not all zero. If U is the ideal that they generate in I(E, G), we
may assume that H,, ..., H, is a minimal set of generators of 2, so that we have equations

H,., = ¥ V,H,, where the V, are homogeneous (1 £ j < q — s) and belong to I(E, G).
k=1

Identifying the functions in §(E*) with polynomials in the coordinates x, (1 < h < n) ofa
point x € E, show that we have

a, i al,
— Vet
0x, + j=Z, * ox,

for 1h<nand | £k<s (use (d) above). Use Euler's identity to deduce that for
1 £ k £ s we have

q-s q
dk I+ st+} v}k L= Z wjl I
j=1 =1

where the W, are homogeneous of degree > 0, and all the polynomials I,, V,1,,,, and
W 1, are homogeneous of the same degree; this implies in particular that W, = O and leads
to a contradiction.)
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(f) Show that 1 and the I, (1 £ k < gq) generate the algebra I(E, G). (For each element
P € J, show, by induction on h, that P is a polynomial in I, ..., I, by expressing that
P e 9 and P = yu(P).) By virtue of (¢) above, we have g < n. Prove that g 2 n by noting
that if L is the field of fractions of S(E*), on which G acts, then the field K = L of
G-invariant rational functions is the field of fractions ol I(E, G) (use (b)), and has the same
transcendence degree n over C as does L. The algebra I(E, G) is therefore generated by n
algebraically independent homogeneous elements (Chevalley’s theorem).

Let V be a finite-dimensional complex vector space, s an endomorphism of V, and s, the
canonical extension of s to the mth symmetric power S,(V). Show that we have

i Tr(s,)T™ = (det(l — sT))~!

in the formal power series ring C[[T]]. (Choose a basis of V with respect to which the
matrix of s is triangular.)

With the notation of Problem 16, suppose that G is a finite group of order N.
(a) Show that the endomorphism f= N"' Y s is a projection of V onto the subspace F

seG
of V consisting of G-invariant elements. Hence we have dim(F) = Tr(f).
(b) Show that

S (dimU)T" = N°' T (det(1 — sT))"*

m=0 seG

in the formal power series ring C[[T]]. (Apply (a) to each of the spaces S,(V*), and use
Problem 17.)

(c) Suppose from now on that G is generated by orthogonal reflections, and let R be the
set of orthogonal reflections belonging to G. We have s € R if and only if det(1 — sT) is
divisible by (1 — T)"~! but not by (1 — T)". Use Problem 16(f) to show that

i (dim(J,)))T ﬁ (1 —T#)~!

k=1

(d) If ris the number of elements in R, show that
ndk=N, Yd—-1)=r
k=1 k=1
{Equate the constant terms and the coefficients of T on either side of the identity

(=TrJ]( =T '=N"11 =Ty (det(l — sT))" ")
k=1 seG
(e) Let 4fx)=0 (1 £j<r) be the equations of the hyperplanes of fixed points of the
reflections belonging to G. Show that the Jacobian d(1, ..., 1,)/d(x,, ..., x,) is a polyno-
mial proportional to n 4 [x). (Observe that both polynomials have the same degree, by

(d) above, and that lhe mappmg (xp5 ooy X2 (Lilxyy oy X)Xy, oo, x,)) Of C" into
itself is not invertible at any point of any of the hyperplanes lj(x) 0(1<jgr))

With the notation of Problem 15, suppose that G is almost simple, and let 1, ..., 1, be
algebraically independent homogeneous polynomial functions on b, of degrees d,, ..., d,,
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respectively, which generate the algebra I(h, W) (Problem 16(f)). Take a basis of y consist-
ing of cigenvectors e; {1 < j £ /) of a Coxeter element ¢ (which is diagonalizable), so that
o - @; = exp(2nim,/h)e; in the notation of Section 21.11, Problem 14. Use Problem 18(e)
and Section 21.11, Problem 16(c) to show that, for the chosen basis of I, there exists a
permutation n € &, such that (91 /0x,,)(1,0, ..., 0) # 0, and hence that in I, the monomial
x{~'x,, appears with nonzero coefficient. By expressing that 1 ; is invariant under o,
deduce that we have d;— | + m,;, =0 (mod h). Using the relation m, + m;,,_,=h,
deduce that by renumbering the I, we may assume that we have d, — 1 = m;(mod h); and
since d;— 1 2 0 and m; < h, we have d; — 1 = m; + u;h with g, an integer 2 0. Finally,
use the relation m, + m, + *-* + m; = lh, the fact that the number of roots is /h (Section
21.11, Problem 16(b)), and Problem 18(d) to show that d, =m; + I for 1< <L

(a) When G = SU(n), show that for the basis of u(n) defined in (21.12.1) the polynomial
functions I, ..., I,_, generating the algebra I(h, W) may be taken to be the restrictions to
b < t, of the elementary symmetric functions

X Xa) = X Xy Xam T Xa
Re@,
for 2 < j < n, so that the m, are the numbers 1,2, ..., n — L.
(b) When G = U(n, H) or G = SO(2n + 1), the rings I(h, W) corresponding to these two
groups are isomorphic. For the bases of t given in (21.12.2) and (21.12.4), the polynomial
functions I,, ..., I, that generate I(h, W) may be taken to be the elementary symmetric
functions
sixd o XD = X Xk Xy Xag
RED,
for I £ j £ n, so that the m; are the numbers 1, 3, 5,...,2n — L.
() When G = SO(2n), for the basis of t defined in (21.12.3), the polynomial functions
I,, ..., I, that generate I(h, W) may be taken to be the elementary symmetric [functions
s{x}, ..., x%) for 1 £j < n— 1, and the function x, x, **- x,. The m, are the numbers 1,
3,..,2n—3and n—-1.

Let G be a denumerable group of displacements in a real vector space E endowed with a
scalar product, and let u be a positive G-invariant measure on E (for example, Lebesgue
measure if E is identified with R", with the usual scalar product).

(a) Let U, U’ be two open subsets of E, of finite measure. Suppose that the sets s - U
(resp. s - U’) are pairwise disjoint for all s € G, and that the complement of their union is
u-negligible. Show that u(U) = pu(U’). (If V (resp. V') is the union of the sets s - U
(resp. s - U’) for s € G, then V n V' is G-stable and has a negligible complement, and
U n Vand U’ n V are two G-tessellations of V ~ V’ (Section 14.1, Problem 6).)

(b) Let G, be a subgroup of G, and suppose that there exists an open subset U, of E, of
finite measure, such that the t - U, for ¢ € G, are pairwise disjoint and the complement of.
their union is negligible. Then the index (G : G,) is finite and equal to pu(U,)/u(U) (Section
14.1, Problem 6(d)).

The hypotheses and notation are as in Section 21.15, Problem 11. Apply the results of
Problem 21 to the group W, and the open set A*, to the group P, and the open parallelo-
tope constructed on the vectors 2nh; (1 £ j £ /), and finally to the subgroup Q, of P,
generated by the translations urs u + 2zp; and the parallelotope constructed on the
vectors 2np, (1 £j = I). Deduce that the order of the Weyl group W is It n n, - n,f,
where f - 1 is the number of indices j such that n; = 1.
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17. COMPLEXIFICATIONS OF COMPACT CONNECTED
SEMISIMPLE GROUPS

(21.17.1) Let K be a simply connected compact semisimple Lie group,
K = Ad(K) its adjoint group, the quotient K/C of K by its (finite) center,
and t the Lie algebra of K and K. The group K is the identity component of
the closed subgroup Aut(f) of GL() (21.6.9). The complexification
g=Tt¢o=1®@if of tis a complex semisimple Lie algebra (21.6.1). We shall
denote by ¢ the semilinear bijection of g onto itself defined by c(y + iz) =
y—izfory, zet, sothatc?= 1,. It is immediately verified that

(21.17.1.9) c([u, v]) = [c(u), c(v)]

for all u, v € g. The Lie subalgebra { of g is the set of all u € g such that
c{u) = u

We propose to describe (up to isomorphism) the complex connected
semisimple Lie groups having g as Lie algebra. If G is the simply connected
complex group with g as Lie algebra (19.11.9), then the adjoint group
G = Ad(G), the quotient of G by its (discrete) center, may be identified with
the identity component of the closed subgroup Aut(q) of GL(g) (21.6.8), and
its center consists only of e (20.22.5.1). We shall first study the group Aut(g),
whose Lie algebra is the image ad(g) of g under the homomorphism
u— ad(u), a Lie subalgebra of gl(g) = End¢(g), isomorphic to g (21.6.3).
Since every automorphism u of I extends uniquely to an automorphism
u® l¢ of g, the group Aut(f) may be identified with the subgroup of Aut(g)
consisting of the automorphisms that leave f globally invariant.

(21.17.2) The Killing form B, of t is the restriction to f x f of the Killing
form B, of g (21.6.1), and B, is negative definite. It follows that the mapping

(21.17.2.9) (u, v)> —B,(u, c(v))
is a scalar product, which gives g the structure of a finite-dimensional Hilbert
space. Forif u=y +izand v =y + iz’ withy, 2, ¥, 2 € [, we have
B,(u, c(u)) = By, y') + Bi(z, 2)+ i(Byly’, ) — Byly, 2)
= B,(u, ¢(u))

and By(u, c(u)) = By(y, y) + By(z, z), which vanishes only ify = z=0, i,
u = 0. For each endomorphism V of the complex vector space g, let V*
denote the endomorphism adjoint to V, relative to this Hilbert space struc-
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ture on g (11.5.1). Relative to any orthonormal basis of g, the matrix of V* is
the conjugate transpose of the matrix of V.

(21.17.3) (i) For each automorphism U € Aut(g), we have
(21.17.3.9) Us=coU'oc

(ii) For each u e g we have
(21.17.3.2) (ad(u))* = —ad(c(u)).

(i) For x, y € g we have
By(U - x, cly)) = By(x, U" * cly)) = By(x, cl(c « UT" o ¢) - y))

since B, is invariant under U (21.5.6.2). This proves (21.17.3.1).
(i) By virtue of (21.5.6.1), we have

B,(ad(u) - x, c(y)) + B,(x, c((c - ad(u) - ¢) - y)) = 0.

But it follows from (21.17.1.1) and the fact that ¢? = 1, that ¢ c ad(u) o ¢ =
ad(c(u)). This proves (21.17.3.2)

(21.17.4)  An automorphism U e Aut(g) is unitary (relative to the Hilbert
space structure of g) if and only if U € Aut(f).

By virtue of (21.17.3.1), to say that U is unitary signifies that U~! com-
mutes with ¢, or again that U commutes with ¢; this implies that U leaves
invariant the subspace f of fixed points of ¢. The converse is obvious.

(21.17.5) We shall now characterize those automorphisms of g that are
positive and self-adjoint relative to the Hilbert space structure on g. For that
purpose we shall first examine, from the viewpoint of the theory of Lie
groups, the decomposition of an endomorphism of a complex vector space
as the product of a self-adjoint operator and a unitary operator (cf. Section
11.5, Problem 15). Let E be a complex Hilbert space of finite dimension n,
and let a(E) < gI(E) = End(E) be the set of self-adjoint endomorphisms of
E; it is a real vector space, which may be identified (Section 11.5) with the
space # (E) of Hermitian forms on E x E, under the mapping that replaces
each H e a(E) by the Hermitian form (x, y)— (H - x|y). Under this
mapping, the set a , (E) of positive self-adjoint endomorphisms, characterized
by the relation (H - x|x) > 0 for all x # 0 (or, equivalently, by the condition
that their spectra should contain only numbers > 0 (11.5.7)), is identified
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with the subset #, ((E) of Hermitian forms of signature (n, 0) on E x E,
which is an open subset of the vector space J#(E) (16.11.3). Also, let U(E)
denote the unitary group (isomorphic to U(n, C)) of the form ®(x, y) =
(x|y), the scalar product on E. Then:

(21.17.6) (i) The mapping H— exp(H) is a diffeomorphism of a(E) onto the
submanifold a.(E) of GL(E) c End(E).
(i) The mapping (H, U)—exp(H) - U is a diffeomorphism of

a(E) x U(E)
onto the Lie group GL(E).

(Here exp is the exponential mapping Hi— Y i’H" of the group
n=0 M’
GL(E) (19.8.7.2).)

(i) The fact that H—exp(H) is a bijection of a(E) onto a,(E) is a
particular case of (15.11.11), applied to the function x— e*, which is a
homeomorphism of R onto R% =]0, +oo[. To show that H— exp(H) is
a diffeomorphism of a(E) onto a (E), it is enough to prove that the tangent
linear mapping Ty(exp) is bijective for all H € a(E) (16.8.8(iv)); by virtue of
(19.16.6), this reduces to showing that no nonzero eigenvalue of the endo-
morphism ad(H) of gl(E) is of the form 2rmik with k € Z. Now, relative to a
suitably chosen orthonormal basis of E, the matrix of H is a diagonal matrix
(A1, 42, ..., A,), with 4; real (11.5.7), and therefore by (19.4.2.2) we have

for all the matrix units E, (1 < j, k < n). This shows that the eigenvalues of
ad(H) are the real numbers 4; — 4,, and completes the proof of (i).

(i) The relation X = exp(H) - U, where H € a(E) and U € U(E), im-
plies that X* = U* - exp(H) = U~! - exp(H), and therefore

XX* = exp(2H).

Now, for each automorphism X € GL(E), XX* is a positive self-adjoint
automorphism of E (11.5.3). Hence, by virtue of (i) above, there exists a
unique H € a(E) satisfying the equation exp(2H) = X X*, which we write as
H = 4 log(XX*). If we put U = (exp(H))™! - X, it is immediately verified
that we have UU* = I, that is to say, U € U(E). Since H—exp(H) is a
diffeomorphism of a(E) onto a,(E), and A log(4) is the inverse
diffeomorphism, (ii) is established.
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We now return to the determination of the positive self-adjoint automor-
phisms of g. By virtue of (21.17.6), such an automorphism is uniquely ex-
pressible as exp(H), where H € a(g).

(21.17.7)  For a self-adjoint endomorphism H of the vector space g (relative to
the Hilbert space structure defined in (21.17.2)) to be such that exp(H) is an
automorphism of the Lie algebra g, it is necessary and sufficient that
H = ad(iu) with ue f.

To say that exp(H) € Aut(g) signifies that [exp(H) - u, exp(H) - v] =
exp(H) * [u, v] for all u, v € g, or equivalently

exp(H) - ad(u) - exp(H)™ ' = ad(exp(H) - u)
in End(g). If we put m = ad(g), this therefore implies (19.11.2.5) that
(21.17.7.1) Ad(exp(H))- m = m

in gl(g) = End(g), which can also be written (19.11.2.2) as
(21.17.7.2) exp(ad(H)) - m <,

the exponential here being that of the group GL(End(qg)). Relative to a
suitably chosen orthonormal basis of g, ad(H) acts on End(g) according to
the formulas (21.17.6.1); hence, relative to the basis (Ej,), its matrix is the
diagonal matrix formed by the 4; — 4,, and the matrix of exp(ad(H)) is
therefore the diagonal matrix formed by the %~ *., From this it follows that
the subspaces of the vector space End(g) that are stable under exp(ad(H))
are the same as those which are stable under ad(H) (A.24.3), and hence

(21.17.7.3) ad(H)- mcm.

This signifies also that X+ [H, X] is a derivation of the Lie algebra
m = ad(g); but ad(g) is isomorphic to g, hence semisimple, and therefore
every derivation of ad(g) is inner (21.6.7). In other words, there exists a
unique u, € g such that, putting H, = ad(u,), we have [H — H,, X] = O for
all X e ad(g). Since ad(g) is stable under the mapping X+ X* (21.17.3.2),
we have also [H — H}, X] = 0 for all X € ad(g), because H is self-adjoint.
From this we conclude that HE = H, and therefore (21.17.3.2)
c(ug) = —ug, that is to say, u, € it. Since H, € ad(g), we have [H, H,] = 0,
so that H and H, commute, and consequently

exp(H) = exp(H — H,) exp(H,);
and clearly
exp(Ho) = exp(ad(uo)) = Ad(exp(uo)) € Aut(g),
so that the hypothesis exp(H) € Aut(g) implies that exp(H — H,) € Aut(g).
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Let ay, ..., o, be the distinct eigenvalues of the selfadjoint endomorphism
Z = H — H,, of the Hilbert space g, and let g,, ..., g, be the corresponding
eigenspaces, so that g is the Hilbert sum of the g; (1 £ j < m) (11.5.7). Since,
for each ueg, ad(u) commutes with Z in End(g), we must have
ad(u) - g; = g; for 1 £ j < m; in other words, the g; are ideals of the algebra
g. Moreover, for each xeg;, we have exp(Z) - x=e%x; but since
exp(Z) € Aut(g), wehaveexp(Z) - [x, y] = [exp(Z) - x,exp(Z) - y] for xand y
in the same g;, and therefore e*[x, y] = **[x, y]. This is possible only if
eithera; = Oorelse [x, y] = Ofor all x, y € g;. The second alternative is ruled
out by virtue of (21.6.2(i)), hence we have a; = 0 for all j, which means that
Z = 0; in other words, H = H, = ad(iu) with ue t. The converse follows
immediately from (21.17.3.2) and (21.17.6(i)).

(21.17.8) The mapping (u, U)—exp(ad(iu)) - U is a diffeomorphism of
t x Aut(f) onro Aut(g).

Since Aut(t) consists of unitary endomorphisms of the Hilbert space g
(21.17.4), and since u— exp(ad(iu)) is a diffeomorphism of f onto a submani-
fold of the vector space of Hermitian endomorphisms of the Hilbert space g
(21.17.6(i)), it follows from (21.17.6(ii)) that is enough to show that the
image of the mapping (u, U)— exp(ad(iu)) - U of t x Aut(t) into GL(qg) is
exactly equal to Aut(g). Now, if X € Aut(qg), then also X* € Aut(g) by virtue
of (21.17.3.1) and (21.17.1.1); hence XX* e Aut(g). We have seen in
(21.17.6(i)) that there exists a unique self-adjoint endomorphism H of the
Hilbert space g such that exp(2H) = XX*; it follows from (21.17.7) that
H = ad(iu) with u € {, and the calculation made in the course of the proof of
(21.17.6(ii)) then shows that U = (exp(H))”'X is unitary; but since
U e Aut(g), it follows from (21.17.4) that U e Aut(f} and therefore
X = exp(ad(iu)) - U. The converse inclusion is obvious from the
identification of Aut(f) with a subgroup of Aut(g).

(21.17.9) The mapping (u, U)—exp(ad(iu)) - U is a diffeomorphism of
t x Ad(K) onto Ad(G).

This follows from the fact that t is connected and therefore f x Ad(K) is
the identity component of  x Aut(t).

(21.17.10) Let n: G —» G = Ad(G) denote the canonical projection (so that
n(s) = Ad(s)).

(1) The inverse image n~'(K) (where K = Ad(K)) may be identified with
the simply connected compact group K, and with the Lie subgroup of Gm
corresponding to the Lie subalgebra t of g (19.7.4); in particular, the center C
of K may be identified with the center of G.
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(ii) The mapping iur expg(iu) is a diffeomorphism of the vector sub-
space it of gg onto a submanifold P of G, such that P ~ K = {&} (the identity
element of G).

(ili) The mapping (y, ) yz of P x K into G is a diffeomorphism of
P x K onto G.

Let P be the image of if in G under the mapping iu+ expg(iu), which is
the same as the mapping iu exp(ad(iu)) by definition of G = Ad(G); P is
therefore a submanifold of G diffecomorphic to if. If P is the connected
component of  in ™ !(P), then P is a covering of P ((16.12.9) and (16.28.6));
but since P, being homeomorphic to a vector space, is simply connected, the
restriction of m to P is a diffeomorphism of P onto P (16.28.6), and the
intersection P n 77 !(e) of P and the center of G consists only of the identity
element. Furthermore, for each u €  we have n(expg(iu)) = expg(iu); since
the one-parameter subgroup of G that is the image of R under the mapping
t— expg(itu) is connected, we have expg(iu) € P, and consequently P is
the image of it under the restriction to if of the mapping exp¢, which is a
diffeomorphism.

Consider now the Lie subgroup K’ = n~(K), which is a covering of K
and contains the center n~!(e) of G. We shall show that every x € G can be
written uniquely in the form yz with y € P and z € K. We have n(x) = y, z,
with y, € P and z, € K, and this decomposition is unique (21.17.9); we may
write y, = n(y) and z, = n(z'), with y € P and 2’ € K'; hence x = yz'w, where
w e n~'(e); but since n”!(e) = K/, it follows that z = z’w € K’ and we have
x = yz as required. As to the uniqueness of this factorization, if x = y, z,
with y, € P and z, € K/, then n(y)n(z) = n(y,)n(z,), whence n(y) = n(y,)
(21.17.9), which as above implies that y, = y and therefore z, = z.

Next we shall show that the bijection (y, z)+» yz of P x K’ onto G is a
diffeomorphism. If (g, b) € P x K’ and ¢ = ab, there exist open neighbor-
hoods U, V, W of ain P, b in K’, and ¢ in G, respectively, such that the
restrictions of n to U, V, W are diffeomorphisms onto the open sets n(U),
n(V), (W) in P, K, and G, respectively. Since we may assume that Uand V
are so small that the mapping (y,, zo)— yo 2o of 7(U) x (V) into n(W)isa
diffeomorphism onto an open subset of n(W) (21.17.9), the result now fol-
lows immediately.

We see therefore that P x K' is diffeomorphic to G. This implies that K’
is simply connected (16.27.10), hence isomorphic to K. If we identify K with
K, the center of K contains 7~ !(e), and since K = K/z~!(e) has center {e}, it
follows that n~!(e) is in fact the center C of K (20.22.5.1).

(21.17.11) It is now easy to deduce from (21.17.10) the determination of all
the complex connected Lie groups that have g as Lie algebra. Indeed, such a
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group is isomorphic to a quotient G, = G/D of G by a subgroup D of its
(finite) center C (16.30.4); the center C, of G, is C/D. If n, : G, - G = G,/C,
is the canonical projection, then n; ' (K) may be identified with the compact
group K, = K/D with center C,, and K with K, /C,. We may therefore
repeat without any changes the argument of (21.17.10); if P, is the con-
nected component of the identity element e, of G, in =~ '(P), the restriction
of , to P, is a diffeomorphism of P, onto P, and iur> expg,(iu) is a
diffeomorphism of it onto P;. We have P, n K, = {e,}, and the mapping
(v, 2) yz is a diffeomorphism of P; x K, onto G,.

There is therefore a canonical one-to-one correspondence between the
compact connected semisimple Lie groups with Lie algebra f, and the complex
connected semisimple Lie groups with Lie algebra ¢, = g.

(2117.12) (i) The exponential mapping of G maps f onto K (21.7.4) and
it onto P; nevertheless, it is not necessarily a surjection of g = t @ if onto G
(Section 19.8, Problem 2).

(i) With the notation of (21.17.11), the subgroup K, is maximal among
the compact subgroups of G,. For if an element yz, with y e P, and z € K,,
belongs to a compact subgroup K = K, then y € K; but if y = exp(iu)
with u € 1, the subgroup of G, generated by y is the image under the expon-
ential mapping of the subgroup Ziu of if; this subgroup is closed and not
compact in if if u # 0, and therefore the subgroup generated by y would also
be closed and noncompact in K';, which is impossible. Hence we must have
u = 0 and therefore K| = K.

PROBLEMS

1. Let G, be a connected {real) Lie group, g, its Lie algebra, g = g, ® C the complexification
of go, and G the simply connected complex Lie group with Lie algebra g (21.23.4). If G, is
the simply connected universal covering Lie group of G,, then the canonical injection
8o —* G is the derived homomorphism of a unique homomorphism h: G, - G- Foreach
Lie group homomorphism u: G, —» H;z, where H is a complex Lie group, there exists a
unique homomorphism 4*: G — H of complex Lie groups such that 4* - h = u o p, where
p: G, — G, is the canonical homomorphism. Let G* be the quotient of G by the intersec-
tion N of the kernels of the homomorphisms u* corresponding to all homomorphisms
u: Gy —» Hjg. Show that if D is the kernel of p, then (D) = N. (Consider the composite

homomorphism G, s Aut(gy) - Aut(g)z-} Deduce that there exists a canonical homo-
morphism ¢: G, — G3 such that every homomorphism u: Gy — Hg (Where H is a com-
plex Lie group) factorizes uniquely as G, 4 G i Hip, where u*: G*-H is a
homomorphism of complex Lie groups.
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Show that if there exists an injective homomorphism u: G, —» Hy, where H is a com-
plex Lie group, then the homomorphism ¢: G, — Gy is injective and g is the Lie algebra of
G*; the group G* is said to be the complexification of G,. If we identify G, with a
subgroup of G, there exists no complex Lie subgroup of G* containing G,,, other than
G* itsell.

2. Let K be a compact connected Lie group of dimension n, which we may assume to be a
subgroup of O(N, R) (21.13.1); K is then the set of real matrices whose components are the
zeros of some family of polynomials in R[T,,, T,,, ..., Tyn] (Section 21.13, Problem 2). Let
a denote the ideal of R[T,, ..., Tyy] formed by the polynomials that vanish at all points of
K.

(a) Let G be the set of complex matrices in GL(N, C) for which all the polynomials in a
vanish; G is also the set of complex matrices for which the polynomials in the ideal
a* =a+iain C[T,,, ..., Tyy] vanish. Show that G is a closed subgroup of GL(N, C).
(First prove that if se K and t1€ G, then ste G.) We have K=G n GL(N,R) =
G n O(N, R) =G n U(N, C). (Observe that O(N, C) » U(N, C) = O(N, R)))

{b) 1If X is a matrix belonging to G, then ' X also belongs to G. 1f we write X = HU, where
U is unitary and H is hermitian and positive definite (21.17.6), then the matrices H, U also
belong to G. (Note that H2 = X X* € G and therefore H?* € G for all integers k € Z. If we
write H = 4 - exp(D) - A~* where D = diag(a,, ..., ay), the a, being real, then for each
polynomial P € a* and cach z € C, P(4 - exp(zD) - A™!) is a linear combination of expon-
entials e** with ¢, € R. By observing that this function of z vanishes for all z € 2Z, show that
it vanishes identically, and hence in particular is zero for z = 1.) If S = ADA™", so that
H = exp(S), then exp(zS) e G for all ze C.

(c) Let S bea hermitian matrix. Show that exp(S) € G if and only if iS € t, the Lie algebra
of K. (Observe that if exp(itS) is a zero of all the polynomials in a, where ¢ € R, then the
same is true of exp(zS) for z € C.) Deduce from (b) above and from (21.17.6) that G is
diffeomorphic to K x R" and that its Lie algebra is t @ it. The group G may therefore be
identified with the complexification of the compact group K; its Lie algebra g is the direct
sum of its center ¢ and its derived algebra D(g), which is semisimple, and the universal
covering G of G is therefore isomorphic to the product of C™ (for some positive integer m)
and a complex semisimple Lie group, which is the complexification of a compact semi-
simple Lie group.

18. REAL FORMS OF THE COMPLEXIFICATIONS OF COMPACT
CONNECTED SEMISIMPLE GROUPS AND SYMMETRIC SPACES

(21.18.1) We have already observed in two contexts ((21.8.2) and (21.17.1))
that if a is a real Lie algebra and b = q(¢, is its complexification, then the
bijection ¢: y + iz—y — iz of b onto itself (where y, z € a) is a semilinear
involution that satisfies the relation c([u, v]) = [c(u), ¢(v)] for all u, ve b
(ie. it is an automorphism of the real Lie algebra by). For the sake of
brevity, a bijection of a complex Lie algebra b onto itself that has these
properties will be called a conjugation. Conversely, a conjugation ¢ in a
complex Lie algebra b determines uniquely a real Lie subalgebra a of by
such that b is isomorphic to the complexification of a. For since c is R-linear
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and ¢? = 1,, the vector space by is the direct sum a @ a’ of two real vector
subspaces q, ', such that ¢(u) = u for u€ a, and c¢(u) = — u for u € o’. Since
also ¢(iu) = —ic(u) for all u € b, we have ia = o’ and ia’ < a, from which it
follows that a’ = ia. Finally, since ¢ is an automorphism of b;g, the subspace
a is a Lie subalgebra of bz, and it is immediately seen that b is the
complexification of a. There is therefore a canonical one-to-one correspon-
dence between conjugations of b and real forms of b. Further, if ¢ is an
automorphism of the complex Lie algebra b, and c is a conjugation of b, it is
clear that ¢ < ¢ « ¢~ ! = ¢, is also a conjugation of b, and that if a and a, are
the real forms of b corresponding to ¢ and ¢,, respectively, then a, = ¢(a).

