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SCHEMATIC PLAN OF THE WORK 



NOTATION 

In the following definitions, the first number indicates the chapter in which the notation is 
introduced, and the second number indicates the section within the chapter. 

UP 

n P  

5 U ( s ) d p ( s ) ,  where U is a continuous 

unitary representation of a group G and 
p is a bounded measure on G: 21.1 

jf(s)  U ( s )  d/?(s), where 6 is a Haar 

measure on G, and f~ 2'L(G, p): 21.1 
mapping PI+ U ( p ) :  21.1 
left regular representation ?I+ (E, *f) 
21.1 
direct sum of two continuous linear 
representations: 21.1 
real (resp. quaternionic) linear repre- 
sentation corresponding to a complex 
linear representation U :  21.1, Problem 9 
minimal two-sided ideals of the complete 
Hilbert algebra LS(G), for G compact: 
21.2 
identity element of ap: 21.2 
the integer such that ap is isomorphic to 
MJC): 21.2 
elements of a,,: 21.2 
the matrix (n;'m{?)(s)): 21.2 
index of the trivial ideal am = C:. 21.2 

vi i 



viil NOTATION 

B" 

B a  

Ua 

ua 

sa 

Lnl 

x u ,  x-a 

ni'u,: 21.3 
the index such that x P  = 5: 21.3 

class d;p of a finite-dimensional 

linear representation: 21.4 
ring of classes of continuous linear rep- 
sentations of G: 21.4 
bilinear form (u, v)HTr(U*(u) 0 U,(v)) 
associated with a linear representation U 
of a Lie group: 21.5 
bilinear form (u, V)I+ Tr(p(u) 0 p(v)) as- 
sociated with a homomorphism of Lie 
algebras p : g + gl(F): 21.5 
Killing form (u, v)HTr(ad(u) 0 ad(v)) 
of a Lie algebra a: 21.5 
kernel exp; '(e) of the exponential exp,: 
t + T, where t is the Lie algebra of the 
torus T: 21.7 
dual of the lattice rT, in t*: 21.7 
Weyl group N(T)/T, where T is a maxi- 
mal torus of G :  21.7 
'w-'(A), for w E W and 1 E t*: 21.8 
set of roots of G with respect to T: 21.8 
subspace of gto consisting of the vectors 
x such that [u, x] = a(u)x for all u E t: 
21.8 
subgroupX,-'(l)ofT, where X,(exp(u)) = 
(("I for U E  t: 21.8 
hyperplane a-'(O) in t: 21.8 
element of W acting on t by reflection in 
the hyperplane u,: 21.8 
simple U(sI(2, C))-module of dimension 
m + 1 :  21.9 
root decomposition of a complex semi- 
simple Lie algebra g: 21.10 and 21.20 
element of I) such that a(h) = @(h, h:): 
21.10 
element of b such that a(ha) = 2 and 
ha E [a, 9-,I: 21.10 
elements of a, g-,,, respectively, such 
that [K, x-,] = ha: 21.10 

P E R  
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SS 

S' 
B' 

6 

SO(ni, C), eo(rn, C )  

bijection1-A - A(h,)a of b* onto itself: 
21.10 
Lie subalgebra Ch, 0 Cx, @ Cx-,: 
21.10 
numbers such that [ x u ,  xp] = Nu, 
when a + /? E S: 21.10 
union of the hyperplanes in t with 
equations a(u)  = 27cin, n E Z: 21.10, 
Problem 2 
bijection A H A  - u,(A)a, for a reduced 
root system S in F: 21.11 
Weyl group of S, generated by the a,; 
21.11 
Cartan integers us(a) = 2(P(a)/(PlP) for 
a, B E  S: 21.11 
set of a E S such that a ( x )  > 0: 21.11 
basis of S, namely the set of indecom- 
posable elements of S:: 21.11 
set of positive roots, relative to a basis 
B of S: 21.11 
root system formed by the u, E F*: 21.1 1 
basis of S' consisting of the u,, a E B: 
21.11 

1 
- 1 1:21.11 
2 A €  8+  

n 

linear form on t = @ RiE,, c Mn(C) 

such that t r ( iESs )  = &,: 21.12 
complex symplectic group and its Lie 
algebra: 21.12 
complex special orthogonal group and its 
Lie algebra: 21.12 
Lie algebras of the classical groups : 2 1.12 
lattice 2nil-f of weights of G with respect 
to T :  21.13 
character exp( u ) ~  eP(")ofT, where p E P: 
21.13 

s= 1 

1 ep, where Il is an orbit of the Weyl 
p e n  

group W in P: 21.13 
set ofW-invariant elements ofZ[P]: 21.13 



X NOTATION 

wa 

k 

mi 

Spin (m) 

h,,, where {PI,. . . ,P I }  is a basis of S: 21.14 
set of I E t&). such that I ( h , )  E Z for all 
a E S, or equivalently such that l(hj) E Z 
for 1 I j I I :  21.14 
Weyl chamber in it*, consisting of the 1 
such that I ( h j )  > 0 for 1 5 j I I :  21.14 
order relation on it:, equivalent to 

1 = p o r p  - 2  = y + cjpj,withy E ic* 

and cj  2 0 and not all zero: 21.14 
reflection sp,: 1- 1 - A( hj)Pj for 
1 I j I I :  21.14 
hyperplane in it* with equation 
I(h,) = 0: 21.14 
set of W-anti-invariant elements of Z[P]: 
21.14 
C det(w)ew*P, where p E P: 21.14 

set of weights 1 E P which are regular 
linear forms: 21.14 
S(n), where n is the W-orbit of 
p E P n e: 21.14 
J(ed) = n (eu'12 - e- ' l2) :  21.14 

set of regular points of the maximal torus 
T c G: 21.15 
invariant volume-forms on G, T and 
G/T: 21.15 
invariant measures corresponding to the 
volume-forms uG,  uT, uG/T: 21.15 
highest root in S, relative to the basis 
B = {PI, ..., &}: 21.15, Problem 10 
affine Weyl group: 21.15, Problem 11 
hyperplane with equation a(u) = 2nk in 
it: 21.15, Problem 11 
basis of i t  dual to {b1, P 2 ,  ..., PI } :  
21.15, Problem 11 
sublattice P(G/Z) of P(G) generated by 
the roots a E S: 21.16 
fundamental weights (1 I j I I )  relative 
to the basis B of S: 21.16 
simply connected covering group of 
SO(m) (m 2 3): 21.16 

j=  1 

W E W  

a s s +  



NOTATION xi 

c; 

CO 

fo9 iP0  

t 

S' 

set of self-adjoint automorphisms of E: 
21.17 
set of positive self-adjoint automor- 
phisms of E: 21.17 
e, a simply connected compact semi- 
simple Lie group; gu = Lie@,); 
9 = (g&); c, the conjugation of g for 
which g, is the set of fixed vectors: 
21.18 
simply connected complex Lie group 
with Lie algebra 9: 21.18 
conjugation of g which commutes with 
c,: 21.18 
real vector subspaces of g, on which 
co(x) = x and co(x) = -x, respectively: 
21.18 
subalgebra of invariants of c,: 21.18 
image of ig, under the mapping 
iuwexp&u):  21.18 
Go the Lie subgroup of G,, consisting 
of the fixed points of u such that 
c.,, = c,; KO = Go n e,; Po = Go n p: 
21.18 
C,/D, a group locally isomorphic to Go : 
21.18 
K1 = Ro/D; PI = image of p o  under 
expG,: 21.18 
e,/(C n Go), C the centre of e,,: 21.18 
Ko/(C n Go): 21.18 
subgroup of fixed points of 02, the auto- 
morphism of G2 obtained from c on 
passing to the quotient: 21.18 
image of ip, under expG,: 21.18 
lexicographic ordering: 21.20 
maximal commutative subalgebra of p o :  
21.21 
maximal commutative subalgebra of g, 
containing a,: 21.21 
subset of S consisting of the roots which 
vanish on iao: 21.21 



xii. NOTATION 

s; 

11, 110 

Zk 

subset of S = S - S' consisting of the 
a such that a(z0)  > 0: 21.21 
n = @ g01, 11 = no n go: 21.21 

Lie algebra of matrices ( x h , )  such that 
x h j  = 0 f O r j  4- k > h:  21.21 

a s s +  



CHAPTER XXI 

COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS 

It is rarely the case in mathematics that one can describe explicitly all the 
objects endowed with a structure that is characterized by a few simple 
axioms. A classical (and elementary) example is that of finite commutative 
groups (A.26.4). By contrast, in spite of more than a century of effort and an 
enormous accumulation of results, mathematics is still very far from being 
able to describe all noncommutative finite groups, even when supplementary 
restrictions (such as simplicity or nilpotency) are imposed. 

I t  is therefore all the more remarkable that, in the theory of Lie groups, 
all the compact simply connected Lie groups are explicitly known, and that, 
starting from these groups, the structure of compact connected Lie groups is 
reduced to a simple problem in the theory of finitely generated commutative 
groups ((16.30.2) and (21.6.9)). The compact simply connected Lie groups 
are finite products of groups that are either the universal covering groups of 
the “classical groups” SO(n), SU(n), and U(n, H) (16.11) (and therefore 
depend on an integral parameter) or the five “exceptional” groups, of 
dimensions 14, 52. 78,133, and 248. We shall not get as far as this final result, 
but we shall develop the methods leading to it, up to the point where what 
remains to be done is an enumeration (by successive exclusion) of certain 
algebraic objects related to Euclidean geometry, subjected to very restrictive 
conditions of an arithmetic nature, which allow only a small number 
of possibilities (21.10.3) (see [79] or [85]  for a complete account). 

These methods are based in part on the elementary theory of Lie groups 
in Chapter XIX, and in part on a fundamental new idea, which dominates 
this chapter and the next, and whose importance in present-day mathema- 
tics cannot be overemphasized; the notion of a linear representation of a 
group. The first essential fact is that where compact groups are concerned 
(whether they are Lie groups or not) we may restrict our attention tofinite- 
dimensional linear representations (21.2.3). The second unexpected 

1 



2 XXI COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS 

phenomenon is that where compact connected Lie groups are concerned, 
everything rests on the explicit knowledge of the representations of only two 
types of groups: the tori T” and the group SU(2) (21.9). Roughly speaking, 
these are the “building blocks” with which we can “construct” all the other 
compact connected Lie groups and obtain not only their explicit structure 
but also an enumeration of all their linear representations (21.1 5.5). 

The interest attached to the compact connected Lie groups arises not 
only from the esthetic attractions of the theory, which is one of the most 
beautiful and most satisfying in the whole of mathematics, but also from the 
central position they occupy in the welter of modern theories. In the first 
place, they are closely related to a capital notion in the theory of Lie groups, 
namely that of a semisimple group (compact or not), and in fact it turns out 
that a knowledge of the compact semisimple groups determines all the 
others (21.18). Since the time of F. Klein it has been recognized that classical 
“geometry” is essentially the study of certain semisimple groups; and E. 
Cartan, in his development of the notions of fiber bundle and connection, 
showed that these groups play an equally important role in differential 
geometry (see Chapter XX). From then on, their influence has spread into 
differential topology and homological algebra. We shall see in Chapter XXII 
how-again following E. Cartan-it has been realized over the last twenty- 
five years that the study of representations of semisimple groups (but now on 
infinite-dimensional spaces) is fundamental in many questions of analysis, 
not to speak of applications to quantum mechanics. But the most unex- 
pected turn has been the invasion of the theory of semisimple groups into 
regions that appear completely foreign: “abstract ” algebraic geometry, 
number theory, and the theory of finite groups. It has been known since the 
work of S. Lie and E. Cartan that semisimple groups are algebraic (that is, 
they can be defined by polynomial equations); but it is only since 1950 that it 
has come to be realized that this is no accidental fact, but rather that the 
theory of semisimple groups has two faces of equal importance: the analytic 
aspect, which gave birth to the theory, and the purely algebraic aspect, which 
appears when one considers a ground field other than R or C. We have not, 
unfortunately, been able to take account of this second aspect; here we can 
only remark that its repercussions are increasingly numerous, and refer the 
reader to the works [80], [81], [74], [77], and [78] in the bibliography. 

I. CONTINUOUS UNITARY REPRESENTATIONS OF 
LOCALLY COMPACT GROUPS 

(21.1.1) Let G be a topological group, E a Hausdorff topological vector 
space over the field C of complex numbers. Generalizing the definition given 
in (16.9.7), we define a continuous linear representation of G on E to be a 
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mapping SH U ( s )  of G into the group GL(E) of automorphisms of the 
topological vector space E, which satisfies the following conditions: 

(a) U(st )  = U(s )U( t )  for all s, t E G; 
(b) for each x E E, the mapping SH U ( s )  x of G into E is continuous. 

It follows from (a) that U(e)  = 1, (where e is the identity element of G) 
and that, for all s E G, 

(21.1.1 . l )  U ( s - 1 )  = U ( s ) - ' .  

If E is o f j n i t e  dimension d, the representation U is said to be of dimen- 
sion (or degree) d,  and we sometimes write d = dim U .  

The mapping U o  that sends each s E G to the identity automorphism 1, 
is a continuous linear representation of G on E, called the trivial 
representat ion. 

A vector subspace F of E is said to be stable under a continuous linear 
representation U of G on E if U(s)(F) c F for all s E G; in that case, the 
mapping SI+ U(s )  1 F is a continuous linear representation of G on F, called 
the"subrepresentation of U corresponding to F. 

A continuous linear representation U of G on E is said to be irreducible 
(or topologically irreducible) if the only closed vector subspaces F of E that 
are stable under U ate {0} and E. For each x # 0 in E, the set 
{ U ( s )  * x : s E G) is then total in E (12.13). 

(21.1.2) In this chapter and the next, we shall be concerned especially with 
the case where E is a separable Hilbert space. A continuous unitary represen- 
tation of G on E is then a continuous linear representation'u of G on E such 
that for each s E G the operator U(s)  is unitary, or in other words (15.5) is an 
automorphism of the Hilbert space structure of E. This means that the 
operators U(s )  satisfy conditions (a) and (b) of (21.1.1), together with the 
following condition: 

(c) (U(s )  * x (  U ( s )  * y) = ( x ( y )  for all s E G and all x, y E E. 

In  particular, U ( s )  is an isometry of E onto E, for all s E G, and we have 

(21 .1.2.1) u(s)-' = (U(s) )*  

for all s E G. 

(21 .1.3) (i) When E is finite-dimensional, condition (b) of (21 .l .l) is equiv- 
alent to sayin,g that SH U ( s )  is a continuous mapping of G into the normed 
algebra Y(E) (relative to any norm that defines the topology of E); for it is 
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equivalent to saying that if (u&)) is the matrix of U ( s )  relative to some basis 
of E, then the functions ujk are continuous on G. On the other hand, if E is a 
separable Hilbert space of infinite dimension and U is a continuous unitary 
representation of G on E, then U is not in general a continuous mapping of 
G into the normed algebra Y(E) (Problem 3). 

(ii) When E is finite-dimensional, a continuous linear representation U 
of G on E is not necessarily a continuous unitary representation relative to 
any scalar product (6.2) on E. For example, if G = R, the continuous linear 
representation 

of G on Cz is not unitary, relative to any scalar product on C2, because any 
unitary matrix is similar to a diagonal matrix (15.11.14) (cf. Section 21.18, 
Problem 1). 

(21.1.4) Throughout the rest of this chapter we slrall consider only separable 
metrizable locally compact groups, and as in Chapter X I  V the phrases " locally 
compact group" and " compact group" will mean " separable metrizable locally 
compact group " and " nietrizable compact group," respectively. 

Let G be a locally compact group, p a bounded complex measure (1 3.20) 
on G, and U a continuous unitary representation of G on a separable 
Hilbert space E. For each pair of vectors x,  y in E, the function 
SH ( t i ( s )  * x I y )  is continuous and bounded on G, because (1 U ( s )  . x(I = 
I(xI(; it is therefore p-integrable, and by (13.20.5) we have 

Since E may be identified with its dual, it follows that there exists a unique 
vector U ( p )  . x in E such that s (W) * x Id 4 4 s )  = W ( P )  . x 

for all y E E, and this allows us to write (13.10.6) 

U ( p )  * x = ( U ( s )  * X )  dp(s),  s (21.1.4.2) 

Y )  

I t  is clear that this relation defines a continuous endomorphism U ( p )  of E, 
since (21 .1.4.1) implies that 

(21.1.4.3) I I~(P) l l  5 11P11. 
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In particular, we have 

(21.1.4.4) U(&,)  = U ( s )  

for all s E G. 
The relation (21.1.4.2) is sometimes written in the abridged form 

(21.1.4.5) 

(21.1.5) We recall (15.4.9) that the set ML(G) of bounded complex mea- 
sures on G is an inuolurory Banach algebra over C, the multiplication being 
convolution of measures, and the involution p c ~  G. When a left Haar mea- 
sure /? has been chosen on G, the normed space L&(G) may be canonically 
identified with a closed vector subspace of ML(G), by identifying the class f 
of a P-integrable functionfwith the bounded measuref. /I, since I l f .  /?I[ = 

N,( f )  (13.20.3). By the definition of the convolution of two functions in 
2’,!(G) (14.10.1), L,!(G) is a subalgebra of M,?.(G) if we define the product of 
the classes of two functionsf; g E YL(G) to be the class off * g .  If in addition 
G is unimodular (14.3), LL(G) is a two-sided ideal in Mh(G), and Jhe 
transform of the measure f. /? under the involution is f. /? 
(1 4.3.4.2). We may therefore consider LL(G) as an inuolutory closed subalgebra 
of ML(G), the involution being that which transforms the class off into 
the class of .f: 

We deduce from this that if G is unimodular, then for each representation 
(15.5) V of the involutory Banach algebra L,?.(G) on a Hilbert space E, we 
have 

(21.1.5.1) IIW 5 N l ( f )  

for allfE 2’L(G). For if G is discrete, this is just (15.5.7) because the identity 
element E ,  of M,!(G) then belongs to L,!(G). If G is not discrete, it is im- 
mediately seen that I/ may be extended to a representation on E of the 
involutory Banach subalgebra A = L,!(G) 0 CE, of M,!(G) by putting 
V ( J .  p + 16,) = V(f)  + 1 . l , ,  and (15.5.7) can then be applied to this 
algebra with identity element. 

(21.1.6) Under the assumptions of (21 .1.4), the mapping p~ U ( p )  is  a rep- 
resentation (15.5) of the involutory Banach algebra ML(G) on the Hilbert 
space E. I f ’  in addition G is  unimodular, the restriction o f p w  U ( p )  to L&(G) is 
nondegenerate. 

I t  follows immediately from (21.1.4.4) that U(E,) = 1,. To prove the first 
assertion, it remains to show that U ( p  * v) = U ( p ) U ( v )  and U(E)  = ( U ( p ) ) * ,  
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where p, v are any two bounded measures on G. If x, y are any two vectors in 
E then by definition (14.5) we have 

(U(P  * v )  . x lY) = (Ub) . x l Y )  d(C1 * v) (s )  s 
= 1s ( W W )  . x I Y )  444 dv(w) 

= sf ( U ( w )  . x I (W)* . Y) 444 dv(w) 

= s (%) * P ( V )  * x) l Y )  dP(U) 

= (W)  . x I (W)* . Y )  d P b )  

= (W)W * x I Y )  

by virtue of the Lebesgue-Fubini theorem, and this proves the first relation. 
Next, using the fact that the operators U ( s )  are unitary, we have 

J 
n 

= J (W)  * x I Y )  d m  

= (W)  * x I Y )  

by the definition of the measure 
relation. 

(15.4.9), and this proves the second 

I n  particular, for each s E G and each bounded measure 11 on G, we have 

(21.1.6.1) U(E, * p) = U ( s ) U ( p ) ,  U ( p  * E ~ )  = U(p)Ll(s) .  

Let (V,) be a decreasing sequence of neighborhoods of e in G, forming a 
fundamental system of neighborhoods of e. For each s E G and each n, let u, 
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be a positive-valued function belonging to X ( G )  with support contained in 

sV, and such that u, d p  = 1. For each x E E and each E > 0, there exists an 

integer n such that 
J 

(21.1.6.2) IIU(t) . x - U ( s )  * XI1 5 & 

for all r E sV,. We have then, for all y E E, 

( u ( u n . P ) x -  U ( S ) . X ~ Y ) =  ( U ( [ ) . X -  U ( s ) * x l ~ ) u A t ) d B ( t )  s 
and the inequality (21 .1.6.2) therefore implies that 

IIU(u, * 8) . x - U ( s )  . X J I  5 &. 

If there existed a vector x # 0 such that U ( f *  p)  * x = 0 for all functions 
f~ L?L(G), we should therefore have U ( s )  * x = 0 for all s E G, which is 
absurd (take s = e). The restriction of the representation PI+ U ( p )  to L,!.(G) 
is therefore nondegenerate. 

By abuse of language, we shall call the restriction of PI+ U ( p )  to L,!.(G) 
the extension of U to L,!.(G), and we shall denote it by U,,, . For f E Y,!.(G), 
we shall write U(f )  instead of U ( f *  p) or V ( 7 ) .  

(21 .1.7) Let G be a unimodular, separable, metrizable, locally compact group. 
Then the mapping UH U,,, i s  a bijection of the set of continuous unitary 
representations of G on E,  onto the set of nondegenerate representations of the 
inoolutive Banach algebra LL(G) on E. Furthermore, in order that a closed 
vector subspace F ofE should be stable under all the operators U ( s )  (s E G), it 
is necessary and sufJicient that it should be stable under all the operators U (  f) 
f o r f E  YL(G) ( o r j u s t f o r f e  X(G)).  

We have seen in the course of the proof of (21.1 -6) that, for each s E G 
and x E E, the vector U ( s )  . x is the limit of a sequence U(u,) . x with 
u, E X(G) .  This shows already that the mapping U H  U,,, is injective, and 
that if a closed subspace F of E is stable under the operators U( f )  (where 
f~ YL(G) o r f e  X(G)), then it is stable under the operators U ( s )  (s E G); 
and the converse follows directly from the definition of U ( p )  (21.1.4). It 
remains to show that, for each nondegenerate representation I/ of L # 3 )  on 
E, there exists a continuous unitary representation U of G on E such that 
V = U,,, . Let H be the vector subspace of E spanned by the vectors 
V(f) . x ,  wherefe YL(G) and x E E; then the hypothesis on I/ signifies that 
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H is dense in E. Let s E G, and define the sequence of functions (un)  as in thc 
proof of (21.1.6); then for eachfE Y i ( G )  we have (14.11.1) 

limNl(un * f -  E, * f )  = 0 
n-1 m 

and consequently (21.1.5.1) 

hm II V(u,)V(f) - V(Es *!)I1 = 0. 
n-1 m 

This shows that for each y E H, i.e., each linear combination 1 V ( f k )  * x k ,  

the sequence (V(u,) . y) has a limit in E, namely, 1 V(E,  * f k )  * x k .  Let 

U ( s )  . y denote this limit. It is clear that the mapping U(s ) :  H + E so defined 
is linear and such that for eachfE 9L.G) we have 

k 

k 

which shows also that U ( s )  maps H into itself. 
Also, by (21 . l  .S.l), we have 1) V(u,)I) 6 N,(u,) = 1 for all n, and therefore 

11 U ( s )  . yJI llyll for all y E H; hence U ( s )  extends uniquely to a continuous 
operator on E, which we denote also by U(s) .  Clearly we have ( 1  U(s)ll 5 1. 
We have to show that SH U(s )  is a continuous unitary representation of G 
on E. If s, t E G, then by virtue of (21.1.7.1) we have 

W )  V ( f )  = V h l  *f)  = V(% * ( E ,  *f)) 
= U(s )  0 V(&, * f )  = U ( s )  0 U ( t )  0 V(f), 

from which it follows immediately that U(st)  . y = U(s )  * ( U ( t )  * y )  for all 
y E H and hence, by continuity, U(st)  = U(s )U( t )  in 9 (E) .  Next, it follows 
from (21.1.7.1) that U ( e )  is equal to the identity mapping on H, and there- 
fore also on E. Finally, since IIU(s) * X I [  5 (IxJ( and IlU(s-') . xJI 5 x, we 
have also llxll 5 11 U ( s )  X I [  and therefore 11 U(s )  . x.11 = JIxIJ for all x E E, so 
that U(s )  is a unitary operator. 

It remains to show that V = U,,, . Letf, g E Yi (G) ;  from the definition 
of convolution and the Lebesgue-Fubini theorem it follows that for each 
h E 9Z(G) we have 

For each pair of vectors x ,  y E E, the function fw (V(f) x 1 y) is a contin- 
uous linear form on Y,!.(G), hence is of the form fw (h , f )  for some 
h E Y;(G) (13.17.1). Hence, by virtue of (21 .1.7.2), we may write 
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(21.1.8) The study of the continuous unitary representations of a unimodu- 
lar group G is therefore entirely equivalent to that of the nondegenerate 
representations of LL(G). Hence we may transfer to the former all the ter- 
minology introduced in (15.5) for the latter. In particular, two continuous 
unitary representations U , ,  U ,  of G on spaces El, E, are said to be equiva- 
lent if there exists an isomorphism Tof the Hilbert space El onto the Hilbert 
space E, such that U , ( s )  = TU,(s)T-' for all s E G. This is equivalent to 
saying that U2(f )  = T U , ( f ) T - '  for all functions f~ Yh(G): in other 
words, ( Ul)ex, and ( U,),,,  are equivalent in the sense of (1 5.5). To say that U 
is irreducible is equivalent to saying, by virtue of (21 .1.7), that U,,, is topolog- 
ically irreducible. Finally, if E is the Hilbert sum of a sequence (F,) of closed 
subspaces stable under U, then U is said to be the Hilbert sum of the 
subrepresentations corresponding to the F, . 

(21.1.9) Suppose that G is unimodular. For each s E G and 
each f E L?i(G), the function y(s)f= E, * f (14.8.5) belongs to Y$(G), and 
we have N,(E, * f )  = N,(f). Hence we may define a unitary operator R(s)  
on LS(G) by mapping the class off to the class of E, * f. Further, it follows 
from (14.10.6.3) that SH R(s )  is a continuous unitary representation of G on 
LS(G). This representation is called the regular (or left regular) representa- 
tion of G. I t  follows from (14.9.2) that for each bounded measurep on G we 
have R ( p )  . 3 = (p  * 9)" for all g E L?:(G), and in particular that 
R ( f )  3 = ( f *  g ) -  for allfE 9L.G). The representation Re,, is called the 
regular (or left regular) representation of LL(G) on L:(G). It is injective, 
because it follows immediately from regularization (14.1 1 . l )  that iff * g is 
negligible for all functions g E Yi(G),  thenfis negligible. 

Example. 

(21 . l  .lo) Let El,  E, be two Hausdorff topological vector spaces over C, 
and let U , ,  U ,  be continuous linear representations of G on El, E,,  respec- 
tively (21.1.1). Generalizing the terminology of (21.1 .8), we say that U1 and 
U ,  are equivalent if there exists an isomorphism T: E, E, of topological 
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vector spaces such that U,( s )  = TU,(s)T-' for all s E G. When El, E2 are 
Hilbert spaces and U , ,  U ,  are continuous unitary representations, it can be 
shown that this definition is equivalent to that given in (21.1.8) (Problem 4). 
The direct sum of two arbitrary continuous linear representations U , ,  U ,  of 
G is defined to be the continuous linear representation U of G on El x E, 
defined by U ( s )  * (xl, x,) = (Ul(s) * xl, U,( s )  * x2). If El and E2 are finite- 
dimensional and Ul(s), U,( s )  are identified with their matrices relative to 
(arbitrary) bases of El, E,, respectively, then V(s) is identified with the 

matrix ('$I U,!s)),  and we write U = U ,  Q3 U,. The direct sum of a 

finite number of continuous linear representations of G is defined in the 
same way. A continuous linear representation of G on afinite-dimensional 
space is said to be completely reducible if it is equivalent to a direct sum of 
irreducible representations. 

PROBLEMS 

1. Let E be a normed space, G a (separable, metrizable) locally compact group, and SH U ( s )  
a mapping of G into the group GL(E) such that U(st )  = U(s)U( t )  for all s, t E G. Let A be 
a dense subset of E such that for each x E A the mapping SH U(s)  . x is continuous on G. 
(a) Show that the function SH IIU(s)lJ is lower semicontinuous on G and that 

II U(st)ll 5 II U(s)ll . II W)Il 
for all s, t E G. 
(b) Deduce from (a) that for each compact subset K of G the set { U ( s )  : s E K} is 
equicontinuous on E (use (12.16.2)). Deduce that the mapping (s, X)H U ( s )  . x of G x E 
into E is continuous. 

2. Let E be a separable normed space and D a denumerable dense subset of E; let G be a 
locally compact group and let SH U ( s )  be a mapping of G into GL(E) such that U(s t )  = 
U(s )U( t )  for all s, t E G. Suppose also that for each x E D the mapping SH U ( s )  . x of G 
into E is measurable (relative to a Haar measure on G). 

Let V be a symmetric compact neighborhood of e in G. Show that there exists a 
compact subset K of V, with measure arbitrarily close to that of V, such that the mapping 
st+ IIU(s)lJ is lower semicontinuous on K (13.9.5). Deduce that this mapping is bounded 
on K (same method as in Problem 1). Show, by using (14.10.8), that there exists a 
neighborhood W c V of e in G such that the mapping SH 1) U(s)(l is bounded on W, and 
deduce that the mapping (s, X)H U ( s )  - x of G x E into E is continuous. 

3. Let G be an infinite (metrizable) compact group, endowed with normalized Haar measure. 
Show that for each s # e in G there exists a functionjE Y $ ( G )  such that N,(f) = I and 
N2(y(s)j-j)  = fi. Deduce that the regular representation SH R(s)  of G on Lt(G) is not 
a continuous mapping of G into the Banach algebra Y(L$(G)). 
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4. Let G be a locally compact group, let E l  and E, be separable complex Hilbert spaces, U ,  
and U ,  continuous unitary representations of G on El, E,, respectively, and let 
T: E, -+ E, be an isomorphism of topological uector spaces such that U,( s )  = TU,(s )T-’  
for all s E G .  
(a) There exists an isomorphism T*: E, -. El of topological vector spaces such that 
( T ~ x , J x , ) = ( x , ) T * . x , ) f o r a l l x ,  E E , a n d x , ~  E,.(T*istheadjointofT;cf.Section 
15.12, Problem 1.) The operator T* 0 Ton El is self-adjoint, positive, and invertible, and 
there exists a unique self-adjoint positive invertible operator A such that A’ = T* o T 
(15.11.12). Show that A 2 U , ( s )  = U,(s)Az for all s E G, and deduce that AU,(s) = U,(s)A 
for all s E G. (Use the approximation of t ” 2  by polynomials, together with (15.11.8.1).) 
(b) Show that T 0 A - ’  = S: El  -. E, is an isomorphism of Hilbert spaces, such that 
U , ( s )  = S U , ( s ) S - ’  for all s E G. 

5. (a) Let E be a separable Hilbert space and A an unbounded self-adjoint operator on E. If 
U is a unitary operator on E that leaves dom(A) stable and is such that U . (A . x) = 
A . ( U  . x) for all x E dom(A), show that U(dom(A)) = dom(A), and that for each 
bounded, uniformly measurable function f on R, the operator U commutes with the 
continuous self-adjoint operatorf(A) (notation of (lS.12.13)). In particular, if A is not a 
homothety, there exists a closed vector subspace F of E, other than E and {O), which is 
stable under U .  
(b) Let G be a locally compact group and let SH U ( s )  be an irreducible continuous 
unitary representation of G on E. Show that if A is an unbounded self-adjoint operator on 
E, such that dom(A) is stable under the representation U and such that U ( s ) .  (A . x) = 
A . ( U ( s )  . x) for all s E G and all x E dom(A), then A is necessarily a homothety. (This is 
the topological version of Schur’s lemma.) 

6. Let G be a locally compact group and let U, ,  U ,  be continuous unitary representations of 
G on separable Hilbert spaces El ,  E,, respectively. A continuous linear mapping 
T: El -. E, is an intertwining operator for U ,  and U ,  if T U , ( s )  = U,(s)T for all s E G. 
Then T* (Problem 4) is an intertwining operator for U ,  and U,. 

Suppose that U ,  is irreducible. Suppose also that there exists a nonzero unbounded 
closed operator T from El to E, (Section 15.12, Problem 1) such that dom(T) is dense in 
El  and stable under U,, and such that T . ( U , ( s )  . x) = U,(s)  . (T . x) for all x E dom(T) 
and all s E G. Show that dom(T*) is dense in E, and stable under U,, that dom(T*T) is 
dense in El  and stable under U, ,  and that T*T is self-adjoint. (Consider the Hilbert sum of 
El and E,, and the operator S defined on dom(T) €I3 E,, which is equal to T o n  dom(T) 
and zero on E,.) Deduce from Problem 5 that there exists a constant c # 0 such that 
T*T = cf, and hence that dom(T) = El and that T is an isometry of El onto a closed 
subspace of E, . Hence U ,  is equivalent to a subrepresentation of U, . 

7. Let E be a finite-dimensional real vector space. If G is a topological group, a continuous 
(real) linear representation of G on E is any continuous homomorphism of G into CL(E). 
(a) Let F = E,,, be the complex vector space obtained from E by extension of scalars; 
identify E with the (real) subspace of F consisting of all x @ 1 with x E E. Then every z E F 
is uniquely of the form z = x + i y  where x, y E E. Define a mapping J: F -* F by 
J . (x + i y )  = x - i y ,  where x, y E E; then J is a semilinear bijection, and 5’ = I; also E is 
the set of z E F such that J . z = z. If s w  U ( s )  is a continuous (real) linear representation 
of G on E, the mapping SH V ( s )  = U ( s )  @ 1, is a continuous linear representation of G on 
F, such that V ( s )  . J = J . V ( s )  for all s E G. 
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(b) Conversely, let F be a finite-dimensional complex vector space, and let J be a semilin- 
ear bijection of F onto F such that J 2  = I. If F,,is the real vector space obtained from F by 
restriction of scalars, then J is an involutory automorphism of FIR. If E is the eigenspace of 
this automorphism for the eigenvalue 1, then iE is the eigenspace for the eigenvalue - 1, 
and consequently F may be identified with Eo,. Show that if SI+ V(s )  is a continuous 
linear representation of G on F such that V ( s )  . J = J . V ( s )  for all s E G, then there exists 
a continuous (real) linear representation U of G on E such that V may be. identified with 
S H  U(S)  8 1,. 

8. Let F be a finite-dimensional left vector space over H, the division ring of quaternions. If G 
is any topological group, a continuous (quaternionic) linear representarion of G on F is any 
continuous homomorphism of G into GL(F). 
(a) Identify the quaternions of the form a + bi (a. b E R) with complex numbers, so that 
every quaternion a + bi + cj + dk is expressed as (a  + bi) + (c  + dilj, and H = C @ C j  is a 
left vector space of dimension 2 over C. Let E = Flc be the complex vector space obtained 
from F by restriction of scalars. If we define J . z = j z  for each vector z E E, then we have 
J . (As) = X ( J  . z )  for all 1 E C, so that J is a semilinear bijection of E onto E such that 
J z  = - I .  A quaternionic continuous linear representation s w  U ( s )  of G on F can be 
considered as a continuous linear representation of G on E, and we have U(s)  J = 
J . U ( s )  for all s E G. 
(b) Conversely, let E be a finite-dimensional complex vector space, and let J be a semilin- 
ear bijection of E onto E such that J' = - I .  For each vector z E E and each quaternion 
1 + y j  (where 1, y E C), put (A + yj)z  = As + p ( J  . z). This defines on E a structure of left 
vector space over H such that if F denotes this left vector space then E is FI,. If U is a 
continuous linear representation of G on E such that U ( s )  . J = J * U ( s )  for all s E G, then 
U can be regarded as a quaternionic continuous linear representation of G on F. 

9. For finite-dimensional real (resp. quaternionic) continuous linear representations of a 
topological group G, the notions of equivalent representations, direct sum of representa- 
tions, and irreducible representations are defined exactly as in (21 .l .l) and (21 .l .lo), by 
replacing the field C by R (resp. H) throughout. If U is a continuous linear representation 
of G on a finite-dimensional complex vector space, satisfying the condition of Problem 
7(b) (resp. 8(b)). we denote by U(") (resp. UcH)) the corresponding real (resp. quaternionic) 
linear representation. 
(a) Let U, V be two equivalent complex linear representations of G, so that if E, Fare the 
respective spaces of the representations U, V, there exists a linear bijection T of E onto F 
such that V ( s )  = TU(s)T-' for all s E G. Suppose that there exists a semilinear bijection 
J, (resp. J,) of E (resp. F) onto itself such that Jk = &IE and J: = &IF (where E = k 1) and 
U ( s ) J ,  = J, U(s) .  V( s )J ,  = J, V ( s )  for all s E G. Show that there exists a linear bijection S 
of E onto F such that V ( s )  = SU(s)S-'  for all s E G and also SJ, = J,S. (Put 

1 1 

2 2i 
T = - (7- + J , T J i ' ) ,  T" = - (T - J , T J i ' ) ,  

and show that there exists a real number such that T + (T is a bijection.) Deduce that 
if E = 1, the representations U'"' and Vr) are equivalent, and that if E = - 1 the representa- 
tions UcH) and VH) are equivalent. 
(b) Let U be a complex linear representation of G on a (finite-dimensional) complex 
vector space E, and identify each automorphism U(s)  with its matrix relative to a fixed 
basis of E. In order that U should satisfy the condition of Problem 7(b) (resp. 8(b)), it is 
necessary and sufficient that there should exist an invertible complex matrix P such that 
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U ( s )  = PV((3P - ' for all s E G, and such that PP = PP = I (resp. - I). (For any complex 
matrix A = (a i j ) ,  A denotes the complex conjugate matrix In particular, the represen- 
tation U is equivalent to the complex conjugate representation SH u((3 (denoted by 0). 
(c) Conversely, let U be an irreducible complex linear representation of G on E that is 
equivalent to its complex conjugate. Then U satisfies one and only one of the conditions of 
Problems 7(b) and 8(b); in other words, one of the representations U'"', U'"' is defined, but 
not the other. (Use (b) and Schur's lemma (A.22.4)) Moreover, whichever of the represen- 
tations U'"), U(") is defined is irreducible. 

10. (a) Let U be a complex linear representation of G on a finite-dimensional vector space E. 
For each s E G, U ( s )  is also an automorphism of the real vector space El,obtained from E 
by restriction of scalars; let UI, denote the real linear representation so defined. Show that 
the complex linear representation S H  Ul,(s) @ I, is equivalent to the direct sum of the 
representation U and its conjugate 0. (Observe that if ( e j )  is a basis of E over C, the 
vectors ej = f(ej @ 1 + (iej) @ i )  and ey = i(ej @ 1 - (ie,) @J i) form a basis of El, @ Cover 

(b) Deduce from (a) that if U is irreducible and not equivalent to its conjugate 0, then 
Uln is irreducible. 
(c) Suppose that U satisfies the condition of Problem B(b), so that the quaternionic linear 
representation UcH' is defined. Show that if U is irreducible, then so also is UI,. (Use (a) 
and observe that if  V is an irreducible real linear representation, then W = V @ 1, is 
irreducible, and W"' is not defined.) 
(d) If  V, ,  V2 are inequivalent irreducible real linear representations of G, show that there 
exists no irreducible complex linear representation that is equivalent to a subrepresenta- 
tion of S H  V , ( s )  @ 1, and also to a subrepresentation of SH V2(s)  1,. (Use Schur's 
lemma (A.22.4)) 
(e) Deduce from above that the finite-dimensional irreducible real linear representations 
of G are all obtained (up to equivalence) from the finite-dimensional irreducible complex 
linear representations U of G, by taking U"' whenever this is defined, and otherwise 
taking UI,. Furthermore, if the irreducible complex representations considered are pair- 
wise inequivalent, then the same is true of the irreducible real representations obtained 
from them. 
( f )  State and prove the analogous results for irreducible quaternionic linear 
representations. 

Let U ,  V be two finite-dimensional continuous complex linear representations of G, and 
let W ( s )  = U ( s )  @ V ( s )  (A.10.5). If the representations U'" and V m  (resp. U" and VcW) 
are defined, then W") is defined; and if LI'"' and V") are defined, then Cy"') is defined. State 

and prove the analogous results for the representations S H  A U ( s )  (A.13.4), and the 
representations sw SPU(s) defined by symmetric powers (A.17). If U'" (resp. U'") is 
defined, then we have '(U'"))-'  = ('U-')(") (resp. '(U'"')-' = ('U-')'"'). 

Let G and H be two topological groups and let (s, r)w U((s ,  t)) be a continuous linear 
representation of G x H on a finite-dimensional complex vector space E. Suppose that U 
is irreducible and that the representations S H  U((s ,  e')) and tw U((e ,  t)) of G and H, 
respectively, on E are completely reducible (e, e' being the identity elements of G, H, 
respectively). Show that there exists an irreducible representation V of G and an irreduc- 
ible representation W of H such that U is equivalent to the representation 

c.1 

11. 

P 

12. 

(s, r)H V ( s )  @ W(r).  

(Use Schur's lemma.) 
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13. Let G be a separable, metrizable, locally compact group and let A be its mod$is (14.3). If 
p is a left Haar measure on G and if lor each functionfs -VL(G) we putf* =f. A - ’ ,  show 
that the transform of the measuref. /I under the involution of ML(G) is f* . j. 
Extend the results of Section 21 .I to nonunimodular locally compact groups. 

2. T H E  HILBERT ALGEBRA OF A COMPACT G R O U P  

(21.2.1) In this section, G denotes a (metrizable) compact group and /3 the 
Haar measure on G with total mass 1 (we recall that compact groups are 
unimodular (14.3.3)). Iff, g E Y f ( G ) ,  the functionfs g is continuous on G 
and satisfies 

by virtue of (14.10.7). It follows that 

(21.2.1.2) 

so that Li(G) is a separable Banach algebra w%h respect to convolution and 
its Hilbert space structure. Also we have N2(f) = N,(f) since G is unimo- 
dular, and therefore LS(G) is a Banach algebra with involution. In fact, it is a 
Hilbert algebra (15.7.5), relative to the scalar product in Li(G). For the 
condition (1 5.7.5.1) follows immediately from the definition of the involu- 
tion and of the scalar product, having regard to (14.3.4); and (15.7.5.3) 
follows from (21.2.1.2). The condition (1 5.7.5.4) is a consequence of regulari- 
zation (14.1 1.1). Finally, condition (1 5.7.5.2) takes the form 

for allf, g, h E L$(G); when g is continuous, this formula is a special case of 
(14.9.4.1), and for arbitrary g the result follows by continuity, because of 
(1 3.1 1.6) and (21.2.1.2). 

(21.2.2) A function h E Yf(G) is said to be central if its class in LS(G) 
belongs to the center of this algebra. This signifies that for all functions 
f E Yi(G), the functions f * h and h * f are equal almost everywhere; but 
they are continuous functions, and therefore they are equal (since /3 has 
support G (14.1.2)). In other words, for all s E G we must have 

f ( t - ’ ) (h(s t )  - h(ts))  @(t) = 0. 
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This is possible only if h(st) = h(ts) for all t in the complement of a negligible 
set (depending on s) (13.14.4); if in addition h is continuous, then this negli- 
gible set is necessarily empty, again because the support of p is the whole of 
G (1 4.1.2). Hence the continuous central functions on G are the continuous 
functions h which satisfy 

(21.2.2.1) h(sts-’) = h(t)  for all s, t E G. 

We remark that the classes of these functions belong also to the center of 
M,(G); this follows immediately from (1 4.8.2) and (1 4.8.4). 

(21.2.3) (Peter-Weyl theorem) Let G be a metrizable compact group. The 
complete Hilbert algebra LE(G) is the Hilbert sum of an at most denumerable 
family (a,),€ offinite-dimensional simple algebras; each a, is  isomorphic to a 
matrix algebra Mn,(C) and is a minimal two-sided ideal in LE(G). The elements 
of a, are classes oj’continuous functions on G; the identity element of a, is the 
class of a continuous function up such that c ,  = up;  and the orthogonal projec- 
tion of Li(G) onto a, (6.3.1) maps the class of a function f to the class of 
f * up = up * $  Consequently, for all f E 2’i(G) we have 

(21.2.3.1) 

the right-hand side being a convergent series in LS(G), regardless of the way in 
which the elements of R are arranged as a sequence. 

Since L;(G) is complete, it is the Hilbert sum of an at most denumerable 
family (a,),. of distinct two-sided ideals that are topologically simple Hil- 
bert algebras and annihilate each other in pairs (1 5.8.1 3). Everything there- 
fore reduces to proving that each a, is finite-dimensional. For each a, will 
then be the Hilbert sum of a finite number of minimal left ideals, each of 
which is generated by an irreducible self-adjoint idempotent, and the sum of 
these idempotents will be the identity element of the algebra a,. If u is a 
function whose class is this identity element, every element of a, will be the 
class of a function of the formf * u, hence continuous (21.2.1). The remaining 
assertions of the theorem then follow from (1 5.8.1 1). 

In view of (15.8.15), it will be enough to prove the following assertion: 

(21.2.3.2) Each closed two-sided ideal b # (0) in LE(G) contains a nonzero 
element of the center of LE(G). 
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We shall use the following remark: 

(21.2.3.3) 
are equivalent: 

For a closed vector subspace b of Lf(G), the following conditions 

(a) b is a left ideal in Lf(G); 
(b) b is stable under the regular representarion of Li(G) on Lf(G) 

(c) for each function f whose class is in 6, and each s E G, the class of 
(21.1.9); 

E ,  * f = y(s)f lies in 6. 

The equivalence of (b) and (c) is a particular case of (21 .1.7), applied to 
the regular representation. It is clear that (b) implies (a); on the other hand, 
Y f ( G )  is dense in Yh(G)  (1 3.11.6) and the mappingfwf * g of 9h.G) into 
Yf (G)  is continuous for all g E p4pC(G) (14.10.6), whence (a) implies (b). 

There is of course an analogous statement for right ideals in LS(G). 

We now come to the proof of (21.2.3.2). We shall first show that b 
contains the class of a continuous functionS, not identically zero. For if g is a 
nonnegligible function whose class belongs to 6, then the class of g * d also 
belongs to 6; but g * d is continuous (21.2.1) and ( g  * d)(e)  = (N,(g))* > 0 
(14.10.4). We may therefore takef= g * i. Next consider the function 

(21.2.3.4) h ( t )  = f ( s t s -  ') dfi(s). I 
Since the function (x, y, z ) w f ( x y z )  is uniformly continuous on G x G x G 
(3.16.5), it follows immediately that h is continuous on G, and since h(e) = 
f ( e )  $. 0, h is not identically zero. For all x E G we have 

(21.2.3.5) f ( ( s x ) t ( s x ) - ' )  @(s )  

= h(t) 

because f i  is right-invariant. It remains to show that the class of h belongs to 
6. Now Lf(G) is the Hilbert sum of b and its orthogonal supplement b*, 
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which is also a two-sided ideal (15.8.2); hence it is enough to show that 
( K l i i , )  = 0 for all ii, E b*. We have 

(Ll ii,) = W ( f )  d S ( t )  f ( s t s -  1 )  @(s) s s  
= s d S ( 4  j W(t)f(sts- 4%) 

= s d S ( s )  W ( s -  ' t s ) f ( t )  @ ( t )  

by the Lebesgue-Fubini theorem and the left- and right-invariance of /?. 
Since 3 E bl, the class of E, * w * E , - ~  also belongs to 6' by virtue of 

(21.2.3.3), hence by definition we have ~ ( s - ' t s ) f ( t )  dp( t )  = 0, and the 

proof is complete. 

(21.2.4) By virtue of (21.2.3) it is convenient to identify each element of an 
ideal a,, with the unique continuous function in the class, and this we shall do 
from now on.? For each p E R, choose once and for all a decomposition of a,, 
as the Hilbert sum of np minimal left ideals I j  = ap * mi (also denoted by I?'), 
pairwise isomorphic and orthogonal, where each mi (1 5 j 5 np) is a mini- 

ma1 self-adjoint idempotent, so that up = 1 m j .  Also let (aj)lsjsnp be a 

Hilbert basis of I, ,  such that aj E mj * ap * m , .  Then from (15.8.14) we know 
that all the numbers (mj  I mi) are equal to the same number y > 0, and that 

nP 

j =  1 

a] * ;ij = y m j ,  ;ij * aj = ym,.  

Now put, for each pair of indices j ,  k ,  

m .  = y - 1  
ik * ak 

(so that mjj  = m j ) ;  then we have 

where S,, is the Kronecker delta. We shall also write m$' in place of mil .  

t More generally, from now on we shall identvy each continuous function f on a locally 
compact group G ,  belonging to one or other of the spaces YL(G, j?), Uf.(G, j?), UZ(G, j?)  
(where is a left or right Haar measure on G),  with its class in the corresponding space 
LL(G, j?), Lf.(G, j?), L,"(G, 8). This can cause no confusion because f is the only continuous 
function in its class, since the support of /3 is the whole of G. 
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(21.2.5) With the notation of(21.2.4): 

(a) For each index j ,  the mi, (1 5 i 5 n,)form an orthogonal basis ofl,. 

(c) (mi, 1 mij) = n,, rni,(e) = n,Gijfor all pairs (i, j )  (so that y = n; '). The 
functions n; ' I 'm$) (1 6 i, j 2 n p ,  p E R) thereforeform a Hilbert basis (6.5) of 
the Hilbert space Li(G). 

(d) Let M,,(s) = (n; 'mij(s))for all s E G ;  then the matrices M,(s) satisfy 
the relations 

(b) mji = k,, mi, * mhk = bjhmik. 

(21.2.5.1) Mp(s t )  = M,(s)M,( t ) ,  M,(s-  ') = (A!&))*, 

so that SH Mp(s) is  a continuous unitary representation of G on C"p,  relative to 

the Hermitian scalar product tji i j. 
"P 

j =  1 

The assertions in (a) and (b) are immediate consequences of the 
definitions in (21.2.4), since the aj E 1, and the mj are pairwise orthogonal. 
Since a, is a Hilbert algebra, we have 

(mi,Imij) = ?-'(ai * i l iai  * ij) = y-'(ii * a i I i j  * aj) = (mllml) .  

To calculate this number we remark that for each index k the function 
t H m&t) belongs to i k  for each s E G (21 -2.3.3) and can therefore be written 
in the form 

On the other hand, 

mjdt )  = (mj1 * I d t )  = M,l ( t x )mk l (x )  db(x), b 
hence in particular mjk(e) = (mjl 1 mk,), and by putting t = e in (21.2.5.2) we 
obtain, using the orthogonality properties of the mi,, 

(21.2.5.3) mik(s)  = (ml Iml )c i k ( s )*  

Next, putting s = t-' and i = k = 1 in (21.2.5.2), we 
(1 4.1 0.4) 

obtain by use of 
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and therefore, using (21.2.5.3) 

nP 

j =  1 
C 1111 j(s)m1 j(s) = (mi 1 ~ 1 ) ~ .  

Integrating over G, we finally obtain 

(m1 I m J 2  = np(ml Im1) 

which proves (c); and then the relations (21.2.5.1) follow immediately from 
(b) and (21.2.5.2) and (21.2.5.3). 

(21.2.6) The center of the Hilbert algebra Lf(G) is the Hilbert sum of the 
1-dimensional subspaces Cup (p E R). In particular, ifG is commutative, all the 
ideals ap are of dimension np = 1. 

That the up belong to the center of Li(G) follows from the facts that up  is 
the identity element of ap and that ap * a,,, = (0) whenever p # p'. Con- 
versely, if the classfof a function f belongs to the center of L$(G), then so 
also does the class off * up E a,, , hence f * up = cp up for some scalar cp E C; 
now apply the formula (21.2.3.1). 

(21.2.7) The classes of the complex constant functions form a two-sided 
ideal of dimension 1 in Li(G) (14.6.3), which is therefore of the form apo. It is 
called the trivial ideal. The corresponding linear representation M ,  of 
dimension 1 is such that M,(s) = 1 for all s E G, that is to say, it is the trivial 
linear representation (21.1.1). For each p # po in R, we have 

(21.2.7.1) 

since the subspaces a,, and a, are orthogonal. 

(21.2.8) (i) I f f  and g are continuous complex-valued functions on G, then 

the series on the right being summable for the topology of uniform convergence. 
np) form a total system in the 

space of continuous functions on G, for the topology of ungorrn convergence. 
(ii) The functions m$) (p E R, 1 5 i , j  
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(i) Identifying continuous functions with their classes in LS(G), we may 
write 

(PI (PI 
= 1 - (9 I mij )mij 

PER. l s i . j s n p  np 

the series on the right being summable in LS(G), because the functions 
n;"*m$) form a Hilbert basis of this space. Now form the convolution 
product of both sides with f; since i i ~ f *  u is a continuous mapping of 
LS(G) into WJG) (21.2.1 .l), we obtain the formula (21.2.8.1). 

(ii) It follows from regularization (14.11.1) that for each continuous 
function g on G there exists a continuous function f on G such that 
) I f  * g - g(1 is arbitrarily small. Now, for each p E R, the functionsf * mi?' 
belong to ap, and therefore are linear combinations of the mi:) 
(1 5 h, k 5 n,) with complex coefficients. This completes the proof. 

PROBLEMS 

1. Let E be a finite-dimensional complex vector space, E* its dual, G a topological group, and 
U a continuous linear representation ofG on E. For each pair ofvectors x E E, X* E E*, the 
function SH ( U ( s )  . x. x*) is continuous on G; it is called the coeficient of U relatioe to 
(x. x*) and is denoted by cu(x, x*). For all t E G we have 

y(t)cu(x. x*) = cu(x. 'U(t)- '  . x*), 

If  we identify U ( s )  with its matrix (u jk (s ) )  relative to a fixed basis of E, then the functions 
cu(x. x*) are linear combinations of the u,~. We have 

G(r)c,(x, x*) = cU(U(r) . x, x*). 

C,".,(X*. x) = f,(x, x*). cc(x, x') = cdx, x*)* 

(a) Let + . ( U )  (or V ' J U ) )  denote the vector subspace ofW,(G)spanned by the coefficients 
of the continuous linear representation U of G. If U , ,  U, are equivalent, then V ( U , )  = 
V - ( U , ) ;  also V - ( ' U - ' )  = ?'(U) and V(u) = m. If U,, U,arefinite-dimensional contin- 
uous linear representations of G, then V ( U ,  @ U,) = V ( U , )  + V ( U , )  and 
V ( U ,  @ U , )  = Y ~ ( U , ) V ( U , ) ,  the vector subspaceofWc(G)spanned by theproductsc ,~, ,  
where c ,  E Y ' ( U , )  and c, E Y ( U , ) .  The vector subspace V ( U )  has finite dimension 
- 2 (dim U)' and is stable under left and right translationsfHy(s)f.f~6(s)/for all s E G. 
Conversely, if E is a vector subspace of WJG) that is stable under left translationsJHy(s)j 
and is finite-dimensional, and if we denote by U ( s )  the endomorphismfi-+y(s)fof E, then U 
is a continuous linear representation of G on E, and E c V ( U ) .  A functionfe WJG) is 
called a representatiue function on G if the vector subspace of WAG) spanned by the 
left-translates y(s)fofJ for all s E G, is finite-dimensional. The representative functions on 
G form a subalgebra 1 ( G )  (or O,(G)) of WAG), which is the same as the subalgebra 
generated by the coefficients of all the finite-dimensional continuous linear representations 
of G. 
(b) Let U be a continuous linear representation of G, of dimension n c 03, and let U' be 
the continuous linear representation of G on V ( U )  defined by U'(s)  .f= y(s ) j :  Show that 
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U is equivalent to a subrepresentation of U ’ .  If U is irreducible, U ’  is the direct sum of n 
representations equivalent to U. Give an example of a reducible representation where this is 
not the case (cf. (21.1.3)). Deduce that if U is irreducible and if U ,  is a finite-dimensional 
continuous linear representation such that * ‘ ( U , )  c W . ( U ) ,  then U ,  is thedirect sum of m 
representations equivalent to U ,  where m n. 
(c) Extend the above definitions and results to finite-dimensional continuous real linear 
representations (Section 21.1, Problem 7); in place of f c ( U )  and Bc(G) we have Y , ( U )  
and B,(G). 

2. Let G be a metrizable compact group. 
(a) Show that the algebra l C ( G )  of complex representative functions is the direct sum of 
the two-sided ideals a ( E R), and that the algebra H,(G) consists of the real and imagi- 

p .  
nary parts of the functions belonging to a,-(G). 
(b) Let M be a subset of B,(G). The set H of elements t E G such that G(t)/=/for all 

/E M is a closed subgroup of G .  Show that the set of functions g E O,(G) such that 
y ( t ) g  = g for all r E H is the left ideal b of 9,(G) generated by M. The functions belonging 
to b may be canonically identified with continuous functions on G/H, and b may be 
identified with the intersection of BAG) with %‘,(G/H) (considered as a subalgebra of 
U,(G)); also b is dense in V,(G/H). (Use the Stone-Weierstrass theorem.) 
(c) Let K be a closed subgroup of G .  Show that every function in Bc(K) is the restriction 
to K of a function belonging to A?,(G). (Consider the set of functions in d,(K)  that are 
restrictions to K of functions belonging to aC(G)  and use (a) above, with G replaced by K.) 
I f  b is the left ideal in B,(G) that is the intersection of B,(G) with V,(G/K), show that K is 
equal to the subgroup H ofelements f E G such that y(t)/=ffor all /€ 6. (Observe that a 
function belonging to b that is constant on K is constant on H.) 

3. Let G be an infinite compact group. With the notation of (21.2.3), if p, 4 are two functions 
defined on R, with values > 0, we write p = 4 4 )  to mean that for each E > 0 there exists a 
finite subset J of R such that p(p)  ~ 4 @ )  for all p E R - J. 
(a) Show that for each function/€ Y:(G), theoperator R ( / )  is a Hilbert-Schmidt opera- 
tor on L:(G), and that the mapping JH R ( / )  is an isometry of the Hilbert algebra L;(G) 
onto a closed subalgebra of the Hilbert algebra Y,(L:(G)) (15.4.8). In particular, for all 
f, g E Yf(G),  the operator R ( j ) R ( g )  is nuclear (Section 15.11. Problem 7), and we have 

T r ( R ( / ) R b ) )  = 2 T r ( R ( f  g up)) = (f I 9). 
P E R  

(b) We have llR(/ * uP)11, = N,(/ * up) = o(l)  and N,,(f * up) = o(np) for all/€ Y;(G).  
(Use (a) above and the relation .f * up =/ up * up .) 
(c) Give an example of a continuous function on G such that R ( / )  is not nuclear. (Take 

(d) Show that IIR(m$))II = 1 and IIR(mllP))II, = np. (Observe that the eigenvalues of 
R(mip’) * R(mt’) are known.) 
(e) Let f e  Y;(G). Show that R ( f )  is a compact operator on LgG)  and that 
l l R ( f *  up)jJ = o(1). (Use the fact that L:(G) isdense in Lh(G), the inequality (21.1.4.3),and 
(a) above.) Deduce that llR(/* uP)1l2 = N2(f*  up) = o(np) and that N,(fz up) = o(n:). 

G = T.) 

4. Let M be a compact differential manifold and G a compact group acting continuously on 
M such that, for each s E G, the mapping X H S  x is a diffeomorphism of M. 
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(a) Show that for each real-valued function f belonging to the Banach space B")(M) of 
C1-functions on M (17.1), there exists a function u E 93R(G) (Problem 2) such that, ifwe put 

JG 

(where is a Haar measure on G),fu is of class C' and the norm 11 f - fu )I is arbitrarily small 
in C#~)(M). (Use regularization, together with Problem 2.) I f f  is of class C', where r is a 
positive integer or + co, then so also is!". The set of functions xHf, (r  . x) as r runs through 
G is then a finite-dimensional vector space. 
(b) Show that there exists an embedding F: M --+ RN and a continuous homomorphism p 
of G into the orthogonal group O(n, R) such that F(s . x) = p(s ) .  F(x) for all s E G and all 
x E M. (Start with an embedding XH (f,(x), ...,fm( x)) of M in R" (16.25.1). Show first that 
there exists u E O,(G) such that, if g i  = (A). (in the notation of (a) above), the mapping 
X H  (g,(x), . . . , g,(x)) is an immersion, not necessarily injective. There exists then a finite 
open covering ( U J  of M such that the restriction of this immersion to each U o  is an 
embedding. Next show that there exists u E OR@) such that, if hi = (A)",  the relations 
h,(x) = h i ( y )  for 1 5 i 5 n imply that x and y belong to the same U,. Finally consider the 
finite-dimensional vector space spanned by all the functions XH gi(t . x) and XH hi([ . x )  as 
t runs through G.) 

5. Let M be a compact differential manifold and G a compact Lie group acting differentiably 
on M; let x be a point of M and S, the stabilizer of x in G. 
(a) Show that there exists a submanifold W of M, contained in a neighborhood of x and 
containing x, which is stable under S, and which is such that T,(W) is a supplement in 
T,(M) to the tangent space T,(G . x) to the orbit of x. (Use Problem 4 above, or Problem 6 
of Section 19.1 .) 
(b) Let V be a submanifold of G ,  passing through e and such that the tangent space to V at 
e is supplementary in 9, = T,(G) to the Lie algebra T,(S,) of S,. Show that there exists a 
relatively compact open neighborhood U of e in V and a relatively compact open neighbor- 
hood K of x in W such that the mapping (s, y ) w s  . y of U x K into M is a diffeomorphism 
onto a neighborhood of x in M, and such that K is stable under S,. Deduce that 
s . K n K = 9 for all s E US, not belonging to S,. 
(c) Deduce from (b) that there exists a relatively compact open neighborhood K' c K of x 
in W having the following properties: (i) K'is stable under S,; (ii) the mapping (s, y ) w  s . y 
of U x K' into M is a diffeomorphism onto a neighborhood of x in M; (iii) s . K n K' = 9 
for s 6 S,. (Use Problem 4.) Such a set K' is called a slice of M at the point x (for the action 
of G on M). Show that for all z E K' we have S, c S,. 

6. If M is a pure differential manifold and G is a Lie group acting differentiably on M, let 
L(G, M) denote the set of conjugacy classes in G of the stabilizers of the points of M (two 
stabilizers being in the same class if they stabilize two points of the same orbit). We shall 
show that, if G and M are compact, the set L(G, M) isfinite. The proof will be by induction 
on dim(M) = n. 

(a) Show that if the result is true for every differential manifold M of dimension n - I ,  
then L(G, R") is finite for all compact subgroups G of O(n) (apply the hypothesis to S,- 
(b) There exists a finite number of slices K, (1 5 i 5 r) of M (Problem 5 )  relative to points 
x, of M, such that M is the union of the sets G . K,. Deduce from (a) that each of the sets 
L(S,, , K,) is finite, and show that L(G, G . K i )  is finite by using Problem 5(c). 
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7. Let G be a compact Lie group. Show that there are only finitely many conjugacy classes of 
normalizers ofconnected Lie groups immersed in G .  (Consider the projective space P(A($)) 
corresponding to the exterior algebra on the vector space g,, and the action of G on this 
compact manifold induced by the adjoint representation of G on gc, and apply the result of 
Problem 6.) 

8. Let G be a compact group and B the Haar measure on G for which the total mass is 1. In 
order that a sequence (x,) of points of G should be equirepartitioned relative to the measure 

(Section 13.4. Problem 7) it is necessary and sufficient that, for each p # po in R, we 
should have 

I N  
Iim ~ M p ( x , )  = 0. 

(Use (21.2.8) and (21.7.1).) In particular, for a point s E G to be such that the sequence 
( s " ) ~ ~ ~  is equirepartitioned relative to 8, it is necessary and sufficient that 1 is an eigenvalue 
of none of the matrices M,(s )  for p # po . (This condition implies that G is commutative.) 

N - r n  N k = l  

3. CHARACTERS O F  A COMPACT GROUP 

We retain the hypotheses and notation of (21.2). For each p E R and 
each s E G, let 

(21.3.1) 

The function xp is called the character of the compact group G associated 
with the minimal two-sided ideal ap. 

The character xp, associated with apo (21.2.7) is the constant function 
xpo(s) = 1 for all s E G. It is called the trivial character of G. 

The following properties are immediate consequences of (21.2.3) and 
(21.2.5) : 

(21.3.2) 
words 

Every character xp is a continuous central function on G ;  in other 

(21.3.2.1) ~, , ( s t s - l )  = x , ( t )  for all s, t E G. 

W e  have 
~ 

(21.3.2.2) xp(s- l )  = xp(s) for all s E G ,  

and 

(21.3.2.3) 
1 

nP 
x p  * x p =  - - x  P '  
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The characters form a Hilbert basis of the center of L:(G), indexed by R. 
In other words, 

(21 -3.2.4) 

and i f f  is any central function in Yi(G), then 

(21.3.2.5) 

in L:(G). Furthermore, we have 

(21.3.2.6) s xp(4 d B ( 4  = 0 for all P # Po 

Finally, for each s E G, 

(21.3.2.7) X p N  = Tr(Mp(s)) 

(21.3.2.8) x&) = np * 

(21.3.3.1) 

and in particular 

(21.3.3) I f J  g are continuous complex-valued central functions on G, then 

f * 9 = c (9 I x p K f  * x p )  
P E R  

the series on the right being summable for the topology of uniform convergence. 

This follows directly from (21.2.1.1) and the fact that the xp form a 
Hilbert basis of the center of L:(G) (21.3.2). 

(21.3.4) The functions xp Cp E R) form a total system in the space of contin- 
uous complex-valued central functions on G, for the topology of uniform 
convergence. 

For each continuous central function J f * xp is a scalar multiple of xp. 
Taking account of (21.3.3), it is enough to show that for each continuous 
central function g ,  there exists a continuous central function f such that 
11 f * g - g ( )  is arbitrarily small. We shall first establish the following topolog- 
ical lemma: 

(21.3.4.1) (i) Let G be a metrizable topological group and K a compact 
subset of G. For each open neighborhood U of the identity element e of G, there 
exists a neighborhood V c U o fe ,  such that tVt-' c Ufor all t E K .  
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(ii) In a compact metrizable group G, there exists a fundamental system 
of neighborhoods of e that are invariant under all inner automorphisms. IfT is 
such a neighborhood, there exists a continuous central function h 2 0, with 

support contained in T, and such that 1 h(s)  @(s) = 1. 

(i) Let U, be a neighborhood of e such that U i  c U. For each s E G, 
there exists a neighborhood V ,  of e in G such that .sV,s-' c U,; by continu- 
ity, there is therefore a neighborhood W, of s such that tV, t -  ' c U for all 
t E W,. There exist a finite number of points s j  E K (1 S j 5 m )  such that the 
WSj cover K ;  if we put V = (7 V s j ,  we shall have tVt- '  c U for all t E K .  

(ii) We may apply (i) with K = G. The union T of the tVt- '  as t runs 
through G is then a neighborhood of e contained in U and invariant under 
all inner automorphisms. 

To construct the function h, choose a continuous function f 2  0, with 
support contained in T, and such that f ( e )  > 0; then let 

j 

n 

h(t)  = c f ( s t C  ') d / 3 ( ~ )  L 
where c is a suitably chosen positive constant. The proof that h satisfies the 
required conditions is the same as in (21.2.3). 

The proof that for any given continuous central function g, the number 
Ilk * g - g/1 can be made arbitrarily small by suitable choice of a continuous 
central function h, now follows from the lemma (21.3.4.1) and regularization 
(14.1 1 . I ) .  

(21.3.5) (i) For each element s # e in G,  there exists p E R such that 

(ii) The intersection of the kernels N ,  ~ f '  the homomorphisms SH M,(s ) ,  

(i) If not, it would follow from (21.3.4) that f(s)  = f ( e )  for all contin- 

(ii) I t  is enough to remark that s E N, implies that xp(s) = x,(e). 

X p ( 4  # x p ( 4  

as p runs through R, consists of the identity element alone. 

uous central functionsf on G, contradicting (21.3.4.1). 

(21.3.6) For all characters x o j G  we have 

for all s, t E G. 
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From the definition of xp,  we have 

1 
xc(usu- ' t )  = - C mii(usu- I t )  

n p  i 

by virtue of (21.2.5.1), and therefore 

s 1 
xp(usu- ' t )  d f l (u)  = 2 , mjh(s)mki(f) mij(')mhk(u- d f l ( u )  

P i . j , h . k  

1 - -  - I 6 j h  6 i k m j h ( s ) m k i ( t )  
n: i .  j ,  h .  k 

making use of (21.2.5). 

(21.3.7) The mapping that sends the class of a function,fE 6aS(G) to the 
class of its complex conjugatefis clearly a semilinear bijection of the algebra 
L$(G) onto itself, which is an automorphism of its ring structure. This auto- 
morphism therefore transforms each minimal two-sided ideal a,, into 
another minimal two-sided ideal, which we denote by ap .  If in general X 
denotes the matrix whose entries ~ are the complex conjugates of those of a 
matrix X, then we have M p ( s )  = M&) for all s E G, and for the correspond- 
ing characters we have 

(21.3.7.1) xi$=%. 

The relation ap = ap is therefore equivalent to the character x,, taking only 
real values on G. 

Particular Cases: I .  Commutative Compact Groups 

(21.3.8) Let f~ Lt$(G) be nonnegligible and such that, for all s E G, 
f(st) =f(s)f(t) for almost all t E G. This means that in L:(G) the subspace 
C . f is  stable under all the mappings @H ( E ,  * 9 ) - ,  and hence is a minimal 
closed left ideal of dimension 1 (21.2.3.3). This is possible only if this ideal is 
one of the a,, such that np = 1, and thenfis equal almost everywhere to the 
corresponding character xp . These characters are called the abelian charac- 
ters of G .  We have just seen that they are the only continuous homomor- 
phisms of G into C*; the image of G under such a homomorphism, being a 
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compact subgroup of C*, is necessarily cotituineri in U (the unit  circle in C*), 
because C* = U x RT , and RT contains no compact subgroup other than 

If  the compact group G is cot~itnutufi~e, ecer)! character of G is abelian, 
because the algebras ap are commutative. The classes of the characters of G 
then form a Hilbert basis of LE(G) (21.2.5), and eaery continuous function on 
G is the uniform limit of a sequence of linear combinations of characters 
(21.3.4). 

(21.3.9) Every character of'the yroup U" is qf the form 

(21.3.9.1) 

where k , ,  . . . , k ,  are ititeyers (positiue, neyatioe, or zero). The only character of 
U" that takes only r e d  oulues is the triiiiul character ( k ,  = .. . = k ,  = 0). 

The group U" is isomorphic to T", hence to R"/Z". If u is a continuous 
homomorphism of R"/Z" into T = R/Z, and if cp: R " +  R"/Z" and 
$: R + R/Z are the canonical homomorphisms, then it 3 cp is a continuous 
homomorphism of R" into R/Z, and therefore (16.30.3) factorizes as I) 0 D, 

where c is a continuous homomorphism of R" into R.  By restricting L' to each 
of the subgroups R e j  of R" (where (ej) is the canonical basis of R") and using 
(4.1.3), it follows that u is a linear mapping of R" into R. Moreover, since 
u(cp(Z")) = {0), we must have u(Z") c Z, and therefore each of the u(ej) must 
be an integer k j .  This completes the proof. 

Observe that if we apply to the group U" the theorems (21.3.2) and 
(21.3.4) we regain, in view of (21.3.9), the facts that the orthogonal system 
(<n) , ,E is total in Li(U)(7.4.3), and that every continuous function on U" is 
a uniform limit of trigonometric polynomials (7.4.2). 

Particular Cases: ! I .  Finite Groups 

(21.3.10) I f  G is a finite group, the algebras M,!.(G), L,!.(G) and Li(G) all 
coincide with the yroup algebra of G over C, which is also denoted by C[G] 
(14.7.4), and all the elements of this algebra may be considered as contin- 
uous functions on G. Let C,, . . . , C, denote the conjuyacy classes of G (with 
C ,  = {ei), that is to say, the equivalence classes for the relation: 

there exists t E G such that s' = t s t - '  

between elements s, s' E G. I t  follows from the definition (21.2.2.1) that each 
central function is constant on each set C j ,  and from (21.3.4) that the central 
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functions are in this case linear combinations of characters. Since the latter 
are linearly independent, we see that the number r of conjugacy classes C ,  is 
equal to the number of characters of G and to  the dimension of the center of 

Let pl, p2, . . . , pr denote the elements of R, and for brevity let xij denote 
the value taken by the character xP, on the class C, . If g is the order of G and 
h, the number of elements in the class C,, the orthogonality relations 
(21.3.2.4) take the form 

WI. 

In other words, the r x r matrix 

1/2 -1 /2  
(21.3.10.2) (hk % k ) l S i , k S r  

is unitary. We obtain other orthogonality relations by expressing that the 
transpose of (21.3.10.2) is unitary: 

r 

(21.3.10.3) c XikK = 0 if k 1, 
i =  1 

r 

(21.3.10.4) I Xik12 = g / h k  . 
i =  1 

These formulas can also be written as 

if s, t are not conjugate in G, and 

if s E c k .  

(21.3.10.5) and taking account of (21.3.2.8) we obtain 
Since e is not conjugate to any other element of G, by putting t = e in 

(21.3.10.7) c npXp(s) = 0 if s # e. 
P E R  
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Of course, if  we put s = e in (21.3.10.6) we obtain the relation 

(21.3.10.8) 1 n: = 9, 
P E R  

which also follows from the fact that LS(G) is the direct sum of the a,, 

PROBLEMS 

1. Let G be a metrizable compact group. Show that the center of the Banach algebra M,(G) of 
measures on G is the closure of the center of L:(G), in the vague topology. 

2. Show that: 

(a) If the representations M ,  and M,, = M ,  are not equivalent, then 1 xp(s2) db(s )  = 0. 

(b) If the representation M F  is defined (Section 21 .l, Problem 91, then j xp(s2) @(s) = 1. 

(c) If the representation M P  is defined (Section 21.1, Problem 9), then 

1 x, (s2)  d b b )  = - 1. 

(Use the orthogonality relations for characters and __ observe that if M r )  (resp. M y ) )  is 
defined, there exists a unitary matrix U such that M,(s)  = UMp(s)U-' for all s E G, and 
' U  = U (resp. ' U  = - U )  (cf. Section 21 . l ,  Problem 9).) 

3. Let G be a finite group. 
(a) Show that for each character x of G and each s E G, the complex number ~ ( s )  is an 
algebraic 1nteger.t (Consider the eigenvalues of U(s ) ,  where U is an irreducible representa- 
tion of G with character x. and remark that each element of G has finite order.) 
(b) Deduce from (a) that the number of elements of a conjugacy class C, in G divides the 
order g of G .  Give a direct proof of this fact. 
(c) The characteristic functions e, of the subsets C, of G form a basis of the center of C[G] 
for which the coefficients in the multiplication table are rational integers 2 0. Deduce that if 
we put M,(e j )  = Ajln. then the complex numbers lljare algebraic integers (remark that the 
image of the center of C[G]  under M, is a finitely generated Z-module). Show that for each 
conjugacy class C, in G the number n; 1 x,(s) is an algebraic integer, for each p E R. 

(d) Deduce from (a) and (c) that each np divides the order g of G (use (21.3.10.1)). 
S C C ,  

4. Let G be a finite group. For each s E G, let r ( s )  denote the number of elements u E G such 
that uz  = s .  Show that 

t ( S )  = c dP)X,b) 
P f  R 

t See R. Godement, Algebra, Hermann (Paris) 1968, p. 560. 
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where 

(which is equal to 1 ,O or - 1, by Problem 2). 

r 

5. Let G be a finite group. With the notation of (21.3.10). show that each of the numbers xJk 
is a rational integer 2 0. (Decompose into irreducible representations the representation of 
degree g (the order of G) defined on the vector space C[G] = C? by U ( s )  . e, = el,,. ,.) 

k =  1 

6. Let G be a finite group. 
(a) For each p E R and each s E G, we have l x , ( s )  I S np (cf. (22.1.3.5)); we have 
xp(s) = np if and only if s lies in the kernel N, of M,;  and I x, (s )  1 = np if and only if the coset 
of s in GIN, belongs to the center of this group. (Consider the eigenvalues of M,(s) . )  
(b) Suppose that for some conjugacy class C, in G, the number h, of elements of C, is 
prime to np. Show that for each s E C,, either x,(s) = 0 or Ix,(s)l = np. (Deduce from 
Problem 3(c) that the number x,(s)/n,  is an algebraic integer, and use (a) above.) 
(c) Suppose that C, # {e} and that the number of elements in C, is a prime power. Show 
that there exists p # po in R such that 1 x,(s) I = np for s E C,. (Use (21.3.2.6) and the fact 
that npxp(s) is an algebraic integer.) Deduce that G cannot be a noncommutative simple 
group. 

7. Let G be a finite group of order #q", where p and q are prime numbers. Then G is solvable 
(Burnside's theorem). (Argue by induction on the order of G, by considering a Sylow 
p-subgroup of G, which has a nontrivial center.? Consider the number of elements conju- 
gate in G to an element # e of this center, and use Problem 6(c).) 

4. C O N T l N  UO U S  U N I T A R Y  REPRESENTATIONS O F  
COMPACT GROUPS 

(21.4.1) Let G be a compact group and let V be a continuous unitary re- 
presentation of G on a separable complex Hilbert space E. Then (with the 
notation of(21.2)): 

(i) For each p E R, the operator V(u,) (21.1.4.2) is an orthogonal projec- 
tion of E onto a closed subspace E, of E, and E is the Hilbert sum of the E,. 

(ii) Each subspace E, is stable under V ,  and the restriction of V to E, is 
the Hilbert sum of a (finite or infinite) sequence of irreducible representations 
of G, each equioalent to M ,  ((21.2.5) and (21.3.7)). 

(i) Since up * up = up and ip = up (21.2.3), V(u,) is a continuous opera- 
tor on E which is idempotent and Hermitian (21.1.6), hence (15.5.3.1) is an 

t See J.-P. Serre, Representations lineaires des groupes finis, Paris (Hermann), 1967 
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orthogonal projection. Further, since up * up, = 0 if p' # p, we have 
V(u,)  0 V(u,,)  = 0, and therefore the images E, of the projections V(u,) are 
pairwise orthogonal closed subspaces. To show that E is the Hilbert sum of 
the E,, it is enough to show that the sum of the subspaces E, is dense in E. 
Now, we know that as f runs through Lfh(G) and x runs through E, the 
vectors V(f) . x span a dense subspace of E (21.1.7). Since the continuous 
functions are dense in L?h(G), and since 1) V(f)JI  N , ( f )  (21.1.4.3), it fol- 
lows that the V(f) . x already span a dense subspace of E as x runs through 
E andfruns through the space %,-(G) of continuous functions on G. But iff 
is continuous, then for each E > 0 there exists a finite linear combination 

i .  i. P 

c ciP'm!jP) such that I l f -  c clp'rnip'll 2 E (21.2.8), and afortiori 
i ,  j. P Ij V( j -1 -  1 clP)V(m:p)) 5 N, f -  1 ciy'mip) 5 E .  