(21.18.2) Changing the notation of (21.17), let G, be a simply connected
compact semisimple Lie group, g, its Lie algebra, g=(g,)c the
complexification of g,, and ¢, the conjugation of g corresponding to g,. We
propose to determine, up to isomorphism, all the real forms of the complex
semisimple algebra g, and we shall show that this is equivalent to the follow-
ing problem relative to the algebra g,: to determine the involutory automor-
phisms of this Lie algebra.
This will result from the following proposition:

(21.18.3) With the notation of (21.18.2), let ¢ be a conjugation of g. Then
there exists an automorphism ¢ of g such that ¢, commutes with @ o ¢ - ¢~ *.

We have seen (21.17.2.1) that (x|y) = —B,(x, ¢,(y)) is a scalar product
that makes g a finite-dimensional Hilbert space. The mapping H = cc, is an
automorphism of the complex Lie algebra q; it is also a self-adjoint endomor-
phism of the Hilbert space g, because we have

By(H - x, ¢, "y)=By(x, H'c, - y) = B(x, c,H ' y)

since H leaves invariant the Killing form of g, and ¢, ¢, are involutions.
Hence there exists an orthonormal basis (e;); < ;< , of g with respect to which
the matrix of H is diagonal and invertible. Consequently the matrix of
H? = A with respect to this basis is of the form diag(4,, 4,, ..., 4,), where the
4;are real and > 0. For each real number t > 0, let A' be the automorphism
of the vector space g defined by the matrix diag(1j, 45, ..., 4%) (cf.
(15.11.11)); these automorphisms commute with H, and moreover they are
automorphisms of the complex Lie algebra g. For if the multiplication table
of g, relative to the basis (e;), is

[ej s8] = Z Ajit ©
I
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then the fact that 4 is an automorphism of g is expressed by the relations
Ajd@yy = apdy (1<j,k 1<n),
which evidently imply, for all ¢ > 0, that
Mdap = apdi,

thereby proving our assertion. Now consider the conjugation ¢’ = A'c, A™*
of g, and note that by definition we have c¢,Hc, ! =c,c = H™ !, so that
c,Ac; ' = A7, But if we put L= diag(log 4,, log 4,, ..., log 4,), then
A = el, so that A' = e'" and therefore ¢, A'c; ' = A~". Consequently

e =cAc, A" =cc, A" =HA %,
ce=(cc) ' = A¥H™ ' = H 4%,

and therefore when t=3% we have cc’ =c'c=H '4Y2 because

HA™' = H™'. Hence ¢ = A~ '/* satisfies the conditions of the proposition.

(21.18.4) In the determination of all conjugations of g, we may therefore
limit our search to conjugations ¢, that commute with c,, and therefore leave
g, and ig, globally invariant. The restriction of ¢, to g, is then an involutory
automorphism of this real Lie algebra. Consequently, g, is the direct sum of a
real Lie subalgebra 1, , consisting of the x € g, such that c¢4(x) = x, and a real
vector subspace, denoted by ip,, consisting of the x e g, such that

co(x) = —x. It follows that ig, is the direct sum of it, and p, , and because ¢,
is a conjugation of g we have c(x) = x for x € p, and cy(x) = —x for
x € if,. The real form g, of g corresponding to ¢, is therefore

(21.18.4.1) g =1®p,.

Since the Killing form B, is the restriction of B, to g, x g,, it follows from
the definition of the scalar product (x|y) on g that (x|y) = —B, (x, y) for
x, y € g,. Since the restriction of ¢, to g, is an automorphism of this Lie
algebra, it leaves invariant its Killing form (21.5.6); for x € fyand y € p,, we
have therefore (x |y) = (co(x)|coly)) = — (x|y), whence (x|y) = 0. It fol-
lows that B (x, y) = 0 and hence also B, (x, iy) = 0. Since the Killing form
B, is the restriction of B, it follows that in the decomposition (21.18.4.1), f,
and p, are orthogonal subspaces relative to the Killing form of g, (hence are
nonisotropic). Further, the restriction of B, to f, x I, is negative definite,
because it is also the restriction of B, (21.6.9); by contrast, its restriction to
Po X Po is positive definite, because for x € ip, we have B (ix, ix) =
B,(ix, ix) = —B,(x, x) = —B, (x, x). Finally, we have

(21.18.4.2) [to.Pod=po, [po-Polcito.
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For if x € [, and y € ipy, then c¢o([x, y]) = [co(x), coly)] = —[x, y], and
since [x, y] € g, we have [x, y] € ip,; this shows that [f,, ip,] = ip, and
therefore also that [t,, po] = po. Likewise, if x, y € ipy, then ¢o([x, y]) =
[x, y] and hence [x, y] € t,, because [x, y] € g,; this proves the relation

[ipo, ive] = o, whence [po, po] = 1o.

(21.18.5) Let G be the simply connected complex (semisimple) Lie group
of which g is the Lie algebra (19.11.9), and let P be the closed submanifold of
G that is the image of ig, under the mapping iur expg(iu). From (21.17.10),
the mapping (y, z)~ yz of P x G, into G is a diffeomorphism.

To the automorphism ¢, of the real Lie algebra g, there corresponds a
unique involutory automorphism o of le such that the derived automor-
phism o, = ¢, (19.7.6); o therefore leaves G, and P stable, because ¢, leaves
g, and ig, stable. Let G, be the Lie subgroup of G,Il consisting of the points
fixed by ¢ (19.10.1); its Lie algebra is g, (20.4.3), hence is semisimple, and it
evidently contains the compact subgroup Ko, = G, n G, consisting of the
fixed points of the restriction of ¢ to G,, because G, is stable under o.
Likewise, G, contains the image P, under the exponential mapping
urs expg(u) = expg,(u) of the vector subspace p, of ig,, and since
exp(co(u)) = a(exp(u)), P is the set of points of P fixed by ¢. Furthermore:

(21.18.5.1) Py, is a closed submanifold of G; the mapping ur expg(u) is a
diffeomorphism of p, onto Py, and the mapping (y, z)— yz of Py x K¢ into Gy
is a diffeomorphism of Py x Kq onto Gy .

The first two assertions are obvious, since p, is a vector subspace (and
hence a closed submanifold) of ig,. Again, it is clear that the restriction to
P, x K, of the diffeomorphism (y, z)~ yz of P x G, onto G is a diffeomor-
phism onto its image in G, and it remains to show that this image is the
whole of G,. Each element x € G, is uniquely expressible in the form yz
with ye P and z e G,; since a(x) = x, we have o(y)o(z) = yz, and since
o(y) € P and a(z) € G,, we must have y = a(y) and z = o(z), whence y € P,
and ze K,.

(21.185.2) If C is the center of G (identified with the center of G,
(21.17.10)), the center of G, is C n G, .

Forif s € G, the restriction of Ad(s) to g, is the identity if and only if the
restriction of Ad(s) to g is the identity, because g is the complexification of
ao; the result therefore follows from (19.11.6).
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(21.18.6) It can be proved that the compact group K, is connected (Section
21.16, Problem 11); we shall assume this result in the rest of this section.t On
the other hand, K, is not necessarily semisimple or simply connected. The
group G, is therefore connected, and the same reasoning as in (21.17.10),
with G replaced by G,, and G by G, the universal covering group of Gy,
shows that:

(21.18.7) The inverse image n~'(K,) of K, under the canonical projection n
of G, onto G is isomorphic to the simply connected group R, the universal
covering of the compact group K. The mapping u—s exp¢(u) is a diffeomor-
phism of p, onto a closed submanifold P, of G, such that P, ~ R, consists
only of the identity element of G, . The mapping (y, z)— yz is a diffeomorphism
of Py x K, onto Gy,

The center Z of G, is n7!(Cy), a discrete subgroup contained in the
center of K, but distinct from the latter if K, is not semisimple (in which
case K, is not compact (21.6.9)).

(21.18.8) Finally, the reasoning of (21.17.11) gives the determination (up to
isomorphism) of all the connected real Lie groups that have g, as their Lie
algebra: such a group is isomorphic to a quotient G, = G, /D, where Disa
(discrete) subgroup of the center Z of G, and the center C, of G, is Z/D. If
n,: G, —» Ad(Gy) = G, /C is the canonical projection, n; ' (Ad(K,)) may be
identified with the group K, = K, /D, the connected Lie subgroup of G,
with Lie algebra 1,; it contains C, (which is not in general the center of K, ),
and is compact if and only if C, is finite. If P, is the connected component of
the identity element e, € G, in n; '(Ad(P,)), the restriction of n, to P, is a
diffeomorphism of P, onto Ad(P,), and urs expg,(u) is a diffeomorphism of
po onto P,; we have P, n K, = {e,}, and the mapping (y, z)+>yz is a
diffeomorphism of P, x K, onto G,.

The decomposition (21.18.4.1) is called the Cartan decomposition of the
semisimple real Lie algebra g, . The corresponding decomposition as a pro-
duct P, x K, for a connected Lie group G, having g, as its Lie algebra, is
called a Cartan decomposition of G,. Since Ad(K,) = Ad(K,) is compact, K
is in any case isomorphic to the product of a compact group and a vector
group R™ (21.6.9), hence G, is diffeomorphic to the product of a compact
group and a vector group RY; and the same argument as in (21.17.12) proves
that the compact subgroup in this product decomposition is maximal in G,.

T We shall not make use of this result anywhere except in this section.
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Examples

(21.18.9) Consider a Weyl basis of g (21.10.6), consisting of a basis of a
maximal commutative subalgebra t of g, together with elements x, (x € S)
satisfying (21.10.6.4). Since the numbers N, , are real, it is clear that the real
vector subspace g, of g spanned by this Weyl basis is a real Lie algebra
having g as its complexification; this real Lie algebra is called a normal real
form of g. One sees immediately that in the corresponding Cartan decompo-
sition g, = ¥, + pg, the elements x, — x_, form a basis of £, the subspace
po contains t and is spanned by t and the elements x, + x_,.

(21.18.10) Consider the complex Lie group H = G x G, whose Lie algebra
is g @ g, the complexification of the Lie algebra g,@® g, of G, x G, . Let ¢,
be the conjugation of g ® g defined by

co(x + iy, X +iy)= (x' — iy, x — iy)
for x, y, x, y €g,. It is clear that the set of (v, w)e g@® g fixed by c,
is the set of elements (z, ¢,(2)) for z € g, and hence is isomorphic to gz. In

this way the Lie algebra g, appears as a real form of g ® g; the correspond-
ing Cartan decomposition t, @ p, is such that f, = g, and p, = ig,.

(21.18.11) Let us take G, to be the almost simple compact group SU(n)
(21.12.1), which is simply connected (16.30.6). We have seen in (21.12.1) that
the complexification g of g, = su(n) may be identified with sl(n, C). We shall
show that the corresponding group SL(n, C) is simply connected. By virtue of
(21.17.6), SL(n, C) is diffeomorphic to the submanifold of a(C") x U(n) con-
sisting of pairs of matrices (H, U) such that det(exp(H)) - det(U) = 1, or
equivalently e™ - det(U) = 1; since Tr(H) is a real number, and the only
unitary matrices with a positive real determinant are those with determinant
1, it follows that SL{n, C) is diffeomorphic to V x SU(n), where V is the
hyperplane in a(C") defined by the equation Tr(H) = 0. This proves our
assertion (16.27.10); the group denoted by G in (21.18.5) is here SL(n, C).

The conjugation ¢, corresponding to the real form g, is the involutory
bijection X+ —'X of sl(n, C) onto itself. Among the conjugations of g that
commute with c,, there are the following three types:

(I) co: X— X; go is therefore the set of real matrices in sl(n, C), hence
is the Lie algebra sl(n, R) (the normal real form of sl(n, C) (21.18.9)); the
subalgebra f, of g, is the set of real matrices in su(n), so that g, = so(n) and
therefore is semisimple if n > 3 ((21.12.3) and (21.12.4)); p, is the space of
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real symmetric n x n matrices with trace 0, and P, is the set of positive
definite real symmetric matrices with determinant 1. The automorphism o of
Gy is again the mapping X+ X on SL(n, C), and therefore we have
G, = SL(n, R) and K, = SO(n). When n = 2, K, is isomorphic to T, and K,
to R, so that G, the universal covering of SL(2, R), is diffeomorphic to R3;
when n > 3, the group K, is not simply connected, and K, is isomorphic to
Spin(n) (21.16.10); hence G, has finite center, but it can be shown that G is
not isomorphic to any Lie subgroup of a linear group GL(N, R) (Problem
1).

(IT) Suppose that n=2m is even, and consider the mapping c,:
X—JXJ™ ! where

0 I,
/= ( -1 m 0 ) .

Since J =J and J~! = —J ="J, it is immediately verified that c, is a conju-
gation that commutes with ¢,. The corresponding automorphism ¢ of
Gjx = SL(2m, C) is the same mapping X+ JXJ ™!, and it is easily verified
that the matrices fixed by ¢ are the matrices in SL(2m, C) of the form
(21.12.2.2), in other words, the matrices of the form _ :_/] g of determin-
ant 1, with U and V in GL(m, C). It follows therefore from (21.12.2) that K
is semisimple and simply connected, and is isomorphic to U(m, H); the
group G, is therefore simply connected and may be identified with the
intersection of GL(m, H) and SL(2m, C); its center consists of +1.

(IT1) Let p, g be two integers such that p > ¢ = 1 and p + g = n. Con-

sider the n x n matrix
1 0
I =|'? .
e ( 0 _Iq) '

the mapping co: X+ —1, .- 'X - I, _is a conjugation that commutes with
¢, by reason of the relations I, , =1, ;and I} =1, , = I, .. The restric-
tion of ¢, to g, is the automorphism X+ I, , XI, , of this real Lie algebra;
the restriction to G, = SU(n) of the corresponding automorphism o of Gua is
the same mapping X+ 1, , X1, ,, and it follows that the group K, is the set

of matrices ( loj 2)’ where U € U(p), V € U(qg), and det(U) det(V) = 1. One
sees immediately that such a matrix can be uniquely expressed as a product
u, 0 I, 0
D 4
( 0 Iq)l ( 0 )
where U, € SU(p), V; € SU(q), and D is a diagonal matrix of the form
D =diag(s, 1,..., 1,674, 1,...,1)
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with 6~ in the (p + 1)th place, and |§| = 1. Consequently K, is diffeomor-
phic to SU(p) x T x SU(q), hence is not simply connected. Its Lie algebra f,

consists of the matrices of the form (i)( (;,) with X € u(p), Y € u(g), and

Tr(X) + Tr(Y) = 0; such a matrix can be written uniquely in the form

(X . 0 plal, 0 0 0
+ _ +

¢ o) e ) o )

where a € iR, X, € su(p), and Y, € su(q); and it is immediately verified that
this decomposition t, = su(p) ® R @ su(g) is a decomposition into ideals.
The simply connected group K, , the universal covering of K, is therefore
isomorphic to SU(p) x R x SU(g). The group G, is the set of matrices
X eSL(n, C)such that'X - I, .- X =1, ., i, it is the subgroup SU(p, q)
of matrices with determinant 1 in the unitary group U(p, ¢) of a sesquilinear

Hermitian form of signature (p, g) on C" (16.11.3); the foregoing remarks
show that G, is not simply connected.

It can be shown (Problem 3; also [62], [85]) that every conjugation of
sl(n, C) that commutes with c, is of the form ¢ o ¢ o ¢ ™!, where ¢ is an
automorphism of sl(n, C) and ¢, is one of the three types of conjugation just
described.

(21.18.12) We retain the notation of (21.18.8). If 7 is the involutory auto-
morphism of the simply connected Lie group G, that corresponds to the
automorphism c, | g, of 8o, then 7 fixes each element of K, and transforms
each element of P, into its inverse. Since the center Z of G,, is contained in
K,, it follows that, on passing to the quotient in G, = G, /D, 1 gives rise to
an involutory automorphism t, of G, which fixes the elements of
K, = K, /D and transforms each element of P, into its inverse. We conclude
that K, is exactly the subgroup of G, consisting of the fixed points of z,, by
virtue of the relation G; = P,K, and the fact that no element of P, has
order 2, because of the existence of the diffeomorphism u—s expg,(u) of p,
onto P,. ’

Suppose now that the algebra g is simple; this implies that every real
form of g, and in particular g,, is simple, and consequently the only normal
Lie subgroups of G, are the subgroups of the center C,. In order that the
group K, should contain no normal subgroup of G, other than {e}, we must
therefore take D = Z, ie., G, = Ad(G,) and K; = Ad(K,). The composite
canonical mapping

(21.18.12.1) po = P, = expg,(po) = G, /K,,
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in which the left-hand arrow is the exponential mapping and the right-hand
arrow is the restriction to P, of the canonical projection G, - G; /K, is a
diffeomorphism. Identifying all the spaces G, /K, with Ad(G,)/Ad(K,), we
see that, since the conditions of (20.11.1) are satisfied for the latter space, we
may define a structure of a Riemannian symmetric space on the spaces P,, or
G, /K,, for which the Levi-Civita connection is entirely determined by the
conjugation ¢, . But in fact we can define canonically a G,-invariant Rieman-
nian metric on G, /K : since the restriction to p, of the Killing form B, (or
B,) is positive definite and invariant under Ad(t) for all t € K,, we may take
this restriction as the value of the Riemannian metric tensor on G, /K, at
the point x, that is the image of the identity element (20.11.1).

With this choice of metric, the sectional curvature A(u, v) is easily cal-
culated, where u, v are any two vectors in p, = T, (G,/K,): for by virtue of
(20.21.2.1) and the invariance of B,, we have

(21.18.12.2) A(u, v) = =B ([u, v], [u, v])/[u A v|]?
= —{lu v]|*/Ju A v]2

Hence G, /K, is a Riemannian manifold with sectional curvature every-
where < 0.

(21.18.13) The existence of the involutory automorphism ¢ of G, corre-
sponding to the conjugation ¢, (21.18.5) gives rise to other Riemannian
symmetric spaces. Supposing always that g is simple, the largest normal
subgroup of G, contained in K, is Cn G, (21.185.2). Let
G,=G,/(C n Go)and K, = Ky /(C n Gy). On passing to the quotients, ¢
defines an involutory automorphism s, of G, that fixes the points of K,; but
here K, is only the identity component of the subgroup K, of fixed points of
0,, and may well be distinct from K5, as the example G, = SO(n + 1),
K, =SO(n) (n even) shows (20.11.4). For each subgroup K’ such that
K, < K} = K}, the symmetric pair (G, K?) therefore fulfills the conditions
of (20.11.1) and defines a compact Riemannian symmetric space G, /K’ . The
tangent space to this manifold at the point x,, the image of the identity
element of G, , may be identified with the subspace ip, of g,.. The restriction
of B, to ip, is negative definite (21.18.4); on the other hand, for each t € K7,
the space ip,, is stable under Ad(t), and B is invariant under Ad(r), so that
we may again define canonically a G,-invariant Riemannian metric on
G, /K3, by taking the restriction of —B, to ip, as the value of the metric
tensor at the point x, (so that the spaces G, /K3, for all the different possible
choices of K, are locally isometric). The same calculation as in (21.18.2.2)
now gives the sectional curvature A(u, v), for u, v € ipg:

(21.18.13.1) A(u, v) = [|[u, v]||*/|u A v|?
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so that the Riemannian manifolds G, /K have sectional curvature every-
where = 0.1t can be shown that G, /K, is simply connected (Problem 5), so
that it is a finite covering of each of the spaces G, /K5 .

The direct sum decomposition of the Lie algebra g,,,

(21.18.13.2) g, = fo @ ipo ,

is again called the Cartan decomposition of g, corresponding to ¢,. The
image of t, under the exponential mapping expg, is equal to K ,(21.7.4). The
image P, of ip, under the mapping expg,, however, has properties that are
rather different from those of the set P, studied in (21.18.8):

(21.18.13.3) For each s€ G,, let s* = a,(s™'). Then the group G, acts
differentiably on itself by the action (s, t)— sts*. For this action, P, is the orbit
of e, and K, is the stabilizer of e, so that P, is a compact submanifold of G,,
canonically diffeomorphic to G, /K}; also we have K, P, = P, K, = G,.

We know from (20.7.10.4) that the geodesic trajectories on the compact
Riemannian manifold G, /K, that pass through x, are the images under
n: G, - G, /K, of the 1-parameter subgroups corresponding to the tangent
vectors belonging to ip,. Since G, /K, is compact and therefore complete,
the union of these geodesic trajectories is the whole of G, /K, (20.18.5); in
other words, n(P,) = G,/K,, or equivalently G, = P,K,. Since the rela-
tion x € P, implies x ™! € P,, it follows that also G, = K,P,.

The mapping x+> x* clearly has the following properties:

x**=x, (xy)*=y*x*, e*=e¢

the relation xx* = e is equivalent to x € K),; and for each x € P, we have
x* = x, because cy(u) = —u for ueip,. Observe now that exp(u) =
(exp(3u))?; from this it follows that each x € P, may be written as x = y?
with y € P,, or equivalently x = yy*. Conversely, for each s € G, we may
write s = xz with x € P, and z € K,, so that ss* = xzz"'x = x> € P,. This
shows that P, is the orbit of e for the action (s, t)~ sts* of G, on itself. Since
G, is compact, P, is a compact submanifold of G, (16.10.7); moreover, we
have seen above that the stabilizer of e is K, and therefore the correspond-
ing canonical mapping G, /K’ — P, is a difffomorphism (16.10.7).

It should be carefully noted that in general the restriction to P, of the
canonical mapping n: G, — G, /K, is nor a diffeomorphism (Problem 6 and
Section 21.21, Problem 2).

(21.18.14) To summarize, we have shown that to each involutory automor-
phism of the Lie algebra g, (when g is simple) there correspond:
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(1) A real form g, of g, and the almost simple real Lie groups having g,
as Lie algebra.

(2) A noncompact Riemannian symmetric space G, /K, diffeomorphic
to R" for some n.

(3) A finite family of compact Riemannian symmetric spaces G, /K3.

It can be shown that, together with the Euclidean spaces (20.11.2) and
the almost simple compact groups, the Riemannian symmetric spaces of
types (2) and (3) enable us to describe all Riemannian symmetric spaces
(Problem 13). On the other hand, we shall see in (21.20.7) that every com-
plex semisimple Lie algebra is isomorphic to the complexification of the Lie
algebra of a compact semisimple group. It follows therefore that the deter-
mination of the almost simple compact groups and their involutory auto-
morphisms implies ipso facto the determination of the real or complex
semisimple groups and Riemannian symmetric spaces.

(21.18.15)  Let the symbols G,, G, and G, have the same meanings as before.
Then the linear representations of these three groups on the same finite-
dimensional complex vector space E are in canonical one-to-one correspon-
dence with each other, and are completely reducible (H. Wey!’s “unitary trick ).

This is now obvious, because the linear representations of G, on E
correspond one-to-one to the R-homomorphisms of g, into gl(E),g , which in
turn are in canonical one-to-one correspondence with the C-
homomorphisms of g = g, ®z C into gl(E), by virtue of the fact that gI(E) is
a complex Lie algebra (21.9.1); and the same argument applies when we
replace g, by any real form g, of g.

It can be shown that for G and G, (when g, is not the Lie algebra of a
compact group), no finite-dimensional linear representation can be equiva-
lent to a unitary representation (Section 21.6, Problem 5). On the other
hand, these groups admit many irreducible unitary representations of infinite
dimension (cf. Chapter XXII).

PROBLEMS

1. With the notation of (21.18.6), let Q be the kernel of the canonical homomorphism
Gy~ G, For each quotient G, = G,/D, where D is a subgroup of the center Z of G,
and each linear representation p,: G, » GL(E) of G, on a finite-dimensional complex
vector space E, show that the kernel of p, contains p,(Q), where p,: Gy, — G, is the
canonical homomorphism. (If 6: G, — G, — G is the canonical homomorphism (with
kernel Q), show that there exists a linear representation g: G - GL(E) such that p o ¢ =
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py © p;.) The only groups G, that admit a faithful linear representation on a finite-
dimensional space are those for which Q = D (use Section 21.17, Problem 2); their centers
are therefore finite.

2. With the notation of (21.18.8), show that the compact group K, is its own normalizer in
G,. (Reduce to showing that if an element u € p,, is such that p, = expg, (u) normalizes
K, then u = 0. Using the unique decomposition of an element of G, as a product yz,
where y € P, and z e K|, and the relation [t,, p,] = p,, show first that [u, x] = 0 for all
x € fo; then use the invariance of B, (21.5.6.1) to deduce that [u, v] € p, for all v € p,; this
implies that [u, v] = 0 and hence that u is in the center of g.)

3. (a) With the notation of (21.8.2), suppose that the compact group G, is almost simple. If
fis an involutory automorphism of g,, there exists a regular element of g, invariant under
£, and hence a maximal commutative subalgebra t of g, stable under f, and a basis B of the
system of roots of g, relative to t that is stable under f (Section 21.11, Problem 19).

(b) Suppose that the transpose '(f® 1) leaves invariant each of the roots of B in (,¢,)*:
this is the only possibility when g is of type B, or C, (consider the Cartan integers for the
basis B). Then we have f = Ad(exp(u)) with u € t (cf. Section 21.11, Problem 12); we may
replace exp(u) by z - exp(u), where z is in the center of G, without changing f, and if we
replace u by w - u, where w is in the Weyl group W, then fis replaced by ¢ - f - ¢ ™!, where
@ is an automorphism of g,; we may therefore suppose that iu is in the closure of the
principal alcove A* corresponding to B (Section 21.15, Problem 11). By using the fact that
f? =1, show that either iu = np, for some index j such that n, = 1, or iu = np, for some
index j such that n; = 2, or iu = n(p; + p,) for two indices j, k such that n;=n, = 1 (cf.
Section 21.16, Problem 10). Show that this last case may be reduced to the first (observe
that 2n(p; ~ p,) is a vertex of an alcove w(A*) for some w € W),

(c) 1f g is of type A, or D,, there exists an involutory automorphism f, of g, such that
(fo ® 1)(B) = B, but such that ‘(f, ® 1) does not fix every element of B. (For type A,,
consider the automorphism X +— —'X of u(n, C), and for D, the automorphism defined in
(20.11.4).) Furthermore, except for type D,, if fis another involutory automorphism of g,,
with the same property, then we must have f = Ad(exp(u)) - f, for some u € t,and we may
again suppose that u lies in the closure of A*; use the fact that f2 = 1 to show that
Ad(exp(u + fo(u))) is the identity mapping. By observing that the indices j such that
fo(p;) # p;are such that n; = 1 in both cases A;and D, show that iu = np, for some index
J such that fo(p;) = p;and n; =1 or 2.

(d) Deduce from (b) and (c) that for the classical groups of types B,, C,, and D,,t the
compact real forms (up to isomorphism) correspond to the conjugation ¢, X+— X in
so(n, C) for types B, and D, and to the conjugation ¢,; X+ JXJ ™! in sp(2n, C), where J
is the matrix (21.12.2.4). The noncompact real forms (up to isomorphism) correspond to
the following conjugations:

¢ X1, X1, . in so(n, C}(p +q=n),
co: X JXJ! in so(2n, C),
¢o: X X in sp(2n, C),

¢:X——K, ‘XK, ~in sp2nC)(p+qg=n)

+ It is necessary here to assume that [ # 4 in order to apply (c), but it can be shown that the
result remains true for D,.
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where K, , is the matrix

-1, 0 0 O
o 1, 0 0
0 0 -I, O
o o o I

q

The compact symmetric spaces corresponding to the conjugations involving the
matrices I, , or K, , include in particular the Grassmannians (16.11.9).

With the notation and hypotheses of Problem 3, show that if the conjugation ¢ has as its
restriction to g, an automorphism of the type considered in Problem 3(b), then the group
K, (in the notation of (21.18.13)) is connected. If on the other hand this restriction is of the
type considered in Problem 3(c), then (K;: K,) =2.