Since mi?) = up * mi?), we have V(mi5)) = V(u,,)V(mir)), and therefore the 
vector c$)V(m)p)) x belongs to the sum of the E,. This shows that the 

sum of the E, is dense in E. 
(ii) That each E, is stable under V follows from the fact that the up 

belong to the center of the algebra M,(G). If Vp is the restriction of V to E,, 
then Vp(up,) = 0 for p' # p, because up, * up = 0. The restriction of (V,),,, to 
the algebra LS(G) may therefore be considered as a nondegenerate represen- 
tation of the algebra a, on E,; it follows therefore from (15.8.16) that this 
representation is the Hilbert sum, finite or infinite (according as the dimen- 
sion of E, is finite or not), of irreducible representations each equivalent to 
the representation U I , ,  in the notation of (21.2.4). But it follows from the 
definition of U , ,  (15.8.1) and from (21.1.9) that U , ,  is the restriction of Re,, 
to (I,. Now we have 

i .  j ,  P 11 i i .  j .  p 1 
i .  j .  p 

1 

n p  j = 1  
(es  * m i l ) ( t )  = mil(s - ' t )  = - 1 mij(s-')mjl(r) 

by (21.2.5); this shows that relative to the basis of I ,  formed by the np 'mil  
(1 s i 5 n,,), the matrix of R(s)  is ' M , ( s - ' )  = M,(s )  = M,(s )  by (21.2.5). 

(21.4.1 . l )  If G is a commutatioe compact group, every continuous unitary 
representation of G is therefore a Hilbert sum of one-dimensional representa- 
tions (21.3.8). 

(21.4.2) With the same notation, if E, # {0}, the irreducible representation 
M ,  is said to be contained in the representation V ;  if E, is of finite dimension 
d , n ,  > 0 (resp. of infinite dimension), then M ,  is said to be contained d,  
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times (resp. infinitely many times) in V ,  and d ,  is called the multiplicity of M, 
in V.  The M, such that d ,  > 0 are also called the irreducible components of 
the representation V.  

I t  follows from (21.4.1) that every irreducible continuous unitary re- 
presentation of G is equivalent to one of the representations M, ,  and that M, 
is contained n, times in the regular representation (21 -1.9) of G. 

(21.4.3) A continuous linear representation U of a compact group G on a 
finite-dimensional complex vector space E (21 .l .l) may always be con- 
sidered as a continuous unitary representation, because there exists a posi- 
tive definite Hermitian form on E (in other words, a scalar product (6.2)) that 
is invariant under the action (s, X)I+ U ( s )  . x of G on E (20.11.3.3). For 
compact groups there is therefore no loss of generality, where finite- 
dimensional continuous linear representations are concerned, in restricting 
consideration to unitary representations. If, for such a representation U ,  we 
identify U ( s )  with its matrix relative to a fixed basis of E that is orthonormal 
with respect to the scalar product referred to above, we have (21.1.2.1) 

- 
(21 -4.3.1) U ( s )  = ' U ( s ) -  = 'U(s -  1 ) .  

(21.4.4) Let V be a continuous unitary representation of a compact group G 
on a vector space E offinite dimension d ,  and suppose that for each p E R the 
irreducible representation M ,  is contained d ,  times in V ,  so that d = 1 d ,  n, . 

Then, for all s E G, we have 
P E R  

(21.4.4.1) Tr(V(s)) = c d,X,(S). 
P E R  

This follows from (21.3.2.7) and the fact that Tr(PUP- ') = Tr( V )  for any 
square matrix U and invertible matrix P of the same size. 

(21.4.5) Two finite-dimensional continuous unitary representations V,, V, of 
a compact group G are equivalent if and only ifTr(V,(s)) = Tr(V,(s)) for all 
s E G. 

This follows immediately from the formula (21.4.4.1) and the linear 
independence of characters (21.3.2). 

(21.4.6) Let V', v" be continuous linear representations of a topological 
group G on spaces E', E" offinite dimensions d ,  d ,  respectively. Then it is 
clear that the mapping 

(21.4.6.1) v' @ v": SI+ V'(s)  @ V ( S )  
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is a continuous linear representation of G on the vector space E'@ E" of 
dimension d'cl". This representation is called the tensor product of V' and V, 
and we have ((A.10.5) and (A.ll .3)) 

(21.4.6.2) Tr( V'(s) @ V"(s)) = Tr( V'(s)) Tr( V"(s)). 

In particular, if G is compact we may form the tensor product M,, 0 M,, for 
any two elements p', p" of R, and then by (21.4.4.1) we have 

(21.4.6.3) 

where c;,,,, is the number of times the representation M ,  is contained in 
M,,  @ M,,, , and is therefore a nonnegative integer. Since the 1, are linearly 
independent over C and a fortiori over Z, we see that the subring of V,(G) 
generated by the characters of G is a Z-algebra; its identity element is the 
trivial character, the characters x, form a basis over Z, and the multiplication 
table is given by (21.4.6.3). 

(21.4.6.4) For each p E R, the triuial representation (21.2.7) is contained in 
M, @ M ,  = M, @ A,; for if it  were not so, then by (21 3.2.6) and (21.4.6.3) 
we should have 

which is absurd. 

(21.4.7) Since any irreducible representation V of G is equivalent to a 
representation M, for a unique index p, we shall say (by abuse of language) 
that p is the class of the representation V, and we write p = cl( V). The class 
po of the trivial representation is called the trivial class. The class p is called 
the conjugate of the class p. 

If V is a finite-dimensional continuous unitary representation of G, and if 
for each p E R the representation M, is contained d,  times in V ,  then the 
element d,  . p of the Z-module Z'R' of formal linear combinations of 

P E R  
elements of R with integer coefficients is called the class of the representation 
V ,  and is written cl( V). The relation cl( Vl) = cl(V2) therefore signifies that 
the representations V, and V, are equivalent, which justifies this terminology. 
We say also that the class p is contained d, times in cl( V), or that d ,  is the 
multiplicity of p in cl( V). 

Conversely, every element 1 d ,  . p of Z'" in which the coefficients d ,  
P E R  
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are positive or zero is the class of a linear representation of G, namely the 
Hilbert sum of a family of m = 1 d ,  irreducible representations, contain- 

ing d,  representations equal to M, for each p E R. It is clear that the bijec- 
tion p-zp extends by linearity to an isomorphism of the Z-module Z(R) 
onto the subring of WJG) generated by the characters of G. Transporting 
the ring structure back to Z(R) by means of the inverse of this isomorphism, 
we define on Z(R) a structure of a commutatiue ring, for which po is the identity 
element and the multiplication is given by 

P E R  

(21.4.7.1 ) pfp" = 1 c;p,, . p. 
P 

For this ring structure we have 

(21.4.7.2) c1(V1 0 V,) = Cl(V]) * c1(V2) 

for any two finite-dimensional continuous linear representations V,, V, of G. 

By abuse of language, the ring Z(R' just defined is called the ring ofclasses 
ojcontinuous linear representations of G .  (The abuse of language lies in the 
fact that a linear combination of the elements of R with integer coefficients is 
the class of a representation only if all the coefficients are 2 0.) Also we shall 
sometimes write R(G) in place of R. 

For example, if G = U" (isomorphic to T"), it follows from (21.3.9) that 
the ring of classes of linear representations of G is isomorphic to the subring 
Z[X,, . . . ,X,, X; ', . . . , X i  '1 of the field of rational functions Q(X, ,  . . . , X,) in 
n indeterminates over the field Q of rational numbers. 

(21.4.8) With the notation of (21.2.4), the formula (21.2.3.1) may be writ- 
ten as 

Now we have, by definition, 

(f* rn($)(s) = f ( t ) rn$) ( t - ' s )  dp(t) ,  s 
and therefore 
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Also we have M,(t- 's) = M J t -  ' ) M , ( s ) ,  and 

1 f(t)M,(t- 7 W )  = M,( . f )  

by virtue of (21.1.4.2) and the fact that G, being compact, is unimodular. 
Hence, for allfE Y:(G), we obtain the formula 

where the series on the right converges in Yg(G), no matter how the ele- 
ments of R are arranged in a sequence. The function P H  Mp(f), defined on 
R and taking its values in the space of all complex square matrices, is 
sometimes called the I' Fourier transform " ofS, and the formula (21.4.8.1) is 
the " Fourier inversion formula for compact groups" (cf. Chapter XXII). 

PROBLEMS 

1. Let G, H be two compact groups. Show that the ring Z'R'Gx H)) of classes of continuous 
linear representations of G x H is isomorphic to the tensor product Z'R'C')@ Z'R'H" (cf. 
Section 21 . l ,  Problem 12). 

2. Let P,(o,, u 2 ,  . .., om) be the polynomial with rational integer coefficients that expresses 
the sum X: + . . .  + X:, of the kth powers of tti indeterminates in terms of the elementary 
symmetric functions oh = c X j , X j 2  . . .  X, of these indeterminates (the summation is over 

(10 
all strictly increasing sequences j ,  < j ,  < ... < j h  of h m indices). Let U be a finite- 
dimensional linear representation of a compact group G and consider the element of 
Z'R'"" given by 

P,(cl(U), u ) ,  ..., d(L U ) )  

(Section 21.1, Problem 11).  Consider also the canonical homomorphism x of Z'''c" 
into %(G), which maps p E R(G) to xp. Show that the image under x of the element (*) 
above is equal to the function s-Tr(U(s*)). 

3. Let G be a locally compact group and let U be a continuous unitary representation of G 
on a separable Hilbert space E. Let & ( U )  denote the algebra of intertwining operators of 
U with itself (Section 21 .l, Problem 6) .  i.e., the algebra of continuous operators T E  Y(E) 
such that T U ( s )  = Ujs)T for all s E G. 

The representation U is said to be primary if the center of @ ( U )  consists only of the 
homotheties of E, and i m t y p i c  if it is primary and if there exists a nontrivial irreducible 
subrepresentation of U. 
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(a) For U to be primary, it is necessary and sufficient that the center of a(U) 
contain no orthogonal projection other than 0 and 1,. (Observe that the center is a closed 
self-adjoint subalgebra of Y(E), and use the Gelfand-Neumark theorem.) 
(b) For U to be isotypic, it is necessary and sufficient that U should be equivalent to 
a (finite or infinite) Hilbert sum of equivalent irreducible representations. (TO show that 
the condition is necessary, consider a closed subspace F of E that is stable under U and 
such that the restriction V of U to F is irreducible. If W is the restriction of U to the 
orthogonal supplement F1 of F, which is assumed to be # {O}, deduce from the fact that 
the projection P ,  cannot belong to the center of a(U) that there exists a nonzero inter- 
twining operator between V and W (Section 21 .l, Problem 6), and hence that Wcontains a 
subrepresentation equivalent to V; then use induction. To show that the condition is 
sufficient, E being now the Hilbert sum of subspaces F, stable under U and such that the 
restrictions U ,  of U to the F, are equivalent irreducible representations, consider an 
orthogonal projection P # 0 belonging to the center of a([!); show that there exists at 
least one index k such that P Pb, # 0, and deduce that P . PF, # 0 for all indices j, and 
thence that P = l e . )  
(c) If U is equivalent to a Hilbert sum of irreducible representations all equivalent to 
the same representation V, show that the number I I  (finite or + 03) of these representations 
is finite if and only i f d ( U )  is of finite dimension over C, and that this dimension is then n 2 .  
(Use the topological version of Schur’s lemma (Section 21 . l ,  Problem 5 ) )  Furthermore. 
every subrepresentation W of U is a Hilbert sum of representations equivalent to P” (With 
the notation of (b) above, let L c E be the subspace of the representation W ;  there exists at 
least one index k such that the orthogonal projection of F, on L is nonzero. Deduce that 
there exists a nonzero intertwining operator between U ,  and W ,  and use Section 21.1, 
Problem 6, to obtain ;1 subrepresentation of W equivalent to li,; then proceed by 
induction.) 

4. Let G be a unimodular locally compact group. A continuous unitary representation of G 
on a separable Hilbert space E is said to admit a discrete decomposiriofi if  it is a Hilbert 
sum of irreducible representations. 
(a) Let R(G) be the set of equivalence classes of irreducible continuous unitary 
representations of G. Let U be a continuous unitary representation of G on E, and 
suppose that E is a Hilbert sum of subspaces E, such that the restriction U k  of U to E, is 
irreducible. For each p E R(G), let M, be the Hilbert sum of the E, such that U ,  is in the 
class p. The nonzero M, are called the isotypic componenrs or E. Show that for every 
irreducible subrepresentation V of U ,  the space of V is necessarily contained in one ofthe 
M,, and that V is then of class p, so that M, may be defined as the smallest closed 
subspace of E that contains the spaces of all the irreducible subrepresentations of U of 
class p (and is therefore defined independently of the decomposition (E,) chosen). (Use 
Problem 3(c) above and Section 21.1, Problem 6.) If the restriction of U to M, is the 
Hilbert sum of n, representations of class p, where n ,  is finite or + m, this number n,, is 
called the multiplicity of p in U (or in the class of U ) .  
(b) Let U be a continuous unitary representation of G on E that has the following 
property: for every closed subspace F of E stable under U ,  there exists a closed subspace L 
of F that is minimal among those that are stable under U.  Show that U admits a discrete 
decomposition. (Argue by induction, as in (15.8.10).) 
(c) Let ,f, be a sequence of continuous functions on G satisfying the conditions of 
(14.11.2). Let U be a continuous unitary representation of G such that, for each n, the 
operator U ( f J  is compact. Show that U admits a discrete decomposition into irreducible 
representations and that. for each p E R(G), the multiplicity ofp in U isfinite. (Show that 
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the criterion of (b) above is satisfied. I f  F c E is closed and stable under U ,  there exists an 
integer n such that the restriction of U(,fn) to F is # 0. Consider an eigenvalue I # 0 of this 
restriction, and the corresponding eigenspace M, which is finite-dimensional. For each 
vector x # 0 in M, let P, be the smallest closed subspace of E that contains x and is 
stable under U .  I f  P, is the Hilbert sum of two U-stable subspaces Q and R, show that 
P, n M is the Hilbert sum of Q n M and R n M, and hence deduce that there exists 
.Y E M for which P, is minimal. Furthermore, if  the subrepresentation of U corresponding 
to P, is of class p. then np is at most equal to the dimension of M.)  

5. Let G be a unimodular locally compact group, and let U be a continuous unitary represen- 
tation of  G on a separable Hilbert space E. For each pair (x, y) of points of E, the function 
S H  ( U ( s )  x 1 y), which is continuous and bounded on G ,  is called the CoeSficient of U 
relatioe to (x, y ) .  and is denoted by c&, y). For each bounded measure p on G ,  we have 
CJ U ( p )  x, y) = c&, y) * f i  and c"(.Y. U ( p )  . y)  = p * co(x, J.). If J is a semilinear bijec- 
tion of E into itself such that ( J  x IJ y) = (we may take J(e,)  = e , ,  where (en) is a 
Hilbert basis of E), let U denote the continuous unitary representation s + + J U ( s ) J - '  o f G  
on E, which is well-defined up to equivalence. Show that CO(X, y )  = cu(x ,  y). 

(a) Suppose that U is irreducible and that there exist two nonzero vectors x, y in E 
such that the function cJx, y) belongs to Li(G). Then cu(x ,  U ( p )  . y) belongs to Li(G), for 
every bounded measure / I  on G. Deduce that the set of z E E such that cu(x, z) E Li(G)  is a 
dense vector subspace F of E, and that the linear mapping z++c,,(x, z )  of F into Li (G)  is 
closed (Section 15.12, Problem I ) .  Use Section 21 .l, Problem 6, to show that F = E and 
that U is equivalent to a subrepresentation ofthe regular representation R of G on L$(G); 
also that c l , ( . ~ .  J.) belongs to Lf(G) for a / /  pairs x, .I* in E. 
(b) Show that. for each function J E  X(G) ,  the coefficient cR(& 3) of the regular 
representation R belongs to Li(G) for each 4 E Li(G). Deduce that all the coefficients of 
an irreducible subrepresentation of R belong to LC(G). An irreducible continuous unitary 
representation of G is said to be syuure-integrable if it is equivalent to a subrepresentation 
of the regular representation of G. 
(c) Show that if at least one irreducible unitary representation LI of G is square- 
integrable, then the center Z of G is necessarily compact. (Observe that the function 
Icu(s. y)l on G x G is invariant under left and right translations by elements of Z.) 

6. Let G be a unimodular locally compact group, U an irreducible unitary representation of 
G on a Hilbert space E, and assume that Li is square-integrable (Problem 5 ) .  

(a) For all x, y, s', y' in E we have 

in Li(G), where d ,  is a number > 0 that depends only on the equivalence class of U. 
(Observe that, as  a result of Problem 5, the mapping S,: Z H C " ( X .  z) is an intertwining 
operator between U and the regular representation R,  and consequently S:.S, is a homo- 
thety in E, by virtue of Schur's lemma; in other words, there exists a constant a(x,  x') 
such that 

~. ~~~ 

(c&, y)  I CL'(Y', y')) = a(x, X')()) I y'). 

Show on the other hand that 

by using the fact that G is unimodular.) 
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The number do is multiplied by a- when the Haar measure /I on G is replaced by afi. 
When G is compact and fi  is the Haar measure with total mass 1, the number d, is equal to 
the dimension of the representation U .  
(b) Deduce from the Banach-Steinhaus theorem that there exists a constant b > 0 
such that N,(cu(x, y ) )  S b .  llxll . llyll for all x, y in E. 
(c) Let A, B be two nuclear operators on E (Section 15.11, Problem 7). Show that 

U ( s ) A U ( s ) - '  dp(s)  = d; '  Tr(A), b 
IG Tr(U(s)AU(s)-'B) db(s) = d;' Tr(A) Tr(B), 

JG Tr(AU(s)-') Tr(BU(s)) d j ( s )  = d;'  Tr(AB). 

(Observe that there exists a Hilbert basis (en) of E and a sequence (f,,) of vectors of norm 1 
in E such that, for all x E E, we have A . x = 1 An(x I en)fm, where I1,l < co, and use (a) 

and (b) above.) 

Let U ,  U' be two square-integrable irreducible unitary representations of G on separable 
Hilbert spaces E, E', respectively. Show that if U and U' are inequivalent, then every 
coefficient of U is orthogonal in Lf(G) to every coefficient of U'.  (Consider on E x E the 
sesquilinear form (x', x)H(c"(x', a')lcu(x, a)); show that it is continuous (Problem 
6(b)) and that it can be written in the form (x', x ) ~ ( x ' I  A . x), where A is a continuous 
operator from E to E'; finally prove that A is an intertwining operator of U with U'.) 

Given two Hilbert spaces E l  and E,, a continuous operator T: El  + E, is said to be a 
Hilbert-Schmidt operator if the operator on E l  @ E, that is equal to Ton  El  and 0 on E, is 
Hilbert-Schmidt (15.4.8). The space Y,(E,, E,) c Y,(E, @ E,) of Hilbert-Schmidt 
operators from E l  to E, is a Hilbert space. 

For each x, E El and x, E E, ,  let ux,, ~~ denote the linear mapping ZH (z I x1)x2 of El  
into E,. This mapping belongs to Y,(E,, E,), and we have [lux,,x2 11, = [Ix, 11 IIx, 1 1 .  I f  
(a,) (resp. (b,)) is a Hilbert basis of E l  (resp. E2), then the uom, bn form a Hilbert basis of 

(a) Let GI,  G, be two locally compact groups and let U ,  (resp. U , )  be a continuous 
unitary representation of G I  (resp. G,) on a separable Hilbert space El  (resp. E,). For 
sI E G I ,  s, E G,, and T E  Y,(E,, E,), show that the mapping U , ( s , ) T U l ( s l ) ~ l ,  which 
we denote by U ( s , ,  s,) . T, belongs to Y,(E,, E2), and that U(s, ,  s,) is a continuous 
unitary representation of G ,  x G, on the Hilbert space Y,(E,, E,). 
(b) Suppose that U ,  and LIZ are irreducible. Show that U is irreducible. (Remark that 
the closed subspace of Y,(E,, E2) generated by the transforms U,(s , )u, , , ,  where a # 0 in 
E l  and b # 0 in E,, contains all the elements u, ,~  for y E E,; likewise for the transforms 
u , , ~  U , ( s , ) . )  The restriction of U to the subgroup G I  x (e,}  ofG,  x G, is then an isotypic 
unitary representation (Problem 3), a Hilbert sum of representations equivalent to o,, the 
multiplicity of the class of 0 ,  in this restriction being equal to the dimension of E,. 
Likewise for the restriction of U to the subgroup (el} x G , .  

Y,(E,, Ez), 

Let G be a unimodular locally compact group, and let U be a square-integrable irreducible 
continuous unitary representation of G on a Hilbert space E (Problem 5). Let M u  be the 
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closed vector subspace of L@) spanned by the coefficients (Problem 5) of U .  I t  is stable 
under the operators y(s) and 6(s) for each s E G. 
(a) Let U‘ be another square-integrable irreducible representation of G. Show that if 
U‘ is equivalent to U ,  then M,. = Mu, so that Mu depends only on the class p of U ,  and is 
therefore also denoted by M,. I f  on the other hand U’ is not equivalent to U ,  then the 
subspaces M, and M,, are orthogonal. If (ej) is a Hilbert basis of E, the elements 
j;* = dL’2c,(ej, e k )  form a Hilbert basis of Mu. 
(b) Define a continuous unitary representation (s, t)-V(s, t )  of G x G on M, by 
V ( s ,  r )  . cu(x ,  y )  = y(s) 6( r )cu(x ,  y ) .  Show that this representation is equivalent to the con- 
tinuous unitary representation (s, r)- W(s,  I )  of G x G on the Hilbert space L,(E) of 
Hilbert-Schmidt operators on E, defined by W(s,  t )  . T = U ( s ) T U ( t ) - ’  (Problem 8) .  
Deduce that V is irreducible, and that the restriction to M u  of the regular representation R 
is a Hilbert sum of irreducible representations equivalent to 0, the multiplicity of D in this 
decomposition (Problem 4) being the dimension of E. 
(c) Let f be a function in Y’:(G), with compact support, and let P be the orthogonal 
projection of Li(G) onto the subspace M,. Show that U ( f )  is a Hilbert-Schmidt operator 
on E and that ~ ~ U ( f ) ~ ~ 2  5 dF2N,(P ‘7).  (Use the basis ( f j k )  of Mu tocalculate N,(P .I).) 
(d) Let L5(Gld be the closed subspace of Li(G) that is the Hilbert sum of the 
subspaces M,, as p runs through the set of equivalence classes of square-integrable irredu- 
cible representations of G. Show that L;(G), contains every closed subspace F of Li(G) 
that is stable under y(s) (resp. 6(s)) for all s E G and is minimal with respect to this 
property among nonzero subspaces. (Let P be the orthogonal projection of Li(G) onto F. 
If V is the irreducible representation that is the restriction of R to F, calculate the 
coefficients c Y ( J  P .  g) forJE F and g E X(G) . )  

Let G be a locally compact group and let U be a continuous linear representation of G on 
a,finire-dimensional complex vector space. Assume that the coefficients cu(x ,  x*) (Section 
21.2, Problem 1) belong to Yi(G).  
(a) Show that there exists on E a (nondegenerate) Hermitian scalar product Q, that is 
invariant under U (same method as in (20.11.3.1)). 
(b) Deduce from (a) that the group G is necessarily compact. (Observe that the 
coefficients of the matrix of Q,, relative to a basis of E, belong to Yh(G).) 

10. 

11. (a) Let G be a topological group, let U be a continuous linear representation of G on a 
complex vector space E of dimension d, and let V, be the trivial representation of G on a 
vector space F of dimension n. Let W be the representation s- U ( s ) @  V,(s) of G on 
E @ F. Show that if n > d, there exists no vector z E E @I F such that the vectors W ( s )  . z 

( s  E G) generate E @  F. (Write z in the form 1 x j @ y j ,  where the x j  form a basis of E, 

and the y j  belong to F.) 
(b) Let G be a compact group. With the notation of (21.4.1). if V is the Hilbert sum 
of q 5 n ,  representations equal to M,, then there exists a totalizing vector xo in the space 
E of the representation V (in other words the vectors V ( s )  . x o  for s E G span E). (Reduce 
to the case where E is the sum I ,  + I, + ... + I, in a, and V is the restriction to E of the 
regular representation. Show that we may take x o  = m,, + m2, + ... + m,,, by showing 
that no nonzero vector in E is orthogonal to all the V ( s )  . x o . )  

(c) Let G be a compact group. Show that a continuous unitary representation V of 
G on a separable Hilbert space E is topologically cyclic if and only if, for each p E R, the 
multiplicity of M, in V is 5 n, .  (To show that the condition is sufficient, we may assume 
that E is the Hilbert sum of left ideals b, c a,, where p runs through a subset R’ of R, and 

d 

j =  1 
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V is the restriction to E of the regular representation. I f  X,E h, is a totalizer for the 
restriction of V to b,, consider a vector xo = c (,.r,, where c ~ ~ ~ ~ x p ~ ~ z  < m and 

P E R '  p s R '  

5 ,  ' 0.) 

5. INVARIANT BILINEAR FORMS; THE KILLING FORM 

(21.5.1) From now on in this chapter we shall consider only (real or 
complex) b e  groups. By a linear representation of a real Lie group G on a 
jinite-dimensional real or complex vector space E we shall mean (as in 
(1 6.9.7)), unless the contrary is expressly stated, a Lie group homomorphism 
(hence of class Cm) SH U ( s )  of G into GL(E). (If E is a complex vector space, 
we consider GL(E) as equipped with its underlying structure of a real Lie 
group.) By virtue of (19.10.2), this notion in fact coincides with the notion of 
continuous linear representation (on a finite-dimensional complex vector 
space) introduced in (21.1). 

If G is a complex Lie group, a linear representation of G on a finite- 
dimensional complex vector space E is by definition a homomorphism of 
complex Lie groups SH U ( s )  (hence a holomorphic mapping) of G into 
GL(E). One must be careful to distinguish these representations from linear 
representations of the underlying real Lie group GIR.on E; every linear 
representation of G on E is also a linear representation of GI,, but the 
converse is false. 

Let E be a finite-dimensional real vector space, and let E(,, = E OR C be 
its complexification. Every endomorphism P of E has a unique extension to 
an endomorphism P @  1, of E,,,, such that ( P  @I 1,) * ( x  @ () = ( P  . x )  0 [ 
for all x E E and all ( E C (A.10.6). The matrix of P relative to a basis ( e j )  of 
E is the same as the matrix of P 0 1, relative to the basis ( e j  6 1 )  of E,,, . It 
follows immediately that every linear representation SH U ( s )  of a real Lie 
group G on E extends uniquely to a linear representation SH U ( s )  0 1, of G 
on Em. 

(21.5.2) Given any linear representation SH U ( s )  of a real (resp. complex) 
Lie group G on a finite-dimensional real or complex (resp. complex) vector 
space E, we have a derived homomorphism UH U,(u) of the Lie algebra ge of 
G into the Lie algebra gl(E). For each w E ge, we have (19.8.9) 

If G is a real Lie group and E a real vector space, the derived homomor- 
phism of the representation I! @I 1, of G on E(,, (21.5.1) is the homomor- 
phism UH U,(u) 0 1, of ge into gI(E,,,) = gI(E) OR C. 



5. INVARIANT BILINEAR FORMS; THE KILLING FORM 41 

We remark also that if F is a finite-dimensional complex vector space, a a 
real Lie algebra (of finite or infinite dimension) and p :  a + gl(F) a homo- 
morphism of real Lie algebras, then the mapping p(o :  u @ [H p(u)c is a 
(C-linear) homomorphism of the complexification a,,, = a OR C of a into 
gI(F) that extends p .  

(21.5.3) Let .s++ U ( s )  be a linear representation of a real (resp. complex) 
Lie group G on a finite-dimensional real or complex (resp. complex) vector 
space E. Canonically associated with U is the following bilinearform on the 
real (resp. complex) vector space ge x gc: 

(21.5.3.1) B,: (u, v )HTr(U*(u)  o V,(v)). 

From the symmetry Tr(PQ) = Tr(QP) of the trace it follows that the form 
B, is symmetric, but it can be degenerate. Furthermore, it is invariant under 
the action (s, u)HAd(s) . u of G on 9,: for by (16.5.4) and (19.2.1.1) we 
have 

and the relation 

(21.5.3.2) B,(Ad(s) . U, Ad(s) . V) = B,(U, V)  

therefore follows from the symmetry of the trace. 

(21.5.4) In  general, let @ be any R-bilinear mapping of g p  x ge into a real 
vector space E that is invariant under the action (s, u ) ~  Ad(s) * u of G on 
g,; then, for all u, v, w in ge, we have 

For by hypothesis we have, for all t E R, 
@(Ad(exp(tw)) . u, Ad(exp(tw)) . v) = @(u, v); 

if we now differentiate both sides of this relation with respect to t a t  f = 0, we 
obtain (21.5.4.1) by use of (8.1.4) and (19.11.2.2). 

(21.5.5) More generally, if a is a Lie algebra over R (resp. C) and F is a 
finite-dimensional vector space over R (resp. C), then to each Lie algebra 
homomorphism p :  a + gI(F) we may associate a symmetric bilinear R-form 
(resp. C-form) on a x a by the formula 

(21.5.5.1) B , h  v) = Tr(p(u) O P(V)). 
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Since p([u, v]) = p(u) o p(v) - p(v) o p(u), the symmetry property of the 
trace shows again that we have 

(21.5.5.2) B,(ad(w) . u, v) + B,(u, ad(w) * v) = 0 

for all u, v, w E a. 

(21.5.6) Consider a finite-dimensional real or complex Lie algebra a, and 
its adjoint representation u~-+ad(u ) ,  which is a homomorphism of a into 
gl(a). We denote by B, or simply B the symmetric bilinear form correspond- 
ing to this homomorphism according to (21.5.5); it is called the Killing form 
of the Lie algebra a. By (21.5.5.2) we have 

(21.5.6.1) B([w, u], v) + B(u, [w, v]) = 0. 

If a is any automorphism of the Lie algebra a, we have a([u, v]) = 
[ ~ ( u ) ,  a(v)], or equivalently a 0 ad(u) = ad(a(u)) o a in End(a). From this 
and the symmetry of the trace we deduce immediately that 

(21.5.7) 
Killing form B, is the Killing form B,. 

If b is an ideal in a Lie algebra a, the restriction to b x b of the 

By hypothesis, for each x E b, we have ad(x). a c b; hence, for x and 
y E 6, if we put U = ad(x) 0 ad(y), we have U(a) c 6. If we now calculate the 
trace of U by means of a basis of a consisting of a basis of b and a basis of a 
subspace of a supplementary to b, we see that this trace is equal to that of the 
restriction of U to 6 .  

It should be remarked, however, that there is no simple relation between 
the Killing form of an arbitrary Lie subalgebra of a, and the restriction to this 
subalgebra of the Killing form of a. 

(21.5.8) If G is a (real or complex) Lie group, ge its Lie algebra, the Killing 
form of ge is called the Killing form of G. 

(21.5.9) Let G be a connected Lie group with center {e},  and let U be a 
linear representation of G on a finite-dimensional vector space, such that the 
bilinear form BU is nondegenerate. Then there exists a pseudo-Riemannian 
structure on G whose metric tensor g satisfies g(e )  = BU, and which is 
invariant under left and right translations by elements of G (20.11.8). 
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6. SEMISIMPLE LIE GROUPS. CRITERION O F  SEMISIMPLICITY F O R  
A COMPACT LIE GROUP 

(21.6.1) A finite-dimensional real or complex Lie algebra a is said to be 
semisimple if its Killing form (21.5.6) is nondegenerate. A real or complex Lie 
group is said to be semisimple if its Lie algebra is semisimple. 

If a is a finite-dimensional real Lie algebra, any basis of a over R can be 
canonically identified with a basis of its complexification a,,, over C. Con- 
sequently, the Killing form B,(q of a(c) has the same matrix relative to this 
basis as does the Killing form B,. It follows immediately that if a is semisim- 
ple, so also i s  its complexification, and conversely. 

On the other hand, if a is a complex Lie algebra and alR the real Lie 
algebra obtained from a by restriction of scalars, then we have 
B,,,, = 29(B4) .  For if u is an endomorphism of a finite-dimensional complex 
vector space E, and if uo is the same mapping u considered as an R-linear 
mapping, then it is easy to verify that Tr(uo) = 29(Tr(u)) (16.21.1 3.1). Hence 
it follows that f a  is semisimple, so also is alR: for by taking a basis of a that is 
orthogonal relative to B,,  we see from the remarks above that B,,, has 
signature (n,  n )  if n = dim,(a), and therefore is nondegenerate. 

(21.6.2) Let a be a real or complex semisimple Lie algebra. 

(i) The only commutative ideal in a is the zero ideal. 
(ii) For each ideal b in a, the subspace b1 of a orthogonal to b with respect 

to the Killing form B, is an ideal of a, supplementary to 6, and the Lie algebras 
b and b1 are semisimple. 

(i) Let c be a commutative ideal in a. For each y E a, we have 
ad(y) . c c c and therefore ad(x) * (ad(y) * c)  = (0) for all x E c. On the other 
hand, ad(x) . (ad(y) . a) c c, because x E c. If we compute the trace of 
U = ad(x) o ad(y) with the help of a basis of a consisting of a basis of c and a 
basis of a subspace supplementary to c, it  follows that we obtain 0: in other 
words, B,(x, y) = 0 for all x E c and y E a. Since B, is nondegenerate, this 
forces x = 0. 

(ii) It follows immediately from (21 5 6 . 1 )  that if b is an ideal in a, then 
so also is bl. Hence b n b1 is an ideal in a, and we shall show that it is 
commutative. Indeed, if u, v are any two elements of b n b*, then by 
(21.5.6.1) we have B,(w, [u, v]) = B,([w, u], v) = 0 for all w E a, because 
[w, u] E b and v E bl. Since B, is nondegenerate, it follows that [u, v] = 0, 
which proves our  assertion. Hence, by virtue of (i) above, we have 
b n b1 = (0) and therefore b + b1 = a, so that b and b1 are supplementary 
ideals. The restrictions of B, to the nonisotropic subspaces b and b1 are 
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therefore nondegenerate, so that b and 6' are semisimple Lie algebras, by 
virtue of (21 57 ) .  

We shall show later that, conversely, a finite-dimensional real or complex 
Lie algebra that has no nonzero commutative ideals is semisimple (21.22.4). 

From (21.6.2) it follows immediately that: 

(21.6.3) The center of a semisimple Lie algebra is (0). 

In particular (1 9.1 1.9), every semisimple Lie algebra over R (resp. C) is 
the Lie algebra of a real (resp. complex) semisimple Lie group, and there is a 
one-to-one correspondence between semisimple Lie algebras and simply con- 
nected semisimple Lie groups (up to isomorphism). 

A finite-dimensional real or complex Lie algebra is said to be simple if it 
is noncommutative and if it contains no ideals other than itself and {O}. 

It can be shown that if a is a simple Lie algebra over C, then the Lie 
algebra alR obtained by restriction of scalars is also simple (Problem 1). On 
the other hand, if g is a simple Lie algebra over R, then the Lie algebra g(c) 
over C obtained by extension of scalars is semisimple, but not necessarily 
simple (Problem 1). 

(21.6.4) Every semisimple Lie algebra g is the direct sum of a j n i t e  number of 
ideals gi (1 2 i 2 r),  each of which i s  a simple Lie algebra, and which are 
mutually orthogonal with respect to B, . Every ideal of g is the direct sum of a 
subfamily o f ( g i ) l < i < r *  

The proof is by induction on the dimension of g. Let a be a nonzero ideal 
of g of smallest possible dimension; by virtue of (21.6.2), g is the direct sum 
of a and the ideal a', which implies that [a, a'] = {O}. Every ideal in the Lie 
algebra a is therefore also an ideal in 9, and therefore by hypothesis the Lie 
algebra a contains no ideals other than a and (0). Since moreover a is not 
commutative (21.6.2), it is a simple Lie algebra. By applying the inductive 
hypothesis to the semisimple Lie algebra a', the first assertion is established. 
If now b is any ideal in g, then b n gi is an ideal in gi, hence is either gi or {O}. 
If a is the sum of the gi contained in b, then a' is the sum of the remaining gi, 
and we have b = a @ c, where c = b n a'. Since b n gi = (0) for each 
gi c a', we have also [b, gi] = {0} for these gi, hence [b, aL] = (0) and so a 
fortiori [c, c] = (0). But since the Lie algebra a' is semisimple, it has no 
nonzero commutative ideals (21.6.2), so that c = 0 and therefore b = a. 

(21.6.5) Every semisimple Lie algebra g is equal to its derived algebra B(g). 
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This is obvious if  g is simple, because by definition 3 ( g )  cannot be zero. 
The general case now follows from (21.6.4). 

(21.6.5.1) With the notation of the proof of (21.6.4), the ideals a and a' are 
orthogonal relative to any invariant symmetric R-bilinear form 0 on g 
(21 5 4 ) .  For, by virtue of (21.6.5), it  is enough to show that for a!! x, y E a 
and z E a' we have @([x, y], 2 )  = 0; but by (21.5.4.1) this is equivalent to 
@(x, [y, 21) = 0, and since y E a and z E a' we have [y, 23 E a n a' = (0). 

(21.6.6) A Lie group is said to be almost simple if its Lie algebra is simple. I t  
follows from (21.6.4) that a simply connected semisimple Lie group G is 
isomorphic to a product of simply connected almost simple Lie groups G,. 
The only connected Lie groups immersed in G that are normal in G and of 
positive dimension are the products of subfamilies of the Gj; they are closed 
in G. It follows from (21.6.3) that the center of a semisimple Lie group is 
discrete, and from (21.6.5) that the commutator subgroup of a semisimple Lie 
group is an open subgroup (19.7.1). 

This last result shows in particular that a connected semisimple Lie group 
G is unimodular, since the kernel of the modulus function SH A&) contains 
the commutator subgroup of G. 

(21.6.7) 
(A.19.4). 

Every derivation (A.18.2) of a sernisimple Lie algebra g i s  inner 

Let 3 = Der(g) be the Lie algebra of derivations of g (A.19). Since the 
center of g is (0) (21.64,  the image ad(g) of 9 under the adjoint representa- 
tion X H  ad(x) is a Lie subalgebra isomorphic to g, and therefore semisim- 
ple; moreover, since ad(Du) = [D, ad(u)] for u E g and D E 3 (A.19.4), 
ad(g) is an ideal of 3. Consider the subspace a of 3 that is orthogonal to 
ad(g) relative to the Killing form B, (which a priori might be degenerate). 
Since the restriction of B, to the ideal ad(9) is the Killing form Bad(e) (21.5.6), 
and since this form is nondegenerate, i t  follows that the intersection 
a n ad(g). which is the subspace of ad(g) orthogonal to ad(g) relative to 

is zero. Also, by (21.5.6.1), a is an ideal of a, and therefore 
[a, ad(g)] c a n ad(g) = (0). Consequently, for D E a and u E g, we have 
ad(Du) = [D, ad u] = 0, and since the mapping x H a d ( x )  is injective, it 
follows that Du = 0, hence D = 0 and so a = (0). This proves that B, is 
nondegenerate and that 3 = ad(g). 

(21.6.8) Let G be a connected semisimple (real or complex) Lie group. Then 
the image Ad(G) of G under the homomorphism SH Ad(s) is an open subgroup 
of the group Aut(g,) of automorphisms of the Lie algebra of G. 
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For this image is a connected Lie group immersed in Aut(g,), whose Lie 
algebra is ad(g,) (19.1 3.9); but the latter is equal to the Lie algebra Der(g,) of 
Aut(g,) by virtue of (21.6.7) and (19.3.8). Hence the result, by (19.7.1). 

(21.6.9) Let G be a connected (real) Lie group, C its center and g its Lie 
algebra. The following conditions are equivalent : 

(a) The quotient group G/C is compact. 
(b) G is isomorphic to a product R" x G,, where G, is compact. 
(c) The Lie group e, the universal covering of G, is isomorphic to a 

product R" x K, where K is a simply connected semisimple compact group. 
(d) The Lie algebra g is the direct sum c @ B(g) of its center c and its 

derived algebra B(g), and the restriction to B(g) of the Killing form B, is 
negative dejinite. 

When these equivalent conditions are satisfied, B(g) is isomorphic to the 
Lie algebra of K ;  the center Z of K isfinite; G is isomorphic to G/D, where D 
is a discrete subgroup of R" x Z ;  the center C of G is isomorphic to 
(R" x Z)/D; and the center of G/C consists only of the identity element. The  
subgroups Ad(G), Ad(G), and Ad(K) of Aut(g) may be identifed with the same 
(compact) open subgroup of Aut(B(g)) (itselfa directfactor ofAut(g)), and are 
isomorphic to G/C and to K/Z. 

The commutator subgroup 9 ( K )  of K is equal to K, and the commutator 
subgroup 9 ( G )  of G may be identijied with the group K/(D n Z )  (and is 
therefore compact). 

Clearly (b) implies (a). We shall first prove that (a) implies (d). 
The homomorphism SH Ad(s) of G into Aut(g) c GL(g) has kernel C 

(19.1 1.6) and therefore factorizes as G + G/C A Aut(g), where v is an injec- 
tive homomorphism of Lie groups (16.10.9). If G/C is compact, then so also 
is its image Ad(G) under v,  and v is therefore an isomorphism of G/C onto 
the compact Lie subgroup Ad(G) of Aut(g) ((19.10.1) and (16.9.9)). Hence, 
by (20.1 1.3.1), there exists a positive definite symmetric bilinear form 0 on 
the vector space g that is invariant under the canonical action of Ad(G) on 9. 
It is clear that Ad(s) c = (0) for all s E G (19.11.6); the subspace c' of 9, 
which is the orthogonal supplement of c relative to 0, is therefore also stable 
under every automorphism Ad(s) of g, hence is an ideal in g (19.1 1.3). But 
since Ad(G) may be canonically identified with a closed subgroup of the 
orthogonal group O(O), its Lie algebra ad(g) is identified with a Lie subal- 
gebra of the Lie algebra o ( 0 )  of O(0).  Relative to a basis of g that is 
orthoriormal with respect to O, the matrix (ajk)  of the endomorphism ad(u) 
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of g, where u is any element of g, satisfies akj = -a jk (19.4.4.3). It follows 
that 

B,(u, u) = Tr((ad(u))') = 1 a j k c t k j  = -c a;k 0; 
j .  k j .  k 

and, moreover, that we have B,(u, u) = 0 only if ad(u) = 0, hence if u E c. 
The restriction of B, to the ideal c' is therefore negative definite. By virtue of 
(21.5.7), this shows that the Lie algebra c1 is semisimple, hence equal to its 
derived algebra (21.6.5); and since [c, g] = (0) by definition, we have also 

Next we shall prove that (d) implies (c). Clearly it is enough to show that 
i f f  is a semisimple real Lie algebra, such that the Killing form B, is negative 
definite, then a simply connected Lie group K whose Lie algebra is isomor- 
phic to f (21.6.3) is necessarily compact. Now, since B, is invariant under the 
adjoint action of K on f,  the subgroup Ad(K) of Aut(f), which is closed 
(21.6.8), may be identified with a closed subgroup of the orthogonal group 
O(B,), hence is compact (1 6.1 1.2). On the other hand, the Lie algebra ad(€) of 
Ad(K) is isomorphic to f and therefore has center (0) (21.6.3). Hence the 
center of Ad(K) is discrete, and it follows from Weyl's theorem (20.22.5) that 
the Lie group K, which is the universal covering of Ad(K), is also compact. 

We go on to prove the assertions in the second and third paragraphs of 
(21.6.9). From (1 6.30.2.1) we have G = e /D,  where D is a discrete subgroup 
of the center R" x Z of e = R" x K. In view of (21.6.8) and the fact that 
every automorphism of g leaves c and a(g) stable, these assertions (except 
for those relating to the derived groups) follow from (20.22.5.1). The derived 
group 9 ( K )  has Lie algebra a(€) = t (1 9.1 2.1), and because K is connected it 
follows that 9 ( K )  = K. We deduce that 9(c) = K, and since 9(G) is evi- 
dently the canonical image of 9@), it is therefore equal to the canonical 
image of K, which is isomorphic to K/(D n K) = K/(D n Z) (12.12.5). 

Finally, we shall prove that (c) implies (b). Let p be the order of the 
center Z of K. The projection of the group D on R" is a discrete group, 
because the inverse image in R" x Z of a compact neighborhood of 0 in R" is 
a compact set, and therefore intersects D in a finite set. It follows (19.7.9.1) 
that D is finitely-generated, and hence the set of ZP as z runs through D is a 
subgroup D' of D n R", of finite index in D (and a fortiori in D n R"). By 
(19.7.9.1), the group R"/D' is therefore isomorphic to a product R" x T"-", 
and hence G/D' is isomorphic to R" x G', where G' = T"-" x K is 
compact. Furthermore, D/D' is a finite subgroup of the center of e/D',  and 
since R" has no finite subgroup other than {0}, it follows that D/D' may be 
identified with a finite subgroup C' of the center of G'. Hence G/D, being 
isomorphic to (@D')/(D/D'), is isomorphic to R" x G1, where G1 = G'/C' 
is compact. 

a(ll) = [9, 91 = c'* 
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Remarks 

(21.6.10) (i) Since (0) is the only compact subgroup of R", the subgroup 
G I  of G = R" x G, is a maximal compact subgroup of G. 

(ii) If a real Lie algebra g satisfies condition (d) of (21.6.9), it is isomor- 
phic to the Lie algebra of a compact connected Lie group, namely the group 
T" x K (in the notation of (21.6.9)). It follows that this condition characrer- 
izes the Lie algebras of compact connected Lie groups. Since the Lie algebra 
9(g) is semisimple, it is equal to its derived algebra. The same argument as 
in (21.6.5.1) then shows that c and a(g) are orthogonal with respect to any 
inoariant R-bilinear form on g. 

(iii) The discrete subgroups of the group R" x Z are easily determined 
(Problem 7), and therefore the structure of compact connected Lie groups is 
essentially reduced to that of simply connected semisimple compact Lie 
groups. 

(iv) It can be shown (Section 21.11, Problem 12(b)) that, under the 
conditions of (21.6.9), the group Ad(K) is offinite index in Aut(K), and the 
latter is therefore compact. 

(v) In view of (1 9.16.4.3), a connected Lie group G is unimodular if and 
only if Ad@) is unimodular. Since every compact group is unimodular 
(1 4 .34 ,  it follows from (21.6.9) that every connected Lie group G, such that 
the quotient of G by its center is compact, is unimodular. 

PROBLEMS 

1. (a) Let 4 be a simple Lie algebra over C. Show that the Lie algebra alR over R is simple. 
(Observe that if b is an ideal in the semisimple Lie algebra 41Rr then [4, b] = b.) 
(b) Let 4 be a simple Lie algebra over R. Show that the Lie algebra pic) over C is either 
simple or the direct sum of two isomorphic simple algebras. (Let c be the semilinear 
bijection of P , ~ )  = 4 @ i4 onto itself such that c(x + iy) = x - iy for all x, y E 4. Show first 
that if V is a complex vector subspace of 41c, such that c(V) = V, and if W = 4 n V, then 
V = W @ iW. Deduce that if b is an ideal of 4,c) other than 4. then we have 

b n 4 = {0},  b n c(b) = (O}, a,,, = b @ c(b), 

and that b is a simple Lie algebra over C.) 
(c) Let 4 be a simple Lie algebra over C. Show that the Lie algebra (a&., over C is the 
direct sum of two simple Lie algebras, each isomorphic to 4. (For each x E 4, consider the 
elementt(x@l + ( i x ) @ i ) ~ ( a , ~ ) @ , , C . )  

2. (a) In order that a finite-dimensional real Lie algebra g should be the Lie algebra of a 
compact Lie group, it is necessary and sufficient that for each u E g the endomorphism 
ad(u) @ 1 of g(c) be diagonalizable and that its eigenvalues be pure imaginary. (Argue as in 
(21.6.9).) 
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(b) Deduce from (a) that if g is the Lie algebra of a compact group, then every Lie 
subalgebra of g is also the Lie algebra of a compact group; in particular, t, cannot be 
solvable unless $ is commutative. 

3. Show that the Killing form of a real Lie algebra g of positive finite dimension cannot be 
positive definite. (Use Problem 2, by noting that ad(u) @ i is a self-adjoint endomorphism 
relative to the form Bat, .) 

4. (a) Let g be a real or complex Lie algebra, a semisimple ideal of 9. Show that g is the 
direct sum of I, and the centralizer J(t,) of $. (Use (21.6.7).) 
(b) Let g be the Lie algebra of a compact Lie group and let II be an ideal in g. If c is the 
center of g. show that 

11 = (11  n c) @ (11  n Dg) 

(consider the Killing form of II),  and deduce that there exists an ideal 11' in g such that 
g = I1  @ 11'. 

(c) Let g be a real Lie algebra and I I  an ideal in g; suppose that I I  and g/tt are the Lie 
algebras of compact Lie groups. Show that g is the Lie algebra of a compact group if and 
only if g is the direct sum of I I  and another ideal. (Use (b).) 

5. (a) Let G be a connected Lie group, g its Lie algebra, $ a semisimple subalgebra of g. and 
H the connected Liegroup immersed in G corresponding to $. Show that if the center of H 
is finite, then H is closed in G. (Use Section 19.11, Problem 4.) (Cf. Section 21 . l& Problem 
18.) 
(b) Let G be a connected, almost simple, noncompact Lie group with finite center. Show 
that there exists no nontrivial continuous unitary linear representation of G on a finite- 
dimensional complex vector space. 

6. (a) Let g be a finite-dimensional (real or complex) Lie algebra. Show that the sum a of all 
the semisimple ideals of g is a semisimple ideal of g (and hence is the unique largest 
semisimple ideal of 9). and deduce that the number of semisimple ideals of g is finite. 
(b) Use (a) and Section 21.2, Problem 7, to show that in a compact Lie group G the 
number of conjugacy classes of connected semisimple Lie subgroups of G is finite. 

7. Let A be a finite commutative group. Then every discrete subgroup of R" x A is of the 
form EB (isomorphic to E x B), where B is a subgroup of A, and E is a subgroup of 
R" x A such that the restriction to E of the projection R" x A + R" is an isomorphism of E 
onto a discrete subgroup of R" (hence isomorphic to Z P  for some p 5 n) .  

8 Let G be a Lie group for which the number of connected components is finite, and let Go 
be the identity component of G. Suppose that Lie@) = Lie@,) = g is the Lie algebra of a 
compact group. Show that G is the semidirect product ofa maximal compact subgroup K 
and a normal subgroup V isomorphic to R" for some m; also that K n Go is the identity 
component of K. and that Go is the direct product of K n Go and V. (Use (21.6.9) and the 
fact that the group Ad(G) is compact. By considering a scalar product on g that is 
invariant under Ad(G), we may assume that in the decomposition Go = V x KO of Go as 
the direct product of a subgroup V isomorphic to R" and a compact connected group KO, 
the Lie algebra of V is orthogonal to that of KO for the scalar product in question, and 
hence that V is a normal subgroup of G. Then use Section 19.14, Problem 3.) Under what 
conditions is the subgroup K (resp. V) above unique? 
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9. Let N be the nilpotent Lie group consisting of all 3 x 3 matrices (xi,) such that xij = 0 if 
i < j and xii = 1 for i = 1, 2, 3. Let G I  be the closed subgroup of N consisting of the 
matrices (xij) for which x12 and xz3 are rational integers, and let HI be thesubgroupofGI 
consistingof the (xij) for which xI2 = x Z 3  = 0 and xI3 is a rational integer. Show that the 
Lie group G ,  /H , has infinitely many connected components; its center Z, which is also its 
commutator subgroup, is compact and connected, and is also the identity component of 
G, and is the largest compact subgroup of G ;  but G is not the semidirect product of Z with 
any other subgroup. 

10. Let G be a connected Lie group. Define inductively 9"(G)  = G ,  and 9'"(G) to be the 
closure of the commutator subgroup of 9'(P-lb(G), for ph I .  Show that if 9'"(G) is 
compact, then 9'(Pt1)(G) is compact and semisimple, and that G = 9"P+1' (G)  . H, where 
H is the identity component of the centralizer of 9''p+l)(G) in G. The group 
Wp+l ) (G)  n H is finite and commutative, and W"(H) is contained in the identity com- 
ponent of the center of H. Show that the connected Lie group N/H, = G ,  (in the notation 
of Problem 9) is such that 9?(G2) is compact, but that the Lie algebra of G ,  is not the Lie 
algebra of a compact group. 

11. (a) Let G be a connected Lie group, g its Lie algebra. Show that if the closure of Ad@) in 
Aut(g) is compact, then the quotient of G by its center is compact, and consequently 
Ad@) is compact. (Observe that there exists an Ad@)-invariant scalar product on g.) 

(b) In order that a connected Lie group G should be such that the quotient of G by its 
center is compact, it is necessary and sufficient that for each neighborhood U of e in G 
there should exist a neighborhood V c U of e such that x V x - l  = V for all x E G .  (The 
condition is necessary by (21.3.4.1). To show that it is sufficient, use (a)above, by proving 
that the closure of Ad(G) in End(g) is contained in Aut(g).) 

12. Let G be a nondiscrete, almost simple Lie group, and Go its identity component. Show 
that each normal subgroup N of G either contains Go or is contained in the centralizer 
S ( G o )  of G o ,  which is the largest discrete normal subgroup of G. In particular, if G is 
compact, then 2 ( G o )  is finite, and there are only finitely many elements s E G such that 
Ad(s) is the identity mapping. 

13. Let G be an almost simple compact Lie group of dimension n 2 1. For each s E G, each 
integer m 2 1 and each neighborhood V of e in G, let M(s, m, V )  denote the set of elements 
of G of the form 

where x,. ..., x,. y,, ..., y, belong to V. 
(a) Show that if s E G is such that Ad(s) is not the identity mapping of the Lie algebra g 
of G ,  and if m 2 n, then for each neighborhood V of e the set M(s, m, V) is a neighborhood 
of e. (There exists a vector a E g such that b = Ad(s) . a - a # 0. Show that there exist 
elements xI, , .., x, in V such that the sequence (Ad(x,). b)lsjsm contains a basis of g. 
Then consider the mapping 

(21, . . . , z . ,  y,, .... Y,)~(Z1Cv,,~)Z;')'"(Z,(y,,S)Z~~) 

of G2" into G ,  and its tangent linear mapping at the point (x,. ..., x,. e, .. ., e).) 

(b) Let U be a neighborhood of e in G and let rn be an integer 2 1. Show that there exists 
an element s E G such that Ad(s) is not the identity mapping and such that 
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M(s. r n .  G )  c U. (Argue by contradiction, using the compactness of G and Problem 12.) 
(c) Let G ,  G' be almost simple compact Lie groups and let cp: G -+ G' be an (a  priori not 
necessarily continuous) isomorphism of abstract groups. Show that p is in fact an isomor- 
phism of Lie groups. (Apply (b) to G' and (a) to G . )  

14. Let G be a compact connected Lie group of dimension n, and let (u I v) be a scalar product 
on the Lie algebra g p ,  invariant under the operators Ad(s) for all s E G (20.1 1.3.1); also let 
11 uIIz = (u 1 u). This scalar product induces canonically a Riemannian metric tensor g on 
G ,  invariant under left and right translations (20.11 4, and for which the geodesic trajec- 
tories are the left-translates of the one-parameter subgroups. 
(a) Let t++x(t )  = exp(tu) be a geodesic passing through e, and let y E G .  Put z ( t )  = 
x(t)yx( - t ) .  Show that 

~ ' ( 1 )  = - . x ( t ) j *  ' ((IRe - Ad(y-l))  ' U) ' X(-t) 

(Use (16.9.9) and the relations x ' ( t )  = x( f )  u = u x(t) (19.11.2.2)). Deduce that 

Il" = ll(4,. - Ad().-')) ' 4. 
(b) By means of the scalar product (u 1 v), the group Ad(G) may be identified with a 
subgroup of O(n) c U(n). Consider on U(n) the function srO(s)def ined in Section 16.11. 
Problem I. For each x E G put 6(x) = O(Ad(x)); then we have 0 5 6(x) 5 n, and 

6(x- 1 )  = 6(x), 6(yxy- 1 )  = 6(x), 6(xy) 5 6(x) + 6(y) 

for all x, 

Show that for any two points X, y E G we have 

E G, and 6(xz) = 6(x) for all z in the center of G. 
Let d(x, y) be the Riemannian distance on G defined by the metric tensor g (20.16.3). 

d(e, (x .  y ) )  5 (2 sin + S ( y ) )  . d(e ,  x). 

(Join e to x by a geodesic arc of length d(e ,  x )  (20.18.5), and then use (a) above and the 
definition of O(s) in Section 16.11, Problem 1.) 

15. Let G be an almost simple connected Lie group, N an arbitrary normal subgroup of G. 
(a) Consider the Lie subalgebra 11, of ge = Lie(G) associated with N by the procedure of 
Section 19.11, Problem 7(b). Show that if N # G .  we have 11,  = {O}. 
(b) Show that if N # G ,  then N must be contained in the center C of G (and con- 
sequently G/C is a simple group). ( I f  x E N, apply Section 19.11, Problem 7(c) to the 
mapping y e y ~ y ~ ~ x ~ '  of G into N.) 

7. M A X I M A L  TORI IN COMPACT CONNECTED LIE GROUPS 

(21.7.1) A compact, connected, commutative Lie group is necessarily iso- 
morphic to a group T" (19.7.9.2). For brevity's sake, such a group will be 
called an n-dimensional torus. 

In a compact Lie group G, a connected closed commutative subgroup T is 
a Lie subgroup of G (19.10.1), hence is a rorus. We say that T is a maximal 
torus in G if there exists no torus in G that properly contains T. 



52 XXI COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS 

(21.7.2) A connected Lie group H immersed in a compact Lie group G is a 
maximal torus of G i f  and only i f  its Lie algebra 5, is a maximal cornmutative 
subalgebra of the Lie algebra ge of G .  

In view of the canonical one-to-one correspondence between Lie subal- 
gebras of ge and connected Lie groups immersed in G (19.7.4), it is enough 
to show that if 5, is a maximal commutative Lie subalgebra of g,, then the 
corresponding subgroup H is necessarily closed in G. If this were not the 
case, its closure = H' in G would be a compact group (hence a Lie 
subgroup (19.10.1)), connected (3.19.2) and commutative (1 2.8.5); con- 
sequently its Lie algebra $: would be commutative and would contain $, 
properly: contradiction. 

(21.7.2.1) The condition in (21.7.2) may also be put in the following equi- 
valent form: the commutative subalgebra 5, is equal to its centralizer 3(5,) in 
9,. For it is clear that I), is maximal if this condition is satisfied; and, 
conversely, if 5, is commutative and u E 3(5,), the vector subspace 5, + Ru 
of ge is a commutative Lie subalgebra, and therefore if 5, is maximal we must 
have u E $, , and hence 3(Q,) = $, . 

(21.7.3) 
Lie group G is contained in a maximal torus of G. 

Every connected commutative Lie group H immersed in a compact 

The Lie algebra $, of H is commutative, hence is contained in a maximal 
commutative Lie subalgebra of ge (for example, a commutative subalgebra 
whose dimension is maximal among those which contain be). The result now 
follows from (21.7.2) and (1 9.7.4). 

(21.7.4) Every compact connected Lie group G is the union of its maximal 
tori. 

Since (21.7.3) may be applied to the one-parameter subgroups of G, the 
result to be proved is equivalent to the assertion that the exponential map- 
ping exp, is surjective. Now, there exists on G a Riemannian structure for 
which the one-parameter subgroups are the geodesic trajectories passing 
through e (20.11.8). Since G is compact and connected, the proposition is 
therefore a consequence of the Hopf-Rinow theorem (20.1 8.5). 

(21.7.5) The importance of the tori in a compact Lie group is that one 
knows explicitly all their linear representations (21.3.8). By virtue of (19.7.2) 
and (1 9.8.7.2), the Lie algebra of the commutative real Lie group (C')" may 
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be canonically identified with the real vector space C", and the exponential 
mapping is 

(21.7.5.1) (zl ,  . . . , Z,)H (eZ1, . . . , e'n). 

The Lie algebra of the subgroup U" of (C')" is therefore the subspace iR" of 
C", and the exponential mapping of iR" into U" is the restriction of (21.7.5.1) 
to iR"; its kernel is therefore the discrete subgroup 2niZ" of iR". Every charac- 
ter x of U", being a homomorphism of U" into U, has therefore a derived 
homomorphism, which is an R-linear mapping a :  iR" -, iR such that, by virtue 
of (21.5.2.1), 

(21.7.5.2) x(eiti ,  . , . , &tn) = @(i51. .... itn) 

for all (tl, . . . , 5,) E R". This implies that we must have 

a(2nim1, . . . , 2nim") E 2niZ 

for all (ml, . . . , m,) E Z". Conversely, if this condition is satisfied, the 
mapping (itl,  . . . , it,)- eu(itl* -* factorizes as 

(itl,  . . . , it,,)w (eitl, . . . , eitm)$, @(iti, .... it.) 

where x is a character of U". 
By transport of structure, it therefore follows that ifT is an n-dimensional 

torus and t its Lie algebra, the exponential mapping e x h  is a homomorphism 
ofLie groups from t (regarded as an additive group) to T, the kernel rT of 
which is a lattice in t, that is to say, a free Z-module that spans the real 
vector space t. The characters of T are the continuous mappings x of T into 
U such that 

(21.7.5.3) X(exp(u)) = ezniV(") 

for all u E t, where cp E t* is an R-linear form on the vector space t such that 
cp(u) is an integer for all u E rr. These linear forms constitute a lattice I'i in 
the real vector space t*, called the dual of the lattice Tr (22.14.6). The 
elements of the lattice 2nil7 in the complexification t$, oft* are called the 
weights of T; they are therefore R-linear mappings oft  into iR c C, namely 
the derived homomorphisms of the characters of T. 

If now V :  T + GL(E) is a linear representation of T on a complex vector 
space E of finite dimension m, it leaves invariant a scalar product (6.2) on E 
(21.4.3); and E is the Hilbert sum, relative to this scalar product, of subspaces 
E, (1 5 k 5 m )  of complex dimension 1, such that for all x E E, we have 
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where X k  is a character of T (21.4.4). Bearing in mind (21.7.5.3) and 
(21.5.2.1), we see therefore that the derived homomorphism V,: t gl(E) = 
End(E) is such that 

for all u E t and x E Ek (1 5 k m), where ak is a weight of T. We remark 
that the ak are not a priori necessarily distinct, for distinct values of the index 
k .  

(21.7.5.6) 
the kernels Ker(V*(u)) i n  t, as u runs through t. 

There exists uo E t such that Ker(V.(uo)) is the intersection ofall 

Since t is not the union of any finite number of hyperplanes (12.16.1), 
there exists an element uo E t such that ak(uo) # 0 for all the indices k such 
that the linear form ak is not identically zero. This clearly proves the proposi- 
tion (A.4.17). 

(21.7.6) The study of the structure of a compact connected Lie group G 
and of its linear representations rests entirely on the consideration of the 
restrictions to the tori in G (and especially to the muximul tori) of the linear 
representations of G (on complex vector spaces). Let g be the Lie algebra of 
G. Up to the end of Section 21 . I  2, we shall study from this point of view the 
extension of the adjoint representation of G to the complex vector space 
3,) = g &C, that is to say (21.5.1) the homomorphism 

(21.7.6.1) s++ Ad(s) 0 1, 

of G into GL(go,). If we consider the restriction of this homofnorphism to a 
torus T in G, its derived homomorphism is the restriction, to the Lie algebra 
t of T, of the homomorphism 

(21.7.6.2) u H a d ( u ) @  1, 

of g into gI(& ( I  9.1 1.2). Applying (21.7.5.6) to this restriction, we obtain: 

(21.7.6.3) 
there exists a uecror uo E t such that J(t) = J(u0) in g. 

If t is the Lie ulgebru of a torus T in  the compact Lie group G,  

We shall use this result to prove the fundamental theorem on the conju- 
gacy of maximal tori : 
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(21.7.7) Let G be a compact connected Lie group, T a maximal torus in G, 
and A a torus i n  G. Then there exists an element s E G such that sAs-’ c T 
(which implies that sAs-’ = T i f A  is a maximal torus). 

Let g, t, a be the Lie algebras of G, T, A, respectively. Since all three 
groups are connected, it follows from (1 9.7.4) and (19.2.1 .l) that it is enough 
to prove the following proposition: 

(21.7.7.1) There exists s E G such that Ad(s) . a c t. 

By virtue of (21.7.6.3), there exists a vector u E a and a vector v E t such 
that ,](a) = ,<(u) and ,<(t) = ,j(v). Consider a scalar product (x I y) on g that 
is inoariant under the action (s, X)I+ Ad(s) . x of G on g (20.1 1.3.2); for this 
scalar product and the corresponding norm IJxI/ = (x(x)’” ,  the function 
SH IIAd(.s) . u - v/ Iz  is continuous on the compact group G, hence attains 
its minimum at some .so E G (3.17.10). We shall show that Ad(s,) . u E t ;  this 
will imply, by virtue of the commutativity of t  and by transport of structure, 
that 

t c ,j(Ad(s,) . u) = Ad(s0) . ,<(u) = Ad(.?,) . ,<(a) = .j(Ad(s,) . a) 

and consequently that the vector subspace f + Ad(s,) * a of g is a commuta- 
tive Lie subalgebra. But since t is maximal among such subalgebras, it 
follows that Ad(s,) . a c t, which will establish (21.7.7.1). 

By replacing u by Ad(s,) . u, and a by Ad(s0) . a, we may assume (be- 
cause of the invariance of the scalar product) that so = e.  Let us express that, 
for each x E g, the derivative of the function of a real variable 

t I +  IIAd(exp(tx)) * u - vIIz 

vanishes at t = 0. Since the derivative  oft^ Ad(exp(tx)) * u at t = 0 is [x, u] 
(19.11.2), we obtain by use of (21.5.4.1) 

0 = 2([x, u] I u - v) = 2(x I [u, u - v]) 

for all x E g; in other words, [u, v] = 0 and therefore u E j ( v )  = ,<(t). 
Q.E.D. 

(21.7.7.2) In particular, any two maximal tori of G have the same dimen- 
sion; this dimension is called the rank of the compact connected Lie group G 
or of its Lie algebra g. If G is a compact semisimple Lie group, g = 0 gj the 

decomposition of its Lie algebra as a direct sum of simple algebras (21.6.4), 
and t j  a maximal commutative subalgebra of gj, then it is immediately 
verified that t = @ t j  is equal to its centralizer in g, so that the rank of g is 

the sum of the ranks of the gj 

j 

j 
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(21.7.8) Let G be a compact connected Lie group and T a maximal torus in 
G. For. each x E G, there exists s E G such that sxs-' E T. 

For x lies in some torus in G (21.7.4). 

(21.7.9) Let G be a compact connected Lie group. For each torus A in G, the 
centralizer d ( A )  of A in G is connected. Moreover, for each s E .%(A), A v {s) 
is contained in a maximal torus of G. 

Let s E .%(A); the centralizer S ( s )  of s is a Lie subgroup of G, and its 
identity component H is a compact connected subgroup of G. There exists a 
maximal torus T of G containing s (21.7.8), and by definition we have T c H 
and A c H; moreover, T is clearly a maximal torus of H. By (21.7.7), there- 
fore, there exists an element h E H such that A c T = hTh-', and therefore 
T is contained in the identity component ofZ(A) .  But we have hsh- ' = s by 
definition of H, hence s lies in the identity component of Y(A);  and T is a 
maximal torus of G containing A and s. Q.E.D. 

In particular: 

(21.7.10) In a compact connected Lie group G, every.maxima1 torus is equal 
to its centralizer, and is therefore maximal in the set of all commutative sub- 
groups of G. 

It should be noted, however, that the set of commutative subgroups of G 
in general contains maximal elements that are not tori (Problem 1). 

(21.7.1 1 ) 
of the maximal tori of G. 

The center of a compact connected Lie group G is the intersection 

Since G is the union of its maximal tori (21.7.4), their intersection is 
contained in the center C of G. Conversely, if T is any maximal torus of G, 
then CT is a commutative subgroup of G containing T, hence is equal to T 
by (21.7.1 0), so that C c T. 

(21.7.1 2) 
tity component of Z ( s )  is the union of the maximal tori of G that contain s. 

Clearly this identity component (T(s)), contains every maximal torus 
that contains s. Conversely, if x E (Z(s)),, then x belongs to some maximal 
torus A of the compact connected Lie group (Z(s)), (21.7.4); but since A is a 
torus in G, there exists a maximal torus T of G containing both A and s, 
because by definition s E Z ( A )  (21.7.9). 

For each element s of a compact connected Lie group G, the iden- 
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We remark that the centralizer of an arbitrary element s E G is not 
necessarily connected (Problem 1). 

(21.7.1 3) An element s in a compact connected Lie group G is said to be 
regular if it belongs to only one maximal torus of G, and singular if it belongs 
to more than one. Likewise, an element u of the Lie algebra g, of G is said to 
be regular if it belongs to only one maximal commutative Lie subalgebra, 
and singular if it  belongs to more than one (see (21.8.4.2)). 

It follows from (21.7.1 2) that an element s E G is regular if and only if the 
identity component of %"(s) is a maximal torus. An equivalent condition is that 
the dimension o f S ( s )  is equal to the rank ofG;  for %"(s) contains at  least one 
maximal torus T, and if the dimension of 9 ( s )  is equal to that of T, then T 
must be open in 9 ( s )  (16.8.3.3), hence is the identity component of 9 ( s ) .  
Likewise, in order that u E ge should be regular, it is necessary and sufficient 
that the centralizer 3(u) should be a maximal commutative subalgebra. For 
this condition is clearly sufficient; and conversely if u is regular and t is a 
maximal commutative subalgebra that contains u, then J(u) cannot contain 
any element v # t, otherwise the commutative subalgebra generated by u 
and v would be contained in a maximal commutative subalgebra distinct 
from t. 

(21.7.1 4) Let G be a compact connected Lie group. If u is a regular element 
of the Lie algebra ofG, then the centralizer %"(Ru) in G (19.1 1.3) is a maximal 
torus of G.  

For if A is the torus in G that is the closure of the one-parameter 
subgroup corresponding to Ru, we have %"(A) = ~ ( R u )  ((1 9.1 1.6) and 
(1 2.8.6)). Since S ( A )  is connected (21.7.9), its Lie algebra is the centralizer of 
Ru (1 9.1 1.6), and the proposition follows. 

(21.7.1 5) 
G is open (hence o f jn i t e  index) in its normalizer M(T)  in G. 

Let G be a compact connected Lie group. Every maximal torus T of 

Let H be the identity component of the Lie group N(T) ,  and for each 
s E H let 0, denote the automorphism X H S X S - I  of T. The argument of 
(1 9.14.4) shows that the mapping SH ns is a Lie group homomorphism of H 
into the group Aut(T). But Aut(T) is discrete (19.13.6) and H is connected, 
hence 0, is the identity mapping for each s E H (3.19.7). In other words, H is 
contained in the centralizer of T, hence H = T (21.7.10). 

(21.7.16) With the notation of (21.7.15), the finite quotient group 
W(G, T)  = M(T)/T is called the Weyl group of the compact connected Lie 
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group G, relative to the maximal torus T. For each s E G, we have 
A.'(sTs-') = s.N(T)s-' by transport of structure, hence W(G, sTs-') is iso- 
morphic to W(G, T). By virtue of the conjugacy theorem (21.7.7), the Weyl 
groups corresponding to the various maximal tori of G are all isomorphic; 
any one of these Weyl groups W(G, T) is called the Weyl  group of G, and 
denoted by W(G), or simply W. The group W(G, T) acts differentiably on T 
in a canonical way: every element w E W(G, T) is the coset of an element 
s E M(T), and we define w . t = sts- l ,  which is independent of the choice of 
representative s E w, because T is commutative. Since 2 ( T )  = T (21.7.10), it 
follows that W(G, T) acts faithfully on T. 

(21.7.17) Let G be a compact connected Lie group and T a maximal torus in 
G .  If two elements t , ,  t 2  of T are conjugate in G, there exists an element 
w E W(G, T) such that t 2  = w t , .  

We have t ,  = s t ,  s-l for some s E G, and we have to show that 
t ,  = ntl n - l  for some n E N(T).  The torus T is contained in %"(tl) and 
%"(t,), hence %"(t,) also contains the torus sTs-'. Hence, if H is the identity 
component of 2 ( t , ) ,  both T and sTs- are maximal tori in the compact 
connected Lie group H, and therefore there exists an element h E H such 
that sTs-' = hTh-' (21.7.7). It follows that h- 'sT(h- ' s ) - '  = T, so that 
n = h - l s  E Jlr(T); and since h E %n(t2), we have h-  ( s t ,  s- ' ) h  = t ,  , that is to 
say, nt,  n- l  = t,. 

(21.7.1 8) Let G be a compact connected Lie group and C' a closed subgroup 
of the center C of G. Then, ifT is a maximal torus of G, the quotient group 
T/C' is a maximal torus of G/C'; also .N(T/C') = .N(T)/C', and the W e y l  
group W(G/C', T/C') is isomorphic to W(G, T). 

Recall that C is contained in T (21 -7.1 1). If x: G + G/C' is the canonical 
homomorphism, and if n(s) belongs to the normalizer of n(T) = T/C', we 
have n(sts- ')  E n(T) for all t E T, and therefore sts- '  E C'T = T, whence 
s E .N(T) and thus .N(T/C') = .N(T)/C'. It is clear that n(T) is a compact 
connected commutative subgroup of G/C', hence is a torus. Let U be a 
compact connected commutative subgroup of G/C' containing z(T) = T/C'; 
then U c M(T/C') = .N(T)/C', hence n-l(U) is a compact subgroup of G 
such that T c n-l(U) c .N(T). By (21.7.15), T is open in n-'(U), hence 
T/C' is the identity component of U = n-'(U)/C'. Since U is connected, we 
have T/C' = U, and hence T/C' is a maximal torus in G/C'. Finally, 

W(G/C', T/C') = Jlr(T/C')/(T/C') = (.N(T)/C')/(T/C') = N(T)/T 

= W(G, T) 

up to canonical isomorphism ((1 2.1 2.2) and (1 9.10.2)). 
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PROBLEMS 

1. 

2. 

3. 

4. 

5. 

6. 

Let G be the rotation group S0(4k, R), where k 2 1. Let V be a vector subspace of 
dimension 2k in R4', V" its orthogonal supplement, and let s be the automorphism of R4' 
such that s(x) = x for x E V and s(x) = -x for x E V*; then s E G. Let H (resp. H') be a 
hyperplane in V (resp. V"). and let r be the automorphism of R4' whose restriction to V 
(resp. V') is the orthogonal reflection with respect to H (resp. H'). We have r E G and 
rs = st. Let S be the centralizer of s in G, and S o  the identity component of S. Show that 
det(u I V) > 0 for all u E S o  and hence that r 6 S o .  Deduce that S is not connected, and that 
the commutative subgroup generated by s and t is not contained in any maximal torus of 
G .  

Let G be a Lie group, g its Lie algebra, and @ a  G-invariant symmetric R-bilinear form on 
g x g (21.5.4). Let K be a compact subgroup of G. Let x, y be elements of g; show that 
there exists an element t E K such that @(u, [Ad([) . x, y]) = 0 for all u E f = Lie(K). 
(Argue as in (21.7.7.1).) 

Let G be a compact Lie group, g its Lie algebra, and 111 a vector subspace of g such that 
[[u, v], w] E 111 for all u, v, w in 111. Let G' be the identity component of the normalizer 
& ' ( i l l )  of 111 in G (19.11.3), and let t be a maximal element of the set of commutative 
subalgebras of g contained in 111. Show that for each commutative subalgebra a of g 
contained in 111, there exists an element s E G' such that Ad(s) . a c t .  (Argue as in 
(21.7.7).) 

Let G be a Lie group, s an element of G, and g the Lie algebra of G. Let I I  be the union of 
the kernels of the endomorphisms (Ad(s) - I,)' of the vector space g, for all integers k 2 1. 
Show that 11 is a Lie subalgebra of g. Let N be the connected Lie group immersed in G 
corresponding to the Lie algebra 11. Show that the mapping (s, f)++sxts-' of G x N into 
G is a submersion (16.7.1) at the point (e, e). (The vector space g is the direct sum of 11 and 
a subspace 111 such that the restriction of Ad(s) - 1, to 111 is an autornorphism of this 
subspace (11.4.1). Calculate the tangent linear mapping at the point 5 = 0 of the mapping 

S + + ~ X P ( ~ U ) X  exp(5v) e x d - 5 4  

of R into G, for u E I I  and v E 111.) 

Give a proof of (21.7.4) without using the Riemannian structure of G, but using instead 
(21.7.7) and proceeding by induction on n = dim@). (Given a maximal torus T of G, 
show that the union E of the conjugates of G is open in G. For this it is enough to show 
that E is a neighborhood of any point s E T; distinguish two cases, according as s belongs 
or does not belong to the center of G. In the second case consider the identity component 
of the centralizer of s in G, and use the inductive hypothesis and Problem 4.) 

Let G be a compact connected Lie group, T and T two maximal tori in G. Let A (resp. A )  
be a subset of T (resp. T )  and let u be an automorphism of G such that a(A) = A .  Show 
that there exists s E G such that so(a)s-' = .(a) for all a E A and such that su(T)s-' = T .  
(Consider the maximal torus T = u(T) and the identity component of thecentralizer of A' 
in G.) 

In particular, there exists an inner automorphism of G that transforms T into T and 
fixes the elements of T n T .  



60 XXI COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS 

7. Let G be a compact connected Lie group and N a closed normal subgroup of G. Show that 
if there exists a maximal torus T of G such that T n N = {e}, then N = (e}. (Consider a 
maximal torus S of N, and use (16.30.2.2).) 

8. Let G be a compact connected Lie group. 
(a) If H is a connected closed subgroup of G. every maximal torus of H is of the form 
T n H, where T is a maximal torus of G. 

The Weyl group W(H, T n H) is isomorphic to the quotient F/F, where F is the 
subgroup of W(G, T) that leaves T n H stable as a whole, and F is the normal subgroup 
of F that fixes T n H elementwise. 
(b) If N is a closed normal subgroup of G, every maximal torus of G/N is of the form 
TN/N, where T is a maximal torus of G (use Section 21.6, Problem 4). If in addition N is 
discrete, every maximal torus of G is the inverse image of a maximal torus of G/N under 
the canonical homomorphism (use (16.30.2.2)). 

9. Let G be a compact connected Lie group, T a maximal torus in G, and N its normalizer in 
G. Then G (resp. N) acts differentiably on G (resp. T) by inner automorphisms; let E and 
F be the respective orbit spaces (12.10) and A :  G + E, n‘: T + F the canonical mappings. 
If j: T + G is the canonical injection, there exists one and only one continuous mapping 
J F + E such that A 0 j =/ 0 A’. Show that f is a homeomorphism of F onto E. 

10. Let G be a compact connected Lie group and T a maximal torus of G. Show that the 
manifold G/T is simply connected, and that if G‘ is a compact connected Lie group, locally 
isomorphic to G, and if T is a maximal torus of G’, then G/T and G‘/T’ are diffeomorphic. 
(Reduce to the case where G and G’ are semisimple, and use Section 16.30, Problem 11.) 

8. ROOTS AND ALMOST SIMPLE SUBGROUPS OF RANK ONE 

Throughout this section, G denotes a compact connected Lie group, T a 
maximal torus of G, g (resp. t) the Lie algebra of G (resp. T), and 
W = W(G, T) the Weyl group of G relative to T. Since W may be identified 
with a group of automorphisms of T, it acts linearly and faithfully on t via 
the derived automorphisms. To be precise, if s is a representative of w E W in 
N(T), we have w u = Ad(s) . u for all u E t. Since w is now an automor- 
phism of the real vector space t, its contragredient ‘w-  is an automorphism 
of the dual t* of t ;  we shall write w * I in place of ‘w-’(A) for A E t*, so that 
we have ( w  - u, w * A )  = (u, A) for all u E t and I E t*, and W acts linearly 
on the vector space t* by the rule (w, A)H w 2. 

(21.8.1) Consider again the linear representation s~--t Ad@) @ 1, of T on 
the complex vector space $,) = g @ RC = g @ ig, and the derived homo- 
morphism UH ad(u) @ 1, oft into gI(g(=)). It follows from (21.7.5) that there 
is afinite set S c 2niI’,* of nonzero weights of T (also denoted by S(G, T) or 
S(G)) such that the complex vector space g(,) is the direct sum of a vector 
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subspace go 2 t,,, and vector subspaces g,, each of the latter being nonzero 
and corresponding to a weight a E S. Furthermore, for each u E t we have 

(21.8.1 . l )  [u, x] = 0 

for all x E go, and 

(21.8.1.2) [ u, x] = a( u)x 

f o r a l l u c S a n d a l l x E s .  
In fact, go = t @ it = t,,,, the cornplexijcatzon oft, because if x = y + iz 

with y, r E g, the relation [u, x] = 0 for u E t implies that [u, y] = 0 and 
[u, 21 = 0 for all u E t, and therefore y E t and r E t, since t is its own 
centralizer in g (21.7.2.1). 

The weights a E S are called the roots of G relative to T, or of g relative to 
t. 

(21.8.1.3) The roots a E S are the only R-linear mappings A oft into C that 
are not identically zero and are such that for some xo # 0 in g,,.), we have 
[u, xo] = A(u)xo for all u E t (A.24.4). 

(21.8.2) Let c be the semilinear bijection of the complex vector space g(=) 
onto itself defined by c(y + ir) = y - ir for y, r E 9. The real subspace g 
(resp. ig) is therefore the set of all x E g(,) such that c(x) = x (resp. C(X) = 
- x). It is clear that [u, c(x)] = c([u, XI) for all x E g(,) and all u E t ;  hence it 
- follows from (21.8.1.2) that, for all x E and all u E t, we have [u, c(x)] = 
U(U)C(X) = -a(u)c(x), since U(U)  is pure imaginary. Consequently, ifa is a 
root, so also is -u,  and we have g-, = c(gJ. 

(21.8.3) 
each x, E G, the two elements 

Consider a root u = 2x4 ,  where cp is an R-linear form on t. For 

belong to 9, and as xu runs through a C-basis of g,, the y, and z, form an 
R-basis of (9, @ g-,) n g. For each u E t, we have 

(21.8.3.2) [u, y,] = 2xcp(u)ra, [u, z,] = -2ncp(u)y,. 

Since the center c of g is contained in t, it follows from these formulas that c is 
the set of vectors u E t such that a(.) = Ofor all u E S. 
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Moreover, since (Ad(exp(u)) 6 1,) * x, = ezni~(")xU (21.7.5.1), we deduce 
from (21.8.3.1) that 

(21.8.3.3) 

Ad(exp(u)) . ya = cos(2ncp(u))yU + sin(2ncp(u))z,, 

Ad(exp(u)) * 2, = -sin(2ncp(u))yU + cos(2n(p(u))z,. 

From these formulas we obtain a characterization of the regular elements of 
G (resp. g) (21.7.13) that are contained in T (resp. t): 

(21.8.4) In order that an element u E t be regular, it is necessary and 
suficient that it belong to none of the hyperplanes u, = u-, = a- ' (0)  in t, 
where a E S .  

In order that an element s E T be regular, it is necessary and sufficient that 
i t  belong to none o f the  subgroups U, = U-,  = x i ' (1 )  in T, where x, is the 
character ofT defined by L(exp(u)) = eU(") for u E t and a E S .  

If u belongs to none of the u,, it follows from (21.8.3.2) that the image of 
g under ad(u) is the sum of the subspaces g n (a 0 g-,), where a E S; 
hence its kernel has the same dimension as t (A.4.17), and since this kernel 
contains t it coincides with t, and therefore u is regular (21.7.1 3). Conversely, 
if u E w, , the kernel of ad(u) contains t 0 ((g, @ g-,) n g), hence u is singu- 
lar (21.7.1 3). 

Likewise, if s lies in none of the subgroups U,, then the set of vectors in 
g(c) that are fixed by Ad(s) 8 lc is precisely t(,), because in each of the g, the 
restriction of Ad(s) 8 1, is multiplication by x,(s). Since Ad(s) fixes all the 
elements of the Lie algebra of a(s), this Lie algebra is equal to t, and 
therefore s is regular (21.7.1 3). Conversely, if s E U,, then Ad(s) fixes the 
vectors belonging to (g., 0 g-,) n g, and therefore (19.11.2.3) the Lie 
algebra of 9 ( s )  has dimension strictly larger than the rank of G, and s is 
singular. 

More precisely, this proof shows that the Lie algebra of S(s)  is the direct 
sum o f t  and the subspaces (9, @ g-,) n g for all roots a such that s E U, . If 
the number of these roots is 2k (it is an even number because U -, = U,), we 
have therefore 

(21.8.4.1) dim(a(s)) 2 1 + 2k 

where 1 is the rank of G. (We shall see later (21.10.3) that in fact the two sides 
of (21.8.4.1) are equal.) 
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For each u E S, the group U ,  is a compact subgroup of T, of dimension 
1 - 1, and ti, is its Lie algebra. It should be remarked that U, need not be 
connected (Problem 2). 

(21.8.4.2) In order that u E t should be such that exp(u) is a singular element 
of G,  it is necessary and sufJicient that u( u) should be an integer multiple of 2ni 
for ,some root u E S. In order that u should be such that exp(u) lies in the 
center of G,  it is necessary and sufJicient that u( u) should be an integer multiple 
of 2ni for all roots u E S. 

This follows from (21.8.3.3). 

(21.8.4.3) For each u E t, the set consisting of 0 and the u( u), u E S, is the 
set of eigenvalues of the endomorphism ad(u) 0 1, of g(,--. It follows there- 
fore from (19.16.6) that the set of elements u E t such that the tangent linear 
mapping T,(exp,) is not bijective is the set of u E t such that at least one of 
the numbers u(u), u E S, is a nonzero integer multiple of 2ni. 

(21.8.5) For each root u E S and each element x, # 0 in g,, the two elements 
y,, z, of g dejined in (21.8.3.1), and the element h: = [y,, z,] (which belongs 
to t), form a basis of the Lie algebra of a connected closed subgroup K ,  of G, 
locally isomorphic to SU(2, C). Furthermore, - iu(h:) > 0. 

The Jacobi identity shows that, for each u E t, 

[ U ,  h:] = [ U, [y, z,]] = [Y, [ U, z,]] - [ 2, [ U ,  Y,]] = 0 

by virtue of (21.8.3.2). Since t is its own centralizer in g, it follows that h: E t. 
Now let (ulv)  be a G-invariant scalar product on g (21.4.3). Bearing in 

mind (21.5.4.1) and (21.8.3.2), we have 

Since z, # 0, we have (z,lz,) # 0; since the linear form cp = (2ni)- 'u  is not 
identically zero on t, we have h: # 0; and therefore from (21.8.5.1) we 
obtain 

so that u(h:) # 0, and -iu(h:) > 0. 
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We have therefore shown that the three vectors h:, y, , za form a basis of 
a Lie subalgebra f.  of g, for which the multiplication table is as follows: 

We now recall that the compact connected Lie group SU(2, C) = SU(2) 
(16.11.3) has as Lie algebra the Lie subalgebra eu(2) (over R) of 
gl(2, C) = M2(C) consisting of the antihermitian matrices S (i.e., matrices S 
such that ' S  + S = 0) with trace 0 ((19.4.3.2) and (19.7.1.1)). It is im- 
mediately seen that the three matrices 

O i  0 - 1  
(21.8.5.4) i H =  ( "), Y = ( o), Z =  o) 

0 - i  

form an R-basis of this Lie algebra, and that the multiplication table is 

(21.8.5.5) 

[ i H ,  YJ=2Z, 

[ iH,  Z] = -2Y, 

[ Y ,  Z] = 2iH. 

If we now observe that by (21.8.5.2) the number 

a, = - ia(h:)  

is strictly positive, it is clear that we may define an isomorphism B of su(2) 
onto f, by the formulas 

I t  is immediately verified that no matrix # A1 in M,(C) commutes with each 
of H, Y, and Z, and therefore the center of 5u(2)  is {0}, so that the compact 
group S U ( 2 )  is semisimple, with discrete and therefore finite center (in fact, 
it is easily shown that the center consists of & I ) .  Moreover, SU(2) is simply 
connected (1 6.30.6), hence the groups locally isomorphic to SU(2) are com- 
pact (in fact, there are up to isomorphism only two of them, namely SU(2) 
itself and its quotient by its center, which is isomorphic to SO(3)). The 
connected Lie group K, immersed in G that has fa as its Lie algebra is 
therefore compact with respect to its proper topology, hence is closed in G 
(3.17.2). 
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I t  follows immediately from (21.8.5.5) that RiH is a maximal commuta- 
tive subalgebra of su(2), and consequently (21.7.7.2) SU(2) and the K, are 
almost simple groups of rank 1. 

(21.8.6) If u is any automorphism of G ,  i t  is clear by transport of structure 
that v(T) is a maximal torus of G. The derived automorphism o* of g 
transforms t into the Lie algebra of v(T), and the contragredient ‘u; of this 
automorphism therefore transforms the lattice of weights of T into that of 
u(T), and the set S of roots of G relative to T into the set of roots of G 
relative to v(T). 

In particular, taking v = Int(s), where s E M(T), these remarks show that 
the Weyl group W = W(G, T) leaves invariant (globally) the lattice of weights 
of T and the set S of roots of G relative to T. For each w E W we have, 
evidently, 

Furthermore: 

(21.8.7) There exists an element r, E K, belonging to the normalizer N(T) ,  
whose coset s, modulo T in the Weyl group W acts on t as the orthogonal 
rejection in the hyperplane w, (relative to any G-invariant scalar product on 
g), mapping h,“ to - hz. 

We shall show that we may take r, = exp(cy,) for a suitably chosen real 
number {. We have (1 9.1 1.2.2) 

Ad(r,)  = exp(5 

in the algebra End(g). Now, for each u E II , ,  we have 

ad(y,). u = -[u, y,] = -ia(u)z, = 0 

by definition, hence Ad(r,) . u = 0; also, if  we put a, = -ia(h:) > 0 as 
above, it follows from the formulas (21.8.5.3) that 

A d ( r , ) .  h,” = cos(-a,{)hz + sin(-a,l)z,, 

and therefore, if we put 5 = n/a,, we obtain Ad(r,)  * h: = - h:. Hence, for 
this value of 5 ,  the automorphism Ad(r,) leaves invariant t = w, 0 Rh,” so 
that r, E .N(T) (19.11.4); and since h,O is orthogonal to u., relative to any 
G-invariant scalar product on g by virtue of (21.8.5.1), it follows that the 
restriction of Ad(r,) to t is the orthogonal reflection in the hyperplane w,. 
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(21.8.8) The definition of the roots involves only the Lie algebra g and a 
maximal commutative subalgebra t of g (21.8.1). Since any one of these 
subalgebras can be transformed into any other by an automorphism of g 
(21.7.7), it follows that the set of roots, up to automorphisms of g ,  depends 
only on g and is therefore the same for any two locally isomorphic compact 
connected Lie groups. Moreover, if we canonically decompose g as the direct 
sum c @ B(g) of its center c and its derived algebra 3(g) (21.6.9), we have 
t = c @ t‘, where t‘ is a maximal commutative subalgebra of B(g). Also 
g(c, = qC) @ (B(g))(c), and it is immediate that c(,.) is the center and (3(g))(c) 
the derived algebra of g(,.); and by decomposing an element x E g. relative to 
this direct sum, it follows from (21.8.1.2) that the component of x in c ( ~ )  is 
zero, so that the 9. are contained in (B(g))(cl. Finally, for each root a E S, we 
have a(u)  = 0 for all u E c, so that a may be identified with its restriction to 
t’. The result of these considerations is that the set of roots of g relative to t 
may be identified with the set of roots of B(g) relative to t’, so that in the 
study of the roots of a compact connected Lie group G we may assume 
without loss of generality that G is semisimple (or even semisimple and 
simply connected). 

PROBLEMS 

Every quaternion of norm 1 can be written uniquely as x + yj, where x and y are complex 
numbers such that l x  1’ + Iy1’ = 1. Show that the mapping 

x + y j c (  - j j  f ’) 
defines an isomorphism of the Lie group U(1, H) onto the Lie group SU(2, C). 

With the notation of (21.8.4) and (21.89, show that the group U, has two connected 
components if K, is isomorphic to SU(2, C), and is connected if K, is isomorphic to 
SO(3, R). 

With the notation of (21.8.1), show that for every symmetric C-bilinear form @ on 
g(,, x g,q, the spaces ga and g6 are orthogonal relative to Q if a + /? # 0, and go = t,,, is 
orthogonal to g, for each a E 8. 

Show that a singular element of a compact connected Lie group lies in infinitely many 
maximal tori. 
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9. LINEAR REPRESENTATIONS O F  SU(2) 

The study of the roots of a compact connected Lie group G is based on 
the existence of the subgroups K, of G, locally isomorphic to SU(2) (21.8.5). 
In this section we shall show that it is possible to describe explicitly all the 
linear representations of SU(2). This result, applied to the restrictions to the 
subgroups K, of the linear representation SH Ad(s) 0 1, of G on g(,), will 
enable us in Section 20.10 to derive certain properties of the set S of roots of 
G ,  on the basis of which it is possible to describe explicitly all possible sets of 
roots. 

(21.9.1) We recall that if G is a connected, simply connected, real Lie 
group and E is a finite-dimensional complex vector space, the mapping 
Vt+ V, is a bijection of the set of linear representations of G on E, onto the 
set of (R-linear) homomorphisms of the Lie algebra g, of G into the Lie 
algebra gI(E) = End(E) (19.7.6). By virtue of (21.5.2.1) and the connec- 
tedness of G, a complex vector subspace F of E is stable under V if and only 
if it is stable under V,. 

Furthermore, from any R-linear homomorphism of Lie algebras 

P : Re -+ RI(E), 

we obtain a C-linear homomorphism p @ I, : ge OR C + gI(E) of the 
complexification of g, into gI(E), and we obtain in this way a bijection of the 
set of R-homomorphisms of ge into gI(E) onto the set of C-homomorphisms 
of ge OR C into gl(E), the inverse bijection being the restriction p ’ w  p ’  I ge 
(21.5.2); equivalently, a complex vector subspace F of E is stable under p if 
and only if it is stable under p 0 1,. 

Finally, if 9 is the Lie algebra of a (real or complex) Lie group, and p is a 
Lie algebra homomorphism of g into gl(E) = End(E), then (1 9.6.4) p extends 
uniquely to a homomorphism of associative algebras U(p): U(g) + End(E), 
which makes E into a lefc module over the enveloping algebra lJ(g) of g; to 
say that a complex vector subspace F of E is stable under p therefore signifies 
that it is a U(g)-submodule of E. 

From these remarks it follows that a linear representation V of a com- 
pact Lie group G on a finite-dimensional complex vector space E is irredu- 
cible if and only if E is a simple U(g, &C)-module, where the module 
structure on E is defined by U(V, 0 1,). 

Moreover, for every linear representation I/ of the compact group G on a 
finite-dimensional complex vector space E, the module E is a direct sum of 
simple U($ BR C)-submodules. Among these simple submodules there may 
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appear trivial U(g, BR C)-modules, corresponding to the trivial representa- 
tion of, G (21.1 . l )  : in such a submodule, the product of any element of the 
module by any element of a BRC is zero. 

(21.9.2) The three matrices Y ,  Z, H (21.8.5.4) are clearly linearly indepen- 
dent over C in M2(C), and therefore form a basis of the complexification of 
~ ( 2 ) .  Another, more convenient basis consists of the three matrices 

(21.9.2.1) H =  (1 0 - 1  0)). 

from which it is clear that the complexification of m(2) is d(2 ,  C) (19.7.1 .l). 
The multiplication table for this basis is 

[H, X+]  = 2 x + ,  

(21.9.2.2) [H, x-] = - 2 x - ,  

[X+, x-] = H. 

If p :  d(2, C) -, gl(E) is a C-homomorphism of d(2, C) into the Lie algebra 
gI(E), where E is a finite-dimensional complex vector space, we denote by 
(P, X)H P . x the corresponding U(sl(2, C))-module structure on E (21.9.1) 
(so that P is a sum of noncommutative monomials in H ,  X+, and X- with 
complex coefficients). 

(21.9.3) For each integer m >= 0 there exists an irreducible linear representa- 
tion of SU(2) on a complex vector space L, of dimension m + 1, which has a 
basis (e,)oI;,I;, for which the U(sl(2, C))-module structure of L, is  defined by 
the formulas 

(21.9.3.1) H * e, = (m - 2j)e,, 

X +  e, = (m - j + l)e,-l ,  

X- . el = ( j  + I)ej+l 

(with the convention that e-  = em+, = 0). Every irreducible linear represen- 
ta'ion of SU(2) is equivalent to one of these representations. 
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Consider a linear representation V ,  not necessarily irreducible, of S U ( 2 )  
on a nonzero finite-dimensional complex vector space E. For each 1 E C, let 
Ed denote the subspace of all vectors x in E such that H . x = Ax. 

The set P of complex numbers 1 such that E, # (0) is the finite set of 
eigenvalues of the endomorphism V*(H) of E. It follows from (21.7.5), 
applied to the maximal torus of S U ( 2 )  for which RiH is the Lie algebra, that 
E is the direct sum of the Ed for 1 E P. 

(21.9.3.2) I f x  E Ed,  then X +  . x E E d + 2  and X -  . x E E,.-2 

For by virtue of (21.9.2.2) we have 

H . (X' . X) = [ H ,  X ' ]  * x + X +  * ( H  * X) = ( A  + 2 ) X +  

H . ( X -  * X) = [ H ,  X - ]  * x + X -  

X, 

(H * X) = (1 - 2 ) X -  * X. 

An element x E E is said to be primirioefor the eigenvalue 1 E P if x # 0 
and if 

(21.9.3.3) H . x = A x ,  X + , X = O .  

We then have 

(21.9.3.4) There exists a primitive element in E. 

Let z be a nonzero element of some E d .  Not all of the vectors ( X ' ) ,  . z 
(n  2 0)  can be different from 0, otherwise by virtue of (21.9.3.2) they would 
all belong to distinct eigenspaces E, , which is absurd. If k 2 0 is the smallest 
integer such that ( X + ) k + '  . z = 0, the vector x = ( X + ) k  * z is primitive for 
the eigenvalue J. + 2k. 

(21.9.3.5) Let M be a (not necessarily finite-dimensional) complex vector 
space, (P,  z)+ P - z  a U(eI(2,  C))-module structure on M ,  and let x # 0 be an 
element of M satisfying (21.9.3.3). For each integer j 2 0, put x j  = ( X - ) J  ' x / j !  

(i) For each integer j 2 0, we have 

(21.9.3.6) H . x .  J = (A - 2 j ) x j ,  

X -  . x j  = ( j  + l ) ~ ~ + ~ ,  

X +  - xi = (1 - j + l )x j - ,  

with the convention that x-  = 0. 
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(ii) If M isjinite-dimensional, then A is an integer m 2 0, the subspace F 
of M spanned b y  the xj  is a simple U ( d ( 2 ,  C))-submodule, and the correspond- 
ing irreducible linear representation of S U ( 2 )  is equivalent to that defined b y  
(21.9.3.1). 

The first of the formulas (21.9.3.6) follows from the calculation in 
(21.9.3.2), and the second follows from the definition of the xj .  As to the 
third, it is true by hypothesis when j = 0, and we proceed by induction on 
j 2 1. By use of (21.9.2.2) and the first of the formulas (21.9.3.6), we obtain 

j X +  . x .  J = ( X ' X - )  * xj- l  

= [ X ' ,  x - ]  . xj-1 + x -  * (X' . xj-1) 

= H * XJ- 1 + (A - j + 2 ) X  - . x,- 2 

= (A - 2j + 2 + (j- l)(A - j  + 2 ) ) x j - ,  

= j ( A  - j  + l ) ~ ~ - ~ .  

The x j  belong to eigenspaces of H corresponding to distinct eigenvalues of H 
in M, hence the nonzero xj  are linearly independent. Consequently, if M is 
finite-dimensional, there exists a smallest integer rn 2 0 such that x,+ = 0; 
by (21.9.3.6), we then have 0 = X +  x,+ = (A - m)xm, whence A = in. The 
subspace F spanned by the m + 1 vectors x j  (0 5 j 5 m )  then has these 
vectors as a basis, because they are all nonzero and hence linearly indepen- 
dent. The formulas (21.9.3.6) show that F is a U(sI(2 ,  C))-submodule of M. 
To show that F is simple, we remark that if F' is a nonzero submodule of F, it 
is a vector subspace of F that is stable under the endomorphism zt+ H . z, 
hence is a direct sum of a certain number of 1-dimensional eigenspaces Cxj 
of this endomorphism (A.24.3); in other words, there exists at least one 
index j E [0, m] such that x j  E F'. But then, since m - j + 1 # 0 for a l l j  such 
that 0 j m, the third of the formulas (21.9.3.6) shows that xo E F', and 
the second that xk E F for 0 5 k 5 m, so that finally F' = F. 

I t  remains to show that for each integer m 2 0, the formulas (21.9.3.1) 
effectively define a homomorphism of sI(2, C )  into gl(L,) for which L, is a 
simple U(eI(2,  C))-module. The first point amounts to the verification that 

H * (X' . e j )  - X +  * ( H  . e j )  = 2 X +  * e j ,  

H ( X -  e j )  - X -  * ( H  * e j )  = - 2 X -  . e j ,  

X + . ( X - * e j ) - X - . ( X +  * e j ) = H . e j ,  

which is a simple calculation. Finally, the proof above that F is simple shows 
that L, is simple, and the proof of (21.9.3) is therefore complete. 
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(21.9.4) Let I/ be an arbitrary continuous linear representation of SU(2) on 
a finite-dimensional complex vector space E, and let p = V* be the derived 
homomorphism. Then E is the direct sum of r simple U(sl(2, C))- 
submodules E l ,  . . . , E,, with E, isomorphic to L,, , say. From (21.9.3) we 
deduce immediately the following simple rule for determining the integer r 
and the integers mk: r is the dimension of the kernel N of the endomorphism 
p ( X + )  of E; this kernel N is stable under the endomorphism p(H), and the 
eiqeriualues (each counted according to its multiplicity) of this endomor- 
phism of N are precisely the numbers mk . 

Another characterization of the number r, which follows from the first of 
the formulas (21.9.3.1), is that it is the sum qf the multipliciries of the 
eigenvalues 0 and 1 qf p ( H ) .  

PROBLEMS 

1. In the almost simple compact Lie group SU(2) = G ,  the matrices r ( I )  = 

where I E 1 = [ - 11, n] c R, form a niaximal toriis T of G .  For each central functionSon G, 
put/O(t) = , f ( r ( / ) ) .  F o r f t o  belong to Y ' ( G )  it  is necessary and sufficient thatfo(r)  sin' I 

belong to Y'(l), and we have 

(21.15.4.2). 

(a)  Let xm denote the character of the irreducible representation of G on L,. Then 

m 

For each / E  Y"(G) we have (,/ I x , )  = 2 1 c , , - '~ .  where c, is the coefficient of hi' in the 

Fourier series of the functionf'(1) sin' I. 
(b) Let p be a real number such that 0 < p < 1, and let a, = (ti + I ) p  - (n - I ) p  for each 
integer ti 2 1. Then the series 

j = n  

yP(r) = 2 + C a, cos nl 

converges for each I that is not an integer multiple of 2n. and its sum belongs to Y'(1) 
(Section 22.19, Problem lO(c)). Hence there exists a central functionf, E P ( G )  such that 
f;(r)  sin' t = g,(/). Deduce (by taking p close to 1) that the majorations of Section 21.2. 
Problem 3(e) cannot be improved by replacing the exponents of by smaller exponents. 

(c) There exists a continuous central function / I  on G such that h n ( t )  = x n - 2  cos n't .  

n =  I 

n = 2  
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With the notation of Section 21.2, Problem 3, show that the family of numbers N,(h * up) is 
unbounded. 

2. With the notation of Problem 1, show that 

X m X n  = X m + n  + X n + n - l +  ... + Xlm-nl 

10. PROPERTIES OF T H E  R O O T S  O F  A COMPACT 
SEMISIMPLE G R O U P  

(21 .lO.l) Let K be a compact, connected, semisimple Lie group, t its Lie 
algebra, and t a maximal commutative subalgebra off. Let g denote the 
complexified Lie algebra f(,), $ its commutative subalgebra t,,, , and S the 
set of roots of f relative to t. By abuse of notation, for each root a E S we 
shall denote again by a its extension a 0 1, to a C-linear form on $; these 
linear forms are called the roots of g relative to $. The complex Lie algebra g, 
its commutative subalgebra $, and the finite set S c $* - {0} of linear forms 
have the following properties: 

(A) There exists a decomposition of g as a direct sum of nonzero com- 
plex vector subspaces: 

(21.10.1 .l) 

such that for each h E b and each x E s, we have 

(21.1 0.1.2) [h, X] = a(h)x. 

(B) There exists a nondegenerate symmetric C-bilinearform @ on the 
vector space g such that 

for all x, y, z E g; also, for each root a E S, there exists h,O E $ such that 

(21 .10.1,4) a(h) = @(h, h:) 

for all h E 5, and 
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(C) The center of g is (0). 

Property (A) has in effect been established in (21.8.1); property (C) 
follows from the hypothesis that K is semisimple (21.6.3). As to (B), take any 
K-invariant R-bilinear scalar product on t (21.4.3), and extend it to a sym- 
metric C-bilinear form @ on f,,, = g: this is always possible, and in one way 
only (note that 0 is not a hermitian scalar product). The existence of the 
element h: satisfying (21.10.1.4) and (21.10.1.5) then follows from (21.8.5) 
and (21.8.5.1). 

In view of later applications (Section 21.20), in this and the following 
section we shall not make use (unless otherwise stated) of the fact that g and b 
arise by complexification of the Lie algebras of a compact semisimple group 
and one of its maximal tori; we shall use only the properties (A), (B), (C) 
listed above. 

(21.10.2) (i) If a, j? are two roots in S such that a + /? # 0, then g, and gs 
are orthogonal relative to 0. I n  particular, g, is totally isotropic, for each 
a E  S .  

(ii) For each a E S,  we have -a E S ,  and g, and g-, are totally isotropic 
subspaces of the same dimension. Each of the subspaces b, g,@g- ,  is 
nonisotropic. 

(iii) For each a E S,  and each x E g,, y E g-,, we have 

(21.10.2.1) [x, Y] = @(x, Y)h,O. 

(i) If x E g,, y E gal h E t,, then by (21.10.1.3) and (21.10.1.2) we have 
cP([h, x], y) + @(x, [h, y]) = 0, and hence (a(h) + p(h))@(x, y) = 0. Since 
a + j? # 0, there exists h E t, such that a(h) + p(h) # 0, and therefore 

is orthogonal to g, for each a E S; 
furthermore, if the roots a, fl are such that f l  # a and j? # -a, then ga and 
g-a are orthogonal to g, @ g-. . In other words, g is the direct sum of 6 and 
the distinct subspaces g. CD g-. (a E S), which are mutually orthogonal; each 
of these subspaces is therefore nonisotropic, and since each g, is totally 
isotropic by (i), the assertions in (ii) are consequences of the elementary 
properties of nondegenerate symmetric C-bilinear forms. 

(iii) Since the restriction of cP to t, x t, is nondegenerate, by (ii), the 
element h: satisfying (21 .10.1.4) for all h E t, is unique. If x E g, and y E g-,, 
then by (21.10.1.2) and (21.10.1.3) we have, for all h E t,, 

@(h, [x, Y]) = @([h, XI, y) = a(h)@(x, y) = @(h, @(x, y)h:) 
and (21.10.2.1) follows from this, since the restriction of 0 to b x b is 
nondegenerate. 

cP(x, y) = 0. 
(ii) The same proof shows that 
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(21.10.2.2) With the convention that gn = (0) for I E t,* whenever I is not a 
root, we have [g,, gal c ga+a for any two roots a, /3 (cf. (21.10.5)). For it 
follows from the Jacobi identity that 

[h, 1x9 Y11 = “h, XI, Y1 + [x, [h, Y l l  
= (a@) + P(h) ) [x ,  Yl  

for all h E t,, x E g,, y E g a ,  and the result therefore follows from (21.8.1.3). 

(21.10.3) 
belonging to [g,, g-J and such that 

(i) For each a E S there exists one and only one element ha E t, 

(21.10.3.1) a(h,) = 2. 

The spaces g, and t,, = [g,, g-,] c t, are one-dimensional. For each non- 
zero x, E g. there exists one and only one element x-, E g-, such that 

(21.1 0.3.2) [xa 9 X - a ]  = ha 

and we have 

so that the subspace 5, = Ch, Q3 Cx, 0 Cx-, of g is a Lie subalgebra of g 
isomorphic to sI(2, C). 

(ii) The set S of roots has thefollowing properties. 

( S , )  S spans the uector space t,*. 
(S,) For each a E S, the linear mapping a,: I I + I  - I(h,)a is an inoolutory 
bijection of t,* onto itself, not equal to the identity mapping, and S is stable 
under a, . 
(S,) For each pair a, /3 in S, the number /3(h,) is an integer (positive, negatioe, 
or zero). 
( S , )  For each a E S, the,only element of theform ta (where t E C and t # 1) 
belonging to S is -a. 

(i) Since the restriction of (3 to g, Q3 g - a  is nondegenerate (21.10,2(ii)), 
it follows from (21.10.2.1) that the vector space [g,, g-,] is one-dimensional. 
It is clear that the only element ha in this space that satisfies (21.10.3.1) is 
ha = 2(a(ht))-’h:. For each x, # 0 in s, by virtue of (21.10.2(ii)) and the 
elementary properties of pondegenerate symmetric bilinear forms, there 
exists an element y E g-, such that @(x,, y) # 0. By multiplying y by a 
suitable nonzero scalar and using (21.10.2.1). we obtain an element 
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x-, E g-, satisfying (21.10.3.2), and then the relations (21.10.3.3) follow 
from (21.10.3.1). For each xu # 0 in g, and each x-, E g-, satisfying 
(21.10.3.2), the subspace 5, = Ch, 0 Cx, 0 Cx-, of g is therefore a Lie 
subalgebra isornorphic to sI(2, C) (21.9.2). Next, suppose that dim(g,) > 1, 
and hence also dim(g_,) > 1 .  Then the hyperplane in g with equation 
@(x,, y)  = 0 would have nonzero intersection with g-,; in other words, 
there would exist a vector y # 0 in g-= such that [xu,  y] = 0 and [h,, y] = 

-2y, by virtue of (21.10.2.1). But this would mean that, for the homomor- 
phism u ~ a d ( u )  of 5, into gl(g), y was a p r i m i t i w  element (21.9.3) for the 
eigenvalue -2 of ad(h,), contrary to (21.9.3.5). The uniqueness of x-, E g-, 
satisfying (21.10.3.2) is now evident. 

We shall henceforth identify the Lie algebra 5, with sI(2, C), by identify- 
ing h,, x,, and x- ,  with H ,  X', and X - ,  respectively (21.9.2.1). 

( i i )  I f  the vector subspace of l)* spanned by S were not the whole of [I*, 
there would exist h # 0 in 1) such that a(h)  = 0 for all roots c1 E S; hence h 
would belong to the center of g, contrary to hypothesis. This establishes (S,) .  

Let a, /) E S and let y be a nonzero element of 9,. Then [h, , y] = /j(h,)y, 
so that /?(ha) is an eigenvalue of ad(h,) in g. By virtue of the identification of 
5, with sI(2, C), it follows from (21.9.3) that p(h,) is an integer p .  which 
proves (S3). 

It follows from the relation a(h,) = 2 that the linear mapping 0,: 
,I++ i - ,I(h,)a of b* into itself is such that of = 1. With the identification of 
8, with 4 2 ,  C), the U(el(2, C))-submodule of g generated by the element y 
above may be identified with one of the modules L, (21.9.3), the element y 
being identified with e j ,  where p = m - 2j (A.24.4). Now define 
z = (ad(x_,))P . y if p 2 0, and L = (ad(x,))-P . y i f  p _I 0. By virtue of the 
formulas (21.9.3.1), in all cases z is a nonzero multiple of e j+ , ,  = e,,,_,, and 
we have z E by (21.10.2.2). This shows that /? - pa E S, and proves 

If a and p = fa both belong to S, i t  follows from (S,) and (21.10.3.1) that 
2r E Z. Since c1 = [-'/I, we may assume that 0 < It 1 $ 1, and then the only 
possible values o f t  are -ti, -t 1. Suppose that B E S is such that 28 E S, and 
let y be a nonzero element of g2,; then [h,, y] = 2b(h,)y = 4y # 0. Now 
3p = 2/1 + /) is not a root, hence from (21.10.2.2) ad(x,) . y = 0. But since 
h, = [xb,  x-,I, we have 

ad(h,) . y = ad(x,)(ad(x-,,) . y)  - ad(x-,) . (ad(x,) . y) 

By (21.10.2.2) again, ad(x_,) . y E 9,; since g, is one-dimensional, i t  follows 
that ad(x-,) . y is a scalar multiple ofx,, so that ad(x,) . (ad(x-,) . y) = 0. 
This contradicts the previous calculation that ad(h,) . y = 4y # 0, and 
thereby proves (SJ. 

= ad(x,,)(ad(x-,) ' Y). 
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(21.10.4) With the notation of (21.10.3), let a, p be two roots that are not 
proportional to each other, and let p (resp. q )  be the largest integer >= 0 such 
that p - pu (resp. /I + qu) is a root. Then p + ka is a root for all integers k 
such that - p  5 k q ;  also P(ha) = p - q, and ad(x,) is a bijection of g p + k ,  

onto C J ~ + ( ~ + , ) .  for - p  5 k s q - 1 .  

Let E denote the vector subspace of g that is the direct sum of the gp:k. 
for all integers k E Z such that /l + ka is a root. With the identification 
(21.10.3) of the subalgebra 5, of g with sI(2, C), it follows from (21.10.2.2) 
that E is an U(eI(2, C))-module. Since the gp+ka such that + ka is a root are 
one-dimensional, and since all the numbers P(ha) + ka(ha) = p(ha) + 2k are 
all distinct and of the same parity, it follows immediately from (21.9.4) that E 
is simple, hence isomorphic to L, for some integer m 2 0. Hence E is the 
direct sum of m + 1 subspaces g p + k a ,  with a s k 5 b, where a and b are 
rational integers such that b - a = m, p + ka E S for a 6 k 5 b, and 
P(h,) + 2a = -m, p(h,) + 2b = m. Since the interval [a, b] of 2 contains 0, 
we have a = - p  5 0, b = q 2 0, and /3(ha) = p - q. Finally, the last asser- 
tion of the proposition follows from the second of the formulas (21.9.3.1). 

(21.10.5) If u, p are two roots, then 

(21.10.5.1) [a, gp] = {0} if a + p is not a root, 

(21.10.5.2) [a, gal = a+s if a + f l  is a root. 

The first assertion has already been proved (21.10.2.2). If a + /? is a root, 
then with the notation of (21.10.4) we have q 2 1, and ad(x,) is a bijection of 
gp onto a+a, by (21.10.4). 

(21.10.6) When g, and S arise from a compact connected semisimple 
group K and a maximal torus of K, as at the beginning of this section, we 
can say more about the properties of the elements ha,  x,, and x-, of 
(21.10.3). Starting with an element x: # 0 in a, we have c(x:) E g-. 
(21.8.2); writing y, = x; -t c(x:), za = i(x: - c(x:)) as in (21.8.3), we obtain 
the formulas (21.8.5.3), with - ia(h:) = a, =- 0, from which we deduce 

(21.10.6.1) [2X: , -~c(x:)] = aa ha 

where ha = - 2iaa- h: E it satisfies (21.10.3.1). It follows that the vectors 
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x ,  = 2 ~ , - ” ~ x ~ ,  x-, = - ~ U , - ~ ~ ~ C ( X ~ )  satisfy the relation (21.10.3.2), and are 
such that 

(21.10.6.2) x-, = -c(x,). 

By virtue of (21.10.5), we may write 

(21.10.6.3) [ x a  9 x/r3 = N a ,  xa + B  

for all pairs of roots a, p such that a + p is a root. Since [c(x,) ,  c(xp) ]  = 

c ( [ x , ,  x s ] ) ,  it  follows from (21.10.6.2) that 

(21.10.6.4) 

if a + ,8 E S. I t  may be shown (21.20.7) that it is possible to choose the h,, 
x,, x-, such that the numbers N,. are real. 

A basis (over C) of g = f,,, consisting of elements x, satisfying the condi- 
tions of (21.1 0.3) and also (21 .10.6.4) for which the Nu. Bare real, together with 
an R-basis of it, is called a Weyl basis of g (cf. Section 21.20). 

We remark also that the linear mapping AHS, . 1 of b* onto itself, 
defined by the element s, of the Weyl group constructed in (21.8.7), is the 
same as the mapping 6,: AH 1 - 1(h,)a, which features in (S,) of (21.10.3): 
for it follows immediately from (21.8.7) that (s, * 1)(u) = A(u) for u E w,, 
and (s, . 1)(h,) = -1(h,). 

PROBLEMS 

1. Let G be a compact connected Lie group and G‘ a connected closed subgroup of G; let g. g’ 
be the Lie algebras of G, G’; let T be a maximal torus of G such that T’ = T n G’ is a 
maximal torus of G‘ (Section 21.7, Problem 8). and let t, 1’ be the Lie algebras of T, T .  

Show that every root of G’ relative to T is the restriction to 1’ of at least one root of G 
relative to T. (Observe that giCl is stable under Ad([) for all I E T’, and that g,,-) is the direct 
sum of t,,, and the g.., where a‘ runs through the set of restrictions to 1‘ of the roots of G 
relative to T, and g., denotes the sum of the g,, for the roots a whose restriction to t’ is a’.) 

2. With the notation of Problem 1, assume that T’ = T, so that G’ has the same rank as G. 
Then every root of G’ relative to T is also a root of G relative to T, i.e., S(G’) c S(G). 
(a) Suppose that G IS the product of almost simple compact groups G, ( 1  5 i 6 r ) ,  T being 
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the product of maximal tori Ti c G i .  Show that G’ is necessarily a product of connected 
closed subgroups G: 3 T, of G i .  (If G; is the projection of G’ in G i ,  use the fact that every 
x E G’ is of the form y t j j - ’ ,  where t E T and y E G’, and deduce that the projection x i  of x in 
G; belongs to G’.) 
(b) The Lie algebra g(o is the direct sum of &,and the am for the roots a E S(G)  - S(G’) .  
Show that the subgroup of G consisting of the elements s E G such that the restriction of 
Ad(s) to 9. is the identity mapping, for each a E S(G)  - S(G’), is the largest normal 
subgroup of G contained in G’. (Consider the homogeneous space G/G’.) 
(c) Let D(G) denote the union of the hyperplanes in t described by the equations a(u)  = 
Znin, where G( E S(G)  and n E Z; D(G) is also the inverse image under exp, of the set of 
singular elements of T (21 B.4.2). Define D(G’) in the same way. In general, if A is the union 
of a family of hyperplanes in t consisting of a finite number of families of parallel hyper- 
planes, a point of A is called special if it lies in a hyperplane of each of the parallel families. 
The special points of D(G) form the inverse image under exp, of the center of G .  

Deduce from (b) that if G is almost simple and if A is the union of the hyperplanes 
contained in D(G) but not in D(G‘), then every special point of A is also a special point of 
D(G) (i.e., its image under exp, lies in the center of G). Deduce that if G’ # G ,  then 
dim(G’) 5 dim(G) - 2 rank@) (where rank(G) = dim(T)). 

3. With the notation of (21.8.4), show that the union of the conjugates of a subgroup U, in G 
is the continuous image of a compact manifold ofdimension dim(G) - 3. (Use the fact that 
dim(?T(UJ) = dim(T) + 2.) Deduce that the set of regular points of G (21.7.13) is a dense 
open subset of G (cf. (16.23.2)). 

11. BASES OF A R O O T  SYSTEM 

(21.1 1 . l )  Let F be a complex vector space of finite dimension n. A finite 
subset S of F that does not contain 0 is called a reduced root system in F if i t  
satisfies the conditions (Sl), (SJ, (S3), and (S,) of (21.10.3), with f)* replaced 
by F and the C-linear forms A.HA.(h,) replaced by C-linear forms GI, on F, so 
that .,(A) = A. - u,(l)a. 

In this terminology, we have proved in (21.10.3) that the set S of roots of 9 
relative to f) (or of K relative to T, if we had started with a compact con- 
nected semisimple group K and a maximal torus T of K) is a reduced root 
system in b*. Conversely, it can be shown that every reduced root system is 
(up to isomorphisms of complex vector spaces) the set of roots of a compact 
connected semisimple Lie group K, whose Lie algebra is determined up to 
isomorphism by the root system. Moreover, it is possible to describe ex- 
plicitly all reduced root systems (and hence all compact connected Lie 
groups). We shall not give the proofs of these facts, for which we refer to [79] 
and [ 8 5 ] ;  our purpose in this section is to deduce from the definition some 
properties of reduced root systems that are useful in the theory of compact 
connected Lie groups. 
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(21 .I 1.2) Let S he u reduced root system in a iiector space F of dimension n 
oiler C (21 .I 1 . I ) .  

( i )  The vector subspace F ,  over R spanned by S has dimension n, and the 
real iiector subspace of the dual F* OfF spanned by the,forms v, is of dimension 
n, and may be identiJied with the dual F,* of Fo . 

There exists a scalar product ( A  11-1) on F ,  , with respect to which the 
R-linear mappings 0,: A H A  - v,(A)u of F, into itself are orthogonal 
rejections in hyperplanes, such that a,(u) = - u, and the group W ,  of ortho- 
gonal transformations qf Fo generated by the 0, is finite. 

(ii) 

The restrictions 11," of the linear forms u, to F, are real-valued, because by 
hypothesis the numbers c,(p) (u, p E S) are integers, hence F, is stable under 
the mappings 1-1 - va(A)u. Since S spans F,, any endomorphism of F, 
that fixes each element of S is the identity mapping; consequently the res- 
triction mapping W H  w 1 S of W, into the group of all permutations of S is 
injective, and therefore W ,  isfinite. Hence there exists a scalar product (A I p )  
on F, that is iniiariant under W ,  (20.11 3.1);  each element of W, is therefore 
an orthogonal transformation relative to this scalar product. In particular, 
since ax is an orthogonal transformation that is not the identity and that 
fixes the points of the hyperplane M, in F, given by the equation u,"(A) = 0, it 
is necessarily the orthogonal reflection in this hyperplane M,. Next, by 
expressing 0,' as the identity, we obtain zf(A)(t),"(u) - 2)u = 0, and since u," is 
not identically zero on F, (because F, spans F), we have u,"(u) = 2 and 
a,(u) = - u ;  this implies that u is orthogonal to Ma, and consequently 0, is 
the reflection 

(21 .11.2.1) 

which shows that o,"(A) = 2(u I A)/(u I u). If j :  F, + F,* is the bijective linear 
mapping canonically associated with the scalar product, so that the image of 
11 E F, under j is the linear form A H  (p [ A )  on F,, then we have 
j (2u/(u 1.)) = 0," . Since S spans Fo , the linear forms u," (u E S) span F,* . It 
remains to be shown that the dimension of F, over R cannot exceed n ;  if we 
had n + 1 elements (1 5 k S n + 1) of S linearly independent over R, 
there would exist n + 1 complex numbers ck, not all zero, such that 

1 ck uk = 0, and therefore 1 ck v g ( c t k )  = 0 for all p E S. Now, the numbers 

up(uk) are real, and therefore this system of linear equations in the unknowns 
ck has a nontrivial solution (c:) consisting of real numbers, because it has a 
nontrivial solution consisting of complex numbers. Since the v." span F,*, we 

should therefore have 1 c,"uk = 0, contrary to hypothesis. 

n +  1 n +  1 

k =  1 k =  1 

n +  1 

k =  1 
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(21 .11.3) With the notation of (21.1 1.2), the numbers 

(21.1 1.3.1) 

are integers such that 

and we have n(P, a)n(a, /3) = 4 only when p = fa. If a, /? are distinct and 
n(P, a) > 0, then a - fl is a root. 

With the notation of (21 .ll .l), we have seen in the proof of (21.1 1.2) that 

and therefore n(B, a)  is an integer, by virtue of (S3). The inequality 
(21.1 1.3.2) is a direct consequence of the Cauchy-Schwarz inequality, which 
also shows that the equality (/?I a)’ = (a I a)@ 18) holds only when /3 = ta 
with t E R, and by virtue of (S,) this implies that /? = +a. If n(P, a)  > 0, we 
cannot have p = - a  and therefore, if a and fl are distinct, the product 
n(P, a)n(a, /I) can take only the values 1, 2, 3; consequently one of the num- 
bers n(P,  a), n(a, /I) is equal to 1. Interchanging a and if necessary (which 
replaces a - /? by its negative /3 - a), we may assume that n(a, /I) = 1, and 
then gB(a) = a - p is a root, by virtue of (S2). 

(21 .11.3.3) Since we have 

oAP) = B - n ( ~ ,  a)a (21 .11.3.4) 

for each pair of roots a, /?, and since S spans F, it follows that the reflections 
om are uniquely determined by the integers n(P, a). Hence the same is true of 
the linear forms ua , which are therefore independent of the choice of invar- 
iant scalar product (A I p) .  

(21.1 1.4) We shall now change notation, and henceforth denote by E the 
real vector space F,*, so that its dual E* (the space of R-linear forms on E) is 
canonically identified with the real vector space spanned by S. 
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(21.11.5) Let S be a reduced root system and E* the real vector space 
spanned by S. There exists a subset B of S that is a basis of E* over R and is 
such that for each root /3 E S, the coefficients mlla in the expression 

(21.1 1.5.1) 

are integers, all of the same sign. 

Such a subset B of S is called a basis of the reduced root system S. 

Since E is not the union of any finite set of hyperplanes, there exists x E E 
such that a ( x )  # 0 for all a E S. Let S: denote the set of roots a E S such 
that a(x)  > 0, so that S = S: u ( -  S:), and S: n (-  S:) = 0. A root 
a E S: will be called decomposable if there exist two roots /3, y in S: such 
that a = /3 + 7, and indecomposable otherwise. We shall prove (21 .11.5) in 
the following more precise form: 

(21 .11.5.2) For each x E E such that a ( x )  # 0 for each root a E S, the set 6, 
of indecomposable elements of’s: is a basis of S. Conversely, if B is a basis of 
S, then B = B,for each x E E such that a(.) > Ofor all roots a E 6. 

We shall first show that each root belonging to S: is a linear combina- 
tion of elements of 6, with coefficients that are integers 2 0. Suppose then 
that this is not the case, and let I c S: be the nonempty set of roots that do 
not have this property. Then there exists a root a E I for which a(x)  > 0 
takes the smallest possible value; since 6, n I = 0 by definition, we have 
a $ B,, hence there exist p, y E S: such that a = /? + y. It  follows that 
a ( x )  = p ( x )  + y(x )  and p ( x )  > 0, y ( x )  > 0, so that 

P ( x )  < a ( x )  and y(x) < a(x) ,  

and therefore /3 4 I and y 4 I. But then a = /3 + y 4 I, by the definition of I ,  
and we have arrived at a contradiction. 

Next, we shall prove that 

(21.11.5.3) Ifa, /3 are distinct elements of B,, then ( a l p )  5 0. 

For otherwise it would follow from (21 .11.3) that y = a - p was a root, 
and therefore either y E S: and a = /3 + y would be decomposable, or else 
-y E S: and /3 = a + ( -y )  would be decomposable. 
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Now suppose that a subset A of E* and an element x of E are such that 
A(x) > 0 for all I E A, and (A I p) 6 0 for any two distinct elements I, p of A. 
Then the elements of A are linearly independent over R. For otherwise we 
should have two disjoint nonempty subsets A', A" of A and a relation 

(21.1 1.5.4) C a i l  = 1 b,p = v 
1 E A' II E Aft 

in which the a, are all 2 0, the b, all 2 0, and at least one of the a, or the b, 
is nonzero. But then it follows from the hypotheses and from (21.1 1.5.4) that 

(v I v )  = c "Ib,(I I 5 0 
( A .  N) E A' x A" 

and therefore v = 0. Consequently 0 = V ( X )  = a , I ( x ) ,  and since a, 2 0 

and A(x) > 0 for all I E A', we must have a, = 0 for all I E A'; similarly 
b, = 0 for all p E A ,  and we have a contradiction. 

1 E A' 

We have therefore now proved by these considerations that 8, is a basis 
of S. Conversely, if B is any basis of S, then B is a basis of the vector space 
E*, hence there exists in the dual space E an element x such that a ( x )  > 0 for 
all a E B. Consider any one of the elements x E E having this property. Let 
S+ be the set of roots that are linear combinations of elements of B with 
coefficients that are all integers 2 0; clearly S+ c S:, - S+ c - S:, and 
since by hypothesis S = S+ u (- S+) = S: u (- Sl), i t  follows that 
S+ = S:. If for some root a E B we had a = p + y with p, y E S:, it would 
follow that a = 1 (q, + my& where the coefficients mp,  and my, are 

integers 2 0 and at least one of the mpI (resp. my,) is > 0; consequently 
(ms, + my,) 2 2, whereas this sum must be equal to 1, because B is a 

I S B  

basis of E*. Hence B c B, , and since both B and B, are bases of E*, we have 
B = B,. 

d e B  

If B = B, , the set S+ = S: (resp. - S+) is called the set of positive (resp. 
negative) roots, relative to B; it is the set of roots fl E S such that in 
(21 .11.5.1) all the integers msu are 2 0 (resp. 5 0). 

(21.1 1.5.5) With the notation of (21 . l l  .l), if S is a reduced root system in 
F, the set S' of linear forms u, is a reduced root system in the dual space F*, 
and is called the dual of S. For S' does not contain 0, because 6, # 1 for all 
a E S,  and it spans F*, by (21.1 1.2). The transpose '6, is the linear mapping 
U I + U  - u(a)u, of F* into itself, which is an involutory bijection. Further- 
more, if o,(p) = y E S, where a and fl are roots, then we have oy = 6, op aa- ' ; 
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writing this relation in the form o,op = oyo,, we obtain u p  = v, - vy(a)u,, 
that is to say, fo, (~y)  = u p ,  so that the set S” satisfies (S2). The verification of 
(S,) is immediate, and (S,) follows from the fact that if a and ta are roots, 
where t E R, then 0, = of,, and conversely. I t  is clear that, if we identify F** 
with F, we have (S’)” = S. 

If now B is a basis of S, the set B ‘ of elements u, , where a E 6, is a basis 
of S ” .  For, using the bijection j defined in (21.1 1.2), we may identify S” with 
the set S’ of elements a‘ = 2a/(ala) of F, where a E S, and B” with the set 
6’ of elements a’ with a E 6. We have B = 6, for some x E F*, by 
(21 .I 1.5.2), and since the relations a(.) > 0 and a ’ (x )  > 0 are equivalent, it 
follows that S:’ is the set of a‘ for which a E S:. Now if three roots 
a, p, y E S: are such that a’ = p’ + y’, then we have a = t ,  p + t 2  y with 
t l  > 0 and t 2  > 0, and therefore (since p’ and 7’ are not proportional to each 
other) there are at least two nonzero components ofa with respect to the basis 
6, in other words a # 6. This shows also that 6’ is contained in the set 6: of 
indecomposable elements of S:’ ; these two sets have the same number of 
elements, hence 6’ = 6: and therefore 6’ is a basis of S’ (21 .I 1 S . 2 ) .  

(21.1 1.6) Let B be a basis of the reduced root system S .  For each roof a E 6, 
the rejection o, (21 .I 1.2.1) leaoes invariant the se! S’ - {a)  ofpositive roots 
(relative to 6) other than a, and transforms a into -a.  

Let /I be an element of S’, other than a ;  we have p = mpAA, with 

coefficients mpi that are integers 2 0. There exists y # a in B such that 
mpi, > 0, otherwise we should have p = mpa a and therefore p = a by virtue of 
(S4). This being so, if p’ = a,(p) = p - n@,  a)a, the coefficients in the 
decomposition p’ = 1 ms,nA are all integers of the same sign, and by 

A €  B 

~. 
I t B  

definition we have mP,? = mpy > 0; hence p’ E S’. 

(21 .l1.7) Let B he a basis of S ,  and let 

ZA 1 (21 .I 1.7.1) 6 =  
2 i t s +  

he half the suni of  the positive roots (relative to 6). Then we have 

(21 .I I .7.2) o,(6) = 6 - a 

for all roots a E 6. ( I n  other words, ~ ! ~ ( 6 )  = 1 for all a E 6.) 
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For if 6, is half the sum of the roots p E S+ - {a} ,  then it follows from 
(21 .11.6) that a,(6,) = a,, and therefore, since 6 = 6, + $a, that 
0,(6) = 6, - +a = 6 - a. 

(21.11.8) 
group generated by the orthogonal rejections a, (21.1 1.2.1) for all a E S .  

Let S be a reduced root system, B a basis of S,  and W, thejinite 

( i )  For each x E E, there exists w E W, such that a(w . x )  2 0 for all 
a E B. 

(ii) For each basis B’ of S,  there exists w E W, such that w ( B ’ )  = B. 
(iii) For each root /3 E S,  there exists w E W, such that w(@) E B. 
(iv) The group W, is  generated by the rejections a, for a E B.  

(Here w * x is by definition equal to ‘ w - ’ ( x ) . )  

Let W, denote the subgroup of W, generated by the o,, a E B.  We shall 
prove (i) by showing, more precisely, that there exists an element w E W, 
such that a(w - x )  2 0 for all a E B. If 6 denotes half the sum of the positive 
roots relative to B, choose w E W, so that the number 6(w x )  is as large as 
possible. For a E B we have then 6(w x )  2 6((0, w )  * x) .  But since 
a,-’ = a,, we have S((a,w) x )  = (0,(6))(w x )  = 6(w x )  - a(w . x )  by 
virtue of (21.1 1.7.2), whence a(w - x )  2 0. 

Likewise, we shall prove (ii) by showing, more precisely, that there exists 
an element w E W, such that w(B’ )  = B. Since B is a basis of E*, there exists 
x‘ E E such that a’ (x ’ )  > 0 for all a’ E B’;  from the definition of a basis of S, 
it follows (21 .11.5) that L(x‘) # 0 for all 1 E S. By virtue of (i), there exists 
w E W, such that a(w x‘) 2 0 for all a E B, that is to say, such that 

( w - ’ ( a ) ) ( x ’ )  2 0; 

and since A(x’) # 0 for all 1 E S, we have ( w - ’ ( a ) ) ( x ’ )  > 0 or equivalently 
a(w * x ’ )  > 0 for all a E B, which as above implies that L ( w .  x ’ )  # 0 for all 
1 E S. Hence, with the notation of (21.11.5), we have B = B,. ,, and 
B‘ = B,,, by (21.11.5.2); by transport of structure, it follows that B = w(B’) .  

We shall now prove (iii), again by showing that there exists an element 
w E W, such that w(/3) E B. Let L be the hyperplane in E given by the 
equation /3(x) = 0. Since L is not the union of any finite number of subspaces 
of codimension 2, it follows from (S,) that there exists xo E L such that 
y(xo)  # 0 for all roots y # &/I. Hence there exists a number E > 0 and a 
point x E E sufficiently close to xo so that p ( x )  = E and 1 y(x)  1 > E for all 
roots y other than f /3. With the notation of (21 .11.5), we have therefore 
/3 E B , ,  by the definition of B,; hence, by virtue of (ii), there exists an 
element w E W, such that w(B,)  = B, and therefore w(/3) E B. 
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Finally, to establish (iv), it is enough to show that oD E W, for each root 
/3 E S. But by virtue of (iii) there exists w E W, such that w(P) E B, and since 
ow(B) = wap w - ' ,  we have ap = w -  Q.E.D. w E W,. 

(21.1 1.9) When 9, b and S arise from a compact connected semisimple Lie 
group K and a maximal torus T of K, as in (21.10.1), the complex vector 
spaces F, F* defined in (21.11.2) are, respectively, b* = t* @ it* and 
b = t @ i t ,  and the real vector spaces E* = Fo and F,* are, respectively, 
it* and i t .  If we choose a K-invariant scalar product ( x  ( y) on f (20.11.3.1), 
we obtain from it canonically an R-isomorphism j of t onto t*, for which j ( x )  
(where x E t )  is the linear form YH ( x  (y); and then by transport ofstructure 
a scalar product (A lp )  on E*, by defining ( A l p )  = ( j - ' ( i A ) [ j - ' ( i p ) ) .  It is 
clear that this scalar product is invariant under the Weyl group W of K with 
respect to T, acting faithfully on E* (21.8.6). We have already remarked 
(21.10.6) that the reflections o, corresponding to the roots a E S (21 .11.2.1) 
are precisely the elements s, of the Weyl group defined in (21.8.7). In other 
words, with the notation of (21.11.8), we have W, c W. In fact: 

(21 .ll .lo) Under the conditions of (21 .11.9), we have W, = W 

Let x be an element of the normalizer N ( T )  of T in K, and let w E W = 
JI/'(T)/T be the corresponding element of the Weyl group. Clearly, if B is a 
basis of S, so also is w ( B ) ,  by transport of structure; since W, acts transi- 
tively on the set of bases of S (21.1 1.8(ii)), it follows that by multiplying w by 
a suitable element of W, we may assume that w ( B )  = B. Let u E E = i t  be 
an element such that a(u)  > 0 for each root a E B (21.11.5.2). Since w per- 
mutes the roots in B, it follows that ( w - '  . m ) ( ~ )  > 0 for all a E B, in other 
words a(w . u) > 0. Let m be the order of w in W, and let 

r = m- 1 wk . u E E; then we have w . z = z, and a ( r )  > 0 for all a E B; 

this implies, as we have seen (21.11.5), that /3(z) # 0 for all roots /I E S .  
Hence ir E t is regular (21.8.4); and since Ad(x) . ir = ir, it follows from 
(21.7.14) that x E T and therefore that w is the identity. Q.E.D. 

m -  1 

k = O  

The proof just given also shows that the relation w ( B )  = B implies that 
w = 1; in other words: 

(21.11.10.1) 
the set of bases of the root system of K relative to T. 

The Weyl group of K relative to T acts simply transitively on 
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Remarks 

(21.1 1.1 1) (i) Under the conditions of (21 .11.9), the reflections c, defined 
in (21.1 1.2.1) are the same as the reflections AH su . 1 (21.10.6) and therefore 
may be expressed in the form 

(21.11.11.1) 

where h, is as defined in (21.10.3.2). We have 

1 H 1 - A( h,)a 

therefore 

(21.1 1 .11.2) 

for all 1 E it*, and consequently 

(21.11.11.3) n(P9 a )  = B(hu) 

for all a, B E S. 
The integers n(a, p), for the elements a, f i  of a basis of S, are called the 

Cartan integers of S (or of the Lie algebra f or 9, or of the group K). They are 
independent of the basis chosen, because any basis can be transformed into 
any other basis by the action of the Weyl group. 

The vectors h, E it form a reduced root system S', the dual of S 
(21.1 1.5.5); the Weyl group of S" may be canonically identified with W. 

(ii) Under the conditions of (21.11.9), if u and fl are roots such that 
/3 # +a, and if k is an integer such that /? + j a  is a root for j = 0, 1, . . ., k ,  
then we have k 3. For by replacing jl by /? - pa for some p > 0 if neces- 
sary, we may assume that fl - a is not a root; it follows then from (21 .10.4) 
that k -B(ha), and the assertion is a consequence of (21.11.3). 

(iii) Under the conditions of (21 .11.9), if B is a basis of S and if a, f i  are 
two roots belonging to B, such that (a  I /?) = 0, then a + f i  is not a root. For 
we have fl(h,) = 0, which, in the notation of (21.10.4), implies that p = q;  
hence if q 2 1 we should have also p 2 1, and then /3 - a would be a root, 
contrary to the definition (21.11.5) of a basis of a root system. 

Again under the conditions of (21.1 1.9), let f = @ tj be the decom- (iv) 
i 

position of t as a direct sum of simple algebras (21.6.4). From (21.7.7.2), if ti 
is a maximal commutative subalgebra of ti, then t = @ tj is a maximal 

i 
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commutative subalgebra of t. It then follows directly from the definitions 
(21.8.1) and from the fact that [ti, €,,I = 0 for j # h, that if Sj is the root 
system of f j  relative to tj, then the union S of the Sj  is the root system off 
relative to t. Note that if a E Sj and /l E S,,, where j # h, then n(a, 8) = 0. 
Finally, it is clear from the definition (21 .11.5) that if B, is a basis of the root 
system S j ,  then the union B of the Bj is a basis of S. 

PROBLEMS 

1. (a) With the notation of (21.11.3), let a and B be two roots in Ssuch that a f. kp, and let 
0 be the angle (between 0 and n) between the two vectors a, 1 (relative to the scalar 
product (Alp)). Show that if we write 11A11 = (AIA)”’, the following cases exhaust all the 
possibilities, for ll/3il 2 11a11: 

( i )  n(a, 8) = 0, n(B, a) = 0, e = jn. 
(ii) n(a, B )  = 1, n(B, a) = 1, 8 = In, llSll = 11a11. 

(iii) n(a, B )  = - 1, n(p, a) = - 1, e = 371, llSll = $) 
(iv) n(a, 8) = 1, n(B, a) = 2, 8 =an, IlSll = 2 11a11. 
(v) n(a, B )  = - 1, n(p, a) = -2, e = in ,  IISII = f i  IlaII. 

(vi) n(a, B) = 1, n ( ~ ,  a)  = 3, e = ti, IIsII = JI 11a11. 
(vii) n(a, 8 )  = - 1, n(B, a) = - 3 ,  o = in, l l ~ l l  = Jr Ilall. 

(b) If p ,  q are the integers defined in (21.10.4) and if a + B is a root, show that 

(Consider the various possibilities.) 
(c) Show that if (IaJ( = ll/?ll and if S is irreducible (Problem lo), there exists w E W,such 
that ~ ( a )  = 8. (Observe that by replacing a by one of its transforms under W,, we may 
assume that ( a l p )  # 0, and then n(a, B) = n(B, a), and we may also assume that 
n(a, 8 )  > 0. Consider the subgroup of W, generated by u, and up, and use (a) above.) 

2. Show that the only reduced root systems in a two-dimensional vector space over Rare the 
following: 

P P P + Q  
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p p + a  p + 2 a  

-a x*a 
- p - 2 a  -@-a -0 

2 4 +  3 a  

- 2 0 - 3 a  

B, G2 

for each of which (a, 8 )  is a basis. (Use Problem 1 and (21.10.4).) 

3. Let a , ,  a 2 ,  . . . , a, be linearly independent roots in a reduced root system S 
(a) Suppose that a root 01 E S is of the form 

a = c , a ,  + ~ ~ a ~ + ~ ~ ~ + c ~ a ~ - ~ ~ + , a ~ + ~  c, 8, 

where the cI are real numbers 2 0. Show that there exists at least one integerj E [ 1, r]  such 
that a - al is a root if j S p ,  and such that a + aI is a root if j > p. (Assume the contrary, 
and show that it leads to (a  1 a )  6 0.) 
(b) Suppose now that the cl are integers 2 0. Show that there exists a sequence of indices 
(j,), s k s ,  between 1 and r ,  and a sequence ( E , ) ,  s k s s  of numbers equal to f 1, such that the 
linear combinations 

E ~ O L ~ , ,  E la j ,  +E2a,,, ..., E I a I I + E I a j , + ' " + E , a j , ,  

are roots, the last one being equal to a. 
(c) In particular, if  B is a basis of S and a is a positive root of S (relative to B), then there 
exists a sequence (a,. a 2 ,  ..., a,) of roots belonging to B such that al .  a t  + a 2 .  
a1 + a2 + a 3 ,  .... a ,  + a2 + ... + a, are roots, the last one being equal to a. 

4. Let G be a compact connected Lie group and T a maximal torus of G; let S(G) be the 
corresponding root system and S' a subset of S(G). Show that for there to exist a con- 
nected closed subgroup G' of G conraining T, such that S' is the root system S(G') of G' 
relative to T, it is necessary and sufficient that the following conditions should be satisfied: 

( i )  There exists a subset B' of S', consisting of linearly independent roots, and such 
that every element of S' is a linear combination of elements of 6' with rational integer 
coefficients. 

(ii) Every linear combination of elements of S' with rational integer coefficients that 
belongs to S(G) belongs to S'. 

(To show that condition (ii) is necessary, use Problem 3(b) together with (21.10.5.2). To 
show that the conditions are sufficient, consider in the Lie algebra t of T the union A of the 
hyperplanes given by the equations a(u) = Znin, where a E S' and n E Z, and the set P of 
special points of A (Section 21 $10, Problem 2) .  Show that the identity component G' of the 
centralizer of P in G (i.e., the subgroup of elements s E G such that Ad(s) . z = z for all 
L E P) has the required properties, by showing that there exists no root a E S(G') that does 
not belong to S' and is such that (2n i ) - 'a ( z )  is an integer for all z E P: consider in turn the 
cases where 01 is linearly independent of B ,  and where i t  is linearly dependent on B.)  
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A connected closed subgroup G’ # G ,  with rank equal to that of G ,  is necessarily the 
identity component of the centralizer i n  G of its center. lfthere exists no connected closed 
subgroup G” of G such that G‘ c Ci“ c G ,  with G” distinct from G‘and G ,  then G’ is also 
the identity coniponent of the centralizer in G of any element of its center that does not 
belong to the center of C;. 

Show that G’ is also the identity component of the normalizer of its center in G. (Note 
that the group of automorphisms of a compact commutative Lie group is discrete.) In  
order that G‘ should be the identity component of the centralizer of an element of its 
center. i t  is necessary and sufficient that there should exist a special point of D(G’) that is 
not contained in D(G). 

5. Let S, S’ be reduced root systems in real vector spaces E*, E”, respectively, and let B, B’ 
be bases of S, S‘, respectively. Suppose that there exists a bijection cp of B onto B’ such 
that n(cp(a), cp(/l)) = n(a. /I) for all pairs x ,  /3 E B. Show that there then exists a unique 
linear bijection f of E* onto E’* that extends cp and maps S onto S‘. (Consider the 
reflections 6, and cr@,*, .)  

6. Show that if  B is a basis of a reduced root system S, then B is the only basis of S that 
consists of positive roots relative to B. 

7. Let G be a compact connected group, G I  a connected closed subgroup of G ,  and T a 
maximal torus of G such that T I  = T n G I  is a maximal torus of G I ;  let 9. g l ,  t, t ,  be the 
Lie algebras of G, G,. T, T I ,  respectively. For each root I of G I  relative to TI ,  let R ( I )  
denote the set of roots a E S ( G )  whose restriction to t ,  is equal to 1 (Section 21.10, 
Problem 1).  
(a)  I f  p is a root of G that is the transform of I under an element of the Weyl group of 
G I .  show that R(p)  is the transform of R ( I )  under an element of the Weyl group of G 
(Section 21.7, Problem 8). 
(b) For each root I E S ( G , ) ,  let K ,  be the corresponding almost simple subgroup o f G ,  
of rank 1 (21.8.5). Show that there exists a connected closed subgroup Gi of G containing 
T, whose root system S(G,)  consists of the integral linear combinations of the roots 
belonging to R(1)  that are roots of G (Problem 4). and that K, is contained in G , .  
(c) The subgroup G I is said to be nice if  it  is contained in no connected closed subgroup 
G‘ # G of rank v y u d  to the rank of G. Show that the center of G I  is then the intersection 
of G ,  with the center of G .  (Consider the identity component of the centralizer in G ofan 
element of the center of GI.)  In particular, if G is semisimple, every nice subgroup of G is 
semisimple. 
(d) I f  G I  is a nice subgroup of G, and if G ,  is a connected closed subgroup of G ,  
containing G I  and distinct from G or G I ,  show that the ranks of G ,  G I ,  and G ,  are all 
distinct. (Show that if the ranks of G I  and G ,  wereequal, then G I  and G ,  would have the 
same center; then use Problem 4 to obtain a contradiction.) 
(e) Let B(G,) be a basis of the root system S(G ,), and let L be the union of the sets R(p) 
for (J E B(C;,). Show that for each root I E S(G, ) ,  the roots a E R ( I )  are  integral linear 
combinations of the roots belonging to L. (Observe that there exists an element 
w E W(G,)  such that H’ I = / J  belongs to B(G,), and that w i s a  product of reflections S,  

with 7 E B(G,) ;  on the other hand. s )  is the restriction to t ,  of a product of reflections 
s, E W(G,) c W(G) (see (b) above), and for each root /3 E S(G), the vector s m ( p )  - /3 is an 
integral linear combination of roots belonging to R(y).) In particular, if G I  is nice, every 
root in S ( G )  is an integral linear combination of roots belonging to L. (Consider the 
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connected closed subgroup G' of G containing T, whose root system S(G') consists of the 
integral linear combinations of roots belonging to the union of the sets R(I), for 
1 E S(Gl1.1 

8. Let G be a compact connected semisimple Lie group. B = B(G) a basis of the root system 
S(G)  of G relative to a maximal torus T, with Lie algebra t. A diagonal of G (relative to 6 )  
is by definition a line in t defined by a system of linear equations of the form 

~ ~ ( x ) = ~ 2 ( x ) = " ' = ~ ~ ( x ) = o ,  P k + l ( x ) = " ' -  - P,(xb 

where B = {PI,  P 2 ,  . . . , PI}, A diagonal is principal if k = 0 (or, equivalently, if it  contains a 
regular element oft). A diagonal always contains a special point of D(G), other than the 
origin (Section 21 .lo, Problem 2) .  

Under the general hypotheses of Problem 7, let R,  be a principal diagonal of G I ,  
containing points u E t such that, for each of the roots 8,  (1  <= j 5 I) of B(G), we have 
- iP j (u )  2 0. Let B(G,) = { p , ,  _.., p,,} be a basis of S(G,)  such that p l ( x )  = ... = p h ( x )  
are the equations defining R,. Show that if G ,  is a nice subgroup of G, every root 
belonging to the union of the R(pj) ( 1  5 j h )  is of the form P k + j  + m , P ,  + ... + mtPk 
where P I ,  . . . , are the roots of the basis 6(G) that vanish on R,, the index j satisfies 
1 5 j 5 l - k ,  and the m, ( 1  5 r 5 k )  are integers 2 0. (Observe that the point x E R, at 
which all the roots p j  take the value 2ni is a special point of D(G), and use Problem 7(c).) 
Deduce that R, is a diagonal of G. 

If R ,  is a principal diagonal of G ,  then k = 0 and the R(pj) form a partition of B(G). 
When this is so, the restriction to t , of a root a of G is never identically zero, and there 
exists a root p of G I  such that a is a positive integral linear combination of the roots 
belonging to R(p). (Observe that the trace on t ,  of the hyperplane given by the equation 
a( x )  = 0 must be one of the hyperplanes p, (x)  = 0 (1 5 j <= h), by expressing a (resp. its 
restriction to t l )  as a linear combination of the j j  (resp. the p,).) Deduce that the restric- 
tion of a to t ,  is a scalar multiple of a root belonging to S(G,) .  If G I  is a nice subgroup of 
G and R ,  is a principal diagonal of G ,  then G , is said to be a principal nice subgroup of G. 

9. Let G I  be a principal nice subgroup of G. With the notation of Problem 8, let (1 1 p )  be the 
scalar product on it: induced by that on it*. 
(a) Show that if ( p ,  I p 2 )  = 0, then (p' 1 jY) = 0 for all p' E R(p ,) and /3" E R(p,). (Observe 
that, by virtue of Problem 8, the restriction of p' + to t ,  cannot belong to S(G, ) ,  and 
therefore p' + /I" is not a root of G.) Deduce that if G is almost simple then so also is G I .  
(b) Let p, .  p 2  be two roots belonging to B(G,) such that ( p ,  ( p 2 )  # 0 (and hence 
( p I  1p2) < 0). so that p = p ,  + p 2  is a root of GI.  We may assume '(Problem 2) that the 
reflection sp2 interchanges p and p , ;  sp2  is the restriction to t ,  ofan element w E W(G,,) 
(Problem 7(b)), and w interchanges R(p) and R(p,). If R(p,) = {a,, . . . , an}, show that for 
each j=  1,2, ..., nthereexistsarootyjE R(p,)suchthatw ~ a , = a , , + y , , a n d t h a t i f j #  h 
the vector w . a, - a,, does not belong to R(p,). (Consider the restrictions of a, and w . a, 
to t,.) Deduce that (aj 1 y )  = 0 for all y # y j  in R(p,). 
(c) With the hypotheses and notation of (b), show that for each root y E R(p,) there 
exists at least one root a, E R(p,) such that y = y,, so that the number ofelements of R(p,) 
is 5 n. (Use (b) above.) Furthermore, if y and y' are distinct elements of R(p,), then 
( y l y ' )  = 0. (Express that (w ajIw . ah) = (u,la,,).) In particular, if lip, I( = ( ( p 2  11, then 
R(p,) and R(p,) have the same number of elements, and we have ( a j I y j ) < O ,  and 
( d j I a h ) = ( Y j J y h ) = ( a l I ~ ~ ) = O  f o r i #  h. 
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10. (a) Let S be a reduced root system and 6 a basis of S. Suppose that there exists a 
partition (B,, 6,) of 6 such that ( A l p )  = 0 for each A E 6 ,  and each p E B,. Show that 
every positive root (relative to 6 )  is a linear combination (with integral coefficients 2 0) of 
roots that all belong either to B, or to 6 , .  (Use Problem 3(c) to argue by induction, 
proceeding as  in (2l . l l . l l ( i i i ) ) . )  Deduce that S admits a partition (S,, S,), where S, 
(resp. S,) is a reduced root system with basis B, (resp. 6,). 
(b) A reduced root system S is said to be irreducible if the action of the Weyl group W, 
on the vector space spanned by S is irreducible. I f  G is a compact semisimple Lie group, 
show that the root system S(G)  is irreducible if and only if G is almost simple. (Use (a) 
above.) 
(c) Let S be an irreducible reduced root system spanning a real vector space E*, and let 
( A l p )  be a scalar product on E* that is invariant under the Weyl group W,. Show that 
every W,-invariant bilinear form on  E* x E* is a scalar multiple of (Alp). (Any bilinear 
form Q, on E* x E* can be written uniquely as  (A, p ) ~  (u(A) I p), where u is an endomor- 
phism of E*. I f  0 is W,-invariant, then u commutes with all elements of W,, and in 
particular with the reflections 6,. Deduce that u leaves fixed the lines Ra, and hence that 
there exists a scalar c E R such that the kernel of u - c 1 is nonzero, hence is equal to E* 
by virtue of the hypothesis of irreducibility.) 

11. Let S be a reduced root system. 
(a) Show that there exists, on the real vector space E* spanned by S, a unique scalar 
product- called the canonical scalar product-satisfying the relation 

for all A, 11 E E*. (Use Problem 10 to reduce to the case where S is irreducible, and 
consider the bilinear form 

(1, c (a  IAN. I 
o t s  

where ( A I l i )  is any W,-invariant scalar product on E l . )  
(b) Show that for the canonical scalar product we have 

c (a  I a )  = dim(E*) 

(Observe that if M is the matrix with entries (Alp) where A, p E S, then M 2  = M ,  and the 
rank of M is equal to dim(E*).) 
(c) 

a e S  

I f  S is irreducible, show that there exists a constant y(S) such that 

(Consider the bilinear form (A, p)b-+ 1 A(hm)p(ha).) 
M E ,  

12. (a)  Let G be a compact connected semisimple Lie group # {e} ,  and let T be a maximal 
torus of G .  I f  1, is an automorphism of G such that u(T) = T, and such that ‘D; ’ fixes each 
of the roots of G relative to T, show that the automorphism u = U* @ 1 of g(c) is such that, 
with the notation of (21.10.3), 

u(x , )  = v ,  xm 
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for all roots a E S(G) ,  where the v ,  are complex numbers of absolute value 1 and satisfy 
the relations 

(*I v , v - ,  = I ,  v,vB = v,+# if a + P E S ( G )  

Show that there exists an element u E t such that 8", = v, for each a E S(G). (Observe 
that, in view of the relations (*), it  is enough that e""' = v ,  for each root a in a basis of 

(b) Deduce from (a) that the Lie group Aut(G)/lnt(G) is finite. (Use the conjugacy 
theorem.) 
(c) Deduce from (b) that for any compact connected Lie group G ,  the Lie group 
Aut(G)/Int(G) is discrete. (Use (19.1 3.3)) 
(d) Show that if G is semisimple and if ti E Aut(G) is such that o(T) = T, then there exists 
x E G such that Int(x) c' u fixes each point of some one-parameter subgroup of G .  (Argue 
as in (21.11.10).) 