With the hypotheses and notation of (21.18.13), show that G, /K, is simply connected.
(Use (16.14.9) and Section 16.30, Problem 11(a).)

With the hypotheses and notation of (21.18.13), show that the mapping (s, y)— sys* is a
submersion of G, x K, into G, at the point (e, y,), for each y, € K, such that —1 is not
an eigenvalue of Ad(y,). The set P, of points ¢ € G, such that t* = ¢ contains the union of
the orbits (for the action (s, ¢} sts*) of the points y € K, such that y* = e. Show that P,
is the connected component of the point e in P,, and is open in P,. For each s € G,, the
mapping z+— szs* is an isometry of P, onto itself; deduce that the geodesics in P, are the
curves £ 5 - expg,(Eu) - s* for u e ipy and s € G,.

(b) In the case where G, = SO(n + 1) and o, is the automorphism defined in (20.11.4),
show that P, n K}, is the set consisting of e and a submanifold diffeomorphic to S, _, that
does not contain e, and that P, n K, = {e}. Determine the other connected components
of Py.

With the notation and hypotheses of (21.18.13), the mapping s ss* of G, onto P,
factorizes as G, L G,/K} 5 P,, where n' is the canonical mapping and g is a
diffeomorphism.

(a) Show that the composition y o (n'|P,) is the mapping y— y* of P, onto itself. Let
expg,: 8, — G, be the exponential mapping of the Lie group G, and exp,, the exponential
mapping corresponding to the canonical connection on G,/K’; then we have
n'(expg,(u)) = exp, (u) for u e ip, (20.7.10.4) (ip, being canonically identified with the
tangent space at x, to G, /K}). Show that u(exp, (u)) = expg,(2u) for u € ip,.

(b) Let ueip, and let y = expg,(u) € P,. Show that for each vector v € ip, we have

© 2k
riena - o (5 ) )
(Use (19.16.5.1) and the relation [p,, po] < 15.)

With the notation and hypotheses of (21.18.12), let s* = t,(s™!) for all s € G,. State and
prove for G, and K, the analogues of (21.18.13.3) and Problems 6(a) and 7.

With the notation and hypotheses of (21.18.12), show that for a submanifold S of P, to be
totally geodesic (20.13.7), it is necessary and sufficient that the vector subspaces = T, (S)
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of p, should be such that the relations ue s, ve s, w € s imply [u, [v, w]] € s;suchan s
is called a Lie triple system, and § is the image of s under expy;,. (Using the definitions of
the second fundamental forms (20.12.4) and of the paralle! transport of a vector (18.6.3),
show first that if S is totally geodesic, the parallel transport (relative to P,) of a tangent
vector to S along a curve in S is the same as the parallel transport of this vector relative to
S, and therefore consists of tangent vectors to S. Then use (20.7.10.4) and Problem 8 to
show that for all u, v in s we must have (ad(u))? - v € s, and deduce that s is a Lie triple
system. Conversely, show that if s < p, is a Lie triple system, then g’ = s + [s, 5] is a Lie
subalgebra of g,, stable under the conjugation c,; if G’ is the connected Lie group im-
mersed in G, that corresponds to g’, and if K’ = G’ n K, then K' is closed for the proper
topology of G’; the image S’ of s in P, under expg, is a closed submanifold of P, and the
canonical mapping G'/K' - §’ is a diffeomorphism (for the proper topology of G'); con-
sequently S’ is a geodesic submanifold at the point x,, and G’ acts on S’ as a transitive
group of isometries.)

Show that the unique geodesic trajectory in P, that passes through two distinct points
of S is contained in S.

In (21.18.12), take G, = SL(n, R) and 7, to be the automorphism X — ‘X ~!; its derived
automorphism, the restriction of c, to sl(n, R), is the automorphism X+— —'X. We have
then K, = SO(n), and P, is the set S of positive definite symmetric matrices of determinant
1, which can also be written as ¢', where s (= py) is the space of symmetric matrices of
trace 0. The geodesics in the Riemannian symmetric space S are the mappings
t—A-e¥-'4 of Rinto S, where 4 € SL(n, R) and X € s (Problem 8). Through any two
points of S there passes one and only one geodesic trajectory.
Let Q(X, Y)=Tr(X~'Y + Y~ 'X) for any two matrices X, Y € S.

(a) Show that Q(4-X ‘4, A-Y-'4A)=Q(X, Y) for all 4eSL(n R) and that
Q(X, Y)>Oforall X, Y e S. (Use the fact that X can be written as Z2, where Z € S.)

(b) ShowthatQ(I, X} =2 Y ch(4)), wheree™,..., e’ are the eigenvalues of the symme-
I=1

tric matrix X e S (use (a) above). Deduce that for each X,e S the mapping
X+ Q(X,, X) of S into R is proper (17.3.7).

(c) Let t—G(t) be a geodesic in S. Show that for each X,e S the function
t—Q(X,, G(t)) is strictly convex on R. (Reduce to the case where G(t) = ¢'¥, where Y € 5
is a diagonal matrix.)

(a) With the notation of Problem 10, let P be a totally geodesic submanifold of S, and let
M be a compact subgroup of SL{n, R) leaving P globally invariant (for the action
(U, X)— U - X -'U of SL(n, R) on S). Show that there exists X, € P that is invariant
under M. (By (20.11.3.1) there exists Z, € S invariant under M. By using Problem 10,
show that as X runs through P the function X+— Q(Z,, X) attains its lower bound at a
unique point X if the lower bound were attained at two distinct points, consider the
unique geodesic trajectory joining them. Note also that Q(Z,, X,) = Q(Z,, U : X, - 'U)
for all U e M)

(b) With the notation of (21.18.8), show that if G, = Ad(G,), then for each compact
subgroup M of G, there exists an inner automorphism of G, that transforms M into a
subgroup of K, (E. Cartan’s conjugacy theorem). (Using Section 21.17, show that if we
identify Aut(g,) with a subgroup of GL(n, R) (where n = dim(g,)), so that K, is identified
with a subgroup of O(n) and P, with a submanifold of S, then there exists y € P, such that
z+-y-'z=y for all ze M, by using (a) above and Problem 10; then note that if y = x?
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with x € P,, the relation above takes the form t,(x 'zx) = x'zx for all ze M, in the
notation of (21.18.12).)

(a) Let G/K be a symmetric Riemannian space (20.11.3), where G is a connected real Lie
group and K is a compact subgroup of G that contains no normal subgroup of G other
than {e]. Let o be the involutory automorphism of G for which K is contained in the
subgroup of fixed points and contains the identity component of this subgroup. If g, f are
the Lie algebras of G and K, respectively, then 1t is the subspace of vectors in g fixed by
s = g, and contains no nonzero ideal of g. There exists a scalar product (x|y) on g such
that (ad(z) ' x|y) + (x|ad(z) - y) =0 for all zet. A pair (g, s) consisting of a finite-
dimensional real Lie algebra g and an involutory automorphism s of g having the above
properties is called a symmetrized Lie algebra, and s is called the symmetrization of g.
(b) Let (g, s) be a symmetrized Lie algebra, { the subspace of vectors fixed by s, and p the
vector subspace of g consisting of all x € g such that s(x) = —x. Then g = t @ p; we have
[L0<t [l pl<p [ppl =t and I, p are orthogonal to each other with respect to the
Killing form B, . Show that t is the Lie algebra of a compact group and that there exists a
scalar product Q(x, y) on p such that

Q(ad(z) - x|y) + Q(x|ad(z) - y) = 0

for all zet (cf. Section 21.6, Problem 2). Furthermore, the restriction of B, to t is a
negative definite symmetric bilinear form.

(c) With the hypotheses of (b), let A be the endomorphism of the vector space p such that
Q(A - x, y) = B,(x, y) (Section 11.5, Problem 3), so that 4 is self-adjoint relative to the
scalar product Q. Let E, be the kernel of A4 (which may be zero) and E, (1 i < r) the
eigenspaces of A corresponding to the distinct nonzero eigenvalues c; of A, so that p is
the direct sum of the E, (0 < i < r), which are pairwise orthogonal with respect to Q; also
B,(x, y) = cQ(x, y) for x and y in E,, and E, is the subspace of p orthogonal to p with
respect to B,.

(d) The endomorphism A commutes with ad(z) for all z € 1, and therefore [t, E;] < E, for
0 < i < r. If K is a compact connected Lie group with 1 as Lie algebra, then the sum F of
E,, ..., E, is the direct sum of subspaces p, (1 £ j < m) stable under Ad(f) for all t € K,
each of which is contained in some E;, and such that each representation t— Ad(t)| p,of K
is irreducible. The p, are pairwise orthogonal with respect to both Q and B; if we put
po = Eo.show that [p;, p,] =0for0< j, h<mandj# h (Ifue p;, v e p,, then we have
w = [u, v] € f; show that B (w, w) = 0 and use (b) above.)

(¢) Put g;=p,+[p;, p] for 1 <j<m Show that the g; are ideals of g such that
[8;. 94] = O for j # h, and that s(g;) = g,. By considering the restrictions of Bjto g, x g,
show that the g, are semisimple Lie algebras; g is the direct sum of the g, (1 < j < m) and
the centralizer g, of the direct sum of the g; (1 < j < m) (Section 21.6, Problem 4); and we
have s(g,) = 8o, Po < 8o and [pg, Po] = 0.

With the notation of Problem 12, suppose that the decomposition of p as the direct sum of
the p, consists of only one term, and hence that g is equal to one of the algebras g;.

(a) If [p, p] = O, then g is the semidirect product of t and the ideal p (19.14.7). Hence
there exists a connected Lie group G having g as Lie algebra, and a compact subgroup K
of G, such that G is the semidirect product K and a commutative normal subgroup P
(so that P is isomorphic to R? x T); we may furtiier suppose that K contains no normal
subgroup of G other than {e}. The corresponding Riemannian manifold G/K is the mani-
fold P having as a Riemannian covering R?*? with its canonical metric; G acts on this
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manifold as a transitive group of isometries, containing always the translations of the
group P.

(b) If[p, p] # O, then g is semisimple; hence there exists a connected semisimple group G
having g as Lie algebra, and a compact connected subgroup K of G having f as Lie
algebra, and containing no normal subgroup of G other than {e}. We have B (x, y) =
cQ(x, y) for x, y € p, with ¢ # 0. If ¢ < 0, then G is compact semisimple; if g is not simple,
its simple ideals must be permuted by s. Show that the irreducibility of the representation
r— Ad(r)|p of K implies that g has in this case two isomorphic simple ideals g,, g, such
that s(g,) = g,, with I isomorphic to g, and g,. The Riemannian symmetric space G/K is
then isomorphic to a compact semisimple group with center {e}, endowed with a left- and
right-invariant metric.

If ¢ < 0 and g is simple, we are in the situation described in (21.18.13).

If ¢ > 0, then G is semisimple and noncompact. Show that g is necessarily simple, by
showing that otherwise g would be isomorphic to t x {. In the complexified Lie algebra
8, [ +ip =g, is the Lie algebra of a compact group, and we are in the situation
described in (21.18.12).

(c) Deduce from (a) and (b) and Problem 12 that every symmetrized Lie algebra arises
from a simply connected Riemannian symmetric space by the procedure of Problem 12(a).

(a) Let X bea C* vector field on a differential manifold M, and let F be the flow of the
ficld (18.2.1). Let x, be a point of M at which X(x,) = 0. For each C* vector field Y on M,
the vector (8, - Y)(x,) depends only on Y(x,) (cf. (17.14.11)). For each u e T, (M), let
By, ,, - udenote the value of (8 * Y)(x,) for each vector field ¥ such that Y(x,) = u.If we
put g,(x) = Fy(x, t), we have g,(xo) = x, for all t € R; for sufficiently small values of ¢, g, is
a diffeomorphism of an open neighborhood U, of x, in M onto another open neighbor-
hood U, of x,, and if s, t € R are sufficiently small, then we haveg,,, =g,~¢,= g, ° g,
Hence if we put V(t) =T, (g,) € GL(T, (M)), we have V(s +1t)= V(s)V'(t) for all
sufficiently small s and ¢. Show that for sufficiently small ¢ we have V() = exp(tdy ,,), the
exponential being that of the group GL(T, (M)).

(b) Suppose that M is endowed with a principal connection P on R(M). If X and Y are
infinitesimal automorphisms of the restrictions of P to two neighborhoods U, Vof x, € M
(Section 20.6, Problem 6), then X and Y are said to be equivalent if they coincide on a
neighborhood of x, contained in U n V. The equivalence classes (or germs) of
infinitesimal automorphisms of restrictions of P to neighborhoods of x, form a Lie algebra
g,, of dimension < n(n+ 1), where n=dim, (M). The classes of the X such that
X(xo) =0 form a Lie subalgebra t, of g, . For each class {et, , the mapping
by, x, € End(T, (M)) is independent of the choice of X € ¢, and the mapping Era By L s

X, xo

an injective homomorphism of t, into the Lie algebra gl(T_ (M)) = End(T, (M)).

Let M be a connected differential manifold endowed with a linear connection that is
invariant under parallelism (Section 20.6, Problem 18). Let U be an open neighborhood of
xo € M, determined as in Section 20.6, Problem 15.

(a) For each vector u e T, (M) and each ¢ € R such that exp(tu) € U, a transvection of
the vector tu is by definition an isomorphism z,, of a sufficiently small neighborhood of x,,
onto a sufficiently small neighborhood of exp(ru), such that T, (r,) is the parallel tran-
sport of T, (M) onto T,,_,,(M) along the geodesic v for which v(0) = x4 and (0} = u
(18.6.3) (cf. Section 20.6, Problem 18). We have 7., = 7,, ° 7, if s and ¢ are sufficiently
small. For each y in a sufficiently small neighborhood of x,, let X (y) be the derivative at
t = 0 of the mapping ¢+ 7,,(y), so that X (x,) = u; then X, is an infinitesimal automor-
phism of the connection restricted to the neighborhood of x, under consideration. This
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field X, is called an infinitesimal transvection relative to x,. Show that the mapping u— ¢,
that sends each ue T, (M) to the germ &, of the infinitesimal transvection X, (Problem
14(b)) is injective, and therefore identifies T, (M) with a vector subspace p, of the Lie
algebra g, . An isomorphism (for the induced connections) of a neighborhood of x, onto a
neighborhood of x € M that transforms x, into x also transforms p,, into p,, by transport
of structure.

For simplicity of notation, we shall henceforth write g, I, p in place of g, , I, , P, -
(b) Show that for all sufficiently small ¢ and all C* vector fields Y on M, we have
{6y, ' Y)expltu)) = (Vy, - Y)(exp(ru)) (cf. Section 18.6, Problem 6).
{c) Let Z be an infinitesimal automorphism defined in a neighborhood of x, and such
that Z(x,) = 0, so that its germ { belongs to I; if we put g,(x) = F,(x, t), then g, leaves p
globally invariant, by transport of structure, and transforms a germ £ € p into &, ., (in
the notation of Problem 14(a)). Consequently, we have [I, p] = p, and for each
infinitesimal transvection X _ relative to x, we have (Z, X J(x,) = 9,__ ' U
(d) Show that g = t @ p. (For an infinitesimal automorphism Z defined in a neighbor-
hood of x,, consider the infinitesimal transvection X , for u = Z(x,).)
{¢) Identify T, (M) with p under the bijection u— X ; the bracket [u, v] of two vectors
u, v € T, (M) is then defined by the requirement that X, , should be equivalent (Prob-
lem 14(b)) to [X,, X,]. For all u € g, let u, and u, denote the components of u in tand p,
respectively. Show that, for u, v, w in p (= T, (M)), we have

t-(unAv)=[uv],
r-(uav) w=~[[uv],w]

where 1, r are the torsion and curvature morphisms of M (Section 17.20). (Use (b) and (c)
above to calculate - (X, A X ) and (r- (X, A X)) X, by the formulas (17.20.1.1) and
(17.20.6.1).)

(f) Let M’ be another connected differential manifold endowed with a linear connection
invariant under parallelism, x; a point of M, and g', t', p’ the Lie algebras and the vector
space corresponding to g, I, p. Suppose that there exists an isomorphism of g onto g’ that
maps f onto I" and p onto p’. Then there exists an isomorphism f of a neighborhood of x,
onto a neighborhood of x; (for the connections of M and M') such that T (f) = Fis the
restriction to p (identified with T, (M)) of the given isomorphism of g onto g'. (Use (e)
above, together with Section 20.6, Problem 17.) When this is so, for every star-shaped
neighborhood U of 0, in T, (M), on which the exponential mapping is a diffeomorphism,
and such that F(U) has the same property in M’, there exists an isomorphism J of exp(U)
onto exp(F(U)) that extends the restriction of f to a sufficiently smali neighborhood of x,.
(Use the fact that in the linear differential equations of Section 20.6, Problem 15, the
coefficients Tj,(tu) and Ri, (ru) are constants.)

(a) Let M be a connected differential manifold endowed with a linear connection C.
Show that for € to be locally symmetric (Section 20.11, Problem 7) it is necessary and
sufficient that € be torsion-free and that the parallel transport along a geodesic arc joining
two points x, y be the tangent linear mapping of an isomorphism (for €) of a neighbor-
hood of x onto a neighborhood of y. If s, denotes the symmetry with center x (Section
20.11, Problem 7), then s, defines by transport of structure an involutory automorphism o
of the Lie algebra g (in the notation of Problem 15) such that ¢(u) = u for ue t and
a(u) = —u for ue p, which implies the condition [p, p] = 1. Show that t contains no
nonzero ideal of g (use Problem 14(b)).

(b) Let ae M be a point in the neighborhood of x, on which s, is defined, and let
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b = s, (a). Show that s, - s, =5, - 5, in a sufficiently small neighborhood of 4, and that
in a sufficiently small neighborhood of a this mapping coincides with the transvection
corresponding to the geodesic arc passing through x, with endpoints a and b (Problem
15(a)); show that the tangent linear mappings T,(s,, - s,)and T (s, - s, ) coincide with the
paralle! transport from a to b along this geodesic arc.
(c) Suppose in addition that M is a pseudo-Riemannian manifold and that € is the
corresponding Levi-Civita connection. Show that for each x, € M the symmetry s, is then
an isometry of a neighborhood of x, onto itself. (Use (b) above, by noticing that
S = (54, © 5,) © 5, and that a parallel transport along a geodesic arc joining a and b is an
isometry of T,(M) onto T,(M).)
(d) With the hypotheses of (c), let g, = g be the Lie algebra of the germs at x, of
infinitesimal isometries (Section 20.9, Problem 7). We have p c g,, and if 1, =g, 0 1,
then g, =1, ® p. Furthermore, if ® is the nondegenerate symmetric bilinear form on
p x p (identified with T, (M) x T, (M)) that is the value at x, of the metric tensor on M,
then we have ®([w, u], v} + ®(u, [w, v])=0foru,ve pand we 1,.

Give an example where g, # a. (Cf. Section 20.9, Problem 5.)
(e) Let M’ be another pseudo-Riemannian manifold, locally symmetric with respect to its
Levi-Civita connection, and for a point x; € M’ let g5, {;,, and p’ be the Lie algebras and
the vector space corresponding to gg, !,, and p. For there to exist an isometry of a
neighborhood of x, onto a neighborhood of x;, transforming x, into xg, it is necessary
and sufficient that there exist an isomorphism of g, onto g that transforms I, into ty and p
into p'. (Use Problem 15(e) and Section 20.6, Problems 15 and 17.)
(f) Show that for each locally symmetric Riemannian manifold M (i.e., for which the
Levi-Civita connection is locally symmetric) and each point x, € M, there exists a simply
connected Riemannian symmetric space N and an isometry of a neighborhood of x, onto
a neighborhood of a point of N. (Use (d) and (e) above, and Problem 13(c).)

(a) Let M and M’ be two connected, simply connected, complete Riemannian manifolds
(20.18.5) satisfying the following condition: there exists a continuous function
v: M x M">R with values >0 such that for each (x,x)e M x M’ the balls
B(x; v(x, x’)) and B(x’; v(x, x’)) are strictly geodesically convex (20.17.2) and such that
each isometry of a neighborhood V < B(x; v(x, x’)) of x onto a neighborhood

V' < B(x'; v(x, x))
of x', which maps x to x', extends to an isometry of B(x; v(x, x'}) onto
B(x'; v(x, x')).

Show that each isometry of an open subset of M onto an open subset of M extends
to an isometry of M onto M'. (Let x, € M, and suppose that there exists an isometry
fo of a neighborhood of x, onto a neighborhood of a point x5 € M’ such that
folxo) = x5. Given any point x € M and a piecewise-C' path y from x, to x, define an
isometry of a neighborhood of x onto an open set in M’ as follows: if r is the length of y
and c¢ the infimum of v(y, y') in the relatively compact set B(x,; 2r) x B(x}; 2r), consider a
sequence (x ), <, Of points of y such that x = x,and the arc of y with endpoints x; and
X;4 has length < cfor 0 < j < p — 1. Show that for each j we can define an isometry f; of
B(x; ¢) onto an open ball in M’, such that f; coincides with f;_, on the geodesically convex
set B(x;_,; ¢) n B(x;; c); for this purpose, use Problem 15(f) above and Section 20.6,
Problem 9(a). Then show that the isometry f,, defined on B(x, c), does not depend on the
choice of sequence (x ) satisfying the conditions above, and consequently that f,(x) may be
written as f,(x), depending only on y. Finally prove that if y’ is another piecewise-C' path
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from x, to x, then we have f,.(x) = f,(x), by reasoning as in (9.6.3) and using Section 20.6,
Problem 9(a). We have thus defined a local isometry f(20.8.1) of M into M’; proceeding in
thesame way but starting with fg !, use Section 20.6, Problem 9(a) once again to complete
the proof.)

(b) Deduce from (a) that a locally symmetric, simply connected, complete Riemannian
manifold is isometric to a simply connected Riemannian symmetric space. (Use Section
20.18, Problem 9, together with Problem 13(c) above.)

18. Let G be the universal covering group of SL(2, R), and identify with Z the kernel of the
canonical homomorphism G — SL(2, R) (21.18.11). Let a € T" be an element whose
powers form a dense set in T" (Section 19.7, Problem 6). Let D be the discrete subgroup of
G x T" generated by (1, a), and let H = (G x T")/D. We have Lie(H) = sl(2, R) x R".
Show that the connected Lie group H’ immersed in H, with Lie algebra sI(2, R) x {0}, is
dense in H. (Cf. Section 21.6, Problem 5.)

19. ROOTS OF A COMPLEX SEMISIMPLE LIE ALGEBRA

(21.19.1) Our aim now is to show that a complex semisimple Lie algebra g
of dimension n is always isomorphic to the complexification of the Lie
algebra of some compact semisimple Lie group. The method we shall follow
consists, as a first step, in constructing a commutative Lie subalgebra }) of g
and a direct sum decomposition of the type (21.10.1.1) possessing the
properties (A), (B), and (C) of Section 21.10; from this it will follow that all
the results of Sections 21.10 and 21.11 that rest only on these properties are
applicable, and the second step is to show that by use of these results it is
possible to construct a Lie algebra of a compact Lie group, having g as
complexification.

(21.19.2) Let g be an arbitrary compiex Lie algebra of finite dimension n.
For each element u € g, the eigenvalues of the endomorphism ad(u) of the
complex vector space g are given by the characteristic equation

(21.19.2.1) det(ad(u) — & - 1) =0,

the left-hand side of which is a polynomial in & of degree n, with (—1)" as
coefficient of £". Let u, be an element of g for which the number of distinct
roots of (21.19.2.1) is as large as possible. Since [u,, ug] = 0, ad(u,) will
always have 0 as an eigenvalue; let then 4, = 0, 4,, ..., 4,, denote the distinct
eigenvalues of ad(uy), and let g, (0 < k < m) denote the vector subspace
N(4,) of g on which ad(u,) — 4, * 1, is nilpotent. From (11.4.1), g is the
direct sum of the g, .
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(21.19.3) For all indices h, k in [0, m], we have [g,, ;] = 0if 4, + A, is not an
eigenvalue of ad(u,), and [g,, o] = g, if 4, + A4, = 4, for some index |. In
particular, g, is a Lie subalgebra of g, and we have [g,, g,] = g for 1 £ k < m.

For all x, y € g we have
(ad(uo) — (4y + 4) - D)[x, y] = [(ad(uo) — 4, - 1) - %, y]
+[x, (ad(up) — 4, - 1) - y]

from which it follows immediately by induction on p that the element
(ad(ug) — (4, + 4) - 1)7[x, y] is a linear combination of brackets of the form

[(ad(ue) = 4, - 1)~ x, (ad(u) — 4, - 1)*~" - y]

for 0 < r < p. The restriction of ad(uy) — (4, + 4,) * 1 to [g,, g,] is therefore
nilpotent, and the proposition is proved.

(21.19.4) Since [go, g¢] < g, for 0 < k < m, it follows that for each element
u € g, the endomorphism ad(u) leaves stable each of the subspaces g, . Let a,
denote the linear form

on the vector space g, . Also let P,(u) denote the characteristic polynomial of
the restriction of ad(u) to g,: the coefficients of this polynomial (in ¢) are
therefore polynomials in the coordinates of u with respect to any given basis
of g. Hence the resultantt R,,(u) of the polynomials P,(u) and P,(u), where
h # k, is a polynomial in the coordinates of u that is not identically zero,
because P,(up)(¢) = (4, — €)™ and P, (u,)(£) = (A — £)*™ % have no root
in common. It follows that, for each pair of distinct indices A, k, the set of
elements u € g, such that R, (u) = 0 is nowhere dense in g, (for otherwise
R, would be identically zero, by virtue of the principle of analytic continua-
tion (9.4.1)). Let E be the dense open subset of g, in which R,,(u) # O for all
pairs (h, k) of distinct indices.

(21.19.5) For each u € g,, the restriction of ad(u) — a,(u) - 1, to g, is a
nilpotent endomorphism. Furthermore, ag(u) =0 for all ue g,.

Suppose first that u e E. Since ad(u) - u = 0, it is enough to show that

the restriction of ad(u) to each g, cannot have two or more district
eigenvalues. Since, by the definition of E, these eigenvalues would be distinct

t+ See, for example, my book Infinitesimal Calculus, Paris (Hermann), 1968, p. 61.
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from all the eigenvalues of the restrictions of ad(u) to the other g, , and since
there are at least m of these that are all distinct, it follows that the endomor-
phism ad(u) of g would have at least m + 2 distinct eigenvalues, contrary to
the choice of u,. Hence for u € E we have P,(u)(£) = (o (u) — &)*™ and
Po(u)(¢) = (—&)*™%; by continuity, these relations hold for all ue g,
because E is dense in g, .

(21.19.6) We shall now change our notation and denote by b the Lie
subalgebra g, of g, and by S the set of linear forms «y, a,, ...., a, on b,
which are all # 0 and pairwise distinct, because they take distinct nonzero
values at the point u,; also we shall write g(«,) in place of g,, and put
g(B) = {0} for every linear form § on b distinct from 0 and the « € 8. Then
g(x) may also be defined as the largest vector subspace of g such that for each
u € b the restriction of ad(u) — afu) - 1, to this subspace is nilpotent. The
proof of (21.19.3) shows that

(21.19.6.1) [a(a). a(B)] < gla + B)

for any two linear forms «, f on b.
(2119.7) Forall u,ve b and all x € S we have a{[u, v]) =0.

For the trace of the restriction of ad([u, v]) to g(x) is
dim(g(«)) - 2([u, v]). On the other hand, we have

ad([w, v]) = ad(u) ad(v) — ad(v) ad(u),

and therefore the trace of the restriction of ad([u, v]) to g(«) is zero.

((21.19.8) For all elements u, v € b, we have

(21.19.8.1) B,(u, v) = 3 (dim g(a)) - a(u)a(v).
x€e S
Since B, is bilinear and symmetric, it is sufficient to calculate

B,(u+ v, u+ v): in other words, we need only prove (21.19.8.1) when
u = v. But then the restriction of ad(u)? to g(«) has the single eigenvalue
a(u)?; since the restriction of ad(u) to b is nilpotent, the result follows.

(21.19.9) Ifa + B # 0, the subspaces g(a) and g(B) are orthogonal relative to
the Killing form B,.