W).) 

13. Let S be a reduced root system. 
(a) Let B be a basis of S. Two roots a, E B are said to be linked if (a ID) # 0, or 
equivalently if the Cartan integers n(a. 8) and n(P, a)  are  5 - I .  Show that there exists no 
sequence (a,, . . . . a,) of distinct elements of B such that ai and a, + , are linked for 

andsuch that a,and a, are also linked. (If), = a, + a2 + ... + a,, show that the hypothesis 
would imply that (2 12) 5 0, by using (21.1 1.5.3)) 
(b) Deduce from (a) that there exists a root a E B that is linked to a! mosi one other root 
in B. (Consider a sequence of maximum length (a1, . . . , a,) of roots in B such that 01, is 
linked to a,+, for I 5 i 5 r - I . )  
(c) Suppose that B has at  least two elements. Show that there exists a partition of B into 
two nonempty subsets 6, B" such that no two roots of B' or of B" are linked. (Prove that 
this result is true not only for B but more generally for any subset F of B containing at 
least two elements, by induction on the number of elements m of F and by observing that F 
also has the property (b) above.) 
(d) Let a,. ..., a, be distinct elements of B. Show that in the Weyl group W, all the 
products u, ",,, u . ~ ~ ~ ,  . . .  uaxt,,, where n is any permutation of ( I ,  2, ..., r } ,  are  conjugare. 
(Observe that if a, and a j  are not linked, then uz, and u,, commute. Then show more 
generally that if  a j h  u(aj )  is a mapping into any group such that u(a,) and u(aj )  com- 
mute whenever ai and a j  are not linked, all the products u(azlll) ... u(oL,(,,) are conjugate in 
r. Prove this result by induction on  r,  by using (b) above and reducing to the case where 
a,(,, is linked to at most one other a j ,  and then to the case where this a j  (if it exists) is 
an(,- ,,; in this case, observe that the inductive hypothesis may be applied to  the elements 
a,,,,, ..., a,(,_ and the mapping u' that coincides with u on a,,,,, ..., a,(,_ 2 )  and is such 
that U'(%r- 11) = u(a,,,- 1 l ) 4 % l r I ) . )  

14. Let S be a reduced root system spanning a vector space E*, and let B = (PI ,  . . . , pi) be a 
basis of S. For every permutation n of ( I ,  2, . .  ., I), the product up ",,, ... uo ,,,, is called a 
Coxeter elenieni of the Weyl group W,. 
(a) The conjugacy class in W, of a Coxeter element depends neither on the permutation 
II nor on the choice of basis B (cf. Problem 13(d)). 
(b) Suppose that B is numbered in such a way that P I ,  ..., p, are  pairwise orthogonal 
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and / I ,+ , I  . . . ,  /I, are pairwise orthogonal (Probleni 13(c)). Put cr’ = up, up ,  ’ . .  up, and 

with respect to thesub\pace V ’ o l E *  orthogonal to/I,./l , .  . . . .p , ,  and u” is theorthogonal 
symmetry with re\pect to the buhspace V” of E* orthogonal to /I,+ I I  . . . .  /I,. so that 
E* = V ’ @  V“. Deduce that no cigenvalue o f o  I\ equal to I .  (Observe that ifa’(I) = .‘’(A), 
then i. - o’(j.) : i. - o“(%) is orthogonal to both V’  and V”.) 
(c) The order /I ofo  i n  W ,  is called the Currfer  itittuber of S. ‘The characteristic polyno- 
mial P(T)  of 0 may he written as 

u ” = o  B , ,  , . . .  u p , .  so that u 7 do” IS  a Coxetcr element: u‘ is the orthogonal symmetry 

where itil, .... t i t ,  are integers such that 0 5 inI 5 nt2 5 ... 5 nil < /I. Show that 
tn, + )til+ I ~, = /I for I 5 j s 1, and that t1iI > 0. (Use the fact that the coefficients of P(T) 
are real.) 

15. Let F- be a real vector space ofdimension land let U’, U“ be two supplementary subspaces 
of respective dimensions r and I - r.  Suppose that F is equipped with a scalar product 
(.x 1 y). Let el. . . . , c, be an orthonormal basis of U’, and c,+ I, . . . , el an orthonormal basis 
of U”. Relative to the basis (el. . . . , e l )  of F, the matrix of the bilinear form (.x I y) is 
A = ( ( e j l e , ) ) , , , , , , , ;  it is positive definite. 

(a) r and 
I 5 k 5 I - r. I f  z’ E U‘ and z” E U” are two nonzero vectors and if 0 is the angle between 
them, show that the smallest value of 1 + cos 0 is the smallest eigenvalue lo of the matrix 
A (15.11.7). 
(b) Suppose in addition that there exists no partition of { I ,  2, . . . , /] into two subsets I. I ‘  
such that (e, 1 e,) = 0 for all i E I and j E 1‘. Show that the eigenspace N ( I o )  of the self- 
adjoint operator u on R’ defined by the matrix A is one-dimensional, spanned by a vector 
all of whose components are positive. ( I f  ( ( j ) l s js r  is a vector in N(,Io), i.e., a vector 
orthogonal to R‘ relative to the positive semidefinite quadratic form with matrix 
A - I, 1 = (a,,) on R’, observe that the vector ( Itj[)  also belongs to N ( l o ) .  by showing that 
1 o , j l ( i l  a t , ( , < j ,  and then that if  I is the set of indices i such that 5, # 0, we 

have uI ,  1 <, I 5 0 for i E I and j @ 1, and la j ,  I(, = 0 for j @ I. Conclude that either I = 0 

Suppose that (e j1e,+,)  5 0 for each pair of indices j ,  k such that 1 5 j 

5 
4. I 

or I = { I ,  2, . . . ,  /I.) 
(c) Under the hypotheses of (b), deduce that there exists a unique vector 

2’ = tiel + , . .  + ( , e ,  

in U’ and a unique vector z” = (,+ ,r ,+ I + ... + tier in U”  such that llz’II = /1z”11 = 1, 
the r j  are all positive, and the angle 0 between z’ and z” satisfies 1 + cos 0 = A o .  Show 
that the line Rz” (resp. Rz’) is the orthogonal projection of Rz’ (resp. Rz”) on U” (resp. U’). 
(Use the minimal property of cos 0.) 
(d)  Let V’ (resp. V“) be the orthogonal supplement of U’ (resp. U”) in F. I f  (I,), ~ j s l  is the 
basis of F such that (ejI /,) = 6, (Kronecker delta), then/,, ...,I, form a basis of V” and 
f, + . . . , /, a basis of V’; also e j  is the orthogonal projection ofh on U‘ ( 1  5 j 5 r) .  and e , ,  , 
the orthogonal projection of,f,+j on U” (1 5 j 2 I - r ) .  Let x’ (resp. x ” )  be the vector in V” 
(resp. V )  whose projection on U’ (resp. U”) is z’ (resp. z”). The plane P = Rz’ + Rz” is also 
equal to Rx’ + Rx”. I f  s ’  (resp. s”) is the reflection in V’ (resp. V), then P is stable under s’ 
and s” ,  and s‘l P, s’’ I P are the reflections in the lines Rx’, Rx”, respectively. If C is the set of 
vectors y E F such that ( e , l y )  > 0 for 1 6 j 6 I ,  then we have x‘ E c, x” E e, and P n C is 
the set of linear combinations ax’ + bx” with a > 0 and b > 0. 
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16. With the hypotheses and notation of Problem 14, suppose in addition that S is irreducible 
(Problem 10). Let C be the set of I E E* such that (8,IA) > 0 for 1 s j I(21.14.4). For 
each element w E Ws, either w(C) = C or w(C)  n C = 0 (21.11.10.1). 
(a) By using (21.11.5.3) and Problem 15, show that there exist y’ E V and y” E V such 
that u’ and u” leave invariant the plane P = Ry’ + Ry”, and that u ’ I  P, u” I P are the 
reflections in the lines Ry’, Ry”, respectively; also P n C is the set of linear combinations of 
y’ and y“ with positive coefficients. Show that the restrictions to P of the transformations 
belonging to the subgroup W’ of W, generated by a’ and 6’’ form a group of order 2h; 
deduce that u I P is a rotation through 2n/h, and that m ,  = 1. 
(b) Show that the only roots in S that are orthogonal to y’ (resp. y”)  are PI,  . . . , P,  (resp. 
/l,+,, ..., PI).  (Observe that if GL is orthogonal to y’, then a is a linear combination of 
P I ,  . . ., /3,, by using (21.11.5); observe also that ua,(a) is a linear combination ofb,, . . . , /I,, 
for I 6 j 5 r.) Deduce that the intersection of P with a hyperplane orthogonal to a root of 
S is necessarily the transform of Ry’ or Ry” by an element of W‘, and that the number of 
roots in S is hl. 
(c) Let 4 be an eigenvector of u @  I in P B R C  corresponding to the eigenvalue 
exp(2nilh). Show that (C la) # 0 for each a E S. (Use (b) above and observe that 4 cannot 
be of the form cq with q E P and c E C.)  
(d) A root 8 E S is said to be pivotal (with respect to u)  if 8 > 0 and u(0) < 0. Show that 
the pivotal roots are 0, = ua,ua,-, ... us,+,(f ik)  (1  5 k 5 I) (use (21.11.6))and deduce that 
the 0, form a basis of E* (use (21.1 1.2.1)). I f  m, (1 5 k I) are the elements of c such that 
(m, 18,) = b,,, then ( 1  - 0-l) . m, = 0,. Deduce that two distinct pivotal roots 0,. 8, 
cannot be in the same orbit in S under the action of the cyclic subgroup of W, generated 
by c7 (use (21.14.7.1)). Show that every orbit in S under this subgroup contains a pivotal 
root (consider the sum of the elements of the orbit), and deduce that there are exactly I 
orbits, each with h elements. 
(e) Show that, for each root a E S, we have 

(Use Problem 10.) 
( f )  Show that for each positive integer m less than hand prime to h, thecomplex number 
exp(2nimlh) is an eigenvalue of u. (Observe that the matrix of u relative to the basis 

{ P r y  8 2  * . . . *  83 
has integer entries, and use that fact that cyclotomic polynomials are irreducible over Q.) 

17. Let G be a compact Lie group, nor necessarily connected, and let Go be its identity 
component. Suppose that there exists an element a E G whose centralizer is discrete. 
(a) Show that the connected component of a in G consists of conjugates ofa. (Show that 
the mapping X H  x a x -  I of Go into G is a local diffeomorphism.) 
(b) Deduce from (a) that Go is commutative. (If not, there would exist z E G o  such that 
Int(za) leaves invariant a maximal torus of Go and the corresponding root system; now 
use Problem 12(d).) 

18. (a) Let G be a compact connected semisimple Lie group # {e). Show that for each 
automorphism L’ of G, the subgroup of fixed points of u is not discrete. (Apply Problem 17 
to the compact Lie group Aut(G), using Problem 12 and the fact that the center of G is 
discrete.) 
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19. 

(b) Let G be a noncommutative compact connected Lie group, and let r be an automor- 
phism of G. Show that the identity component U of the subgroup of fixed points of u is 
such that every maximal torus of U is contained in a unique maximal torus of G, and 
therefore contains regular elements of G. (Let V be a maximal torus of U, and let Z be the 
identity component of the centralizer of V in G. Show that U n W ( Z )  is discrete, and use 
(a) to deduce that 9 ( Z )  = { e ) . )  Hence show that there exists a maximal torus T of G that is 
globally invariant under u, and a basis of the root system of G relative to T that is globally 
invariant under P .  (Consider a regular element of G that belongs to U and is arbitrarily 
close to e . )  

Let G be a compact connected seniisiniple Lie group # { e } ,  let o be an automorphism of G ,  
let F be the closed subgroup of fixed points of c', and let F, be the identity component of F 
(so that F, # {e), by virtue of Problem 18(a)). Then every connected component of F 
contains regular elements of G (21.7.13). The proof is as follows: 
(a )  Let X E F  be a singular element of G. Then the identity component Y ( X ) ~  of the 
centralizer of x is not commutative (21.8.4). Show that a maximal torus S of the identity 
component of F n 9 ( 2 ( x ) , , )  has dimension 2 1. Let U be the identity component of the 
intersection T(S) n S ( x )  of the centralizers of S and x, which is globally invariant under 
u, and has rank equal to the rank of G (21.7.9). 
(b)  Show that U is a maximal torus, by proving that its derived group 9 ( U )  = {el. For 
otherwise 9(U) n F would contain a torus S' of dimension 2 1, and SS' would be a torus 
in Y ( x )  n F containing S properly. 
(c) Show that it is not possible that all the elements of xS = Sx should be singular in G (cf. 
(21 3.4.1)). 

12. EXAMPLES: T H E  CLASSICAL COMPACT GROUPS 

(21.12.1) The groups U(n) (= U(n, C ) )  and SU(n) ( n  2 2). 

We shall show that the group T of diagonal matrices diag([,, . . . , ["), 
where each i j  E U, the unit circle in C (so that T is isomorphic to U") is a 
maximal torus in U(n). The Lie algebra u(n) of U(n) is the Lie subalgebra of 
gl(n, C) = M,(C) consisting of the anrihermirian matrices, i.e., the matrices X 
such that 'X = - X (19.4.3.3); i t  has an R-basis consisting of the n matrices 
iE,, ( I  5 r 5 n )  and the n2 - n matrices E,, - E,, and i(Ers + E,,) 

( 1  s r < s s n ) ,  
so that the complexification of u(n) is gl(n, C). The n matrices iE,, 
(1 5 r 5 n )  form a basis of the Lie algebra t of T. Since [iE,,, E,,] = iE,, , 
[ iE, , ,  E,,] = - i E S r ,  and [iE,,, E,,] = 0 when p # r and q # r (19.4.2.2), we 
may write, for any h E t, 
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for 1 n and r # s, where &,(iE,,) = id,, (Kronecker delta). This shows 
immediately that t is a maximal commutative subalgebra of ii(n), and the 
center c of u(n) is the subalgebra Ril consisting of the pure imaginary mul- 
tiples of the unit matrix; u(n) is the direct sum of c and the Lie algebra su(n) 
of the group SU(n), consisting of the matrices in ~ ( n )  with zero trace, and t is 
the direct sum of c and the maximal commutative subalgebra t‘ of HI(H) 

generated by the matrices i(Err - I&). It follows from (21.12.1 . l )  that the 
roots of u(n) relative to t are the R-linear mappings o f t  into iR 

r,  s 

(21.1 2.1.2) a,, = E ,  - E ,  (1 5 r, s 5 n,  r # s ) .  

The roots of sii(n) relative to t’ are obtained by identifying the a,, with their 
restrictions to t’ (21.8.8). If we write g = d ( n ,  C), the complexification of 
su(n), and b = t,,,, then with the notation of (21.8.1) we have g,,, = CE,,,  
and the element hm,, E t> (21.1 0.3) is Err - E,,y. I t  is immediately verified from 
the definition (21 .11.5) that the set of roots 

(21.12.1.3) p r = a , ~ , + ,  - - R , - & , + ~  ( l s r s n -  1 )  

is a basis of the root system, for which the positive roots are 

(21.12.1.4) E ,  - E ,  = p, + + ...  + P S - !  (1 s r < s s n ) .  

It follows also from these facts and from (21 .ll .11.3) that the Cartan integers 
are given by 

It follows that the group SU(n) is almost simple (21.6.6). Indeed, from 
(21.12.1.5) it is clear that the interval [l, n - 13 of N cannot be partitioned 
into two nonempty subsets A, B such that n(/3,, B,) = 0 whenever r E A and 
s E B; for if r E A, then we must also have r + 1 E A if r 5 n - 2, and 
r - 1 E A if r 2 2. The assertion therefore follows from (21.1 1.1 1). 

Finally, it follows from (21 .12.1.5) that the reflection up, (21.1 1 . l  l), 
where 1 r 2 n - 1 ,  interchanges E, and E , + !  and fixes the other E ~ ;  hence 
the Weyl group may be identified with the symmetric group G, of all permu- 
tations of [ l ,  n]. 

(21.12.2) The group U(n, H) ( n  2 2). 
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We shall identify the division ring of quaternions 

H = R @ R i O R j @ R k  

with C 0 Cj, so that j z  = ?j for z E C, and the conjugate of the quaternion 
x + y j  ( x ,  y E C) is x - yj. The group U(n, C) is then identified with the 
subgroup of U(n, H )  consisting of the unitary matrices with entries in the 
subfield C of H. We shall show that the maximal torus T of U(n, C) 
defined in (21.12.1) is also a maximal torus of U(n, H). The Lie algebra 
u(n, H )  of U(n, H)  consists of the antihermitian matrices X E M,(H), i.e., the 
matrices X satisfying ‘X = - X  (19.4.3.2). Observe now that any matrix 
X E M’,(H) can be written uniquely in the form U + Vj,  where 

U ,  V€M,,(C); 

the relation ‘X = - X  is equivalent to the two relations 

(21.12.2.1) ‘ U =  -u ,  ‘ V =  I/ 

Next, it is easily verified that the mapping cp: M,(H) -+ M2,,(C) defined by 

(21.1 2.2.2) 

is an irtjectioe liomomorphism of R-algebras. Since gI(n, H) (resp. g1(2n, C)) is 
just M,,(H) (resp. M2,(C)) with Lie algebra multiplication [ X ,  Y] = 
XY - YX, it follows that cp is also an injective homomorphism of the real 
Lie algebra gl(n, H)  into the real Lie algebra g1(2n, C). 

We shall from now on identify ~ ( n ,  H) with its image under cp. Then the 
Lie algebra t of T has an R-basis consisting of the matrices i (Err - En+,, , ,+,)  
for 1 r 5 n, and the Lie algebra ii(n, H) has an R-basis consisting of this 
basis o f t  and the matrices 

E r ~ - E s r - E n + s . n t r + E , i t r , n + s  (1 S r < s S j l ) ,  

(1 S r < s 5 n ) ,  

(1 5 r S s 2 n ) ,  

(1  5 ‘ 5  s 2 

i ( E r s  + Esr - En+,,.+, - En+,,,+,) 

Entr, s + E,i+s,r - Er, n t \  - E,,n+r 

i(En+r,y + Ent,,r + Er,n+\ + E\,n+r) 

I t  follows as in (21.12.1) that the complexifcation of u(n, H)  may be 
identified with the Lie subalgebra of gl(2r1, C) consisting of the matrices 

(21.12.2.3) 
u w  

Y.= (. -‘”) 
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such that 'V  = V and 'W = W,  the matrix I/ EM,(C) being arbitrary. It is 
immediately verified that these matrices Y are those which satisfy the rela- 
tion 'Y  . J + J * Y = 0, where 

(21.1 2.2.4) J = ( -I, I " ) ,  0 

and consequently the complexification of u(n, H) may be identified, by 
virtue of (19.4.3.3), with the Lie algebra sp(2n, C) of the complex symplectic 
group Sp(2n, C), consisting of the matrices Z E M2,(C) that satisfy the 
relation 

(21 .12.2.5) '2. J .  2 = J .  

A basis of sp(2n, C) over C is therefore formed by the n matrices 
Err - E n + , , , + ,  (1 5 r 5 n), which form a basis of the complexification 
t, = t,,, of t ,  and the 2n2 matrices 

En+,,, + En+,,, 9 E r , n + s  + Es,"+r 

Ers - En+,,,+, 

( 1  5 r 5  s 5 n), 

(1 5 r , s  S n, r # s). 

Let E, (1  S r 5 n) be the C-linear forms on t, defined by the equations 
E,(E,, - = b,, (1 S s 5 n). Then we have 

(21.12.2.6) 

for all h E 8. This shows on the one hand that is a maximal commutative 
subalgebra of ep(2n, C) (and hence that t is a maximal commutative subal- 
gebra of u(n, H)), and on the other hand that the roots of sp(2n, C) relative 
to t, (or of u(n, H) relative to t)  are the 2n2 linear forms 

(21.12.2.7) f 28, (1 5 r 5 n),  + E ,  f E, (1 5 r < s 5 n) .  

If we put 

(21.12.2.8) f ir  = E ,  - E , + ~  (1 5 r 5 n - l),  8, = 25, 
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then we have the formulas 

E r  - 6.9 = B r  + B r +  1 + .. ' + 8,- 1 

E r  + E ,  = 8, + ... + B,- I + 21, + 2p,+ 1 + . . .  + 2p,,- I + p, 
( I  < s 5 n - l ) ,  

2 E r  = 2pr + 2pr+1 + . ' .  + 2p,-, + p, ( r  s n - l) ,  

( r  < s), 

c, + c, = 8, + . . . + p, - 1 + 11, ( r  5 11 - l ) ,  

which show that the n roots (21.1 2.2.8) form a basis of the root system; the 
positive roots corresponding to this basis are 

(21.12.2.9) 2er (1 5 r 5 n), E ,  + E ,  ( 1  g r < s 5 n).  

Also we have 

and therefore the Cartan integers are 

The same proof as in (21.12.1) shows that U(n, H) is ulriiost simple. 
Moreover, it is easily checked with the help of (21.12.2.10) that the reflection 
crD, (21.11.11) interchanges E ,  and E,+ 1, and fixes the other cs,  for 

1 S r s n -  1, 

while crPn transforms E ,  into - E ,  and fixes the other E , .  I t  follows that 
the Weyl group is the semidirect protlirct (19.14) of the commutative group 
{ - 1, 1 )" and the symmetric group G,, , for the action (TC, U)H 71 . u of 5, on 
{ - 1, 1;" defined by TC . u = TC . (u l .  . . ., u,,) = ( u ~ - , ( ~ ) ,  . . ., u R - , J .  Its order is 
therefore 2" . I ? ! .  

When n = 1 ,  the formulas above show that 4 4 2 ,  C )  is isomorphic to 
4 2 ,  C ) ,  hence U(I ,  H )  is isomorphic to SU(2). This can also be proved 
directly (Section 21.8, Problem 1). 

(21.12.3) The group SO(2n) ( n  2 2). 
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The mapping that takes each endomorphism u of C" to the same u, 
considered as an endomorphism of Rz" (16.21.1 3.1), is an injective homo- 
morphism of the R-algebra M,(C) into the R-algebra Mt,(R), under which 
the image of a matrix ( z jk )  E M,(C), with zjk = x j k  + i y j k ,  is the matrix 
(Zjk) E Mt, (R) ,  where 

The image of the group U(n) under this homomorphism is a subgroup of 
S 0 ( 2 n ) ,  which we shall identify with U(n). We shall show that the maximal 
torus T of U(n) defined in (21 .12.1) is a maximal torus of SO(2n). The Lie 
algebra eo(2n) of SO(2n) consists of all real skew-symmetric matrices X 
(19.4.3.2), and its complexification is therefore the Lie algebra of all complex 
2n x 2n skew-symmetric matrices. By virtue of (19.4.3.3), this is the Lie 
algebra 50(2n, C )  of the complex specialorthogonalgroup S 0 ( 2 n ,  C ) ,  consisting 
of the complex matrices Z E M2,(C) of determinant 1, such that ' Z  . Z = I , ,  . 
A basis over C of 5o(2n, C) is formed by the n matrices 

Hr = i ( E z r -  1 .  t r  - Etr. t r -  1 )  (1  S r 5 n), 

which form a basis of the complexification 
and by the following 2n(n - 1) matrices: 

= t(c) of the Lie algebra t of T, 

Mrs - Msr 9 Nrs - Nsr 

where 1 r, s 5 n, r # s, and 

Let E ,  (1  5 r 5 n) be the C-linear forms on l) defined by the equations 
cr(HS) = drS (1 5 s 2 n) .  Then we have 

(21.1 2.3.2) 

for 1 6 r, s n, r # s, and all h E l). To verify these formulas it is enough to 
observe that [H,,  MrS] = A,,, [H,,  N,,] = Nrs,  and to use the relations 
(21.12.3.1) together with Hr = - H r  = 'Hr .  This shows firstly that b is a 
maximal commutative subalgebra of 4 2 4  C) (and hence that t is a maxi- 
mal commutative subalgebra of 50(2n, R)), and secondly that the roots of 
3424  C) relative to b (or of eo(2n, R)  relative to t) are the 2n(n - 1) 
linear forms 

(21.12.3.3) 

[ h ,  Mrs - MsrI = ( & r ( h )  - & s ( h ) ) ( f i r s  - MsrL 

[hv N r s  - Nsrl = ( E r ( h )  + &s(h))(Rrs - Nsr), 

- + E ,  f E ,  (1 5 r < s 5 n). 
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I f  we put 

(21.12.3.4) /I, = c, - c r t l  ( 1  5 r 5 11 - I ) ,  p, = E , ~ - ~  + E , ,  

then we have the formulas (for I I  2 4) 

c, - c, = p, + prtl + " '  + p,- 1 ( r  < s), 

t:, + I:, = p, + . . .  + p,- 1 + 28, + 2&+ I + ..' + 2pn-z + p,- 1 + pn 
( r  < s 2 n - 2),  

( r  5 n - 2) ,  

+ p, ( r  5 n - 2).  

C , + E , - I  = p r + / $ + 1  + ' . . +  p,, 
E, + E ,  = p, + Brt l  + . . .  + 

which show that the I I  roots (21.12.3.4) form a busis of the root system; the 
positive roots corresponding to this basis are 

(21.12.3.5) E ,  E,? (1 5 r < s i n) .  

Also we have 

hp, = H ,  - Hrtl ( 1  2 r 2 n - I ) ,  

hpn = H , -  1 + H ,  9 

from which we obtain the values of the Cartan integers for the basis 
(21.12.3.4): 

4P,, B,) = n(Bs  , B,) for all r,  s, 

) 1 ( S r  7 8s) = 0 ( 1  5 r 5 n - 3, s 2 r + 2) ,  

(21.1 2.3.6) ~ ( p ,  , p,+ 1 )  = - I ( l s r s n - 2 ) ,  

4 B f l - 2  9 B,) = - 1, 

4%- 1, B,) = 0. 

From these formulas, a proof analogous to that of (21 .I 2.1) shows that 
SO(2n)  is Lilntost siinple if n 2 4. Furthermore, the reflection bp, interchanges 
E ,  and c,+ and fixes the remaining E , ,  for 1 s r s n - 1, while apn transforms 
E, , -  I into -c,,, c,, into - c n -  ,, and fixes the other c,. From this it follows that 
if E is the subgroup of the multiplicative group { - 1, 1)" consisting of the 
elements (ul, . . . , u , ~ )  such that u 1  u2 ... u, = 1 (a subgroup that is isomor- 
phic to [ - I ,  1lfl-'), the Weyl group is isomorphic to the semidirect product 
of E with the symmetric group Q,, the action being the same as in (21.12.2). 
The order of the Weyl group is therefore 2"-' . n ! .  
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For n = 3, it may be shown that 4 4 6 )  is isomorphic to su(4); for n = 2, 
that 444) is isomorphic to the direct sum m ( 2 )  0 su(2) (Problems 1 and 2). 

(21.1 2.4) The group SO(2n + 1 )  (n 2 2). 

The mapping M2,(R) + Mzn+ ,(R) defined by 

is injective and maps SO(2n) onto a subgroup of S O ( 2 n  + 1);  we shall 
identify SO(2n) with this subgroup. Then the maximal torus T of SO(2n) 
defined in (21.12.3) is also a maximal torus of SO(2n + 1). For the 
complexification of the Lie algebra so(2n + 1) of SO(2n + 1)  is again the Lie 
algebra eo(2n + 1, C) of complex skew-symmetric matrices (and is the Lie 
algebra of the complex special orthogonal group SO(2n + 1, C), defined as in 
(21.12.3)). With the notation of (21.12.3), a basis of 50(2n + 1, C) may be 
obtained from the basis of so(2n, C) defined in (21 .12.3) by adjoining the 2n 
matrices 

P I  = E 2 , - 1 , 2 n + l  -E2n+1,2r-1 *i(E2r,2n+l -E2n+l.2r) 

(1 S r 5 n )  
for which we have 

(21 . I  2.4.1) [h, P,'] = TE,(h)P: 

for all h E 5. This proves our assertion and shows that the roots of the 

so(2n + 1, C) 

relative to b (or of so(2n + 1) relative to i) are the 2n2 linear forms 

(21.12.4.2) + E ,  (1 S r S n) ,  kcr k E ,  (1 5 r < s 5 n ) .  

I f  we put 

(21.12.4.3) P, = E ,  - E , + ~  (1 5 r 5 n - I), Pn = E , ,  

then we have 

Er = P r  + P r + 1  + 1 . .  + P n  (1 5 rs n), 
c, - E ,  = P, + prt l  + ...  + Ps- l  (1 5 r < s 5 n), 

E ,  + E s  = pr + ' . .  + / ? - I  + 2p, + 2p,+1 + ... + 28, 

(1 r < s s n ) ,  
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showing that the n roots (21.12.4.3) form a basis of the root system, the 
positive roots for this basis being 

(21.12.4.4) E, ( 1  2 r 5 n), E ,  k E, ( 1  2 r < s 5 n ) .  

Furthermore, we have 

and therefore the Cartan integers are 

n ( P r ,  P,) = 0 if ) r  - s I 2 2 (1 5 r n - I ) ,  

( 1  2 r 5 n - 2 ) .  

One shows as in (21 . I  2.2) that S O ( 2 n  + 1 )  is almost simple and that the 
Weyl group is isomorphic to the semidirect product of { - 1 ,  I}" and 6,. 

For n = 1 ,  the formulas above and in (21 .I 2.1) show that 5 0 ( 3 )  is isomor- 
phic to 511(2); also, using (21.12.2), that 5 0 ( 5 )  is isomorphic to u(2 ,  H) 
(Problem 1). 

(21 .I 2.5) In the four cases studied above, the scalar product on it* defined 
by ( E ~  I ck) = 6, (Kronecker delta) is invariant under the action of the Weyl 
group. 

(21 A2.6) The complex Lie algebras d ( n ,  C), so(2n + 1, C),  5p(2n,  C) ,  and 
50(2n, C )  are denoted, respectively, by A,- B,, C,, D, (n 2 2 ) .  We have 
seen that, with the exception of 5 4 4 ,  C),  they are simple. It can be shown 
that, apart from these Lie algebras, there are (up to isomorphism) only five 
other complex simple Lie algebras, of dimensions 14, 52, 78,  133, and 2 4 8  
[85 ] .  They are known as the exceptional complex simple Lie algebras. 

An almost simple compact Lie group that is locally isomorphic to one of 
the groups of the four types studied in this section is often called a classical 
almost simple compact group. 

PROBLEMS 

1. (a) Identify the exterior square A' (C4) with the vector space C6, by identifying the basis 

r ,  A e2 ez A e 3 .  e3 A e , ,  e3 A e 4 ,  e ,  A e 4 ,  e2 A e4 
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of A' (C") (where (el, e 2 ,  e3 ,  e4) is the canonical basis of C") with the canonical basis 

e;. e;, e;, ek. e;, eb 

of C6. I f  two bivectors x, y E A' (C4) are identified in this way with the vectors 1 {'e;, 
6 

j =  I 
6 

1 qje;, then the 4-vector x A y is equal to B(x, y)el A e, A e3 A e4, where 
j =  I 

B(x, y)  = t1q4 + q1t4 + t2q5 + q25' + t 3qb  + ~ ' 5 ~ .  

Consider the mapping that transforms each u E SL(4, C) into A' u. Show that 
uc-* A' u is a surjective homomorphism of the Lie group SL(4, C) onto a group isomorphic 
to the orthogonal group SO(6, C). with kernel (I, - I ] ,  so that SL(4, C) is a two-sheeted 
covering of SO(6, C). (To show that the homomorphism is surjective, consider the dimen- 
sions of the two groups.) 
(b) Show that the restriction of U H  A' u to SU(4) is a surjective homomorphism onto a 
group isomorphic to SO(6, R) = SO(6). (Observe that SU(4) is the subgroup of all 
u E SL(4, C) having the following property: if JI is the antilinear mapping (relative to 
complex conjugation) of C4 onto its dual space (C")' such that $(el) = ef for I 5 j 5 4, 
where (ef) is the basis dual to (el), then $ 0 u = 'u-' 0 $. Express that 
(A' $1 0 (A' u )  = (A' ( ' u - ' ) )  0 (A' $1.) 
(c) Show that the subgroup of SL(4, C) consisting of the linear mappings u such that A' u 
fixes the coordinate c6 of each bivector x E A' (C4) may be identified with the symplectic 
group Sp(4, C), and its image under UH/\, u with the orthogonal group SO(5, C). By 
restricting to U(2, H) c Sp(4, C), we obtain a homomorphism U(2, H) --t S 0 ( 5 ) ,  which 
makes U(2, H) a double covering of SO(5). 

For each pair of matrices ( U l ,  U,) in SL(2, C), let 'p(Ul, U , )  denote the automorphism 
X w  U ,  X . 'U, of the vector space MJC), identified with C4 by identifying the matrix (-:: i:) with the vector ({I, t2, 5', 5 * ) .  Show that cp is a surjective homomorphism of 

SL(2, C) x SL(2, C) onto a group isomorphic to SO(4, C), with kernel consisting of (I, I) 
and ( - I ,  -I), so that SL(2, C) x SL(2, C) is a double covering of SO(4, C). Show also that 
the restriction of cp to SU(2) x SU(2) is a surjective homomorphism of this group onto a 
group isomorphic to SO(4). (Same method as in Problem 1.) 

Show that apart from the isomorphisms 

B, = C, , D, = A, @ A  1, D 3 = A 3 ,  

which follow from Problems 1 and 2 (or which may be obtained directly from the explicit 
descriptions of these Lie algebras), there exist no other isomorphisms among the algebras 
A,- B,, C,. D, for n 2 2. (Consider the systems of Cartan integers of these Lie algebras.) 

Let G be an almost simple compact connected Lie group. Show that i fGI is a principal nice 
subgroup of G (Section 21.11, Problem 9), the Lie algebra of G I  cannot be isomorphic to 
su(n + I )  or eo(2n) for n 2 2. (Observe that for these Lie algebras, all the roots have the 
same length.) 

Let G be a classical compact group. Suppose that G has a principal nice subgroup G I  
(Section 21.11, Problem 9) that is also a classical group, of rank 2 3. The complexified Lie 
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algebra of G I  is necessarily of type B, or C, (Problem 4), hence there exists a basis 

(p,Jp,) = 0 if Ik - j l  > 1. Then the sets R ( p , ) ,  . .., R ( p h -  all have the same number n of 
elements (Section 21.11, Problem 9). 
(a) Show that n 5 2 (use Section 21.11, Problem 9(a) and (c).) 
(b) Show that if n = 2, the inclusion G ,  c G is one of the two canonical inclusions 
SO(2h + 1 )  c SU(2h + I), U(h, H) c SU(2h). (Use Section 21.11, Problem 9(b).) 
(c) Show that if n = 1 the inclusion GI c G is the canonical inclusion 

{ P i , . . . . P h }  of S(G1) such that h Z 3 ,  I IP t ( I  = I ( P 2 ( (  = " ' =  ( I P h - i I I ,  ( P j I P j + r ) < O ,  and 

SO(2h + 1) c SO(2h + 2). 

(Same method.) 

6. In the Lie algebra 40(7), the three roots 

Y ,  = & I ,  Y2 = 82  - 61, Y 3  = - & 2  - 8 3  1 

form a basis of the root system. Let t ,  be the plane in t on which the linear form y1 - y 3  = 
c l  + c 2  + E ,  vanishes. Show that the restrictions to 1 ,  of the roots of so(7) form a reduced 
root system of type G,  (Section 21.11, Problem 2). Show that there exists a principal nice 
subgroup of SO(7) whose root system relative to t consists of these restrictions. 

13. LINEAR REPRESENTATIONS OF COMPACT CONNECTED 
LIE GROUPS 

We recall that, until the end of this chapter, by a linear representation of a 
compact Lie group is meant a continuous (or, equivalently, C" (19.10.1 2)) 
linear representation on a finite-dimensional complex vector space. 

(21.1 3.1) Every compact Lie group G has a faithful linear representation. 

In other words, bearing in mind (20.1 1.3.1), there exists an integer N > 0 
such that G is isomorphic to a Lie subgroup ofU(N). 

Consider the set of irreducible representations s w M , ( s )  of G (p E R) 
(21.2.5). It is enough to show that there exists ajni te  subset J of R such that 
the kernels N, of the homomorphisms SH M&) for p E J intersect only in e, 
for the Hilbert sum of the representations s ~ + M , ( s )  for p E J will then be 
faithful. Now there exists an open neighborhood V of e in G that contains no 
subgroup of G other than {e}.  To see that this is so, let W be an open 
neighborhood of 0 in the Lie algebra ge of G, such that exp, is a diffeomor- 
phism of W onto an open neighborhood of e in G (19.8.6). We may assume 
that, relative to some norm that defines the topology of ge, the open neigh- 
borhood W is defined by llxll < a. Then the neighborhood V = exp(jW) of e 
in G has the required property: for if x # 0 belongs to jW, there exists 
a smallest integer p > 0 such that (p + 1)llxll > i a ,  and necessarily 
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(p + 1). E W; if now there were a subgroup H # { e }  of G contained in V 
and such that s = exp(x) E H, then we should have 

sPfl = exp((p + 1)x) E H, 

contradicting the fact that (p + l)x E W and (p + l)x # $W. 
Now the intersection of the kernels N,, for all p E R, consists only of e 

(21.3.5), and hence the intersection of the closed sets N, n (G - V) (p E R) 
is empty. Since G is compact, it follows from the Borel-Lebesgue axiom that 
there exists a finite subset J of R such that the intersection of the sets 
N, n (G - V) for p E J is empty. The set n N, is then a subgroup of G 

contained in V; hence consists only of e by the construction of V, and the 
proof is complete. 

P S J  

(21 .13.1 . l )  We remark that this proof shows in fact that every compact 
metrizable group G, in which there exists a neighborhood of e containing no 
subgroup - other than (e} ,  is isomorphic to a subgroup of a unitary group 
U(N), hence is a Lie group (cf. Section 19.8, Problem 9). 

(21.1 3.2) Let G be a compact Lie group and U a faithful linear representa- 
tion. Then every irreducible linear representation of G is contained (21.4.2) in 
a tensor product of a certain number of linear representations equal t o  U and a 
certain number of linear representations equal to its conjugate (21.4.3). 

Put cl( V) = d ,  p (21.4.7), where d ,  > 0 for all p belonging to a finite 
P C J  

subset J of R. Then cl( 8) = 

Suppose that there exists p' E R such that the proposition is false for the 
representation M,,. This means that the subring of Z(R) generated by the 
classes p E J and their conjugates p is contained in a Z-module of the form 
Z(R'), where R' c R and p' # R'. It follows from the Peter-Weyl theorem 
(21.2.3) that x is orthogonal to all the functions ml?), p E R'. Consequently, 
if we put U ( S ) ~ ~  @ 8(s)@" = (pi? ")(s)) for each pair of integers m 2 0, n 2 0, 
such that m + n 2 1, the function x,, is orthogonal to all the functions pi;'"). 
Moreover, since the trivial representation is contained in U 8 (21.4.6.4), 
the class p' cannot be the class of the trivial representation, and therefore x,, 
is orthogonal also to the constant functions (21.3.2.6). But by the definition 
of the tensor product of matrices, among the functions pi;* ") there appear all 
the monomials with respect to continuous functions that are elements of the 
matrix U or of 8. By hypothesis, these functions separate the points of G, 
hence the complex vector subspace of V,(G) spanned by the constants and 
the pi?* ") is dense, by the Stone-Weierstrass theorem (7.3.1). Since the con- 

d ,  - p. 
P S J  
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tinuous function xp, is not identically zero, we arrive at a contradiction 
(1 3.14.4), which proves (21.1 3.2). 

(21.1 3.3) Let G be a compact Lie group and H a closed subgroup of G. Then 
every irreducible linear representation of H is contained in the restriction to H 
of a linear representation of G. 

Let U be a faithful linear representation of G (21.13.1). Clearly its restric- 
tion V to H is faithful, hence every irreducible linear representation of H is 
contained in some representation of the form ye’” @ Fen (21.13.2); since 
this representation is obviously the restriction to H of Uem @ gen, the 
proposition is proved. 

(21 .13.4) Let G be a compact connected Lie group and T a maximal torus 
in G. (This notation will be in force up to the end of Section 21 .15.) 

As we have already remarked (21.7.6), the study of the linear representa- 
tions of G is based on the study of their restrictions to T. In the first place, a 
linear representation of G is uniquely determined, up to equivalence, by its 
restriction to T. Clearly it is enough to consider irreducible representations, 
and since up to equivalence such a representation is entirely determined by 
its character (21.4.5), it is enough to show that if two characters x’, 1’’ have 
the same restriction to T, then they are equal. We shall in fact prove a more 
precise result: for this purpose, we remark that iff  is a continuous central 
function on G (21.2.2), its restriction to T is a continuous function which, by 
definition (21.2.2.1), is invariant under the Weyl group W of G relative to T. 

(21 .13.5) The mapping that sends each continuous central function on G to 
its restriction to T is an isomorphism of the complex vector space of continuous 
central functions on G,  onto the complex vector space %‘c(T)W of continuous 
complex functions on T that are invariant under the Weyl group W. 

The fact that the mapping f~ f T is injective is immediately obvious. 
For each x E G is of the form sts -  for some s E G and t E T (21.7.8), hence 
f ( x )  = f ( t )  because f is central. To show that fw f 1 T is surjective, suppose 
we are given a function g E %?c(T)W; let us first show that we may define a 
function f on G by the condition f (s ts-  l )  = g(t) for all t E T and s E G. For 
this purpose, we must verify that if t l ,  t ,  are two elements of T that are 
conjugate in G, then g(tl)  = g ( t 2 ) ;  but by virtue of (21.7.17), there exists 
w E W such that t 2  = w . t l ,  and the result follows from the W-invariance of 
9 .  It remains to be shown that the functionf, so defined, is continuous (it is a 
central function by definition). 

Iff were not continuous, there would exist a sequence (x,) of points of G, 
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converging to a limit x E G, and such that f(x,,) does not converge tof(x). 
We may write x,, = s, t ,  s; ', where t ,  E T and s, E G, and because both G 
and T are compact, we may assume, by passing to a subsequence of (x,,), that 
(t,) has a limit t E T, and (s,) a limit s E G. But then x = s t s - ' ;  we have 

f ( x , )  = g( t , )  andf(x) = g( t ) ,  and the hypothesis on (x,,) contradicts the con- 
tinuity of g .  

(21.1 3.6) We recall (21.7.5) that the characters of the maximal torus T are 
the functions 5 with values in U, such that t(exp(u)) = ep(") for all u E t, 
where p is a weight of T. The weights of T are R-linear functions on T, with 
values in iR, which take values belonging to 2niZ at the points of the lattice 
r,, the kernel of exp, = (exp,) IT. These functions form a lattice 2nir;,  
which we denote by P(G, T) or P(G) (or simply P) and call the weight lattice 
of G (with respect to T). If ul ,  u2  are two points o f t  such that exp(u,) = 
exp(k), we have therefore eHU1) = eH"); this leads us to write e p  (or s w  eP(')) 
by abuse of notation, for the character 5 corresponding to the weight p ,  
whenever there is no risk of confusion. 

Consider a character x of G. If U is an irreducible representation of G 
with character 2, the restriction of II to T is a Hilbert sum of one- 
dimensional representations, and the restriction of x to T may therefore be 
written uniquely in the form 

(21.1 3.6.1) c n(p)eP 
P E P  

where each n ( p )  is an integer 2 0, and is zero for all but a finite number of 
values of p E P; it is the multiplicity (21.4.2) of the representation SH eNs) * 1 
in the representation U IT. This number n ( p )  is called the multiplicity ofthe 
weight p in the character x (or the representation V), and we shall say that p 
is contained in x (or is a weight of U )  if n ( p )  > 0. 

For each element w of the Weyl group W, we have n(w p) = n(p)  
(21 .13.5). This leads us to consider functions of the form (21 .13.6.1) in which 
the integers n ( p )  are ofarbitrary sign and satisfy the relations n(w - p) = n ( p )  
for all w E W. It is clear that these functions form afree Z-module, having as 
a basis the sums 

(21 .13.6.2) S(n) = c eP 
p e n  

where ll runs through the set P/W of orbits of W in P. 
Since the characters ep  of T are linearly independent (21.3.2) and since, 

for any two weights p', p" E P, we have ep' * ep" = eP'+P", the set of all linear 
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combinations n(p)eP, with arbirrary integers n ( p )  E Z, may be identified 

with the algebra Z[P] ofthe additive group P over Z. The Z-module having as 
basis the S(n), for all ll E P/W, is therefore the subalgebra Z[PIw of W- 
invariant elements of Z[P]. 

It follows therefore from (21 .13.5) that the Z-algebra generated by the 
characters of G, which may be canonically identified (21.4.7) with the ring 
Z(R'G)) of classes of linear representations of G, is canonically isomorphic to a 
subalgebra ofZ[PIw. In general, the basis elements S(n) of Z[PIw are not the 
restrictions of characters of G, as can be seen already from the example of 
the group SU(2), for which we know explicitly all the irreducible representa- 
tions (21.9.3) and the Weyl group, consisting of two elements (21.1 2.1). We 
shall nevertheless show that the canonical homomorphism of Z(R(C)) into 
Z[PIw is always bijective (21.1 5.5) .  

P E P  

(21.13.7) Let V be a linear representation of G, and suppose that the 
restriction to T of the function s ~ T r ( V ( s ) )  is of the form S(n) for some 
orbit ll E P/W. Then it follows immediately from (21.4.4) and (21.1 3.6) that 
the representation V is irreducible and that S(n) is the restriction to T of its 
character. 

PROBLEMS 

Let G be a compact subgroup of GL(n, R). Show that if A and B are two compact G-stable 
subsets of R" with no common point, there exists a polynomial P E R[T,, . . . , TJ such that 
I P(x) I 5 f for all x E A, I P(x) - 1 I 5 f for all x E B, and P(s . x) = P(x) for all s E G. 
(Apply the Weierstrass-Stone theorem and integration with respect to a Haar measure on 
G.1 

Deduce from Problem 1 that if G is a compact subgroup of GL(n, R )  there exists a family of 
polynomials P, E R[T, ,, . . . , TnJ in n2 indeterminates, such that G is the set of matrices 
s E CL(n, R )  t R"' such that P&) = 0 for all a. 

Let G be a compact Lie group and H a closed subgroup of G. Show that there exists a 
neighborhood U of H such that there is no subgroup K of G contained in U that contains H 
properly. (Use (16.14.2) and argue as in (21.13.1) for the case H = (e}.) 

Let G be a compact Lie group and H a closed subgroup of G. Show that if H # G there 
exists at least one irreducible representation of G ,  other than the trivial representation, 
whose restriction to H contains the trivial representation. (Assume that the result is false 
and show, by use of (21.3.4) and (21.2.5), that for all continuous functionsfon G we should 

have lGJdmG = IHfdmH, where mG and mH are the normalized Haar measures on G, H, 

respectively; use this to obtain a contradiction.) 
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5. Let G be a compact Lie group and H a closed subgroup of G. Show that there exists a 
continuous linear representation LI of G on a finite-dimensional complex vector space E 
such that H is the stabilizer of some point of E (for the action ofG on E defined by U). (We 
may assume that H # G. For each closed subgroup F that properly contains H, let VF be an 
irreducible representation of F, other than the trivial representation, whose restriction to H 
contains the trivial representation (Problem 4), and let L I ,  be a linear representation of G 
whose restriction to F contains V,. Let H, 3 H be the stabilizer ofa point # 0 in the space 
of V,. Show that the intersection of the subgroups H, is equal to H, and observe that this 
intersection is also the intersection of a finite number of the H,, by using Problem 3.) 

14. ANTI-INVARIANT ELEMENTS 

We shall first study in more detail the structure of the algebras Z[P] and 
Z[PIw, by using the properties of root systems. We shall require the follow- 
ing lemma: 

(21.14.1) Let u, u be two linearly independent elements of P. If an element 
@ E Z[P] is diuisible by 1 - e" and by 1 - e", then it i s  divisible by the product 
(1  - e")(l - e"). 

The Z-module P is isomorphic to 2' for some r > 0. If ( j , ,  . . . , j , )  are the 
coordinates of u with respect to a Z-basis of P, and if d > 0 is the highest 
common factor of the j, (1 5 k 5 r), we may write u = dul, where the coor- 
dinates of u ,  are relatively coprime. The elementary theory of free Z- 
modules (A.26.6) shows that there exists a basis (u, ,  . . . , u,) of P containing 
ul. The projection of u on Zu, @ Zuj @ ... @ Zu, is nonzero, by hypothesis; 
by applying the same argument to this projection, we may assume that u, , 
. . . , u, have been chosen so that u = mu, - nu,, where m, n E 2 and m # 0. 
Since the ring Z[P] is isomorphic to the ring 

A = ZIXl, . . ., X,, X; ', . . . , Xi '3 
(21.4.7), it follows that we are reduced to showing that if an element @ 
of this ring is divisible by Xd, - 1 and by XT - X;, then it is divisible by their 
product. Furthermore, since the X, are invertible in A, we may assume that 
m > 0, and since we have 0 = (Xd, - 1)@, with E A, we may also assume 
that is a polynomial in X, with coefficients in the ring 

B = Z[X,, X,, ..., X,, X;', Xy', ..., Xi']. 

The Euclidean algorithm then enables us to write 

0' = (X? - x;p, + (Ylx;-l + * * .  + Yfn-l), 



14, ANTI-INVARIANT ELEMENTS 111 

where (D2 E A and the Y j  belong to B. By hypothesis, the product 

(21.14.1 . l )  

is divisible by XT - Xl. If the Y j  were not all zero, we should be able to 
substitute for X,, X3, ..., X, nonzero complex numbers zl, 23, ..., z, such 
that z: # 1 and such that the value of at least one of the coefficients 
Y,(z,, z 3 ,  ..., 2,) were # 0. Under this substitution, (21.14.1.1) would 
become a nonzero polynomial of degree 5 m - 1 in X, with complex 
coefficients, divisible by Xy - 2:; and this is absurd. 

We remark that the lemma (21.14.1) applies equally to the ring Z[cP], 
..where c is any nonzero real number. 

(21.14.2) If g = c CD B(g) is the canonical decomposition of the Lie algebra 
g of G as the direct sum of its center and its derived algebra (21.6.9), the Lie 
algebra t of T takes the form t = c CD t', where t' is a maximal commutative 
subalgebra of B(g). We have seen (21.8.8) that the root system S c it'* of 
B(g) relative to t' may be identified with a finite subset of the lattice of 
weights P(G) (t'* being identified with the annihilator of c in t*). We shall 
suppose that a basis B = {PI, . .., P I }  of S (21.11.5) has been chosen. The 
elements h, of it', for a E S, form a reduced root system S',  the dual of S 
(21.1 1 .11). For simplicity we shall put h, = hs,; we recall (21 .11.5.5) that the 
hj  form a basis B ' of the root system S', and also a basis of the real vector 
space it'. 

(21.14.3) The weight lattice P = P(G) is  contained in the set P(g) ofC-linear 
forms 1 on t,,, such that 1(h,) E Z for 1 5 j 5 1. (Since each h, E S' is a linear 
combination of the h, with integer coefficients, this condition is equivalent to 
requiring that 1(h,) should be an integer for all roots a E S.) 

For each p E P(G), ep is a character of T. By virtue of (21.13.3), there 
exists a linear representation U of G on a vector space E such that for each 
h E t(,-) the complex number p(h) is an eigenvalue of the endomorphism 
U,(h) of E (we identify U ,  with its extension U ,  @ 1, to g(,,). With the 
notation of (21.10.3), we may apply (21.9.3) to the restriction of U ,  to each 
subalgebra 5, c g(,) isomorphic to sI(2, C), and conclude that p(h,) is an 
integer for each a E S. 

Since the dual t:,-, of t(,) may be identified with C ? ~ € D  ti& (c* being 
identified with the annihilator of t' in t*), P(g) may be identified with 
c$.) @ P(B(g)), where P(B(g)) c it'* is the lattice dual (21.7.5) to the lattice 
in it' generated by the hi. 
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(21.14.4) In the real vector space it* = ic* Q3 it’*, the set C (or C(g)) of 
linear forms I such that A(hj) > 0 (1 S j 2 1)  is called the Weyl chamber 
relative to the basis B of S. Since the h, form a basis of the real vector space 
it’, the closure C of C in it* is the set of linear forms - I such that I ( h j )  2 0 for 
1 sj 5 1. We have C(g) = ic* + C(D(g)) and C(g) = ic* + C(D(g)). 

(21.14.5) Let L be the set of linear forms A E it* that can be written 

I = y + C c j f i j ,  where y E ic* and the c j  are real numbers 2 0, not all zero. 

If we put Lo = L u {0}, it is clear that Lo + Lo c Lo, aLo c Lo for all real 
a > 0, and Lo n (-Lo) = (0). The relation p - A E Lo is therefore a 
(partial) ordering on it*, which we denote by I S p. The relation I I p is 
equivalent to A + v 5 p + v for all v E it*, and to a l  I a p  for all real a > 0; 
and the relation 1 > 0 is equivalent to A E L. 

The positive roots (relative to the basis 6) in the sense of (21.11.5) are 
therefore exactly those which are > 0 in the ordering just defined. This 
justifies the terminology. 

1 

j =  1 

(21.14.6) The Weyl chamber C is contained in the set L of forms > 0. 
For any W-invariant scalar product ( A  I p )  on it*, we have ( I  I p )  > 0 for all 
pairs of forms I ,  p such that I E C and p > 0. 

(ii) The Weyl chamber C (resp. its closure C) is  the set of linear forms 
A E it* such that w * I < I (resp. w * I 5 A )  for all w # 1 in the Weyl group W. 

(i) 

(i) By virtue of (21.1 1 .11.2), the Weyl chamber C may also be defined as 
the set of I E it* such that (A 1 Sj) > 0 for 1 5 j 5 1. In view of (21 .11.5.3), the 
relation C c L is a cons uence of the following lemma: 

(21.14.6.1) 

that (Pj( /Ik) 5 0 whenever j # k. Then, i f I  = 

for 1 I j I n, we must haoe cj 2 Ofor 1 g j  5 n. 

In  a real Hilbert space E, let (/3,)i be a j n i t e  freefamily such 

c,S, is such that ( I  IS,) >= 0 
n 

I =  1 

The result is obvious if n = 1, and we proceed by induction on n. It is not 
possible that c j  < 0 for all j, because it would then follow that (A 1 cjfl,)  I 0 
for all j ,  and therefore 

n 
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so that I = 0, contradicting the hypothesis that c j  # 0 for all j .  Suppose 
therefore, without loss of generality, that c, 2 0. Then, for 1 5 j 5 n - 1, we 
have 

and by applying the inductive hypothesis to c ,  p1 + + c,- p,- we 
deduce that c j  2 0 for 1 5 j 5 n. 

If p > 0, it follows from the definition (21.14.4) that we may write 
I 

p = y + t j f l j ,  where y E ic* and t j  2 0 for 1 5 j 2 I ,  and at least one of the 
j =  1 

1 

t j  is > 0. If then I E C, we have (I I p )  = 2 rj (I  1 pi) > 0, because (I I pi) > 0 

for 1 S j  51. 
j =  1 

(ii) If w . I < I for all w # 1 in W, then in particular (21.10.6) s, . I = 
I - I(h,)a < Iz  for all positive roots a, which is possible only if I ( h j )  > 0 for 
1 5 j 5 I ,  in other words if I E C. To prove the converse, put s j  = s8, for 
1 5 j 5 I; then W is generated by the reflections s j  (21 .11.8), and we shall 
argue by induction on the smallest number p such that w can be written in 
the form w = sjl s j2  * * s j p .  The result is clear if p = 1 ; suppose therefore that 
it is true for all products of at most p - 1 reflections s j ,  and put w = w’sj,, 
where w’ = s j ,  s j 2  * * sip- I .  Then we have w . I = w’ I - I(hjp)w’ - B,. We 
distinguish two cases, according as the root w‘ j j p  is positive or negative. In  
the first case, the hypothesis L(hjp) > 0 implies that w L < I. Consider 
therefore the second case, and let r be the least integer such that for all k 2 r 
the root ak = s ~ ~ s ~ ~ + ~  * pj, is positive. This number r always exists (if 
we agree to put r = p and ap = pi, when at < 0 for 1 5 k S p - l), and we 
have r > 1 because w’ . pi, < 0. By definition, we have a, > 0 and 
a,- = sj,-l . a, < 0, and by virtue of (21.11.6), this is possible only if 
a, = pi,-,. Now put w1 = sjl s j , - 2 ,  w 2  = s j ,  sj,-I, so that 
w‘ = w ,  sj,-l w 2 ,  and w2 * pj, = pi,-,. Since w 2  s, w;’  = s w I .  , for all roots a, 
we have w2 sip = sj,- I w2 and therefore 

w = w’s. J p  = w 1 s2 ],-Iw?. = wlw?. ;  

in other words, w can be written as a product of p - 2 reflections s j ,  and 
hence w . 1 < I by virtue of the inductive hypothesis. For the relations 
w * Iz  5 I and I E C, the proof is the same. 

(21.14.6.2) Let A E it* be such that I ( h j )  is an integer 2 0 for 1 6 j 6 1 (or, 
equivalently, such that I(h,) is an integer 2 0 for all positive roots a (relative 
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to B), since the h, form a basis of the root system S" formed by the h, 
(21.1 1.5.5)). Then for each w E W we have 

(21.14.6.3) 

where the n, are integers 2 0. We may proceed by induction as in the proof 
of (21.14.6(ii)), since the result is obvious when w = sI. With the same nota- 
tion, the case in which w' - pi, is a negative root can be eliminated, because w 
is then a product of p - 2 reflections s,; and if w' /Ij, is a positive root, we 

may write w' - pip = 1 n i p j ,  where the n; are integers 2 0, and w' * 1 = 

1 - n;bj where the n;' are integers 2 0. From these two equations we 

obtain (21.14.6.3), with n, = njl(hjp) + n;. 

I 

j =  1 
I 

j =  1 

(21.14.6.4) It follows from (21 .11.5.3) that if there are two roots pi, pk E B 
such that # 0, then they cannot belong to C. In all the examples 
considered in (21.1 2), with the exception of SU(2), none of the basis roots 
therefore belongs to C. 

(21.14.7) For each root a E S, let H, be the hyperplane in it* defined by the 
equation I(h,) = 0. A linear form 1 E it* is said to be singular if it belongs to 
at least one of the H,, and regular if it does not. Clearly the Weyl group 
transforms regular forms into regular forms, and singular forms into singu- 
lar forms. 

(21 -14.7.1) For each regular linear form 1 E it*, there exists one and only one 
element w of the Weyl group W such that w A E C .  For each linear form 
1 E it* there exists one and only one w * 1 in the W-orbit of A that belongs to C .  

Suppose first that 1 is regular. We may write 1 = y + p, where y E ic*  and 
p E it'*, and since y(h,) = 0 for all a E S we have p(h,) # 0 for all a E S. It 
follows then from (21.11.5.2), applied to the dual root system S', that j~ 

defines a basis BJ of S'. By virtue of (21 .11.8), there exists w E W such that 
~ ( 6 , " )  = 6' ; and since ~ ( 6 , " )  = 6;.p and w . y = y, this implies that 
w * 1 E C, by definition. The uniqueness of w follows from the same argu- 
ment, in conjunction with the fact that W acts simply transitively on the set 
of bases of S' (21.11.10.1). 
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Now let 1 be any element of it*, and let A, be a regular linear form. Since 
the number of hyperplanes Ha is finite, the linear form A + t(1, - A) is 
singular for only finitely many values o f t  E R, and we may therefore assume 
that it is regular for 0 < t S 1. Let w E W be such that w A,, E C;  since 
w . (1 + t(1, - 1)) is regular for 0 < t 5 1, all these linear forms belong to C, 
and therefore w . 1 must belong to the closure C. 

I f  1 E C and if there were an element w E W such that w . 1 E C and 
w * 1 # 1, we should have w * 1 5 1 by (21.14.6), hence w . 1 < 1. But since 
1 = w -  . (w * A), the same argument shows that w . 1 > A, which is absurd. 

(21.1 4.8) 
6(h j )  = lfor 1 5 j 5 I ,  and hence belongs to C n P(g). 

(ii) 
(iii) 

( i )  The half-sum 6 ofthe positive roots of S (21 .I 1.7) is such that 

Every element ofP(g) n C is oftheform 6 + p, wherep E P(g) n C. 
For each p E P n C, the set of linear forms q E P n C such that 

q S p isjnite. 

(i) We have seen in (21.11.7) that s j .  6 = 6 - 6(hj) * pi = 6 - b j ,  hence 
6(hj) = 1 for 1 S j  S 1. 

(ii) If 1 E P(g) n C, we have A(hj) > 0 for 1 s j S 1 and moreover l(hj) 
is an integer, hence l(hj) 2 1 for 1 5 j 5 1. Consequently p = 1 - 6 is such 
that p ( h j )  2 0 for all j ,  hence p E P(g) n C .  The converse is obvious. 

(iii) Since p - q 2 0 and p ,  q are in C, we have (p I p - q)  2 0 and 
(q I p - q )  2 0 (21.14.6), so that (q I q )  5 ( p  I q )  s (p I p). But since P is a 
discrete subspace of it*, its intersection with the closed ball with center 0 and 
radius ( p l ~ ) l / ~  is finite (3.16.3), whence the result. 

(21 A4.8.1) If the compact connected group G is semisimple, the set P(g) is 
also discrete, because c = {O}. The proof of (iii) above then applies without 
any modification to show that, for each p E P(g) n C, the set of 
q E P(g) n C such that q 5 p isjnite. 

(21.14.9) The elements of the Weyl group, considered as endomorphisms 
of it*, belong to the orthogonal group relative to the scalar product (1 Ip),  
hence have determinant equal to f 1. An element (D of the free Z-module 
Z[P] (or of Z[cP], where c is a nonzero real number) is said to be anti- 
invariant under W if w . 0 = det(w)0 for all w E W. For each p E P, the 
element 

(21.14.9.1) J(ep) = 1 det(w)ew'P 
W € W  
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of Z[P] is anti-invariant, because for each w’ E W we have 

w’ . J(eP) = C det(w)(w’ . ew ‘ P )  
W € W  

= C det(w)e(‘w)’P 

= det(w’) C det(w’w)e(wW)’P 

= det(w‘)J(eP). 

W € W  

W € W  

(21.14.10) (i) If the weight p E P is a singular linearform (21.14.6.3), we 
have J(eP) = 0. 

(ii) As p runs through P n C, the elements J(eP) form a basis of the 
Z-module Z[Pyw of anti-invariant elements of Z[P]. 

(i) Suppose that p(h,) = 0 for some root a E S; then we have s, p = p ,  
where s, is the corresponding reflection. If W is a set of representatives of the 
left cosets of the subgroup { 1, s,} in W, we have 

J(eP) = (det(w’)ew’’P + det(w’s,)e(W’h) ’ p, 
W‘ Ewe 

= o  
because det(w’s,) = -det(w’) and (w’s,) - p = w’ * p. 

(ii) To say that an element c zpeP of Z[P] (where zp E Z for all p E P) 

is anti-invariant means that z, . = det(w)z, for all w E W, and consequently 
the J(ep) generate the Z-module Z[P]’”. It follows from (21.14.7) that the 
group W actsfreely on the set Prep of weights that are regular linear forms, so 
that J(ep) # 0 for all p E Prep; furthermore, each W-orbit in Prep intersects C 
in exactly one point (21.14.7), hence the J(eP) with p E P n C = Prep n C 
are linearly independent over Z. In view of (i), this proves (ii). 

P e p  

The results of (21.14.10) apply unchanged to Z[cP] if c > 0. 

(21.14.11) Given an element 0 = c zpeP of Z[P], we shall say that zpeP is 

the leading term of 0 if zp # 0 and if p’ < p for all other p’ E P such that 
zp # 0. It is clear that if zpeP is the leading term of 0, and if @’ = C zkep is 

another element of Z[P], with leading term zI, 8, then zp zI, ep+4 is the leading 
term of W .  This definition and this remark apply without change to Z[cP], 
c > 0. 

It follows from (21.1 4.7) that each orbit Il E P/W intersects C in exactly 

P S P  

PEP 
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one point p. For p E P n C we therefore denote the sum S(n) by S ( p ) .  Since 
w . p 5 p for all w E W (21.14.6), it follows that ep is the leading term of S ( p ) .  
Every element Y of Z[PIw that has leading term zpeP may therefore be 
written uniquely in the form Y = z,S(p) + z,S(q), where z, and 

the zq are integers. 
q c P  n T , q < p  

(21.1 4.1 2) Since the roots a E S belong to P (21.14.2), the element 

(21.1 4.1 2.1) 

(where S+ is the set of positive roots, relative to the basis B) belongs to 
Z[$P], but not necessarily to Z[P] (cf. (21.16.10)). We have 

(21.1 4.1 2.2) A = e" (1 - e-.) = e-* fl (ea - 1); 
a e  S+ a s  S+ 

by virtue of (21 .14.8), this shows that A belongs to Z[P(g)] in any case, and 
that e-' 4 belongs to Z[P]; moreover the first of the formulas (21.14.12.2) 
shows immediately that e" is the leading term of A (21.1 4.1 1). By virtue of the 
formula (21.14.12.1), A is anti-invariant. Indeed, it is enough to show that 
s, 1 A = -A for 1 S j 2 I ,  because W is generated by the reflections s,, in 
the notation of (21.14.7); but by virtue of (21.11.6), s, changes the sign 
of the factor e81/2 - e-8J/2 and permutes the other factors of A, whence 
the result. 

(21.14.13) (i) We have A = J(8)  in Z[$P]. 
(ii) For each weight p E P n C, the element J(eP+*)/J($) is an invariant 

element ofZ[P], with leading term equal to ep. 
(iii) For each p E P n C, let Y, be an element of Z[PIw with leading 

term equal to eP; then the Y, form a Z-basis ofthe Z-algebra Z[PIw. (In 
particular, this is so for the elements J(eP+*)/J($).) 

(i) Since A is anti-invariant and belongs to Z[iP], it is a linear combina- 
tion with integral coefficients of the J(e4) with q E 4P n C (21.14.10); but 
since e-* A E Z[P], we must have q - 6 E P for each of the J(e4) appearing 
in A with a nonzero coefficient; hence A = z p  J(ep+*), with z, E Z. The 

coefficient of eP+* in A is therefore z,. Now, for p E P n C and p # 0, p + 6 
is not comparable with 6 with respect to the ordering if p E ic*, and is 2 6 
otherwise. Since all the terms of A other than 8 are of the form zieq with 
q c 6, we must have z, = 0 for p # 0, and zo = 1. 

p e p  n C  
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(ii) Since w * 6 - 6 E P for all w E W (21.11.7), it follows that 
e-'J(eP+') belongs to Z[P]. Hence, by virtue of (21.14.12.2) and (21.14.1), it 
is enough to show that e-'J(eP+') is divisible by each of the elements 1 - e-' 
with a E S+ (bearing in mind that no two distinct elements of S+ are 
proportional). If W' is a set of representatives of the right cosets of the 
subgroup { 1, s,} in W, we have 

e-'J(eq) = c det(W')(ew''q - esa'(W'"I))e-d 
W ' E  W' 

where q = p + 6. But since q E P(g), we have w' . q E P(g) and therefore 
s, . (w' . 4) = w' . q - m(w')a, where m(w') is an integer. We reduce therefore 
to showing that 1 - e-M is divisible by 1 - e-O1 in Z[P] for all integers n E Z. 
This is clear if n 2 0, and if n < 0 we have only to remark that 1 - e-"' = 
e-"u(e"u - l), and that e-O1 is invertible in Z[P]. 

z,e', and let u be a maximal element of the 

finite set of r E P such that zr # 0. We shall show that 6 + u is maximal 
among the elements u E t P  such that the coefficient of e" in J(eP+') is # 0. 
Indeed, if z;e* is a term of J(e') other than e', then t < 6; if we had 
t + r > 6 + u, it- would follow that r > u + 6 - t > u, contrary to the 
hypothesis that u is maximal. Since p + 6 E C, we have p + 6 > w (p + 6) 
for all w # 1 in W (21 .14.6), and consequently ep+' is the leading term of 
J(eP+'); hence u = p and zp = 1, and ep is the leading term of J(eP+')/J(ed). 

Now put J(eP+'")/J(e") = 
r 6 P  

(iii) The hypothesis implies that for each p E P A C we may write 

We shall first show that the Y,, are linearly independent. If not, there would 
exist a finite nonempty subset I of P n C, and for each p E I an integer 
c,, # 0 such that cPYp  = 0, and therefore, by (21.14.13.1), 

P e l  

There exists in the finite set I a maximal element r. For each p E I distinct 
from r (resp. each q E P n C such that q < r or q < p for p E I and p # r) 
there cannot appear in S ( p )  (resp. S ( q ) )  a term in 9 with a nonzero 
coefficient, because this would imply that r < p (resp. r 5 q < r or r 5 q < p )  
by virtue of (21.14.11), contradicting the definition of r. Hence we cannot 
have c, # 0, which proves our assertion. 
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Next we shall prove that each S ( p ) ,  for p E P n C, is a linear combina- 
tion of the Y q  with q E P n C. Suppose that this were not the case, and let 
po  E P n C be an element for which the assertion is not true. Since the set of 
weights p 5 p o  in P n isfinite (21.14.8), we may assume that p o  is minimal, 
in other words, that for each p E P n C such that p < p o ,  S ( p )  is a linear 
combination of the Y q .  But then the relation (21.14.13.1), with p = p o ,  
would show that the difference Ypo - S ( p o )  was a linear combination of the 
Y q  with q E P n c, and we should arrive at a contradiction. 

15. WEYL'S FORMULAS 

(21.15.1) Let G be a compact connected Lie group, T a maximal torus ofG. 
Then the C" mapping (s, t ) ~ s t s - '  ofG x T into G is a submersion (16.7.1) 
at all points (s, t )  such that t is regular (21.7.1 3 ) .  

For each so E G, we have s t s - '  = so((s; ' s ) t ( s ;  's)- ')s;'; therefore, 
since x H so xs; ' is an automorphism of G, it is enough to prove the propo- 
sition at the point (e, t)  of G x T. Let t be the Lie algebra of T and let 111 be 
the subspace of the Lie algebra g of G that is the direct sum of the 
(% 0 g-J n g (in the notation of (21 B.1)) and supplementary to t. Since the 
exponential mapping is a diffeomorphism of a neighborhood of 0 in g onto a 
neighborhood of e in G, it will be enough to show that the C" mapping 
cp: (u, t)t+exp(u)t(exp(u))-' is a submersion of 111 x T into G at the point 
(0, to )  when to E T is regular. Since the dimensions of 111 x T and G are 
equal, it comes to the same thing to show that the tangent linear mapping 
T(o, ,&I) is injectioe (A.4.11). The tangent vectors in T o ,  ,,,(iii x T) are of the 
form (v, to  . w) with v E 111 and w E t. Let us apply (16.6.6) to the functions 
cp(0, .): t~ t and cp( *, t o ) :  U H  exp(u)to(exp(u))-' : the second of these is the 
composition of the left translation z ~ t ~ z ,  the mapping (x ,  y ) ~ x y  of 
G x G into G and the mapping UH(~ ; '  exp(u)t,, exp(u)-') of 111 into 
G x G. Using the formulas of (16.9.9), we obtain 

(21.15.1.1) To,,o,(rp) * (v, to  . W) = to . (Ad([; ') * v - v + w). 

If this tangent vector is zero, then w = v - Ad&') . v belongs to both t 
and 111, because the choice of 111 ensures that it is stable under Ad@) for all 
t E T; consequently w = 0 and v = Ad@; ') . v. But the second of these 
relations implies that v = 0, by reason of the hypothesis that to is regular 
(21.8.4), and the proof is complete. 
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(21.15.2) For each t' E T, we have (st')t(st')-l = sts-' for all s E G and 
t E T, because T is commutative. If A :  G + G/T is the canonical projection, 
it follows therefore that the mapping (s, t)w sts-  factorizes as 

n x  1~ r (21.15.2.1) G x T - ( G / T ) x T - G  

wherefis of class C" ((16.10.4) and (16.10.5)). Let TreO be the set of regular 
points of T; it is a dense open subset of T, whose complement N is the union 
of the tori U, of dimension dim(T) - 1, as a runs through the set S+ of 
positive roots of G relative to T (with respect to an arbitrary basis B of the 
root system S) (21.8.4). Hence (G/T) x N is negligible in (G/T) x T 
(16.22.2), and it follows from Sard's theorem that the compact set 
f((G/T) x N) is negligible in G (16.23.2). Next, the restriction o f f  to 
(G/T) x Tree is a submersion of this open set onto an open subset V in G, by 
virtue of (21.15.1) and (16.7.5). Finally, the mapping f is surjective by 
(21.7.4), hence G is the union of V andf((G/T) x N), from which it follows 
that the complement of V is negligible. 

Let W be the Weyl group of G relative to T. We shall show that 
(G/T) x T,ee is a covering ofrhe open set V, with Card(W) sheets, the projec- 
tion being the restriction off: For this purpose, we shall show that W acts 
differentiably andfreely on (G/T) x Trcp, so that the orbits are precisely the 
intersections of this submanifold with the inverse imagesf- ' ( x )  for x E V. In 
the first place, since W permutes the roots (21.8.6), it leaves Treg stable and 
acts differentiably on this manifold by virtue of (16.10.4) and the definition 
of W (21.7.16). Next, the normalizer N ( T )  of T in G acts on G/T on the 
right, by the rule n(s) - x = n ( s x )  for s E G and x E N(T), because we have 
sTx = sxT since x normalizes T. Furthermore, if x' = xt ,  where t E T, then 
n(sx') = ~(sx) ,  and therefore for each coset w E W = N(T)/T we may define 
n(s) w as the common value of n(sx) for all x E w. It is clear that this action 
of W on G/T is differentiable (16.10.4) andfree, because the relation n(sx)  = 
n(s) implies that x E T. We now define a left action of W on (G/T) x T,,, by 
the rule w . (n(s), t) = (n(s) .  w-l, w t )  for w E W, s E G, and t E Trcs. 
Clearly this is a free action of W. Moreover, if sts-' = s't's'-l, where 
s, s' E G and t ,  t' E T, there exists w E W such that t' = w t (21.7.17), and it 
follows that n(s') = n(s) * w-'. The restriction of f to  (G/T) x Trep therefore 
factorizes as 

and since f maps each open set in (G/T) x Tres to an open set in V, the 
mappingf, is a homeomorphism of the orbit space ((G/T) x T,,,)/W onto 
V. But since the restriction off to (G/T) x Trcg is a submersion, we deduce 
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from (16.10.3) that the orbit manifold exists, and thatf, is a diffeomorphism. 
The result now follows from (16.14.1). 

(21.15.3) With the notation of (21.15.1), let 1 = dim(T) (the rank of G), and 
2n = dim(G/T) = dim(n1). Let uG and uT denote the translation-invariant 
volume forms on G and T, respectively, corresponding (16.24.1) to the nor- 
malized Haar measures mG and mT on G and T, respectively. We shall show 
that there is a canonically determined volume form u ~ , ~  on G/T, invariant 
under the action of G. For this purpose, we observe that the tangent space? 
T,,,,(G/T) may be canonically identified with g/t, and hence also with the 

2n 

supplement III  of t in g. The image of a 2n-vector z E A T,,,,(G/T) under the 
2n 2 n  

diffeomorphism XH s . x is A T,(n) . (s . z) E A T, . ,(,)(G/T); it depends 
only on the point s . n(e) E G/T, not on s E G. For the relation s . n(e) = 
s' . n(e) is equivalent to s' = st  for some t E T, and we therefore have to see 

that A T,(n). ( t  * z) = I. Now, for each vector u E 111, we have 
T,-,(n) . (u . t - ' )  = u, with the identification made above, and therefore 
T,(n) . ( t  . u) = Ad(t) . u E 111 (since 111 is stable under Ad(t)); but 
tt-+ Ad@) 1111 is a homomorphism of T into the orthogonal group of the 
restriction to 111 of an Ad(G)-invariant scalar product on g; since T is con- 
nected, the determinant of Ad(t) 1111 is necessarily equal to 1, and therefore 
we have 

2n 

2 n  2n 

A T,(n) . ( t  * Z) = A Ad([) . z = Z. 

Let now e* be a 2n-covector on 111 such that e* A uT(e) = uG(e) (we are 

identifying e* and uT(e) with their canonical images in A g* under A 'prl 

and A 'pr2); for each s E G the 2n-covector s e* E A T, , ,(,)(G/T) depends 
on x = s * n(e) and not on s, by the remarks above and (19.1.9.1). We may 
therefore define uGIT(x) = s . e*. We denote by mG,T the positive measure on 
G/T corresponding to uGiT (1 6.24.1), which is therefore G-inuariant. 

By abuse of notation, we denote by uG/TAuT the volume form on 

(G/T) x T that is equal to A 'p'I(uG/T) AA 'prZ(uT), to which corresponds 
the product measure mG/T@mT. For the C" mapping f defined in 
(21.15.2.1), I f & )  is a (2n + 1)-form on (G/T) x T, and we may therefore 
write 

(21 . I  5.3.1) If(uc) = @ * (oG/T A ~ T ) .  

t The use of the letter T (with indices) to denote tangent spaces and tangent linear map- 
pings should not be confused with the use of the same letter (without indices) to denote a 
maximal torus in G .  

2 n + l  2 n  

I 2n 

2n 1 
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We propose to calculate the numerical function 0 on (G/T) x T. For this 
purpose, we first remark that sincef(n(s), t) = s f (n(e) ,  t ) s - '  by definition 
(i.e., f 0 y ( s )  = Int(s) 0 f, where y(s )  denotes the diffeomorphism 

(x ,  t ) H ( S  ' x,  t )  

of (G/T) x T onto itself), by transport of structure we have also 
'f(s uG * s-') = s - I f (uG) ,  and s . uG s- ' = uG since G is unimodular. Also 
s uGIT = u ~ / ~ ,  and therefore we see that for all s E G we have 

(21.15.3.2) O(n(s), t )  = O(n(e) ,  t ) .  

If as before we identify l i t  and TX(JG/T), the calculation in (21 .15.1) shows 
that 

T(n(e),,)(f) (v, t W) = t . (Ad(t-') * v - v + W) 

for v E 111 and w E t, since T&XpG) is the identity mapping. The definition 
of If&) (16.20.9.3) and the choice of e* then show that 

(21 .15.3.3) O(n(e), t )  = det((Ad(t-')[m) - l,,,). 

Now take in 111 the basis consisting of the vectors y, and L, defined in 
(21.8.3), for a E S'. Relative to this basis, Ad(t-') 1111 is defined by the 
formulas (21.8.3.3), with exp(u) replaced by t -  '. Since 

it follows from the formula (21.14.12.1) that we have 

(21.15.3.4) O(n(e) ,  exp(u)) = I A( - u) I 2  = I A(u) 1'. 
This shows in the first place that the restriction offto (G/T) x Trcs is a local 
diffeomorphism onto V that preserves the orientation, when (G/T) x T and 
G are oriented by the forms u ~ / ~  A oT and uG, respectively. Secondly, we 
deduce Weyl's integration formula : 

(21.15.4) 

(21 .13.6), for each continuous complex-valued function g on G we have 

Considering thefunction I A l 2  = fl 18 - 1 I2 as afunction on T 
a E 8 +  
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and i fg  is a central function (21.2.2) 

Apply the formula of successive integrations (1 6.24.8.1) with 
(G/T) x Treg in place of X, V in place of Y, the restriction to V of the 
(2n + 1)-form go, in place of c, and the inverse image ( g  o f )  * ff(u,) of this 
restriction in place of o. Each of the fibersf- ' ( y )  is a finite set ofcardinality 
Card(W) (21 .15.2), and at each point (x, t) of this fiber, o /c (y )  is the number 
1 by virtue of (16.21.9.2); hence we have 

g(f(xt t ) )  I A([) 1' d m G i T ( x )  d m T ( t ) .  J$) dm,(s) = (Card(W))-' JG/T JT... 

But since the complement of V in G and the complement of (G/T) x Treg in 
(G/T) x T are negligible (21.15.2), we may replace V by G and Treg by T in 
this formula, which gives (21.15.4.1). In particular, putting g = 1 and 
remembering that m, is normalized, we obtain 

1 = (Card(W))- 'm,,dG/T) I A ( t )  1' dmT(t). 
jTre.  

Since A = J(ed) = ed 1 det(w)ew on t, and since the w 6 - 6 are pair- 

wise distinct weights in P = 2~ iT ,* ,  it follows from the orthogonality rela- 
tions for characters (21.3.2.4) applied to T that 

jT 1 A(t) l 2  dmT(t) = Card(W) 

and consequently that mGIT(G/T)  = 1 (cf. (22.3.7.4)). If now g is a central 
function, we have g ( f ( x ,  t)) = g(t)  for all x E G/T ,  and the formula 
(21.1 5.4.2) follows from (21.1 5.4.1) applied to g ,  together with the above 
evaluation of rn,,,(G/T) and the Lebesgue-Fubini theorem. 

w r w  

We can now describe completely the characters of a compact connected 
Lie group G in terms of the weight lattice P = P(G) and the half-sum 6 of 
the positive roots: 

(21.1 5.5) The mapping that sends each character xp ofG 
to its restriction xp I T is a bijection onto the set of elements J(ep+d)/J(ed) of 
Z[PIw, where p runs through the set P(G) n C, and each of the weights 
p E P(G) n C has multiplicity 1 in the character xp to which it corresponds. 
The canonical mapping Z'R'G)) + Z[P]" is a ring isomorphism. 

(Weyl's theorem) 
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For each weight p E P n C, let g p  denote the unique continuous central 
function on G whose restriction to T is J(eP+')/J(e") (21 .13.5). Then the g p  
form an orthonormal system in L$(G, mG). For since A = !(ed), it follows 
from Weyl's integration formula (21.15.4.2) that 

(21.15.5.1) 5 gpgqddmG = (Card(W))-' ( e - ' J ( e P + ' ) ) ( e " J F ) )  dmT. 
G T 

As w runs through W, the weights w . ( p  + 6) - 6 are all distinct (21.14.5), 
and if p # 4 and 4 E P n e, all the weights w * (q + 6) - 6 are distinct from 
the weights w ( p  + 6) - 6 (21.14.7). By virtue of the orthogonality relations 
for the characters of T (21.3.2.4), the right-hand side of (21.15.5.1) therefore 
vanishes if p # 4. Furthermore, when 4 = p ,  since e-'J(eP+') is a linear 
combination of Card(W) characters of T with coefficients k 1, the right- 
hand side of (21 .15.5.1) is equal to 1. 

This being so, it follows from (21.14.13(iii)) and (21.13.6) that we may 
write 

where the n ( p )  are integers 2 0; by (21.13.5), this implies that 

xp = 1 n ( p ) g p .  Since I xp 1' dmG = 1 (21.3.2.4), it follows therefore 

from the orthonormality of the g p  that (n(p))' = 1, and hence we have 

n(p) = 0 except for one weight po E P n C, for which n ( p o )  = 1. Con- 
sequently xp = g w ,  and the weight po  occurs with multiplicity 1 in the 
character xp, because ePO occurs with coefficient 1 in J(ep0+')/J(e') 
(21.14.1 3(ii)). 

In view of (21.14.13(iii)), the proof will be complete if we show that each 
g p  is a character of G. If it were not so, there would exist a weight 
po  E P n C such that g m  were orthogonal to all the characters of G, by the 
previous part of the proof. Since g w  # 0, this would contradict the fact that 
the characters of G form a Hilbert basis of the center of Lf(G, mG) (21.3.2). 

p c P  n T  

P E P  nc 

A class of irreducible representations p E R(G) is therefore determined 
by the highest weight p E P(G) contained in xp. This weight p is called the 
dominant weight of the class p (or of any representation in this class), relative 
to the chosen basis B of S. Every weight p E P n C is therefore the domin- 
ant weight of a unique class p E R(G). Moreover, we have 

(21.15.5.2) I j p  is  the dominant weight of p, the other weights contained in xp 
are all of the form p - n j P j ,  where the nj are integers 2 0. 

j 
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If  xp IT = n(q)e4, we have 
9 e P  

(21.1 5.5.3) e-dJ(8) . n(q)e4-P = e - (p+a)J (ep+d) .  

Since e - 6 J ( 8 )  is a polynomial in the e-81 (21.14.12.2), it is enough to show 
that e - ( p + d ) J ( e p + a )  is also a polynomial in the e-Pj, for it will then follow 
from (21.15.5.3) that if n ( q )  # 0 we must have q - p = 1 z j P j  with 

coefficients z j  E Z, and since we know that q 5 p ,  the z j  must all be 5 0. 
From the definition of J(eP+'), it is enough to verify that for all r E P n c 
and all w E W, the weight r - w . r is a linear combination of the P j  with 
coefficients that are integers 2 0. But this result is precisely (21.14.6.2), since 
the numbers r ( h j )  are integers 1 0. 

9 e P  

j 

(21.15.5.4) For p E ic* we have w . p = p for all w E W, hence 
J(eP+') /J(8)  = ep. These are the only weights p E P(G) such that the charac- 
ter e p  of T is the restriction of a character of G. For if p is such that w . p = p 
for all w E W, then p must be orthogonal to all elements w u - u E i t ,  for 
all u E i t  and all w E W; but these elements span it' because s, . h, = - h,, 
and therefore we must have p E it*. 

(21.15.5.5) Let p', p" be two classes of irreducible representations in R(G), 
with dominant weights p', p", respectively. Since ep' (resp. ep") is the leading 
term in xp, I T (resp. xp,, IT), it follows that ep'"" is the leading term in the 
restriction to T of the product xp,xp,, . If p is the class of irreducible represen- 
tations with dominant weight p' + p", it follows therefore that p is contained 
in p'p" with multiplicity 1 ,  and that every other class p1 E R(G) contained in 
p'p" corresponds to a dominant weight < p' + p". 

(21 .15.6) The dimension of the representations in the class p E R(G) with 
dominant weight p E P n C is given by the formula (Weyl's dimension 
formula) 

(21.1 5.6.1) 

(where (A 1 p )  is a W-invariant scalar product on it*). 

The problem here is to calculate the value of the character xp at the 
identity element of G (21.3.2.8), i.e., to calculate the value of J(ep")/J(a) at 



126 XXI COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS 

the identity element of T (21.153,  or equivalently at the point 0 E t, by 
considering the elements of Z[P] as functions defined on t. We shall calculate 
the value of J(ep+'")/J(d) at a point of the form tiha, where h, is the element 
of it defined by the relation A(h,) = (A 16) for all A E it*, and 4: is a nonzero 
real number; and then we shall take the limit of this as 4: --* 0. Now, for each 
linear form q E iP ,  the value of J(@) a t  the point tih, is by definition 

det(w)eie'w'614), i.e., it is the value of A = J ( 8 )  at the point [ih, E t, 

where h, is the element of it defined by the relation A(h,) = (A 1 q) for all 
1 E it*. From the formula (21.14.12.1) for A, we therefore have 

w e w  

a function of 4: whose principal part, as 4: --* 0, is 

(21.15.6.1) now follows immediately. 

(it& I a)). The formula 
a E S +  

PROBLEMS 

1. Let G be a compact connected group, and let P be the weight lattice of G (relative to a 
maximal torus T), S c P the root system of G relative to T, and W the Weyl group of G. 
Let V be an irreducible representation of G, and let p be a weight of V. 
(a) Let a E S, and let I be the set of integers t E Z such that p + ta is a weight of V; let 
n(p  + ta) be the multiplicity of this weight in V .  Let b (resp. -a )  be the largest (resp. 
smallest) element of I. Prove that I = [-a, b] and that a - b = p(h,). (Consider the res- 
triction of V to the subgroup K, of G (21.8.5) and use (21.9.3)) 
(b) Show that for each integer u E [0, a + b] we have s, . (p + (b - u)a) = p - (a - U)LY. 

and hence that the weights p + (b - u)a, p - (a - u)a have the same multiplicity in V. 
(c) Show that the function t~ n(p + ta) is increasing in the interval [-a, i ( b  - a)] and 
decreasing in the interval [$(b - a), b]. (Use (21.9.3)) 
(d) A subset X of P is said to be S-saturated if, for each p E X and each root a E S, we 
have p - ta E X for all integers t lying between 0 and p(h,) inclusive. 

Show that every I-saturated subset of P is stable under the Weyl group. For each 
integer d 2 1, the set of weights p of V with multiplicity n(p) 2 d is 8-saturated. (Use (c).) 

2. With the notation of Problem 1, let E be the complex vector space of the representation V. 
Then E is a simple U(g,,,)-module (21.9.1), hence is generated by any u # 0 in V. 
(a) For each weight p of V ,  let E, be the set of vectors u E E such that h . u = p(h)u for all 
h E b; then E is the direct sum of the E, as p runs through the set of weights of V .  Show 
that for each root a E S, either p + a is not a weight of V, in which case x, . E, = {O), or 
else x, . E, c E,,, . 
(b) Let B be a basis of S, and let a,, . . .,a, be the positive roots in S relative to this basis. 
Let p be a weight of V such that none of the weights p + a, (1 5 j 5 n )  is a weight of V. 
Then every weight of V is of the form q = p - m l a l  - ... - m,a,, where the m, are 
integers 2 0, and p is the dominant weight of V (If v # 0 is a vector in E,, remark that u 
generates E as U(g,,,)-module, and use the basis (21.16.3.4) of U(go,).) 
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3. The notation is the same as in Problems 1 and 2. Let Y be a subset of P; an element p E Y 
is said to be S-extremal in Y if, for each root a E S, we have either p + a # Y or p - a $ Y. 
(a) Let p be the dominant weight of V, and let X be the set of weights of V. Show that the 
S-extremal elements of X are the transforms w . p of p under the Weyl group. (Let q be an 
S-extremal element of X; without loss ofgenerality, we may assume that q E P n C. If a is 
a positive root, show that in the notation of Problem 1 we must have b = 0, and then use 
Problem 2.) 
(b) Show that X is the smallest S-saturated subset of P that contains p. (If X‘ is this set, 
we have X’ c X by virtue of Problem I(d). Assume that X # X’, and choose in X - X‘ a 
maximal element q (relative to the ordering defined by B). Then there exists a positive root 
a such that q + a E X; deduce that, in the notation of Problem 1, we have q + ba E X’, and 
hence (by using the definition of a saturated subset and Problem 1) that q E X’, which is a 
contradict ion.) 

4. With the same notation, show that for each weight q of V other than thedominant weight 
p ,  we have (q I q )  5 (p 1 p) and (q + 6 I q + S) < (p + 6 I p + 6). (Reduce to the case where 
q E P n c, and use (21.14.6).) 

5. With the same notation, show that there exists a weight in X that is the smallest element of 
X relative to the ordering defined by B, and that this smallest weight has multiplicity 1. 
(Observe that there exists an element wo in the Weyl group that transforms B into - B.) 

6. With the same notation, show that for each finite nonempty S-saturated subset X of P, 
there exists a linear representation V of G such that X is the union of the sets of weights of 
the irreducible components of V. (For each p E X consider the weight w . p that lies in 
P n C (21.14.7) and the irreducible representation with dominant weight w . p.) 

7. (a) With the same notation, let p E P and let X be the smallest Ssaturated subset of P 
containing p. Prove that the following conditions are equivalent: 

(a) X = W p. 

( y )  For all roots a E S and all integers t between 0 and p(h,) inclusive, we have 

(6) For all roots a E S, p(h,) is equal to 0, 1, or - 1. 

(PI (414) = (PIP) for all 4 E x. 

(P - talp - fa )  B (PIP). 

(To show that (y) implies (6),  observe that (p - p(h,)a Ip - p(h,)a) = (pip) and that the 
Euclidean ball is strictly convex. To show that (6) implies (a), observe that for each w E W, 
(w . p)(h,) is also equal to 0, 1, or - 1, and deduce that for each integer t lying between 0 
and (w . p)(h,) inclusive, w . p - fa is equal to either w . p or (s. w )  . p.) 

Deduce that every nonempty S-saturated subset Y of P contains an element p satisfy- 
ing these conditions. 
(b) Let U be an irreducible representation of G, let E be the representation space of U, 
and let p be the dominant weight of U. Show that the following conditions are equivalent: 

(a) p satisfies the equivalent conditions of (a) above. 
(8) All the weights of U are of the form w . p for some w E W. 
( y )  For each root a E S and each u E E, we have (x.)* . u = 0. 

(To show that (a) and (8) are equivalent, use Problem 3(b). To show that (a) implies ( y ) ,  
use Problem 2(a). To show that if there exists a E S such that p(h,) 2 2 we cannot have 
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(x:) . u = 0 for all u E E, consider the restriction of U to the subgroup K, of G (21 B.5) and 
use (21.9.3). 

8. (a) On the model of the algebra of formal power series (A.21), show that it is possible to 
define a Z-algebra Z[[P-]] whose elements are"forma1 sums" 1 cpeP (where A E it*), the 

multiplication being defined by 
PS A 

( c c,ePj( c C 3 P j  = p S A + p  c ( q + r = p  c c,c;jep. 
P S A  P S P  

With the notation of Problem 2(b), for each weight p E P let v ( p )  denote the number of 
systems of integers (ml, . .. , m,) E N" such that p = m, K~ + ... + mnan (so that v ( p )  is the 
"number of partitions of p into positive roots"). To say that v ( p )  > 0 means that p is a 
linear combination of positive roots with coefficients that are integers 2 0. Then we have 

I /  n (1 - e-m) = 1 v(p1e-P 
. E l +  P E  p 

in the ring Z[[P-]]. 
(b) For each weight p E P n c, show that the multiplicity n,(q) of a weight q in the 
irreducible representation with dominant weight p is given by the formula 

(Use (a) above and Weyl's theorem.) 
(c) Deduce from (b) that for each weight q # p of the representation with dominant 
weight p we have 

n (  ) =  - P q  det(w) . np(q  + 6 - w 6). 
W E  w. w* 1 

(Use the formula (1) with p = 0.) 
(d) Let pp be the class of irreducible representations of G with dominant weight 
p E P n c. Show that the formula (21.4.7.1) can be written explicitly as 

where 

(2) C ( P ,  q, r )  = c det(ww') . v(w . ( p  + 6 )  + w' (q + S) - ( r  + 26)). 
w E w. V'  E w 

(Observe that by virtue of (21.4.6.2) we have 

(3) 

and note that for r E P n c, w . ( r  + 6) does not belong to P n c; consequently c ( p *  q, r )  
is equal to the coefficient of e'+' in the right-hand side of (3)) 
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9. With the notation of Section 21.15, takeas scalar product (Alp) on it* the canonical scalar 
product (Section 21 . l l ,  Problem 11). Show that if the representations of the class p E R(G) 
have dominant weight P E  P n and dimension np (given by (21.15.6.1)). then 

C ( ~ 1 6 ) 2 = h ~ p ( ( P + ~ 1 P + ~ ) - ( 6 1 ~ ) )  
0 

where the sum on the left-hand side is over all the weights q of p, counted according to 
their multiplicities. (Expand the right-hand side of (21.15.6.2) and Xp((ihq) as far as terms 
in c3 , )  

10. Let G be an almosr simple compact connected Lie group. 
(a) With the notation of Section 21.14. let B be a basis of S. Show that for the ordering 
defined by B there exists a highest root p = n l p l  + ... + nr/$.  such that for each other 
root a = p1 D l  + ... + plbl in S, we have p j  S nj for I 5 j 1. (Observe that the adjoint 
represehtation of G on g,,-, is irreducible, and consider its dominant weight.) The root 11 
lies in C, the Weyl chamber relative to B, and we have ( a  I a )  5 (p I p )  for all roots a E S. 
Also, for each root a > 0 other than p, the Cartan integer n(a, p )  is equal to 0 or 1 (use 
Section 21.11, Problem 1). 
(b) Let h, be the half-sum of the h, E it for all positive roots a. For each root 
a = pI  + ... + plBI, we have a(h,) = p1 + p2 + ... + pI = f 1 n(a, B). (Use 

(21.1 1.5.5) and (21 .11.7).) 
(c) If p = nlb l  + ... + n I &  is the highest root (relative to B), show that 

P E S *  

n , + . . . + n , = h -  I ,  

where h is the Coxeter number. (Use Section 21.11, Problem 16(e), and observe that 
n(a, p ) 2  = n(a, p )  for all roots a > 0.) 

Let G be an almosr simple compact connected Lie group, and retain the notation of 
Problem 10. For each a E S and k E Z, let denote the affine hyperplane a - ' ( 2 n k )  in it.  
Also let ( p , ,  .... pI] be the basis of it dual to the basis B = {PI. ..., BI) of it*, so that 
/l,(pk) = 6, (Kronecker delta). Then the element h, E it (Problem 10) is equal to 
p1 + . . .  + pI (cf. (21.16.5.2).) 

The Weyl group W, considered as a group of automorphisms of the vector space it, is 
generated by the reflections s,: U H  u - a(u)h, (21.8.7). where a E S. 
(a) The group W, generated by the orthogonal reflections in the affine hyperplanes u,. is 
called the afFne Weyl group. Show that W, is the semidirect product of W by the group Po 
generated by the translations U H  u + Znh,, a E S (or. equivalently, by the translations 
U H  u + 2nhj ,  1 5 j =< I). (Observe that the translation UH u + 2nh, is the product of the 
reflections in the hyperplanes u,,, and ua, and that W leaves invariant the root system 
S' formed by the h a . )  The group W, leaves globally invariant the union of the hyper- 
planes iia. . 
(b) The set C* of vectors u E i t  such that B,(u) > 0 for 1 j 4 1 is called the Weyl 
chamber of S' (relative to the basis B), and the set A* of vectors u E C* such that 
p(u) < 2n, where p is the highest root of S relative to B (Problem 10) is called the principal 
alcoue of C*. Show that A* intersects none of the hyperplanes The set A* is the 
interior of the simplex constructed on the vectors 2npj /nj  (1 5 j 6 I )  (14.3.10). 
(c) Show that if an element of W, fixes a vector z not lying in any oJrhe hyperplanes ua, k ,  

then it is the identity element of W,. (The element of W, in question is the product ofan 
element w E W by a translation UI+ u + h of Po, and must satisfy w . z = z + h; deduce 
that exp(iw . z) = exp(ir) and use (21.7.14).) 

11. 
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(d) Deduce from (c) that the only element of WE that leaves A* globally invariant is the 
identity. (Remark that the subgroup W, of W, leaving A* globally invariant is finite, and 
consider the barycenter of the transforms under W, of a vector in A*.) 
(e) The connected components of the complement in it of the union iD(G) (Section 
21 .lo, Problem 2) of the hyperplanes h. are called the alcoves of S. Show that each alcove 
is of the form u(A*) for a unique element o E W,. (The uniqueness follows from (d) above. 
To prove the existence of u, take a point x in an alcove and a point a E A*; consider the 
point y of the WE-orbit of x that is nearest to a, and show that y E A*. To do this, show 
that y and a lie on the same side of each of the “walls” of A*, i.e., the 1 + 1 hyperplanes 
up,. 0 and “#. 1.1 

( f )  Show that each point of G is conjugate to a point of the form exp,(iu), where u E p. 
(Observe that exp(2xihJ = e for all roots a, and use (e) above and (21.8.7).) 
(g) Show that, for 1 5 j 5 I, the points of the form 2 x 1 ~ ~  with 0 5 t 5 1 that belong to 
iD(G) are the points 2xp,/m, where 1 5 m 5 nj. (Use Section 21.11, Problem 3(c).) 

12. We retain the hypotheses and notation of Problem 11, and the notation of (21.10.6). 
Suppose that the vectors x,, together with a basis of it, from a Weyl basis of g,,) (21.10.6). 
Consider the vector h, E it, and take an element in g of the form 

I 

z =  c ( z j x p , -  Z j X + , )  
J= 1 

with z, E C (1 5 j 5 I). 
(a) Show that if we put 

1 

z’ = c i(z, xg, + zj x-a,), 
j =  1 

which belongs to g, then we have 

[ih, , z] = z‘, [ih, , 2’1 = -2 ,  

and 
I 

[ I ,  z’] = 2i zJ;f hh . 
j =  I 

(Use the fact that / I j  - /Ik is not a root.) Show that we may choose the coefficients z j  # 0 so 
that [ z, 2‘3 = Zih,. The vectors ih, , z, and I’ then generate a three-dimensional Lie 
subalgebra to of g. which is the Lie algebra of an almost simple compact subgroup KO of 
G. 
(b) Show that KO is a principal nice subgroup of G, of rank 1. (If G’ is a connected closed 
subgroup of G that contains KO and T, and if g‘ is its Lie algebra, observe that giC) must be 
the direct sum of IJ = t,,, and a certain number of subspaces 9.. and that the sum of these 
9. must contain z and z’; note also that the go, and g -#, must occur among these 9.. 
because the z j  are # 0.) 
(c) Show that a nice subgroup of G 01 rank 1 that contains a regular element of G is 
necessarily conjugate to the group KO (use Problems 8 and 12 of Section 21.11). Such a 
subgroup is called miniprincipal. 
(d) Let GI be a connected closed subgroup of G. Show that for GI to be a principal nice 
subgroup of G, it is necessary and sufficient that G,  contain a miniprincipal subgroup KO 
of G. (To show that the condition is necessary, consider a miniprincipal subgroup Kb of 
G,, and use Section 21.11, Problem 8 to show that a principal diagonal of KO is a principal 
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diagonal of G. To show that the condition is sufficient, observe that if G,  is a connected 
closed proper subgroup of G I  containing KO, then the rank ofG,cannot beequal to that 
of G I ,  by virtue of Section 21.11, Problem 7(d), and conclude that KO is miniprincipal in 
G I ,  by virtue of the fact that an element of G I  that is regular in G is also regular in G I . )  
(e) Let cp be an automorphism of G. Show that there exists an element z E G such that 
lnt(z) cp fixes all the elements of a given miniprincipal subgroup KO of G. Deduce that 
there exists a finite subgroup F of Aut(G) such that Aut(G) is the semidirect product of its 
identity component Int(G) and F. 

13. Let G be an almost simple compact connected Lie group. With the notation of Problem 11, 
ifu is a Coxerer element in the Weylgroup W, (Section 21.11, Problem 14), there exists an 
element s E .h’(T) such that the restriction of Ad(s)@ 1, to t,,, is equal to that of the 
contragradient ‘0- of u. For each root a E S, Ad(s) @ 1, transforms 9. into go(#, . Deduce 
that the eigenvalues of this transformation on the stable subspace 19, are hth roots of 

unity, each occurring with multiplicity l (Section 21.1 1, Problem 16(d)); the eigenvalues of 
Ad(s) @ 1, on t,, are the complex numbers exp(2nim/h) (Section 21.11, Problem 14(c)). 
The element s is called a Coxerer element of G (relative to T). Show that any two such 
elements are conjugate in G. (Use the fact that 1 is not an eigenvalue of u.) 

m s  S 

14. Let G be an almost simple compact connected Lie group, and retain the notation of 
Problem 11. Each Coxeter element of G (Problem 13) is regular in G and of finite order, 
equal to h. Show that each element s E G that is regular and of order h is conjugate to a 
Coxeter element. and that no regular element # e in G has finite order h - 1. (We may 
assume that s = exp(iu), where u lies in the principal alcove A* (Problem 11) in it. Use the 
fact that sh = e to show that pj(u)  = 2npj/h with p, a positive integer, and p(u) = 

2n( 1 p,nj)/h; then express that p(u) < 2n and use Problem 1O(c) to deduce that pj = 1 for 

1 _I j _I l and hence that u = (2n/h)h0 (Problem 10(b)). 

1 

,= 1 

15. With the same hypotheses and notation as in Problem 13, let s E N ( T )  be the Coxeter 
element considered there. Since s is regular in G, it  is contained in a unique maximal torus 
T’ of G. Let 1’ be the Lie algebra of T ,  let S‘ be the corresponding root system, and let 
{Fl, . . . , pi) be a basis of S’. I f  h; E it’ is such that &(hb) = 1 for 1 S j 5 1, we may assume 
that s = exp(iu’) with u’ = (2n/h)hb (Problem 14). For each integerj # 0, let a;denote the 
direct sum of the 9,. for all a’ E S’such that a‘ = pI 8; + ... + p,& with p, + ... + p, = j, 
so that we have a; = (0) if I j (  2 h. Also put ab = ti,,, so that g,,) is the direct sum of the 
a;. For all x E a>, we have [h;, x] = jx.  
(a) Show that 

dim a; + dim II-, = dim aJ +dim = 1 + cp(j) 

for 0 4 j h - 1, where cp(j) is the multiplicity of exp(2nij/h) as an eigenvalue of u (and 
therefore q(j) = 0 i f j  is not one of the m, (Section 21 . l l .  Problem 14)). (Use Problem 13.) 
(b) Let bj = t,,, n (a; + a;-,), so that b, is the eigenspace of u for the eigenvalue 
exp(2nij/h), and dim bj = cp(j). We have b, = (0). and 6, contains a regular element x 
(Section 21.11, Problems 14(b)and 16(c)). Let g’+ (resp. g:) denote the direct sum of the a; 
with j > 0 (resp. j < 0). so that g,,, is the direct sum of q’+ , g’ , and ah. Let n, and n _  
denote the projections of g,,) onto g’+ and g’- defined by this direct sum decomposition. 
Then by definition we have x = n+(x )  + n_(x),  n+(x )  = z r j x b j  and K ( X )  = rx’-,,. 

j > O  
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where {x;,) is a basis of g.,, and p’ is the highest root of the system S‘, and rJ, rare  complex 
numbers. Show that the rJare all # 0. (Note that the centralizer of x in g,,) is t,,,, and that 
[ x i ,  xLai] = 0 for k # 0, and [ x l r . ,  xLaJ = O.),Putting e = A+(x), deduce that there 
exists an element f E g’- such that [e, f] = hb, [hb, el = e, and [hb, f ]  = - f .  
(c) The vector subspace 0 of gf0 spanned by e, 1, and hb is a Lie subalgebra isomorphic 
to 4 2 ,  C). Show that gt0. considered as U(e)-module corresponding to the adjoint re- 
presentation restricted to 0, is the direct sum of 1 simple U(e)-modules that are odd- 
dimensional as complex vector spaces. (Observe that all the eigenvalues of ad(hb) are 
integers, and use (21.9.9.) 
(d) Show that the mapping A + ,  restricted to t,,,, is injective. (Observe that 6, = {0} and 
that ad(r)  is nilpotent for each L E 4‘- , whereas ad(u) is not nilpotent for u # 0 in t,,).) 
Show that n+(t,,) is contained in the kernel of ad(e). (We have [x, u] = 0 for u E t,,,; 
deduce that [n+(x), n+(u)] = 0, by writing x = x+(x) + n-(x) and u = n+(u)  + A - ( u ) . )  

Deduce that n+(t,,,) is equal to the kernel of ad(e) (use (c) above). 
(e) Deduce from (d) that the image of g’+ + ah under ad(e) is g’+ , and hence that the 
image of a; under ad(e) is a;+ l .  Hence, by using (b) above, obtain Kostant’sforrnula 

for 0 
( f )  Show that the I simple U(e)-modules into which gta splits have dimensions 2m, + 1 
(1 j I), where the mJ are the integers defined in Section 21.11, Problem 14(c). (Note 
that the kernel of ad(e) is the direct sum of the n+(t,,) n a;, and that in a; the restriction 
of ad(hb) is multiplication by j; then use (21.9.4).) 

16. Let G be an almost simple compact connected Lie group, and let T be a maximal torus of 
G. We retain the notation of Problem 11. 
(a) The identity component of the centralizer I ( s )  in G of an arbitrary element s E G is 
conjugate to that of the centralizer of an element of the form exp(iu), where u lies in the 
closure of the principal alcove A*. 
(b) Let 3 be the set of connected closed proper subgroups of G .  The identity components 
of the centralizers T(s) that are maximal elements of 8 are the conjugates of certain of the 
identity components (2(exp(2nitpJ))),, where 1 5 j 5 1 and 0 < t < l /nJ .  (Use Section 
21 . l l ,  Problem 4.) 
(c) If n, = 1, the identity component G’ = (I(exp(2nitp,))), is the same for all t such that 
0 < t < 1, and is maximal in 3. (Observe that if G” 3 G‘ is a connected Lie subgroup, 
distinct from G or G’, then S(G”) must be equal to S(G‘), by using Problem lO(a).) The 
center of G’ is I-dimensional. 
(d) If nJ > 1 and is not a prime number, the group G’ = (I(exp(2ritpJ))), is not a 
maximal element of 3, for any value oft such that 0 -= t 5 l/n,. (It is sufficient to consider 

the case r = l/nJ; the roots in S+(G‘) are the roots in S+(G)  that are of the form 1 m,B,, 

where m J =  nJ or mJ = 0. If nJ = ab where a, b are integers > 1. and if 
G” = (I(exp(2nip,/b))),, show that S(G”) 3 S(G‘) and that S(G”) contains at least one 
root that does not belong to S(G’), by using Problem ll(g).) 
(e) If n, > 1 and is prime, then G’ is maximal in 8. (Argue by contradiction, by supposing 
that G’ c G” = (I(exp(2niv))), with G” distinct from G’ and G. We should then have 

v = 1 a& p,, , where the a, are integers except for aJ = q/nJ. where q is not a multiple of nJ. 

If r is an integer such that qr z 1 (mod n,), consider the centralizer of exp(2nirv) and thus 
obtain a contradiction.) The group G‘ is semisimple. 
( f )  Describe the maximal elements of 8 that have rank equal to the rank of G, when G is 
an almost simple classical group. 

rp(j) = dim a; - dim a;+ 
j 5 h - 1. 

I 

k =  I 

I 

k =  1 
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16. CENTER, F U N D A M E N T A L  GROUP,  A N D  IRREDUCIBLE 
REPRESENTATIONS OF SEMISIMPLE C O M P A C T  C O N N E C T E D  
GROUPS 

Throughout this section, G denotes a compact connected semisimple Lie 
group, so that its center 2 isJinite and is contained in all the maximal tori of 
G (21.7.11). All other notation is the same as i n  Sections 21.13-21.15. 

(21.16.1) The lattice P(G/Z) of weights of G/Z relative to T/Z is the lattice 
Q(g) generated by the roots a E S (and is therefore a free Z-module with 
basis any basis B of S) ,  and Z is isomorphic to the quotient 
P(G )/P(G/Z) = p(G)/Q (9). 

Since the center of G/Z consists only of the identity element (21.6.9), the 
adjoint representation of G/Z is faithful; hence (21 .13.2) every irreducible 
representation of G/Z is contained in the tensor product of a certain number 
of linear representations equal to Ad @ 1, and a certain number of linear 
representations equal to its conjugate. By definition, the restriction to T of 
the character of an irreducible representation contained in Ad@ 1, is a 
linear combination of characters of T of the form e", where a is a root 
(21.8.1). These remarks, coupled with (21.15.5), show that P(G/Z) = Q(g). 
Next, the groups T and T/Z have the same Lie algebra t, and the exponential 
mapping exp,,, is the composition of the canonical homomorphism 
T -, T/Z with e x h ;  consequently the lattice rT,Z (21.7.5) is the inverse image 
exh--'(Z), and Z is isomorphic to rT/,./rT. The elementary theory of free 
Z-modules (A.26.5) then shows that Z is also isomorphic to l-T/l-T/z,  i.e. to 
P(G)/P(G/Z). 

(21.16.2) The result just proved may be applied to the universal covering 
group of G; if D is the center of e, then e / D  is isomorphic to G/Z, and G 
is isomorphic to e/Z,, where Z, is a subgroup of the center D of G 
(16.30.4); also Z is isomorphic to D/ZG (20.22.5.1). It follows that the fun- 
damental group 7r1 (G)  is isomorphic to P(G)/P(G), hence to r T / r T , ,  where 
T, is the maximal torus of 

has the same Lie algebra as G, it follows that P ( e )  is contained 
in the lattice P(g) (21.14.3). But from the fact that e is semisimple and 
simply connected, it follows that P ( e )  = P(g). In other words: 

that is the inverse image of T. 
Since 

(21.16.3) Let G be a simply connected compact semisimple group and g its 
Lie algebra. Let P(g) be the lattice of linear forms I E it* such that I ( h , )  is an 
integer for all a E S (i.e., the lattice dual to the lattice in i t  having as basis the 
h, (21.14.2) for 1 5 j 5 I ) .  Then P(G) = P(g). 
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Let p # 0 be a linear form belonging to P(g). It is enough to construct a 
linear representation I/ of G on a finite-dimensional complex vector space E, 
such that there exists a vector x # 0 in E with the property that 
V(exp(u)) * x = ep(")x for all u E t (21.1 3.6). Since G is simply connected, it 
comes to the same thing (19.7.6) to define a C-homomorphism of Lie 
algebras p :  C J ( ~ ,  -, gI(E) such that, for all u E b = t 0 it, we have 

(21.16.3.1) p(u) ' x = p(u)x. 

If U denotes the enveloping algebra U(g[,-)) (19.6.3), it  again comes to the 
same thing (21.9.1) to construct a left U-module E offinire dimension over C, 
and an element x # 0 in E such that 

(21.16.3.2) (u - p ( u ) .  1) . x = 0 

for all u E 5. 
Since P(G) and P(g) are both invariant under the action of the Weyl 

group, we may, by replacing p by w . p for a suitably chosen w E W, assume 
that p E C, or in other words that 

(21.16.3.3) mi = p ( h j )  2 0 (1 S j 5 I ) .  

The construction of E is in several steps. 

(A) Arrange the positive roots (relative to B) in a sequence (ak)lsksn. 
With the notation of (21.10.3), the algebra U has a basis over C consisting of 
the elements 

where the c k ,  b k ,  and c j  (1 2 k 5 n, 1 S j  5 I )  are arbitrary integers 2 0 
(19.6.2). Let U- denote the vector subspace of U generated by the basis 
elements (21.16.3.4) for which b, = 0 for 1 6 k 5 n and c j  = 0 for 1 5 j S I ,  
and let U, denote the vector subspace generated by the basis elements 
(21.16.3.4) for which ak = 0 for 1 5 k s n. Then the vector space U may be 
identified with U- O c U 0  (A.20.2). We remark that the elements x, for 
a E S+ and the hi for 1 s j g I form a basis of a Lie subalgebra h of the 
complex Lie algebra g(c), because if u and p are any two positive roots, we 
have [x,, xa] = Oifa + p i s  not a root, and [x,, xa] E C J , + ~  c h i f u  + p is a 
root (21.10.5). The vector subspace U, of U may therefore be identified with 
the enueloping algebra U(b) (19.6.2). 
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Let I I  denote the left ideal of U generated by the elements 

(21.16.3.5) xlp (1 2 k 5 n ) ,  u - p(u) * 1 (u E h). 

Let M be the quotient U-module U/IL We shall first show that 

(21.1 6.3.6) The U-module M is nonzero, and if ti is the canonical image in M 
of'the identity element 1 of U, then M has a C-basis consisting of the elements 

(21.16.3.7) x:'zl ... X?%" . 0 

where the exponents ak ( 1  5 k 5 n )  are arbitrary integers 2 0. 

The elements (21.16.3.5) belong to U,; let 1 1 ,  be the left ideal q f U o  that 
they generate. Clearly we have 

(21.16.3.8) 1 1  = U _  BC I I , ,  U/II = U- BC ( U ~ / I I ~ ) .  

To prove (21.16.3.6), i t  is enough to show that U,/II,  is 1-dimensional over 
C .  Now, we may define a C-homomorphism of Lie algebras 8: b + C by 
setting O(u) = p(u) for u E I), and 8(x,) = 0 for a E S'; we have only to 
verify that 8([u, x,]) = 0 for u E b and a E S', and this follows from the fact 
that [u, xa] is a scalar multiple of x,. Since p # 0, the homomorphism 
0 extends to a surjectioe homomorphism 8: U(b) --* C (19.6.4), the kernel 
of which evidently contains ]I,,; but since the hi commute with each 
other, every element h;' . . .  hf'd; ... xk is congruent modulo 11, to 
p(h,)'l . . .  p(h,)"x,h; . . .  x!; (and hence to 0 unless all the integers bk are zero), 
and therefore the kernel of 8 is equal to I I , ,  which proves our assertion. 

(B) For each u E I) we have U X - , ~  - x-,,u = - C ~ ~ ( U ) X - ~ ~  in the 
algebra U, from which i t  follows immediately by induction on a ,  + * * .  + a,, 
that 

(21.16.3.9) 

u . ( x ? ~ ,  . . .  x ? ~ "  . P )  = (p(u) - alul(u) - . . .  - a,an(u))(xT"JI, . . .  x ? ~ "  . t i )  

in the module M ;  and since we have (21 . I  1.5) 

(21.16.3.10) 
I 

uk = l l k j / j j  
j =  1 
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where the d k j  are integers 2 0, we may write 

where 

(21.16.3.12) 

For each multi-index n = ( n j )  E N', put 

(21.16.3.1 3) p n = p - n l P 1  - . . . -  n l & ,  

so that p o  = p and p ,  < p (for the ordering defined in (21 .I 4.6)) for all n # 0. 
Next, for each q E P(g), let M(q) be the vector subspace of M consisting of 
the vectors z satisfying 

(21.16.3.14) u . z = q(u) z  

for all u E 11. Then: 

(21.16.3.1 5) The vector space M is the direct sum ofthe M(q)for all q E P(g) 
such that q I p ;  the subspaces M(q) are finite-dimensional, and M(p) is  1- 
r/irnensiona/. For each root ct E S,  we have x ,  . M(q) c M(q + a). 

The first assertion is a consequence of what has already been established; 
by virtue of (21.16.3.6), M is the direct sum of the M(p,) for n E N', and 
M(q) = (0) if q is not one of the forms p,, (A.24.4). For each given 
n = ( n j )  E N', there is only a finite number of systems of integers ak 2 0 
( 1  5 k 5 n )  satisfying the equations (21 . I  6.3.1 2), hence the subspaces M(p,,) 
are finite-dimensional; also it is clear that the only element of the basis 
(21.16.3.7) that belongs to M(p) is u, and hence M(p) is one-dimensional. 
Since [u ,  x,] = a ( u ) x , ,  (21.16.3.14) implies that 

which completes the proof. 

(C) The integers mi being those defined in (21.16.3.3), we shall now 
show that: 
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(21 .I 6.3.1 7) The U-submodule N of M generated by the I elements 

X"'+l . 1' ( 1  S J S  1)  81 
(21.16.3.18) 

does not contain I!; moreorer,,for each z E M and each index .j E [ I ,  I ] ,  there 
exists an integer s 2 0 such that x:,,, . z E N. 

We first remark that in the algebra U, every element x, (resp. x - ~ )  for 
a E S+ is a linear combination of products xi', x;, ... xy, (resp. 
x-. i l  x-;, . . .  x-J, where ( y l r  . . . , ;!,) is a sequence of roots all belonging to 
the basis B = {pl, . . . , / I I ) .  Indeed, this is obvious if a E B; if not, c( is of the 

form C d j / j j  with each tlj an integer 2 0 (21 .11.5), and we can proceed by 

induction on 1 d j .  By hypothesis, we have a = 1 + ,u, where 1 = 1 d ; P j  

I 

j =  1 
I I 

j =  1 j =  I 
I I I 1 I 

and 11 = 1 d;Pj are two roots in S+ with 1 < 1 d j  and 1 [I; < 1 d j  

(21 . I  I .5); hence x, is a scalar multiple of [xA , xu] = xA x,, - xu xA (21 .I 0.5), 
j =  I j = 1  j = 1  j =  1 j =  1 

and our  assertion follows from the inductive hypothesis: 
To prove the first assertion of (21.16.3.17), it will be enough to show that 

N is contained in the sum of the M(q) with q < p .  In view of what has 
already been established, and the form of the elements of the basis 
(21 . I  6.3.4) of U, this will result from the following properties: 

( 1 )  For u E b and o! E Sf  we have 

(21.16.3.19) u . (xl . u )  = (p(u) + ra(u)) (x;  . 0 )  

by induction on r, starting from (21.16.3.16). 
(2) For 1 5 k 5 I, we have xPk . (x!'J&' . o) = 0. Indeed, if k # j ,  P,, - pi 

is not a root (21.11.5), hence [xpkr = 0 (21.10.5): in other words, xgk 
and x-,]~ commute in U ,  and the assertion follows from the fact that 
xPk . L' = 0 for all k ,  by the definition of M. If k = J ,  we observe that (in the 
notation of (21.10.3)) the algebra U(sgj) is a subalgebra of U, and that if we 
apply the formulas (21.9.3.6) to the U(ep,)-module generated by the element 
u E M. we have 

for all r 2 1, and therefore when r = mj + 1 = p(hj)  + 1 we obtain 
Xlrj . (x!''p:l . 1 ) )  = 0. 
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(3) For 1 S k 5 I we have, by definition, 

x - ~ ~  . (x"-$:.' . U) E M(q) 

where q = p - ( m j  + l )P j  - P k ,  by virtue of (21.1 6.3.1 5). 

case where 
To prove the second assertion of (21.16.3.17), we need only consider the 

z = x - . / ,  x . -y2  ... x - , ,  . 1' 

in which the yk belong to 6; when r = 0, the assertion follows from the 
definition of N, and we proceed by induction on r. The only positive integral 
values of k for which k P j  + y1 can be a root are 0, 1,2, 3 at most (21 .11.11). 
In view of (21 .10.5) we may therefore write 

x"-'; x - ) , ,  = t,  x - ) , ,  x-pj  s+3 + t: x - ) , ,  - p j  x - p j  s + 2  

+ t;x-), ,- ,pjxS-+8; + t : I Ix- , , -3pjxs_Bj  

for all integers s > 0, with scalar coefficients t,, t i ,  t f ,  t: and x i  replaced by 0 
if 1 is not a root. The result now follows from the inductive hypothesis. 

(D) Now consider the U-module E = M/N. By virtue of (21.16.3.17), 
the image Uof u in E is not zero, and satisfies the relation u * B = p(u)B for all 
u E t). It is therefore enough to show that E isjnite-dimensional over C. Let 
E, denote the canonical image of M(q) in E, for all q E P(g) such that q 5 p ;  
then E, isjnite-dimensional, and for each y E E, and u E t) we have u * y = 
q(u)y; furthermore, E is the sum of the subspaces E, (hence in fact the direct 
sum, cf. (A.24.4)). Hence we have to prove that E, = (0) for all but a j n i t e  
number of values of q E P(g). This is a consequence of the following 
proposition : 

(21.16.3.21) 
group W. 

I f  E, # {0}, then also E,, , # {O)for all elements w ofthe Weyl 

Assume this result for a moment. For each q E P(g) such that E, # {0}, 
there exists w E W such that w . q E C (21.14.5.1). Since E, , , # {0}, we must 
have w . q S p (in fact, w * q must be one of the p,, , cf. (A.24.4)). But the set of 
p,, such that p,, E C isfinite, because they satisfy p,, S p (21.14.8.1). Since W 
is a finite group, it follows that the set of q E P(g) such that E, # (0) is finite, 
as required. 

It remains therefore to prove (21.16.3.21). Let y # 0 be an element of E,. 
It is enough to show that E, . , # (0) for w = s j  (1 5 j 5 I ) ,  because W is 
generated by the s j  (21 .11.8). Consider the U(ssj)-submodule F of E gen- 
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erated by J’: we claim that i t  is Jinite-dimensional over C. Indeed, it is clear 
that the vector space F is spanned by the elements x I ~ ~ ~ x ; ~  . v,  where a, bare 
integers 2 0. But xi, . y E Eq+b,,j by virtue of (21.16.3.15), and since by 
definition and the fact that pj(hpj) = 2 we cannot have q + bpj p for more 
than a j n i t e  number of integers b 2 0, it follows that x;j . y = 0 for all but 
finitely many values of b. It then follows from (21.16.3.17) that for each of 
these values of h we have x I l p j x i ,  . y = 0 for all sufficiently large a, and 
therefore F is indeed finite-dimensional. The U(epi)-module F is thus a direct 
sum of submodules isomorphic to the modules L, (21.9.3) (if we identify epj  
with sii(2)). By hypothesis, there is an element y’ # 0 in one of these submo- 
dules such that hj . y‘ = q(hj)y’, and therefore it follows from the first of the 
formulas (21.9.3.1) that there is also an element y” # 0 in this submodule 
that belongs to an E,, with q’ = q + k p j  for some integer k E Z and q’(hj) = 

-q(h j ) .  This last relation may also be written as (q + 4’ I D j )  = 0; now 
i ( q  + q’) cannot be orthogonal to P j ,  for q‘ of the form q + k p j ,  unless q and 
q’ are images of each other under the orthogonal reflection apj (21 . I  1.2.1); 
hence we have q’ = s j  . q. This completes the proof of (21.16.3.21) and hence 
also of (21.16.3). 

With the same notation, the results of (21.16.2) and (21.16.3) can be 
stated as follows: 

(21 .I 6.4) Let G be a simply connected semisimple compact Lne group, Z its 
center, g i t s  b e  algebra, P(G) = P(g) the lattice of weights ofG relative to a 
maximal torus T of G, and Q(g)  the sublattice of P(g) generated by the roots of 
g (relatizre to T). 

The lattice P(g) is the dual in it* o f the  lattice in it generated by the 
h, , which is the lattice (27ri)- lrT = (2ni)-  exp; ‘ ( e )  (21.7.5). The lattice 
Q ( g )  is the dual of the lattice (274-  exp; (Z). 

There is a canonical one-to-one correspondence between the quotients 
Go = G/D qfG by a subgroup D ofthe center Z ,  and the lattices r* in it* such 
that Q(g)  c r* c P(g). IfTo = T/D, a maximal torus of Go , then r* is the 
dual of the lattice ( 2 4 -  l rT, , ,  the quotient P(g)/r* is isomorphic to thefun- 
damental group 7r1 (Go), and r*/Q(g) is isomorphic to the center Z, = Z/D of 
Go. 

(i) 

( i i )  

(21.1 6.5) I )  form a basis of the lattice ( h i ) -  l r T  gen- 
erated by the h, (21 .11.5.5), the lattice P(g) admits as Z-basis the basis of the 
vector space it* dual to the basis (hj), i.e., the basis consisting of the linear 
forms mj ( 1  5 j 5 I) such that 

Since the hj ( 1  5 j 

(21.1 6.5.1) mj(h,) = hj ,  (1 5 j ,  k 5 I ) .  
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The mj (1  5 j 5 I )  are called the fundamental weights of g (or of the corre- 
sponding simply connected group G )  relative to the basis 6 of the root 
system S. From the definition of P(g),  all the elements of P(g)  n C are linear 

I 

combinations 1 nj mj in which the n j  are integers 2 0. By virtue of (21 .11.7), 
I =  1 , -  

the half-sum of the positive roots is given by the formula 

(21.16.5.2) 6 = ml + m, + * . *  + m, . 
This is the smallest element of P(g) n C (21.1 4.8). 

elements of (P(g )  - {0}) n C. 

ant weight mj (1 
these classes) are called fundamental. 

It should be noted, however, that the mj are not necessarily minimal 

If pj E R(G) is the class of irreducible representations of G with domin- 
I ) ,  the classes pj (or the representations belonging to j 

(21.16.6) Let G be a simply connected semisimple compact Lie group ofrank 
1. Then the Z-algebra homomorphism 

(21.16.6.1) 

which maps identity element to identity element, and each indeterminate Xj to 
thefundamental class pi (1 5 j 5 l),  is bijectiue. 

Z [XI ,  x, , . . . , X,] 4 Z'R'G" 

We know from (21 .15.5) that there, is a canonical isomorphism 
Z(R'G)) + Z[P(g)IW, because G is simply connected (21 .16.3), and that the 
elements up = J(eP+'")/J(d) form a basis of Z[P(g)IW as p runs through 
P(g) n C (21.14.13). Composing this isomorphism with (21.16.6.1), we 
obtain a homomorphism of ZIX1,  . . . , X , ]  into Z[P(g)IW that, for each multi- 
index n = (n,, . . . , n,) E N', maps X, = Xi1 ... X;' to the element 
u, = u2, . . . u$, . Since in the expression of up as a linear combination of the eq 
with q E P(g),  the term e p  is the leading term (21.14.1 3) ,  it is clear that u, has 
a leading term equal to ed"), where m( n) = nl m, + - * * + n, WH,. As n runs 
through N', m(n) runs through the set P(g)  n C, by virtue of (21 .16.5.1) and 
the definition of C. It follows therefore from (21.14.13) that the u, form a 
basis of Z[P(g)Iw, and the proof is complete. 

Remarks 

(21 .16.7) (i) I t  should be obsev ed that the restrictions xq, IT = u,, = 
J(e"l+ 6)/J(e6) of the characters of the fundamental representations are not 
necessarily equal to the elements S(w,) (21.1 6.1 0). 
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(ii) Once the linear representations of a simply-connected semisimple 
compact Lie group G are known, the linear representations of any quotient 
G/D of G by a discrete subgroup of its center (i.e., of a Lie group locally 
isomorphic to G) can be deduced: they are the representations obtained on 
passing to the quotient from a representation U :  G -, GL(E) such that the 
image of D under U is the identity element of GL(E). 

Examples: The Fundamental Representations of the Classical Groups 

(21.1 6.8) 
elements h, of the basis B' of S' are the matrices 

I .  Representations oj'SU(n). With the notation of (21.1 2.1), the 

Ejj - Ej+ 1. j +  1 ( 1  5.j 5 n - 1); 

the ih, ( 1  5 j 5 n - I )  form a basis of the Lie algebra t' of the maximal 
torus T' = T n SU(n), the intersection of SU(n) with the maximal torus 
T of U ( n )  defined in (21.12.1); the lattice r T ' ,  the kernel of the expon- 
ential mapping exp,., has as a Z-basis the elements 2nihj ( 1  5 j 5 n - 1);  
the lattice 2niT,*. = P(SU(n)) therefore has as a basis the fundamental 
weights m j  (1  5 j 5 n - I ) ,  and we regain the fact that P(SU(n))  = P ( w ( n ) )  
(21.16.3). 

The restrictions EJ to it' of the n linear forms c j  (1 5 j 5 n )  generate the 
dual it'* of the real vector space it', and satisfy the relation 

E; + E; + ... + E:, = 0 ;  

the E', for 1 
then shows that the linear form mj on it' (1 s j 
formula 

j 5 n - 1 form a basis of it'* over R. A simple calculation 
n - 1 )  is given by the 

(21.16.8.1) mi = E', + E ;  + ... + EJ ( 1  s j n - 1 ) .  

n 

The vector space it is the direct sum of it' and i c  = R 1 E j j ;  hence the dual 

it'* may be canonically identified with the annihilator of ic in it*, and with 
this identification it is easily verified that 

j =  1 

(21.1 6.8.2) 
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We shall now determine explicitly the irreducible representations of 
SU(n) with dominant weights mj (1  2 j 2 n - 1). Since the functions EJ take 
values belonging to 2niZ at the points of the lattice rT, (generated by the 
2nih,), we may identify eE; with a function on T (21.13.6). Let U ,  be the 
canonical injection SHS of SU(n) into GL(n, C); it is clearly a linear re- 
presentation of SU(n), and its restriction to T' is the Hilbert sum of n 
one-dimensional representations on spaces Caj, where (aj)l is the can- 
onical basis of C". The representation on Caj maps s E T' to the homothety 

with ratio eE'j(S), hence we have Tr(U,(s)) = ee'j(s) for s E T ;  as a function 

on T this is just the sum S(m,), because the Weyl group is equal to 6,. I t  
follows (21.13.7) that U 1  is irreducible; and from the expressions for the 
roots forming the basis (21.12.1.3), that m, is indeed the dominant weight of 
U ,  relative to this basis. 

For 2 5 j 5 n - 1, we now define U j ( s )  = A U , ( s ) ,  so that U j  is a linear 

n 

j =  1 

j 

j 

representation of SU(n) on the space A C" of dimension 

basis of this space consists of the j-vectors 

a, = ak, A a,, A ... A a,, 

where H is the set of elements of the strictly increasing sequence of integers 
k ,  < k ,  < ...  < k j  in the interval [l,  n], and H runs through all j-element 
subsets of [I ,  n]. It is clear that the restriction of U j  to T' is the Hilbert sum 

of (I) one-dimensional representations on spaces Ca, , and that the re- 

presentation on Ca, maps s E T to the homothety with ratio eE'H(S), where 
EL = E ; ,  + + ... + E ; ~ ;  from this it follows that Tr(Uj(s)) = S(mj). We 
deduce as above that U j  is irreducible and that mj is its dominant weight. 

It is easily verified (for example with the help of (21.8.4.2)) that the center 
of SU(n) is the subgroup of T formed by the scalar matrices wl,, where w 
runs through the set of nth roots of unity. We may also calculate directly 
P(su(n))/Q(sii(n)) by using the preceding results (21 .16.4). 

(21.16.9) 11. Representations o f U ( n ,  H). In view of the description of the 
maximal torus T considered in (21.1 2.2), the elements 2nihj (1 2 j 2 n) form 
a basis of the lattice rT; as in (21.16.8) we recover the fact that P(U(n,  H)) = 
P(w(n, H)) (21.16.3), and verify that 

(21.1 6.9.1) m. , = l + ~ Z + ~ ~ ~ + ~ j  ( l s j s n ) .  
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Since U(n, H) is simply connected, the canonical injection 

u(n, H) -, 5p(2n, C) 

described in (21.12.2) corresponds to a linear representation U ,  of 
U(n, H) on C2". If (aj)lsjs2n is the canonical basis of C'", the restriction of 
U,  to T is the Hilbert sum of 2n one-dimensional representations on the 
spaces Caj (1 5 j 5 n ) ;  for 1 5 j 5 n, the representation on Ca, maps s E T 
to the homothety with ratio eEfis), and the representation on Can+, maps 
s E T to the homothety with ratio e-'js). From the description of the Weyl 
group (21.12.2), it follows that the function s ~ T r ( U , ( s ) )  on T is equal to 
the sum S(m,); hence U ,  is irreducible (21.13.7) with dominant weight m,. 

Likewise, if we define U j ( s )  = A U , ( s )  for 2 $ j 5 n, then U j  is a linear 

representation of U(n, H) on the space A (C'") of dimension (?I, whose 

canonical basis consists of the j-vectors aH . The restriction of U ,  to T is the 

Hilbert sum of (7) one-dimensional representations of T on the spaces 

Ca,: the representation on Ca, maps each s E T to the homothety with 
ratio eEH('), where E,  is defined as follows: if the elements of H are 

j 

j 

k ,  < k ,  < ' "  < k j ,  

then E, = E L ,  + cL2 + ... + EL, ,  where &Lh = E~~ if 1 5 kh 5 n, and EL = - E ~ ~ - ~  

if n + 1 5 kh 5 2n. 
However, when j 2 2, the representation U ,  so defined is not irreducible. 

For example, since U(n, H) may be identified with a subgroup of the sym- 
plectic group Sp(2n, C), it  follows from (A.16.4) that U 2  leaves inuariant the 

bivector a, A a,, , + ... + a,, A a2" in A (C'"). Nevertheless, we shall show 
that the representation U j  decomposes into a Hilbert sum of irreducible 
representations, of which exactly one has mj as dominant weight (cf. Prob- 
lem 3). Indeed, the dominant weights of the irreducible representations into 
which U ,  splits must be certain of the E ~ ;  if we observe that E ,  > E,, in it* if 
r < r', and that c, > - E ~ ,  for all r,  r' (21.12.2.8), we see that the set of weights 
E, contains a grearest element, corresponding to the subset H, = { 1, 2, . . . , j}, 
and that cHo = mj. Hence, among the irreducible components of the re- 
presentation U j ,  there is a unique ? whose dominant weight is m j .  The 

space E, of this representation is the subspace of A (C'") generated by the 
transforms S . aHo of aHo by all symplectic matrices S E Sp(2n, C). By 
construction, aHo is a decomposable j-vector corresponding to a totally iso- 
tropic j-dimensional subspace of C2"; since the symplectic group acts transi- 

2 

j 
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tively on the set of totally isotropic subspaces of dimension j 5 n, it follows 

that E, is the subspace of A (C'") spanned by all the decomposablej-vectors 
(called totally isotropic j-vectors), which correspond to the totally isotropic 
subspaces of dimension j. 

j 

(21.1 6.10) With the notation of (21.1 2.3) 
and (21.12.4), in both cases the lattice r T  has as a basis the 2niHj for 
1 5 j 5 n. For SO(2n) we have 

111. Representations of SO@). 

( 1  5 j 5  n - 2), 
(21.16.10.1) 

H,- 1 = +(h,- 1 + h,), 

H, = +(h, - h,- I ) ,  

and for SO(2n + 1) 

H j =  h ,+  hj+]  + * * a +  h,,-l +gh, 

H, = ih ,  . 
(1 i j l  n -  l), 

(21.1 6.10.2) 

In both cases, we see therefore that SO(m), for m 2 3, is not simply 
connected (21.1 6.4). We denote by Spin(m) the Lie group that is the universal 
covering of SO@). If T, is the inverse image of the torus T in Spin@), the 
formulas above show that the lattice (2ni)-'rT is generated by (27ti)-'rTI 
and the element +(h, - h,- in the case of S 0 ( 2 n ) ,  and by (2ni)-'rTI and 
fh, in the case of SO(2n + 1) ;  in both cases, it follows that the fundamental 
group n,(SO(m)) is a group with two elements (cf. (16.30.6)). 

The fundamental weights are given by the following formulas, for 
Spin(2n): 

m j = c l  + * . a + & ,  ( l s j s n - 2 ) ,  

(21.1 6.10.3) m,-, = + ( E l  + ... + &,-2 + E n - ]  - E n ) ,  

m, = +(El  + . * .  + En-' + & , - I  + E n ) ,  

and for Spin(2n + 1): 

(21.1 6.1 0.4) 
m , = ~ ,  + * . * + E l  ( l s j s n -  l), 

m, = $ ( E l  + ... + E n -  , + &,). 
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Consider the canonical injection SO(m) -+ SO(m, C), which defines a 
linear representation V, of SO(m) on C". For j 5 rn we obtain as in (21.16.8) 

a linear representation 5 = A V , ;  by composing these with the canonical 
homomorphism Spin(m) -+ SO(m) ,  we obtain linear representations U j  
( 1  2 j 5 m) of Spin(m). We shall now study these representations directly. 
and show that for m = 2n and j S n - 1, or m = 2n + 1 and j n, the re- 
presentation V, (and hence also U1)  is irreducible. Let ( ~ ) l s k s m  be the 
canonical basis of R", identified with the canonical basis of C"; then the 

canonical basis of A (C") consists of the j-vectors 

i 

i 

aH = a,, A a,, A ... A a,,, 

where H is the set of elements k ,  < k ,  < ... < k j  in the interval [ I ,  m], 
and H runs through the set of all j-element subsets of [ l ,  m]. We shall 

show (under the above restrictions on j) that the subspace F(z) of A (C") 
stable under 5 ,  generated by an arbitrary j-vector z # 0, is the whole space 

A (C"). Put z = cHaH, where cH E C; we shall argue by induction on 

the number r of coefficients cH that are # 0. The assertion is obvious when 
r = 1: indeed, for each permutation A E G,, the automorphism of C" that 
transforms a, into k a,(,) for 1 S k S m belongs to the image of SO(m) under 
V,,  provided that the product of the minus signs is equal to the signature of 

n. Since F(z) contains the element aH of the canonical basis of A (C"), i t  

therefore contains also all elements a,(H), and hence is the whole of A (C"). 
Suppose now that the assertion has been proved for some value of r 2 1, and 
for all values < r, and suppose that the number of nonzero coefficients cH in 
z is r + 1. Then there exist two distinct j-element subsets H, L of [l, m] such 
that cH cL # 0. Let p be an element of L n CH. Next, since 2j < m, there 
exists q E [l, m] that does not belong to H u L. The automorphism T of C" 
that leaves ak fixed for k not equal to p or q, and transforms a, into - a, and 
aq into - aq, is in the image of SO(m) under V, and transforms aH into itself, 
aL into - aL, and each other aM into _+ aM . It follows immediately that in the 
j-vector z + T 2, which belongs to F(z), the number of coefficients # 0 is 
2 1 and 5 r ;  we may therefore apply the inductive hypothesis to complete 
the proof. 

m. When m = 2n, 
the b, for 1 5 k 5 2n form a basis of C2"; the restriction of V, to T is the 
Hilbert sum of 2n one-dimensional representations on subspaces Cb, 
(1 5 k 2 2n), and the representation on Cb2r-l (resp. Cb,,) is the homo- 

j 

I 

H 

i 

I 

Put b2r- , = aZr- , - ia,,, bzr = aZr- , + ia2, for 2r 
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j 
thety with ratio eer (resp. e-er). F o r j  5 2n, a basis of A (C'") is formed by the 
j-vectors b,, = bkl A b,, A ... A b,,, where H is the set of elements 
k ,  < k 2  < ... -= k, in the interval [l, 2n], and H runs through all j-element 
subsets of [l,  2n]. Then the restriction of 5(s) to T transforms b, into 
eEH(S)bH, where E, = til + &i2 + ... + E i , ,  the E; being defined by &ir- = E, 

and E';, = - E , ,  Since, for the ordering on it* (21.14.5), we have E ,  > E,, if 
r < r', and E, > -c r ,  for all r, r' E [l, n] by virtue of (21.12.3.5), it follows 
that,for j 5 n - 2, the representation 5 has dominant weight mj. 

When m = 2n + 1, a basis of A (C'"'') is formed by the b, defined 
above and the bH, A a2"+ 1, where H' is a subset ofj - 1 elements of [ 1, 2n]; 
it follows as above that 5 has dominant weight mifor j 

For the irreducible representations of Spin(2n) with dominant weights 
w,,- and m,,, and the irreducible representation of Spin(2n + 1) with domin- 
ant weight mn, see Problem 7. 

1 

n - 1. 

PROBLEMS 

1. With the notation of (21.16.Q show that the complex conjugate of the irreducible re- 
presentation U, is equivalent to Un-, (1 5 j 5 n - 1). I f  n = 2 m  is even, the representation 
Uq) (Section 21.1, Problem 9) is defined when m is even, and the representation U!,!" is 
defined when m is odd. 

2. With the notation of (21.16.9), show that each of the representations U, (or V,) is equiva- 
lent to its complex conjugate, Uy) is defined for even j ,  and Uy' for odd j .  

3. (a) Let B be a nondegenerate alternating bilinear form on C2"; let (e l ) ,  s , s 2 n  be a sym- 
plectic basis of C2', and let (e~ ) ls jszn  be the dual basis, so that 

B = e: A e: + ... + ezm-l A e:. 

2 

in the vector space A (C2")*. Put 

B * = e ,  A e 2 + ~ ~ ~ + e 2 n - l  h e z n  

in the vector space A (C2"); the bivector B* is independent of the symplectic basis (el) 
chosen . 

2 

For each subset H of [l, 2n],  we have 

(e2,-1 A e2,) A eH = 0 if ( 2 j  - 1, 2 j )  n H # 0, 

( 8 2 1 - 1  A e z j ) A e H = e H h ( e 2 j - i  ~ e z j ) = e ~ v ( z j - 1 . 2 ~ 1  
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if (2 j  - I ,  2j} n H = 0. If  we consider C'" as the dual of (C2")*. we have likewise 

(e:j-, A e & J e ,  = 0 

(e;j-, A e;j)Je, = eH- ,2j - , ,  2 j ,  

if  (2 j  - 1, 2ji n [H # 0, 

if  ( 2 j  - 1, 2j', c H. 

(b) I n  the endomorphism ring of the vector space A (C'"), let Y +  denote the mapping 
ZH B J Z ,  and Y -  the mapping ZH B* A z ;  also put Z = [ Y ' ,  Y - 1 .  For each subset H of 
[ I ,  2n], let c i  (resp. c,) denote the number of subsets (2 j  - 1, 2j} contained in [H 
(resp. H). Show that 

Z eH = ( c i  - c,)e, 

(use (a) above). Deduce that 

[Z,  Y']  = 2 Y + ,  [ Z ,  Y - ]  = - 2 y -  

and hence that the Lie subalgebra of gl (A (C'")) spanned by Y + ,  Y - ,  and Z is isomorphic 

(c) With the notation of(21.16.9),show that for each p E [ I ,  n]  therestrictionsof Y +  and 

Y -  to A (C'") commute with all the automorphisms Up(s). Use (21.9.3) to deduce that the 

subspace Ep of A (C'") spanned by the totally isotropic decomposable p-vectors consists 
of the p-vectors z such that Y +  . z = 0 and Z z = ( n  - p)z .  Deduce that if p < n, the 
mapping ZH ( Y-)"-" z = (B*)"-p A z (where (B*)h denotes the 2h-vector that is 
the product of h factors equal to B* in the exterior algebra A (C'")) is injective on 

to 4 2 ,  C). 

P 

P 

(C'"). 
P 

(d) Hence show that, for p S 11, A (C'") is the direct sum of the subspaces 

E,, (B*) A E P - ' ,  (B*)' A E p - 4 ,  ... 

each stable under the representation U p ,  and that the restriction of U p  to (B*)h A Ep_ 2h is 
irreducible and similar to Vp/p-2h (Lepage's decomposition). The dimension of Ep is 

4. There exists a C-algebra C, (the CliSford algebra) of dimension 2", having a basis consist- 
ing of the identity and all products ai ,  a,? ' . .  uipfor 1 5 i ,  < i, < ... < i ,  5 m, where the a j  
( 1  2 j m )  are m elements such that a: = 1 and ajak = -a,ajwheneverj # k (cf. Section 
16.15,Problem 2). The algebra C ,  is the direct sum of the vector subspace C: spanned by 
the products aiL ai2 ... aiP with p even, and the subspace C; spanned by the analogous 
products with p odd; also C: is a subalgebra of C,. 
(a) I f  ni is even, the center of C, is C . 1, and the center of C,+ is spanned by 1 and 
u , a z  . . .  a,. I f m  isodd. thecenterofC,isspanned by 1 anda,a ,  ... a,,andthecenterof 
C,+ is C .  1. 
(b) Let E be the C-vector subspace of C, spanned by a,, ..., a,,, and let 0, be the 
symmetric bilinear form on E such that @(aj, ak) = a,, (Kronecker delta). For each x E E, 
we have x' = @(x, x) 1 and xy + yx = 2@(x, y )  1 in the algebra C,. Show that if A is a 
C-algebra and/a C-linear mapping of E into A such thatf(x)' = @(x, x) . 1 for all x E E, 
then 1' has a unique extension to a homomorphism of C, into A. 
(c) Show that there exists an isomorphism p of C, onto the algebra opposite to C, (i.e., p 
is an antiauromorphisni of C,) such that j (x )  = x for all x E E. 
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(d) Let G be the group of invertible elements s E C, such that sEs-' = E, and let 
G +  = G n C: . For each s E G, let cp(s) denote the linear mapping XI-+ S X S - '  of E into 
itself. Show that E n G is the set of vectors in E that are nonisotropic for 0, and that for 
each x E E n G, -cp(x) is the reflection in the hyperplane in E orthogonal to x (relative to 
0). Deduce that cp is a homomorphism of G into the orthogonal group O(@), whose kernel 
is the set of invertible elements of the center Z of C , .  We have cp(G) = O(@) if m is even, 
cp(G) = SO(@) if m is odd, and cp(Gt) = SO(@) in either case. 
(e) For each s E G ', show that N(s) = j ( s ) s  is a scalar, and that SH N(s) is a homomor- 
phism of Gt into C*. 

With the notation of Problem 4, suppose that m = 2n is even, and put m j  = a Z j -  I - iaZj, 
pi = a Z j -  , + ia,, for 1 s j 5 n. The m j  (resp. the p j )  form a basis of a totally isotropic 
subspace M (resp. P) (relative to a), and E is the direct sum of M and P. We may identify 
M with the dual of P by identifying each m E M with the linear form p~ @(m, p) on P. The 
subalgebra of C,, generated by M has as a basis the elements mH = mi,  mil . .*  mi, for each 
subset H of I = { 1, 2, . . . , n}, the i, being the elements of H arranged in ascending order; 
this subalgebra may be identified with the exterior algebra S = A M on the vector space 
M. 

Show that there exists a unique homomorphism p of C,, into the algebra End@) of 
endomorphisms of the vector space S,  such that for each m E M the image p(m)  is the 
linear mapping Z H  mz of S into itself, and such that for each p E P, p ( p )  is the interior 
product i(p) (A.15.3). M being identified with the dual of P, and S with A M. (Use 
Problem 4(b).) Put p ,  = p1p2 ... pn9 and for each pair of subsets H, K of I, put 
zH, = mH p, m, - K .  Show that, for each subset L of I, we have p(z,. K)mL = 0 if K # L, and 
p(r,, K)mK = mH. Deduce that p is an isomorphism of C,, onto End(S), which is isomor- 
phic to the matrix algebra M,.(C). 

The vector space S is the direct sum of St = S n Ci, and S -  = S n C,, having as 
respective bases the set of mH for subsets H with an even number and an odd number of 
elements. The subalgebra p(C;,) of End(S) leaves invariant the subspaces St and S-,and 
is isomorphic to End@+) x End(S-). 

With the notation of Problem 4, suppose that m = 2n + 1 is odd; the algebra C, ,  may be 
canonically identified with the subalgebra of CZnt generated by the aj with j 5 2n. Show 
that the mapping y~ iya,,, , of the vector space F c E spanned by the a j  with j 6 Zn, into 
the algebra C;, , ,  , extends to an isomorphism 0 of C,, onto Cim+l  (use Problem 4(b)). 
Deduce that Cznt1 is isomorphic to the product of two algebras isomorphic to M,"(C). 

With the notation of Problem 4, let E, be the real vector space spanned by a,,  ..., a,. 
Then E, n G is the set of vectors # 0 in E,. Let Go be the subgroup of Gt generated by 
the products of an even number of vectors x E E, such that N(x) = @(x, x) = 1. 
(a) Show that Go is connected. (If x, y are two distinct vectors in E, such that @(x, x) = 
@(y, y) = I ,  consider the plane in E, spanned by x and y, and a vector x' in that plane 
orthogonal to x and such that @(x', x') = 1. and the vectors z = x cos f + x' sin f for 
t E R.) Deduce that Go is isomorphic to Spin(m), by observing that cp(Go) is isomorphic to 
SO(m) and that cp makes Go a double covering of SO(m). 
(b) Deduce from Problems 5 and 6 that for m = 2n the representations S H  p(s) 1 St and 
s + p(s)JS- are irreducible representations of Spin(2n) (identified with Go)  of dimension 

Spin(2n t 1) of dimension 2". 

2"- I .  , for m = 2n + 1, the representation st+ p(&l (s) )  is an irreducible representation of 
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(c) If m = 2n, put r,(0,) = a,,- , cos 0, - a', sin 0, for 1 5 j 5 n. Then the elements 
a,r,(O,)az r2(02)  ... anrn(On) form a maximal torus To ofSpin(Zn), whose image T = cp(To) 
is the torus described in (21.12.3). when cp(G ') is identified with SO(2n). Form = 2 n  + 1, 
the same torus To (when C,, is canonically identified with a subalgebra of C2n+l )  is a 
maximal torus of Spin(2n + I), whose image T = cp(To) is the torus described in (21.12.4). 
In both cases, the vectors mH E S are eigenvectors for the restriction of p (or of p 0 0- I )  to 
To.  In particular, for the vector m ,  m2 ... m,, the corresponding weight is$(&, + ... + E " ) :  

in other words, for s = exp," u, where u E eo(2n), the corresponding eigenvalue is 
+(E,(U) + ...  + e,(u)). Likewise, for r n ,  m2  ... m,- ,, the corresponding weight is 
$(el + ... + e n - ,  - en). Deduce that when m = 2n + 1 the dominant weight of the irredu- 
cible representation s w p ( 0 - ' ( s ) )  is m,,given by(21.16.10.4); when m = 2n, i f n  is even the 
dominantweightofswp(s)IS+ ismnand thedominant weightofswp(s)IS- ism,-,; but 
when m = 2n with n odd, the dominant weight of s w  p(s) I S+ is m,_ , and the dominant 
weight of s ~ + p ( s ) I  S- is m, (where mm-, and m, are given by (21.16.10.3)). 

8. Let (a,), s,s 2 n  be the canonical basis of C'", and let @ be the symmetric bilinear form on 
C'" such that @(a,, ak) = 6,k,  so that O(@) = 0 ( 2 n ,  C). 
(a) Consider the basis (a,)1s,s2nalso as an orthonormal basis of R2", relative to the 

restriction of @ to R'". Define a mapping T of (R'")" into A (R'") as follows: if x,. . . . , x, 
are linearly dependent in R'", then T(x,, . . . , xn) = 0; if they are linearly independent, then 
we may write x ,  A xz A ... A x, = ly, A y, A ... A y,, where the vectors y, (1 5 j 5 n )  
form an orthonormal basis of the subspace of dimension n in R'" spanned by the x,, and 
1 E R; then there exists an element u E SO(2n) such that u(a,,- ,) = y, for 1 5 j 5 n, and 
we define T(x,, .. ., x.) = lu(a,) A u(a4) A ... A u(a,,). Show that this value depends 
neither on the choice of the y, nor on the choice of u, and that T is an alternating n-linear 

mapping, which therefore factorizes uniquely into (R'")" + A (R'") "A (R'"), where 7 is 

a linear bijection. This bijection extends uniquely to a bijection of A (C'") onto itself, also 

denoted by T. We have T' =( - 1)". 1. For each u E S0(2n,  C), we have r 0 A (u)  = 

A ( u )  0 T ;  but if u E 0 ( 2 n ,  C )  has determinant equal to - 1, then T 0 A (u )  = -A (u)  o 7. 

Deduce that A (C'") is the direct sum of two subspaces F + ,  F-  of the same dimension, 
such that the restriction of T to Ft (resp. F - )  is the homothety with ratio 1 (resp. - 1) if n 
is even, the homothety of ratio i (resp. - i )  if n is odd. 
(b) Put 

n 

" n 

I 

n " n 

n 

m, = - iaz,, p, = a2,-, + ia,,, 
m ; =  m, A m2 A ... A mn-, A pn 

m, = m, A m2 A ... A m,, 

Show that 7(m,) = i"m,, 7(m;) = - i"m;. 
If we define a totally isotropic n-vector in A (C'") (relative to (0) to be a decomposable 
n-vector z corresponding to a totally isotropic subspace V, of C'", deduce from these 
results that every totally isotropic n-vector belongs either to F+ or to F-.  Let N+ 
(resp. N-) denote the set of those which belong to F+ (resp. F - )  (cf. Section 16.14, 
Problem 18). If z and z' belong both to N+ or both to N-, show that V, n V, has even 
codimension in V, (and in V,); if on the other hand one of z, z' belongs to N+ and the 
other to N-, then V, n V,. has odd codimension in V, (and in V,). 
(c) Show that the n-vectors belonging to N+ (resp. N - )  span the C-vector space F+ 

" 
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I 

(resp. F-), and deduce that the representation V, ofSO(2n) on A (C'") (in the notation of 
(21.16.10)) splits into two inequivalent irreducible representations on the subspaces F t  
and F-, respectively. The dominant weights of these two representations are 2m,- and 
2w,. (To show that N +  spans Ft and N-  spans F-, prove that N f  u N-  spans the whole 

space A (P), by using the irreducibility of the representation V,- , of SO(2n - I ) . )  
" 

9. (a) For the group SO(2n + I ) ,  the weight lattice P is generated by m,, . . . , m,- , and 2m,, 
and another basis of P is E , ,  ..., E,.  The elements of Z[PIw (21.13.6) are of the form 

G(e'1, e-", ..., e': e-'" 1 9  

where G(T,, T,, . . . , T,,) is a symmetric polynomial with integer coefficients. In particular, 
let u, (0 5 j 5 2n) be the elementary symmetric functions of TI,. . . , T,, , i.e., the coefficients 
of the polynomial (X + T,)(X + T2) ... (X + T,,) in X. Then the character of the 
representation 5 (1 s j 5 n) is 

uj(e", e-", ..., &, e-'") + aj-,(e"l, e-'!,  ..., eta, e-'"). 