Let u € g(«) and v € g(B). Then it follows from (21.19.6.1) that the image
of g(y) under ad(u) ad(v) is contained in g(x + f + y). If we take a basis of g
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consisting of a basis of h = g(0) and bases of each of the subspaces
g(a), a € S, it is clear that the diagonal elements of the matrix of ad(u) ad(v)
relative to this basis are all zero, and the result follows.

(21.19.10)  Ler a, B be two linear forms belonging to S. Let p (resp. q) be the
smallest (resp. largest) rational integer such that B + pa (resp. B + qa) belongs
to S. Then, for all u € [g(a), g(—a)] = b, we have

(21.19.10.1) i (dim g(8 + ka))(B(u) + ka(u)) = 0

k=p

and consequently f(u) = r,za(u), where r,; is a rational number.

Consider the subspace V of g that is the direct sum of the g(f + ka) for
p < k < gq. 1t will suffice to prove the formula (21.19.10.1) for u =[x, y],
where x € g(a) and y € g(—a). Since the image of g(y) under ad(x) is con-
tained in g(y + «), by (21.19.6.1), and since g(B + qa + a) = {0}, it follows
that V is stable under ad(x). Likewise, the image of g(y) under ad(y) is
contained in g(y — ), and we have g(f + pa — a) = {0}, so that V is stable
under ad(y) and hence also under ad([x, y]) = ad(x) ad(y) — ad(y) ad(x).
This being so, the trace of the restriction to V of ad(x) ad(y) — ad(y) ad(x)
is zero. If we now observe that the restriction of ad([x, y]) to g(f + ka)
has only one eigenvalue, namely B([x, y]) + ka([x, y]), the formula
(21.19.10.1) follows immediately.

(21.19.11)  Suppose that the Lie algebra g is semisimple. Then (with the same
notation as above):

(i) The restriction to b of the Killing form B is nondegenerate.
(i) Ifae S, thenalso —ae S.
(1) If | is the dimension of by, there exist | linearly independent forms
belonging to S.
(iv) b is a maximal commutative subalgebra of g.
(v) For each u € b, the restriction of ad(u) to g(«), for each a € S,isa
homothety of ratio a(u): in other words

(21.19.11.1) [u, x] = a(u)x
for all x € g(«).

(i) Ifuebis orthogonal to b (relative to B,), then u is orthogonal to all
of g, because by virtue of (21.19.9) it is orthogonal to each g(«), a« € S. Since
g is semisimple, it follows that u = 0.
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(ii) If we had —a ¢ S, then we should have a + f # 0 for each f € S,
and therefore by virtue of (21.19.9) all the elements of g(a) would be ortho-
gonal to each g(B), B € S; since they are also orthogonal to b, they would be
orthogonal to the whole of g, and this is impossible since g is semisimple.

(iit) If the rank of 8§, in the dual space of b, were strictly less than [, then
there would exist an element u # 0 in b such that a(u) =0 for all a € S;
hence B,(u, v) = 0 for all v € b by virtue of the formula (21.19.8.1), and this
would contradict (i).

(iv) Since a([u, v]) =0 foralla € Sandall u, v € (21.19.7), it follows
from (iii) that [u, v] = 0, in other words, that b is commutative. Hence b is
the kernel of ad(u,) and is therefore a maximal commutative subalgebra.

(v) The endomorphism ad(u) decomposes uniquely as a sum S + N,
where S and N are endomorphisms of the vector space g, which are polyno-
mials in ad{u) with complex coefficients, such that N is nilpotent, S diagona-
lizable and SN = NS (A.25.3). Because S is a polynomial in ad(u), it
stabilizes b and the g(a), and the triangular form (A.6.10) of the restriction of
ad(u) to each g(a) shows that we have S - x = a(u)x for all x € g(a). Bearing
in mind (21.19.6.1), we deduce that S - [x, y] =[S - x, y] + [x, S - y] for all
x € g{a) and y € g(B); and it then follows by linearity that S is a derivation of
the Lie algebra g. But g is semisimple, hence every derivation of g is inner
(21.6.7): that is to say, there exists v € g such that § = ad(v) € ad(g). Now
x+—ad(x) is an isomorphism of g onto ad(g) (21.6.3), and therefore ad(u)
commutes with ad(w) for all w € b; hence S, being a polynomial in ad(u),
also commutes with ad(w) for all w € b. Since ad(b) is a maximal commuta-
tive subalgebra of ad(g), by (iv) above, it follows that v e b. Since
Tr(ad(v) | g(2)) = dim(g(a)) - @(v) and S - x = a(u)x for all x € g(a), we see
that a(u) = a(v) for all « € S. By virtue of (iii), this implies that u = v and
shows that ad(u) = S is diagonalizable.

Because of (21.19.11.1), for a semisimple complex Lie algebra g the linear
forms a € S will henceforth be called the roots of g relative to b.

(21.19.12) Since the restriction of B, to b is nondegenerate, for each root
« € S there exists a unique element h € | such that

(21.19.12.1) a(u) = By(u, h?)
for all ue .

(21.19.13) Suppose. that the Lie algebra q is semisimple. Then, for each root
o« € S:
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(i) For each x € g(a) and y € g(—a), we have

(21.19.13.1) [x, y] = By(x, y) - h?.

(i) (h?)# 0.

(i) We have [x, y] € b, and from the invariance of the Killing form
(21.5.6.1)

B,([x, y]. u) = B,([u, x], y) = a(u)B,(x, y).

The formula (21.19.13.1) now follows from (21.19.12.1), since B, is
nondegenerate.

(ii) Let x be an element # 0 in g{a}. Then x cannot be orthogonal to
g(— a) relative to B, for otherwise it would follow from (21.19.9) that x was
orthogonal to all of g, contrary to the fact that g is semisimple. Hence there
exists an element y in g(—a) such that [x, y] = h?, by virtue of (21.19.13.1).
This being so, it follows from (21.19.10) that B([x, y]) = r,za({x, y]) =
ryga(hl) for each root B e S. If we had a(h?) =0, then we should have
B(h8) = 0 for all roots B € S; since h? # 0 by virtue of (21.19.12.1), this
would contradict the existence of [ linearly independent roots (21.19.11(iii)).

PROBLEMS

1. (a) Let g be a finite-dimensional complex Lie algebra and u any element of g; let 4, = 0,
Ay, ..., 4, be the distinct eigenvalues of ad(u), and g, (0 < k < m) the subspace N(4,)
defined in (11.4.1), so that g is the direct sum of the g, . Il S and N are the diagonalizable and
nilpotent endomorphisms of the vector space g, such that § + N = ad(u) and SN = NS
(A.25.2), show that S and N are derivations of the Lie algebra g (Argue as in
(21.19.14(iv)).)

(b) Suppose that g is semisimple. Then there exist uniquely determined elements v, w € g
such that ad(v) = § and ad(w) = N. By abuse of language, v and w are called respectively
the semisimple and nilpotent components of u; they satisly [v, w] = 0.

(c) Suppose that g is semisimple, and let b be a Lie subalgebra of g that is equal to its
normalizer in g. Show that for each u € b, the semisimple and nilpotent components of u
belong to b.

2. Let g be a complex semisimple Lie algebra. Suppose that there exist m + 1 distinct complex
numbers 4, =0,4,,..., 4,and a decompositiong =g, D g, ® - @ g,, of g as a direct sum
of vector subspaces such that [g,, g,] = 0if 4, + 4, is not one of the 4,, and [g,., g;] = g, if
A, + 4;= 4,. Show that there exists an element u € g, such that ad(u) leaves stable each of
the g;, and such that the restriction of ad(u) to g;is multiplication by 4; (0 < j < m). Extend
this result to real semisimple Lie algebras when the 4; (1 £ j < m) are real numbers.
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20. WEYL BASES

(21.20.1) It follows from (21.19.11) and (21.19.13) that for a complex semi-
simple Lie algebra g there exists a commutative subalgebra b of g and a finite
set 8 < h* — {0} of linear forms, such that the direct sum decomposition

(21.20.1.1) g=h® @D gx)

ae S

and the Killing form B, satisfy conditions (A), (B), and (C) of (21.10.1). For
brevity we shall call (21.20.1.1) a root decomposition of g, b being the maxi-
mal commutative subalgebra and $ the root system corresponding to this
decomposition. We may then apply all the results of (21.10) and (21.11), with
the (provisional) exception of those of (21.11.9), (21.11.10), and (21.11.11).
The linear forms v, that feature in (21.11.1) are here given by
v,(4) = 24(hg)/a(h).

In particular, each subspace g(a) (x € 8) is one-dimensional over C
(21.10.3), g(2) @ g(—a) is nonisotropic relative to B, (21.10.2), and we may
therefore choose in each g(x) a vector e, such that for all « € 8§ we have

(21.20.1.2) B,(e,,e_,)=1
and hence, by (21.19.13.1),
(21.20.1.3) [e,,e_,] =hl.
By virtue of (21.19.6.1), we may therefore write, for any two roots «, fin S,
(21.20.1.4) [e, . ] = N(a, Ble, .,
ifa + B €8, with N(a, 8) € C, and
(21.20.1.5) [e..e;] =0
ifa+p¢8 and a + B #0. We therefore define N(a, ) to be 0 when
a+pf¢Sanda+ f+#0.

These formulas, together with (21.19.11.1), show that the assignment of
the numbers N(a, ) determines completely (once the roots are known) the
mapping (x, y)—[x, y] of g x g into g. By expressing that this mapping

defines a Lie algebra structure, we shall obtain necessary conditions relating
the N(a, B).
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In the first place, since the mapping (x, y)+— [x, y] is skew-symmetric, we
must have

(21.20.1.6) N(B, o) = — N(a, B).

The following three lemmas follow from the Jacobi identity and proper-
ties of root systems.

(21.20.2) Leta, B, y€ S hesuchthata+ f+ y=0. Then
(21.20.2.1) N(a, ) = N(B, 7) = N(y, a).

We have [e,,[e;, e,]] = N(B, 7)[e,, e_,] = N(B, y)h;, so that the
Jacobi identity

(21.20.2.2) [e,.[e;, e,]] + [e;.[e,. )] +[e,.[e.. €]l =0

gives the relation N(B, y)h? + N(y, a)h) + N(a, f)h? = 0; consequently, by
virtue of (21.19.12.1), we have

(21.20.2.3) N(B, y)a + N(y, ) + N(a, f)y = 0.

But the subspace of h* spanned by a«, f, and y, which is at most two-
dimensional, cannot have dimension 1. For if this were so, the three roots a,
B, y would all be scalar multiples of one of them, say «; but then f and y
would have to be equal to +a (21.10.3), and since 3a # 0 we should have
either § = —a or y = —a, whence either y = 0 or § = 0, both of which are
impossible. Hence, replacing y by —a —f in (21.20.2.3), we obtain
(21.20.2.1).

(21.20.3) Let a, B, y, 6 be four roots (distinct or not) such that the sum of each
pair is nonzero and such that a + f + y + 6 = 0. Then

(21.20.3.1)  N(o, BIN(y, 8) + N(B, 7)N(x, 8) + N, a)N(B, 8) = 0.

(Observe that each term in this sum is defined, by virtue of the conditions of
the lemma.)

If f+yeS, then we have [e,, [e;, e]]=N(B, y)[e,, e5.,]=
N(B,7)N(a, B8 + y)e_,,becausea + (f + y) = — & € S. By virtue 0f (21.20.2.1)
applied to a, B + y, and 3, we have N(a, § + y) = N(6, 2) = —N(a, J), so that
[e,. [e5, €,]] = —=N(8, 7)N(a, S)e_,. If B+ y ¢ S, this relation still holds,
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because both sides are zero. By applying the Jacobi identity (21.20.2.2), we
obtain (21.20.3.1).

(21.20.4) Let a, B € S be two nonproportional roots, and let a (resp. b) be the
smallest (resp. largest) rational integer such that B + aa (resp. f + ba) is a
root. Then we have

b(1 —
(21.20.4.1) N(x, B)N(—a, —B) = — '(—2“-) a(h?).

Suppose first that & + § € S, so that b > 0. In the notation of the proof of
(21.10.4), we have m=b—a, and for 0<Lj<m the element z,=
(') 'ad(x_,Y - Xz4p, spans g(f + (b —jla), by virtue of (21.9.3). In
particular, z, spans g(f), and by (21.9.3.1) we have

ad(x,) - 2, = (1 —a)z,_,, ad(x_,) - 2,_, = bz,

so that [x_,, [x,, es]] = b(l —a)e;. Since we may write e, = Ax,,
e_, = ux_,, it follows from (21.20.1.3) and (21.10.3.2) that iuh, = h?, so
that 24y = a(h?) and hence

(21.20.4.2) [e_..[e.. e]] = ib(1 — a)a(h)e, .

But since —a+(x+B)#0, it follows that [e_,, [e,, e]]=
N(a, B)N(—a, a + f)e, ; and by virtue of (21.20.2) applied to the three roots
—a,0 + B, — B, we have N(—a, @ + B) = N(—f, —a) = —N(—a, — ). The
relation (21.20.4.1) therefore results from (21.20.4.2). Finally, if b = 0, both
sides of (21.20.4.1) are zero, so the relation is still true.

(21.20.5) (Weyl's theorem) Let g, g be two complex semisimple Lie
algebras,g=bH® Dgla) g = & D o'(«') root decompositions of g and g’

ae$S a'e 8

(21.20.1), S = b* and S’ < by'* the corresponding root systems, E (resp. E') the
real vector space generated by S (resp. §') (21.11.2); we may consider E (resp.
E') as the dual of the real vector space b, (resp. by) spanned by the elements hZ,
a € S(resp. hl, o € §')(21.11.2). Let ¢ be an R-linear bijection of b, onto bg
such that '¢(S’) = S. Then ¢ can be extended to a C-isomorphism of the Lie
algebra q onto the Lie algebra ¢'.

(In this statement, the elements h2, o’ € §', are defined by the relations
o'(u') = B,(u, h)) for v e Iy, o € §', analogous to (21.19.12.1).)

Let us first show that for u, v € h, we have

(21.20.5.1) B,(u, v) = By (e(u), o(v)).
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This will follow from the relations
(21.20.5.2) Bg(hf, hg) = Bg,(hﬁ,’,, hg,)

fora’, f'in §, and o ="p(a'), B = ‘@(f).
For by definition we have

B'(@(u)) = B(u) = By(u, hg) = By(p(u), hy)

so that the relation (21.20.5.2) will imply that B_(¢(h{), hg) = B_(h?, h})
for all roots o’ € §'. But since the hg, span the complex vector space ly, and
since the restriction of B_, to by’ is nondegenerate, it follows that the relation
a = '¢(«’) implies that h§, = ¢(h?) for all «’ € §'. Since the set of vectors h?,
contains a basis of by, the relation (21.20.5.1) indeed follows from
(21.20.5.2).

To establish (21.20.5.2), we observe that the hypothesis on ¢ implies that
if o, f are two nonproportional roots in §’, then a = ‘(') and § = ‘o(f')
are nonproportional, and the rational integers k for which §' + ka’ € 8§’ are
exactly those for which f§ + ka € S. By virtue of (21.10.4), we have therefore

B(h2) _ p(h2)
() ~ a(h?)

or, by virtue of the definition of the h? and the h?,

By (h2, h3) _ B(hS, h9)

Bg’(hg‘ ’ hg’) Bg(hg ’ h;)) ‘
Since the Killing form is symmetric, this proves already that the ratio
c, = o'(h8)/a(h?) is the same for all the roots a’ € §', and that if we denote
this ratio by ¢, then we have '(h2) = ¢ - B(h?) for all roots o, ' € S’ (with
a = 'p(«), B ="¢(p)). This relation may also be written as B (hJ,, h}) =
¢+ B,(h?, hy). On the other hand, the formula (21.19.8.1) applied to g and to
g’ gives, because of the hypothesis ‘¢(S') = S,

B,(h:, h}) = st’(hi")v'(h,?r) = c? 3, y(h)y(h})
Y€

yeS

= ¢?B,(h?, hY).

By comparison with the previous result, we obtain ¢ = ¢2, so that ¢ = 1
(because ¢ # 0); this proves (21.20.5.1) and also establishes the relations

(21.20.5.3) o(h?) = h?,

where a = ‘p(a’).
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(21.20.5.4) Suppose that we have chosen in each g(«) a vector e, such that
the relations (21.20.1.2)-(21.20.1.5) are satisfied. We shall show that it is
possible to find in each g'(«’) an element e,, such that:

(1) for each pair of roots &, ' € § such that o' + ' # 0,
(21.20.5.5) [e; . e5] = N(a, Bles.. 4

where o = ‘p(«'), B = '¢(8') (which implies « + f = ‘p(«’ + f'), and therefore
a+p+0,anda+pe Sifandonlyifa’ + ' € §);
(2) for each root o' € §',

(21.20.5.6) By(e,.e_,)=1
which, by (21.19.13.1), implies
(21.20.5.7) (e, e_,]=hl.

Once the existence of these vectors e), has been established, the theorem
will be proved by taking the extension of ¢ to be the C-linear mapping ¢
such that

(21.20.5.8) P(e,) = e,

for « € § and « = "p(«’). For it will follow from (21.20.5.3), (21.20.5.5), and
(21.20.5.7) that (e, , e;]) = [@(e,), P(es)] for all «, B € S; also, by reason of
(21.20.5.3) and (21.20.5.1), we shall have @([h?, e;]) = [@(h?), @(e,)] for all
a, B € S; and since the h? and the e, span g, it will follow that ¢ is a Lie
algebra isomorphism of g onto g'.

(21.20.5.9) In order to define the vectors e,,, we shall begin by defining a
lexicographic ordering on the real vector space E spanned by 8$: we consider
L

a basis (g;),<;<, of this space, and for any two elements ¢ = Y x;¢;,
i=1
i .
n= Y v;&;, we define the relation ¢ <n to mean:
j=1
“& #n, and if k is the smallest index such that x, # y,, then
X, <y, inR”

It is immediately verified that the relation “£{ <noré=n"onEisa
total ordering (called the lexicographic ordering), that the relation ¢ <p
implies & + { <n + { for all { € E (which implies that £ > 0 is equivalent to
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—£ <0) and that the relations & >0, n >0 imply & + # > 0. (This order
relation should not be confused with that defined in (21.14.5).)

We may therefore write the elements of § in the form of a strictly increas-
ing sequence, relative to this lexicographic ordering:

< =Py <X =py O<py < < pp | <P

We shall define the e,. by the following (finite) inductive procedure: for
each integer k such that 1 < k < m, assume that the e, have been defined for
the o’ € §' such that a = ‘p(a’) satisfies the relations — p, < a < p,, that the
relations (21.20.5.6) are satisfied by these roots «', and that the relations
(21.20.5.5) are satisfied by all pairs of these roots that also satisfy the condi-
tions ' + ' # 0 and —p, <'¢(¢' + f') <p,. The inductive step then con-
sists in defining e}, and e’ (where p, = 'p(p;)) in such a way that these
conditions continue to be satisfied when we replace k by k + 1.

(21.20.5.10) With a change of notation, our problem is reduced to the
following: given a root p >0 in S, let §, denote the set of roots « € S such
that —p <a < p. Suppose that the e, have been determined for those o
such that ‘g(a’) € S,, and that they satisfy (21.20.5.6) and (21.20.5.5) when-
ever o' + ' # 0 and ‘(' + f') € §,. Then the problem is to define e), and
e_,, where ‘¢(p’) = p, in such a way that the same conditions are still
satisfied when we replace S§, by S, U {—p, p}.

If there exists no decomposition p = a + f with«, f € S,,, then we may
take e}, to be an arbitrary nonzero element of g'(p’), and e'_, the unique
element of g'(—p’) such that B (e,., e_,) = 1. If on the other hand there
exist o, f € S, such that p = a + f,and ifa = ‘¢(«’), f = ‘@(B’), then we have
N(a, B) # 0 (21.10.5), and we shall define e, by the equation

(21.20.5.11) N(a, Ble),. = [e,. ., ej]

We have then e, # 0(21.10.5), and we define e’ , to be the unique element
of g'(—p’) such that B (e, e ) = 1. We then define e] for all y € §' by
taking e; = e, if ‘o(y') € S, U {—p, p}; if not, then we take e, to be a
nonzero element of g'(y’), and e” . to be the unique element of g (—y’) such
that B,(e},e”,)=1. We may then write [e], e3] = N'(y, d)e).,, il
7+ 06 #0 (where y="¢e(y), 6 ="¢(d')), and we know already that
N'(7, 8) = N(y, 8) whenever y,  and y + d are in §,. We have to prove that
this relation remains true when y, 4, and y + d are in S, U {—p, p}. There
are various cases to consider:

(@) 7y + 0 = p, and we may assume that y and é are both distinct from a
and . Then we havea + 8 + (—y) + (—3J) = 0, and no two of the four roots
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a, B, —y, —6 sum to 0. We may therefore apply (21.20.3) to g and to g, thus
obtaining

(21.20.5.12)
N(o, B)N(—7, —8) = —N(B, —y)N(«, —3)— N(=7, &)N(B, —9),
N'(e, BIN'(—y, —8) = = N'(B, —y)N'(a, —3)— N'(—7», &)N'(, —9).

We remark now that we must have «a >0, § >0, y >0, § >0; for if, for
example, « <0, it would follow that 8 = p + (—a) > p, which is absurd.
Hence y, 6, B — y, ¢ — 6, & — y,and f — 6 all belong to S, , and therefore the
inductive hypothesis implies that the right-hand sides of the two relations
(21.20.5.12) are equal; since also N'(a, f) = N(a, ) by (21.20.5.11) and
N(a, B) # 0 (21.10.5), it follows that N(—y, —d) = N'(—7y, —4). Now, by
using the fact that the integers k such that y’ + k6’ € 8’ are exactly those for
which y + kd € S, together with the relations (21.20.5.2), we deduce from
(21.20.4.1) applied to g and to g that

N(y, 8)N(—y, —8) = N'(y, §)N'(—v, —é),

whence finally N(y, 6) = N'(y, d).
(b) y+ 6= —p;then —yand —4 belong to S,, and we have

(=1 +(=8)=p.

The reasoning in (a) above proves that N(y, §) = N'(y, d).
(c) One of the roots y, é is equal to +p, for example, y = —p. Then
0 # +p, otherwise we should have either y + 6 = 0 or else

We have p = § + (—y — &), and by hypothesis

-y—06eS,u{-p, p};

but we cannot have —y— 3= +p, for this would imply that §=0
or 6 = 2p, both of which are absurd; hence ~y — € §,andd € §,. Con-
sequently, by (a) above, we have N'(5, —y — ) = N(J, —y — J). But since
the sum of the roots y, 4, and —y — ¢ is zero, we can apply (21.20.2) to g and
to g, and obtain Ny, 6) = N(§, —y — ) and N'(y, 8) = N'(6, —y — 4).
Hence again we have N(y, 6) = N'(y, d), and the proof of the theorem
(21.20.5) is now complete.

(21.20.6) Let g be a complex semisimple Lie algebra and let g = h @ @D g(«)
ae$
be a root decomposition of g. Then there exists for each a € S an element
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e, € gla) such that the conditions of (21.20.1) are satisfied, and moreover such
that

(21.20.6.1) N(a, 8) = —N(—a, —§)

whenever a + 8 # 0.
For each system of elements (e,), . s satisfying these conditions we have

_ bf(] - a)

(21.20.6.2) N(a, B)? 5

a(h?)

whenever o + f # 0, where a and b are the integers defined in (21.20.4), and
N(a, B) is real.

Let ¢ be the mapping u— —u of the real vector space b, onto itself.
Clearly we have ‘p(4) = — A for each linear form 4 € E, so that 'o(S) = S,
and we may apply (21.20.5) with g’ = g. Let us denote by z, € g(«) the
elements constructed in the proof of (21.20.5) (and denoted there by e..); for
the automorphism @ of g that extends ¢, they satisfy by virtue of (21.20.5.8)
the condition ¢(z,) € g(— ), and also the relation B (z,, z_,) = |. We may
therefore write @(2,) =c_,z_,, with c_, € C, and since B, is invariant
under the automorphism @, we have ¢,c_, = 1. Hence there exists for each
a e S a complex number a, such that a? = —c, and a,a_, = 1, whence
a,c_,= —a_,. Now put e, = a, z, for each o € S. First of all, we have
Bg(ea’ e—a) = aaa—aBg(za’ z—a) = 1. AlSO (b(ea) = aa@(za) =00 42, =
~a_,z_,= —e_,. Il a, B are two roots such that a + f§ € S, then we have
o([e,. eg)) =[—e_,, —e_;] = N(—a, —f)e_,_;, and on the other hand
¢([e,, e5]) = N(a, B)@(e,. ;) = —N(a, fle_,_,, which proves the formula
(21.20.6.1). The relation (21.20.6.2) then follows from (21.20.4.1). Finally,
since a <0 and b 2 0, in order to show that N(a, f) is real it is enongh to
prove that a(h?) > 0. Now by (21.19.8) we have

a(h) = By(hg, h) = ¥ B(h)* = (a(hQ))* X 7l
feS peS

by virtue of (21.19.10), since h? € [g(x), g(—a)]- Since a(h?) # 0, it follows
that a(h?) > 0, and the proof is complete.

A C-basis of g which consists of an R-basis of b and elements e, € g(«)
satisfying the conditions (21.20.1.2) and (21.20.6.1), appears therefore as a
generalization of the notion of a Weyl basis of the complexification of the Lie
algebra of a compact semisimple Lie group (21.10.6). In fact, the two notions
are identical; and it is precisely the existence of such a basis in any complex
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semisimple Lie algebra that will enable us to prove the result announced in
(21.19.1):

(21.20.7) Every complex semisimple Lie algebra g is isomorphic to the
complexification of the Lie algebra t of some compact semisimple Lie group.
and the Lie algebra t having this property is unique up to isomorphism.

Consider elements e, (¢ € S) having the properties of (21.20.6), and put
y.=e, —e_,, 2, =i(e, + e_,); it is clear that ib, and the element y,, 2z,
(x € 8) span a real vector subspace t of g, of dimension equal to dim¢g
(21.11.2), and that g = t @ it. Moreover, by use of (21.20.6.1), the following
formulas are easily verified:

(21.207.1)  [ihd, y,] = B(h0)zs,  [ik%, 2] = — B(hO)y,

(21.20.7.2) [y.. 2] =2ih7,

(Vs ¥l = N(& B)Yas g — N(ot —B)¥aeys,
(21.207.3) [z, 2} = —N(a, B)¥2+y5 — Nl&, = B)¥a—y,
[ya ’ z[l] = N(a, B)zawﬂ + N(a, _ﬁ)za—ﬁ s

if @+ B # 0. These formulas show that [ is a real Lie algebra, since the
N(a, B) are real, and g is isomorphic to the complexification of f. To see that
tis the Lie algebra of a compact semisimple Lie group, it is enough to show
that the restriction to t of the Killing form B, is negative definite ((21.6.1) and
(21.6.9)). Now we know already that the restriction of B_ to b is nondegener-
ate; on the other hand, B(h?) is real for all a, § € §(21.19.10); and therefore,
since the h? span the real vector space b, , f(u) is real for all u € b,, and the
formula B (u, u) = Z B(u)? (21.19.8.1) shows that the restriction of B, to

Be
bo X by is positive deﬁmte Consequently its restriction to ib, x ib, is nega-
tive definite. Since the y, and z, are orthogonal to ih, relative to B, (21.19.9),
since B,(e,, e;) = 0 for « + § # 0, and since

Bg(ya! za) = iBg(ea’ ea) - iBa(e—a’ e—a) =0

by virtue of (21.19.9), it remains to show that B(y,. y,) <0 and
B,(z,. z,) < 0; and this follows from the formulas

Bg(ya » ya) = _ZBg(ea ) e~a) = -2,
B,(z,, z,) = —2B,(e,, e_,) = —2.
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The uniqueness (to within isomorphism) of the Lie algebra t is a con-
sequence of the study of the real forms of g undertaken in Section 21.18.
With the notation of that section, the Killing form B is negative definite
only if p, = {0}, that is to say, g, = g,; hence there is no real form of g that is
the Lie algebra of a compact group, except for the subalgebras ¢(g,), where
¢ is an automorphism of g (21.18.3).