Deduce that if pj is the class of the representation 6 ,  the ring Z'R'G" for the group 
G = SO(2n + 1 )  is isomorphic to Z[p,, . . ., p,], the pi being algebraically independent 
over Z. 
(b) 2~7,- ,,and 
2m,, and has as a basis E , ,  E ~ ,  ..., E,.  Let X be the vector space of polynomials 
G(T,, T,, . . . , TZn) with rational coefficients that are invariant ( i )  under the product of 
transpositions that interchange Tz,- and T,,- ,, and T,, and T,,, where i # j; (ii) under 
the product of an even number of transpositions that interchange T,,- and T,, . The space 
X i s  thedirect sum of the space JIpt of symmetric polynomials in TI, .  . . , T,, and the space 
2- of polynomials in Jlf that change sign under interchange of T2"- I and T,, (observe 
that P remains globally invariant when this interchange is made on every polynomial in 
2). Every polynomial in X -  is of the form (TI - T2)(TJ - T4) ... (TZn-,  - T,,)F, 
where F E X + .  Show that Z[PIw is the set of elements G(e", e-", . . . , e': e-.*) where G 
runs through the set of polynomials G(T,, . . . , TZn) with integer coefficients that belong to 
X .  Deduce that the ring Z'R'G') for the group G = SO(2n) is a free module over the ring 
Z k , ,  ..., p,J (where pj is the class of the representation V,. the pj being algebraically 
independent); a basis of this module is formed by 1 and the class p: of the restriction of V ,  
to F+ (in the notation of Problem 8) .  This implies the existence of a relation 
(p:)' = a + b:, where a and tl lie in the ring Z[p,, . . ., p,]. 

For the group S0(2n), the weight lattice P is generated by m,, . . ., 

10. Let G be a simply connecred almost simple compact group. We retain the notation of 
Section 21.15, Problem 11. 
(a) Consider the composite mapping 

I x cxp, I 
g: (G/T) x t - (G/T) x T - G 

wherefis the mapping defined in (21.15.2.1). Show that the affine Weyl group W, acts 
differentiably and freely on (G/T) x (t - D(G)), and that g makes this space into a cover- 
ing of the open subset V of G that is the image of (G/T) x Trcl under g. Use Section 21 .15, 
Problem I l(e) to show that (G/T) x (t - D(G)) is the disjoint union of the open sets 
(G/T) x iu(A*), where u E W,, and that the restriction of g to (G/T) x iu(A+) is a diffeo- 
morphism onto V for each u E W,. (Note that the lattice (2ni)-'rT is generated by the h, .) 
(b) Show that none of the vertices of the simplex A*, other than 0, can belong to the 
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lattice irT. (Suppose if possible that there exists a vertex a, = 2npj/nj of A* in ir,. Then 
A *  - i t j  = w(A*) for some w E W; show that if  u E A* is sufficiently close to 0, we have 
u # a, + w(u), and obtain a contradiction by observing that there exist sl and s2 in G/T 
such that g(sl, i u )  = g(S,, i(a, + w( u))). Deduce that each orbit of W, in it meets the closure 
of A* in exactly one point. 
(c) If Z is the center of G, show that Card(Z) - 1 is the number of integers n, that are 

equal to 1 in the expression p = nj/lj, where p is the highest root (Section 21.15, 

Problem 10). (Observe that the vectors p, form a basis of the lattice ( 2 A ) -  exp; l ( Z ) , )  

I 

j =  I 

11. (a) The hypotheses on G and the notation are the same as in Problem 10. Show that for 
each automorphism u of G, the group F of fixed points of u is connecred. (Use Section 
21 .ll, Problem 19 to reduce to showing that each x E F that is regular in G is contained in 
the identity component of F. Having chosen a maximal torus T in G, we may write 
.x = exp,(iu), where u belongs to the principal alcove A*; we then have u*(u) - u = z, 
where ir E exp;l(Z). Use Problem 10 to show that L = 0, and deduce that the one- 
parameter subgroup consisting of the exp,(i{u) with { E R is contained in F.) 
(b) Give an example of an involutory automorphism of the group SO(3) whose set of 
fixed points is not connected. 

12. With the notation of the proof of (21.16.3), let 1 1 ,  and I I L  be the Lie subalgebras of gl0 
spanned respectively by the elements xm, ( 1  k 5 n )  and x - ~ ,  (1 S k 5 n). Let e,,b,r  
denote the element (21.16.3.4), where a = (al. . .  ., a"), b = (b,, ..., bn), c = (cl, .. ., cI). 
(a) Let Uo be the commutator of 4 in U, or equivalently the commutator of the subal- 
gebra U(b) in U = U(glc,). Show that Uo has a basis consisting of the ea,b.c such that 

Show that '2 = ( 1 1 -  U) n Uo = Uo n (UII +) is a two-sided ideal in Uo, and that 

1 ' k  = bk ' k  ' 
k k 

(b) 
uo = U(b) @ 2. 

13. With the same notation as in Problem 12, for each integer r > 0 let U"' be the vector 
subspace of U spanned by the e,, *, such that 

a ,  + " . +  a , + b ,  +. . .+  b ,+c l  +.. .+ c,$r .  

For each s E G the automorphism Ad(s) of g has a unique extension to an automor- 
phism, also written Ad(s), of the algebra U, which leaves invariant each U"', and 
s w  Ad(s) I U"' is a continuous linear representation of G on U"'. The derived homomor- 
phism is u b a d ( u ) ,  where ad(u) denotes the mapping z w  uz - zu of U"' into itself (cf. 
Section 19.11, Problem 1). 
(a) Let [U, U] denote the subspace of U spanned by the elements [x, x'] = xx' - x'x for 
all x, x' in U. Likewise let [g, U] denote the subspace of [U, U] spanned by all [u, x] with 
u E g and x E U. Show that [U, U] = [g, U]. 
(b) If Z is the center of the algebra U, show that U = 2 @ [U, U]. (Using (a) and the 
complete reducibility of the linear representation SH Ad(s) I UIr) of G, show that 

u'" = (z' n u")) @ ([u, U] n ~ 1 ' ) ) .  

If the component of x E U in 2 is denoted by x', show that (xy)' = (yx)' and that 
(zx)' = zx' if L E Z. 



152 XXI COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS 

(c) Each element x = 1 (,h' (where h'= hy ... hy) in U(b) may be canonically 

identified with the polynomial function 
c 

I H H , ( I )  = c <,(I, h,)" ... (I, h,)" 
P 

on the dual $* of 4, with values in C. For each irreducible representation V, of G on a 
vector space E,, with dominant weight p E P(g), the homomorphism (Vp)* (3 I :  
glo + gI(E,) extends to a homomorphism R,: U(g,,,) + End(E,) of C-algebras. For each 
x E U, put B,(x) = (dim Ep)- Tr(R,(x)). Show that S,(X) = B,(x'). If @ is the canonical 
homomorphism of Uo onto U(b) with kernel 2 (Problem 12(b)), show that Z,(x)= 
H,,,,,(p) for all x E U. (Observe that if y E E, is such that Rdu) . y = p(u)y for all u E I), 
then we have R,(z) . y = H,(p)y for all z E Z, and R,(x) . y = 0 for all x E 2.) 

14 (a) With the same notation, put D(I)  = n (I, h,) for all 1 E $*. Show that for each 

u E and each 1 E $*. the series (I/n!)H&) is absolutely convergent in C, and that 

mest 
m 

n - 0  

(Use Weyl's formulas to show that the formula is true for all I = p E P(g), by using 
(21.1 3.6.1) and the power-series expansion of e(,* ").) 
(b) Deduce from this formula that, for each integer n 2 0 and each u E I), the rational 
function on $* 

is in fact a polynomial function, and is a linear combination of the polynomial functions 
1w Hum(l - 6)for 0 6 q n. Deduce from the same formula that each of the polynomial 
functions I w H , a ( 1  - 6 )  is invariant under the action of W on b*. Consequently 
I w  H,(1 - 6) is invariant under the action of W on b*, for each x E U(b). 
(c) Show that U($) + [U, U] = U. (Consider as in Problem 13 the representation 
SH Ad(s) I U") and show, by considering the derived homomorphism, that the image of 
U($) n U") under Ad(s) is contained in [U, U] n U"). Next, using the conjugacy of the 
maximal commutative subalgebras of g, show that for each v E g there exists s E G such 
that Ad(s) . v" E U(b) for all m, and deduce that U($) + [U, U] contains the vector sub- 
space V of U spanned by the vm for v E g and m 2 0. Finally, prove that this vector 
subspace is the whole of U, by showing by induction on r that it contains all products 
v1 v1 ... v, of r elements v, E g. For this purpose, observe that for each permutation 
n E G, the difference v.(~) v.(~) ... v ~ , )  - vlvl ... v, belongs to U('-'), and that 
( t lvl  + ... + t, v,)' E V n U1') for all systems of scalars t,, ..., <, .) 
(d) Deduce from (c) that if we put H : ( I )  = H,(1- 6) for a l l  x E U($), the mapping 
ZCI H&, is a surjective homomorphism of the center Z of U(g) onto the algebra I($, W) of 
polynomial functions on $* that are invariant under the action of W. (Use the fact that 
each function in I(b, W) is a linear combination of polynomial functions of the form (1)) 

15. (a) With the same notation, there exists a canonical homomorphism 

1(1: w30) -+ U(€40) = u ,  
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of the tensor algebra of g,ka onto the algebra U, which is the identity on g(" and 
maps x @I y - y @I x to [x,  y] for all x, y E g,". Show that the restriction of $ to the 
space S,(glcl) of symmetric tensors oforder r on g,cl is an isomorphism of this vector space 
onto a supplement of U"-" in U'", and deduce that the restriction of $ to the symmetric 
algebra S(glc,) (A.17.5) is an isomorphism of uector spaces (but not of algebras) of S(gtCl) 
onto U. For each s E G, the autoniorphism Ad(s) of g extends to an algebra automor- 
phism. also denoted by Ad(s), of S(g,,)). For each z E S(glc)), we have $(Ad(s) . z) = 
Ad(s) $(z). Let I(g,,,, G) denote the set of elements of S(g,,,) that are invariant under 
Ad(s) for all s E G. Show that the restriction of $ to I(g(cl, G) is a vector space isomor- 
phism or I(glc), G) onto the center Z of U, but is not necessarily an isomorphism of 
algebras (take G = SU(2)). 
(b) For each linear form u* on the vector space gtC,. let /?(u*) be theelement ofg,,,such 
that B,,(/?(u*), v) = (u*, v)  for all v E g(", so that is an isomorphism of the vector 
space gtO (the dual of glO) onto g,,... Show that the annihilator in g& of the subspace 
I I  + + I I  - of gIo is mapped onto €) by /?, and may therefore be identified with the dual 6' of 
€). The isomorphism p extends uniquely to an isomorphism (also denoted by /?) of the 
symmetric algebra S(g:,)) onto S(g(,)), which transforms S(t)*) into S(b) = U(h). If  3 is 
the ideal of S(glcl) generated by I I  + + I I  , we have S(glc,) = U(h) @ 3. If  j is the homo- 
morphism S(gIo) + U(€)) defined by this decomposition, then /?-'(3) is the kernel of the 
restriction homomorphism i :  S(g%,) + S(€)*) obtained by considering S(g2,) (resp. S(i)*)) 
as the algebra of polynomial functions on (I,=, (resp. I)), and we have i = / ? - I  0 j 0 /?. For 
each s E G, Ad(.\) acts on g:,) and extends to an algebra automorphism of S(g:,)), again 
denoted by Ad(.s). If I(g:,), G) is the subalgebra of S(g:,)) consisting of the elements that 
are invariant under Ad(s) for all s E G, then the image of I(gb. G) under /? is I(g,,,, G). 
Likewise, if I(€)*, W) is the subalgebra of S(b*) consisting of the elements that are invariant 
under the action of W on I)*, then the image of I(h*,  W) under /? is I(b, W) c U(h). 
(c) For each linear representation V of G on a complex vector space, the polynomial 
functions UH Tr(( V,(u))") on glc, belong to l(9:c1, G), and their restrictions to h belong to 
I(€)*, W). Show conversely that every polynomial function in I(b*, W) is a linear combina- 
tion of these restrictions. (Use the fact that the weights p E P(g) span the vector space b*, 
and the isomorphism ZIRlG)) -+ Z[PIw of (21.15.5).) 
(d) Show that the restriction to I(g%), G) of the homomorphism i in (b) above is an 
isomorphism of this algebra onto ](I)*, W). (To show that i is injective, note that Xi(/) = 0 
for/€ I($.), G), then/= 0 on h and also on Ad(s) . b for each s E G, and use the conju- 
gacy theorem. To show that i is surjective, note that ifL is the set of all linear combinations 
of the polynomial functions u~Tr((V*(u)"))  for all linear representations V of G, then 
i(L) = I(€)*, W) by virtue of (c) above.) Deduce that the homomorphism 

defined in (b) above is bijective. 
(e) Show that the composite isomorphism 

Z L  %l(C) 9 G )  i I(b, W) 

is the same as the isomorphism zc-* H&, defined in Problem 14(d). (Show that for each r 
these two homomorphisms define the same mapping of (Z n U('))/(Z n U"-") onto 
(I(€), W )  n S,(h))/(I(b, W) n S,_ ,(h)), and that this mapping is bijective; for this purpose, 
use the basis (eo, b. <) of U defined in (21.16.3.4)) 

16. Let E be a complex vector space of dimension n. If we identify the symmetric algebra 
S(E*) with the algebra of polynomial functions on E, the group GL(E) acts on S(E*) by 
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the rule (s . P)(x) = P(s-' . x) for all P E S(E*), s E GL(E), and x E E. If G is a subgroup 
of GL(E), denote by 1(E, G) the subalgebra of S(E*) consisting of the G-invariant polyno- 
mial functions P, i.e., those for which s . P = P for all s E G. If G is finite, with order N, 
then for each P E S(E*) the polynomial function p(P) = N - '  s . P is G-invariant. We 

have p(P) = P if P E I(E, G). 
(a) Let P = Po + PI + ... + P, be a polynomial function on E that is invariant under a 
subgroup G of GL(E), where P, is the homogeneous component of degree j in P. Show 
that each P, is G-invariant (consider P(tx) for t E C). 
(b) Suppose that G is finite. A rational function R on E is said to be G-invariant if 
R(s-' . x) = R(x) whenever both sides are defined. Show that R is then of the form P/Q, 
where P and Q are G-invariant polynomial functions. 
(c) The ring I(E, G) = C @ J ,  @ ... @ J, @ ... is graded, J, being the vector space 
spanned by the P E I(E, G), which are homogeneous of degree h (by virtue of (a) above); 
we define J, to be C. Let 3 + = J , @ . . . @ J ,  @ . . ., which is an ideal of I(E, G), and let 91 be 
the graded ideal of S(E*) generated by 3 + .  

Suppose from now on that G c GL(E) is a finite group, generated by orthogonal 
reflecfions r , ,  . . . , r,,, in hyperplanes in E (relative to a scalar product on E). In order that a 
homogeneous polynomial function P of degree > 0 should belong to %, it is necessary and 
sufficient that r, P - P E 91 for 1 5 j 5 m. (Observe that this condition implies that 
s . P - P E 91 for all s E G, and that p(P) E 91.) 
(d) Let U,, U,, ..., Up be elements of 3+ such that U ,  does not belong to the ideal in 
I(E, G) generated by U,, . . ., Up. Let PI,  P,, . .., P, be homogeneous elements of S(E*) 
such that P,U,  + P,U, + ... + P,U, = 0. Show that P I  E 91. (Proceed by induction on 
the degree of PI.  If P I  is a constant, observe that p(Pj)Uj = 0, and deduce that P I  = 0. 

In general, show that r j .  PI - P I  E 91 for 1 5 j 5 m, by observing that there is a linear 
form L, # 0 such that r, . P - P is divisible by L,, for all P E S(E*).) 
(e) Let ( I , ,  I , ,  . .  .. I,) be a minimal system of generators of the ideal 91, consisting of 
homogeneous invariant polynomial functions. Let d ,  > 0 be the degree of I,. Show that 
I,, ..., I, are algebraically independent over the field C. (Suppose not, and let 
H(Y ,, . . . , Yq) E C[Y ,, . . . , Y,] be a nonzero polynomial of smallest degree such that 
H(I,, . . . , I,) = 0; we may also assume that all the monomials Y;' ... Y;' appearing in H 
are such that v l d ,  + ...+ vqdq has the same value. Then the invariants 
H, = (dH/dY,)(I,, . . . , I,) are not all zero. If U is the ideal that they generate in I(E, G),  we 
may assume that H ,, . . .. H, is a minimal set of generators of PL, so that we have equations 

H,,, = 1 V,, H,, where the V,, are homogeneous (1 5 j 5 q - s) and belong to I(E. G). 

Identifying the functions in S(E*) with polynomials in the coordinates x, (1  5 h 5 n )  ofa 
point x E E, show that we have 

S S C  

1 

k = 1  

ai, q - s  a4+, - +  CV,,--€% 
ax, j = ,  ax, 

for I 5 h 5 n and 1 5 k.5 s (use (d) above). Use Euler's identity to deduce that for 
1 5 k 5 s we have 

,= I I = ,  

where the W,, are homogeneous of degree > 0, and all the polynomials I,, V,,l ,+, .  and 
W,,ll are homogeneous of rhe samedegree; this implies in particular that W,, = Oand leads 
to a contradiction.) 
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17. 

la 

19. 

( f )  Show that 1 and the I, (1 5 k 5 q )  generate the algebra I(E, G). (For each element 
P E J, show, by induction on h, that P is a polynomial in I , ,  ..., I,, by expressing that 
P E 91 and P = p(P).) By virtue of (e) above, we have q n. Prove that q 2 n by noting 
that if L is the field of fractions of S(E*), on which G acts, then the field K c L of 
G-invariant rational functions is the field of fractions of I(E, G) (use (b)), and has the same 
transcendence degree n over C as does L. The algebra I(E, G) is therefore generated by n 
algebraically independent homogeneous elements (Cheualley's theorem). 

Let V be a finite-dimensional complex vector space, s an endomorphism of V, and s, the 
canonical extension of s to the mth symmetric power S,(V). Show that we have 

1 Tr(sm)Tm = (det( 1 - .ST))- 

in the formal power series ring C[[T]]. (Choose a basis of V with respect to which the 
matrix of s is triangular.) 

m = O  

With the notation of Problem 16, suppose that G is a finite group of order N. 
(a) Show that the endomorphism/'= N - '  1 s is a projection of V onto the subspace F 

of V consisting of G-invariant elements. Hence we have dim(F) = Tr(J). 
(b) Show that 

r t G  

1 (dim(Jm))Tm = N - '  1 (det(l - ST))-' 

in the formal power series ring C[[T]]. (Apply (a) to each of the spaces Sm(V*), and use 
Problem 17.) 
(c) Suppose from now on that G is generated by orthogonal reflections, and let R be the 
set of orthogonal reflections belonging to G. We have s E R if and only if det(1 - sT) is 
divisible by (1 - T)"-' but not by ( I  - T)". Use Problem 16(f) to show that 

m = O  S E G  

w 

1 (dim(Jm))Tm = fl (1  - Tdk)-I. 
m = O  k =  I 

(d) I f  r is the number of elements in R, show that 

fl d ,  = N, 1 (d ,  - 1) = r. 
k =  I k = l  

(Equate the constant terms and the coefficients of T on either side of the identity 

(1  - T)" n (1 - Tdl)-'  = N- ' ( I  - T)" 1 (det(1 - ST))-'.) 
k =  I r t G  

(e) Let Aj(x) = 0 (1 5 j 5 r) be the equations of the hyperplanes of fixed points of the 
reflections belonging to G. Show that the Jacobian d(l,,  . .  ., ln)/d(xl, . .., x,) is a polyno- 

mial proportional to fl AJx). (Observe that both polynomials have the same degree, by 

(d)above,and that themapping(x,, ..., x n ) ~ ( I , ( x , ,  . . . ,  x"), ..., In(xl, ..., x,))ofC"into 
itself is not invertible at any point of any of the hyperplanes A,(x) = 0 (1 sj  6 r).) 

With the notation of Problem 15, suppose that G is almost simple, and let I , ,  ..., I ,  be 
algebraically independent homogeneous polynomial functions on 11, of degrees d,, . . . , d , ,  

j =  I 
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respectively, which generate the algebra I(b, W) (Problem 16(f)). Take a basis of b consist- 
ing of eigenvectors e, (1 s j s I )  of a Coxeter element u (which is diagonalizable), so that 
u .  e, = exp(2nimJh)oj in the notation of Section 21.11, Problem 14. Use Problem 18(e) 
and Section 21.11, Problem 16(c) to show that, for the chosen basis of there exists a 
permutation n E 6, such that (aIJ8x,,)(l, 0,. . . ,O) # 0, and hence that in I, the monomial 
x;J-'xR,,, appears with nonzero coefficient. By expressing that I, is invariant under u, 
deduce that we have d, - 1 + mx(,) = 0 (mod h). Using the relation m, + m , ,  , - , = h, 
deduce that by renumbering the I, we may assume that we have d, - I = m, (mod h); and 
since d, - 1 2 0 and m, < h, we have d, - 1 = m, + p , h  with p,  an integer 2 0. Finally, 
use the relation m l  + m2 + ... + rn, = t lh ,  the fact that the number of roots is Ih (Section 
21.11, Problem 16(b)), and Problem 18(d) to show that d, = mi + 1 for 1 5 j 6 I .  

20. (a) When G = SU(n), show that for the basis of u(n) defined in (21.12.1) the polynomial 
functions I . . . , 1,- , generating the algebra l(b, W) may be taken to be the restrictions to 
4 c t,,, of the elementary symmetric functions 

SAX,, ...) xn) = 1 xx(I)xz(2) ... xx( j )  
I 6 Q. 

for 2 4 j 4 n, so that the m, are the numbers 1, 2, . . ., n - 1. 
(b) When G = U(n, H) or G = SO(2n + 1). the rings T(b, W) corresponding to these two 
groups are isomorphic. For the bases oft given in (21.12.2) and (21.12.4), the polynomial 
functions I . . . , 1, that generate I(h, W) may be taken to be the elementary symmetric 
functions 

+:. .... xi)  = 1 x:(I)x:(I) ... x:,,, 
n r B .  

for 1 5 j 4 n, so that the mi are the numbers 1, 3, 5, . . . , 2n - 1. 
(c) When G = SO(2n), for the basis o f t  defined in (21.12.3). the polynomial functions 
I ,, . . . , I, that generate I(b, W) may be taken to be the elementary symmetric unctions 
SAX:, .... x i )  for 1 s j n - 1, and the function x1x2 ... x,. The m, are the numbers 1, 
3, ..., 2n - 3, and n - 1. 

21. Let G be a denumerable group of displacements in a real vector space E endowed with a 
scalar product, and let p be a positive G-invariant measure on E (for example, Lebesgue 
measure if E is identified with R", with the usual scalar product). 
(a) Let U, U' be two open subsets of E, of finite measure. Suppose that the sets s .  U 
(resp. s . U') are pairwise disjoint for all s E G, and that the complement of their union is 
p-negligible. Show that p(U) = p(U'). (If V (resp. V )  is' the union of the sets s . U 
(resp. s . U') for s E G, then V n V is G-stable and has a negligible complement, and 
U n V and U n V are two G-tessellations of V n V (Section 14.1, Problem 6).) 
(b) Let Go be a subgroup of G, and suppose that there exists an open subset U, of E, of 
finite measure, such that the t . U, for r E Go are pairwise disjoint and the complement of. 
their union is negligible. Then the index (G : Go) is finite and equal to p(U,)/p(U) (Section 
14.1, Problem 6(d)). 

22. The hypotheses and notation are as in Section 21.15, Problem 11. Apply the results of 
Problem 21 to the group W, and the open set A*, to the group Po and the open parallelo- 
tope constructed on the vectors 2nh, (1 s j I), and finally to the subgroup Qo of Po 
generated by the translations UH u + 2np, and the parallelotope constructed on the 
vectors 2np, (1 s j 4 I). Deduce that the order of the Weyl group W is I! n ,  n2 ... n,J 
wherej- 1 is the number of indices j such that n, = 1. 
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17. COMPLEXIFICATIONS OF COMPACT CONNECTED 
SEMISIMPLE GROUPS 

(21.17.1) Let R be a simply connected compact semisimple Lie group, 
K = Ad@) its adjoint group, the quotient R/C of R by its (finite) center, 
and f the Lie algebra of R and K. The group K is the identity component of 
the closed subgroup Aut(f) of GL(f) (21.6.9). The complexification 
g = I(,-) = f 0 if of f is a complex semisimple Lie algebra (21.6.1). We shall 
denote by c the semilinear bijection of g onto itself defined by c(y + iz)  = 
y - i z  for y, z E f ,  so that cz = 1,. It is immediately verified that 

for all u, v E g. The Lie subalgebra 1 of glR is the set of all u E g such that 

We propose to describe (up to isomorphism) the complex connected 
semisimple Lie groups having g as Lie algebra. If G is the simply connected 
complex group with g as Lie algebra (19.11.9), then the adjoint group 
G = Ad@), the quotient of G by its (discrete) center, may be identified with 
the identity component of the closed subgroup Aut(g) of GL(g) (21.6.8), and 
its center consists only of e (20.22.5.1). We shall first study the group Aut(g), 
whose Lie algebra is the image ad(g) of g under the homomorphism 
U H  ad(u), a Lie subalgebra of gl(g) = End&), isomorphic to g (21.6.3). 
Since every automorphism u of f extends uniquely to an automorphism 
u 6 1, of g, the group Aut(f) may be identified with the subgroup of Aut(g) 
consisting of the automorphisms that leave f globally invariant. 

c(u) = u. 

(21.1 7.2) The Killing form B, of f is the restriction to f x f of the Killing 
form B, of 9 (21.6.1), and B, is negatioe definite. It follows that the mapping 

is a scalar product, which gives g the structure of a finite-dimensional Hilbert 
space. For if u = y + ir and u' = y' + iz' with y, r, y', z' E €, we have 

B,(u, c(u')) = B,(y, y') + BI(zy z'),+ i(B,(y', 2) - Bdy, 2')) 

= B,(U', c(u)) 

and B,(u, c(u)) = B,(y, y)  + B,(r, L), which vanishes only if y = z = 0, i.e., 
u = 0. For each endomorphism V of the complex vector space g, let V* 
denote the endomorphism adjoint to V ,  relative to this Hilbert space struc- 
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ture on g (11 .S.l). Relative to any orthonormal basis of 9, the matrix of V* is 
the conjugate transpose of the matrix of V. 

(21.17.3) (i) For each auromorphism LI E Aut(g), we have 

(21.17.3.1) u* = c " u-1 0 c. 

(ii) For each u E g we haoe 

(21.17.3.2) (ad(u))* = -ad(c(u)). 

(i) For x, y E g we have 

B,(U * X, ~ ( y ) )  = B,(x, U - '  * ~ ( y ) )  = B,(x, C((C 0 U - '  0 C) . y)) 

since B, is invariant under U (21.5.6.2). This proves (21.17.3.1). 

B,(ad(u) x, c(y)) + B,(x, c((c 0 ad(u) 0 c) . y)) = 0. 

But it follows from (21.17.1.1) and the fact that c2 = 1, that c 0 ad(u) o c = 
ad(c(u)). This proves (21.17.3.2) 

(ii) By virtue of (21.5.6.1), we have 

(21.17.4) An automorphisrn U E Aut(g) is unitary (relative to the Hilbert 
space structure of g) i fand only if U E Aut(f). 

By virtue of (21.17.3.1), to say that U is unitary signifies that U-'  com- 
mutes with c, or again that U commutes with c; this implies that U leaves 
invariant the subspace f of fixed points of c. The converse is obvious. 

(21.17.5) We shall now characterize those automorphisms of g that are 
positive and selfladjoint relative to the Hilbert space structure on 9. For that 
purpose we shall first examine, from the viewpoint of the theory of Lie 
groups, the decomposition of an endomorphism of a complex vector space 
as the product of a self-adjoint operator and a unitary operator (cf. Section 
11.5, Problem 15). Let E be a complex Hilbert space of finite dimension n, 
and let a(E) c gI(E) = End,(E) be the set of self-adjoint endomorphisms of 
E; it is a real vector space, which may be identified (Section 11.5) with the 
space X(E)  of Hermitian forms on E x E, under the mapping that replaces 
each H E a(E) by the Hermitian form (x, y ) ~  (H * x I y ) .  Under this 
mapping, the set a + (E) of positive selfladjoint endomorphisms, characterized 
by the relation (H . x I x) > 0 for all x # 0 (or, equivalently, by the condition 
that their spectra should contain only numbers > 0 (11.5.7)), is identified 
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with the subset #,,,,(E) of Hermitian forms of signature (n ,  0) on E x E, 
which is an open subset of the vector space X ( E )  (16.11.3). Also, let U(E) 
denote the unitary group (isomorphic to U(n, C)) of the form O(x, y) = 
(x I y), the scalar product on E. Then: 

(21.17.6) 
submanifold a, (E) of GL(E) c End(E). 

(ii) The mapping (H, U)wexp(H) . U is a difleomorphism of 

(i) The mapping H H  exp(H) is a difeomorphism ufa(E) onto the 

x U(E) 

onto the Lie group GL(E). 

" 1  
,,=0 n! 

(Here exp is the exponential mapping HH 1 -H" of the group 

GL(E) (19.8.7.2).) 

(i) The fact that H ~ e x p ( H )  is a bijection of a(E) onto a+(E) is a 
particular case of (15.11.11), applied to the function x - e X ,  which is a 
homeomorphism of R onto Rf =lo, +a[. To show that H ~ e x p ( H )  is 
a diffeomorphism of a(E) onto a + (E), it is enough to prove that the tangent 
linear mapping T,(exp) is bijective for all H E a(E) (16.8.8(iv)); by virtue of 
(1 9.1 6.6), this reduces to showing that no nonzero eigenvalue of the endo- 
morphism ad(H) of gl(E) is of the form 2nik with k E Z. Now, relative to a 
suitably chosen orthonormal basis of E, the matrix of H is a diagonal matrix 
(Al ,  A,, ..., A,,), with A j  real (11.5.7), and therefore by (19.4.2.2) we have 

(21.17.6.1) ad(H) E j ,  = (Aj - A,)Ej, 

for all the matrix units E,k (1 5 j ,  k 5 n).  This shows that the eigenvalues of 
ad(H) are the real numbers l j  - A,, and completes the proof of (i). 

(ii) The relation X = exp(H) . U ,  where H E a(E) and Lr E U(E), im- 
plies that X* = U* exp(H) = U - '  . exp(H), and therefore 

XX* = exp(2H). 

Now, for each automorphism X E GL(E), XX* is a positive self-adjoint 
automorphism of E (1 1.5.3). Hence, by virtue of (i) above, there exists a 
unique H E a(E) satisfying the equation exp(2H) = XX*, which we write as 
H = f log(XX*). If we put U = (exp(H))-' . X, it is immediately verified 
that we have UU* = I, that is to say, U E U(E). Since HH exp(H) is a 
diffeomorphism of a(E) onto a+(E), and At+log(A) is the inverse 
diffeomorphism, (ii) is established. 
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We now return to the determination of the positive self-adjoint automor- 
phisms of g. By virtue of (21.17.6), such an automorphism is uniquely ex- 
pressible as exp(H), where H E a(g). 

(21 -17.7) For a self-adjoint endomorpkism H of the vector space g (relative to 
the Hilbert space structure defined in (21.17.2)) to be such rhat exp(H) is an 
automorphism of the Lie algebra g, i t  is  necessary and sufficient that 
H = ad(iu) with u E f. 

To say that exp(H) E Aut(g) signifies that [exp(H) * u, exp(H) v] = 
exp(H) [u, v] for all u, v E g, or equivalently 

exp(H) u ad(u) 0 exp(H)-' = ad(exp(H) . u) 

in End(g). If we put 111 = ad(g), this therefore implies (19.11.2.5) that 

(21.17.7.1) 

in gl(g) = End(g), which can also be written (19.11.2.2) as 

(21.17.7.2) exp(ad(H)) * 111 c 111, 

the exponential here being that of the group GL(End(g)). Relative to a 
suitably chosen orthonormal basis of g, ad(H) acts on End(g) according to 
the formulas (21.17.6.1); hence, relative to the basis (E$,  its matrix is the 
diagonal matrix formed by the I j  - I , ,  and the matrix of exp(ad(H)) is 
therefore the diagonal matrix formed by the eA"-". From this it follows that 
the subspaces of the vector space End(g) that are stable under exp(ad(H)) 
are the same as those which are stable under ad(H) (A.24.3), and hence 

(21.17.7.3) ad(H) . 111 c 111.  

This signifies also that XH[H, XI is a derivation of the Lie algebra 
i i i  = ad(g); but ad(g) is isomorphic to g, hence semisimple, and therefore 
every derivation of ad(g) is inner (21.6.7). In other words, there exists a 
unique u, E g such that, putting H o  = ad(u,), we have [H - H , ,  XI = 0 for 
all X E ad(g). Since ad(g) is stable under the mapping XI+ X* (21.17.3.2), 
we have also [H - H,*,  XI = 0 for all X E ad(g), because H is self-adjoint. 
From this we conclude that H,* = H o  and therefore (21.17.3.2) 
c(uo) = - u, , that is to say, u, E i f .  Since H o  E ad(g), we have [H, H,] = 0, 
so that H and H, commute, and consequently 

exp(H) = exp(H - H , )  exp(H,); 
and clearly 

exp(Ho) = exp(ad(uo)) = Ad(exp(u,)) E A W ) ,  

Ad(exp(H)) . 111 c 111 

so that the hypothesis exp(H) E Aut(g) implies that exp(H - H,) E Aut(g). 
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Let a l ,  . . . , a,,, be the distinct eigenvalues of the selfadjoint endomorphism 
Z = H - H ,  of the Hilbert space 9, and let gl, . . . , gm be the corresponding 
eigenspaces, so that g is the Hilbert sum of the 9, ( I  5 j S m )  (1 1.5.7). Since, 
for each U E  9, ad(u) commutes with Z in End(g), we must have 
ad(u) . g j  c g j  for 1 s j  5 m ;  in other words, the gj are ideals of the algebra 
g. Moreover, for each x E g j ,  we have exp(Z). x = e"'x; but since 
exp(2) E Aut(g), we have exp(Z). [x, y] = [exp(2) . x, exp(2).  y] for x and y 
in the same g j ,  and therefore e"l[x, y] = eZal[x, y]. This is possible only if 
either a - 0 or else [x, y] = 0 for all x, y E 9,. The second alternative is ruled 
out by virtue of (21.6.2(i)), hence we have a, = 0 for all j ,  which means that 
Z = 0; in other words, H = H ,  = ad(iu) with u E f. The converse follows 
immediately from (21.17.3.2) and (21.17.6(i)). 

j .- 

(21.1 7.8) 
f x Aut(f) onto Aut(g). 

The mapping (u, U)t+ esp(ad(iu)) . U is a diffeomorphisrn of' 

Since Aut(f) consists of unitary endomorphisms of the Hilbert space g 
(21 .I 7.4), and since U H  exp(ad(iu)) is a diffeomorphism off onto a submani- 
fold of the vector space of Hermitian endomorphisms of the Hilbert space g 
(21.17.6(i)), it  follows from (21.17.6(ii)) that is enough to show that the 
image of the mapping (u, U)-exp(ad(iu)) . U o f t  x Aut(f) into GL(g) is 
exactly equal to Aut(g). Now, if X E Aut(g), then also X* E Aut(g) by virtue 
of (21.17.3.1) and (21.17.1.1); hence XX* E Aut(g). We have seen in 
(21 .I 7.6(i)) that there exists a unique self-adjoint endomorphism H of the 
Hilbert space g such that exp(2H) = XX*; it follows from (21.17.7) that 
H = ad(iu) with u E f, and the calculation made in the course of the proof of 
(21.17.6(ii)) then shows that U = (exp(H))-'X is unitary; but since 
U E Aut(g), i t  follows from (21.17.4) that U E Aut(f) and therefore 
X = exp(ad(iu)) . U .  The converse inclusion is obvious from the 
identification of Aut(f) with a subgroup of Aut(g). 

(21.1 7.9) 
f x Ad$) onto Ad@). 

The mapping (u, U)t+ exp(ad(iu)) * U is a diffeomorphism of 

This follows from the fact that f is connected and therefore f x Ad$) is 
the identity component off x Aut(f). 

(21.17.10) Let n: G --t G = Ad(G) denote the canonical projection (so that 
n(s) = Ad(s)). 

(i) The inoerse image n- ' (K) (where K = Ad&)) may be identijied with 
the simply connected compact group R, and with the Lie subgroup of GI, 
corresponding to the Lie subalgebra f of glR (19.7.4); in particular, the center C 
of R may be identijed with the center of G. 
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(ii) The mapping jut+ expc(iu) is a dijeomorphism of the vector sub- 
= {P) (the identity 

The mapping ( y ,  z ) w y z  of P x K into G is a dijeomorphism of 

space if ofglR onto a submanifold P ofe,  such that ? n 
element of G). 

P x If onto G.  
(iii) 

Let P be the image of if in G under the mapping i u w  exp,(iu), which is 
the same as the mapping i u w  exp(ad(iu)) by definition of G = Ad(G); P is 
therefore a submanifold of G diffeomorphic to if. If ? is the connected 
component of 2 in A- '(P), then P is a covering of P ((16.1 2.9) and (16.28.6)); 
but since P, being homeomorphic to a vector space, is simply connected, the 
restriction of n to P is a dijeomorphism of P onto P (16.28.6), and the 
intersection P n A- ' ( e )  of P and the center of G consists only of the identity 
element. Furthermore, for each u E f we have n(expc(iu)) = expG(iu); since 
the one-parameter subgroup of G that is the image of R under the mapping 
twexpc(itu) is connected, we have expc(iu) E P, and consequently P is 
the image of if under the restriction to if of the mapping expc, which is a 
diffeomorphism. 

Consider now the Lie subgroup K' = n-'(K), which is a covering of K 
and contains the center R -  ' ( e )  of G. We shall show that every x E G can be 
written uniquely in the form yz  with y E ? and z E K .  We have a(.) = yo zo 
with yo E P and zo E K, and this decomposition is unique (21.17.9); we may 
write yo = n(y)  and zo = n(z'), with y E ? and z' E K'; hence x = yz'w, where 
w E n - ' ( e ) ;  but since n- ' ( e )  c K', it follows that z = z'w E K'and we have 
x = yz as required. As to the uniqueness of this factorization, if x = y, z1 
with y1 E ? and z1 E K', then n(y)n(z) = n ( y l ) n ( z l ) ,  whence n(y)  = n(yl) 
(21.17.9), which as above implies that y ,  = y and therefore z1 = z. 

Next we shall show that the bijection (y ,  z ) w y z  of P x K' onto e is a 
diffeomorphism. If (a, b )  E P x K' and c = ab, there exist open neighbor- 
hoods U, V, W of a in ?, b in K', and c in G, respectively, such that the 
restrictions of n to U, V, W are diffeomorphisms onto the open sets n(U), 
n(V), a(W) in P, K, and G, respectively. Since we may assume that U and V 
are so small that the mapping ( y o ,  z 0 ) w  yo  zo of n(U) x n(V) into n(W) is a 
diffeomorphism onto an open subset of n(W) (21 .17.9), the result now fol- 
lows immediately. 

We see therefore that ? x K' is diffeomorphic to G. This implies that K' 
is simply connected (16.27.10), hence isomorphic to R. If we identify R with 
K', the center of R contains n- '(e), and since K = R/n- ' ( e )  has center {e} ,  it 
follows that n- ' ( e )  is in fact the center C of R (20.22.5.1). 

(21.17.11) It is now easy to deduce from (21.17.10) the determination of all 
the complex connected Lie groups that have g as Lie algebra. Indeed, such a 
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group is isomorphic to a quotient GI = @D of G by a subgroup D of its 
(finite)centerC(16.30.4);thecenterC,ofGlisC/D.If~, : G I  + G  = G,/C, 
is the canonical projection, then 7c; '(K) may be identified with the compact 
group K ,  = K/D with center C,, and K with K,/C1. We may therefore 
repeat without any changes the argument of (21.17.10); if P, is the con- 
nected component of the identity element e, of G ,  in n-'(P), the restriction 
of n, to P, is a diffeomorphism of P, onto P, and iut-+exp,,(iu) is a 
diffeomorphism of i€ onto PI.  We have P, n K,  = {e,}, and the mapping 
(y ,  Z ) H ~ Z  is a diffeomorphism of P, x K ,  onto G I .  

There is therefore a canonical one-to-one correspondence between the 
compact connected semisimple Lie groups with Lie algebra f ,  and the complex 
connected semisimple Lie groups with Lie algebra f(,-) = g. 

(21.17.12) (i) The exponential mapping of maps f onto R (21.7.4) and 
if onto P; nevertheless, it is not necessarily a surjection of g = t 0 if onto 
(Section 19.8, Problem 2). 

(ii) With the notation of (21.17.11), the subgroup K, is maximal among 
the compact subgroups of G,. For if an element yz, with y E P, and z E K,,  
belongs to a compact subgroup K; 2 K,, then y E K;; but if y = exp(iu) 
with u E f ,  the subgroup of G,  generated by y is the image under the expon- 
ential mapping of the subgroup Ziu of if;  this subgroup is closed and not 
compact in if if u # 0, and therefore the subgroup generated by y would also 
be closed and noncompact in K;, which is impossible. Hence we must have 
u = 0 and therefore K; = K,. 

PROBLEMS 

1. Let Go be a connected (real) Lie group, go its Lie algebra, g = go &C the complexification 
of go, and G the simply connected complex Lie group with Lie algebra g (21.23.4). If  Go is 
the simply connected universal covering Lie group of G o ,  then the canonical injection 

--* q a  is the derived homomorphism of a unique homomorphism h: Go --* GIR.  For each 
Lie group homomorphism u :  Go --* HI,, where H is a complex Lie group, there exists a 
unique homomorphism I(*: G --* H of complex Lie groups such that u* 0 h = u 0 p.  where 
p :  Go -, Go is the canonical homomorphism. Let G +  be the quotient of G by the intersec- 
tion N of the kernels of the homomorphisms u* corresponding to all homomorphisms 
u :  Go -, Hln.  Show that if D is the kernel of p. then h(D) c N. (Consider the composite 

homomorphism Go --* Aut(go) -+ Aut(g),a.) Deduce that there exists a canonical homo- 
morphism c p :  Go --* GI: such that every homomorphism u :  Go + HI, (where H is a com- 

plex Lie group) factorizes uniquely as Go -GI: -+HI,, where u ' :  G' + H is a 
homomorphism of complex Lie groups. 

Ad 

rp u +  
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Show that if there exists an injective homomorphism u :  Go -+ HI,, where H is a com- 
plex Lie group, then the homomorphism c p :  Go -+ GI: is injective and g is the Lie algebra of 
G + ;  the group Gt is said to be the cornplexification of G o .  If we identify Go with a 
subgroup of G,:, there exists no complex Lie subgroup of Gt containing Go,  other than 
G +  itself. 

2. Let K be a compact connected Lie group of dimension n, which we may assume to be a 
subgroup of O(N, R )  (21.13.1); K is then the set of real matrices whose components are the 
zeros of some family of polynomials in R[T, T I 2 ,  . . . , T,,] (Section 21.1 3, Problem 2). Let 
a denote the ideal of R[T,,, . . . , T,,] formed by the polynomials that vanish at  all points of 
K. 
(a) Let G be the set of complex matrices in GL(N, C) for which all the polynomials in a 
vanish; G is also the set of complex matrices for which the polynomials in the ideal 
a+  = a + ia in C[T,,, ..., T,,] vanish. Show that G is a closed subgroup of GL(N, C). 
(First prove that if s E K and t E G, then st E G.) We have K = G n GL(N, R) = 
G n O(N, R )  = G n U(N, C). (Observe that O(N, C) n U(N, C) = O(N, R).) 
(b) If X is a matrix belonging to G, then 'x also belongs to G. If we write X = HU, where 
U is unitary and H is hermitian and positive definite (21.17.6), then the matrices H, U also 
belong to G. (Note that H2 = XX* E G and therefore H Z x  E G for all integers k E Z. If  we 
write H = A . exp(D) . A - '  where D = diag(a,, ..., aN), the a, being real, then for each 
polynomial P E a t  and cach z E C, P(A . exp(zD) A - ' )  is a linear combination ofexpon- 
entials errr with ck E R. By observing that this function of z vanishes for all z E 22, show that 
i t  vanishes identically, and hence in particular is zero for z = 1.) If S = A D A - ' ,  so that 
H = exp(S), then exp(zS) E G for all z E C. 
(c) Let S be a hermitian matrix. Show that exp(S) E G if and only if i s  E f, the Lie algebra 
of K. (Observe that if exp(irS) is a zero of all the polynomials in a, where r E R, then the 
same is true of exp(zS) for z E C.) Deduce from (b) above and from (21.17.6) that G is 
diffeomorphic to K x R" and that its Lie algebra is f Q it. The group G may therefore be 
identified with the coniplexification of the compact group K ;  its Lie algebra is the direct 
sum of its center c and its derived algebra a(g), which is semisimple, and the universal 
covering e of G is therefore isomorphic to the product of C" (for some positive integer m) 
and a complex semisimple Lie group, which is the complexification of a compact semi- 
simple Lie group. 

18. REAL FORMS O F  THE COMPLEXIFICATIONS OF COMPACT 
CONNECTED SEMISIMPLE GROUPS A N D  SYMMETRIC SPACES 

(21.18.1) We have already observed in two contexts ((21.8.2) and (21.17.1)) 
that if a is a real Lie algebra and b = is its complexification, then the 
bijection c: y + i z ~ y  - iz  of b onto itself (where y, z E a) is a semilinear 
involution that satisfies the relation c([u, v]) = [c(u), c(v)] for all u, v E b 
(i-e., it is an automorphism of the real Lie algebra b,,). For the sake of 
brevity, a bijection of a complex Lie algebra b onto itself that has these 
properties will be called a conjugation. Conversely, a conjugation c in a 
complex Lie algebra b determines uniquely a real Lie subalgebra a of b,, 
such that b is isomorphic to the complexification of a. For since c is R-linear 
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and c2  = l,, the vector space b,, is the direct sum a 0 a' of two real vector 
subspaces a, a', such that c( u) = u for u E a, and c( u) = - u for u E a'. Since 
also c ( i u )  = - i c ( u )  for all u E b, we have in  c a' and ia' c a, from which it 
follows that a' = ia. Finally, since c is an automorphism of b,,, the subspace 
a is a Lie subalgebra of b,,, and it is immediately seen that b is the 
complexification of a.  There is therefore a canonical one-to-one correspon- 
dence between conjugations of b and real forms of 6. Further, if cp is an 
automorphism of the complex Lie algebra b, and c is a conjugation of 6, i t  is 
clear that cp c ~7 cp- = c1 is also a conjugation of 6, and that if a and a ,  are 
the real forms of b corresponding to c and cl, respectively, then a ,  = cp(a). 

(21.18.2) Changing the notation of (21.17), let e, be a simply connected 
compact semisimple Lie group, g, its Lie algebra, g = (gJc0 the 
complexification of g, , and c, the conjugation of g corresponding to 9,. We 
propose to determine, up to isomorphism, all the real forms of the complex 
semisimple algebra 9, and we shall show that this is equivalent to the follow- 
ing problem relative to the algebra g,: to determine the inuolutory automor- 
phisms of this Lie algebra. 

This will result from the following proposition: 

(21.18.3) With the notation of(21.18.2), let c be a conjugation of 9. Then 
there exists an automorphisrn cp of 'g such that c, commutes with cp 0 c 0 cp-'. 

We have seen (21 .17.2.1) that (x I y) = - B,(x, c,(y)) is a scalar product 
that makes g a finite-dimensional Hilbert space. The mapping H = cc, is an 
automorphism of the complex Lie algebra 9; it is also a self-adjoint endomor- 
phism of the Hilbert space g, because we have 

B,(H . X, C, . y) = B,(x, H - ~ C ,  . y) = B,(x, c,H * y) 

since H leaves invariant the Killing form of g, and c, c, are involutions. 
Hence there exists an orthonormal basis (ej)l j 5 n  of g with respect to which 
the matrix of H is diagonal and invertible. Consequently the matrix of 
H 2  = A with respect to this basis is of the form diag(I,, I , ,  . . . , A,,), where the 
Ij are real and > 0. For each real number t > 0, let A' be the automorphism 
of the vector space g defined by the matrix diag(I:, I:, ..., I:) (cf. 
(15.11 . l l ) ) ;  these automorphisms commute with H ,  and moreover they are 
automorphisms of the complex Lie algebra g. For if the multiplication table 
of g, relative to the basis (e j ) ,  is 

Lej 9 Ok1 = 1 a jk l  
I 
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then the fact that A is an automorphism of g is expressed by the relations 

AjAkajkl= ajkrA1 (1 5 j ,  k ,  1 S n), 

which evidently imply, for all t > 0, that 

A i A i a j k l  = ajkln; 1 

thereby proving our assertion. Now consider the conjugation c' = Arc, A-' 
of g, and note that by definition we have c,Hc;' = c,c  = H - ' ,  so that 
c,Ac;' = A - ' .  But if we put L = diag(log A,, log A 2 ,  ..., log An), then 
A = 8, so that A' = erL and therefore c, Arc; = A-' .  Consequently 

cc' = cA'c, A - f  = cc, A - 2' = H A  - 21, 

c'c = (cc')-' = A"'H-1 = H-lAZr 

and therefore when t = 4 we have cc' = c'c = H-'A'I2 ,  because 
H A - '  = H - ' .  Hence cp = A-''4 satisfies the conditions of the proposition. 

(21.18.4) In the determination of all conjugations of g, we may therefore 
limit our search to conjugations co that commute with c , ,  and therefore leave 
gu and i g ,  globally invariant. The restriction of co to g, is then an inuolutory 
automorphism of this real Lie algebra. Consequently, g, is the direct sum-of a 
real Lie subalgebra f o  ,consisting of the x E g, such that c o ( x )  = x, and a real 
uector subspace, denoted by ip, ,  consisting of the x E g, such that 
co(x) = - x. It follows that i g ,  is the direct sum of i f ,  and po , and because co 
is a conjugation of g we have co(x )  = x for x E po and co(x )  = - x  for 
x E i f , .  The real form go of g corresponding to co is therefore 

(21.18.4.1) 90 = fo  0 Po . 

Since the Killing form Bow is the restriction of B ,  to g, x g,, it follows from 
the definition of the scalar product (x I y) on g that (x I y) = - B J x ,  y) for 
x, y E 9,. Since the restriction of co to g, is an automorphism of this Lie 
algebra, it leaves invariant its Killing form (21 5 6 ) ;  for x E f o  and y E po , we 
have therefore ( x  I y) = (co(x)  I co(y)) = - ( x  I y), whence ( x  I y) = 0. It fol- 
lows that B,(x, y) = 0 and hence also B,(x, iy )  = 0. Since the Killing form 
B,, is the restriction of B, ,  it follows that in the decomposition (21.18.4.1), f o  
and po are orthogonal subspaces relative to the Killingform of go (hence are 
nonisotropic). Further, the restriction of B ,  to f0 x to is negative dejnite, 
because it is also the restriction of B,. (21.6.9); by contrast, its restriction to 
po x po is positive definite, because for x E ip, we have B,,(ix, i x )  = 
B,(ix, i x )  = -B, (x ,  x) = -BBU(x, x). Finally, we have 

(21.18.4.2) [fo 9 Pol = Po 9 [Po 9 Pol = t o  . 
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For if x E f, and y E ip,, then c,([x, y]) = [c,(x), c,(y)] = -[x, y], and 
since [x, y] E g, we have [x, y] E ip,; this shows that [f , ,  ip,] c ip, and 
therefore also that [to, pol c po . Likewise, if x, y E ip,, then co([x, y]) = 
[x, y] and hence [x, y] E f , ,  because [x, y] E g,; this proves the relation 
[ip, 3 iP,] = f, 9 whence [Po 1 Pol = € 0 .  

(21.18.5) Let G be the simply connected complex (semisimple) Lie group 
of which g is the Lie algebra (1 9.11.9), and let P be the closed submanifold of 
G that is the image of ig, under the mapping jut+ expc(iu). From (21.17.10), 
the mapping ( y ,  Z ) H  y z  of ? x G, into G is a diffeomorphism. 

To the automorphism c, of the real Lie algebra glR there corresponds a 
unique inuolutory automorphism (T of elR such that the derived automor- 
phism (T* = c,  (1 9.7.6); (T therefore leaves G, and ? stable, because c, leaves 
g, and ig,, stable. Let Go be the Lie subgroup of GjlR consisting of the points 
fixed by (T (19.10.1); its Lie algebra is go (20.4.3), hence is semisimple, and it 
evidently contains the compact subgroup KO = Go n e, consisting of the 
fixed points of the restriction of (T to e,, because e, is stable under (T. 

Likewise, Go contains the image Po under the exponential mapping 
ut+expc(u)= exp,,(u) of the vector subspace po of ig,, and since 
exp(c,(u)) = o(exp(u)), P is the set of points of P fixed by o. Furthermore: 

(21.18.5.1) Po is a closed submanifold ofG,; the mapping u~exp , , (u )  is a 
diffeeomorphism of po onto Po, and the mapping ( y ,  Z)H y z  ofPo x KO into Go 
is a diffeeomorphism of Po x KO onto Go.  

The first two assertions are obvious, since po is a vector subspace (and 
hence a closed submanifold) of ig,. Again, it is clear that the restriction to 
Po x KO of the diffeomorphism ( y ,  Z)I+ yz  of ? x G, onto is a diffeomor- 
phism onto its image in G, and it remains to show that this image is the 
whole of Go. Each element x E Go is uniquely expressible in the form y z  
with y E ? and z E G,,; since o(x) = x, we have a(y)a(z) = yz, and since 
a(y) E ? and (T(z) E G,, we must have y = a(y )  and z = (~(z), whence y E Po 
and z E K O .  

(21.18.5.2) 
(21.17.10)), the center ofGo is C n Go. 

If C is the center of G (identijied with the center of G, 

For if s E Go,  the restriction of Ad(s) to go is the identity if and only if the 
restriction of Ad(s) to g is the identity, because g is the complexification of 
go; the result therefore follows from (1 9.1 1.6). 



168 XXI COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS 

(21.18.6) It can be proved that the compact group KO is connected (Section 
21.1 6, Problem 11); we shall assume this result in the rest of this section.? On 
the other hand, KO is not necessarily semisimple or simply connected. The 
group Go is therefore connected, and the same reasoning as in (21.17.10), 
with G replaced by Go,  and e by Go, the universal covering group of Go,  
shows that: 

(21.18.7) The inverse image n- '(KO) of KO under the canonical projection n 
of Go onto Go is isomorphic to the simply connected group KO, the universal 
covering of the compact group KO. The mapping UH expc,(u) is a diffeomor- 
phism of po onto a closed submanifold ?, of Go, such that Po n KO consists 
only of the identity element of Go.  The mapping (y,  z ) w  yz is a dveomorphism 
of?, x R, onto Go. 

The center Z of Go is n-'(C,) ,  a discrete subgroup contained in the 
center of R,, but distinct from the latter if KO is not semisimple (in which 
case R, is not compact (21.6.9)). 

(21.18.8) Finally, the reasoning of (21.17.11) gives the determination (up to 
isomorphism) of all the connected real Lie groups that have 9, as their Lie 
algebra: such a group is isomorphic to a quotient G ,  = Go /D, where D is a 
(discrete) subgroup of the center Z of Go, and the center C1 of G I  is Z/D. If 
n, : G, + Ad(Go) = G, / C ,  is the canonical projection, a; (Ad(K,)) may be 
identified with the group K, = R,/D, the connected' Lie subgroup of G, 
with Lie algebra to; it contains CI (which is not in general the center of Kl), 
and is compact if and only if C, is$nite. If P, is the connected component of 
the identity element el E G, in K; '(Ad(P,)), the restriction of K, to P, is a 
diffeomorphism of P, onto Ad(P,), and UH exp,,(u) is a diffeomorphism of 
po onto P,;  we have P, n K, = { e l } ,  and the mapping (y, z ) - y z  is a 
diffeomorphism of P, x Kl onto G , .  

The decomposition (21.18.4.1) is called the Cartan decomposition of the 
semisimple real Lie algebra go. The corresponding decomposition as a pro- 
duct P, x K,, for a connected Lie group GI having go as its Lie algebra, is 
called a Cartan decomposition of GI.  Since Ad(K,) = Ad(K,) is compact, K, 
is in any case isomorphic to the product of a compact group and a vector 
group R" (21.6.9), hence G, is diffeomorphic to the product of a compact 
group and a vector group RN; and the same argument as in (21.17.1 2) proves 
that the compact subgroup in this product decomposition is maximal in G,. 

We shall not make use of this result anywhere except in this section. 
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Examples 

(21.18.9) Consider a Weyl basis of g (21.10.6), consisting of a basis of a 
maximal commutative subalgebra t of g, , together with elements x, (a E S) 
satisfying (21.10.6.4). Since the numbers N,, are real, it is clear that the real 
vector subspace go of g spanned by this Weyl basis is a real Lie algebra 
having g as its complexification; this real Lie algebra is called a normal real 
form of g. One sees immediately that in the corresponding Cartan decompo- 
sition go = to + p,, the elements x, - x-, form a basis of f , ,  the subspace 
po contains t and is spanned by t and the elements x, + x-, . 

(21.18.1 0) Consider the complex Lie group H = c; x G, whose Lie algebra 
is g @ g, the complexification of the Lie algebra g, @ g, of G, x G , ,  Let co 
be the conjugation of g @ g defined by 

co( x + iy,  x' + iy')  = (x' - iy', x - i y )  

for x, y ,  x', y' E g,. It is clear that the set of (v, w) E g 0 g fixed by c, 
is the set of elements (2, c,(z)) for L E g, and hence is isomorphic to glR. In 
this way the Lie algebra glR appears as a real form of g @ g; the correspond- 
ing Cartan decomposition f ,  @ po is such that €, = gu and p, = i g , .  

(21.18.11) Let us take e, to be the almost simple compact group SU(n) 
(21.12.1), which is simply connected (16.30.6). We have seen in (21.12.1) that 
the complexification g of gu = eu(n) may be identified with d(n, C). We shall 
show that the corresponding group SL(n, C )  is simply connected. By virtue of 
(21.17.6), SL(n, C) is diffeomorphic to the submanifold of a(C") x U(n) con- 
sisting of pairs of matrices (H, V) such that det(exp(H)) * det(U) = 1, or 
equivalently eTr(") * det(U) = 1; since Tr(H) is a real number, and the only 
unitary matrices with a positive real determinant are those with determinant 
1, it follows that SL(n, C) is diffeomorphic to V x SU(n), where V is the 
hyperplane in a(C") defined by the equation Tr(H) = 0. This proves our 
assertion (16.27.10); the group denoted by e in (21.18.5) is here SL(n, C). 

The conjugation c, corresponding to the real form g, is the involutory 
bijection XH -'X of sl(n, C) onto itself. Among the conjugations of g that 
commute with c,, there are the following three types: 

(I)  c,: XI+ R;  go is therefore the set of real matrices in d ( n ,  C), hence 
is the Lie algebra d(n,  R) (the normal real form of d ( n ,  C) (21.18,9)); the 
subalgebra €, of g, is the set of real matrices in eu(n), so that g, = so(n) and 
therefore is semisimple if n 2 3 ((21 .12,3) and (21 .12.4)); po is the space of 
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real symmetric n x n matrices with trace 0, and Po is the set of positive 
definite real symmetric matrices with determinant 1. The automorphism Q of 
elR is again the mapping X H X  on SL(n, C), and therefore we have 
Go = SL(n, R) and KO = SO(n). When n = 2, KO is isomorphic to T, and KO 
to R, so that Go,  the universal covering of SL(2, R), is diffeomorphic to R3; 
when n 2 3, the group KO is not simply connected, and ito is isomorphic to 
Spin(n) (21.16.10); hence Go has finite center, but it can be shown that Go is 
not isomorphic to any Lie subgroup of a linear group GL(N, R) (Problem 
1). 

(11) Suppose that 
X H  JXJ-', where 

n = 2m is even, and consider the mapping co:  

Since 3 = J and J-' = 
gation that commutes 

- J = 'J, it is immediately verified that co is a conju- 
with c,. The corresponding automorphism Q of 

GIR = SL(2m, C) is the same mapping X w  J X J -  ', and it is easily verified 
that the matrices fixed by u are the matrices in SL(2m, C) of the form 

(21.1 2.2.2), in other words, the matrices of the form ( --; ;j of determin- 

ant 1, with U and V in GL(m, C). It follows therefore from (21 -12.2) that KO 
is semisimple and simply connected, and is isomorphic to U(m, H); the 
group Go is therefore simply connected and may be identified with the 
intersection of GL(m, H) and SL(2m, C); its center consists of & I .  

(111) Let p ,  q be two integers such that p 1 q 2 1 and p + q = n. Con- 
sider the n x n matrix 

the mapping co: X w  - I ,  , * 'X I ,  is a conjugation that commutes with 
c,, by reason of the relations Ip , ,  = I , ,  and I ; :  = ' I , , ,  = I , ,  . The restric- 
tion of co to g. is the automorphism X H  I ,  , XI, , of this real Lie algebra; 
the restriction to G, = SU(n) of the corresponding automorphism o of elR is 
the same mapping X H  I ,  , X I ,  , , and it follows that the group KO is the set 

ofmatrices (i ;),where U E U(p), V E U(q), and det(U) det(V) = 1. One 

sees immediately that such a matrix can be uniquely expressed as a product 

where U ,  E SU(p), V, E SU(q), and D is a diagonal matrix of the form 
D = diag(b, 1, ..., 1, d-', 1, ..., 1) 
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with 6- in the (p + 1)th place, and 16 1 = 1. Consequently KO is diffeomor- 
phic to SU(p) x T x SU(q), hence is not simply connected. Its Lie algebra f, 

with X E u(p), Y E  u(q), and consists of the matrices of the form 

Tr(X) + Tr( Y) = 0; such a matrix can be written uniquely in the form 
( 0  y) 

where a E iR, X, E su(p), and Yl E eu(q); and it is immediately verified that 
this decomposition fo  = su(p) 0 R @ eu(q) is a decomposition into ideals. 
The simply connected group Ro , the universal covering of KO, is therefore 
isomorphic to SU(p) x R x SU(q). The group Go is the set of matrices 
X E SL(n, C) such that 'X l P , ,  . X = I p , 4 ,  i.e., it is the subgroup SU(p, q) 
of matrices with determinant 1 in the unitary group U(p, q )  of a sesquilinear 
Hermitian form of signature (p, q )  on C" (16.11.3); the foregoing remarks 
show that Go is not simply connected. 

It can be shown (Problem 3; also [62], [85] )  that every conjugation of 
d(n, C) that commutes with c, is of the form cp o co 0 cp-', where cp is an 
automorphism of sf(n, C) and co is one of the three types of conjugation just 
described. 

(21.18.12) We retain the notation of (21.18.8). If z is the involutory auto- 
morphism of the simply connected Lie group Go that corresponds to the 
automorphism c, I go of go, then 7 fixes each element of KO and transforms 
each element of Po into its inverse. Since the center Z of Go is contained in 
KO , it follows that, on passing to the quotient in G1 = eo/D, 7 gives rise to 
an involutory automorphism tl  of G, which fixes the elements of 
K, = Ro /D and transforms each element of P, into its inverse. We conclude 
that K I  is exactly the subgroup of G I  consisting of the fixed points Of 71, by 
virtue of the relation GI = P,K1 and the fact that no element of P1 has 
order 2, because of the existence of the diffeomorphism u ~ e x p ~ ~ ( u )  of po 
onto P,. 

Suppose now that the algebra g is simple; this implies that every real 
form of 9, and in particular go, is simple, and consequently the only normal 
Lie subgroups of G1 are the subgroups of the center C,. In order that the 
group K,  should contain no normal subgroup of G, other than {e), we must 
therefore take D = Z, i.e., G, = Ad(Go) and K, = Ad(Ko). The composite 
canonical mapping 

(21.18.1 2.1) Po -+ Pl = exPci,(Po) + Gl/Kl, 
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in which the left-hand arrow is the exponential mapping and the right-hand 
arrow is the restriction to P, of the canonical projection G ,  -, G, /K,, is a 
diffeomorphism. Identifying all the spaces G ,  /K, with Ad(G,)/Ad(K,), we 
see that, since the conditions of (20.11 . l )  are satisfied for the latter space, we 
may define a structure of a Riemannian symmetric space on the spaces PI,  or 
G ,  /K,, for which the Levi-Civita connection is entirely determined by the 
conjugation c ,  . But in fact we can define canonically a G,-invariant Rieman- 
nian metric on G,/K,: since the restriction to p, of the Killing form Beo (or 
B,) is positive definite and invariant under Ad(t) for all t E K,, we may take 
this restriction as the value of the Riemannian metric tensor on G,  / K ,  at 
the point x, that is the image of the identity element (20.11 -1). 

With this choice of metric, the sectional curvature A(u, v) is easily cal- 
culated, where u, v are any two vectors in p, = Tx,,(Gl/Kl): for by virtue of 
(20.21.2.1) and the invariance of Be, we have 

(21.18.12.2) A(u, v)  = -Bn([U, 4 ,  [w v])/11. A v1I2 

Hence G , /K ,  is a Riemannian manifold with sectional curvature every- 
where S 0. 

(21.18.1 3) The existence of the involutory automorphism 0 of G,, corre- 
sponding to the conjugation c, (21.18.5) gives rise to other Riemannian 
symmetric spaces. Supposing always that g is simple, the largest normal 
subgroup of G,, contained in KO is C n Go (21.18.5.2). Let 
Gz = e , / ( C  n Go) and K, = KO /(C n Go). On passing to the quotients, 0 

defines an involutory automorphism 0,  of G, that fixes the points of K,; but 
here K, is only the identity component of the subgroup K; of fixed points of 
g,, and may well be distinct from K;, as the example G, = SO(n + l ) ,  
k2 = SO(n) (n even) shows (20.11.4). For each subgroup K'; such that 
K, c K'; c K;, the symmetric pair (G,, Ki) therefore fulfills the conditions 
of (20.1 1 . l )  and defines a compact Riemannian symmetric space G, /K';. The 
tangent space to this manifold a t  the point x,, the image of the identity 
element of G, , may be identified with the subspace i p ,  of g,, . The restriction 
of Be to i p ,  is negative dejnite (21.18.4); on the other hand, for each t E K; , 
the space i p ,  is stable under Ad@), and B, is invariant under Ad(t), so that 
we may again define canonically a G,-invariant Riemannian metric on 
G, /K; , by taking the restriction of -Be to i p ,  as the value of the metric 
tensor at the point x, (so that the spaces G, /K';, for all the different possible 
choices of K; , are locally isometric). The same calculation as in (21.18.2.2) 
now gives the sectional curvature A(u, v), for u, v E i p , :  

(21.18.1 3.1) N u ,  v) = I"U, vl11'/llu A V1l2 
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so that the Riemannian manifolds G, /KZ have sectional curvature every- 
where 2 0. It can be shown that G, /K2 is simply connected (Problem 5) ,  so 
that it is a finite covering of each of the spaces G, /K;, 

The direct sum decomposition of the Lie algebra g,, 

(21.1 8.1 3.2) g" = t o  0 i P 0  7 

is again called the Cartan decomposition of g, corresponding to c , .  The 
image of to under the exponential mapping expG2 is equal to K, (21.7.4). The 
image P, of i p ,  under the mapping exp,,, however, has properties that are 
rather different from those of the set P,  studied in (21.18.8): 

(21.18.13.3) For each s E G, ,  let s* = (T,(s-'). Then the group G, acts 
differentiably on itself by the action (s, f)H sts*. For this action, P, is the orbit 
of e, and K; is the stabilizer of e, so that P, is a compact submanifold of G, , 
canonically diffeomorphic to G, /K>;  also we have K, P, = P, K, = G, . 

We know from (20.7.10.4) that the geodes'ic trajectories on the compact 
Riemannian manifold G,/K, that pass through x, are the images under 
R :  G 2  + G2/K, of the 1-parameter subgroups corresponding to the tangent 
vectors belonging to i p ,  . Since G, /K2 is compact and therefore complete, 
the union of these geodesic trajectories is the whole of G2/K, (20.18.5); in 
other words, 71(P2) = G,/K,, or equivalently G, = P,K,. Since the rela- 
tion x E P, implies x - '  E P,, it follows that also G, = K,P,. 

The mapping XH x* clearly has the following properties: 

x**  = x, (xy)* = y*x*, e* = e ;  

the relation xx* = e is equivalent to x E K;; and for each x E P, we have 
x* = x, because co(u) = - u for u E i p , .  Observe now that exp(u) = 
(exp(iu))2; from this it follows that each x E P, may be written as x = y 2  
with y E P, , or equivalently x = yy*. Conversely, for each s E G, we may 
write s = xz with x E P, and z E K, , so that ss* = xzz-'x = x2 E P,. This 
shows that P, is the orbit of e for the action (s, t)t+ sts* of G, on itself. Since 
G, is compact, P, is a compact submanifold of G, (16.10.7); moreover, we 
have seen above that the stabilizer of e is K;, and therefore the correspond- 
ing canonical mapping G,/K> + P2 is a diffeomorphism (16.10.7). 

It should be carefully noted that in general the restriction to P, of the 
canonical mapping II: G, + G2/K, is not a diffeomorphism (Problem 6 and 
Section 21.21, Problem 2). 

(21.18.14) 
phism of the Lie algebra g, (when g is simple) there correspond: 

To summarize, we have shown that to each inoolutory automor- 
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(1) A real form go of g, and the almost simple real Lie groups having go 

(2) A noncompact Riemannian symmetric space G1 /Kl ,  diffeomorphic 

(3) A finite family of compact Riemannian symmetric spaces G2 /K;. 

It can be shown that, together with the Euclidean spaces (20.11.2) and 
the almost simple compact groups, the Riemannian symmetric spaces of 
types (2) and (3) enable us to describe all Riemannian symmetric spaces 
(Problem 13). On the other hand, we shall see in (21.20.7) that eoery com- 
plex semisimple Lie algebra is isomorphic to the complexification of the Lie 
algebra of a compact semisimple group. I t  follows therefore that the deter- 
mination of the almost simple compact groups and their involutory auto- 
morphisms implies ips0 facto the determination of the real or complex 
semisimple groups and Riemannian symmetric spaces. 

(21.1 8.1 5) Let the symbols e,, e, and Go have the same meanings as before. 
Then the linear representations of these three groups on the same finite- 
dimensional complex oector space E are in canonical one-to-one correspon- 
dence with each other, and are completely reducible (H. Weyl’s “unitary trick”). 

as Lie algebra. 

to R” for some n. 

This is now obvious, because the linear representations of G, on E 
correspond one-to-one to the R-homomorphisms of g,, into gI(E),, , which in 
turn are in canonical one-to-one correspondence with the C- 
homomorphisms of g = g,, @,C into gI(E), by virtue of the fact that gl(E) is 
a complex Lie algebra (21.9.1); and the same argument applies when we 
replace gu by any real form go of g. 

and Go (when go is not the Lie algebra of a 
compact group), no finite-dimensional linear representation can be equiva- 
lent to a unitary representation (Section 21.6, Problem 5). On the other 
hand, these groups admit many irreducible unitary representations of infinite 
dimension (cf. Chapter XXII). 

It can be shown that for 

PROBLEMS 

1. With the notation of (21.18.6). let Q be the kernel of the canonical homomorphism 
8, -+ Go. For each quotient G I  = Go/D, where D is a subgroup of the center Z of G o ,  
and each linear representation p I :  G I  + GL(E) of G I  on a finite-dimensional complex 
vector space E, show that the kernel of p I  contains p , ( Q ) ,  where p I :  8, + G ,  is the 
canonical homomorphism. (If u:  8, + Go + 6 is the canonical homomorphism (with 
kernel Q), show that there exists a linear representation p :  8 -+ GL(E) such that p 0 u = 
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p I  ~ p , . )  The only groups G ,  that admit a faithful linear representation on a jn i te -  
dimensional space are those for which Q c D (use Section 21.17, Problem 2); their centers 
are therefore Jinite. 

2. With the notation of (21.18.8). show that the compact group K ,  is its own normalizer in 
G I .  (Reduce to showing that if an element u E p, is such that p1  = exp,,(u) normalizes 
K,,  then u = 0. Using the unique decomposition of an element of G ,  as a product J ~ Z ,  

where y E P,  and z E K, ,  and the relation [f,, pol c p , .  show first that [u, x] = 0 for all 
x E f,; then use the invariance of B, (21.5.6.1) to deduce that [u, v] E p, for all v E p,; this 
implies that [u. v] = 0 and hence that u is in the center of 9.) 

3. (a) With the notation of (21.6.2), suppose that the compact group e,is almost simple. If  
/is an involutory automorphism of gu, there exists a regular element ofg,invariant under 
f, and hence a maximal commutative subalgebra t of 9. stable underS, and a basis B of the 
system of roots of gu relative to t that is stable underf(Section 21.11, Problem 19). 
(b) Suppose that the transpose '(f@ 1) leaves invariant each of the roots of B in (!,,-,)*: 
this is the only possibility when 9 is of type B, or C, (consider the Cartan integers for the 
basis B). Then we havej= Ad(exp(u)) with u E t (cf. Section 21.11, Problem 12); we may 
replace exp(u) by z . exp(u), where z is in the center of e,, without changingf, and if we 
replace u by w . u, where w is in the Weyl group W, thenfis replaced by cp ( > f c >  c p - ' .  where 
cp is an automorphism of gu; we may therefore suppose that iu is in the closure of the 
principal alcove A* corresponding to B (Section 21 .15, Problem 11). By using the fact that 
f 2  = 1, show that either iu = npj for some index j such that n j  = 1, or iu = npj for some 
index j such that n j  = 2, or iu = n(pj + pk) for two indices j, k such that n j  = n, = 1 (cf. 
Section 21.16, Problem 10). Show that this last case may be reduced to the first (observe 
that 2n(pj - p,) is a vertex of an alcove w(A*) for some w E W). 
(c) If CJ is of type A, or D,, there exists an involutory automorphismf, of gu such that 
'(f, @ l)(B) = B, but such that '(f, @ 1) does not fix every element of B. (For type A,, 
consider the automorphism X H  -'X of u(n, C), and for D, the automorphism defined in 
(20.1 1.4).) Furthermore, except for type D,, iff is another involutory automorphism of g, 
with the same property, then we must havef= Ad(exp(u)) of, for some u E Land we may 
again suppose that u lies in the closure of A*; use the fact that f 2  = 1 to show that 
Ad(exp(u +f,(u))) is the identity mapping. By observing that the indices j such that 
f,(pj) # pj are such that n j  = 1 in both cases A,and D,, show that iu = npjfor some index 
j such that,f,(pj) = pj and nj = 1 or 2. 
(d) Deduce from (b) and (c) that for the classical groups of types B,, C,, and D,,t the 
compact real forms (up to isomorphism) correspond to the conjugation c,: X H  X in 
m ( n ,  C) for types B, and D,, and to the conjugation c,: X H  J X J - '  in ep(2n, C), where J 
is the matrix (21 .12.2.4). The noncompact real forms (up to isomorphism) correspond to 
the following conjugations: 

co: x - ~ p . q ~ ~ p . g  in so(n, C) (p + q = n), 

c,: X H J X J - '  in eo(2n, C), 

c,: X H X  in sp(2n, c), 
c,,: X H  - K p . q  . 'X . K p . q  in 5p(2n, C) (p + q = n), 

t I t  is necessary here to assume that 1 # 4 in order to apply (c), but it can be shown that the 
result remains true for D,. 
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where K , ,  is the matrix 

- I ,  0 0 0 

The compact symmetric spaces corresponding to the conjugations involving the 
matrices or K , . q  include in particular the Grassmannians (16.11.9). 

4. With the notation and hypotheses of Problem 3, show that if the conjugation c,  has as its 
restriction to gu an automorphism of the type considered in Problem 3(b), then the group 
K; (in the notation of (21.18.13)) is connected. If on the other hand this restriction is of the 
type considered in Problem 3(c), then (K;: K,) = 2. 

5. With the hypotheses and notation of (21.18.13). show that G,/K,  is simply connected. 
(Use (16.14.9) and Section 16.30, Problem ll(a).) 

6. With the hypotheses and notation of (21.16.13). show that the mapping (s, y)++ sys* is a 
submersion of G, x K, into G, at the point (e, yo),  for each yo E K, such that - 1 is not 
an eigenvalue of Ad(y,). The set P; of points t E G, such that t *  = r contains the union of 
the orbits (for the action (s. f ) w s t s * )  of the points y E K, such that y 2  = e. Show that P, 
is the connected component of the point,e in P,, and is open in P,. For each s E G , ,  the 
mapping ZH szs* is an isometry of P, onto itself; deduce that the geodesics in P, are the 
curves ( w s .  expG,((u). s* for u E ip, and s E G,. 
(b) In the case where G, = SO(n + 1) and u,  is the auromorphism defined in (20.11.4). 
show that P, n K; is the set consisting ofe and a submanifold difieomorphic to S,_ that 
does not contain e, and that P, n K, = {e}. Determine the other connected components 
of P i .  

7. With the notation and hypotheses of (21.18.13). the mapping s w s s *  of G, onto P, 
factorizes as G, 3 G , / K ;  5 P,, where n’ is the canonical mapping and p is a 
diffeomorphism. 
(a) Show that the composition p 0 (n’l P,) is the mapping y w  y 2  of P, onto itself. Let 
expG,: gu -+ G, be the exponential mapping of the Lie group G, and exp, the exponential 
mapping corresponding to the canonical connection on G,/K,; then we have 
n’(expG,(u)) = exp,(u) for u E ip, (20.7.10.4) (ip, being canonically identified with the 
tangent space at x, to G,/K;). Show that p(exp,(u)) = expG2(2u) for u E ip, .  
(b) Let u E ip, and let y = expG2(u) E P, . Show that for each vector v E ip, we have 

TJexp,). ?;l(v) = T(n’). ( y . ( (2*) .v) ) .  
t = O  (2k + I)! 

(Use (19.16.5.1) and the relation [p,, pol c f o . )  

8. With the notation and hypotheses of (21.18.12). let s* = T](s-’) for all s E GI.  State and 
prove for G, and K, the analogues of (21.18.13.3) and Problems 6(a) and 7. 