PROBLEM

Under the conditions of (21.20.6), show that there exists for each « € S an element e, € g(x)
such that if we put [e;, e5] = N'(z, B)e; ., whena + § € S, then the N'(a, B) are real and satisfy
the condition N'(a, ) = —N'(—a, —p), and such that for each pair a, f e S satisfying
@ + B # 0 we have |N'(a, f)] = 1 — a. A basis of g consisting of the e and a basis of b, over
R is called a Chevalley basis of q. (Reduce to the case where S is irreducible (Section 21.11,
Problem 10) and observe that, in this case if (4]{u) is a scalar product on E which is invariant
under the Weyl group W, then a(h?)/8(h]) = (a|a)/(B|B) by using (21.11.5.5); then use Section
21.11, Problem 1(b).)

21. THE IWASAWA DECOMPOSITION

(21.21.1) Let g be a complex semisimple Lie algebra, which we may, by
virtue of (21.20.7), consider as the complexification (g,),c, = 9, @ ig, of the
Lie algebra g, of a simply connected compact semisimple Lie group G, .
With the notation of Section 21.18, let ¢, be a conjugation of g that com-
mutes with the conjugation ¢,, and let g, be the real form of g consisting of
the elements of g fixed by ¢,; let go = f, @ p, be the corresponding Cartan
decomposition (21.18.4.1), with the relations (21.18.4.2), and recall that we
have g, =t, @ipo and I, =gy N g,-

(21.21.2) Let a4 be a maximal commutative (real) Lie subalgebra contained
in the real vector space p,. (There exist nonzero commutative real subal-
gebras of p, , for example, the one-dimensional subspaces; we may take a, to
be such a subalgebra of largest possible dimension.) The subspace ia, of ip,
is then also a maximal commutative subalgebra of ip,.

(21.21.3)  If t is a maximal commutative subalgebra of the real Lie algebra g,,,
containing iay, then t = iag @ (t N fy).

Let x =y + iz be an element of t, with ye f; and ze p,. For each
u € a, we must have [y, iu} + [iz, iu] = 0; but [y, iu] € ip, and [iz, iu] € {,,
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so that [y, iu] = 0 and [z, u] = 0. Since a, is a maximal commutative subal-
gebra of p,, it follows that ze a5 and hencey e t n ;.

For the rest of this section, let t be a maximal commutative subalgebra of
q, containing ia,, fixed once for all. Let

(21.21.3.1) t@it=",
then 1t is clear that
(21.21.3.2) co(h) =h.

(21.21.4) Let S be the root system of g, relative to t (21.8.1); we recall that
the roots a € S are R-linear mappings of t into iR, which may be canonically
identified with linear forms on the complex vector space h = t @ it. They
take real values on a,, and moreover (21.8.2) we have

(21.21.41) acc,= —a,
(21.21.4.2) c8.) =9-.-

Let 8’ denote the set of roots that vanish on iay (or on ap @ iag); it is clear
that — 8’ = §'. Let ¢ denote the involutory automorphism c, ¢, = ¢, cq of the
complex Lie algebra g. Clearly ¢ leaves g, and g, stable, and we have

(21.21.4.3) cu|80 = @] 8o -

(21.21.5) (i) We have o(t) =1t (and hence ¢(b)="b), and the mapping
o a » @ is a bijection of S onto itself.

(i) We have ae S8 ifand only ifa - ¢ = a.

(i) For each root o € §' we have q, @ g, < {5 + ilg.

(i) For x € t, we have ¢(x) = x, and for x € ip, we have p(x) = —x.
Hence ¢(t) = t by virtue of (21.21.3), and the fact that a+—a - ¢ is a bijec-
tion of S onto itself follows from (21.8.6).

(i) If « - ¢ = a, then a(x) = a(¢(x)) = —a(x) for x € iay, and there-
fore a(x) = 0. Conversely, if « € §', then a(x) = a(¢(x)) for x € ia, and for
x € Iy, and therefore o = a - ¢ by virtue of (21.21.3).

(ii) Ifa e §',itisclear that ¢(g,) = g,. Since the complex vector space
g, has dimension 1 (20.10.3) and since ¢ is an involutory bijection of g, onto
itself, we must have either ¢(x) = x for all x € g, or else ¢(x) = — x for all
xeg,. In the first case, we have xe t,®il,; in the second case,
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X € po@Dipy, and by definition [z, x] =a(z)x =0 for all ze a,; if
x = v + iw, with v and w in p,, we have therefore [z, v] + i[z, w] = 0, and
since [z, v] € t, and i[z, w] € ity, we have [z, v] = [z, w] = 0. But since qa,
is a maximal commutative subalgebra in p,, these relations imply that
veay, and we ay, whence x € b; and since h n g, = {0} by virtue of
(21.8.1), it follows that x =0 in this case. Hence the assumption that
@(x) = —x for all x € g, is untenable, and the proof is complete.

(21.21.6) Let 8" = S — S'. For each root « € 8", the set of vectors z € g,
such that «(z) = 0 is a hyperplane in the real vector space a,. Since $" is
finite, there exists 2z, € a, such that a(z,) # O for all roots x € §”. Let S,
denote the set of roots o € 8" such that a(z,) > 0. Since — 8" = 8", it is clear
that 8" is the union of the two disjoint sets 8", and — 8, . Since ¢y(z;) = 2o,
the set 8§, is stable under the mapping a—a - ¢y . Since ¢(z,) = — 2,, the
image of 8", under the mapping ar—a - ¢ is — S, .

(21.21.7) Let n= @ g, and ng=nn go. Then we have a direct sum

8"
decomposition of the real semisimple Lie algebra g,:
(21.21.7.1) g0 =f®ay @iy
(Iwasawa decomposition of g,).

Let us first show that the sum on the right-hand side of (21.21.7.1) is
direct. Suppose then that xe I,, y € a5, and z € 1y are such that

xX+y+2=0
By operating with ¢ we obtain x — y + ¢(z) = 0, hence
2y +z—¢(2)=0.
But 2yeh, ze @ g, and o(z)e D g_, (21.21.6); hence, by virtue of

xe 8 ae &)
(21.8.1), y = z = 0 and consequently also x = 0.
It remains to prove the equality (21.21.7.1). Let x € g,, then by
definition x = c(x) = $(x + co(x)). Since also x =h + ) v,,where he b

ae$§
and v, € g, for each x € S, we have x = 4(h + co(h)) + 1 ¥ (v, + ¢o(V,))-
ae 8
Since ¢y(h) = h and since the elements of b fixed by ¢, are those which

belong to (t N ) @ ay, we have h + ¢o(h)e I, D a,. If € 8§, we have
v, € I, @ it, by virtue of (21.21.5), hence v, + cy(v,) € t,. f a € §% , then
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by definition v, € 1, hence v, + ¢4(v,) € n N g = 1y Finally, ifa € — 8/,
the relation v, € g, implies ¢,(v,) € g_, (21.21.4.2), hence

cu(va) + CO(Cu(va)) €1,
by the preceding result. On the other hand, the sum
v, + CO(VI) + CyVy + CO(Cu(vz))

is fixed by ¢, and by c¢,, and therefore belongs to f,. It follows that
v, + co(v,) € I, @ 11y, and this completes the proof of (21.21.7.1).

(21.21.8) A finite-dimensional (real or complex) Lie algebra b is said to be
nilpotent if there exists an integer r such that, for all sequences x,, x,,..., X,
of elements of b, we have

(21.21.8.1) ad(x,) » ad(x,) « -+ < ad(x,) =0

in the ring End(b) of endomorphisms of the vector space b. A connected Lie
group is said to be nilpotent if its Lie algebra is nilpotent.

(21.21.9) (i) In the Iwasawa decomposition (21.21.7.1), n (resp. n,) is a
nilpotent complex (resp. real) Lie algebra, and s, = a, @ n, is a solvable Lie
algebra in which n, is an ideal.

(i) Relative to the hermitian scalar product — B (x, c,(y))on g (21.17.2),
there exists an orthonormal basis for which the endomorphism ad(x) of the
vector space g is represented by a matrix that is

(a) skew-hermitian if x € g,;
(b) lower triangular with zero diagonal if x € n;
(c) real diagonal if x € a,.

We shall prove (ii) first. Recall that for each root a € § we have

c,(9.) = 9-, (21.21.4.2) and therefore, in the decompositiong=h@® P gq,,
2e S
the subspaces h and g, (x € S) are pairwise orthogonal relative to the hermi-

tian scalar product — B (x, c,(y)) (21.19.9). Take in b an orthonormal basis
h;, ..., h;, and a unit vector a, in each g,; with the notation of (21.21.6),
range the roots belonging to §' v §', in a sequence a,, ..., a,, .4, ...,
U im,SO that a;€ 8" for 1 S j<r a,,;€ 8% for | £j< m, and such that
a4 1(20) £ % 4;4+1(2) for 1 £j< m— 1. Consider now the orthonormal
basis of g arranged in the following order:

a_,,. ,.-.a4,,h,....h 4, ... a, a,,, ..., 4a,,,-

We shall show that this basis has the required properties. For x € g, this is
clear, because every orthonormal basis will satisfy the condition (a)
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(21.17.3.2). It is equally clear for x € a,, because ad(x) - h; = Ofor 1 < j </
and ad(x) - a, = «(x)a, for all « € S, and furthermore on it > a, the roots
are real-valued (21.8.1). Finally, to verify that condition (b) is satisfied we
may restrict attention to the case where x =a,,, , | £j < m We have
ad(a,,,) - hy = a,,(h)a, . and ad(a, ) a_,,, is either zero or belongs
to gy if f=0a,,;—a,,, 15 a root; but in this latter case we have f(z,) =
,+ (2o) — %, +4(2o), SO that either f € S' or f € 8", or f = —a,,,, but with
k < h. Next, ad(a,,, ) - a,,, where | < h < r, is either zero or belongs to g, if
B=0a.,;+a,is a root; but then f(z,) = a,,,(2,) > 0, so that fe S .
Finally, ad(a,,, ) - a,,,, is zero or belongs 10 g4 if f = ,, ; + a,.,, is a root;
but then fi(zy) > a,,4(2o) > 0, so that § is of the form a, ,, with k > h. This
completes the proof of (ii).

For the proof of (i), we observe that because x+— ad(x) is an isomor-
phism of g onto ad(g) (21.6.3), it is enough to show that ad{n) is a complex
Lie subalgebra of ad(g) that is nilpotent, and that ad(s,) is a real Lie subal-
gebra of ad(g,) that is solvable (the fact that n, is an ideal in s, follows from
the relation [a,, g,] © g,)- Since every subalgebra of a solvable (resp. nilpo-
tent) Lie algebra is solvable (resp. nilpotent), it is enough by virtue of (ii) to
consider the Lie algebra gl{q) = M,(C) (where n = dim(g)) and for each
integer k such that 0 < k < n the vector subspace I, consisting of the
matrices (x,;) such that x,; = 0 for j + k > h. It is easily verified that

(21.21.9.1) [3,, T)<=3,.,

which shows that I, (the algebra of lower triangular matrices) is solvable
(19.12.3) and that I, (the algebra of lower triangular matrices with zeros on
the diagonal) is a nilpotent Lie algebra.

(21.21.10) Let G, be a connected semisimple Lie group with Lie algebra g, ,
and let K, A}, N, be the connected Lie groups immersed in G, whose respec-
tive Lie algebras are t,, a, and 1y, in the notation of (21.21.7).

(1) The subgroups K,, A;, N, are closed in G,, and K, contains the
center C, of G, (21.17.11). The mapping x+— expg (x) is an isomorphism of a,
onto A, and a diffeomorphism of ny onto Ny, so that A, is a commutative group
isomorphic to R” for some n, and N, is a nilpotent group diffeomorphic to R™
for some m.

(ii) The mapping (x, y, z)r— xyz is a diffeomorphism of K| x A; x N,
onto G, (Iwasawa decomposition of G, ). The image of {e\} x A; x N, under
this mapping is a closed solvable subgroup S, of G,.

Furthermore, if mg, is a Haar measure on G |, there exists a Haar measure
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mg, on K, and a left Haar measure mg, on S, such that, for every continuous
function f on G, with compact support, we have

@.21101) |76 dmo (9= [, 7o) am 0 s ).
Gy Ki1x$;
(Recall that G, and K, are unimodular ((21.6.6) and (21.6.10)).)

(I) Consider first the case where C, = {e,}, so that G, may be identified
with its adjoint group Ad(G, ). If G is the complex semisimple subgroup that
is the identity component of Aut(g) = GL(g) (21.17.1), whose Lie algebra
ad(g) is isomorphic to g, then Ad(G, ) is the connected Lie subgroup of G,
whose Lie algebra is ad(g,) (21.6.8). We may therefore likewise identify K |,
A,, N, with the connected Lie groups immersed in GL(g) corresponding to
the images ad(f,), ad(a,), and ad(n,) of the real Lie subalgebras t,, a4, 1,
under the isomorphism x+— ad(x) of g onto ad(g). We shall assume that an
orthonormal basis of g has been chosen to satisfy the conditions of
(21.21.9(ii)). Since the matrices of ad(a,) are real and diagonal, the group A,
consists of real diagonal matrices with diagonal entries > 0, and it is clear
that the exponential mapping of GL(g) is an isomorphism of ad(ay) onto A,
and that A, is closed in GL(g).

As to the group N,. we observe that in the notation of (21.21.9) we have
ad(n,) < I, so that N, is a connected Lie group immersed in the connected
Lie group T,, immersed in GL(g) with Lie algebra I,. Now we have the
following proposition:

(21.21.10.2) The group T, is the closed subgroup of all matrices I + N,
where N € T, and the mapping N exp(N) (where exp is the exponential
map of GL(g)) is a diffeomorphism of ¥, onto T,.

It is immediate that N* = 0 for all N € I,, where n = dim(g), and it is
clear that the matrices I + N form a closed subgroup of GL(g). If we put

PI(N)=N_%N2+1N3_...+(_1)n—2 1

N©- l’
3

n—1
P(N)—1+1N+LN2+---+LN"‘l
S TR (n— 1) ’

then we have exp(N) = P,(N)e T,, and P,(N)e I, for all Ne T,. To
prove the proposition it is enough to show that P,(P,(N)) = I + N and
P,(P,(N)—I)= N forall N € T,. Now, for x real and sufficiently small we

have log(l + x)= Y (—1)""*x"/n (9.3.7), and for all real x we have
n=1
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P &

¢* = Y x?/p!; the theorem of substitution of power series in a power series

=0
(9.2.1) shows that

L(=qymrmrermemr g if k=1,
mamiman=k Pl mny o, |00 k> L,
ntz1l,...np21

L 1 Ui k=1,

pirpritamek M pipaloopt |0 k>,

przl,....pa21

and the coefficients of N* in P,(P,(N)) and P,(P,(N) — I), for k < n, are
precisely the left-hand sides of these two relations.

Since ad(n) is closed in I, it follows from (21.21.10.2) that N, is closed
in T; since T, is closed in GL(g), it follows that N, is also closed in G,
(because the topology of G, is induced by that of GL(g)).

Since 11, is an ideal of s, = aq @ ny, the elements of A, normalize N,
(19.11.4), so that A|N, = N, A, which shows that S; = A|N, is the con-
nected group immersed in G, with Lie algebra s,. Moreover, if D € A, and
U e Ny, then D is the diagonal of the triangular matrix DU. If (D, U ) is a
sequence of matrices in S, converging to a limit in T, then the sequence (D,)
also converges, and therefore so also does the sequence (U, ); since A, and
N, are closed, it follows that S, also is closed. Moreover, the mapping
(D, Uy— DU of A; x N onto S, is a diffeomorphism, the inverse mapping
being X — (D(X), D(X)~'X), where D(X) is the diagonal of X.

In the situation under consideration, we know that K, is a subgroup of
GL(g) consisting of unitary matrices (21.17.4). It follows that K; n S, = {I}:
for the inverse of a lower triangular matrix is again lower triangular, and
therefore cannot be unitary unless it is a diagonal matrix, with diagonal
entries that are complex numbers of absolute value 1; hence K, ~ S, con-
sists of diagonal matrices whose diagonal entries are simultaneously positive
real numbers and complex numbers of absolute value 1, and the only such
matrix is 1.

Since K, is compact, S K is closed in G (12.10.5); its image under the
canonical mapping p: G, - G, /K, is therefore closed (12.10.5). But if
{xo} = p(K,), this image is just the orbit S, - x, for the action of S, on the
space G, /K;. Now for this action the stabilizer of x, is S; n K, = {I},
hence S, - x, is a submanifold of G, /K,, of dimension equal to that of S,,
hence to that of G, /K, (16.10.7). It follows that S, - x, is both open and
closed in the connected space G, /K,, so that S, - x, = G, /K, or equiva-
lently S,K, = G, = K, S, (since K, and S, are subgroups of G,).

The C® mapping (x, s)— xsof K, x S, into G, is therefore bijective; we
have to show that it is a difffomorphism. At each point (x,, s,) € K, x S,
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every tangent vector to K, (resp. S;) can be written uniquely in the form
x, - v (resp. w ' s,), where v € , (resp. w € s,) (16.9.8). The tangent linear
mapping to (x, s)—> xs at the point (x,, s,) is therefore (16.9.9)

(xp v, wes)Pxy o (v+w) s,

which is clearly bijective, because the sum {, @ s, is direct. The result now
follows from (16.8.8).

(I1) We now consider the general case. Let p,: G, = G, /C, be the
canonical homomorphism of G, onto its adjoint group, so that p,(K,),
pi(A,), and p,(N,) are connected Lie groups immersed in p,(G,), with Lie
algebras respectively t,, ao, and n,. Using the fact that p,(A,) and p;(N,)
are simply connected, we may repeat without any substantial change the
argument of (21.17.10), by showing first that A, and N, are the identity
components of p; '(p;(A,)) and p; '(p,(N,)), respectively. Then, using as in
(21.17.10) the fact that C, < K, we see that (x, y, z)— xyz is a bijection of
K, x A, x N, onto G,, and finally, using the result of (I), that it is a
diffeomorphism.

To prove (21.21.10.1), denote by z+ (p(z), ¢(z)) the diffeomorphism of
G, onto K, x S, that is the inverse of (x, s)—xs. Let ue X' (K,) be a
function with values = 0. As v runs through (S, ), the mapping

v [ ulp(z))olg(z)) dma,(2)

is a positive linear form on X'(S,) which is right-invariant, because G, is
unimodular and p(zs) = p(z) for s€8,;; it can therefore be written as

v—J(u) J. v(s~ ') dmg (s), where J(u) is a constant > 0 (14.1). We next extend

J to a positive linear form on X(K,) in the obvious way; since p(xz) = p(z)
for x € K,, this linear form is left-invariant and hence, by a suitable choice
of my , it can be taken to be equal to my, (14.1). The formula (21.21.10.1)
is therefore established for all functions f of the form z— u(p(z))v(q(z)).
To complete the proof, we invoke (13.21.1) and the existence of the
homeomorphism (x, s)+ xs of K, x S, onto G;,.

The relations between the Iwasawa decomposition and the Cartan dec-
omposition of G, (21.18.8) are described in the next proposition:

(21.21.11) With the notation of (21.21.10) and Section 21.18, let 1, be the
involutory automorphism of G, for which K is the set of fixed points, and such
that 1,(z) = z~" for z € P, (21.18.10). Then the mapping f,: s+ 1,(s)s™ ' isa
diffeomorphism of S, onto P,.
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Since each x € G, can be written uniquely as x = zy with ze€ P, and
ye K,,wehave t,(x)x~' =z % € P, so that in particular f,(S,) = P,. The
mapping f; is a bijection of S, onto P,: for the relation 7,(s')s' '
1,(s")s" ! for s, s” € S, implies that 7,(s"~'s’) = 5"~ s, so that s" " 's' € K,
and therefore s” = s’ since K; n S; = {e,}. Moreover f,(S,) = P,, for every
z € P, is uniquely of the form expg,(u) with u € p,; there exist two elements
x'€ K, and s'e S, such that 2 = x's'"! = expg,(3u) (21.21.10); since
Z € P, we have

z=22=1,(Z7") =1 () (xS T =1 (8)s T = ()

since 7,(x’) = x". Finally, this calculation shows that the inverse of the map-
ping f;: S, — P, is the mapping z g(expg, (3/(z))), where g: G, — S, is the
mapping defined in the proof of (21.21.10), and [: P, — p, is the inverse of
the restriction to p, of the exponential map. This shows that f, is a diffeo-
morphism of S, onto P,.

Remarks

(21.21.12) (i) With the notation of (21.21.10), K, is isomorphic to the
product of a compact group K| and a vector group R? (21.6.9), whence we
recover the fact (21.18.8) that G, is diffeomorphic to the product of a compact
group K{ and a vector space R™. Moreover, the compact subgroup K, of K,
is maximal in G, for the components in A, and in N, of an element of G,
will generate subgroups that are noncompact if they are # {e,}; hence every
compact subgroup of G, containing K|, must be contained in K, and hence
in K.

(1) It can be proved that the Lie algebras f,, ag, 11, that figure in the
Iwasawa decomposition are determined up to isomorphism. The dimension
of aq is called the rank of the symmetric space G, /K.

(1i1) If g5 is @ normal real form of g (21.18.9), we have a, = it, and the
rank of g, is equal to that of g,. It can be shown that this condition charac-
terizes the normal forms of g, which are all isomorphic. We have in this case
S = ¥, and S is the set S, of all positive roots, relative to the ordering
defined in (21.14.5).

We have then

(21.21.12.1) Gr=8,®it®ng.

For the argument of (21.21.7) shows that the sum on the right-hand side is
direct. Also g, contains t, hence the right-hand side of (21.21.12.1) contains
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h=t@it; also g, contains the elements e, — e_, and i(e, + e_,) for
a € 8., and since n contains the elements e, and ie, fora € $, , the sum on
the right-hand side of (21.21.12.1) contains e, and ie, for all x € 8§, and is
therefore equal to g. The same proof as in (21.21.10) then shows that if G is a
complex connected Lie group with Lie algebra g, and if G, A, and N are the
connected real Lie groups immersed in G, that correspond respectively to
the subalgebras g,, it, and ny, then G, is compact, A and N are closed
subgroups of G, and the mapping (x, y, z)~ xyz is a diffeomorphism of
G, x A x N onto Gy,.

(21.21.13) In example (I) of (21.18.9), we may take a, to be the set of real
diagonal n x n matrices with zero trace; then the g, corresponding to the
positive roots « are the spaces CE,, for r < s (21.12.1), and n, is therefore the
nilpotent Lie algebra of all upper triangular real matrices with zeros on
the diagonal.

(21.21.14) With the notation of (21.21.7) and (21.21.10), for each vector
X € pg there exists s € K, such that Ad(s) - x € aq.

Since we may replace K, by its adjoint group, we may assume that K, is
compact. We have Ad(s) - po = p, for all s € K, ((21.18.4.2) and (19.11.3)),
and the restriction of the Killing form B_ to p, % p, is positive definite and
invariant under the action (s, z)— Ad(s) - z of K, on p,. For brevity let
[ z] = (By(z, 2))!'? for z € p,, and consider as in (21.7.7.1) the continuous
function s— ||Ad(s) - x — 2o || on K,, where z, is the element defined in
(21.21.6); this function attains its minimum at a point s, and by replacing x
by Ad(s,) - x we may suppose that s, = e,, the identity element of K,. By
expressing that for each yet, the derivative of the function
t— | Ad(exp(ty)) - x — zo ||* vanishes at t = 0 we obtain, using the invar-
iance of B,

0= 2B,(y, x], x — o) = 2B{y, [x, x — z,])

for all y € 1,. Since the restriction of B, to g, x g, is nondegenerate, and
since f, and p, are orthogonal supplements of each other relative to this
form, the formula just written implies that [x, z,] € p,. But now
[po, Po] = o, and hence [x, z,] € po N T, = {0}; since «(z,) # O for each
root @ € §” (21.21.6), we conclude that x lies in the intersection of g, and

h® @ g,, and because g, = t, @ it, for « € §’ by virtue of (21.21.5), we
ae §’

have x € t, @ a,o, and finally x € a, because x € p,. This completes the

proof.

(21.21.15) With the notation of (21.21.10), we have G, = K,A,K,.
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Since G, = P,K, (21.18.8), it is enough to remark that every element of
P, is of the form exp(z) with z € p,, and that z = Ad(s) - xforsomes e K,
and x € a, (21.21.14); since exp(Ad(s) - x) = s(exp(x))s ™' (19.11.2.3), we
have P, < K,;AK,.

PROBLEMS

1. (a) With the notation of Sections 21.18 and 21.21, let i, be the intersection of I, with the
centralizer of a, in g4, and let | (resp. q,) be the subspace of I, orthogonal to i, (resp. the
subspace of p, orthogonal to a,) relative to the form —B,(x, ¢ (y)). Let I =1, +il,,
a=ay+iag, M=, +img, I =1, +ily, g =q, + igy. Show that m is the direct sum of
h ~ f and the subspaces g, + g_,, @ € §'; if x, is a basis element of g, over C, then the
clements x, + o(x,) with « € 8" form a basis of |, and the eclements x, — ¢(x,) with x € 8"
form a basis of q.

(b) Deduce from (a) that there exists an element z; € a such that the centralizer of Rz, in
g is a + m. Hence show, with the help of (21.21.14), that for each commutative subalgebra
b, of p, there exists s € K, such that Ad(s)(bg) < a,.

(c) Show that for each a € 8" the intersection g, = g, N g, is one-dimensional over R.
Show that there exists x; € g, such that, if we put x”_, = ¢ (x}) € g", and h] =[x}, x" ],
then we have [h}, x]] =2x, and [h], x",]= —2x",. Also y, =x_ + x"_,€e1,, and
z, =X, — x",€pg.

(d) Let M and M’ be, respectively, the centralizer and the normalizer of ia, in K, (i.e., the
intersections of K, with the centralizer and normalizer of ia, in G,, cf. (19.11.13)). Show
that M and M’ have the same Liec algebra m,. (Observe that if ue t; is such that
[u, x]eia, for all xe€ia,, then B (ad(u)- x, ad(u) - x)=0) The finite group
W(G,/K,;) = M'/M is called the Weyl group of the symmetric space G,/K,: it acts
faithfully on ia,. With the notation of (c), show that for each « ¢ 8" there exists a real
number ¢ such that r] = exp({y,) belongs to M' and has as image in W(G,/K,) the
orthogonal reflection s, with respect to the hyperplane with equation a(u) = 0 in ia,.

(e) In order that a linear form 4 on ia, should be the restriction of a root a € §”, it is
necessary and sufficient that there exist x # 0 in ia, such that (ad(u))? - x = (i(u))*x for all
u € ia,. Deduce that every element of the Weyl group W(G, /K ,) permutes the restrictions
to ia, of the roots a € 8"

(f) A Weyl chamber in in, is any connected component of the complement of the union of
the hyperplanes a(u) = 0 in ia,, for all « € §”. Show that W(G,/K,) acts simply transi-
tively on the set of Weyl chambers in ia,, and is generated by the orthogonal reflections s,
ae 8" (IfC,, C, are two Weyl chambers and if W' is the subgroup of W(G , /K ,) generated
by the s; . consider for u, € C, and u, € C, an element w € W' such that the distance from
u, tow - u,is as small as possible; show that this implies that w - u, € C,. To show that the
action of W(G, /K,) is simply transitive, follow the proof of (21.11.10).)

{(g) The image A, of ia, under the exponential mapping expg, is a torus contained in P,
and P, is the union of the tori sA,s™ ! for s€ K,.

2. With the same notation as in Problem 1, let T denote the set of restrictions to ia, of the
roots a € 8”. For each 4 € I, let £(4) denote the set of a € §” of which 4 is the restriction,
and m(4) the number of elements of Z(A); m(4) is called the multiplicity of the linear form 4.
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(a) The set X satisfies the conditions S,, S,,, and S,;, of (21.10.3) relative to the space (ia,)*:
in other words, I is a root system, in general nonreduced, i.e., not necessarily satisfying Sy
(cf. Problem 3). The elements 4 € I are called the roots of G, /K , relative to the choice of
the maximal commutative subalgebra a, of p, .