9. With the notation and hypotheses of (21.18.12), show that for a submanifold S of PI to be 
totally geodesic (20.1 3.7). it is necessary and sufficient that the vector subspace s = T,,(S) 
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of pa should be such that the relations u E 5, v E 5 ,  w E 5 imply [u, [v. w]] E 5 ;  such an 5 

is called a Lie triple system, and S is the image of 5 under exp,,. (Using the definitions of 
the second fundamental forms (20.12.4) and of the parallel transport of a vector (18.6.3), 
show first that if S is totally geodesic, the parallel transport (relatiw to PI )  of a tangent 
vector to S along a curve in S is the same as the parallel transport of this vector relative to 

S ,  and therefore consists of tangent vectors to S. Then use (20.7.10.4) and Problem 8 to 
show that for all u, v in 5 we must have (ad(u))* . v E 5, and deduce that 5 is a Lie triple 
system. Conversely, show that if 5 c po is a Lie triple system, then 9' = 5 + [5,  81 is a Lie 
subalgebra of go. stable under the conjugation cu; if G' is the connected Lie group im- 
mersed in G ,  that corresponds to 9'. and if K' = G' n K, ,  then K' is closed for the proper 
topology of G'; the image S' of 4 in P,  under exp,, is a closed submanifold of P I ,  and the 
canonical mapping G'/K' + S' is a difTeomorphism (for the proper topology of G');  con- 
sequently s' is a geodesic submanifold at the point x,, and G' acts on s' as a transitive 
group of isometries.) 

Show that the unique geodesic trajectory in P,  that passes through two distinct points 
of S is contained in S. 

10. In (21.18.12), take G ,  = SL(n, R) and 7I to be the automorphism X H ' X - ' ;  its derived 
automorphism, the restriction of c, to d(n, R), is the automorphism X H  - f X .  We have 
then K ,  = SO(n), and P ,  is the set S of positive definite symmetric matrices ofdeterminant 
1, which can also be written as e'. where 5 (= po) is the space of symmetric matrices of 
trace 0. The geodesics in the Riemannian symmetric space S are the mappings 
f H A e l x .  ' A  of R into S, where A E SL(n, R) and X E s (Problem 8). Through any two 
points of S there passes one and only one geodesic trajectory. 

(a) Show that Q ( A  . X "A,  A 
Q ( X ,  Y) > 0 for all X, Y E  S. (Use the fact that X can be written as Z 2 ,  where 2 E S.) 

Let Q ( X ,  Y) = Tr(X-'Y + Y - ' X )  for any two matrices X, Y E  S. 
Y " A )  = Q ( X ,  Y )  for all A E SL(n, R) and that 

(b) Show that Q(I ,  X) = 2 1 ch(rll), where e"', . . . , e A a  are the eigenvalues of the symme- 

tric matrix X E S (use (a) above). Deduce that for each X ,  E S the mapping 
XH Q ( X , ,  X )  of S into R is proper (17.3.7). 
(c) Let t++C(r) be a geodesic in S. Show that for each X ,  E S the function 
f H Q ( X , ,  G(t ) )  is strictly convex on R. (Reduce to the case where G(t )  = e'', where Y E 5 

is a diagonal matrix.) 

1- 1 

11. (a) With the notation of Problem 10, let P be a totally geodesic submanifold of S, and let 
M be a compact subgroup of SL(n, R) leaving P globally invariant (for the action 
(0, X ) H  U . X . 'U of SL(n, R) on S).  Show that there exists X, E P that is invariant 
under M. (By (20.11.3.1) there exists Z, E S invariant under M. By using Problem 10, 
show that as X runs through P the function X w Q ( Z , ,  X )  attains its lower bound at a 
unique point X,: if the lower bound were attained at two distinct points, consider the 
unique geodesic trajectory joining them. Note also that Q ( Z , ,  X , )  = Q ( Z , ,  U . X, . 'U) 
for all U E M.) 
(b) With the notation of (21.18.8). show that if G ,  = Ad(G,), then for each compact 
subgroup M of G ,  there exists an inner automorphism of G, that transforms M into a 
subgroup of K, (E. Cartan's conjugacy theorem). (Using Section 21.17, show that if we 
identify Aut(g,) with a subgroup of CL(n, R) (where n = dim(g,)). so that K ,  is identified 
with a subgroup of O(n) and P ,  with a submanifold of S, then there exists y E P, such that 
z . y . ' z  = y for all z E M, by using (a) above and Problem 10; then note that if y = x2 
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with x E PI,  the relation above takes the form T ~ ( X - ~ Z X )  = x - ' z x  for all z E M, in the 
notation of (21.18.12).) 

12. (a) Let G/K be a symmetric Riemannian space (20.11.3). where G is a connected real Lie 
group and K is a compact subgroup of G that contains no normal subgroup of G other 
than {e}.  Let u be the involutory automorphism of G for which K is contained in the 
subgroup of fixed points and contains the identity component of this subgroup. If  g, fare  
the Lie algebras of G and K, respectively, then f is the subspace of vectors in g fixed by 
s = u*, and contains no nonzero ideal of g. There exists a scalar product (x I y) on g such 
that (ad(z) . x I y) + (x lad(z) . y) = 0 for all z E f .  A pair (9. s) consisting of a finite- 
dimensional real Lie algebra g and an involutory automorphism s of g having the above 
properties is called a symmetrized Lie algebra, and s is called the symmetrization of g. 
(b) Let (g, s) be a symmetrized Lie algebra, f the subspace of vectors fixed by s, and p the 
vector subspace of g consisting of all x E g such that s(x) = -x. Then g = f @ p; we have 
[f, t] c f, [f, p] c p, [p. p] c f, and f, p are orthogonal to each other with respect to the 
Killing form BE. Show that t is the Lie algebra of a compact group and that there exists a 
scalar product Q(x, y) on p such that 

Q(ad(4 . x I Y) + Q(x Iad(z) . Y) = 0 

for all z E t (cf. Section 21.6, Problem 2). Furthermore, the restriction of B, to f is a 
negative definite symmetric bilinear form. 
(c) With the hypotheses of (b), let A be the endomorphism of the vector space p such that 
Q(A . x, y) = Be(& y) (Section 11.5, Problem 3), so that A is self-adjoint relative to the 
scalar product Q. Let Eo be the kernel of A (which may be zero) and Ei (I 5 i 5 r )  the 
eigenspaces of A corresponding to the distinct nonzero eigenvalues ci of A, so that p is 
the direct sum of the Ei (0 5 i 5 r),  which are pairwise orthogonal with respect to Q ;  also 
Bo(x, y) = c,Q(x, y) for x and y in E,, and Eo is the subspace of p orthogonal to p with 
respect to BE. 
(d) The endomorphism A commutes with ad(z) for all z E t, and therefore [t, E,] c E, for 
0 5 i 5 r. If K is a compact connected Lie group with f as Lie algebra, then the sum F of 
El, . . . , E, is the direct sum of subspaces pj (I  5 j 5 m) stable under Ad(t) for all t E K, 
each of which is contained in some E,, and such that each representation t H  Ad(t) I pjof K 
is irreducible. The pj are pairwise orthogonal with respect to both Q and Be; if we put 
po = Eo, show that [pi, pJ = 0 for 0 5 j ,  h 5 m and j # h. (If u E pj,  v E ph,  then we have 
w = [u, v] E f; show that B,(w, w) = 0 and use (b) above.) 
(e) Put g j  = p, + [pj, pj] for 1 5 j 5 m. Show that the g j  are ideals of g such that 
[ g j ,  g,J = 0 for j # h, and that s(g j )  = g j .  By considering the restrictions of BE to g, x g j ,  
show that the g j  are semisimple Lie algebras; g is the direct sum of the g j  (1 4 j 5 m )  and 
the centralizer ~0 of the direct sum of the gj (1 5 j 4 m) (Section 21.6, Problem 4); and we 
have .490) = 90 1 Po = 90 and [Po 9 Pol = 0. 

13. With the notation of Problem 12, suppose that the decomposition of p as the direct sum of 
the pj consists of only one term, and hence that g is equal to one of the algebras g j .  
(a) If [p, p] = 0, then g is the semidirect product off and the ideal p (19.14.7). Hence 
there exists a connected Lie group G having g as Lie algebra, and a compact subgroup K 
of G, such that G is the scmidirect product 4 K and a commutative normal subgroup P 
(so that P is isomorphic to R P  x P); we may further suppose that K contains no normal 
subgroup of G other than {e}. The corresponding Riemannian manifold G/K is the mani- 
fold P having as a Riemannian covering Rp+p with its canonical metric; G acts on this 
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manifold as a transitive group of isometries, containing always the translations of the 
group P. 
(b) I f  [p, p] # 0, then g is semisimple; hence there exists a connected semisimple group G 
having g as Lie algebra, and a compact connected subgroup K of G having f *as Lie 
algebra, and containing no normal subgroup of G other than {e}. We have B,(x, y) = 

cQ(x, y) for x, y E p, with c # 0. I f  c < 0, then G is compact semisimple; if g is not simple, 
its simple ideals must be permuted by s. Show that the irreducibility of the representation 
tw Ad(f) I p of K implies that g has in this case two isomorphic simple ideals gl, g2 such 
that s(g,) = g2,  with f isomorphic to g, and g 2 .  The Riemannian symmetric space G/K is 
then isomorphic to a compact semisimple group with center {e}, endowed with a left- and 
right-invariant metric. 

If  c < 0 and g is simple, we are in the situation described in (21.18.13). 
I f  c > 0, then G is semisimple and noncompact. Show that g is necessarily simple, by 

showing that otherwise g would be isomorphic to f x f. In the complexified Lie algebra 
g,,,, f + i p  = gu is the Lie algebra of a compact group, and we are in the situation 
described in (21.18.12). 
(c) Deduce from (a) and (b) and Problem 12 that every symmetrized Lie algebra arises 
from a simply connected Riemannian symmetric space by the procedure of Problem 12(a). 

14. (a) Let X be a C" vector field on a differential manifold M, and let F, be the flow of the 
field (18.2.1). Let x, be a point of M at which X(xo) = 0. For each C" vector field Yon M, 
the vector (0, . Y)(x,) depends only on Y(xo) (cf. (17.14.11)). For each u E T,(M), let 
8,. xg . u denote the value of (0, . Y)(x,) for each vector field Y such that Y(x,) = u. If we 
put g,(x) = F,(x, t ) ,  we have g,(xo) = xo for all t E R; for sufficiently small values oft ,  g I  is 
a diffeomorphism of an open neighborhood U, of x, in M onto another open neighbor- 
hood U, of x,, and if s, I E R are sufficiently small, then we have gr+, = g s  ', g ,  = gr 0 g 5 .  
Hence if we put V ( t )  = T,,(g,) E GL(T, , (M)) ,  we have V ( s  + t )  = V ( s ) V ( t )  for all 
sufficiently small s and 1. Show that for sufficiently small t we have V ( t )  = exp(t~X,x,), the 
exponential being that of the group GL(T,(M)). 
(b) Suppose that M is endowed with a principal connection P on R(M). If X and Yare 
infinitesimal automorphisms of the restrictions of P to two neighborhoods U, V ofx, E M 
(Section 20.6, Problem 6). then X and Y are said to be equivalent if they coincide on a 
neighborhood of xo contained in U n V. The equivalence classes (or germs) of 
infinitesimal automorphisms of restrictions of P to neighborhoods of x, form a Lie algebra 
g,, of dimension 6 n(n + I ) ,  where n = dimXo(M). The classes of the X such that 
X ( x , )  = 0 form a Lie subalgebra f, of ox,. For each class ( E f,,, the mapping 
8,. I. E End(T,,(M)) is independent of the choice of X E (, and the mapping (++8,,,, is 
an injective homomorphism of fxo into the Lie algebra gI(T,(M)) = End(TXo(M)). 

15. Let M be a connected differential manifold endowed with a linear connection that is 
inuariant under parallelism (Section 20.6, Problem 18). Let U be an open neighborhood of 
x, E M, determined as in Section 20.6, Problem 15. 
(a) For each vector u E TXo(M) and each t E R such that exp(tu) E U, a transuection of 
the vector tu is by definition an isomorphism T , ,  of a sufficiently small neighborhood of x, 
onto a sufficiently small neighborhood of exp(tu), such that Txo(rIu) is the parallel tran- 
sport of TJM) onto Tclpcru,(M) along the geodesic u for which u(0) = x, and o'(0) = u 
(18.6.3) (cf. Section 20.6, Problem 18). We have T ( , + ~ ) "  = T," 0 7," if s and t are sufficiently 
small. For each y in a sufficiently small neighborhood of xo,  let X u ( y )  be the derivativeat 
t = 0 of the mapping t -  r,.(y), so that X, (x , )  = u; then Xu is an infinitesimal automor- 
phism of the connection restricted to the neighborhood of x, under consideration. This 
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field X ,  is called an infinitesimal rransuecrion relative to xo.  Show that the mapping UH 5. 
that sends each u E T,(M) to the germ 5 of the infinitesimal t.ransvection X u  (Problem 
14(b)) is injective, and therefore identifies T,(M) with a vector subspace p,, of the Lie 
algebra g,. An isomorphism (for the induced connections) of a neighborhood of xo onto a 
neighborhood of x E M that transforms xo into x also transforms pxo into px, by transport 
of structure. 

For simplicity of notation, we shall henceforth write g, f, p in place of gxo , f, , pxo . 
(b) Show that for all sufficiently small I and all C" vector fields Y on M. we have 
( O x " .  Y)(exp(ru)) = ( V x u .  Y)(exp(tu)) (cf. Section 18.6, Problem 6). 
(c) Let Z be an infinitesimal automorphism defined in a neighborhood of xo and such 
that Z(xo) = 0, so that its germ belongs to t; if we put g,(x) = F,(x, r ) ,  then g, leaves p 
globally invariant, by transport of structure, and transforms a germ 5 E p into 4 ",,, . (in 
the notation of Problem 14(a)). Consequently, we have [I. p] c p. and for each 
infinitesimal transvection X u  relative to xo we have [Z, X Jx0) = 8xM,zo . u. 
(d) Show that g = 1 @ p. (For an infinitesimal automorphism Z defined in a neighbor- 
hood of xo, consider the infinitesimal transvection X u  for u = Z(xo).) 
(e) Identify TJM) with p under the bijection IIW X,; the bracket [u. v] of two vectors 
u, v E T,,(M) is then defined by the requirement that X, ,  should be equivalent (Prob- 
lem 14(b)) to [Xu, X,]. For all u E g. let u, and up denote the components of u in f and p, 
respectively. Show that, for u, v, w in p (= T,(M)), we have 

I .  (U A V )  = [U, V], 

(I ' (u A V))  ' W = - [ [W v ] ~ ,  W]. 

where r. rare  the torsion and curvature morphisms of M (Section 17.20). (Use (b) and (c) 
above to calculate r .  (Xu A X,) and (r . (Xu A X,)) . X, by the formulas (17.20.1.1) and 
(17.20.6.1).) 
(I) Let M' be another connected diNerential manifold endowed with a linear connection 
invariant under parallelism, xb a point of M', and g', 1'. p' the Lie algebras and the vector 
space corresponding to g. f, p. Suppose that there exists an isomorphism of g onto g' that 
maps f onto 1' and p onto p'. Then there exists an isomorphismfof a neighborhood of xo 
onto a neighborhood of xb (for the connections of M and M') such that T,(f) = F is the 
restriction to p (identified with T,,(M)) of the given isomorphism of g onto g'. (Use (e) 
above, together with Section 20.6, Problem 17.) When this is so, for every star-shaped 
neighborhood L.! of 0, in TJM), on which theexponential mapping is a diffeomorphism, 
and such that F(U) has the same property in M', there exists an isomorphismfof exp(U) 
onto exp(F(U)) that extends the restriction offto a sufficiently small neighborhood of xo.  
(Use the fact that in the linear differential equations of Section 20.6, Problem 15, the 
coefficients Ti,&) and RL,(tu) are constants.) 

16. (a) Let M be a connected dimerential manifold endowed with a linear connection C. 
Show that for C to be locally symmetric (Section 20.11. Problem 7) it is necessary and 
sufficient that C be torsion-free and that the parallel transport along a geodesic arc joining 
two points x. y be the tangent linear mapping of an isomorphism (for C) of a neighbor- 
hood of x onto a neighborhood of y. If s, denotes the symmetry with center x (Section 
20.1 1, Problem 7), then s- defines by transport of structure an involutory automorphism u 
of the Lie algebra g (in the notation of Problem 15) such that u(u) = u for u E t and 
u(u) = - u  for u E p, which implies the condition [p, p] c 1. Show that t contains no 
nonzero ideal of g (use Problem 14(b)). 
(b) Let a E M be a point in the neighborhood of xo on which sx0 is defined, and let 
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b = sJa). Show that sxo s, = sb n sxo in a sufficiently small neighborhood of a, and that 
in a sufficiently small neighborhood of a this mapping coincides with the transvection 
corresponding to the geodesic arc passing through x, with endpoints a and b (Problem 
IS(a)); show that the tangent linear mappings T,(s, 0 s.) and T,(sb 0 s,) coincide with the 
parallel transport from a to b along this geodesic arc. 
(c) Suppose in addition that M is a pseudo-Riemannian manifold and that C is the 
corresponding Levi-Civita connection. Show that for each xo E M the symmetry s,, is then 
an isometry of a neighborhood of xo onto itself. (Use (b) above, by noticing that 
s- = (sxo 0 so) s, and that a parallel transport along a geodesic arc joining a and 6 is an 
isometry of T,(M) onto Tb(M).) 
(d) With the hypotheses of (c). let go c g be the Lie algebra of the germs at x, of 
infinitesimal isometries (Section 20.9, Problem 7). We have p c go, and if to = go n t, 
then go = 1, @ p. Furthermore, if @ is the nondegenerate symmetric bilinear form on 
p x p (identified with TJM) x TJM)) that is the value at x, of the metric tensor on M, 
then we have @([w. u], v) + @(u, [w, v]) = 0 for u, v E p and w E to.  

Give an example where go # g. (Cf. Section 20.9, Problem 5.) 
(e) Let M’ beanother pseudo-Riemannian manifold, locally symmetric with respect to its 
Levi-Civita connection, and for a point xb E M’ let gb, to, and p’ be the Lie algebras and 
the vector space corresponding to go. to ,  and p. For there to exist an isometry of a 
neighborhood of x, onto a neighborhood of xb, transforming x, into xb. it is necessary 
and sufficient that there exist an isomorphism ofg, onto gb that transforms to into [band p 
into p’. (Use Problem I5(e) and Section 20.6, Problems IS and 17.) 
(f) Show that for each locally symmetric Riemannian manifold M (i.e., for which the 
Levi-Civita connection is locally symmetric) and each point xo E M. there exists a simply 
connected Riemannian symmetric space N and an isometry of a neighborhood of xo onto 
a neighborhood of a point of N. (Use (d) and (e) above, and Problem 13(c).) 

17. (a) Let M and M’ be two connected, simply connected, complete Riemannian manifolds 
(20.18.5) satisfying the following condition: there exists a continuous function 
v :  M x M ’ + R  with values > 0 such that for each (x, X‘)E M x M’ the balls 
B(x; v(x, x’)) and B(x‘; v(x, x’)) are strictly geodesically convex (20.17.2) and such that 
each isometry of a neighborhood V c B(x; v(x, x’)) of x onto a neighborhood 

V c B(x‘; v(x, x’)) 

of x’, which maps x to x’, extends to an isometry of B(x; v(x, x‘)) onto 

B(x’; v(x, x‘)). 

Show that each isometry of an open subset of M onto an open subset of M extends 
to an isometry of M onto M’. (Let xo E M, and suppose that there exists an isometry 
Jo of a neighborhood of x, onto a neighborhood of a point x ~ E M ’  such that 
fo(xo) = xb. Given any point x E M and a piecewise-C1 path y from x, to x, define an 
isometry of a neighborhood of x onto an open set in M‘ as follows: if r is the length of y 
and c the infimum of v(y, y’) in the relatively compact set B(xo; 2r) x B(xb; 24 .  consider a 
sequence ( x ~ ) , ~ , ~  of points of y such that x = xp and the arc of y with endpoints xi and 
xj+ has length < c for 0 S; j S; p - 1. Show that for each j we can define an isometryJjof 
B(xj; c) onto an open ball in M‘, such thatJjcoincides with!,- I on the geodesically convex 
set B(xj- I ;  c) n B(x,; c); for this purpose, use Problem 15(f) above and Section 20.6. 
Problem 9(a). Then show that the isometry!,, defined on B(x, c), does not depend on the 
choice of sequence (xi) satisfying the conditions above, and consequently thatJ,(x) may be 
written asJ,(x),  depending only on y. Finally prove that if y’ is another piecewise-C1 path 
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from xo to x, then we havefy.(x) = f , ( x ) .  by reasoning as in (9.6.3) and using Section 20.6, 
Problem 9(a). We have thus defined a local isometryj(20.8.1) of M into M'; proceeding in 
thesame way but starting with j; l ,  use Section 20.6. Problem 9(a) once again to complete 
the proof.) 
(b) Deduce from (a) that a locally symmetric, simply connected, complete Riemannian 
manifold is isometric to a simply connected Riemannian symmetric space. (Use Section 
20.18, Problem 9, together with Problem 13(c) above.) 

18. Let G be the universal covering group of SL(2, R), and identify with Z the kernel of the 
canonical homomorphism G + SL(2, R) (21.18.11). Let u E T" be an element whose 
powers form a dense set in T" (Section 19.7, Problem 6). Let D be the discrete subgroup of 
G x T" generated by (1, u) ,  and let H = (G x T")/D. We have Lie(H) = d(2, R) x R". 
Show that the connected Lie group H' immersed in H, with Lie algebra 4 2 ,  R) x {O), is 
dense in H. (Cf. Section 21.6, Problem 5 . )  

19. ROOTS O F  A COMPLEX SEMISIMPLE LIE ALGEBRA 

(21.19.1) Our aim now is to show that a complex semisimple Lie algebra g 
of dimension n is always isomorphic to the complexification of the Lie 
algebra of some compact semisimple Lie group. The method we shall follow 
consists, as a first step, in constructing a commutative Lie subalgebra b of g 
and a direct sum decomposition of the type (21.10.1.1) possessing the 
properties (A), (B), and (C) of Section 21 .lo; from this it will follow that all 
the results of Sections 21.10 and 21 .ll that rest only on these properties are 
applicable, and the second step is to show that by use of these results it is 
possible to construct a Lie algebra of a compact Lie group, having g as 
complexification. 

(21.19.2) Let g be an arbitrary complex Lie algebra of finite dimension n. 
For each element u E g, the eigenvalues of the endomorphism ad(u) of the 
complex vector space g are given by the characteristic equation 

(21.1 9.2.1) det(ad(u) - < le)  = 0, 

the left-hand side of which is a polynomial in 5 of degree n, with ( -  1)" as 
coefficient of c". Let uo be an element of g for which the number of distinct 
roots of (21.19.2.1) is as large as possible. Since [uo,  uo] = 0, ad(uo) will 
always have Oas an eigenvalue; let then do = 0, A 1 , .  . . , A,,, denote the distinct 
eigenvalues of ad(uo), and let gk (0 5 k 5 m) denote the vector subspace 
N(Ak) of g on which ad(uo) - A k  * 1, is nilpotent. From (11.4.1), g is the 
direct sum of the g k .  
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(21 .19.3) For all indices h, k i n  [0, m], we have [ g h ,  gk] = 0 if2h + 1, is not an 
eigenualue of ad(uo), and [gh, g k ]  c g1 if A h  + 1, = Al for some index 1. I n  
particular, go is a h e  subalgebra ofg,  and we have [go, gk] c gk for 1 5 k S m. 

For all x, y E g we have 

(ad(uo) - (Ah + A,) ' l)[x, y] = [(ad(uo) - 1, ' 1) ' x, y] 

+ [x, - ' l )  ' y] 

from which it follows immediately by induction on p that the element 
(ad(uo) - (A, + Ak) . l)P[x, y] is a linear combination of brackets of the form 

[(ad(u,) - Ah ' 1)' ' X, (ad(uo) - 1, ' I)'-' ' Y l  
for o 5 r 5 p .  The restriction of ad(uo) - (Ah + 1,) . 1 to [gh, gk] is therefore 
nilpotent, and the proposition is proved. 

(21.19.4) Since [go, gk] c gk for 0 5 k 5 m, it follows that for each element 
u E go the endomorphism ad(u) leaves stable each of the subspaces gk. Let ak 
denote the linear form 

on the vector space go. Also let Pk(u) denote the characteristic polynomial of 
the restriction of ad(u) to gk: the coefficients of this polynomial (in t )  are 
therefore polynomials in the coordinates of u with respect to any given basis 
of g. Hence the resulrantt Rhk(u)  of the polynomials Ph(U) and Pk(u), where 
h # k, is a polynomial in the coordinates of u that is not identically zero, 
because Ph(uo)(<) = (1, - gh and Pk(uo)(<) = (A, - <)dim gk have no root 
in common. It follows that, for each pair of distinct indices h, k, the set of 
elements u E go such that Rhk(u) = 0 is nowhere dense in go (for otherwise 
R h k  would be identically zero, by virtue of the principle of analytic continua- 
tion (9.4.1)). Let E be the dense open subset of go in which R h k ( U )  # 0 for a / /  
pairs (h ,  k )  of distinct indices. 

(21.19.5) 
nilpotent endomorphism. Furthermore, ao(u)  = 0 for all u E go. 

For each u E go, the restriction of ad(u) - ak(u) . 1, to gk is a 

Suppose first that u E E. Since ad(u) . u = 0, it is enough to show that 
the restriction of ad(u) to each gk cannot have two or more district 
eigenvalues. Since, by the definition of E, these eigenvalues would be distinct 

t See, for example, my book Infinitesimal Calculus. Paris (Hermann), 1968, p. 61. 
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from all the eigenvalues of the restrictions of ad(u) to the other g h ,  and since 
there are at least m of these that are all distinct, it follows that the endomor- 
phism ad(u) of g would have at least m + 2 distinct eigenvalues, contrary to 
the choice of u, . Hence for u E E we have Pk(u)(t) = (ak(u) - and 
P,(u)(t) = (- ()dim "0; by continuity, these relations hold for all u E 90, 
because E is dense in g o .  

(21.19.6) We shall now change our notation and denote by tJ the Lie 
subalgebra go of g, and by S the set of linear forms a l ,  a2 ,  . . . ., a,,, on b, 
which are all # 0 and pairwise distinct, because they take distinct nonzero 
values at the point u,; also we shall write g("k) in place of g k ,  and put 
g ( P )  = (0) for every linear form B on b distinct from 0 and the a E S. Then 
g(a) may also be defined as the largest vector subspace of 9 such that for each 
u E t) the restriction of ad(u) - a (u ) .  1, to this subspace is nilpotent. The 
proof of (21.19.3) shows that 

(21.1 9.6.1) [ ~ ( a ) ,  g(P)1= + P )  

for any two linear forms a, j? on 6. 

(21.19.7) For all u, v E tJ and all a E S we haoe a([u, v]) = 0. 

For the trace of the restriction of ad([u, v]) to g(a) is 
dim(&)) . a([u, v]). On the other hand, we have 

ad([ u, v]) = ad( u) ad(v) - ad( v) ad( u), 

and therefore the trace of the restriction of ad([u, v]) to g(a) is zero. 

((21 .19.8) For all elements u, v E b, we haoe 

(21 .19.8.1) B,(u, v) = (dim g(a)) * a(u)a(v). 
a €  8 

Since B, is bilinear and symmetric, it is sufficient to calculate 
B,(u + v, u + v): in other words, we need only prove (21.19.8.1) when 
u = v. But then the restriction of ad(u)2 to g(a) has the single eigenvalue 
a(u)*; since the restriction of ad(u) to b is nilpotent, the result follows. 

(21.19.9) If a + /? # 0, the subspaces g(a) and g(P) are orthogonal relative to 
the Killing form B,. 

Let u E g(a) and v E g(1). Then it follows from (21.19h.l) that the image 
of g(y) under ad(u) ad(v) is contained in g(a + /? + y). If we take a basis of g 
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consisting of a basis of b = g(0) and bases of each of the subspaces 
g(a), a E S, it is clear that the diagonal elements of the matrix of ad(u) ad(v) 
relative to this basis are all zero, and the result follows. 

(21.19.10) Let a, B be two linear forms belonging to S. Let p (resp. q )  be the 
smallest (resp. largest) rational integer such that B + pa (resp. p + qa) belongs 
to S. Then, for all u E [g(a), g( - a)] c b, we have 

Q 
(21.19.10.1) 

and consequently p(u)  = rllaa(u),  where rap is a rational number. 

c (dim g(B + ka))(B(u) + &a(u)) = 0 
k = p  

Consider the subspace V of g that is the direct sum of the g(/? + &a) for 
p 2 & 2 q. It will suffice to prove the formula (21.19.10.1) for u = [x, y], 
where x E g(a) and y E g( -a). Since the image of g(y )  under ad(x) is con- 
tained in g(y + a), by (21.19.6.1), and since g(p  + 4a + a) = {0}, it follows 
that V is stable under ad(x). Likewise, the image of g ( y )  under ad(y) is 
contained in g(y - a), and we have g ( p  + pa - a) = {0}, so that V is stable 
under ad(y) and hence also under ad([x, y]) = ad(x) ad(y) - ad(y) ad(x). 
This being so, the trace of the restriction to V of ad(x) ad(y) - ad(y) ad(x) 
is zero. If we now observe that the restriction of ad([& y]) to g ( p +  ka) 
has only one eigenvalue, namely B([x, y]) + &a([x, y]), the formula 
(21.1 9.10.1) follows immediately. 

(21 .19.11) Suppose that the Lie algebra g is semisimple. Then (with the same 
notation as above): 

( i )  The restriction to 
(ii) 

(iii) 

(iv) 
(v) 

of the Killing form B, is nondegenerate. 
If a E S, then also -a E S. 
If I is the dimension of 6, there exist I linearly independent forms 

b is a maximal commutative subalgebra of g. 
For each u E b, the restriction of ad(u) to g(a), for  each a E S, is a 

belonging to S. 

homothety of ratio u( u): in other words 

(21.1 9.1 1 . l )  [u, x] = a(u)x 

for all x E g(a). 

(i) If u E b is orthogonal to b (relative to B,), then u is orthogonal to all 
of g, because by virtue of (21.19.9) it  is orthogonal to each g(a), a E S. Since 
g is semisimple, it follows that u = 0. 
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(ii) I f  we had -a + S, then we should have a + /? # 0 for each /? E S, 
and therefore by virtue of (21 .19.9) all the elements of g(a) would be ortho- 
gonal to each g(P),  /? E S; since they are also orthogonal to $, they would be 
orthogonal to the whole of 9, and this is impossible since g is semisimple. 

If the rank of S, in the dual space of $, were strictly less than I ,  then 
there would exist an element u # 0 in b such that a(u) = 0 for all a E S; 
hence B,(u, v) = 0 for all v E b by virtue of the formula (21.19.8.1), and this 
would contradict (i). 

Since a([u, v]) = 0 for all a E Sand all u, v E I, (21.19.7), it follows 
from (iii) that [u, v] = 0, in other words, that $ is commutative. Hence $ is 
the kernel of ad(u,) and is therefore a maximal commutative subalgebra. 

(v) The endomorphism ad( u) decomposes uniquely as a sum S + N, 
where S and N are endomorphisms of the vector space g, which are polyno- 
mials in ad(u) with complex coefficients, such that N is nilpotent, S diagona- 
lizable and SN = NS (A.25.3). Because S is a polynomial in ad(u), it 
stabilizes b and the g(a), and the triangular form (A.6.10) of the restriction of 
ad(u) to each g(a) shows that we have S . x = a(u)x for all x E g(a). Bearing 
in mind (21.19.6.1), we deduce that S [x, y] = [S . x, y] + [x, S . y] for all 
x E g(a) and y E g(/?); and it then follows by linearity that S is a derivation of 
the Lie algebra g. But g is semisimple, hence every derivation of g is inner 
(21 -6.7): that is to say, there exists v E g such that S = ad(v) E ad(g). Now 
xHad(x )  is an isomorphism of g onto ad(g) (21.6.3), and therefore ad(u) 
commutes with ad(w) for all w E f); hence S, being a polynomial in ad(u), 
also commutes with ad(w) for all w E $. Since ad($) is a maximal commuta- 
tive subalgebra of ad(g), by (iv) above, it follows that v E $. Since 
Tr(ad(v) I g(a)) = dim(&)) . a(.) and S . x = a(u)x for all x E g(a), we see 
that a(u) = a(v) for all a E S. By virtue of (iii), this implies that u = v and 
shows that ad(u) = S is diagonalizable. 

(iii) 

(iv) 

Because of (21 .19.11 .l), for a semisimple complex Lie algebra g the linear 
forms a E S will henceforth be called the rbots of g relative to b. 

(21.19.12) Since the restriction of B, to $ is nondegenerate, for each root 
a E S there exists a unique element h: E b such that 

for all u E b. 

(21.19.1 3) Suppose. that the Lie algebra g is semisimple. Then, for each root 
a E  S :  
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(i) For ruch x E g(a) and y E g( - a), we haw 

(21.19.13.1) [x, Y l  = B,(x, Y) . hlO. 

(ii) a(h,0) # 0. 

(i) 
(21 S.6.1) 

We have [x, y] E b, and from the invariance of the Killing form 

B,([x, Y], u) = B,([u, XI. Y) = a(u)B,(x, Y). 

The formula (21.19.13.1) now follows from (21.19.12.1), since B, is 
nondegenerate. 

Let x be an element # 0 in g(a). Then x cannot be orthogonal to 
g( - a )  relative to B,, for otherwise it would follow from (21 .19.9) that x was 
orthogonal to all of g, contrary to the fact that g is semisimple. Hence there 
exists an element y in g ( - a )  such that [x, y] = h:, by virtue of (21.19.13.1). 
This being so, it follows from (21.19.10) that /3([x, y]) = raBa([x, y]) = 
rdaa(h,O) for each root /3 E S, If we had a(h2) = 0, then we should have 
/3(h:) = 0 for all roots /3 E S; since h: # 0 by virtue of (21.19.12.1), this 
would contradict the existence of l linearly independent roots (21 .I 9.1 I (iii)). 

( i i )  

PROBLEMS 

(a) Let g be a finite-dimensional complex Lie algebra and u any element of g; let I, = 0. 
A,, . . ., 1, be the distinct eigenvalues of ad(u), and gk (0 5 k 5 m )  the subspace N(1,) 
defined in (11.4.1). so that g is the direct sum of the 9,. If S and N are the diagonalizable and 
nilpotent endomorphisms of the vector space 9. such that S + N = ad(u) and SN = NS 
(A.25.2), show that S and N are derivations of the Lie algebra g. (Argue as in 
(21.1 9.1 1 (iv)).) 
(b) Suppose that g is semisimple. Then there exist uniquely determined elements v, w E g 
such that ad(v) = S and ad(w) = N. By abuse of language, v and w are called respectively 
the semisimple and nilpotent componenrs of u; they satisfy [v, w] = 0. 
(c) Suppose that g is semisimple, and let b be a Lie subalgebra of g that is equal to its 
normalizer in g. Show that for each u E b, the semisimple and nilpotent components of u 
belong to b. 

Let g be a complex semisimple Lie algebra. Suppose that there exist m + 1 distinct complex 
numbers 1, = 0,1,, . . . , I, and a decomposition g = go 8 9, 8 ... 8 gn of g as a direct sum 
of vector subspaces such that [g,,, gj ]  = 0 if I, + lj is not one of the A,, and [g,. gj] c g, if 
1, + l j  = 1,. Show that there exists an element u E go such that ad(u) leaves stable each of 
the g j ,  and such that the restriction ofad(u) to gjis multiplication by L j  (0 5 j 5 m). Extend 
this result to real semisimple Lie algebras when the l j  ( 1  5 j 5 m )  are real numbers. 
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10. WEYL BASES 

(21.20.1) I t  follows from (21 .19.11) and (21.1 9.1 3) that for a complex semi- 
simple Lie algebra g there exists a commutative subalgebra b of g and a finite 
set S c b* - {O) of linear forms, such that the direct sum decomposition 

(21.20.1 . l )  

and the Killing form B, satisfy conditions (A), (B), and (C) of (21.10.1). For 
brevity we shall call (21.20.1 . l )  a root decomposition of g. b being the maxi- 
mal commutative subalgebra and S the root system corresponding to this 
decomposition. We may then apply all the results of (21 .lo) and (21 . l l ) ,  with 
the (provisional) exception of those of (21 .11.9), (21 . l l  .lo), and (21.1 1 . l l ) .  
The linear forms u, that feature in (21.11.1) are here given by 
u$)  = 24h;) /a(  h;). 

In  particular, each subspace g(a) (a E S) is one-dimensional over C 
(21.10.3), g(a) 0 g( - a )  is nonisotropic relative to B, (21.10.2), and we may 
therefore choose in each g(a) a vector e, such that for all a E S we have 

(21.20.1.2) B,(e,, e - a )  = 1 

and hence, by (21.19.1 3.1), 

(21.20.1.3) [e,, e-.,I = h,. 0 

By virtue of (21.19.6.1), we may therefore write, for any two roots a, p in S, 

(21.20.1.4) 

i f  a + p E S, with N(a, p)  E C, and 

(21.20.1.5) [e, , e,] = 0 

if a + fi I$ S and a + fl # 0. We therefore define N(a, p)  to be 0 when 
a + p $  S a n d a + p # O .  

These formulas, together with (21.19.11 .l), show that the assignment of 
the numbers N(a, p )  determines completely (once the roots are known) the 
mapping (x, Y)H[X, y] of g x g into g. By expressing that this mapping 
defines a Lie algebra structure, we shall obtain necessary conditions relating 
the N(a, p). 
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In the first place, since the mapping (x, y ) ~  [x, y] is skew-symmetric, we 
must have 

The following three lemmas follow from the Jacobi identity and proper- 
ties of root systems. 

(21.20.2) Let a, j, y E S be such that a + P + y = 0. Then 

We have [ex, [e,, e,]] = N(P, y)[e,, e-,] = N(P, y)h,O, so that the 
Jacobi identity 

(21.20.2.2) [e, , [es , e,]] + [ea , [e, , e,]] + [e, , [eat esll = 0 

gives the relation N(P, y)h: + N(y, a ) h j  + N(a, P)h; = 0; consequently, by 
virtue of (21.19.1 2.1), we have 

But the subspace of b* spanned by a, P, and y, which is at most two- 
dimensional, cannot have dimension 1. For if this were so, the three roots a, 
/I, y would all be scalar multiples of one of them, say a ;  but then P and y 
would have to be equal to ? a  (21.10.3), and since 3a # 0 we should have 
either P = - a  or 1’ = -a, whence either y = 0 or P =  0, both of which are 
impossible. Hence, replacing y by - a  - P in (21.20.2.3), we obtain 
(21.20.2.1). 

(21.20.3) 
pair is nonzero and such that a + 

Let a, P, y, 6 be four roots (distinct or not) such that the sum of each 
+ y + 6 = 0. Then 

(21.20.3.1) N(a, S)N(y, 6) + N(B, y)N(a, 6) + N(y, a)N(B, 6) = 0. 

(Observe that each term in this sum is defined, by virtue of the conditions of 
the lemma.) 

If B + Y E S, then we have [em, [eg, e,]] = N(P, y)[e,, eg+J = 
N(b,y)N(a,p + y)e-,,becausea + ( P +  y )  = -6  E S.Byvirtueof(21.20.2.1) 
applied to a, /3 + y, and 6, we have N(a, /3 + y) = N(6, a )  = -N(a, 6), so that 
[e,, [ea, e,]] = -N(P, y)N(a, 6)e-,. If /3 + y # S, this relation still holds, 
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because both sides are zero. By applying the Jacobi identity (21.20.2.2), we 
obtain (21.20.3.1). 

(21.20.4) Let a, p E S be two nonproportional roots, and let a (resp. b)  be rhe 
smallest (resp. largest) rational integer such that p + aa (resp. p + ba) is a 
root. Then we have 

b(l  - a)  
(21.20.4.1) N(a, p)N(-a, - p )  = - 7- a(h:). 

Suppose first that a + E S, so that b > 0. In the notation of the proof of 
(21.10.4), we have m = b - a, and for 0 5 j 5 m the element z1 = 
( j ! ) -  'ad(x-,Y. Xfl+b, spans a(! + (b - jk), by virtue of (21.9.3). In 
particular, t b  spans g(p). and by (21.9.3.1) we have 

ad(x,) ' t b  = ( 1  - U ) Z b -  1, ad(x-,) ' z b -  1 = b2b 

so that [x-,, [x,, ea]] = b(l  - a)e,. Since we may write e, = Ax,, 
e- ,  = p x - , ,  it  follows from (21.20.1.3) and (21.10.3.2) that Aph, = h:, so 
that 2Ap = a(h,0) and hence 

(21.20.4.2) [e- ,  , [e,. ea]] = fb (1  - a)a(h:)e,. 

But since - a  + (a + P ) # O ,  it follows that [e-,, [e., el]] = 
N(a, B)N( - a, a + P)eb ; and by virtue of (21.20.2) applied to the three roots 
--,a + p, -p, we have N(-a, CL + 8) = N(-P, -a )  = -N(-a, -8). The 
relation (21.20.4.1) therefore results from (21.20.4.2). Finally, if b = 0, both 
sides of (21.20.4.1) are zero, so the relation is still true. 

(21.20.5) (Weyl's theorem) Lut 9, g' be two complex semisimple Lie 
algebras, g = b Q 0 g(a), g' = b' Q 0 g'(a') root decompositions of g and g' 

(21.20.1), S c I)* and S' c b'* the corresponding root systems, E (resp. E ' )  the 
real vector space generated by S (resp. S') (21 .11.2); we may consider E (resp. 
E ' )  as the dual of the real vector space bo (resp. bb) spanned by the elements h:, 
a E S (resp. h $ ,  a' E S') (21 .11.2). Let q~ be an R-linear bijection ~f bo onto 1); 
such that 'cp(S') = S. Then cp can be extended to a C-isomorphism of the Lie 
algebra 9 onto the Lie algebra g'. 

(In this statement, the elements h:,, a' E S', are defined by the relations 
a'(u') = BJu', h:,) for u' E b', a' E S', analogous to (21.19.12.1).) 

a s  S a ' €  s 

Let us first show that for u, v E bo we have 
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This will follow from the relations 

for a‘, /3’ in S‘, and a = ‘cp(a’), /I = ‘cp(p’). 
For by definition we have 

p’(cp(4) = P ( 4  = Bg(w h i )  = B,,(cp(u), hi,) 

so that the relation (21.20.5.2) will imply that Bg,(cp(h:), h;,) = B,,(h:, , hi,) 
for all roots a’ E S’. But since the h;, span the complex vector space If, and 
since the restriction of B , to b’ is nondegenerate, it follows that the relation 
a = ‘cp(a’) implies that h!, = cp(h:) for all a’ E S’. Since the set of vectors h!, 
contains a basis of l&,, the relation (21.20.5.1) indeed follows from 
(21.20.5.2). 

To establish (21.20.5.2), we observe that the hypothesis on cp implies that 
if  a’, p’ are two nonproportional roots in S’, then a = ‘cp(a’) and p = ‘cp(p’) 
are nonproportional, and the rational integers k for which p‘ + ka’ E S’ are 
exactly those for which p + ka E S. By virtue of (21.10.4), we have therefore 

a’( h:,) a( h:) 
P‘(h3 - B(h:) -- 

or, by virtue of the definition of the h: and the h:,, 

Since the Killing form is symmetric, this proves already that the ratio 
c,, = a’(h:,)/a(h:) is the same for all the roots a‘ E S‘, and that if we denote 
this ratio by c,  then we have p’(hf,) = c . P(h:) for all roots a’, p’ E S‘ (with 
a = ‘cp(a’), fl = ‘cp(p’)). This relation may also be written as B,(h!,, hj,) = 
c . B,(h:, h;). On the other hand, the formula (21.19.8.1) applied to g and to 
g‘ gives, because of the hypothesis ‘cp(S‘) = S, 

B,,(h:, , hi,) = 1 y’(h:,)y’(h;,) = c2 1 Y(h:)Y(hi) 
Y ’ E  Y Y E S  

= C2B,(h,0, hi). 

By comparison with the previous result, we obtain c = c2, so that c = 1 
(because c # 0); this proves (21.20.5.1) and also establishes the relations 

(21.20.5.3) cp(h,O) = h:, 

where a = ‘~(cc‘). 



192 XXI COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS 

(21.20.5.4) Suppose that we have chosen in each g(a) a vector e, such that 
the relations (21.20.1.2)-(21.20.1.5) are satisfied. We shall show that it is 
possible to find in each g’(a’) an element e:, such that: 

(1) for each pair of roots a’, p’ E S‘ such that a’ + p’ # 0, 

(21.20.5.5) [eh,, eb.] = N(a, p)e:,+,,, 

where a =  ‘cp(a‘), f3 = ‘ c p ( f 3 ’ )  (which implies a + p = ‘cp(a’ + p‘), and therefore 
a + p # 0, and a + p E S if and only if u’ + p’ E S’); 

(2) for each root a‘ E S’, 

(21.20.5.6) B,(eh, , e‘-J = 1 

which, by (21.19.13.1), implies 

(21.20.5.7) [eh, , e)_,,] = h,, 0 . 

Once the existence of these vectors eh, has been established, the theorem 
will be proved by taking the extension of cp to be the C-linear mapping $ 
such that 

(21.20.5.8) $(e,) = e:, 

for a’ E S‘ and a = ‘cp(a’). For it will follow from (21.20.5.3), (21.20.5.5), and 
(21.20.5.7) that $([em, ea])  = [$(e,), $(es)] for all a, p E S; also, by reason of 
(21.20.5.3) and (21.20.5.1), we shall have $([h:, ea]) = [$(h:), $(ea)] for all 
a, p E S; and since the h: and the e, span 9, it will follow that $ is a Lie 
algebra isomorphism of g onto 9‘. 

(21.20.5.9) In order to define the vectors e&,, we shall begin by defining a 
lexicographic ordering on the real vector space E spanned by S: we consider 

a basis ( E ~ ) ~ ~ ~ ~ ~  of this space, and for any two elements 5 = E x j c j ,  

q = 

. I  

j = l  
I 

y j g j ,  we define the relation 5 < q to mean: 

‘ ‘5  # q, and if k is the smallest index such that xk # yk, then 
xk < y ,  in R.” 

It is immediately verified that the relation “ <  < q or 5 = q”  on E is a 
ford ordering (called the lexicographic ordering), that the relation < < q 
implies 5 + 1;< q + 1; for all C E E (which implies that < > 0 is equivalent to 

j =  I 
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- 5 < 0) and that the relations 5 > 0, q > 0 imply 5 + q > 0. (This order 
relation should not be confused with that defined in (21.14.5)) 

We may therefore write the elements of S in the form of a strictly increas- 
ing sequence, relative to this lexicographic ordering: 

- p m <  - p n - l  <* . ’<  - P I  < o < p ,  < ” ‘ < P m - 1  < p m .  

We shall define the ei, by the following (finite) inductive procedure: for 
each integer k such that 1 5 k 5 m, assume that the ei, have been defined for 
the a’ E S‘ such that a = ‘cp(a’) satisfies the relations - p k  < a < p k ,  that the 
relations (21.20.5.6) are satisfied by these roots a‘, and that the relations 
(21.20.5.5) are satisfied by all pairs of these roots that also satisfy the condi- 
tions a‘ + B’ # 0 and -pk < ‘cp(a’ + p’) < Pk. The inductive step then con- 
sists in defining e;; and e:,; (where pk = ‘cp(p;)) in such a way that these 
conditions continue to be satisfied when we replace k by k + 1. 

(21.20.5.10) With a change of notation, our problem is reduced to the 
following: given a root p > 0 in S, let S, denote the set of roots a E S such 
that - p < a < p .  Suppose that the eh, have been determined for those a‘ 
such that ‘cp(a’) E So, and that they satisfy (21 -20.5.6) and (21.20.5.5) when- 
ever a’ + 8’ # 0 and ‘cp(a’ + B’) E S,. Then the problem is to define 01, and 
e’-,,, where ‘cp(p’) = p, in such a way that the same conditions are still 
satisfied when we replace S, by S, u { - p ,  p } .  

If there exists no decomposition p = a + p with a, /3 E S,, then we may 
take e;, to be an arbitrary nonzero element of g’(p’), and el-,, the unique 
element of g’( - p ’ )  such that B8,(eb,, e‘-,,) = 1.  If on the other hand there 
exist a, p E S, such that p = a + /3, and if a = ‘cp(a‘), p = ‘cp(p’), then we have 
N(a, p )  # 0 (21.10.5), and we shall define e;, by the equation 

(21.20.5.1 1) N(a, /3)eb, = [eh, , e;,]. 

We have the; eb, # 0 (21.10.5), and we define e’-,, to be the unique element 
of 9’( - p ’ )  such that BJe;,, e’-,,) = 1. We then define e;, for all y’ E S’ by 
taking e;, = e;, if ‘cp(y’)  E S, u { - p ,  p ) ;  if not, then we take e;, to be a 
nonzero element of g’(y’), and e‘:,,, to be the unique element of g ( -  7’) such 
that B,,(e’;,, e’ly,) = 1 .  We may then write [ey,, ei,] = ”(7, 6)e’;.+d, if 
y ’ +  6’ # 0 (where 7 = ‘cp(y’), 6 = ‘cp(6’)), and we know already that 
N’(y, 6) = N(y, 6) whenever y, 6 and y + 6 are in S, . We have to prove that 
this relation remains true when y ,  6, and y + 6 are in S, u { - p ,  p} .  There 
are various cases to consider: 

(a) y + 6 = p,  and we may assume that y and 6 are both distinct from a 
and p. Then we have a + /3 + (- y )  + (-  6) = 0, and no two of the four roots 
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a, /3, - y, - 6 sum to 0. We may therefore apply (21.20.3) to g and to g', thus 
obtaining 

(21.20.5.1 2) 

N(a, B)N( - y, -6) = - N(B, - y)N(a, - 6) - N( - Y, 
"(a, /I)"( - y, - 6) = - N'(/3, - y)N'(a, - 6 )  - N'( - y, a)N'(/3, - 6). 

We remark now that we must have a t o ,  p > 0, y > O ,  6 > O ;  for if, for 
example, a < 0, it would follow that /3 = p + ( - a )  > p, which is absurd. 
Hence y, 6, /3 - y, a - 6, a - y, and /3 - 6 all belong to S, , and therefore the 
inductive hypothesis implies that the right-hand sides of the two relations 
(21.20.5.12) are equal; since also "(a, f l )  = N(a, /3) by (21.20.511) and 
N(a, p) # 0 (21 . l  OS), it follows that N( - y, - 6) = N'( - y, - 6). Now, by 
using the fact that the integers k such that y' + k6' E S' are exactly those for 
which y + k6 E S, together with the relations (21.20.5.2), we deduce from 
(21.20.4.1) applied to g and to g' that 

- 6), 

N(y, 6)N( - Y, - 6) = "(y, 6)"( - Y, - 6), 

(b) y + 6 = - p ;  then -yand -6 belong to S,, and we have 
whence finally N(y, 6) = N'(y, 6). 

(--Y) + ( -6)  = P.  

The reasoning in (a) above proves that N(y, 6) = N'(y, 6). 

6 # f p ,  otherwise we should have either y + 6 = 0 or else 
(c) One of the roots y, 6 is equal to + p ,  for example, y = - p .  Then 

Y + 6 4 S, u 

- y - 6 E S p u { - p ,  p } ;  

P I .  

We have p = 6 + (- y - 6), and by hypothesis 

but we cannot have - y  - 6 = f p ,  for this would imply that 6 = 0 
or 6 = 2p, both of which are absurd; hence - y - 6 E S, and 6 E S,. Con- 
sequently, by (a) above, we have "(6, - y - 6) = N(6, - y - 6). But since 
the sum of the roots y, 6, and - y - 6 is zero, we can apply (21.20.2) to g and 
to g', and obtain N(y, 6) = N(6, - y  - 6) and "(7, 6) = "(6, - y  - 6). 
Hence again we have N(y, 6) = N'(y, a), and the proof of the theorem 
(21.20.5) is now complete. 

(21.20.6) Let g be a complex semisimple Lie algebra and let g = Q @ g(a) 

be a root decomposition of g. Then there exists for each a E S an element 
a E  8 
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e, E g(a) such that the conditions of (21.20.1) are satiy?ed, and moreoaer such 
that 

(21.20.6.1) N(a,B)= -N(-a, - B )  

wheneoer a + p # 0. 
For each system of elements (el), satisjjing these conditions we haile 

(21.20.6.2) 

wheneoer a + B # 0, where a and b ure the integers defined in (21.20.4), and 
N(a, p )  i s  real. 

Let cp be the mapping ut+ - u  of the real vector space b0 onto itself. 
Clearly we have ‘cp(1) = -1 for each linear form 1 E E, so that ‘cp(S) = S, 
and we may apply (21.20.5) with g’ = g. Let us denote by z, E g(a) the 
elements constructed in the proof of (21.20.5) (and denoted there by ei , ) ;  for 
the automorphism + of g that extends cp, they satisfy by virtue of (21.20.5.8) 
the condition +(z,) E g( -a) ,  and also the relation BR(z,, z - ~ )  = I .  We may 
therefore write +(I,) = c - ,  z-,,  with c - ,  E C, and since B, is invariant 
under the automorphism +, we have c , c - ,  = I .  Hence there exists for each 
a E S a complex number a, such that a,” = -c, and a ,u - ,  = 1, whence 
a,c-, = - a - z .  Now put el = a, z, for each a E S. First of all, we have 
B,(e, , e- , )  = a, a -, B,( z, , z-,) = 1. Also +(e,) = a, +( z,) = a, c - ,  z-, = 

- a - ,  z-, = - e - , .  I f  a, p are two roots such that a + /? E S, then we have 
+([el, eD])  = [ -e- , ,  - e - P ]  = N(-a, - f l )e - , -P ,  and on the other hand 
+([el, ea] )  = N(a, fl)+(eu+P) = -N(a, /?)e- , -p,  which proves the formula 
(21.20.6.1). The relation (21.20.6.2) then follows from (21.20.4.1). Finally, 
since a 5 0 and b 2 0, in order to show that N(a, 8) is real it is enoligh to 
prove that a(h:) > 0. Now by (21.19.8) we have 

4 h : )  = B,(h,O 7 h,O) = 1 B(h,O)’ = (~r(h:))~ C r,”O 
B E  S P E  S 

by virtue of (21.19.10), since h,O E [g(a), g(-a)] .  Since a(h:) # 0, i t  follows 
that a(h:) > 0, and the proof is complete. 

A C-basis of g which consists of an R-basis of bo and elements e, E g(a) 
satisfying the conditions (21.20.1.2) and (21.20.6.1), appears therefore as a 
generalization of the notion of a Weyl basis of the complexification of the Lie 
algebra of a compact semisimple Lie group (21.10.6). In  fact, the two notions 
are identical; and it is precisely the existence of such a basis in any complex 
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semisimple Lie algebra that will enable us to prove the result announced in 
(21.19.1): 

(21.20.7) Every complex semisimple L e  algebra g is isomorphic to the 
complexijicarion of the b e  algebra f of' some compact semisimple Lie group: 
and the h e  algebra f hacing this property is unique up to isomorphism. 

Consider elements ex (a E S) having the properties of (21.20.6), and put 
y, = e, - e-,, z, = i(e, + e-,); it is clear that ibo and the element y,, z, 
(a  E S) span a real vector subspace f of g, of dimension equal to dim,g 
(21 .11.2), and that g = f 0 if. Moreover, by use of (21.20.6.1), the following 
formulas are easily verified: 

(21.20.7.1) [ihp, yP] = B(h:)za, [ihf , zP] = -B(h:)y, 

(21.20.7.2) [y., z,] = 2ihp, 

if a + /3 # 0. These formulas show that f is a real Lie algebra, since the 
N(a ,  p)  are real, and g is isomorphic to the complexification of f. To see that 
f is the Lie algebra of a compact semisimple Lie group, it is enough to show 
that the restriction to f of the Killing form B, is negatioe definite ((21.6.1) and 
(21.6.9)). Now we know already that the restriction of B, to b is nondegener- 
ate; on the other hand, P(hf) is real for all a, /I E S (21.19.10); and therefore, 
since the hf span the real vector space bo , /?( u) is real for all u E bo , and the 
formula Be(u, u) = /3(u)' (21.19.8.1) shows that the restriction of B, to 

bo x bo is positive definite. Consequently its restriction to ibo x ibo is nega- 
tive definite. Since the y, and z, are orthogonal to ibo relative to Be (21.19.9), 
since B,(e, , e)) = 0 for a + fi # 0, and since 

B,(y,, z,) = iB,(e,, e,) - iBo(e--,, e-,) = 0 

by virtue of (21.19.9), it remains to show that B,(y,, y,) < 0 and 
Be( z,, 2,) < 0; and this follows from the formulas 

Bg(ya, Y,) = -2B,(ea, e-,) = -2, 

Be(z,, 2,) = -2B,(e,, e-,) = -2. 

P E  S 
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The uniqueness (to within isomorphism) of the Lie algebra t is a con- 
sequence of the study of the real forms of g undertaken in Section 21.18. 
With the notation of that section, the Killing form B,, is negative definite 
only if p ,  = {0}, that is to say, go = g,; hence there is no real form of g that is 
the Lie algebra of a compact group, except for the subalgebras cp(g,), where 
cp is an automorphism of g (21.1 8.3). 

PROBLEM 

Under the conditions of (21.20.6). show that there exists for each a E S an element e: t g(a)  
such that i f  we put [e:, e;] = "(a,  p)e; + @  when a + @ E S, then the " (a ,  p )  are real and satisfy 
the condition " (a ,  p )  = - " ( -a ,  -/3), and such that for each pair a. E S satisfying 
01 + /3 # 0 we have IN'(a, /?)I = 1 - a. A basis of 9 consisting of the e: and a basis of I), over 
R is called a Cheualley basis of 9. (Reduce to the case where S is irreducible (Section 21.11. 
Problem 10) and observe that. in this case if ( A l p )  is a scalar product on E which is invariant 
under the Weyl group W, then a(h:)/fi(h;) = (a la ) / (p Ip )  by using (21.11.5.5); then use Section 
21.11, Problem I(b).) 

11. T H E  IWASAWA DECOMPOSITION 

(21.21 . l )  Let g be a complex semisimple Lie algebra, which we may, by 
virtue of (21.20.7), consider as the complexification (gu),o = g, 0 i g ,  of the 
Lie algebra g, of a simply connected compact semisimple Lie group e,. 
With the notation of Section 21.1 8, let c,  be a conjugation of g that com- 
mutes with the conjugation cy, and let go be the real form of g consisting of 
the elements of g fixed by c,; let go = to 0 p ,  be the corresponding Cartan 
decomposition (21.18.4.1), with the relations (21.18.4.2), and recall that we 
have g, = to 0 i p ,  and to = go n g,. 

(21.21.2) Let a, be a maximal cornmutative (real) Lie subalgebra contained 
in the real vector space p, .  (There exist nonzero commutative real subal- 
gebras of p o ,  for example, the one-dimensional subspaces; we may take a, to 
be such a subalgebra of largest possible dimension.) The subspace ia, of i p ,  
is then also a maximal commutative subalgebra of i p , .  

(21.21.3) 
containing ia,, then t = ia, 0 (t n to). 

I f  t is a maximal commutative subalgebra of the real Lie algebra g, , 

Let x = y + iz be an element of t, with Y E  to and z E p , .  For each 
u E a,  we must have [y, iu] + [iz ,  iu] = 0 ;  but [y, iu] E i p ,  and [ iz ,  iu] E to, 
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so that [y, iu] = 0 and [z, u] = 0. Since a, is a maximal commutative subal- 
gebra of p, ,  it follows that L E a, and hence y E t n to. 

For the rest of this section, let t be a maximal commutative subalgebra of 
g, containing ia, , fixed once for all. Let 

(21.21.3.1) t 0 i t  = b, 

then it is clear that 

(21.21.3.2) co(b) = b. 

(21.21.4) Let S be the root system of g, relative to t (21.8.1); we recall that 
the roots a E S are R-linear mappings oft into iR, which may be canonically 
identified with linear forms on the complex vector space b = t 0 it. They 
take real values on a,, and moreover (21.8.2) we have 

(21.21.4.1) 

(21.21.4.2) 

Let S‘ denote the set of roots that ounish on ia, (or on a, 0 iao); it  is clear 
that - S’ = S’. Let cp denote the involutory auroniorphism c,  c, = c, c, of the 
complex Lie algebra g. Clearly cp leaves .go and 9, stable, and we have 

(21.21.4.3) C,lAo = c p l s o .  

(21.21.5) 
a-a 3 cp is a bijection of S onto itself. 

( i )  We have cp(t) = t (and hence cp(b) = b), and the mapping 

( i i )  We have a E S’ i f  and only if a 0 cp = a. 
( i i i )  For each root a E S’ we have 9, 0 g-, c to + i f , .  

( i )  For x E to we have cp(x) = x, and for x E i p ,  we have cp(x) = - x. 
Hence cp(t) = t by virtue of (21.21.3), and the fact that a- a ~5 cp is a bijec- 
tion of S onto itself follows from (21.8.6). 

( i i )  I f  a a cp = a, then a(x)  = a(cp(x)) = -a (x )  for x E i a , ,  and there- 
fore a(.) = 0. Conversely, if a E S’, then a(x)  = a(cp(x)) for x E ia, and for 
x E to,  and therefore a = a 0 cp by virtue of (21.21.3). 

If a E S’, it is clear that cp(gdl) = ga . Since the complex vector space 
ga has dimension 1 (20.10.3) and since cp is an involutory bijection of g, onto 
itself, we must have either cp(x) = x for all x E g, or else cp(x) = - x for all 
x E 8,. In the first case, we have x E to@ ito; in the second case, 

(iii) 
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x E yo 0 iy,, and by definition [z, x] = a(z)x = 0 for all z E a,; if 
x = v + iw, with v and w in p,, we have therefore [z, v] + i [ z ,  w] = 0, and 
since [ z, v] E to and i [z ,  w] E i f , ,  we have [ z, v] = [ L, w] = 0. But since a, 
is a maximal commutative subalgebra in p, ,  these relations imply that 
v E a, and w E a,, whence x E 5; and since b n g, = (0) by virtue of 
(21.8.1), i t  follows that x = 0 in this case. Hence the assumption that 
cp(x) = - x  for all x E is untenable, and the proof is complete. 

(21.21.6) Let S = S - S’. For each root a E S”, the set of vectors t E a, 
such that a(.) = 0 is a hyperplane in the real vector space a,. Since S is 
finite, there exists z, E a, such that a ( t o )  # 0 for all roots a E S”. Let S’; 
denote the set of roots a E S such that a( zo) > 0. Since - S” = S”, i t  is clear 
that S” is the union of the two disjoint sets S’r, and - S’r, . Since c,( zo) = t o ,  

the set S‘k is stable under the mapping a- a ~1 c, . Since cp(zo) = - zo , the 
image of S’; under the mapping a c ~ a  c1 cp is - S +  . 

(21.21.7) Let 11 = 9 
decomposition of the real semisimple Lie algebra go 

and 11, = 11 n go. Then we have a direct sum 
(I€ 8’; 

(21.21.7.1) go = f o  0 a, 0 i to  

(Iwasawa decomposition of go). 

Let us first show that the sum on the right-hand side of (21.21.7.1) is 
direct. Suppose then that x E to, y E a,, and z E 11, are such that 

x + y +  z = o .  

By operating with cp we obtain x - y + cp( z) = 0, hence 

2y + z - q ( 2 )  = 0. 

But 2y E b, z E @ g, and cp( z) E @ g-, (21.21.6); hence, by virtue of 

(21.8.1), y = z = 0 and consequently also x = 0. 
I t  remains to prove the equality (21.21.7.1). Let x E go, then by 

definition x = co(x) = f(x + co(x)). Since also x = h + v,, where h E b 

U E  c; U E  I; 

U E  s 
and v, E 9, for each a E S, we have x = f ( h  + c,(h)) + f (v, + c,(v,)). 

U E  s 
Since c,(h) = h and since the elements of b fixed by c, are those which 
belong to (t  n f a )  0 a,, we have h + c,(h) E f ,  0 a,. If a E S‘, we have 
v, E f ,  0 i f ,  by virtue of (21.21.5), hence v, + co(v,) E to. If a E S’i , then 
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by definition v, E 11, hence v, + co(v,) E 11 n go = ii0. Finally, if  a E - S+ , 
the relation v, E % implies c,,(v,) E g-. (21.21.4.2), hence 

CAVa) + co(cu(va)) E 110 

VI + CO(V1)  + cu VI + ~ o ( ~ u ( v I ) )  

by the preceding result. On the other hand, the sum 

is fixed by co and by c,,, and therefore belongs to to. It follows that 
v, + co(v,) E to 0 ii0, and this completes the proof of (21.21.7.1). 

(21.21.8) A finite-dimensional (real or complex) Lie algebra b is said to be 
nilpotent if there exists an integer r such that, for all sequences x,, x,, . . . , x, 
of elements of b, we have 

(21.21.8.1) ad(x,) 'J  ad(x,) . . .  cl ad(x,) = 0 

in the ring End(b) of endomorphisms of the vector space b. A connected Lie 
group is said to be nilpotent i f  its Lie algebra is nilpotent. 

(21.21.9) In the Iwusawu decomposition (21.21.7.1), 1 1  (resp. 11,) is a 
nilpotent complex (resp. real) Lie algebra, and 50 = a, 0 ii0 is a solvable Lie 
algebra in which 11, is an ideal. 

( i i )  Relufioe to the hermitian scalar product - B,(x, c,,(y)) on g (21.17.2), 
there exists an orthonormal basis for which the endomorphism ad(x) of the 
rector space g i s  represented by  a matrix that is 

( i )  

(a) skew-hermitian i fx  E gu; 
(b) lower triangular with zero diagonal ifx E 1 1 ;  

(c) real diagonal if x E a,. 

We shall prove (i i )  first. Recall that for each root a E S we have 
c,,(%) = g-, (21.21.4.2) and therefore, in the decomposition g = b 0 @ A, 

the subspaces b and 90 (a E S )  are pairwise orthogonal relative to the hermi- 
tian scalar product - B,(x, c,,(y)) (21.19.9). Take in b an orthonormal basis 
h,, ..., h,, and a unit vector a, in each g,; with the notation of (21.21.6). 
range the roots belonging to S' u S; in a sequence a t ,  ..., a,, a,+*, ..., 
a,+,, so that aj  E S' for 1 r, a,+j E S'k for 1 S j I m, and such that 
a,+ j (  zo) 5 a,+ j +  I ( zO) for 1 S j m - 1. Consider now the orthonormal 
basis of g arranged in the following order: 

a s  S 

j 

.... a_,,+,, ht, ...) h,, 4,, ...* a,,+,. ..., am,+,. 
We shall show that this basis has the required properties. For x E g,, this is 
clear, because every orthonormal basis will satisfy the condition (a) 
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(21.17.3.2). I t  is equally clear for x E a,, because ad(x) . hj = 0 for I j S 1 
and ad(x) . a, = a(x)a, for all a E S, and furthermore on it 3 a, the roots 
are real-valued (21.8.1). Finally, to verify that condition (b) is satisfied we 
may restrict attention to the case where x = am,+,, 1 2 j g m. We have 
ad(a,,?,) . h, = a,+j(hk)aa,+,, and ad(a,,+,) . a _ , + ,  is either zero or belongs 
to g,, If fl = a,+j - a,+,, is a root; but in this latter case we have / j(r ,)  = 

a,+j(zo) - a ,+h(Zo) ,  so that either ,9 E S’or b E S’: or p = -a,+,, but with 
k < h. Next, ad(a,,+,) . a,,, where 1 2 h S r, is either zero or belongs to g,, i f  
/3 = + ah is a root; but then b(2 , )  = a r + j ( t O )  > 0, so that /I E S’k. 
Finally, ad(%,+,) . am,+h is zero or belongs to g,, if /j = a,+j + ar+,, is a root; 
but then /j(zo) > a,+,,(z,) > 0, so that fl is of the form a,+, with k > h. This 
completes the proof of (ii). 

For the proof of (i), we observe that because x H a d ( x )  is an isomor- 
phism of onto ad(9) (21.6.3), it is enough to show that ad(ii) is a complex 
Lie subalgebra of ad(g) that is nilpotent, and that ad($,) is a real Lie subal- 
gebra of ad(go) that is solvable (the fact that 11, is an ideal in 80 follows from 
the relation [a,, 9J c 9,). Since every subalgebra of a solvable (resp. nilpo- 
tent) Lie algebra is solvable (resp. nilpotent), i t  is enough by virtue of ( i i )  to 
consider the Lie algebra gI(g) = M,(C) (where n = dim(g)) and for each 
integer k such that 0 2 k 5 n the vector subspace %k consisting of the 
matrices ( x k j )  such that x h j  = 0 for j + k > h. I t  is easily verified that 

(21.21.9.1) 

which shows that Z, (the algebra of lower triangular matrices) is solvable 
(19.1 2.3) and that 2, (the algebra of lower triangular matrices with zeros on 
the diagonal) is a nilpotent Lie algebra. 

(21.21.1 0) Let G , be a connected semisimple Lie group with Lie algebra go, 
and let K ,, A i, N , be the connected Lie groups immersed in G , whose respec- 
tive Lie algebras are f, , a, and ii0, in the notation of (21.21.7). 

( i )  The subgroups K , ,  A,, N ,  are closed in G, ,  and K ,  contains the 
center C ,  of G , (21.17.1 1). The mapping X H  exp,,(x) is an isomorphism ofa, 
onto A , and a diffeomorphism of t i o  onto N ,, so that A, is a commutative group 
isomorphic to R” for some n, and N ,  is a nilpotent group diffeomorphic to R”’ 
for some m. 

(ii) The mapping ( x ,  y, Z ) H X ~ Z  is a diffeomorphism of K ,  x A, x N, 
onto G ,  (Iwasawa decomposition of GI) .  The image of { e l }  x A, x N ,  under 
this mapping is a closed solvable subgroup S, of G , .  

Furthermore, i f m G l  is a Haar measure on G ,, there exists a Haar measure 
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niKl on K ,  and a left Haar measure m,, on S ,  such that, for every continuous 
function f on G, with compact support, we have 

(21.21.10.1) f(s)  dm,,(s) = JJKl x s l f ( x Y - ' )  d m K , ( x )  d&~o'). 
GI 

(Recall that G,  and K,  are unimodular ((21.6.6) and (21.6.10)).) 

(I) Consider first the case where C,  = { e l } ,  so that G,  may be identified 
with its adjoint group Ad(G,). If G is the complex semisimple subgroup that 
is the identity component of Aut(g) c GL(g) (21.17.1), whose Lie algebra 
ad(g) is isomorphic to g, then Ad(G,) is the connected Lie subgroup of GI, 
whose Lie algebra is ad(g,) (21.6.8). We may therefore likewise identify K,,  
A,, N, with the connected Lie groups immersed in GL(g) corresponding to 
the images ad(f,), ad(a,), and ad(lt,) of the real Lie subalgebras f,, a,, 11, 

under the isomorphism XI+ ad(x) of g onto ad(g). We shall assume that an 
orthonormal basis of g has been chosen tcl satisfy the conditions of 
(21.21.9(ii)). Since the matrices of ad(a,) are real and diagonal, the group A, 
consists of real diagonal matrices with diagonal entries > 0, and it is clear 
that the exponential mapping of GL(g) is an isomorphism ofad(ao) onto A,, 
and that A, is closed in GL(g). 

As to the group N,. we observe that in the notation of (21.21.9) we have 
ad(ii,) c 1,, so that N1 is a connected Lie group immersed in the connected 
Lie group T,, immersed in GL(g) with Lie algebra 1,. Now we have the 
following proposition : 

(21.21.10.2) The group T ,  is the closed subgroup of all matrices I + N, 
where N E 1,, and the mapping Ni+exp(N) (where exp is the exponential 
map of GL(g)) is a dijieomorphism of 1, onto T,. 

It is immediate that N" = 0 for all N E 2,, where n = dim(g), and it is 
clear that the matrices I + N form a closed subgroup of GL(g). If we put 

1 1 Nn-1 P,(N) = I  + - N  + -N,  + - +  ~ 

l !  2! (n - l)! 

then we have exp(N) = P,(N) E T,, and P,(N) E 2, for all N E 2,. To 
prove the proposition it is enough to show that P2(P1(N)) = I + N and 
P,(P,(N) - I) = N for all N E 2,. Now, for x real and sufficiently small we 

have log(1 + x )  = ( - l ) ' - 'x"/n  (9.3.7), and for all real x we have 
m 

n = l  
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3L 

ex = 1 x p / p ! ;  the theorem of substitution of power series in a power series 

(9.2.1) shows that 
p = o  

PI L 1 , .  .. p n t  1 

and the coefficients of Nk in P2(Pl(N)) and P,(P,(N) - I), for k < n, are 
precisely the left-hand sides of these two relations. 

Since ad(i1,) is closed in I,, it follows from (21.21.10.2) that N, is closed 
in T I ;  since TI is closed in GL(g), it  follows that N, is also closed in G ,  
(because the topology of G, is induced by that of GL(g)). 

Since 11, is an ideal of 50 = a, 0 ii,, the elements of A,  normalize N,  
(19.11.4), so that A,N, = N , A , ,  which shows that S,  = A,N, is the con- 
nected group immersed in G, with Lie algebra 50. Moreover, if D E A ,  and 
U E N,, then D is the diagonal of the triangular matrix D U .  If ( D ,  U , )  is a 
sequence of matrices in S,  converging to a limit in TI ,  then the sequence ( D , )  
also converges, and therefore so also does the sequence ( U , ) ;  since A ,  and 
N, are closed, it follows that S ,  also is closed. Moreover, the mapping 
( D ,  U)HDLI of A, x N, onto S, is a diffeomorphism, the inverse mapping 
being XH ( D ( X ) ,  D ( X ) - ' X ) ,  where D ( X )  is the diagonal of X. 

In the situation under consideration, we know that K ,  is a subgroup of 
GL(9) consisting of unitary matrices (21.17.4). I t  follows that K ,  n S,  = { I ) :  
for the inverse of a lower triangular matrix is again lower triangular, and 
therefore cannot be unitary unless i t  is a diagonal matrix, with diagonal 
entries that are complex numbers of absolute value 1; hence K,  n S,  con- 
sists of diagonal matrices whose diagonal entries are simultaneously positive 
real numbers and complex numbers of absolute value 1, and the only such 
matrix is I .  

Since K,  is compact, S , K ,  is closed in G (12.10.5); its image under the 
canonical mapping p :  GI -+G,/K,  is therefore closed (12.10.5). But if 
{xo} = p(K,) ,  this image is just the orbit S, . xo for the action of S,  on the 
space G,/K, .  Now for this action the stabilizer of xo is S, n K ,  = { I } ,  
hence S,  . x, is a submanifold of G, /K, ,  of dimension equal to that of S, ,  
hence to that of G, /K,  (16.10.7). It follows that S, . x, is both open and 
closed in the connected space G I  /I(,, so that S,  . xo = G, /K , ,  or equiva- 
lently S , K ,  = G, = K,S,  (since K ,  and S,  are subgroups of GI) .  

The C" mapping (x, S)HXS of K, x S,  into G,  is therefore bijective; we 
have to show that it is a diffeomorphism. At each point (x,, s,) E K ,  x S, ,  
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every tangent vector to K ,  (resp. S,) can be written uniquely in the form 
x ,  . v (resp. w * s,), where v E to (resp. w E 50) (16.9.8). The tangent linear 
mapping to (x, S)HXS at the point (x,, s,) is therefore (16.9.9) 

(x, * v, w . S I ) l + X l  * (v + w) * s, 

which is clearly bijective, because the sum to 8 50 is direct. The result now 
follows from (1 6.8.8). 

(11) We now consider the general case. Let p , :  G1 + G , / C ,  be the 
canonical homomorphism of G I  onto its adjoint group, so that p , ( K , ) ,  
p , ( A , ) ,  and p,(N, )  are connected Lie groups immersed in p,(Gl), with Lie 
algebras respectively to, a,, and no .  Using the fact that p , ( A , )  and p, (N , )  
are simply connected, we may repeat without any substantial change the 
argument of (21.17.10), by showing first that A, and N ,  are the identity 
components of p ;  ' (p1(Al) )  and p;'(p1(Nl)), respectively. Then, using as in 
(21.17.10) the fact that C, c K,,  we see that (x, y ,  z ) ~ x y z  is a bijection of 
K ,  x A,  x N ,  onto G1, and finally, using the result of (I), that it is a 
diffeomorphism. 

To prove (21.21 . lO . l ) ,  denote by ZI+ (p(z ) ,  q(z ) )  the diffeomorphism of 
G I  onto K ,  x S,  that is the inverse of (x, S)HXS. Let u E X ( K , )  be a 
function with values 2 0. As u runs through X(S,), the mapping 

is a positive linear form on X(S,) which is right-inuariant, because G, is 
unimodular and ~ ( z s )  = p(z )  for s E S,; it can therefore be written as 

UH J(u) u(s-  l )  dms,(s), where J(u) is a constant 2 0 (14.1). We next extend 

J to a positive linear form on . f ( K , )  in the obvious way; since p(xz)  = p(z)  
for x E K,, this linear form is lefi-ineariant and hence, by a suitable choice 
of mKI, it can be taken to be equal to ntK, (14.1). The formula (21.21.10.1) 
is therefore established for all functions f of the form z ~ u ( p ( z ) ) u ( q ( z ) ) .  
To complete the proof, we invoke (13.21.1) and the existence of the 
homeomorphism (x, S)HXS of K, x S, onto G, .  

The relations between the Iwasawa decomposition and the Cartan dec- 
omposition of G1 (21.18.8) are described in the next proposition: 

(21.21.11) With the notation of (21.21.10) and Section 21.18, lef 71 be the 
inuolutory automorphism of G1 for which K,  is the set ofjixed points, and such 
that T,(z) = z - l f o r  z E P, (21.18.10). Then the mapping f,: S H ~ ~ ( S ) S - ~  is a 
diffeomorphism of S,  onto P,. 
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Since each x E G I  can be written uniquely as x = zy with z E P, and 
y E K , ,  we have T , ( x ) x - ’  = z - ~  E P I ,  so that in particularf,(S,) c P,.The 
mapping j ,  is a bijection of S, onto P I :  for the relation T,(s ’ )s ‘ - ’  = 
T,(s”)s”- ’  for s’, s” E S ,  implies that T , ( s ” - ~ . s ’ )  = s”-’s‘, so that .s”-’.s‘ E K ,  
and therefore s” = s’ since K ,  n S, = { e l ) .  Moreoverf,(S,) = P I ,  for every 
z E PI is uniquely of the form exp,,(u) with u E p,; there exist two elements 
x’ E K ,  and s‘ E S, such that z’ = x’.s’-’ = exp,,(fu) (21.21.10); since 
z’ E P,, we have 

z = 2’’ = T,(z’-’)z’ = T , ( . s ’ ) T , ( x ’ - ’ ) x ’ . s ’ - ’  = T , ( S ’ ) S ’ - ’  = j , ( s ’ )  

since T,(x’) = x’. Finally, this calculation shows that the inverse of the map- 
pingl,: s, -+ PI is the mapping z+-+q(expGl(4/(z))), where q:  G, + S ,  is the 
mapping defined in the proof of (21.21 .lo), and I :  PI + p, is the inverse of 
the restriction to p, of the exponential map. This shows that f ,  is a diffeo- 
morphism of S ,  onto P,. 