(b) Foreach A € Zlett, (resp. ip,) be the intersection of t, (resp. ip,) with the sum of the
spaces q, + q_, for a € L{A); they are real vector spaces of dimension m(1). For A, u € ¥ we
have

[Lotlet,, +h,.  [L.oip)cip, +ip,,
fips v ]t +1,,

where, if 4 + y =0 (resp. A — u=0),1,,, (resp. 1,_,) is to be replaced by m,, and ip,,,
(resp. ip;_,) by ia,.

(c) Foreach 4 € I and each integer k € Z, let v , be the affine hyperplane in ia, given by
the equation A(u) = 2kmi: it is the intersection of ia, with the affine hyperplanes u,_ , for all
roots @ € I(4). The union of the hyperplanes u) ,forall A € £and k # Ois the set of u € iay
at which the restriction to ia, of the tangent linear mapping T (exp ) is not bijective. If we
identify ip, with the tangent space at x, to G, /K’ (or G, /K,), the points u € ia, for which
the tangent mapping T (exp,,) (Section 21.18, Problem 7) is not bijective are those for
which 2u belongs to the union of the uj , with k # 0.

(d) Show that, for all the points x = exp ,(u) such that u € ia, belongs to none ol the utj ,
but 2u does lie in their union, the tangent mapping T (n'), where n': P, - G, /K/, is the
canonical mapping, is not bijective (use Section 21.18, Problem 7(a)). Does this result
remain true when u belongs to one of the 1} ,?

(e) A point x € P, is said to be singular if the dimension of the orbit of x under the action
(s, ¥)—sys U of K, on P, is strictly less than dim(K,/M). The singular points of P, that
belong to A are the points lying in the union of the U, where U, is the torus of codimen-
sion | in A that is the image under expg, of any of the hyperplanes uj ,, 4 € ; we have
U7, =U} but U}, = U} il both 4 and 24 are in X. A point x is said to be regular if it is not
singular. Let A, denote the open set in A consisting of the regular points of A.

(f) Show that the mapping (s, t)=sts™! of K, x A into P, is a submersion at all points
{s. t) such that r € A, (argue as in (21.15.1)). Deduce that (K,/M) x A__ is a covering,
with card(W(G, /K ,)) sheets, of an open subset V of P, consisting of regular points and
such that the complement of V is negligible. This complement is the union of the sets P’;,
where P, is the image under (s, r}— sts™" of the set M x U}, and M, is the centralizer of
U’ in K,. Show that P is the image under a C* mapping of a manifold of dimension
< dim(P,) — (1 + r), where r is the smallest value of the multiplicity m(4) for roots 1 € £
such that 24 ¢ X.

Take ¢, as in example (I11) of (21.18.11), so that G, is the quotient of SU(p + g) by its
center, and K, is the quotient of K, by the center of SU(p + g); then ip, is the space of
0 z
atrices of the f P
matrices of the form (—'Z 0,
Let ia, denote the subspace of ip, spanned (over R) by the matrices
Ejpej—E, . j=H;for I £j<gq. Let (¢), ;, be the basis dual to (H)), ., so that
£{H,) = 3. Show that ia, is a maximal commutative subalgebra of ip,. The roots of the
corresponding system I are

).where Z is a p x g complex matrix.

(1 £j2q)y  22(15j5q) e+ (1Sj<hsg)
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with multiplicities
me;} = 2(p — q), m(2e;) = 1, mie; +&,) = 2.

Determine the subspaces I, and ip, corresponding to these roots.

With the notation of Problem 1, show that for the compact symmetric space G, /K, the
following properties are equivalent:

(x) For each system of four points p, g, r, s in G, /K, such that d(p, q) = d(r, s), where
d is the Riemannian distance, there exists x € G, such that x-p=rand x - g = 5.

(B) The group K, acts transitively on the set of lines passing through the origin in the
tangent space ia, at the point n{e) of G,/K,.

() Forall ue ip, we have ip, = Ru + [f;, u].

(6) G,/K, has rank 1, in other words, ia, has dimension 1.

(¢) The sectional curvature A(P,) along a tangent plane P, to G,/K, (20.21.1) is
never zero.

(To prove that («) and (B) are equivalent, use the Hopf-Rinow theorem (20.18.5). To
prove the equivalence of (8) and (y), use Problem I{e); to prove the equivalence of (7) and
(¢), consider an orthonormal basis of ip, consisting of eigenvectors of the endomorphism
vi—[[u, v], u] (cf. Section 20.20, Problem 2, and (21.21.2)).)

With the notation of Sections 21.18 and 21.21, show that the following conditions are
equivalent:

(«) The rank of g, (or of G,/K,) is equal to the rank of g (or of G,).
(8) All the roots 4 € T have multiplicity 1 (Problem 2).

() The rank of g is equal to 2 dim(ip,) — dim(g).

(6) The rank of g is equal to dim(ip,) — dim(t,).

(a) With the notation of Section 21.21, show that for a root a € 8" the {ollowing condi-
tions are cquivalent:

()ace=—a, (2) cg(8s) = ga (3) the restriction of « to Iy n t is zero. When these
conditions are satisfied, the subalgebra t, n t of ; is not a maximal commutative subalge-
bra. (Observe that we also have c,(g_,) = a_, and deduce, using Problem 1(c), that y;
centralizes t; ~ t.)

(b) Deduce from (a) that for each 4 € I there can exist only one root a € £(4) such that
a - ¢ = —a. For such a root to exist it is necessary and sufficient that the multiplicity m(4)
should be odd. (Observe that if « € £(4), then also a - ¢ € Z(4).)

(c) Suppose that m(4) is even for all A € Z. Show that 1, is the direct sum of t, ~ t and the
distinct subspaces fp N (8, + -4 + G4, + 8-2.,). and that {; N tis a maximal commuta-
tive subalgebra of t, .

(d) Ifae 8, issuch that a - ¢ = —a, show that if u, denotes the hyperplane in a4 with
equation a(x) = 0, then the sum of u,, {, » t, and Ry’ is a commutative subalgebra of g,
whose complexification is also the complexification of a maximal commutative subalgebra
of g, (a™ Cartan subalgebra " of g, , cf. Section 21.22, Problem 4). Deduce that if there exist r
roots « € §", such that « - ¢ = —a and [g,, g,] = 0 for any two of these roots, then there
exist r Cartan subalgebras in g, with the property that no two of them are transforms of one
another by automorphisms of g, of the form Ad(s), where s € G,. (Consider the commuta-
tive subgroups of Ad(G,) having these r subalgebras as their Lie algebras.)
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22. CARTAN’S CRITERION FOR SOLVABLE LIE ALGEBRAS

In this section and the next, the Lie algebras under consideration are Lie
algebras over either R or C, unless the contrary is expressly stated.

(21.22.1) Every finite-dimensional nilpotent (21.21.8) Lie algebra g is
solvable.

It is enough to prove that D(g) # g; for every Lie subalgebra of a nilpo-
tent Lie algebra is evidently nilpotent, so that by induction we shall have
D**1(g) # DX(g), and if dim(g) =n this will imply that D"(g) = 0. By
hypothesis, there exists an integer r satisfying (21.21.8.1). If we had D(g) = g,
then for a basis (u}), ¢ ;< , of g, the sum of the subspaces ad(u;) - g would be
equal to g. By induction, it would follow that the sum of the subspaces
(ad(u;,) - ad(u;,) o - - ad(u;,)) - g (Where (ji); <x<, runs through the set of
all sequences of r elements of [1, n]) would be equal to g, contrary to
(21.21.8.1).

(21.22.2) (Engel's theorem) Let g be a finite-dimensional Lie algebra such
that for each x € g the endomorphism ad(x) of the vector space g is nilpotent.
Then g is a nilpotent Lie algebra.

This statement is equivalent to the following:

(21.22.2.1) IfE is a finite-dimensional vector space and g is a Lie subalgebra
of gl(E) consisting of nilpotent endomorphisms of E, then there exists an integer
r such that g" = {0}.

(If A and B are two vector subspaces of gl(E) = End(E), we denote by AB
the vector subspace of all linear combinations of products of elements of A
with elements of B in the algebra End(E), and we define A" inductively to be
A"~ 1A for all integers r = 2.)

The proof is by induction on n = dim(g); for n = 1, the result is trivial.
Let h # g be a Lie subalgebra of g whose dimension m is maximal among
proper subalgebras of g. The endomorphisms ad(X) of the vector space g
(where ad(X) - Y = XY — YX) as X runs through b form a Lie subalgebra
b, of gl(g), of dimension < m < n. Furthermore, each of the endomorphisms
ad(X) is nilpotent, for it is immediate by induction on r that (ad(X))" - Yisa
linear combination of the products X?YX? such that p + q = r, hence if
X*=0 we have (ad(X))?* =0. The inductive hypothesis implies that
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by = {0} for some integer t > 0. Let Z be an element of g that does not
belong to b, and let s <t be the largest integer such that there exist s
elements X, ..., X, € b for which Y = (ad(X,) ad(X,) -~ ad(X,))- Z ¢ b.
Then, by definition, we havead(X) - Y = [X, Y] € hforall X € b, and there-
fore the vector subspace of g spanned by b and Y, of dimension m + 1, is a
Lie subalgebra of g, and hence by the definition of b is equal to g. Also, we
have by hypothesis Y? = 0 for some integer p > 0, and h? = {0} for some
integer g > O by virtue of the inductive assumption. We shall deduce from
this that, for each sequence (T}),;<,, of elements of g, we have
T\ T, - T,, = 0, in other words, that g™ = {0}. Clearly we may assume that
each T; is either equal to Y or else belongs to h. Suppose first that the
number r of indices j € [1, pg] such that T; € b is less than p. Then the set of
pq — r indices j € [1, pq] for which T; =Y is the union of at most r + 1
intervals in N, and since (r + 1)(g — 1) £ p(q — 1) < pq — r, at least one of
these intervals must contain at least ¢ numbers, so that the product
T, T, -+ T,, certainly vanishes in this case. Next, for each value of r and each
k = r, we have

(21.222.2) T\T, T, elf + Yl + -+ Yy

if the number of indices j such that T; € b is equal to r. For this is obviously
true for arbitrary r and k = r; and by induction on k — r (the number of
factors T; equal to Y) one sees immediately that (21.22.2.2) is true provided
that T, € h. Now for each r we have

(21.22.2.3) BY < Y + by

Indeed, this is true when r = 1, because XY = YX + [X, Y]and [X, Y] € }
for all X € b; and from (21.22.2.3) we have

br+lyc ber + br+l c (Yh + b)br + br+l
= Ybr+l + br+1’

which proves (21.22.2.3) by induction on r. This being so, if we have T, = Y
in (21.22.2.2), then by hypothesis

T] T2 7-;(—1 e br+ Ybr+ oo 4 Yk—r—lbr
from which it follows that
Tl Tz ’I;‘ € brY+ Ybry+ e 4 Yk_’_lb'Y,

which, together with (21.22.2.3), implies (21.22.2.2). If now r 2 p, the right-
hand side of (21.22.2.2) reduces to zero, and the proof is complete.
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(21.22.3) (Cartan’s criterion) Let g be a finite-dimensional Lie algebra such
that the Killing form By is identically zero on g x g: then g is solvable.

By considering the complexification of g, if g is a real Lie algebra, we may
assume that g is a complex Lie algebra (21.6.1). The proof is by induction on
dim(g), the result being trivial when dim(g) = 1. It will be enough to show
that D(g) # g; for the Killing form By, , being the restriction of B, to the
ideal D(g) (21.5.7), is identically zero and therefore by the inductive hypoth-
esis D(g) will be solvable, and hence g also will be solvable (19.12.3).

Suppose then that D(g) = g. We define an element u, € g as in (21.19.2)

and consider the corresponding direct sum decomposition g = b ® @ g(a).
xe$
It follows that D(g) = [g, g] is the sum (not in general direct) of the sub-

spaces [b, b], [b, a(a)}, and [g(x), g(8)] for a, 8 in S. But

[a(a). a(B)] = g(x + B)
and [b, g(«)] = g(a) (21.19.6.1), hence our assumption on g implies that
(21.22.3.1) b=1[bb] + Zs[g(a), g(—a)l

We shall deduce from this that § must be empty. For every linear form
B € S, the restriction of f to [b, b] is zero (21.19.7); also, for each « € S and
each u e [g(x), g(—a)] we have B(u) = r,za(u), where r,; is a rational
number (21.19.10). But since by hypothesis B,(u, u) =0, the relation
(21.19.8.1) implies that

dim(g(a)) - «(u)? + ﬂ; rép dim(g(B)a(u)® =0

and hence that a(u) = 0. But then p(u) = r,;a(u) = Ofor all § € S.1f we had
S + 4, every linear form § € S would be zero on all of b, by what has just
been proved and (21.22.3.1); and this contradicts the definition of S.
Hence we have § = & and consequently g = }; but then ad(u) would be
nilpotent for all u e g (21.19.5); by virtue of Engel's theorem (21.22.2), g
would be nilpotent and a fortiori solvable (21.22.1), contrary to our assump-
tion. Q.E.D.

(21.22.4) If a finite-dimensional Lie algebra g contains no solvable ideal #
{0}, then g is semisimple.

Suppose the contrary, so that the Killing form B, is degenerate: in other
words, if n is the subspace of all x € g such that B (x, y) =0 for all y € g,
then n + {0}. But n is an ideal of g, because by virtue of (21.5.6.1), if x e nn
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and z € g we have B,([x, z], y) = B,(x, [z, y]) = O for all y € g. This being
so, the restriction of B, to n x n is identically zero; since this restriction is
equal to B, (21.5.7), it follows that n is solvable by Cartan’s criterion
(21.22.3), contrary to hypothesis.

PROBLEMS

L

Let E be a real or complex vector space of finite dimension and G a connected Lie group
immersed in GL(E). Let N be a normal subgroup of G; suppose that the linear representa-
tion of G on E defined by the canonical injection G — GL(E) is irreducible, and that there
exists a vector x, # 0 in E such that ¢ - x5 = A(t)x, for all t € N. Then N is contained in
the center of GL(E), consisting of the nonzero scalar multiples of the identity. (Observe
that the mapping t+ A(t) is continuous on N and that A(sts™!) = A(t) for all s € G, and
deduce that the set of x € E such that r - x = A(t)x for all r € N is stable under G.)

Let E be a finite-dimensional complex vector space. Show that if G is a solvable connected
Lie group immersed in GL(E), then there exists a basis of E such that G, identified by this
choice of basis with a group of matrices, is contained in the group of lower triangular
matrices (Lie's theorem). (It is enough to prove that there exists x, # 0 in E such that
s+ xq = A(s)x, for all s € G. Do this first for G commutative, and then use Probiem 1 and
the definition of solvable groups.)

(a) Show that if g is a finite-dimensional solvable (real or complex) Lie algebra, then its
derived algebra D(g) is nilpotent. (Use Engel's theorem and Lie’s theorem.)

(b} In order that g should be solvable, it is necessary and sufficient that the restriction to
D(g) of the Killing form of g should be identically zero (use (a) and Cartan’s criterion).
Give an example of a solvable Lie algebra whose Killing form is not identically zero.
(c) 1If g is nilpotent, then the Killing form of g is identically zero. Give an example of a
solvable but not nilpotent Lie algebra whose Killing form is identically zero. (Consider the
solvable Lie group defined in Section 19.14, Problem 4, and note that for the Killing form
of its Lie algebra to vanish identically, it is necessary and sufficient that Tr(U2) = 0.)

(a) - Let g be a (real or complex) Lie algebra of finite dimension. An element u € g is said
to be regular if the multiplicity of 0 as an eigenvalue of the endomorphism ad(u) of g is as
small as possible. For the Lie algebra of a compact group, this notion coincides with that
defined in (21.7.13). (Use (21.8.4).)

(b) Let g be a real Lie algebra of finite dimension. Then an element u € g is regular if and
only if it is regular in the complexification g, .

(c) Show that the set R of regular elements of g is a dense open subset of g. If moreover g
is a complex Lie algebra, then R is connected. Determine R for g = si(2, R).

(d) Let u, be a regular element of g, and let g, be the set of x € g such that
(ad(ug))? - x = 0 for a sufficiently large integer p. Show that g, is a nilpotent subalgebra of
g and is equal to its normalizer. (Use (21.19.3) and the fact that the endomorphism of the
vector space g/g,. induced by ad(u,) on passing to the quotient, is bijective; show that this
implies that for each u € g, near enough to u, we have (ad(u))? - x = O for all x € g, and
all sufficiently large integers p, and then use Engel's theorem.)
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(¢) Let a be a subalgebra of g and let x, be an element of a such that the endomorphism
of the vector space g/a induced by ad(x,) is bijective. Show that the mapping
(x, u)—exp(ad (u))- x of a x g into g is a submersion at the point (x,, 0), and deduce
with the help of (c) that a contains a regular element of g.

(f) A nilpotent subalgebra of g that is equal to its own normalizer is called a Cartan
subalgebra. For each regular element u, € g, the subalgebra g, defined in (d) is a Cartan
subalgebra; and conversely, every Cartan subalgebra of g may be obtained in this way. (If
nis a Cartan subalgebra, show by using (e) that it contains a regular element u,; then we
have n < g,, and il the inclusion were strict, 1 would not be equal to its normalizer
(Section 19.14, Problem 7).) The subalgebra g, defined in (21.19.2) is a Cartan subalgebra.
(8) Suppose that g is a complex Lie algebra. Let I' be the connected Lie group immersed
in Aut(g) whose Lie algebra is ad(g). Show that any Cartan subalgebra of g can be
transformed into any other by an automorphism ¢ € I'. (For each Cartan subalgebra b of
g, let b, , denote the (open) subset of regular elements belonging to b, and let R, be the
image of I" x b, , under the mapping (o, x}i» 0o - x of I' x b, into g. Use (¢) to show that
R, is open in g, and then use (c).) Compare with Section 21.21, Problem 6.

(h) A Cartan subalgebra is a maximal nilpotent subalgebra (Section 19.14, Problem 7).
Give an example of a maximal nilpotent subalgebra that is not a Cartan subalgebra.

(a) Let g be a (real or complex) Lie algebra of finite dimension. If b is a Cartan subal-
gebra of g, then b is also a Cartan subalgebra of every Lie subalgebra g, of g that contains
h.

(b) 1ffis a surjective homomorphism of g onto a Lie algebra g,, then the image under f of
any regular clement of g is a regular element of g, (use the fact that the set of regular
elements of g, is dense). Deduce that the image under f of any Cartan subalgebra of g isa
Cartan subalgebra of g,. If g and g, are complex Lie algebras, then every Cartan subal-
gebra of g, is the image under f of a Cartan subalgebra of g. (Use Problem 4(g).)

(c) Ifbhisa Cartan subalgebra of gand if ais a Lie subalgebra of g which contains b, then
a is its own normalizer in g. (Apply (b) to the quotient algebra N(a)/a.)

Let G be a connected Lie group (real or complex). A Cartan subgroup of G is any
connected Lie group immersed in G whose Lie algebra is a Cartan subalgebra of the Lie
algebra g of G.

{a) Show that a Cartan subgroup is closed in G.

(b) Suppose that G is a complex semisimple group, and is the complexification of a
compact connected semisimple group K (21.17.1). Then all the Cartan subgroups of G are
conjugate in G. We obtain a Cartan subalgebra of g by taking the complexification t + it
of a maximal commutative subalgebra t of the Lie algebra t of K; the corresponding
Cartan subgroup is isomorphic to (C*), where | is the rank of G.

(c) With the hypotheses of (b), show that every Cartan subgroup A of G is its own
centralizer in G, and that the normalizer 4" (A) of A in G is such that .4"(A)/A may be
identified with the Weyl group of K. (Consider the centralizer and the normalizer of t + it
in G, and argue as in Section 21.11, Problem 12(a).)

(d) With the same hypotheses, all elements of a Cartan subalgebra of g are semisimple
(Section 21.19, Problem 1).

Let G be a complex connected Lie group and g its Lie algebra. A Borel subalgebra of g is
any maximal solvable subalgebra of g, and a Borel subgroup of G is a (complex) connected
Lie group immersed in G whose Lie algebra is a Borel subalgebra of g.

(a) Show that a Borel subgroup is closed in G.
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(b) For the rest of this problem, suppose that G is a complex connected semisimple
group, and keep to the notation of (21.21.12(iii)). Show that b =1t + it + n is a Borel
subalgebra of g, and that b is the semidirect product of the Cartan subalgebra h =t + it
and the nilpotent algebra n, which is also the derived algebra D(b). (Observe that a Lie
subalgebra of g, that contains t strictly cannot be solvable.)

(c) For each element u € b, the semisimple and nilpotent components of u {Section
21.19, Problem 1) both belong to b (cf. Problem 5(c)). Show that the nilpotent elements of
b are the elements of n.

(d) Let B be the Borel subgroup with Lie algebra b. If T is the maximal torus of G, with
Lie algebra t, then G, n B = T (cf. (21.21.12)). The homogeneous space G/B is a compact
complex manifold, and the canonical mapping of G/B onto G,/T is a diffeomorphism
(Section 16.10, Problem 3). Show that the center of B is equal to the center of G (and of
G,).

(e} Show that B is its own normalizer in G. (Let H be the Cartan subgroup of G with Lie
algebra b. If s € .47(B), show that there exists x € B such that Int(sx) leaves H globally
invariant, and hence also the corresponding root system $; furthermore, the fact that
Int(sx) leaves B globally invariant implies that Ad(sx) permutes the g, forz € S, . Deduce
that Ad(sx) leaves each g, globally invariant, and by arguing as in Section 21.11, Problem
12(a), show that there exists y € H such that Int(sxy) is the identity. Complete the proof by
observing that the center of G is contained in every Cartan subgroup.)

Let G be a complex connected semisimple group and g its Lie algebra. A Lie subalgebra b
of g is said to be splittable if for each u € b the semisimple and nilpotent components of u
belong to . A subalgebra a of g is said to be diagonalizable if there exists a basis of g
relative to which all the endomorphisms ad(u), for u € a, are represented by diagonal
matrices (which implies that all the elements of a are semisimple).

(a) Let b be a splittable subalgebra of g, and let a be a diagonalizable subalgebra of b.
Then there exists a direct sum decomposition of the vector space h: b=h,® @ b,.

deF

where b, is the centralizer of a in h, F is a set of nonzero linear forms on a, and for each
4 € F we have [u, x] = A(u)x for ue aand x € b.

(b) With the same hypotheses, suppose in addition that a is a maximal diagonalizable
subalgebra of h. Show that b, is a Cartan subalgebra of h and is splittable. (Observe that if
two elements of g commute, then so do their semisimple and nilpotent components.) Show
also that a is the set of semisimple elements of b, that the set n of nilpotent elements of b,
is an ideal in b, and that b, is the direct sum of a and 1. Consider in particular the cases
where b is nilpotent, and where h = g.

(c) Suppose now that b is a solvable and splittable subalgebra of g. Show that the set n of
nilpotent elements of }y is an ideal in b). (Use Lie’s theorem (Problem 2).) Show also that if a
is a maximal diagonalizable subalgebra of b, then b is the semidirect product of n and a
(19.14.7).

Let p be a continuous linear representation of a Lie group G on a finite-dimensional
complex vector space E. By passing to the quotient, p induces a differentiable action of G
on the associated projective space P(E), which is compact. Hence there exist in P(E)
nonempty closed G-stable subsets that are minimal among the subsets of P(E) having these
properties (Section 12.10, Problem 6).

Show that if G is connected and solvable, every minimal nonempty closed G-stable
subset of P(E) consists of a single point. (Argue by induction on n = dim(E). For n = 2, use
Lie's theorem (Problem 2). For n > 2, Lie's theorem proves the existence of a point
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2o € P(E) fixed by G. If M c P(E) is closed, G-stable, and minimal, and if z, ¢ M, project
M from z, on a projective hyperplane not passing through z,.)

With the notation of Problem 7, the group G being assumed to be semisimple, let
r = dim(b). The Grassmannian G,(g) of r-dimensional complex vector subspaces of g

(16.11.9) may be identified with a closed submanifold of the projective space P(/\ g).
Show that the subset B of G,(g) consisting of the transforms Ad(s) - b of b by the elements
of G is closed in G,(g). (Observe that G acts differentiably on G,(g) by the action
(s, m)—Ad(s) - m, and use Problem 7(d) and (16.10.12))

Let s be a solvable subalgebra of g. By applying the result of Problem 9 10 E = A g,
show that there exists 1 € G such that Ad(r) - s < b. In particular, any two Borel subal-
gebras of g can be obtained one from the other by an automorphism of the form Ad(r),
t € G. Any two Borel subgroups of G are conjugate (Borel's theorem).

With the notation of Problem 7, show that as w runs through the Wey! group W of g, with
respect to t, the mapping w+— w(b) is a bijection of W onto the set of Borel subalgebras of g
that contain b =t + it. (Use Problem 10 and the fact that two Cartan subalgebras both
contained in a Lie subalgebra a of g can be transformed one into the other by an automor-
phism Ad(r), where 1 belongs to the connected Lie group immersed in G with Lie algebra
a; finally use Problem 6(c).)

In a complex semisimple Lie algebra g, a Lie subalgebra distinct from g that contains a
Borel subalgebra is called parabolic. If G is a complex connected semisimple group, a
connected Lie group immersed in G is a parabolic subgroup of G if its Lie algebra is
parabolic.

(a) Show that a parabolic subgroup is closed in G (cf. Problem 5(c)).

(b) With the notation of Problem 7, let p be a parabolic subalgebra containing b. Then
the vector space p is the direct sum of b and a certain number of the g,, for a € P say,
where 8, < P = 8. For any tworoots a, f € P,ifa + fisarootthena+ fe P.I{Bis
the basis of § that determines the given ordering on 8, show that P is the union of §, and
Q, where Q is the set of roots that are linear combinations with integral coefficients < 0 of
the roots belonging to B n (—P). (To show that Q< P n~ (- S, ), show that if —a ¢ Q,
then —a € P, by noting that « is the sum of say n elements of B ~ (— P), and arguing by
induction on n, with the help of Section 21.11, Problem 3(c). To show that
Pn(-8,)c Q show that if —ae P ~ (—$_), then —a € Q, by noting that « is the
sum of say m elements of B, and again arguing by induction.)

(c) Conversely, for each subset B, of B, if Q is the set of roots « ¢ 8 that are linear
combinations with integral coefficients < 0 of the roots in B,,and if P = §_, U Q, then
the direct sum of b and the g, for a € P is a parabolic subalgebra of g.

(a) Let G be a complex connected semisimple group, and B, B, two Borel subgroups of
G. Show that B; n B, contains a Cartan subgroup. (Let b,, b, be the Lie algebras of B,,
B,, and apply Problem 8(c) to b, n b,, so that we obtain b, ~ b, = a @ n, where ais a
maximal diagonalizable subalgebra of b, ~ b,, and n is the set of nilpotent elements of
b, N b,. Show that dim(b, + b,) < dim(g) — dim(n) by noting that n is orthogonal to b,
and b,, relative to the Killing form of g; by observing that dim(b,) + dim(b,) =
dim(g) + dim(h), where b is a Cartan subalgebra of g, conclude that dim(a) 2 dim(b) and
hence, by virtue of Problem 8(b), that a is a Cartan subalgebra of g.)
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(b) With the notation of Problem 7, for each element w of the Weyl group W of g,
relative to {, let BwB denote the double coset of any element of the normalizer .4°(T) of T
in G, belonging to the class of w in .4°(T)/T. Show that, as w runs through W, the double
cosets BwB form a partition of G (Bruhat decomposition). (I s € G, deduce from (a) and
Problem 4(g) that there exists x € B such that xsBs™'x~! > H, and then use Problem 11;
finally, observe that 4 (T) n B=T))

23. E. E. LEVI’'S THEOREM

(21.23.1) Let g be a (real or complex) Lie algebra of finite dimension and
let a, b be two solvable ideals in g. Since (a + b)/a is isomorphic to b/(a » b),
it follows that (a + b)/a is a solvable Lie algebra; since the canonical image
of D(a+b) in (a+b)a is contained in D*((a + b)/a), we have
D(a + b) < a for sufficiently large k, and therefore D***(a + b) = {0} for
sufficiently large h, because a is solvable; hence the algebra a + b is solvable.
1t follows that if r is a solvable ideal of g of maximum dimension, then every
solvable ideal of g is contained in v; for if a solvable ideal a of g were not
contained in r, we should have dim(a + r) > dim r, and a + r is a solvable
ideal, contrary to the definition of r. This unique ideal r of g, the union of all
the solvable ideals in g, is called the radical of the Lie algebra g.

(21.23.2) If g is a finite-dimensional Lie algebra, the quotient g/t of g by its
radical v is a semisimple Lie algebra.

By virtue of (21.22.4), it is enough to show that the only solvable ideal a
of g/r is {0}. Now such an ideal is of the form b/r, where b is an ideal in g;
since r and b/r are solvable, one shows as in (21.23.1) that b is solvable. But
then by definition b < r, so that a = {0}.

(21.23.3) (E. E. Levi’s theorem) Let g be a finite-dimensional complex Lie
algebra and v its radical. Then there exists a semisimple subalgebra s of g such
that g is isomorphic to a semidirect product t x ,5 (19.14.7).

From the definition of the semidirect product of Lie algebras (19.14.7), it
is enough to show that there exists a semisimple Lie subalgebra s of g such
that s n r = {0} and s + r = g. It comes to the same thing to say that, if
p: g — g/t is the canonical homomorphism, the restriction of p to s is an
isomorphism of s on g/r; or, again, that there exists a homomorphism g of
g/r into g such that p - ¢ = 1 ,. The proposition is therefore a particular
case of the following:
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(21.23.3.1) Let g be a complex semisimple Lie algebra, ¢ a finite-dimensional
complex Lie algebra. p: ¢ — g a surjective homomorphism. Then there exists a
homomorphism q: g— e such that poq=1,.

Let n = Ker(p), which is an ideal of e, and argue by induction on the
dimension of n. If n = {0}, there is nothing to prove. If ¢ is semisimple, then e
is the direct sum of n and an ideal i’ (21.6.4), and the restriction of p to 1’ is
an isomorphism of this Lie algebra onto g; we may therefore take g to be the
inverse of this isomorphism. Suppose therefore that e is not semisimple, and
let r be the radical of e. For each ideal a of ¢, it is easily seen that D(a) is also
an ideal of e, by virtue of the Jacobi identity; hence D*(x) is an ideal of ¢ for
all k, and if m is the smallest integer such that D"(r) = {0}, then D" !(r)is a
commutative nonzero ideal of ¢. We may therefore assume that such ideals
exist in ¢; choose one, say a, of smallest possible dimension. Then (a + n)/n is
a commutative ideal of ¢/n, isomorphic to g; but since g is semisimple, this
implies that a + n< n (21.6.2), so that a < n.

Suppose first that a # n. On passing to the quotient, p gives rise to a
surjective Lie algebra homomorphism p,: e/a — g, with kernel 11/, and the
inductive hypothesis guarantees the existence of a homomorphism
q; : 8 — ¢/asuch that p, - g, = 1g. We may write g,(g) = f/a, where f is a Lie
subalgebra of ¢ containing a. Since dim(a) < dim(n), we may apply the
inductive hypothesis to the canonical homomorphism p,: f— f/a with
kernel o, and deduce that there exists a homomorphism g,: f/a — f such that
P2 ° 4y = ly,. It is now clear that the homomorphism g = g, - g, has the
required property.

We have still to consider the case where a = n. We shall define canon-
ically a Lie algebra homomorphism p: g — gl(a) as follows: each x € g is of
the form p(z) for some z € e; the restriction to a of the endomorphism ad(z)
of ¢ is an endomorphism of the vector space a, because a is an ideal in ¢; but
since a is commutative and equal to n, if p(z) = p(2') then 2’ — z € q, and
consequently the restrictions of ad(z) and ad(z’) to a are equal. The restric-
tion of ad(z) to a therefore depends only on x; if we denote it by p(x), then it
is clear that p is a homomorphism of g into gl(a), because [p(z,), p(z,)] =
p([2,, 2,)).

The vector space a may therefore be regarded as a U(g)-module by
means of U(p), and it follows from (21.9.1) that a is a direct sum of simple
U(g)-submodules. But by definition a U(g)-submodule of a is an ideal of ¢;
by virtue of the choice of a, we see that a is necessarily a simple U(g)-module.

It may happen that p(x) = O for all x € g; this is the case when a = n is
contained in the center of ¢, and in fact is equal to this center, because
g = ¢/a contains no nonzero commutative ideals (21.6.2) (by reason of the
choice of g, it then follows that dim(a) = 1). In this case, if x = p(z), the



23. E. E. LEVI'S THEOREM 219

endomorphism ad(z) itself (and not merely its restriction to a) depends only
on x, and if we denote it by p’(x), we see as above that p’ is a homomorphism
of g into gl(¢) = End(e). We may therefore in this case consider the space ¢
itself as a U(g)-module, and a as a U(g)-submodule of e. But then ((21.9.1)
and (A.23.3)) there exists in ¢ a U(g)-submodule supplementary to a; by
definition, b is an ideal of ¢, and the restriction of p to b is an isomorphism of
b onto g; we then take g to be the inverse of this isomorphism.

It remains to consder the case where a = n is a simple U(g)-module and
p(x) is not zero for all x € g. We shall show that there exists a finite-
dimensional complex vector space M, a Lie algebra homomorphism o:
¢e— gl(M)=End(M), and an element we M having the following
properties:

(21.23.3.2) The mapping t— a(t) - w of a into M is bijective.
(21.23.3.3) For each z € ¢, there exists t € a such that o(z) - w = a(t) - w.

We then define s to be the set of all z € ¢ such that 6(z) - w = 0. For since
o([z,, 2,]) = 6(2,)a(z,) — 6(2,)a(z,), it is clear that s is a Lie subalgebra of
e; it follows from (21.23.3.2) that s n a = {0}, and from (21.23.3.3) that
e = 5 + q, so that s has the required properties.

We shall take M to be the vector space End(e) and o to be the Lie algebra
homomorphism such that, for each f € End(e) and each z € ¢,

(21.23.3.4) o(z) - f=[ad(z),f] = ad(z) - f — f - ad(z),
or, in other terms

(21.23.3.5) (a(2) - f)y) = [/ ()] - (2 y])

forall yee.

We shall first show that the condition (21.23.3.2) is satisfied when we
take w to be a projection of the vector space ¢ onto the subspace a (so that
w(y) € a for all y e ¢, and w(t)=t for all te a). Indeed, it follows from
(21.23.3.5) that for t € a we have

(21.23.3.6) (a(t) w)y) = —w([t. y}) = —[t y]

because w(y) € a, [a, a] = 0, and [e, a] = a. Hence o(t)- w = 0 means that
[t y] =0forallye e, or equivalently p(x) - t = 0 for all x € g. But since a is
a simple U(g)-module and the set of t € a such that p(x) - t=0forallxe g
is a U(g)-submodule of a, this submodule can only be a or {0}, and the first
alternative has been ruled out.
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The relation (21.23.3.6) likewise shows that for (21.23.3.3) to be satisfied,
it is necessary and sufficient that for each z € e there should exist t € a such
that g(z) - w = —ad(t) in M = End(e).

The conditions imposed on w may be reformulated as follows. Let P
denote the vector subspace of M that is the image of a under the mapping
t—ad(t), and let R denote the vector subspace of M consisting of the
S € End(e) such that (1) f(e) = a, and (2) the restriction of f to a is a scalar
multiplication by 4,. It is clear that R is a vector space, that P c R, and that
S A, is a C-linear form A on R; the set of projections of e onto a is the affine
hyperplane A7'(1) in R. Observe now that if fe R and ze€ e, then also
6(z) - fe R; for the fact that 6(2z) - f maps e into a follows from (21.23.3.5)
and the fact that a is an ideal of ¢, and it is immediately seen that 4,,,. , = 0.
It follows that R is a U(e)}-module and that i: fis 4, is a U(e)-module
homomorphism of R into C, if C is regarded as a trivial U(e)-module. On the
other hand, the Jacobi identity shows that if f = ad(t) with t € a, then
o(z) - f=ad([t, z]), and hence P is a U(e)}-submodule of R.

Next we remark that for t € a and f€ R, wehavea(t) - f= —4, ad(t),in
other words a(t) - R = P. This shows that for each x = p(z) € g and each
J € R, the coset of o(2) - f modulo P depends only on x and the coset fof f
modulo P. If we denote this coset by #(x) - £, it is immediately verified that &:
g — gl(R/P) is a Lie algebra homomorphism. We have thus defined a U(g)-
module structure on R/P, and the mapping 4i: R/P — C induced by 4 on
passing to the quotient is a surjective U(g)-module homomorphism, if C is
regarded as a trivial U(g)-module.

This being so, the conditions imposed on w are (1) w e R, (2) 4, = 1, (3)
o(z) - we P for all ze e. If wis the image of w in R/P, these conditions are
equivalent to: (1) we R/P, (2) 1, =1, (3) 6(x) - w = 0 for all x € g. This
implies that the one-dimensional subspace Cw in R/P is a U(g)-module
supplementary to the U(g)-submodule Ker(4). Conversely, if D is a one-
dimensional subspace of R/P supplementary to Ker({) and is a U(g)-
module, then the intersection {w} of D with the affine hyperplane given by
the equation 1; = 1 satisfies the conditions above, because D is then isomor-
phic to the U(g)-module C, which is trivial. Now the existence of such a
U(g)-submodule supplementary to Ker(Z) is a consequence of the fact that
every finite-dimensional U(g)-module is the direct sum of simple U(g)-
submodules ((21.9.1) and (A.23.3)). Q.ED.

(21.23.4) Every finite-dimensional real (resp. complex) Lie algebra is isomor-
phic to the Lie algebra of a real (resp. complex) Lie group.

As we have already remarked (19.17.4), it is enough to prove the result
for a complex Lie algebra. By virtue of (21.23.3), such an algebra is the
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semidirect product of a solvable Lie algebra r and a semisimple Lie algebra
s. Since r (resp. s) is the Lie algebra of a complex solvable (resp. semisimple)
Lie group, by virtue of (19.14.10) and (21.6.3), the result is a consequence of
(19.14.9).

(21.23.5) Let G be a simply connected Lie group. For each ideal n, of the Lie
algebra g, of G, the connected Lie group N immersed in G with Lie algebra n,
(19.7.4) is a closed (normal) subgroup of G.

There exists a Lie group H whose Lie algebra b, is isomorphic to g,/n,
(21.23.4), and we have a homomorphism u: g, — b, of Lie algebras, with
kernel n,. Since G is simply connected, there exists a homomorphism of Lie
groups f: G — H such that f, = 1 (19.7.6), and N is the identity component
of the kernel of f(19.7.1), hence is closed in G.

PROBLEMS

1. (a) Let E be a real or complex vector space of finite dimension; A, B two vector sub-

spaces of End(E); T the set of t € End(E) such that [r, A] = B. Show that if s € T is such
that Tr(su) =0 for all ue T, then s is a nilpotent endomorphism of E. (Note that
Tr(s") = 0 for all integers n = 2, and deduce that the eigenvalues of s are all zero, by using
Newton's formulas.)
(b) Let g be a finite-dimensional Lie algebra, p: g — gl(E) a Lie algebra homomorphism,
and B,(u, v) = Tr(p(u)p(v)) the symmetric bilinear form associated with p (21.5.5). In
order that p(g) should be solvable, it is necessary and sufficient that D(g) should be
orthogonal to g, relative to the form B,. (To show that the condition is necessary, reduce
to the case where g and gI(E) are complex Lie algebras, and use Lie’s theorem. To show
that the condition is sufficient, reduce to the case where g < g}(E) and use (a), with A = g
and B = D(g).)

2. Let g be a finite-dimensional complex Lie algebra.
(a) Show that if r is the radical of g, we have [g, r] = D(g) » r. (Use Levi's theorem.)
(b) For each finite-dimensional complex vector space E'and each Lie algebra homomor-
phism p: g — gl(E), show that p([g, r]) consists of nilpotent endomorphisms. (Observe that
the elements of p([r, r]) are nilpotent by virtue of Lie's theorem, and then argue as in
(21.22.2).) In particular, [g, r] is a nilpotent ideal of g.
(c) Show that ris the orthogonal supplement of T\(g) relative to the Killing form of g. (To
show that r is contained in the orthogonal supplement r' of D(g), use (a). Then observe that
v’ is an ideal containing v, and that ad(r’) is solvable by virtue of Problem i(b).)
(d) Show that for each automorphism 1 of g we have v(r) = r.
(e) For each ideal a of g, show that a ~ r is the radical of a. (Observe that, by (d) above,
the radical of a is an ideal of g.)

3. (a) Let E be a finite-dimensional complex vector space, and let F=C x E. Let
6:qg— gl(E) be a homomorphism of a complex Lie algebra g into gl(E) = End(E). If
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f:a— E is a C-linear mapping, define a C-linear mapping p : g —» End(F) by the formula
p(u)- (& x) = (0, ¢ f(u) + o(u) - x) for all u e g. Show that for p to be a homomorphism
of g into gl(F) it is necessary and sufficient that f should satisfy the condition

a(u,)  f(u;) — o(u;) - f(w) =f([u, u;])

forallu, u,eq.

(b) Suppose that g is semisimple. Show that if f satisfies the condition in (a), there exists
an element x, € E such that f(u) = —a(u) - x, for all u e g. (Observe that the subspace
{0} x E of F is stable under p.)

Let g be a finite-dimensional complex Lie algebra, r its radical, and s, s’ two semisimple
Lie subaigebras of g such that g = s + r = s’ + r(21.23.3). We propose to prove that there
exists an element a € [g, r] such that, putting v = exp(ad(a)) in gl(g), we have v(s') = s
(Malcev's theorem). Distinguish three cases:

(1) [a, r] = {0}; then r is the center of g, and g is the direct product of the ideals r and
D(g). and D(g)=s=75.

(2) r is commutative and t = [g, r]. Then for each x € &' there exists a unique ele-
ment h(x) € r such that x + h(x) € s. By using Problem 3(b), show that there exists an
clement a € r such that h(x) = —[x, a] for all x € &', and observe that (ad(a))? = 0.

(3) The general case. Observe that [g, t] is a nilpotent algebra, hence has center
¢ # {0} (Section 19.12, Problem 3). Choose in ¢ an ideal m # {0} of smallest dimension. We
may limit our attention to the case where m # r; consider the algebra g/m and proceed by
induction on the dimension of r using case (2) above.

Let g be a finite-dimensional complex Lie algebra and a an ideal of g such that g/a is
semisimple. Show that there exists in g a semisimple Lie subalgebra s supplementary to a.
(Use (21.23.3) and (21.6.4).)

(a) Let G be a simply connected complex Lie group, H a connected normal Lie subgroup
of G, and p: G — G/H the canonical mapping. Show that the principal bundle G, with
base G/H and fiber H, is trivializable. (To prove the existence of a holomorphic section
over G/H (16.14.5), proceed by induction on dim(G/H), by using (16.14.9) to reduce to the
case where the group G/H is either 1-dimensional or almost simple.) Deduce that H is
simply connected.

(b) Let G be a connected complex Lie group and H a connected normal Lie subgroup of
G. Show that the canonical mapping n,(H) — =,(G) (16.27.6) is injective. (Use (a).)

Extend the proof of Levi’s theorem and the results of Problems [ to 6 to real Lie groups.

Let G be a connected real Lie group. We propose to prove that there exists in G a maximal
compact subgroup K and a finite number of closed subgroups L, ..., L, isomorphic to R,
such that the mapping (1, 2, ..., 2,,)— 12,2z, *** z,, of the manifold K x L, x --- x L, into
G is a diffeomorphism of this manifold onto G (Iwasawa’'s theorem). We proceed as
follows:

(a) The theorem is true when G is semisimple (21.21.10) or commutative (19.7.9).

(b) In the general case, there exists a closed normal subgroup J of G, isomorphic to R" or
to T7, with n > 0 if G is not semisimple. (Use Section 19.12, Problem 2, applied to the
radical of the Lie algebra of G.)
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{c) Now proceed by induction on the dimension of G. Show first that if L’ is a closed
subgroup of G/J isomorphic to R, then there exists a closed subgroup L of G isomorphic
to R, such that L ~ J = {e} and such that the projection p: G — G/J, restricted to L, is an
isomorphism of L onto L' (Use Section 12.9, Problem 10.) Then observe that if J is
isomorphic to R" and K' is a compact subgroup of G/J, the inverse image p~'(K’) is the
semidirect product of J and a compact subgroup (Section 19.14, Problem 3).

(a) Let G be a connected real Lie group. The radical of G is defined to be the connected
Lie group R, immersed in G whose Lie algebra is the radical of the Lie algebra of g. Show
that R, is closed in G and that the quotient group G/R, is semisimple.

(b) Let Z' be the (discrete) center of G/R,. Show that every solvable normal subgroup of
G is contained in the inverse image R of Z' in G. (Use Section 12.8, Problem 5.) The group
R, is the identity component of R.

(c) If G is simply connected, then so is R, (Problem 6), and G is the semidirect product
R, x,S of Ry and a simply connected semisimple group S. Show that when R, is commu-
tative, the structure of G can be completely described in terms of S and its finite-
dimensional continuous linear representations.

(d) If u: G- G’ is a surjective homomorphism of G onto a Lie group G’, show that
u(R,) is the radical of G’ (cf. Problem 5).

(e) Show that the radical of a product G, x G, of connected Lie groups is the product of
the radicals of G, and G,.

A connected Lie group G is said to be reductive if its adjoint representation
Ad: G — GL(g) is completely reducible.
(a) Show that the following conditions are equivalent:

(@) G is reductive.

(8) D(g) is semisimple.

(y) The radical R, of G is contained in the center of G.
(b) If G is a simply connected reductive group, it is the product of a simply connected
semisimple group and a group isomorphic to R". Deduce from this the description of an
arbitrary reductive Lie group. Give an example of a reductive group G whose commutator
subgroup is not closed in G (cf. Section 21.18, Problem 18).
(c) Let G bea connected Lie group. Show that for every continuous linear representation
of G on a finite-dimensional complex vector space to be completely reducible, it is neces-
sary and sufficient that G should be reductive and G/%(G) compact. (To show that the
condition is sufficient, consider a linear representation p of G on a vector space V and a
subspace W of V stable under p, and observe that G acts on the vector subspace E of
End(V) consisting of endomorphisms v such that p(s) « v = v - p(s) for all s € 2(G) and
v(V) = W, and such that the restriction of v to W is a homothety.)

(a) Let G be a connected Lie group, Z its center, Z, the identity component of Z, and n:
G/Z, - G/Z the canonical homomorphism, whose kernel Z/Z, is discrete. Identify the
differential manifold G/Z with the product K x E, where K is a maximal compact sub-
group of G and E is diffeomorphic to a vector space R™ (Problem 9). Then, if 7 !(K) = M
and if F is the identity component of =~ !(E), the manifold G/Z, may be identified with
M x F; M is a connected covering group of K, and F is difffomorphic to R™.

(b) 1If G is solvable, show that M is commutative and is of the form N/Z,, where N is a
connected nilpotent Lie subgroup of G, containing Z. Deduce that Z is contained in a
connected commutative Lie subgroup of G (cf. Section 19.14, Problem 7(b)).

(c) If G is semisimple, so that Z, = {e}, then M is of the form K, x R", where K, is a
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compact subgroup of G (21.6.9), and Z is contained in Z, x R", where Z, is the center of
K,. Deduce that Z is contained in a connected commutative Lie subgroup of G.

(d) Deduce from (b) and (c) that for every connected Lie group G, the center Z of G is
contained in a connected commutative Lie subgroup of G. (Consider first the case where
G is simply connected, and apply Problem 9(c), by observing that if A is a connected
commutative Lie subgroup of S, then R, A is a connected solvable Lie subgroup of G.
Then pass to the general case by using (20.22.5.1).)

(¢) Deduce from (d) that Z is an elementary commutative group (Section 19.7, Problem
5). In particular, if Z is not compact, there exists an element ¢ € Z such that the group
generated by ¢ (consisting of the powers ¢" for n € Z) is infinite discrete.

Let G be a connected Lie group and H a connected Lie group immersed in G and dense in
G. Then we know (Section 19.11, Problem 3) that, if g and b are the Lie algebras of G and
H, respectively, b is an ideal in g, and g/h is commutative.

(a) Let b =r@® s, where r is the radical of b, and s is a semisimple Lie subalgebra of b.
Show that if ' is the radical of g (which contains r) then g =1 @ s.

(b) Let G be the universal covering group of G and let n: G - G be the canonical
homomorphism, with kernel D. We may write G = R % ,S, where Lie(Ry)=r and
Lie(S) = s(Problem 9(c)). Let D,, D, be the projections of D on Ry and S, respectively; then
D, is contained in the centralizer of S, and D, in the center of S. Let H' and R, be the
connected Lie groups immersed in G whose Lie algebras are h and r, respectively. Then H'
and R, are closed in G, and we have H' = R, x,S; R, is the radical of H’, and n(R,) the
radical of H = n(H’).

{c) Show that Ry = D,R, (closure in G). If U is a connected Lie subgroup of S that
contains the center of S, deduce that Ry <« DUR,, , and hence that G = n(U)n(R,)H.
(d) With the same hypotheses, show that n(U)r(R,) is closed in G and that
2(U)n(Ry) n H = z(U)n(R,).

Let G be a connected Lie group and H a connected Lie group immersed in G. For H to be
closed in G, it is necessary and sufficient that the closure in G of every one-parameter
subgroup of H should be contained in H (Malcev's theorem). (Use Problem 12 to reduce
the question to proving that n{U)r(R,) is closed in G; by Problem 11, we may take U to be
commutative, and then n(U)n(R,) is solvable, and we can apply Section 19.14, Problem
15

Deduce that for H to be closed in G it is necessary and sufficient that the intersection
of H with every compact subgroup K of G should be closed in K. (Use Section 12.9,
Problem 10.)

Let G be a complex connected semisimple Lie group, g its Lie algebra, and consider a root
decomposition (21.10.1.1) of g. We shall use the notation of (21.10.3). Let B = {#,,..., 8}
be a basis of the root system §,and put h; = h, , 1 <j < /. The h;and the x,,« € 8, form
a basis of the vector space g.

(a) Let B, be a subset of B, let $; — 8§ be the set of roots that are linear combinations of
roots belonging to B,, and let b, < b be the subspace spanned by the h;such that 5, € B,.
Show that the (direct) sum of b, and the g, such that « € 8, is a semisimple Lie algebra.
(To calculate the Killing form, use (21.19.8.1) and (21.20.4.2).)

(b) Let b, be the subspace of ) defined by the equations § (u) = O for 8, € B,. Show that
if p is the parabolic subalgebra defined in Section 21.22, Problem 12(c) with @ = — (8,),,
then the radical of p is the direct sum t, of b, and the g, such thata e §, ~ [(S,), ,and
p =g, ®r, is a Levi decomposition of p.
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Show that D(p) = [p. p]is the direct sum of g, and the g, such thatae S, n t(s,)+ s
and that the sum r, of these latter subspaces is the radical of [p, p]. Show that p is the
normalizer of ¢, in g.

(a) With the hypotheses and notation of Problem 14, let 4; be the linear form on g such
that 4;(h,) = 3, and 4 (x,) = O for all « € 8. Show that for each element x € g there exists
an automorphism v = exp(ad(u)) of g and an index j such that A {v(x)) = 0. (Reduce to the
case where x ¢ h.)

(b) Deduce from (a) that there exists an automorphism v, = exp(ad(u, )) of g such that
v;(x) belongs to the vector subspace that is the sum of the g,, a € S. (Argue by induction
on the dimension of g, using Problem 14.)

(c) Deduce from (b) that there exist two elements y, z€ g such that x = [y, z].
(Cf. (211.7.6.3).)

In the group GL(n, C), let I(n) denote the subgroup of all lower triangular matrices with
all diagonal elements equal to | (in other words, matrices (a;;) such that a;; = Ofori < j
and g; = 1 for all i). Also let S(n) denote the subgroup of all upper triangular matrices (i.e.,
matrices (a;;) such that a;; = 0 for i > j). For each matrix X = (x;;) € GL(n, C) and each
integer k € [1, n), let X, denote the matrix (x,),, ;<. and put A(X) = det(X,) (the
“ principal minors™ of X). The set Q of matrices X € GL(n, C) such that A,(X) # 0 for
I £k £ n— 1is adense connected open set in GL(n, C) (Section 16.3, Problem 3). Show
that the mapping (Y, Z)— YZ of I(n) x S(n) into GL(n, C) is an isomorphism of complex
manifolds of I(n) x S(n) onto Q; the inverse mapping X (i(X), s(X)) is such that the
entries of the matrices i(X) and s(X) are rational functions of the x;;. (Observe that
As(X)) = A(X) for 1 £k & n)

(a) With the hypotheses and notation of Problems 14 and 16, put n = dim(g) and sup-
pose that G has trivial center, so that G may be identified with Ad(G). Then identify G
with a subgroup of GL(n, C) by identifying the canonical basis of C" with the basis of g
ranged in the following order:

X Xogy hyhyy X,

where the positive roots «, ..., «, are ordered so that if a, + a; = a, is a root, then i < k
and j <k. Let b=h@®n, be the Borel subalgebra spanned by the h; and the x, with
o€ S,, and let n_ be the nilpotent subalgebra spanned by the x_, fora e S, , so that
g=b@n_.Let Band N _ be the connected Lie subgroups of G having band n_ as their
respective Lie algebras. With the notation of Problem 16, show that B = G n S(n) and
N_ =G r I{n); furthermore, if @, = Q ~ G, then €, is a dense connected open set in G,
and B (resp. N_) is the image of Q, under the mapping X +— s(X) (resp. X — i(X)); also
the mapping (Y, Z)+ YZ of N_ x B into G is an isomorphism of complex manifolds of
N_ x Bonto Q,.

(b) Let n'_ (resp. n" ) be the sum of the g_,fora € (S,), (resp.a € S, ~ [(S,).). Then
we have n_ = uw’_ @n” ,and n'_ is a Lie subalgebra of n_,and n” isan ideal of n_.If N’_
and N”_ are the connected Lie subgroups having w’_, n” as their Lie algebras, then the
mapping (Y', ¥') Y'Y” of N'_ x N” into N _ is an isomorphism of complex manifolds.
If P is the parabolic subgroup of G with Lie algebra p, we have N'_B < P,and Q, = N".P.
(c) Let P(n) be the normalizer in GL(n, C) of t,, considered as a Lie subalgebra of
gl(n, C). Show that the normalizer 4"(P) of P in G is equal to G n P(n).

(d) Show that A°(P) n N”. = {e}. (Use the fact that the exponential mapping of n"_ into
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N” is surjective (Section 19.14, Problem 6), and that if u € n, ad(u) is a polynomial with
respect to exp(ad(u)) (21.21.10.2). Deduce that .A4"(P) = P. (Observe that otherwise
N 4" (P) would contain two dense open subsets of G, disjoint from each other.)

(¢) Show that there exists a complex-analytic isomorphism of G/P onto a submanifold of
the Grassmannian G, (C), where p is the number of roots of 8, that do not belong to
(S,). - (Observe that G/P is isomorphic to GL(n, C)/P(n).)

Let € be a finite-dimensional real Lie algebra, and let G be a connected Lie subgroup of
Aut(2). Suppose that there exists a decreasing sequence £ = ¢_ 22,5 ¢, > > ¢ of
G-stable vector subspaces of £, satisfying the following conditions:

(1) [2,.2,]<=2,,,, with the conventions that £_, = Cand &, =0forkzr+ L.

(2) Mthereexistsye £, ,p20,suchthaty ¢ £, ,, then there exists x € € such that
[y, x]¢ ¢,

() 2., #{0}

(4) 1fVis a G-stable vector subspace of € containing £, and such that [£,, V] c V,
then either V= Qor V= 2,.

(a) Showthat € # ¢, ,for —1<j<sr

(b) For each nonzero G-stable ideal J of €, show that ¢ = J + £,. (Show that the
assumption that J c £, would contradict property (2).) Deduce that if there existsy € €,
with p 2 0, such thaty ¢ €, , then there exists u € Jsuch that [y, u] ¢ £,; consequently
wehave 3~ €, #0i(2,,, #0.

(c) If J,, I, are two G-stable ideals of € such that 3, n £, # {0} and J, # {0}, show
that [3,, 3,] # {0} (use (b)). Hence show that the only commutative G-stable ideal of € is
{o}.

(d) Show that @ is a simple Lie algebra. (Use (c) by considering the derived algebras
DHR), where R is the radical of £; then observe that if € is semisimple, every connected
Lie subgroup of Aut(2) leaves stable the simple components of €.)

(e) Show that 2, = {0}. (Prove that £, is orthogonal to € relative to the Killing form.)
(f) Put §_,=2_,/8, D9=20/21 D, =2, H=95_, @ H, D H,. Show that there
exists a unique structure of Lie algebra on $such that [Sjp, 5‘] <9y, (with 9_, =9, =
{0}) and such that if x € £,,ye € and if X € $,, ¥ € H, are the classes of x and y, then
[%, ¥]-is the class of [x, y]. Show that the Lie algebra $ and its vector subspaces
9, =9, + H,,1 + - for p2 —1 satisly the same conditions as £ and the £, and hence
that $ is a simple Lie algebra.

(g) Show that there exists a unique element & in H such that ad(&) leaves stable $_, $,,
and 9,, and such that its restriction to $, (p = — 1, 0, 1) is the homothety with ratio p (cl.
Section 21.19, Problem 2). Deduce that € is isomorphic to $.

{h) Show that, for the Killing form B of §, the restriction of B to 9, is nondegenerate,
$_, and 9, are totally isotropic, and H_, @ H, is orthogonal to H,.

(i) Show that there exists a Cartan decomposition $ = I @ p such that @ € p. (Consider
the involutory automorphism o of $ such that a(x) = x for x € $,, and o(x) = — x for
xe H_; @ H,.) Conversely, give the description of € and the £, starting from a Cartan
decomposition $ = t @ p and an element & € p such that the eigenvalues of ad(&) are — 1,
0,and L.

With the notation and hypotheses of Section 19.3, Problem 5(d), suppose that the kernel of
the linear representation p of H on T, (M) is not discrete, and that p is irreducible; suppose
moreover that H contains no nontrivial normal subgroups of G, and that the center of G is
finite. Then G is a noncompact simple group, and there exists a maximal compact con-
nected subgroup K of G that acts transitively on M, so that M may be identified with
(K ~ H)\K and is a Riemannian symmetric space. (Use Problem 18.)



APPENDIX
MODULES

(The numbering of the sections in this Appendix continues that of the
Appendix to Volume IV.)

22. SIMPLE MODULES

(A.22.1) The notion of a module over a commutative ring (A.8.1) may be
generalized. If M is a commutative group, written additively, an action of a set
Q on M is any mapping (o, x)—>a-x of Q x M into M such that
a (x+y)=a-x+a-y; in other words, for each a € 2 the mapping
x— o+ x is an endomorphism of the group M. By abuse of language, the
group M together with an action of Q on M is called an Q-module. A
homomorphism of an Q-module M into an Q-module N is any mapping
f: M > N such that f(x + y)=f(x) +f(y) and f(a - x) = a - f(x) for all
x, y € M and a € Q. An isomorphism of Q-modules is a bijective homomor-
phism; the inverse mapping is then also an isomorphism.

(A.22.2) IfM isan Q-module, a subgroup N of M is said to be stable for the
action of Q (or Q-stable) if for all xe N and a € Q we have ¢ x € N; the
subgroup N is also said to be an Q-submodule of M. Intersections and sums
of Q-submodules of M are again Q-submodules. If fis any homomorphism
of M into an Q-module M’, and if N (resp. N’} is any Q-submodule of M
(resp. M’), then f(N) is an Q-submodule of M’, and f~'(N’) is an Q-
submodule of M. In particular, the image f (M) is an Q-submodule of M, and
the kernel f ~1(0) is an Q-submodule of M.

227
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(A.22.3) In any Q-module M, {0} and M are always Q-submodules, called
the trivial submodules. An Q-module M is called simple if M # {0} and there
exist no Q-submodules of M except for the trivial ones.

(A.22.4) (Schur’s lemma) Let f be a homomorphism of an Q-module M into
an Q-module N. If M is simple, then f is either injective or identically zero. If N
is simple, then f is either surjective or identically zero. If both M and N are
simple, then f is either bijective or identically zero.

For if M is simple, f ~!(0) can only be M or {0}; and if N is simple,f (M)
can only be N or {0}.

23. SEMISIMPLE MODULES

(A.23.1) The notion of direct sum of Q-modules is defined as in (A.1.5). If

M = @ M, is the direct sum of a family (M;) of Q-modules, we define as in
A€l

(A.2.3) the canonical injection j;: M, = M and the canonical projection
pi: M - M, for each index 4; they are Q-module homomorphisms. All the
results of (A.3.1)—(A.3.5) remain valid without modification if we replace
“subspace™ by “Q-submodule” and “linear mapping” by
“ homomorphism.”

(A.23.2) An Q-module M is said to be semisimple if it is a direct sum of a
Jfamily of simple Q-modules. We shall limit our attention to semisimple Q-
modules that are direct sums of at most denumerable families of simple
Q-modules.

(A.23.3) Let M be an Q-module that is the sum (not necessarily direct) of a
finite or infinite sequence (N, )o <« <. (Where w is an integer or + oc) of simple
Q-submodules. Let E be an Q-submodule of M. Then:

(@) There exists a subset J of the set [0, w[ such that M is the direct sum
of E and the N, with k € J (so that E has as a supplement in M the semisimple
Q-submodule F which is the direct sum of the N, with k ¢ J).

(b) There exists a subset H of the set [0, w[ such that ] n H = ¢ and
such that M is the direct sum of the N, with k € J U H (and therefore M is
semisimple); E is isomorphic to the direct sum of the N, with k € H.

(a) We shall define J to be the set of elements of a (finite or infinite)
sequence (k,,) that is constructed inductively as follows: k,, is the smallest
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integer (if it exists) such that N, is not contained in the sum
E + Nkl + -+ Nkm—l

(when m =1, this sum is replaced by E). The construction stops if
E + N,, + -+ N,__, contains all the N, and hence is equal to M. If k,, is
defined, the intersection N, n (E + N,, + -- + N, __,), being a submodule
of N, distinct from N, _, must be zero; hence (A.3.3) the sum of E and the
N, such that k € J is direct. It remains to be shown that, when J is infinite,
this sum M’ is equal to M. If not, there would exist at least one index h ¢ J
such that N, ¢ M’; but if m is the smallest integer such that k,, > h, then N,
is not contained in E + N, + --- + N, __, contrary to the definition of k,, .

(b) The set H is defined by applying (a) to the Q-submodule F of M.
The isomorphism of E with the direct sum of the N, such that k € H then
follows from (A.3.5).

(A.23.4) A semisimple Q-module M is said to be isotypic if it is a direct sum
of isomorphic simple Q-submodules. It follows from (A.23.3) that any two
simple Q-submodules of M are isomorphic (since a simple Q2-module cannot
be isomorphic to a direct sum of two nonzero submodules). Two isotypic
semisimple Q-modules are said to be of the same type if every simple submo-
dule of one is isomorphic to every simple submodule of the other. It follows
from (A.23.3) that every submodule of an isotypic semisimple Q-module is
isotypic semisimple and of the same type.

(A.23.5) Let M be a semisimple Q-module, the direct sum of a (finite or
infinite) sequence (N,)o<, <. Of simple Q-submodules of M. We define by
induction a sequence of submodules N, of M as follows. We take N = Ng;
N, . is equal to N,, for the smallest index m such that N, is not isomorphic
to any of the Q-modules Ng, ..., N;. (If all the N, are isomorphic to one or
other of these Q-modules, the induction stops at N;.) Let J be the set of
indices k € [0, [ so obtained, and for each k € J let I, be the set of integers m
such that N, is isomorphic to N;. If P, is the direct sum of the Q-
submodules N,, for m € I, , then it is clear that P, is an isotypic semisimple
Q-module, that P, and P, are not of the same type if h # k, and that M is the
direct sum of the P, for k € J.

(A.23.6) Every simple Q-submodule N of M is contained in one of the P, (and
hence is of the same type as P,).

It follows from (A.23.3) that N must be isomorphic to one of the N,,,
hence to one of the N;; if N were not contained in P,, we should have
N n P, = {0} because N is simple, and the projection N’ of N on the direct
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sum M, of the P, such that h # k would be isomorphic to N (A.22.4); but by
reason of (A.23.3) applied to M,, N’ would be isomorphic to one of the
modules N, with h # k, which is absurd.

We may therefore define the P, independently of any decomposition of
M as a direct sum of simple Q-submodules: P, is the sum of all the simple
Q-submodules of M that are isomorphic to N, . The P, are called the isotypic
components of M. The result of (A.23.6) then generalizes as follows:

(A.23.7) Every Q-submodule N of M is the direct sum of the N, =M n P,
that are not equal to 0, and these are the isotypic components of N.

This is an immediate consequence of (A.23.3) and (A.23.6), because N is
a direct sum of simple Q-submodules of M.

24. EXAMPLES

(A.24.1) Let K be a (commutative) field and E a vector space over K. It is
clear that E is a simple K-module if and only if E is one-dimensional (i.e., a
“line”). Every K-vector space that is spanned by an at most denumerable
family of vectors is therefore an isotypic semisimple K-module (there is only
one “type”), and the results of (A.23) therefore include as particular cases
the propositions (A.4.6) and (A.4.5) for vector spaces that admit an at most
denumerable basis.

(A.24.2) Now let (4,), . be a set of endomorphisms of the K-vector space E
(A.2.1) and let Q be the sum (1.8) of the sets L and K. If we define 1 - x =
u,(x), then Q acts on E. It is clear that the notions of linear representation
introduced in (15.5) and (21.1) are particular cases of this general notion,
and correspond to taking L to be an algebra or a group. The notion of
equivalent linear representations corresponds to that of isomorphism of Q-
modules (subjected to supplementary conditions when E is infinite-
dimensional and endowed with a topology); the notion of a finite Hilbert
sum of representations corresponds to a particular case of the notion of
direct sum of Q-modules. Finally, if E is finite-dimensional, it comes to the
same thing to say that a representation is irreducible or that the correspond-
ing Q-module is simple.

(A.24.3) Consider in particular the case of a single endomorphism u of the
vector space E; it is said to be semisimple when the corresponding Q-module
E is semisimple. The nature of the simple Q-modules will depend on the field



25. THE CANONICAL DECOMPOSITION OF AN ENDOMORPHISM 231

K. For example, if K = R and E is a plane, a rotation u (relative to the usual
scalar product) other than + 1 will make E a simple Q-module, and it is easy
to give examples of vector spaces E of any given finite dimension n over a
suitable field K that are simple Q-modules for certain endomorphisms.

The most important case in analysis is that in which K is algebraically
closed and E is finite-dimensional. The simple Q-modules corresponding to
an endomorphism u are then the “lines” Kx, where x is an eigenvector of u
(A.6.9), because the restriction of u to a subspace F of E that is stable under u
always admits at least one eigenvector in F. Hence, in this case, to say that
u is semisimple means that there exists a basis (e;), < ;<, of E consisting of
eigenvectors for u, or equivalently that the matrix of u with respect to this
basis is diagonal; for this reason the endomorphism u is also said to be
diagonalizable. If A, ..., 4, are the distinct eigenvalues of u, the isotypic
components of E (for u) are the eigenspaces E(4;; u) for 1 < j < r(11.1). The
description of the vector subspaces of E that are stable under u can be read
off immediately from (A.23.7): they are the direct sums F, @ F, @@ F,,
where F; is any vector subspace of E(4;; u) for 1 £ j < r.

(A.24.4) The example of a semisimple Q-module that comes up in the
theory of Lie groups is that in which K is an algebraically closed field, E a
K-vector space with an at most denumerable basis, and Q the sum (or
disjoint union) of K and a K-vector space L. Suppose that E is the sum of a
finite or infinite sequence (E,)o<,<., (Where w is an integer or + c0) of
subspaces having the following property: for each nsuch that 0 S n< w
there exists a linear form p,: L - K on L such that u - x = p,(u)x for all
ue L and all x € E,, the forms p, being all distinct. It is then clear that every
“line” Kx contained in some E,, is a simple Q2-module, that two lines Kx, Ky
contained in the same E, are isomorphic Q-modules, and that if Kx < E,,,
Ky < E,, with m # n, then Kx and Ky are not isomorphic as Q-modules. It
follows immediately from (A.23.3) and (A.23.6) that in fact E is the direct
sum of all the E,, which are the isotypic components of the semisimple
Q-module E. Moreover, every simple Q-submodule of E is a line Kx con-
tained in one of the E,, and more generally every Q-submodule F of E is the
direct sum of the F n E, (A.23.7).

25. THE CANONICAL DECOMPOSITION OF AN ENDOMORPHISM

(A.25.1) Part of the proof of (11.3.3) for a compact operator on a normed
space can be adapted to the case of an arbitrary endomorphism u of a
finite-dimensional vector space E over an algebraically closed field K, and
gives a more precise result than (A.6.10). Namely,
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(A25.2) IfA,,...,A, arethedistinct eigenvalues of u, the space E is the direct
sum of r subspaces E, ..., E, each stable under u, such that the restriction of u
to E; has only the eigenvalue A;. Moreover, if v is the diagonalizable endomor-
phism of E such that v(x)=24;x for x€ E; (1Sj<r), thenw=u—vis
nilpotent, and both u and w may be written as polynomials in u with zero
constant terms, say v=byu+ - +buf, w=ciu+- - +cul, with
coefficients in K (and hence vw = wv).

We proceed by induction on the dimension of E and, by replacing u by
u— A+ lg, we may assume that 4, = 0. We then form as in (11.3.3) the
sequences of subspaces N, = u~!(0), N, = u~'(N,_,) for k > 1, F, = u(E),
F, = u(F,-,) for kK > 1. The dimensions of the N, (resp. F,) form an increas-
ing (resp. decreasing) sequence, and it is clear that there is a smallest integer
n such that N,,, =N, for k 2 n, and a smallest integer m such that
F,., = F, for k 2 m. We have N, n F, = {0}, because if y € F, n N, there
exists x € E such that y = u"(x), and on the other hand u"(y) = 0, so that
u?"(x) = 0; which implies that x € N,, = N, and hence that y = u"(x) = 0.
Next, we have F,, c F,, and indeed F,, = F,. For otherwise we should have
m>n;letze F,,_, « F, besuch that z ¢ F,;since u(z) € F,, = u(F,,), there
exists 1€ F,, such that u(z) = u(t), hence z—rte N, c N,; but since
z—te€F,, it follows that z = ¢, which contradicts the choice of z. Finally,
for each x € E, we have u"(x)e F,=F,,, and since u"(F,) = F, by the
definition of m, there exists y € F, such that u"(x) = u"(y), hencex — y € N,,
and consequently E = F, + N,, the sum being direct because F, n N, =
{0}. The restriction of u to F, is surjective, with kernel

F,nN,cF,nN,={0},
hence is bijective; and the restriction of u to N, is nilpotent by definition.
We now apply the inductive hypothesis to u|F, in order to obtain the
decomposition ¥ = v + w, where v is diagonalizable and w nilpotent; the
restriction of v to each E; is scalar multiplication by 4;, hence commutes
with every endomorphism of E;, and in particular with w | E;, from which it
follows that vw = wo.
It remains to prove the last assertion. We distinguish three cases:

(1) r =1, so that u has only one eigenvalue 4. If 1 = 0, then v = 0 and
w=u If 1#0, then w"=0, where n=dim(E), and v = 1" 1, so that
(1 — 4 1g)" = 0 and therefore

V= (T)u - (;)i"uz 4o (=T AT
and w = u — v, which proves the result in this case.
(2) Let u;=u|E; and suppose that u, = 0 for all h # j. We can then
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apply the result of (1) to E; and u;. If u; = P(u;) + Q(u;), where P and Q are
polynomials with zero constant terms, P(u;) being diagonalizable and Q(u;)
nilpotent, it is clear that v = P(u) and w = Q(u).
(3) General case: suppose first that A; # 0. Put
fi=u]](u— A 1™
hej

where n, = dim(E,); it is clear that the restriction f;|E, is O for h # j, and
;| E; has only one eigenvalue, namely yu; = 4; [ | (4; — 4,)™ # 0. By case (2),

n¥j
there exists a polynomial R; with zero constant term such that

R(f;))|E; = 1g,and Ri(f;)|E, = Oif h # j; but by definition f; = S (u), where
S; is a polynomial with zero constant term; hence Pj(u) = Ry(S;(u)) is a
polynomial in u with zero constant term, such that Pju}|E; = 1;, and
P(u)|E, =0 for h#j If ;=0, then we take P;(u) = 0. We have then

v= Z 4;Pu), and w = u — v, and the proof is complete.
j=1

(A.25.3) There exists only one decomposition u = f + g of an endomorphism
u of E such that f is diagonalizable, g nilpotent, and such that fg = gf.

Let y, (1 £ k < s5) be the distinct eigenvalues of f. Then E is the direct
sum of the eigenspaces L, = E(y,;f) (A.24.3). Let us first show that

g(L,) = L, for all k. Indeed, let x € L,; we may write g(x)= Y z,, with
h=1

5

z,€L, for 1 <h<s, whence f(g(x))= Y p,z,; on the other hand,
h=1

f(x) = p, x, so that g(f(x)) = h;u,‘ z,, and the relation f(g(x)) = g(f(x))

therefore takes the form Y (4, — p,)z, = 0, so that we have z, = 0 for all
h=1

h # k, because the y, are all distinct. We may therefore (A.6.12) take a basis
of E that is the union of bases of the L, , such that the restriction of u to each
L, is represented by a lower triangular matrix with diagonal elements all
equal to p,. Consequently the g, are the eigenvalues of u, and L, is the
subspace N(u,) consisting of vectors x € E such that (u — g, - 15)"(x) =0
for large enough m. This proves that f= v and g = w.

26. FINITELY GENERATED Z-MODULES

(A.26.1) A Z-module M (A.8.1) that admits a system of generators
(@)1 < j<n consisting of n elements is isomorphic to a quotient Z"/N of a
finitely generated free Z-module. For if (u,, ..., u,) is the canonical basis of
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Z", we may define a surjective homomorphism f: Z" - M by putting
f(u;) = ajfor 1 £j < n. The study of finitely generated Z-modules is there-
fore reduced to that of the submodules and quotient modules of a finitely
generated free Z-module.

(A.26.2) Every submodule of a finitely generated free Z-module is finitely
generated and free.

Let L be a Z-module having a basis (a,, ..., a,) and let M be a submodule
of L. Denote by L; (1 £ j £ n) the submodule of L with basis a, ..., a;,and
put M;=M n L;. If (a}, ..., a¥) is the basis dual to (a,, ..., a,) in the dual
Z-module L* (A.9.2), then the set of integers (x, a}), where x e M, is
evidently an ideal in Z, hence is of the form m; Z, where m; is an integer 2 0.
Hence there exists an element b; € M; such that <b;, a¥> = m;;ifm; = 0, we
take b; = 0. Let M|, be the submodule of M generated by b,, ..., b;; we shall
show that M= M;. This is obvious when j = I, since M, is the set of
multiples p - a, of a, that belong to M, and {pa,, at> = p. We proceed by
induction on j. If x € M;, we have {x, a¥) = pm; for some p € Z, hence
{x — pb;, a¥)> = 0, and since by hypothesis x and b; are linear combinations
ofay,...,a;, it follows that x — pb; € M;_,, which by the inductive hypoth-
esis is equal to M;_, ; hence x € M as required. Taking j = n, we see that M

J
is generated by by, ..., b,, and it remains to show that the nonzero b;form a

free system. Suppose then that we have a relation Z kjb; = 0,where the k;b;
=t
are not all zero. If h is the largest of the indices j such that k;b; # 0, we have
Ckpby, a¥> = (Y k;b;, a¥y =0, because k;b; =0 for j> h, and k;b; is a
J

linear combination of ay, ..., a; for j < h. Hence we have k, m, = 0, contra-
dicting k, b, # 0.

(A.26.3) Let L be afinitely generated free Z-module and M a submodule of L.
Then there exists a basis (ey, ..., e,) of L and r < n integers a,, ..., a, which
are > O such that o; divides a;, | for 1 < j < r — 1,and such that a,e,, ..., o, ¢,
form a basis of M. Furthermore, the numbers r, n and «; (1 <j<r) are
uniquely determined by these properties.

Let (ay, ..., a,) be a basis of L and (a}, ..., a¥) the dual basis of L*. We
may assume that M # {0}. Consider the integers (x, y*> for x ¢ M and
y* € L*; by hypothesis, they are not all 0, and since { —x, y*) = —{x, y*,
there exists x, € M and y¥ € L* such that (x,, y}> = a, is the smallest of the
nonzero integers |{x, y*>| for x € M and y € L* We deduce first that for
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each x € M, the integer § = {(x, y¥> is a multiple of a,; for otherwise the
highest common factor é of § and «, would be such that 0 < 6 < «,, and we
should have é = Af + ua, by Bézout’s identity, where 4 and u are suitable
integers; but this would imply {Ax + ux,, y¥) =4, contradicting the
definition of a,. One proves in the same way that (x, y*> is a multiple of o,
for each y* € L*. In particular, all the integers (x,, a}) are multiples of «,,
and hence there exists e, € L such that x, = a, ¢,. Let L, = Ker(y}); we
shall show that L is the direct sum of Ze, and L,. We have {e,, y}> = | by
definition; hence, for any y € L, if {y, y¥> = 7, we have (y — ye,, y{> =0,
that is to say, y — ye, € L,. Also, we cannot have e, € L, unless 4 = 0, by
the definition of L,, and this establishes our assertion. Likewise, M is the
direct sum of Za, e, and M, = M n L,. Namely, for each x € M we have
{x, y¥> = pa, for some u € Z, hence {x — ua, e;, y¥> =0, that is to say,
x—pu,e,el, A"M=M,.

By virtue of (A.26.2), L, admits a basis, and from the previous paragraph
and the invariance of the number of elements in a basis of L (A.8.3), any
basis of L; must have n — 1 elements. By induction on n, we may assume
that there is a basis (e,, ..., ¢,) of L, and r — 1 < n — | integers a,, ..., a,
such that «; divides a;,, for 2 < j < r — | and such thata, e,, ..., a,e, form
a basis of M. It remains therefore to prove that «, divides a,. If (e}, ..., e¥)
is the basis of L* dual to (e, ..., ¢,), we have {ae,, ef)=0a, and
{aye,, €3y =0a,. If o, were not a multiple of a,;, there would exist
A, p € Z such that § = Aa; + e, satisfied 0 < d < «,, and since

{aje, +oje,, Aet + pe¥dy =4,

this would contradict the definition of «,.

It is clear that the quotient Z-module L/M is isomorphic to the direct
sum of Z"~" and r cyclic groups Z/a;Z (1 < j < r); the integers 4 such that
A(L/M) is free are therefore exactly the multiples of «,, and for these integers
A(L/M) is isomorphic to Z"~". This already shows (A.8.3) that the integers n
and r are well determined, as is the submodule T of L/M consisting of the
elements of finite order in this group. Observe next that if Z/mZ is a cyclic
group and p a prime number, we have p*(Z/mZ) = Z/mZ if p does not divide
m; whereas if m = p*m’, where p does not divide m’, we have p*(Z/mZ) =
Z/(p"*m)Z if k < h, and pMZ/mZ)=Z/m'Z if k2 h. If p,, ..., p, are the
prime numbers dividing «,, it follows that the orders of the groups piT
determine the exponents of the p; in the a;: the order of p T is the product of
the order of p4*'T by p}, where v is the number of «; divisible by p%*!. This
shows that the «; are well determined.

The numbers a; are called the invariant factors of M with respect to L.
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We have also established:

(A.26.4) Every finitely generated Z-module N is isomorphic to the product of
a free Z-module Z* and r cyclic groups Z/o;Z (1 £ j < r) such that «; divides
a4y for 1 £j<r— 1, and the numbers s, r, and a; (1 £ j < r) are uniquely
determined by these properties.

(A.26.5) Keeping the notation of (A.26.3), suppose in addition that r = n,
so that L/M is a finite group. If we put f; = a;e;, the f; (1 £ j < n) form a
basis of M, and the matrix of the canonical injection u: M — L relative to the
bases (f;) and (e;) (A.5.2) is the diagonal matrix diag(a,, ..., ,). This is
therefore also the matrix of the transpose ‘u: L* — M* relative to the dual
bases (e¥) and (f¥) (A.9.4). Hence L* may be canonically identified with the

submodule of M* having as basis the «; f ¥, and M*/L* is isomorphic to L/M.

(A.26.6) In order that a submodule M of a finitely generated free Z-module L
should admit a supplement in L, it is necessary and sufficient that the invariant
factors of M with respect to L should all be equal to 1.

The condition is clearly sufficient by virtue of (A.26.3): the ¢; such that
r+ 1 £j= nform a basis of a supplement of M. Conversely, if M admits a
supplement N, then L/M is isomorphic to N and hence is a free Z-module
(A.26.2); this implies that all the cyclic modules Z/a;Z must be trivial, hence
a;=1lfor1<j<r
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Parabolic subgroup: 21.22, prob. 12

Peter-Weyl theorem: 21.2

Pivotal root: 21.11, prob. 16

Positive roots with respect to a basis: 21.11

Primary linear representation: 21.4, prob. 3

Primitive element in a U(sl(2, C))-module:
219

Principal alcove: 21.1S, prob. 11



Principal diagonal of a simple Lie algebra:
21.11, prob. 8
Principal nice subgroup: 21.11, prob. 8

Q

Quaternionic linear representation: 21.1,

prob. 8

R

Radical of a connected Lie group: 21.23, prob.
9

Radical of a Lie algebra: 21.23

Rank of a compact Lie group: 21.7

Real linear representation: 21.1, prob. 7

Reduced root system: 21.11

Reductive Lie group: 21.23, prob. 10

Regular element in a compact connected Lie
group: 21.7

Regular element in a Lie algebra: 21.7 and
21.22, prob. 4

Regular linear form on t: 21.14

Regular representation: 21.1

Representative function: 21.2, prob. 1

Ring of classes of continuous linear represen-
tations of a compact group: 21.4

Root decomposition of a semisimple Lie alge-
bra: 21.20

Root system: 21.11

Roots of a compact Lie group, relative to a
maximal torus: 21.8

Roots of a semisimple Lie group: 21.19

S

S-extremal set of weights: 21.15, prob. 3

S-saturated set of weights: 21.15, prob. 1

Schur’s lemma: A.22; 21.1, probs. S and 6

Semisimple component of an element of a
splittable Lie algebra: 21.19, prob. 1

Semisimple Lie algebra: 21.6

Semisimple Lie group: 21.6

Semisimple Q-module: A.23

Simple Lie algebra: 21.6

Simple Q-module: A.22
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Singular element in a compact connected Lie
group: 21.7

Singular element in a Lie algebra: 21.7 and
21.22, prob. 4

Singular linear form on t: 21.14

Special point: 21.10, prob. 2

Splittable Lie algebra: 21.22, prob. 8§

Square-integrable linear representation: 21.4,
prob. 5

Stable subgroup: A.22

Stable subspace: 21.1

Subrepresentation: 21.1

Symmetrized Lie algebra, symmetrization of a
Lie algebra: 21.18, prob. 12

T

Tensor product of representations: 21.4

Topologically irreducible linear representa-
tion: 21.1

Torus: 21.7

Trivial character: 21.3

Trivial class (of representations): 21.4

Trivial linear representation: 21.1

Unitariantrick: 21.18
Unitary linear representation: 21.1

w

Weight contained in a character (or in a
representation); 21.13

Weight lattice: 21.13

Weights of a torus: 21.7

Weyl basis of a semisimple Lie algebra: 21.10

Weyl chamber in it*: 21.14

Weyl chamber in it: 21.15, prob. 11

Weyl chamber of a symmetric space: 21.21,
prob. 1

Weyl group of a compact Lie group: 21.7

Weyl group of a reduced root system: 21.10

Weyl group of a symmetric space: 21.21, prob.
1

Weyl's formulas: 21.15

Weyl's theorem on isomorphisms of semi-
simple Lie algebras: 21.20
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