Remarks 

(21.21.12) (i) With the notation of (21.21.10), K ,  is isomorphic to the 
product of a compact group K‘, and a vector group RP (21.6.9), whence we 
recover the fact (21.18.8) that G ,  is diffeomorphic t o  the producr o f a  compact 
group K,’ and a oector space RN. Moreover, the compact subgroup K; of K , 
is maximal in G I ,  for the components in A,  and in N, of an element of G1 
will generate subgroups that are noncompact if they are # { e l } ;  hence every 
compact subgroup of G,  containing K’, must be contained in K , ,  and hence 
in K‘,. 

( i i )  I t  can be proved that the Lie algebras to, a,, ti,, that figure in the 
Iwasawa decomposition are determined up to isomorphism. The dimension 
of a, is called the rank of the symmetric space G I  /K, .  

(iii) If  go is a normal real form of g (21.18.9), we have a, = i t ,  and the 
rank of go is equal to that of g,. It can be shown that this condition charac- 
terizes the normal forms of g, which are all isomorphic. We have in this case 
S‘ = fa, and S’: is the set S, of all positive roots, relative to the ordering 
defined in (21.14.5). 

We have then 

For the argument of (21.21.7) shows that the sum on the right-hand side is 
direct. Also g, contains 1, hence the right-hand side of (21.21.12.1) contains 
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b = t 0 it; also g, contains the elements e, - e - ,  and i(e, + e - = )  for 
a E S, , and since 11 contains the elements e, and ie, for a E S, , the sum on 
the right-hand side of (21.21.12.1) contains e, and ie, for all a E S, and is 
therefore equal to g. The same proof as in (21.21 . lo) then shows that if G is a 
complex connected Lie group with Lie algebra g, and if G,, A, and N are the 
connected real Lie groups immersed in G that correspond respectively to 
the subalgebras g,, it, and !I,, ,  then G, IS compact, A and N are closed 
subgroups of G ,  and the mapping (x, y, Z ) H X ~ Z  is a diffeomorphism of 
G, x A x N onto GI,. 

? 

(21.21.13) In example (I) of (21.18.9), we may take a, to be the set of real 
diagonal n x n matrices with zero trace; then the % corresponding to the 
positive roots a are the spaces CE,, for r -= s (21.1 2.1), and i t0 is therefore the 
nilpotent Lie algebra of all upper triangular real matrices with zeros on 
the diagonal. 

(21.21.14) 
x E p, there exists s E K, such that Ad(s) * x E a,. 

With the notation of (21.21.7) and (21.21.1 0), for each uector 

Since we may replace K, by its adjoint group, we may assume that K, is 
compact. We have Ad(s) po = po for all s E K ,  ((21.18.4.2) and (19.11.3)). 
and the restriction of the Killing form B, to p, x p, is positive definite and 
invariant under the action (s, z ) ~ A d ( s )  . z of K, on p,. For brevity let 
)I = (B,(z, z))'" for L E p o l  and consider as in (21.7.7.1) the continuous 
function SH IIAd(s) . x - 2, 11' on K, ,  where z, is the element defined in 
(21.21.6); this function attains its minimum at a point so, and by replacing x 
by Ad(s,). x we may suppose that so = e l ,  the identity element of K,. By 
expressing that for each y E f, the derivative of the function 
t~ IIAd(exp(ty)) . x - zo 11'  vanishes at t = 0 we obtain, using the invar- 
iance of B,, 

0 = 2B,([y, XI, x - 20) = 2B,(y, [X? x - 201) 

for all y E f , .  Since the restriction of B, to go x go is nondegenerate, and 
since f, and p, are orthogonal supplements of each other relative to this 
form, the formula just written implies that [x, z,] E p, .  But now 
[p,, pol c f , ,  and hence [x, z,] E p, n to = (0); since a(zo)  # 0 for each 
root tl E S" (21.21.6), we conclude that x lies in the intersection of go and 

c f, @ if, for a E S' by virtue of (21.21.5), we 

have x E f, 0 a,, and finally x E a, because x E p, .  This completes the 
proof. 

@ %, and because 
U E S '  

(21.21.15) With the notation of(21.21.10), we have G I  = K,A,K,. 
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Since G,  = P, K I (21.1 8.8), it is enough to remark that every element of 
P I  is of the form exp( z)  with z E po, and that z = Ad(s) . x for some s E K I 

and x E a, (21.21 -14); since exp(Ad(s) . x) = s(exp(x))s-’ (19.11.2.3), we 
have P, c K , A , K , .  

PROBLEMS 

1. (a) With thenotation ofSections 21.18and 21.21, let illo be the intersection of to with the 
centralizer of a, in go. and let I, (resp. 9,) be the subspace of I, orthogonal to I I I ,  (resp. the 
subspace of p ,  orthogonal to a,) relative to the form -B,(x, c,(y)). Let t = to + i t , ,  
a = a, + ia,, 111  = I I I ~ ,  + iiii,, I = I, + il,, q = q, + iq,. Show that 1 1 1  is the direct sum of 
h n t and the subspaces 9, + g-,, a E S’; if x, is a basis element of gz over C, then the 
elements x, + cp(x,) with a E S” form a basis of 1, and the elements x, - cp(x,) with a E S” 
form a basis of q. 
(b) Deduce from (a) that there exists an element L, F a such that thecentralizer of Rz, in 
9 is a + I I I .  Hence show, with the help of (21.21.14). that for each commutative subalgebra 
b, of p, there exists s E K, such that Ad(s)(b,) c a,. 

(c) Show that for each a E S” the intersection 9: = 9, n go is one-dimensional over R. 
Show that there exists x: E &‘such that, if we put x‘:, = c,(x;) E g’i, and hi  = [ x i ,  ~’1.1, 
then we have [h:, x:] = 2x: and [h:, x’:,] = -2x’I,. Also y: = x: + x‘l, E to, and 

(d) Let M and M‘ be, respectively, the centralizer and the normalizer of ia, in K, (i.e., the 
intersections of K, with the centralizer and normalizer of ia, in G,, cf. (19.11.13)). Show 
that M and M’ have the same Lie algebra III,. (Observe that if u E f, is such that 
[u. x] E ia, for all x E ia,, then B,(ad(u) x, a d ( u ) .  x) = 0.) The finite group 
W(G,/K,) = M’/M is called the Weyl group of the symmetric space G , / K , ;  it acts 
faithfully on ia,. With the notation of (c). show that for each a E S” there exists a real 
number < such that r: = exp(ty:) belongs to M‘ and has as  image in W(G,/K,) the 
orthogonal reflection SC with respect to the hyperplane with equation a ( u )  = 0 in ia,. 
(e) In order that a linear form 1 on ia, should be the restriction of a root a E S”, it  is 
necessary and sufficient that there exist x # 0 in ia, such that (ad(u))’ x = (L(u))’x for all 
u E ia, ,  Deduce that every element of the Weyl group W(G,/K,) permutes the restrictions 
to ia, of the roots a E S”. 
(f) A Weyl chamber in ia, is any connected component of thecomplement of the union of 
the hyperplanes a ( u )  = 0 in ia,, for all a E S”. Show that W(G,/K,) acts simply transi- 
tively on the set of  Weyl chambers in ia,. and is generated by theorthogonal reflections s:, 
a E S”. ( I fC, ,  C,are two Weylchambersand ifW’is thesubgroupofW(G,/K,)generated 
by the s;. consider for u1 E C,  and u2 E C, an element w E W‘ such that thedistance from 
u, to w . u, is as small as possible; show that this implies that w u2 E C,. To show that the 
action of W(G, /K,) is simply transitive, follow the proof of (21.11.10).) 
(g) The image A, of ia, under the exponential mapping expG2 is a torus contained in P,. 
and P, is the union of the tori sA, s- ’ for s E K,. 

2; = x; - x’i, E P o .  

2. With the same notation as in Problem I,  let X denote the set of restrictions to ia,  of the 
roots a E S”. For each I E Z, let X ( L )  denote the set of a E S“ of which I is the restriction, 
and m ( 2 )  the number of elements of Z ( L ) ;  m(1) is called the multipliciry of the linear form I. 
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(a) The set Z satisfies the conditions S,. S,,. and S,,, of (21.10.3) relative to the space ( in,)*:  
in other words. Z is a root system, in general nonreduced, i.e., not necessarily satisfying S,, 
(cf. Problem 3). The elements I E Z are called the roots of G,/K, relative to the choice of 
the maximal commutative subalgebra a, of p ,  . 
(b) For each I E Z let ti (resp. i p , )  be the intersection of I, (resp. ip,) with the sum of the 
spaces g, + g - z  for OL E Z(A): they are real vector spaces ofdimension m(A). For I, p E Z we 
have 

[ t i .  51 I,,, + f A - ,  9 [ t i ,  iY”l c iPA+,  + ;PA-” 7 

where, if  I + 11 = 0 (resp. 1 - p = 0). ti+, (resp. t A - , , )  is to be replaced by iii,, and i p , , ,  
(resp. ip i - , , )  by i n , .  
(c) For each I E Z and each integer k E Z, let 11’;. be the affine hyperplane in i a ,  given by 
the equation I(u) = 2kni :  it is the intersection of ia, with the affine hyperplanes iiZ, for all 
roots K E X ( I ) .  The union of the hyperplanes for all I E Z and k # 0 is the set of u E i a ,  
at which the restriction to i n ,  of the tangent linear mapping T,,(exp,J is not bijective. I f  we 
identify i p ,  with the tangent space at x, to G,/K; (or G,/K,), the points u E i a ,  for which 
the tangent mapping T,(expx,) (Section 21.18, Problem 7) is not bijective are those for 
which 2 u  belongs to the union of the 
(d) Show that, for all the points x = expG2(u) such that u E i a ,  belongs to none of the 111, 

but ?u does lie in their union, the tangent mapping T,(n’), where n’: P, + G,/K; is the 
canonical mapping, is not bijective (use Section 21.18. Problem 7(a)). Does this result 
remain true when u belongs to one of the 
(e) A point x E P, is said to be singular if the dimension of the orbit ofx under theaction 
(s, y)++.$y,$-I of K,  on P, is strictly less than dim(K,/M). The singular points of P, that 
belong to A are the points lying in the union of the Ui, where U; is the torus of codimen- 
sion I in A that is the image under expGI of any of the hyperplanes 4, k .  1 E Z; we have 
U’l A = U;. but U;, 7 U; if  both I and 2 1  are in Z. A point x is said to be regular if it is not 
singular. Let Arcs denote the open set in A consisting of the regular points of A. 
( f )  Show that the mapping (s, r ) w s ~ s - ~  of K ,  x A into P, is a submersion at all points 
(.s, r )  such that r E A,,, (argue as in (21.15.1)). Deduce that (K,/M) x A,,, is a covering, 
with card(W(G,/K,)) sheets, of an open subset V of P, consisting of regular points and 
such that the complement of V is negligible. This complement is the union of the sets P;, 
where Pi is the image under (s, r )++ SIS- ’ of the set M’; x U,, and M’; is the centralizer of 
U; in K ,  . Show that Pi is the image under a C“ mapping of a manifold of dimension 
S dim(P,) - ( I  + r ) .  where r is the smallest value of the multiplicity m(A) for roots I E X 
such that 2 1  6 Z, 

with k # 0. 

3. Take c, as in example ( I l l )  of (21.18.11). so that G ,  is the quotient of SU(p + q )  by its 
center, and K, is the quotient of K, by the center of SU(p + 4); then i p ,  is the space of 

matrices of the form ( !rz :),where Z is a p x q complex matrix. 

Let in,  denote the subspace of i p ,  spanned (over R) by the matrices 
E j , P + j -  E p + j , j =  H j  for I S j s q .  Let ( E ~ ) , ~ ~ ~ ~  be the basis dual to ( H j ) , s j s q ,  so that 
t : , ( f f k )  = s i r .  Show that in,  is a maximal commutative subalgebra of i p , .  The roots of the 
corresponding system Z are 

f E j ( t  S j 6 q ) .  + 2 ~ ~ ( 1 6 j S q ) .  + E j f E h ( 1 6 j < h 5 q ) ,  
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with multiplicities 

m(E,) = 2(p - 4). 4 2 6 , )  = I ,  m(E, k c h )  = 2. 

Determine the subspaces I, and ip, corresponding to these roots. 

4. With the notation of Problem I ,  show that for the compact symmetric space G , / K ,  the 
following properties are equivalent: 

(a )  For each system of four points p, q, r ,  s in G,/K, such that d(p, q )  = d(r,  s), where 
d is the Riemannian distance, there exists x E G, such that x . p = r and x q = S. 

(8) The group K, acts transitively on the set of lines passing through the origin in the 
tangent space ia, at the point n(e)  of G,/K,. 

( 7 )  For all u E ip, we have ip, = R u  + [ to ,  u]. 
(6) G , / K ,  has rank I.  in other words, ia, has dimension I .  
( E )  The sectional curvature A(P,) along a tangent plane P, to G , / K ,  (20.21.1) is 

never zero. 

(To prove that (a) and (8) are equivalent, use the Hopf-Rinow theorem (20.18.5). To 
prove the equivalence of (8)  and (7). use Problem I(e); to prove the equivalence of (y)  and 
( E ) ,  consider an orthonormal basis of ip, consisting of eigenvectors of the endomorphism 
VH [[w v], u] (cf. Section 20.20, Problem 2, and (21.21.2)).) 

5. With the notation of Sections 21.18 and 21.21. show that the following conditions are 
equivalent: 

(a) The rank of go (or of G,/K,) is equal to the rank of g (or of (3"). 
(8) All the roots 1. E E have multiplicity 1 (Problem 2). 
( 7 )  The rank of g is equal to 2 dim(ip,) - dim(g). 
(6) The rank of 9 is equal to dim(ip,) - dim(t,). 

6. (a) With the notation of Section 21.21, show that for a root a E S the following condi- 
tions are Gquivalent: 

( I )  a ~1 cp = -a, (2) co(a) = A. (3) the restriction of a to to n t is zero. When these 
conditions are satisfied, the subalgebra to n t of to is not a maximal commutative subalge- 
bra. (Observe that we also have c,(g_,) = g-. and deduce, using Problem l(c), that y: 
centralizes to n t.) 
(b) Deduce from (a) that for each 1 E Z there can exist only one root a E E ( l )  such that 
a cp = -a. For such a root to exist it is necessary and sufficient that the multiplicity m(1)  
should be odd. (Observe that if a E X ( A ) ,  then also a I cp E Z(1).) 
(c) Suppose that m(1) is even for all 1 E Z. Show that f, is thedirect sum off, n t and the 
distinct subspaces fo n (a + I)-. + R .C + g-, .J, and that 1, n t is a maximal commuta- 
tive subalgebra of to .  
(d) If a E S'; is such that a 0 cp = -a, show that if uh denotes the hyperplane in a, with 
equation a ( x )  = 0. then the sum of 1 1 6 ,  1, n 1, and Ry: is a commutative subalgebra of go 
whose complexification is also the complexification of a maximal commutative subalgebra 
of gM (a "Cartan subalgebra" of go, cf. Section 21.22 Problem 4). Deduce that if there exist r 
roots a E S+ such that a cp = - a  and [g., gal = 0 for any two of these roots, then there 
exist r Cartan subalgebras in go with the property that no two of them are transforms of one 
another by automorphisms of go of the form Ad(s). where s E G I .  (Consider the commuta- 
tive subgroups of Ad(G,) having these r subalgebras as their Lie algebras.) 
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22. CARTAN'S CRITERION FOR SOLVABLE LIE ALGEBRAS 

In this section and the next, the Lie algebras under consideration are Lie 
algebras over either R or C, unless the contrary is expressly stated. 

(21.22.1) Every jinite-dimensional nilpotent (21.21.8) Lie algebra g is 
solvable. 

It is enough to prove that B(g) # g; for every Lie subalgebra of a nilpo- 
tent Lie algebra is evidently nilpotent, so that by induction we shall have 
Bk+'(g) # Bk(g), and if dim(g) = n this will imply that W(g) = 0. By 
hypothesis, there exists an integer r satisfying (21.21.8.1). If we had B(g) = g, 
then for a basis ( u ~ ) ~  j s  of g, the sum of the subspaces ad( uj) . g would be 
equal to g. By induction, it would follow that the sum of the subspaces 
(ad(ujl) 0 ad(u,,) 0 * . *  0 ad(uj,)) . g (where ( j k ) l s k s r  runs through the set of 
all sequences of r elements of [l,  n ] )  would be equal to g, contrary to 
(21 .21.8.1). 

(21.22.2) (Engel's theorem) Let g be ajinite-dimensional Lie algebra such 
that for each x E g the endomorphism ad(x) of the vector space g is nilpotent. 
Then g is a nilpotent Lie algebra. 

This statement is equivalent to the following: 

(21.22.2.1) If E is afinite-dimensional vector space and g is a Lie subalgebra 
of gl(E) consisting of nilpotent endomorphisms of E, then there exists an integer 
r such that g' = (0). 

(If A and B are two vector subspaces of gl(E) = End(E), we denote by AB 
the vector subspace of all linear combinations of products of elements of A 
with elements of B in the algebra End(E), and we define A' inductively to be 
A'-'A for all integers r 2 2.) 

The proof is by induction on n = dim(g); for n = 1, the result is trivial. 
Let b # g be a Lie subalgebra of g whose dimension m is maximal among 
proper subalgebras of 9. The endomorphisms ad(X) of the vector space g 
(where ad(X) * Y = XY - YX) as X runs through b form a Lie subalgebra 
bt of gI(g), of dimension 5 m < n. Furthermore, each of the endomorphisms 
ad(X) is nilpotent, for it is immediate by induction on r that (ad(X))' * Y is a 
linear combinafion of the products XPYXq such that p + q = r,  hence if 
Xs = 0 we have (ad(X))2s = 0. The inductive hypothesis implies that 
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5; = (0) for some integer I > 0. Let Z be an element of g that does not 
belong to 5, and let s S t be the largest integer such that there exist s 
elements XI ,  . . . , X, E $ for which Y = (ad(X,) ad(X,) . . .  ad(X,)) . Z I$ $. 
Then, by definition, we have ad(X) . Y = [X, Y] E $ for all X E $, and there- 
fore the vector subspace of g spanned by $ and X of dimension rn + 1, is a 
Lie subalgebra of g, and hence by the definition of lj is equal to g. Also, we 
have by hypothesis Yp = 0 for some integer p > 0, and l j q  = (0) for some 
integer q > 0 by virtue of the inductive assumption. We shall deduce from 
this that, for each sequence (Tj)lsjs,  of elements of g, we have 
Tl T, ... T, = 0, in other words, that gw = (0). Clearly we may assume that 
each T j  is either equal to Y or else belongs to $. Suppose first that the 
number r of indices j E [ 1, pq] such that IT;. E $ is less than p .  Then the set of 
pq - r indices j E [l ,  pq] for which T j  = Y is the union of at most r + 1 
intervals in N, and since (r + l)(q - 1) S p(q - 1) < pq - r, at least one of 
these intervals must contain at least q numbers, so that the product 
Tl T, . . . Tpq certainly vanishes in this case. Next, for each value of r and each 
k 2 r, we have 

(21.22.2.2) Tl T2 . . *  q E t)' + Yt)' + + Yk-'$r 

if the number of indices j such that T j  E $ is equal to r. For this is obviously 
true for arbitrary r and k = r; and by induction on k - r (the number of 
factors T j  equal to Y) one sees immediately that (21.22.2.2) is true provided 
that q E $. Now for each r we have 

(21.22.2.3) t)'YcYt)'+t)'. 

Indeed, this is true when r = 1, because X Y  = YX + [X, Y] and [X, Y] E lj 
for all X E $; and from (21.22.2.3) we have 

$'"Y c $Yt)'+ t ) '+l  c (Y$ + $)t)' + b'+l 
= yy+1 + y+l, 

which proves (21.22.2.3) by induction on r. This being so, if we have 
in (21.22.2.2), then by hypothesis 

= Y 

TI T, . * *  &-l E if + Yt)'+ * * *  + Yk-'-' r, ' 
from which it follows that 

TI T2 * . *  & E t)'Y + Yt)'Y + . * *  + Yk-'-'t)'Y, 
which, together with (21.22.2.3), implies (21.22.2.2). If now r 2 p, the right- 
hand side of (21.22.2.2) reduces to zero, and the proof is complete. 
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(21.22.3) (Cartan's criterion) Let g be ajnite-dimensional Lie algebra such 
that the Kill ing form Be is identically zero on g x g; then g is  solvable. 

By considering the complexification of g, if g is a real Lie algebra, we may 
assume that g is a complex Lie algebra (21.6.1). The proof is by induction on 
dim(g), the result being trivial when dim(g) = 1. It will be enough to show 
that a(g) # g; for the Killing form Bb(e)r being the restriction of B, to the 
ideal a(g) (21.5.7), is identically zero and therefore by the inductive hypoth- 
esis B(g) will be solvable, and hence g also will be solvable (19.12.3). 

Suppose then that 3(g) = g. We define an element uo E g as in (21.19.2) 
and consider the corresponding direct sum decomposition g = b @ 8 g(a). 

I t  follows that 3(g) = [g, g ]  is the sum (not in general direct) of the sub- 
a c S  

spaces [b, b], [b, g(a)], and [g(a), g(B)] for a, B in s. But 

[s(a), d P ) 1  = s(a + B )  
and [b, g(a)] c g(a) (21.19.6.1), hence our assumption on g implies that 

We shall deduce from this that S must be empty. For every linear form 
p E S, the restriction of p to [b, b] is zero (21.19.7); also, for each a E Sand 
each u E [g(a), g( -a ) ]  we have B(u) = rRBa(u), where rap is a rational 
number (21.19.10). But since by hypothesis B,(u, u) = 0, the relation 
(21.19.8.1) implies that 

dim(g(a)) . a(u)' + 1 r$ dim(g(j?))a(u)2 = 0 

and hence that a( u) = 0. But then B(u) = rap a( u) = 0 for all f l  E S. If we had 
S # 0, every linear form p E S would be zero on all of I), by what has just 
been proved and (21.22.3.1); and this contradicts the definition of S. 

Hence we have S = (21 and consequently g = b; but then ad(u) would be 
nilpotent for all u E g (21.19.5); by virtue of Engel's theorem (21.22.2), g 
would be nilpotent and afortiori solvable (21.22.1), contrary to our assump- 
tion. Q.E.D. 

B T a  

(21.22.4) 
{0}, then g is semisimple. 

I f  a jnite-dimensional Lie algebra g contains no solvable ideal # 

Suppose the contrary, so that the Killing form Be is degenerate: in other 
words, if it is the subspace of all x E g such that B,(x, y) = 0 for all y E g, 
then I I  # {O}. But ii is an ideal of g. because by virtue of (21.5.6.1), if x E II 
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and z E 9 we have B,([x, 23, y) = B,(x, [z, y]) = 0 for all y E g. This being 
so, the restriction of B, to it x i i  is identically zero; since this restriction is 
equal to B, (21.5.7), it follows that i i  is solvable by Cartan's criterion 
(21.22.3), contrary to hypothesis. 

PROBLEMS 

1. Let E be a real or complex vector space of finite dimension and G a connected Lie group 
immersed in GL(E). Let N be a normal subgroup of G ;  suppose that the linear representa- 
tion of G on E defined by the canonical injection G -+ GL(E) is irreducible, and that there 
exists a vector xo # 0 in E such that I xo  = L(t)xo for all t E N. Then N is contained in 
the center of CL(E), consisting of the nonzero scalar multiples of the identity. (Observe 
that the mapping t + + I ( f )  is continuous on N and that I ( s t s - ' )  = I ( r )  for all s E G, and 
deduce that the set of x E E such that t . x = A( t )x  for all t E N is stable under G.) 

2. Let E be a finite-dimensional complex vector space. Show that if G is a solvable connected 
Lie group immersed in GL(E), then there exists a basis of E such that G, identified by this 
choice of basis with a group of matrices, is contained in the group of lower triangular 
matrices (he's theorem). (It is enough to prove that there exists xo # 0 in E such that 
s . x o  = I (s )xo  for all s E G. Do this first for G commutative, and then use Problem 1 and 
the definition of solvable groups.) 

3. (a) Show that if g is a finite-dimensional solvable (real or complex) Lie algebra, then its 
derived algebra D(g) is nilpotent. (Use Engel's theorem and Lie's theorem.) 
(b) In order that g should be solvable, it is necessary and sufficient that the restriction to 
D(g) of the Killing form of g should be identically zero (use (a) and Cartan's criterion). 
Give an example of a solvable Lie algebra whose Killing form is not identically zero. 
(c) I f  g is nilpotent, then the Killing form of g is identically zero. Give an example of a 
solvable but not nilpotent Lie algebra whose Killing form is identically zero. (Consider the 
solvable Liegroupdefined in Section 19.14, Problem 4, and note that for the Killing form 
of its Lie algebra to vanish identically, it is necessary and sufficient that Tr(U') = 0.) 

4. (a) Let g be a (real or complex) Lie algebra of finite dimension. An element u E g is said 
to be regular if the multiplicity of 0 as an eigenvalue of the endomorphism ad(u) of g is as 
small as possible. For the Lie algebra of a compact group, this notion coincides with that 
defined in (21.7.1 3). (Use (21.8.4).) 
(b) Let g be a real Lie algebra of finite dimension. Then an element u E g is regular if and 
only if it is regular in the complexification g,=, 
(c) Show that the set R of regular elements of g is a dense open subset of g. If moreover g 
is a complex Lie algebra, then R is connected. Determine R for g = 4 2 ,  R). 
(d) Let uo be a regular element of g, and let go be the set of x E g such that 
(ad(u,))P . x = 0 for a sufficiently large integer p .  Show that go is a nilpotent subalgebra of 
g and is equal to its normalizer. (Use (21.19.3) and the fact that the endomorphism of the 
vector space dg,, induced byad(u,)on passing to the quotient, is bijective; show that this 
implies that for each u E go near enough to uo we have (ad(u))P . x = 0 for all x E go and 
all sufficiently large integers p .  and then use Engel's theorem.) 
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(e) Let a be a subalgebra of g and let xo be an element of a such that the endomorphism 
of the vector space g/a induced by ad(x,) is bijective. Show that the mapping 
(x, u)-exp(ad (u)) '  x of a x g into g is a submersion at the point (xo,  0). and deduce 
with the help of (c) that o contains a regular element of g. 
( f )  A nilpotent subalgebra of g that is equal to its own normalizer is called a Carron 
subalgebra. For each regular element uo E g, the subalgebra go defined in (d) is a Cartan 
subalgebra; and conversely, every Cartan subalgebra of g may be obtained in this way. ( I f  
1 1  is a Cartan subalgebra, show by using (e) that it contains a regular element u,; then we 
have I I  c go, and if the inclusion were strict, 1 1  would not be equal to its normalizer 
(Section 19.14. Problem 7)) The subalgebra go defined in (21.19.2) is a Cartan subalgebra. 
(g) Suppose that g is a complex Lie algebra. Let r be the connected Lie group immersed 
in Aut(g) whose Lie algebra is ad(g). Show that any Cartan subalgebra of g can  be 
transformed into any other by an automorphism u E r. (For each Cartan subalgebra h of 
g, let h,,, denote the (open) subset of regular elements belonging to h, and let R, be the 
image of r x h,,g under the mapping (u, x)- u . x of into g. Use (e) to show that 
R, is open in 
(h) A Cartan subalgebra is a maximal nilpotent subalgebra (Section 19.14, Problem 7). 
Give an example of a maximal nilpotent subalgebra that is not a Cartan subalgebra. 

x 
and then use (c).) Compare with Section 21.21, Problem 6. 

5. (a) Let g be a (real or complex) Lie algebra of finite dimension. If h is a Cartan subal- 
gebra of g. then h is also a Cartan subalgebra of every Lie subalgebra g l  of g that contains 
h. 
(b) lf/is a surjectiue homomorphism of g onto a Lie algebra gl, then the image underjof 
any regular element of g is a regular element of g I  (use the fact that the set of regular 
elements of 9, is dense). Deduce that the image underjof any Cartan subalgebra of g is a 
Cartan subalgebra of g l .  I f  g and g, are complex Lie algebras, then every Cartan subal- 
gebra of g, is the image underjof a Cartan subalgebra of g. (Use Problem 4(g).) 
(c) If  h is a Cartan subalgebra of gand if a is a Lie subalgebra of g which contains I), then 
a is its own normalizer in g. (Apply (b) to the quotient algebra %(a)ja.) 

6. Let G be a connected Lie group (real or complex). A Curran subgroup of G is any 
connected Lie group immersed in G whose Lie algebra is a Cartan subalgebra of the Lie 
algebra g of G. 
(a) Show that a Cartan subgroup is closed in G. 
(b) Suppose that G is a complex semisimple group, and is the complexification of a 
compact connected semisimple group K (21.1 7.1). Then all the Cartan subgroups of G are 
conjugate in G. We obtain a Cartan subalgebra of g by taking the complexification I + it 
of a maximal commutative subalgebra t of the Lie algebra f of K ;  the corresponding 
Cartan subgroup is isomorphic to (C')', where l is the rank of G. 
(c) With the hypotheses of (b), show that every Cartan subgroup A of G is its own 
centralizer in G. and that the normalizer "A) of A in G is such that -V(A)/A may be 
identified with the Weyl group of K. (Consider the centralizer and the normalizer of t + it 
in G, and argue as in Section 21.11, Problem 12(a).) 
(d) With the same hypotheses, all elements of a Cartan subalgebra of g are senlisimple 
(Section 21.19, Problem 1). 

7. Let G be a complex connected Lie group and g its Lie algebra. A Bore/ subalgebra of g is 
any maximal solvable subalgebra of g, and a Borel subgroup of G is a (complex) connected 
Lie group immersed in G whose Lie algebra is a Borel subalgebra of g. 

(a) Show that a Borel subgroup is closed in G. 
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(b) For the rest of this problem, suppose that G is a complex connected semisimple 
group, and keep to the notation of (21.21.12(iii)). Show that b = t + it + i t  is a Borel 
subalgebra of 9, and that b is the semidirect product of the Cartan subalgebra h = t + i t  
and the nilpotent algebra 11, which is also the derived algebra D(b). (Observe that a Lie 
subalgebra of g. that contains t strictly cannot be solvable.) 
(c) For each element u E b, the semisimple and nilpotent components of u (Section 
21.19. Problem I )  both belong to b (cf. Problem 5(c)). Show that thenilpotent elements of 
b are the elements of t i .  

(d) Let B be the Borel subgroup with Lie algebra b. If  T is the maximal torus of G ,  with 
Lie algebra I ,  then G ,  n B = T (cf. (21.21.12)). The homogeneous space G/B is a compacr 
complex manifold, and the canonical mapping of G/B onto G,/T is a diffeomorphism 
(Section 16.10, Problem 3). Show that the center of B is equal to the center of G (and of 

(e) Show that B is its own normalizer in G .  (Let H be the Cartan subgroup of G with Lie 
algebra h. I f  s E -+‘(B),  show that there exists x E B such that Int(sx) leaves H globally 
invariant, and hence also the corresponding root system S; furthermore, the fact that 
Int(sx) leaves B globally invariant implies that Ad(sx)  permutes the g, for a E S, . Deduce 
that A d ( s x )  leaves each 9. globally invariant, and by arguing as in Section 21 . l l ,  Problem 
12(a), show that there exists y E H such that Int(sxj) is the identity. Complete the proof by 
observing that the center of G is contained in every Cartan subgroup.) 

G”).  

8 Let G be a complex connected semisimple group and g its Lie algebra. A Lie subalgebra h 
of q is said to be splittable if for each u E h the semisimple and nilpotent components of u 
belong to h. A subalgebra a of 9 is said to be diagonalizable if there exists a basis of g 
relative to which all the endomorphisms ad(u), for u E a, are represented by diagonal 
matrices (which implies that all the elements of a are semisimple). 
(a) Let h be a splittable subalgebra of g. and let a be a diagonalizable subalgebra of h. 
Then there exists a direct sum decomposition of the vector space I): h = hoCD 63 h,. 

where h, is the centralizer of a in h. F is a set of nonzero linear forms on a, and for each 
1 E F we have [u, x] = 1(u)x for u E a and x E h. 
(b) With the same hypotheses, suppose in addition that a is a maximal diagonalizable 
subalgebra of b. Show that ho is a Cartan subalgebra of and is splittable. (Observe that if 
two elements of g commute, then so do their semisimple and nilpotent components.) Show 
also that a is the set of semisimple elements of ho, that the set I I  of nilpotent elements of h, 
is an ideal in ho, and that I), is the direct sum of a and 11. Consider in particular the cases 
where h is nilpotent, and where b = g. 
(c) Suppose now that h is a solvable and splittable subalgebra of 9. Show that the set 1 1  of 
nilpotent elements of 4 is an ideal in I). (Use Lie’s theorem (Problem 2)) Show also that if a 
is a maximal diagonalizable subalgebra of h, then h is the semidirect product of I I  and a 
(1 9.14.7). 

l e F  

9. Let p be a continuous linear representation of a Lie group G on a finite-dimensional 
complex vector space E. By passing to the quotient, p induces a differentiable action of G 
on the associated projective space P(E), which is compact. Hence there exist in P(E) 
nonempty closed G-stable subsets that are minimal among the subsets of P(E) having these 
properties (Section 12.10, Problem 6). 

Show that if G is connected and solvable, every minimal nonempty closed G-stable 
subset of P(E)consists ofa single point. (Argue by induction on n = dim(E). For n = 2, use 
Lie’s theorem (Problem 2). For n > 2, Lie’s theorem proves the existence of a point 
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zo E P(E) fixed by G. I f  M c P(E) is closed, G-stable, and minimal, and ifr, +? M, project 
M from zo on a projective hyperplane not passing through zo .) 

10. With the notation of Problem 7, the group G being assumed to be semisimple, let 
r = dim(b). The Grassmannian G,(g) of r-dimensional complex vector subspaces of g 

(16.11.9) may be identified with a closed submanifold of the projective space P ( A  9). 
Show that the subset 8 of G,(g) consisting of the transforms Ad(.s) . b of b by the elements 
of G is closed in G,(g). (Observe that G acts differentiably on G.(g) by the action 
(s, iii)-Ad(s). 111. and use Problem 7(d) and (16.10.12)) 

Let s be a solvable subalgebra of g. By applying the result of Problem 9 to E = A g, 
show that there exists r E G such that Ad(!) . 5 c b. In particular, any two Borel subal- 
gebras of g can be obtained one from the other by an automorphism of the form Ad(!), 
f E G. Any two Borel subgroups of G are conjugate (Borers theorem). 

11. With the notation of Problem 7. show that as w runs through the Weyl group W of gvwith 
respect to t, the mapping WI+ w(b) is a bijection of W onto the set of Borel subalgebras of g 
that contain h = I + i t .  (Use Problem 10 and the fact that two Cartan subalgebras both 
contained in a Lie subalgebra a of g can be transformed one into the other by an automor- 
phism Ad(r), where r belongs to the connected Lie group immersed in G with Lie algebra 
a ;  finally use Problem 6(c).) 

12. In a complex semisimple Lie algebra g. a Lie subalgebra distinct from g that contains a 
Borel subalgebra is called parabolic. If G is a complex connected semisimple group, a 
connected Lie group immersed in G is a parabolic subgroup of G if its Lie algebra is 
parabolic. 
(a) Show that a parabolic subgroup is closed in G (cf. Problem S(c)). 
(b) With the notation of Problem 7, let p be a parabolic subalgebra containing b. Then 
the vector space p is the direct sum of h and a certain number of the g a ,  for a E P say, 
where S, c P c S. For any two roots a, /3 E P. if a + /3 is a root then a + /3 E P. If B is 
the basis of S that determines the given ordering on S, show that P is the union of S, and 
0, where 0 is the set of roots that are linear combinations with integral coefficients s 0 of 
the roots belonging to B n (-  P). (To show that 0 c P n (-  S +). show that if - K E 0, 
then - a  E P, by noting that a is the sum of say n elements of B n (-  P). and arguing by 
induction on n, with the help of Section 21.11, Problem 3(c). To show that 
P n (-  S,) c 0, show that if - a  E P n (- S+), then - a  E 0, by noting that a is the 
sum of say m elements of B, and again arguing by induction.) 
(c) Conversely, for each subset B, of B. if 0 is the set of roots a E S that are linear 
combinations with integral coefficients 6 0 of the roots in B,, and if P = S, u 0, then 
the direct sum of and the 9. for a E P is a parabolic subalgebra of g. 

I 3  (a) Let G be a complex connected semisimple group, and B,, B, two Borel subgroups of 
G. Show that B, n B, contains a Cartan subgroup. (Let b,. b, be the Lie algebras of B,, 
B,, and apply Problem E(c) to b, n b,, so that we obtain b,  n 6 ,  = a @ 11, where (1 is a 
maximal diagonalizable subalgebra of b,  n b,, and 11 is the set of nilpotent elements of 
b, n b,. Show that dim(b, + b,) 5 dim(g) - dim(i1) by noting that I I  is orthogonal to b, 
and b,, relative to the Killing form of g; by observing that dim(b,) + dim(b,) = 
dim(g) + dim(?), where is a Cartan subalgebra of g, conclude that dim(a) 2 dim(?) and 
hence, by virtue of Problem 8(b), that a is a Cartan subalgebra of 9.) 
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(b) With the notation of Problem 7, for each element w of the Weyl group W of gu 
relative to 1, let BwB denote the double coset of any element of the normalizer .+'(T) of T 
in G ,  belonging to the class of w in .4'(T)/T. Show that, as w runs through W, the double 
cosets BwB form a p r t i r i o n  of G (Eruhat decomposifion). ( I f  s E G ,  deduce from (a) and 
Problem 4(g) that there exists x E B such that xsBs-'x-' 3 H, and then use Problem 11 ; 
finally, observe that .+'(T) n B = T.) 

23. E. E. LEVI'S T H E O R E M  

(21.23.1) Let g be a (real or complex) Lie algebra of finite dimension and 
let a, b be two solvable ideals in g. Since (a + b)/a is isomorphic to b/(a n b), 
it follows that (a + b)/a is a solvable Lie algebra; since the canonical image 
of W(a + 6)  in (a + b)/a is contained in Dk((a + b)/a), we have 
ak(a + 6)  c a for sufficiently large k ,  and therefore 3 h + k ( a  + b) = (0) for 
sufficiently large h, because a is solvable; hence the algebra a + b is solvable. 
I t  follows that if r is a solvable ideal of g of maximum dimension, then every 
solvable ideal of g is contained in r;  for if a solvable ideal a of g were not 
contained in r, we should have dim(a + r) > dim r, and a + r is a solvable 
ideal, contrary to the definition of r. This unique ideal r of g, the union of all 
the solvable ideals in g, is called the radical of the Lie algebra g. 

(21.23.2) 
radical r is a semisimple Lie algebra. 

If g is a Jinite-dimensional h e  algebra, the quotient g/r of g by its 

By virtue of (21.22.4), it is enough to show that the only solvable ideal a 
of g/r is (0). Now such an ideal is of the form b/r, where b is an ideal in g; 
since r and b/r are solvable, one shows as in (21.23.1) that b is solvable. But 
then by definition b c r, so that a = (0). 

(21.23.3) (E. E. Levi's theorem) Let g be ajnite-dimensional complex Lie 
algebra and r its radical. Then there exists a semisimple subalgebra 5 of g such 
that g is isomorphic to a semidirect product r x (p 5 (19.14.7). 

From the definition of the semidirect product of Lie algebras (19.14.7), it 
is enough to show that there exists a semisimple Lie subalgebra 5 of g such 
that 5 n r = (0) and 5 + r = g. It comes to the same thing to say that, if 
p :  g + g/r is the canonical homomorphism, the restriction of p to 5 is an 
isomorphism of 5 on g/r; or, again, that there exists a homomorphism q of 
g/r into g such that p 0 q = l d r .  The proposition is therefore a particular 
case of the following: 
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(21.23.3.1) Let g be a complex semisimple Lie algebra, c ajnite-dimensional 
complex Lie algebra. p :  e + g a surjective homomorphism. Then there exists a 
homomorphism q :  g + c such that p 0 q = 1,. 

Let 11 = Ker(p), which is an ideal of e, and argue by induction on the 
dimension of 11. If 11 = {O}, there is nothing to prove. If e is semisimple, then e 
is the direct sum of 11 and an ideal 11’ (21.6.4), and the restriction of p to 11’ is 
an isomorphism of this Lie algebra onto g; we may therefore take 4 to be the 
inverse of this isomorphism. Suppose therefore that c is not semisimple, and 
let r be the radical of c. For each ideal a of c, it is easily seen that =(a) is also 
an ideal of c, by virtue of the Jacobi identity; hence a“(r) is an ideal of c for 
all k, and if m is the smallest integer such that W(r) = {O}, then am- ‘ ( r )  is a 
commutative nonzero ideal of e .  We may therefore assume that such ideals 
exist in e ;  choose one, say a, of smallest possible dimension. Then (a + ii)/ii is 
a commutative ideal of e/it, isomorphic to g; but since g is semisimple, this 
implies that a + 11 c 11 (21.6.2), so that a c i t .  

Suppose first that a # 11. On passing to the quotient, p gives rise to a 
surjective Lie algebra homomorphism p 1  : e/a -, g, with kernel ii/a, and the 
inductive hypothesis guarantees the existence of a homomorphism 
q1 : g -, e/a such that p 1  0 q1 = lg. We may write 41(g) = f/a, where f is a Lie 
subalgebra of c containing a. Since dim(a) < dim(it), we may apply the 
inductive hypothesis to the canonical homomorphism p 2 :  f -+ f/a with 
kernel a, and deduce that there exists a homomorphism q 2 :  f/a + f such that 
p2  0 q2 = lf,,,. It is now clear that the homomorphism 4 = q2 0 q1 has the 
required property. 

We have still to consider the case where a = 11. We shall define canon- 
ically a Lie algebra homomorphism p :  g -+ gl(a) as follows: each x E g is of 
the form p(  z) for some z E c; the restriction to a of the endomorphism ad( z) 
of c is an endomorphism of the vector space a, because a is an ideal in c; but 
since a is commutative and equal to i t ,  if p (  z) = p (  z’) then z’ - z E a, and 
consequently the restrictions of ad( z) and ad( 2’) to a are equal. The restric- 
tion of ad( z) to a therefore depends only on x; if we denote it by p ( x ) ,  then it 
is clear that p is a homomorphism of g into gI(a), because [p(zl), p ( z 2 ) ]  = 

The vector space a may therefore be regarded as a U(g)-module by 
means of U(p), and it follows from (21.9.1) that a is a direct sum of simple 
U(gFsubmodu1es. But by definition a U(g)submodule of a is an ideal of e; 
by virtue of the choice of a, we see that a is necessarily a simple U(g)-module. 

It may happen that p ( x )  = 0 for all x E g; this is the case when a = 11 is 
contained in the center of e,  and in fact is equal to this center, because 
g = e/a contains no nonzero commutative ideals (21.6.2) (by reason of the 
choice of a, it then follows that dim(a) = 1). In this case, if x = p(z ) ,  the 

P ( b l 7  121). 
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endomorphism ad( z) itself (and not merely its restriction to a) depends only 
on x, and if we denote i t  by p ’ ( x ) ,  we see as above that p‘ is a homomorphism 
of g into gl(c) = End(c). We may therefore in this case consider the space e 
itself as a U(g)-module, and a as a U(9)-submodule of c. But then ((21.9.1) 
and (A.23.3)) there exists in e a U(g)-submodule supplementary to a; by 
definition, b is an ideal of e.  and the restriction of p to b is an isomorphism of 
b onto g; we then take q to be the inverse of this isomorphism. 

I t  remains to consder the case where a = I I  is a simple U(g)-module and 
p ( x )  is not zero for all x E g. We shall show that there exists a finite- 
dimensional complex vector space M, a Lie algebra homomorphism CT: 

c + gl(M) = End(M), and an element w E M having the following 
properties: 

(21.23.3.2) The mapping t H c ( t )  . w ofa  into M i s  bijectiile. 

(21.23.3.3) For each z E c ,  there exists t E a such that CT(Z) . w = c(t)  . w. 

We then define 5 to be the set of all z E c such that u( z) . w = 0. For since 
o([zl, 24) = (~(z,)c(z~) - e ( z 2 ) ~ ( z , ) ,  i t  is clear that 5 is a Lie subalgebra of 
e ;  it follows from (21.23.3.2) that 5 n a = {0}, and from (21.23.3.3) that 
e = 5 + a, so that 5 has the required properties. 

We shall take M to be the vector space End(e) and (T to be the Lie algebra 
homomorphism such that, for each f E End(e) and each z E c, 

(21.23.3.4) o(z) . f =  [ad(z),f] = ad(z) ~ / - . f .  ad(z), 

or, in other terms 

(21.23.3.5) (44 *f’ ) (Y)  = [ Z , . f ( Y ) l  -f“* Y l )  

for all Y E  e. 
We shall first show that the condition (21.23.3.2) is satisfied when we 

take w to be a projection of the vector space e onto the subspace a (so that 
w(y) E a for all y E c, and w(t) = t for all t E a). Indeed, it follows from 
(21.23.3.5) that for t E a we have 

because w(y) E a, [a, a] = 0, and [c, a] c a. Hence u(t).  w = 0 means that 
[t, y] = 0 for all y E e ,  or equivalently p ( x )  . t = 0 for all x E g. But since a is 
a simple U(g)-module and the set o f t  E a such that p ( x )  . t = 0 for all x E g 
is a U(g)-submodule of a, this submodule can only be a or {0), and the first 
alternative has been ruled out. 
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The relation (21.23.3.6) likewise shows that for (21.23.3.3) to be satisfied, 
it is necessary and sufficient that for each z E e there should exist t E a such 
that a(z).  w = -ad(t) in M = End(e). 

The conditions imposed on w may be reformulated as follows. Let P 
denote the vector subspace of M that is the image of a under the mapping 
t++ad(t), and let R denote the vector subspace of M consisting of the 
f E End(e) such that (1) f ( e )  c a, and (2) the restriction o f f  to a is a scalar 
multiplication by 1,. It is clear that R is a vector space, that P c R, and that 
.f++ 1, is a C-linearform 1 on R ;  the set of projections of e onto a is the affine 
hyperplane A X ' (  1 )  in R. Observe now that i f f €  R and z E e, then also 
a( z) . f ~  R ;  for the fact that o( z) efmaps e into a follows from (21.23.3.5) 
and the fact that a is an ideal of e, and it is immediately seen that la(=). = 0. 
It follows that R is a U(e)-module and that 1: fwA, is a U(e)-module 
homomorphism of R into C, if C is regarded as a trivial U(e)-module. On the 
other hand, the Jacobi identity shows that i f f =  ad(t) with t E a, then 
o(z) .f= ad([* z]), and hence P is a U(e)-submodule of R. 

Next we remark that for t E a andfE R, we haveo(t) .f= -Af ad(t), in 
other words o(t) R c P. This shows that for each x = p(r )  E g and each 
f~ R, the coset of a(z) .fmodulo P depends only on x and the cosetJoff 
modulo P. If we denote this coset by a(x) * J :  it is immediately verified that a: 
g + gI(R/P) is a Lie algebra homomorphism. We have thus defined a U(g)- 
module structure on R/P, and the mapping 1: R / P + C  induced by 1 on 
passing to the quotient is a surjective U(g)-module homomorphism, if C is 
regarded as a trivial U(g)-module. 

This being so, the conditions imposed on w are ( 1 )  w E R, (2) A,  = 1, (3) 
a( z) . w E P for all z E e. If  i3 is the image of w in R/P, these conditions are 
equivalent to: ( 1 )  KJ E R/P, (2) IF = 1, (3) a(x) . i3 = 0 for all x E g. This 
implies that the one-dimensional subspace Ci3 in R / P  is a U(g)-module 
supplementary to the U(g)-submodule Ker(1). Conversely, if D is a one- 
dimensional subspace of R/P  supplementary to Ker(X) and is a U(g)- 
module, then the intersection {i3} of D with the affine hyperplane given by 
the equation 1, = 1 satisfies the conditions above, because D is then isomor- 
phic to the U(g)-module C ,  which is trivial. Now the existence of such a 
U(g)-submodule supplementary to Ker(1) is a consequence of the fact that 
every finite-dimensional U(g)-module is the direct sum of simple U(g)- 
submodules ((21.9.1) and (A.23.3)). Q.E.D. 

(21.23.4) Every Jinite-dimensional real (resp. complex) Lie algebra is  isomor- 
phic to the Lie algebra of a real (resp. complex) Lie group. 

As we have already remarked (19.17.4), it is enough to prove the result 
for a complex Lie algebra. By virtue of (21.233, such an algebra is the 
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semidirect product of a solvable Lie algebra r and a semisimple Lie algebra 
5. Since r (resp. 5) is the Lie algebra of a complex solvable (resp. semisimple) 
Lie group, by virtue of (19.14.10) and (21.6.3), the result is a consequence of 
(1 9.1 4.9). 

(21.23.5) Let G be a simply connected Lie group. For each ideal it, of the Lie 
algebra ge of G ,  the connected Lie group N immersed in G with Lie algebra 11, 

(19.7.4) is a closed (normal) subgroup of G. 

There exists a Lie group H whose Lie algebra 5, is isomorphic to gelit, 
(21.23.4), and we have a homomorphism u :  ge -+ 5, of Lie algebras, with 
kernel it , .  Since G is simply connected, there exists a homomorphism of Lie 
groupsf: G -+ H such thatf, = u (19.7.6), and N is the identity component 
of the kernel off(19.7.1), hence is closed in G. 

PROBLEMS 

1. (a) Let E be a real or complex vector space of finite dimension; A, B two vector sub- 
spaces of End(E); T the set o f f  E End(E) such that [f, A] c B. Show that if s E T is such 
that Tr(su) = 0 for all u E T, then s is a nilpotent endomorphism of E. (Note that 
Tr(s") = 0 for all integers n 2 2, and deduce that the eigenvalues of s are all zero, by using 
Newton's formulas.) 
(b) Let g be a finite-dimensional Lie algebra, p :  g -. gI(E) a Lie algebra homomorphism, 
and B,(u, v) = Tr(p(u)p(v)) the symmetric bilinear form associated with p (21.5.5). In 
order that p ( g )  should be solvable, it is necessary and sufficient that D(g) should be 
orthogonal to g. relative to the form B,. (To show that the condition is necessary, reduce 
to the case where g and gl(E) are complex Lie algebras, and use Lie's theorem. To show 
that the condition is sufficient, reduce to the case where g c gl(E) and use (a), with A = g 
and B = D(g).) 

2. Let g be a finite-dimensional complex Lie algebra. 
(a) Show that if r is the radical of g, we have [g. r] c D(g) n c. (Use Levi's theorem.) 
(b) For each finite-dimensional complex vector space E'and each Lie algebra homomor- 
phism p :  g + gI(E), show that p( [g ,  r]) consists of nilpotent endomorphisms. (Observe that 
the elements of p([r, r]) are nilpotent by virtue of Lie's theorem, and then argue as in 
(21.22.2).) In particular, [g, r] is a nilpotent ideal of g. 
(c) Show that r is the orthogonal supplement of b(g) relative to the Killing form of g. (To 
show that r is contained in the orthogonal supplement r' of b(g), use (a). Then observe that 
r' is an ideal containing r, and that ad(r') is solvable by virtue of Problem I(b).) 
(d) Show that for each automorphism 1 3  of g we have ~ ( r )  = I. 
(e) For each ideal a of g, show that a n r is the radical of a. (Observe that, by (d) above, 
the radical of a is an ideal of 4.) 

3. (a) Let E be a finite-dimensional complex vector space, and let F = C x E. Let 
u : g + gl(E) be a homomorphism of a complex Lie algebra 9 into gl(E) = End(E). If 
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f :  g -. E is a C-linear mapping, define a C-linear mapping p : g -. End(F) by the formula 
p ( u ) .  (t, x) = (0,t .f(u) + u( u) x) for all u E 9. Show that for p to be a homomorphism 
of g into gl(F) it is necessary and sufficient thatfshould satisfy the condition 

for all uI. u2 E 9. 
(b) Suppose that g is semisimple. Show that iffsatisfies the condition in (a), there exists 
an element xo E E such thatf(u) = -u(u). xo for all u E g. (Observe that the subspace 
(0) x E of F is stable under p.) 

4. Let g be a finite-dimensional complex Lie algebra, I its radical, and 5, 5’ two semisimple 
Lie subalgebras of g such that g = 5 + r = 5’ + r (21.23.3). We propose to prove that there 
exists an element a E [g, I] such that, putting L’ = exp(ad(a)) in gl(g), we have u(s’ )  = 5 

(Malceu’s theorem). Distinguish three cases: 

( 1 )  [g, r] = (0); then I is the center of g. and g is the direct product of the ideals rand 
B(g), and B(g) = 5 = 5’. 

(2)  r is commutative and r = [g. r]. Then for each x E 5’ there exists a unique ele- 
ment h ( x )  E I such that x + h ( x )  E 5. By using Problem 3(b), show that there exists an 
element a E r such that h ( x )  = -[x, a] for all x E 5‘, and observe that (ad(a))* = 0. 

(3) The general case. Observe that [g, r] is a nilpotent algebra, hence has center 
c # (0) (Section 19.12, Problem 3). Choose in can ideal 111 # (0) of smallest dimension. We 
may limit our attention to the case where 111 # r;  consider the algebra g/111 and proceed by 
induction on the dimension of r using case (2) above. 

5. Let g be a finite-dimensional complex Lie algebra and a an ideal of g such that g/a is 
semisimple. Show that there exists in g a semisimple Lie subalgebra s supplementary to a. 
(Use (21.23.3) and (21.6.4).) 

6. (a) Let G be a simply connected complex Lie group, H a connected normal Lie subgroup 
of G, and p :  G -. G/H the canonical mapping. Show that the principal bundle G, with 
base G/H and fiber H, is trivializable. (To prove the existence of a holomorphic section 
over G/H (16.14.5), proceed by induction on dim(G/H), by using (16.14.9) to reduce to the 
case where the group G/H is either I-dimensional or almost simple.) Deduce that H is 
simply connected. 
(b) Let G be a connected complex Lie group and H a connected normal Lie subgroup of 
G. Show that the canonical mapping x,(H) -, n,(G) (16.27.6) is injective. (Use (a).) 

7. Extend the proof of Levi’s theorem and the results of Problems 1 to 6 to real Lie groups. 

S Let G be a connected real Lie group. We propose to prove that there exists in G a maximal 
compact subgroup K and a finite number of closed subgroups L,, . . . , L, isomorphic to R, 
such that themapping(r,z,, ..., z,)rrz,z, ... z,ofthemanifold K x L, x ... x L,into 
G is a diffeomorphism of this manifold onto G (Iwasawa’s theorem). We proceed as 
follows: 
(a) The theorem is true when G is semisimple (21.21.10) or commutative (19.7.9). 
(b) In the general case, there exists a closed normal subgroup J of G ,  isomorphic to R” or 
to T”, with n > 0 if G is not semisimple. (Use Section 19.12, Problem 2, applied to the 
radical of the Lie algebra of G.) 
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(c) Now proceed by induction on the dimension of G .  Show first that if L' is a closed 
subgroup of G/J isomorphic to R. then there exists a closed subgroup L of G isomorphic 
to R, such that L n J = { e )  and such that the projection p :  G -P G/J. restricted to L, is an 
isomorphism of L onto L'. (Use Section 12.9, Problem 10.) Then observe that if J is 
isomorphic to R" and K' is a compact subgroup of G/J, the inverse image p - ' ( K ' )  is the 
semidirect product of J and a compact subgroup (Section 19.14, Problem 3). 

9. (a) Let G be a connected real Lie group. The radical of G is defined to be the connected 
Lie group R, immersed in G whose Lie algebra is the radical of the Lie algebra ofg. Show 
that R, is closed in G and that the quotient group G/R, is semisimple. 
(b) Let 2' be the (discrete) center ofG/R,. Show that every solvable normal subgroup of 
G is contained in the inverse image R of Z in G. (Use Section 12.8, Problem 5.) The group 
R, is the identity component of R. 
(c) I f  G is simply connected, then so is R, (Problem 6). and G is the semidirect product 
R, x ~ S of R, and a simply connected semisimple group S. Show that when R, is cornmu- 
rariue, the structure of G can be completely described in terms of S and its finite- 
dimensional continuous linear representations. 
(d) I f  u :  G + G' is a surjective homomorphism of G onto a Lie group G', show that 
u(R,) is the radical of G' (cf. Problem 5 ) .  
(e) Show that the radical ofa product G ,  x G, ofconnected Lie groups is the product of 
the radicals of G ,  and G, . 

10. A connected Lie group G is said to be reducriue if its adjoint representation 
Ad: G -+ GL(g) is completely reducible. 
(a) Show that the following conditions are equivalent: 

( a )  G is reductive. 
(8)  D(g) is semisimple. 
(7) The radical R, of G is contained in the center of G .  

(b) If G is a simply connected reductive group, it is the product of a simply connected 
semisimple group and a group isomorphic to R". Deduce from this the description of an 
arbitrary reductive Lie group. Give an example of a reductive group G whose commutator 
subgroup is not closed in G (cf. Section 21.18, Problem 18). 
(c) Let G be a connected Lie group. Show that for every continuous linear representation 
of G on a finite-dimensional complex vector space to beempletely reducible, it is neces- 
sary and sufficient that G should be reductive and G/9(G)  compact. (To show that the 
condition is sufficient, consider a linear representation p of G on a vector space V and a 
subspace W of V stable under p,  and observe that G acts on the vector subspace E of 
End(V) consisting of endomorphisms u such that p ( s )  Y ti = u 0 p (s )  for all s E O(G) and 
u(V) c W, and such that the restriction of u to W is a homothety.) 

11. (a) Let G be a connected Lie group, Z its center, 2, the identity component of Z, and n: 
G / Z ,  -+ G/Z the canonical homomorphism, whose kernel Z/Z, is discrete. Identify the 
differential manifold G/Z with the product K x E, where K is a maximal compact sub- 
group of G and E is diffeornorphic to a vector space R" (Problem 9). Then, if n-'(K) = M 
and if F is the identity component of n-'(E). the manifold G / Z ,  may be identified with 
M x F; M is a connected covering group of K, and F is dilfeornorphic to R". 
(b) I f  G is solvable, show that M is commutative and is of the form N/Z,, where N is a 
connected nilpotent Lie subgroup of G ,  containing Z. Deduce that Z is contained in a 
connected commutative Lie subgroup of G (cf. Section 19.14, Problem 7(b)). 
(c) I f  G is semisimple, so that 2, = (e}, then M is of the form K, x R", where K ,  is a 
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compact subgroup of G (21.6.9). and Z is contained in Z,  x R”, where Z, is the center of 
K , .  Deduce that Z is contained in a connected commutative Liesubgroup of G. 
(d) Deduce from (b) and (c) that for every connected Lie group G,  the center Z of G is 
contained in a connected commutative Lie subgroup of G. (Consider first the case where 
G is simply connected, and apply Problem 9(c), by observing that if A is a connected 
commutative Lie subgroup of S, then R,A is a connected solvable Lie subgroup of G .  
Then pass to the general case by using (20.22.5.1).) 
(e) Deduce from (d) that Z is an elementary commutative group (Section 19.7, Problem 
5). I n  particular, if Z is not compact, there exists an element c E Z such that the group 
generated by c (consisting of the powers P for n E Z) is infinite discrete. 

12. Let G be a connected Lie group and H a connected Lie group immersed in G and dense in 
G. Then we know (Section 19.11, Problem 3) that, if g and are the Lie algebras of G and 
H. respectively, h is an ideal in g, and g/h is commutative. 
(a) Let t~ = r Q 5, where r is the radical of 4. and s is a semisimple Lie subalgebra of 5. 
Show that if r’ is the radical of g (which contains r) then g = r’ @ 5. 

(b) Let G be the universal covering group of G and let n: G + G be the canonical 
homomorphism, with kernel D. We may write G = R, x .S. where Lie(Rb) = r‘ and 
Lie(S) = s(Problem9(c)). Let D,,D,betheprojectionsofDon RbandS,respectively;then 
D, is contained in the centralizer of S, and D, in the center of S. Let H’ and R, be the 
connected Lie groups immersed in whose Lie algebras are hand r, respectively. Then H’ 
and R, are closed in G, and we have H’ = R, x ~ S; R, is the radical of H’, and n(R,) the 
radical of H = n(H’). 
(c) Show that Rb = D,R, (closure in G). - If U is a connected Lie subgroup of S that 
contains the center of S, deduce that R, c DUR, , and hence that G = n(U)n(R,)H. 
(d) With the same hypotheses, show that n(U)n(R,) is closed in G and that 
n(U)n(R,) n H = n(U)z(R,). 

13. Let G be a connected Lie group and H a connected Lie group immersed in G. For H to be 
closed in G, it is necessary and sufficient that the closure in G of every one-parameter 
subgroup of H should be contained in H (Malceu’s theorem). (Use Problem 12 to reduce 
the question to proving that n(U)z(R,) is closed in G; by Problem 11, we may take U to be 
commutative, and then n(U)n(R,) is solvable, and we c a n  apply Section 19.14. Problem 

Deduce that for H to be closed in G it is necessary and sufficient that the intersection 
of H with every compact subgroup K of G should be closed in K. (Use Section 12.9, 
Problem 10.) 

15.) 

14. Let G be a complex connected semisimple Lie group, g its Lie algebra, and consider a root 
decomposition (21.10.1.1) of g. We shall use the notation of (21.10.3). Let B = {j,, ..., 8,) 
be a basis of the root system S, and put h, = h , ,  1 5 j I; 1. The hiand the x,, a E S, form 
a basis of the vector space g. 

(a) Let B, be a subset of B. let S, c S be the set of roots that are linear combinations of 
roots belonging to B,, and let $, c b be the subspace spanned by the h,such that 8, E 6,.  
Show that the (direct) sum of 4, and the gm such that 01 E S, is a semisimple Lie algebra. 
(To calculste the Killing form, use (21.19.8.1) and (21.20.4.2)) 
(b) Let I), be the subspace of h defined by the equations jAu) = 0 for j, E B,. Show that 
if p is the parabolic subalgebra defined in Section 21.22 Problem 12(c) with Q = - (S,) + , 
then the radical of p is the direct sum r ,  of I), and the go such that a E S+ n [(S,)+ ,and 
p = g, @ r, is a Levi decomposition of p. 
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Show that =(y) = [p. p] is thedirect sum of gI  and the g. such that a E S+ n [(S,), , 
and that the sum r 2  of these latter subspaces is the radical of [p, p] .  Show that p is the 
normalizer of r2 in g. 

IS. (a) With the hypotheses and notation of Problem 14, let 1, be the linear form on g such 
that Aj(hk) = hjk and lj(x,,) = 0 for all a E S. Show that for each element x E g thereexists 
an automorphism t’ = exp(ad(u)) of g and an index jsuch that Al(u(x))  = 0. (Reduce to the 
case where x 6 I).) 
(b) Deduce from (a) that there exists an automorphism I ‘ !  = exp(ad(u,)) of g such that 
L ‘ , ( x )  belongs to the vector subspace that is the sum of the 9.. a E S. (Argue by induction 
on the dimension of g. using Problem 14.) 
(c) Deduce from (b) that there exist two elements y. I E g such that x = [y, I]. 
(Cf. (21.7.6.3).) 

16. In the group GL(n, C), let I(n) denote the subgroup of all lower triangular matrices with 
all diagonal elements equal to 1 (in other words, matrices (aij) such that aij = 0 for i < j 
and ai, = 1 for all i). Also let S ( n )  denote the subgroup of all upper triangular matrices (i.e., 
matrices (aij) such that a,j = 0 for i > j). For each matrix X = (.qj) E GL(n. C) and each 
integer k E [l, n].  let X, denote the matrix jsk, and put A,(X) = det(X,) (the 
“principal minors” of X). The set Q of matrices X E GL(n, C) such that Ak(X) # 0 for 
1 k 5 n - 1 is a dense Connected open set in CL(n, C) (Section 16.3, Problem 3). Show 
that the mapping (Y,  Z)H YZ of l ( n )  x S ( n )  into GL(n, C) is an isomorphism of complex 
manifolds of I(n) x S ( n )  onto R; the inverse mapping XH (i(X), s ( X ) )  is such that the 
entries of the matrices i(X) and s(X) are rational functions of the xij. (Observe that 
A,(s(X)) = A,(X) for 1 5 k 5 n.) 

17. (a) With the hypotheses and notation of Problems 14 and 16, put n = dim(g) and sup- 
pose that G has trivial center, so that G may be identified with Ad(G). Then identify G 
with a subgroup of GL(n, C) by identifying the canonical basis of C” with the basis of g 
ranged in the following order: 

x - , ~ , . . . . x - , ~ ,  h l , . . , , h , +  x , , , . . . , x a r n ,  

where the positive roots a l .  . . . , a,,, are ordered so that if ai + a j  = a) is a root, then i < k 
and j < k .  Let b = I) @ 11 + be the Bore1 subalgebra spanned by the hj and the x ,  with 
a E S, , and let IL be the nilpotent subalgebra spanned by the x - ,  for a E S,, so that 
g = b @ 11 - . Let B and N be the connected Lie subgroups of G having b and 11 - as their 
respective.Lie algebras. With the notation of Problem 16, show that B = G n S ( n )  and 
N = G n I(n): furthermore, if R, = R n G, then R, is a dense connected open set in G, 
and B (resp. N - )  is the image of $2, under the mapping X w s ( X )  (resp. Xwi(X));  also 
the mapping ( Y ,  Z)c* YZ of N _  x B into G is an isomorphism of complex manifolds of 
N _  x B onto no. 
(b) Let 11’- (resp. 11’;) be the sum of the g-. for a E (S,)+ (resp. a E S, n r(Sl)+). Then 
we have 1 1 -  = 11: @ II’I, and 11’- is a Lie subalgebra of i t - ,  and if- is an ideal of i t - .  If  N’- 
and N‘L are the connected Lie subgroups having t i ’ - ,  11‘- as their Lie algebras, then the 
mapping ( Y ,  Y )  ++ Y Y” of N’_ x N’L into N - is an isomorphism of complex manifolds. 
If P is the parabolic subgroup of G with Lie algebra p ,  we have N’-B c P, and R, c N’IP. 
(c) Let P(n) be the normalizer in GL(n, C) of r 2 ,  considered as a Lie subalgebra of 
gl(n, C). Show that the normalizer N(P) of P in G is equal to G n P(n). 
(d) Show that A-(P) n N‘L = (e). (Use the fact that the exponential mapping of 11’: into 
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N'L is surjective (Section 19.14, Problem 6), and that if u E 11, ad(u) is a polynomial with 
respect to exp(ad(u)) (21.21.10.2). Deduce that ,Y'(P) = P. (Observe that otherwise 
N'l .N(P) would contain two dense open subsets of G, disjoint from each other.) 
(e) Show that there exists a complex-analytic isomorphism ofG/P onto a submanifold of 
the Grassmannian C,,(C), where p is the number of roots of S+ that do not belong to 
(Sl)+. (Observe that G/P is isomorphic to CL(n, C)/P(n).) 

18 Let P be a finite-dimensional real Lie algebra, and let G be a connected Lie subgroup of 
Aut(2).  Suppose that there exists a decreasing sequence 2 = 2 -  2 Po 3 P I  3 ... 3 P,of 
G-stable vector subspaces of 2, satisfying the following conditions: 

(1) [Q,, PJ c Q,+, .  with the conventions that L2 = C and P, = 0 for k 2 r + 1. 
( 2 )  If  there exists y E C,. p 2 0, such that y 6 P,+ ,, then there exists x E P such that 

[Y? XI P c,. 
(3) Q - I  f (0). 
(4) If V is a G-stable vector subspace of Q containing 2, and such that [Po,  V] c V, 

then either V = P or V = 2,. 

(a) Show that P, # P,+, for - 1 5 j 5 r. 
(b) For each nonzero G-stable ideal 3 of Q, show that P = 3 + 2,. (Show that the 
assumption that 3 c C, would contradict property (2)) Deduce that if there exists y E P,, 
with p 2 0. such that y # Pp+lr  then thereexists u E 3such that [y, u] $ Pp; consequently 
we have 3 n 2, # 0 if Pp+l # 0. 
(c) If 31, S2 are two G-stable ideals of Q such that 31 n Q ,  # {0} and 32 # (0), show 
that [S1, # {0} (use (b)). Hence show that the only commutative G-stable ideal of Q is 

(d) Show that P is a simple Lie algebra. (Use (c) by considering the derived algebras 
w(%), where % is the radical of Q ;  then observe that if P is semisimple, every connected 
Lie subgroup of Aut(P) leaves stable the simple components of 2.) 
(e) Show that Q2 = (0). (Prove that Q2 is orthogonal to P relative to the Killing form.) 
( f )  Put $j-l = P-, / i ! , ,  bo = Q , / Q , ,  8, = i!,, b =  b- l  @ a,@ bl. Show that there 
exists a unique structure of Liealgebra on bsuch that [$,. $,I c Sj,+,(with !+j-2 = b2 = 
{O)) and such that if x E P,, y E P, and if X E bp, jf E 6, are the classes of x and y. then 
[E. i 7 1 . i ~  the class of [x. y]. Show that the Lie algebra 8 and its vector subspaces 
s, = 8, + + ... for p >= - 1 satisfy the same conditions as P and the 2,. and hence 
that fi is a simple Lie algebra. 
(g) Show that there exists a unique element @i in H such that ad@) leaves stable 8- 8,. 
and bl, and such that its restriction to 8, (p  = - 1, 0, 1) is the homothety with ratio p (cf. 
Section 21.19. Problem 2). Deduce that P is isomorphic to 8. 
(h) Show that, for the Killing form B of the restriction of B to 8, is nondegenerate, 
6- and bl are totally isotropic, and 8- I @ 
(i) Show that there exists a Cartan decomposition = f @ p such that T E p .  (Consider 
the involutory automorphism u of such that U ( X )  = x for x E 8,. and u(x) = - x for 
x E 6- @ b,.) Conversely, give the description of P and the P, starting from a Cartan 
decomposition 8 = f @ p and an element @i E p such that the eigenvalues ofad(@) are - 1, 
0, and 1. 

19. With the notation and hypotheses ofSection 19.3, Problem 5(d), suppose that the kernel of 
the linear representation p of H on TJM) is not discrete, and that p is irreducible; suppose 
moreover that H contains no nontrivial normal subgroups of G ,  and that the center of G is 
finite. Then G is a noncompact simple group, and there exists a maximal compact con- 
nected subgroup K of G that acts transitively on M. so that M may be identified with 
(K n H)\K and is a Riemannian symmetric space. (Use Problem 18.) 

(01. 

is orthogonal to 6,. 



APPENDIX 

MODULES 

(The numbering of the sections in this Appendix continues that of the 
Appendix to Volume IV.) 

22. SIMPLE MODULES 

(A.22.1) The notion of a module over a commutative ring (A.8.1) may be 
generalized. If M is a commutatiue group, written additiuely, an action of a set 
R on M is any mapping (a, x ) H ~ .  x of R x M into M such that 
a .  (x + y) = a .  x + a  * y; in other words, for each a E S2 the mapping 
XH a x is an endomorphism of the group M. By abuse of language, the 
group M together with an action of R on M is called an R-module. A 
homomorphism of an R-module M into an R-module N is any mapping 
f: M -, N such that f(x + y) =f(x) +f(y)  and f ( a  . x) = a . f ( x )  for all 
x, y E M and a E 0. An isomorphism of R-modules is a bijective homomor- 
phism; the inverse mapping is then also an isomorphism. 

(A.22.2) If M is an R-module, a subgroup N of M is said to be stable for the 
action of R (or R-stable) if for all x E N and a E R we have a * x E N; the 
subgroup N is also said to be an R-submodule of M .  Intersections and sums 
of R-submodules of M are again R-submodules. Iffis any homomorphism 
of M into an R-module M’, and if N (resp. N’) is any R-submodule of M 
(resp. M ’ ) ,  then f ( N )  is an R-submodule of M’,  and f-’(N’) is an R- 
submodule of M .  In particular, the i r n a g e f ( M )  is an R-submodule of M ‘ ,  and 
the kernel f -‘(O) is an R-submodule of M. 

127 
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(A.22.3) In any R-module M, (0) and M are always R-submodules, called 
the trivial submodules. An R-module M is called simple if M # (0) and there 
exist no R-submodules of M except for the trivial ones. 

(A.22.4) (Schur’s lemma) L e t f b e  a homomorphism ofan R-module M into 
an R-module N. I f  M is simple, thenfis either injective or identically zero. IfN 
is  simple, then f is either surjective or identically zero. I f  both M and N are 
simple, then f is either bijective or identically zero. 

For if M is simple,f- ‘(0) can only be M or (0); and if N is simple,f(M) 
can only be N or (0). 

23. SEMISIMPLE MODULES 

(A.23.1) The notion of direct sum of R-modules is defined as in (A.1.5). If 
M = 0 MA is the direct sum of a family (MA) of a-moduIes, we define as in 

(A.2.3) the canonical injection j l :  M, -, M and the canonical projection 
p,: M + M, for each index 1; they are R-module homomorphisms. All the 
results of (A.3.1)-(A.3.5) remain valid without modification if we replace 
” subspace” by “ R-submodule” and “ linear mapping” by 
’’ homomorphism.” 

A E L  

(A.23.2) An R-module M is said to be semisimple if it is a direct sum of a 
family of simple R-modules. We shall limit our attention to semisimple R- 
modules that are direct sums of at most denumerable families of simple 
R-modules. 

(A.23.3) Let M be an R-module that is the sum (not necessarily direct) of a 
finite or infinite sequence (Nk)oskco (where o is an integer or + co) ofsimple 
R-submodules. Let E be an R-submodule of M. Then: 

(a) There exists a subset J of the set [0, o[ such that M is the direct sum 
ofE and the N, with k E J (so that E has as a supplement in M the semisimple 
Q-submodule F which is the direct sum o f the  N, with k 4 J ) .  

There exists a subset H of the set [0, a[ such that J n H = 0 and 
such that M is the direct sum o f the  N, with k E J u H (and therefore M i s  
semisimple); E is isomorphic to the direct sum of the Nk with k E H .  

(b) 

(a) We shall define J to be the set of elements of a (finite or infinite) 
sequence (k,) that is constructed inductively as follows: k ,  is the smallest 
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integer (if it exists) such that Nkm is not contained in the sum 

E + N,, -t " '  + Nkm-, 

(when m =  1, this sum is replaced by E). The construction stops if 
E + N,, + . * *  + Nkm-,  contains all the N, and hence is equal to M. If k, is 
defined, the intersection Nkm n (E + N,, + ... + Nkm-,), beinga submodule 
of Nkm distinct from Nkm, must be zero; hence (A.3.3) the sum of E and the 
Nk such that k E J is direct. It remains to be shown that, when J is infinite, 
this sum M' is equal to M. If not, there would exist at least one index h $ J 
such that N, $ M'; but if m is the smallest integer such that k, > h, then N, 
is not contained in E + N,, + ... + Nkm-l ,  contrary to the definition of k,. 

(b) The set H is defined by applying (a) to the R-submodule F of M. 
The isomorphism of E with the direct sum of the N, such that k E H then 
follows from (A.3.5). 

(A.23.4) A semisimple R-module M is said to be isotypic if it is a direct sum 
of isomorphic simple R-submodules. I t  follows from (A.23.3) that any two 
simple R-submodules of M are isomorphic (since a simple R-module cannot 
be isomorphic to a direct sum of two nonzero submodules). Two isotypic 
semisimple R-modules are said to be o f t h e  same type if every simple submo- 
dule of one is isomorphic to every simple submodule of the other. It follows 
from (A.23.3) that every submodule of an isotypic semisimple R-module is 
isotypic semisimple and of the same type. 

(A.23.5) Let M be a semisimple R-module, the direct sum of a (finite or  
infinite) sequence ( N k ) O ~ k < o  of simple R-submodules of M. We define by 
induction a sequence of submodules N; of M as follows. We take Nb = No; 
N; + is equal to N, for the smallest index m such that N, is not isomorphic 
to any of the R-modules Nb, . . . , N; . (If all the N, are isomorphic to one or 
other of these R-modules, the induction stops at N;.) Let J be the set of 
indices k E [0, w[ so obtained, and for each k E J let 1, be the set of integers m 
such that N, is isomorphic to N;. If Pk is the direct sum of the R- 
submodules N, for m E I,, then it is clear that Pk is an isotypic semisimple 
R-module, that Ph and Pk are not of the same type if h # k, and that M is the 
direct sum of the Pk for k E J. 

(A.23.6) 
hence is of the same type as Pk). 

Every simple R-submodule N O f M  is contained in one of the Pk (and 

It follows from (A.23.3) that N must be isomorphic to one of the N,, 
hence to one of the N;; if N were not contained in Pk, we should have 
N n P, = (0) because N is simple, and the projection N' of N on the direct 
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sum Mk of the P, such that h # k would be isomorphic to N (A.22.4); but by 
reason of (A.23.3) applied to M,, N’ would be isomorphic to one of the 
modules N; with h # k, which is absurd. 

We may therefore define the Pk independently of any decomposition of 
M as a direct sum of simple R-submodules: Pk is the sum of all the simple 
R-submodules of M that are isomorphic to N; . The Pk are called the isotypic 
components of M. The result of (A.23.6) then generalizes as follows: 

(A.23.7) Every R-submodule N of M is the direct sum of the N, = M n P, 
that are not equal to 0, and these are the isotypic components of N. 

This is an immediate consequence of (A.23.3) and (A.23.6), because N is 
a direct sum of simple R-submodules of M. 

24. EXAMPLES 

(A.24.1) Let K be a (commutative) field and E a vector space over K. I t  is 
clear that E is a simple K-module if and only if E is one-dimensional (i.e., a 
“line”). Every K-vector space that is spanned by an at most denumerable 
family of vectors is therefore an isotypic semisimple K-module (there is only 
one “type”), and the results of (A.23) therefore include as particular cases 
the propositions (A.4.6) and (A.4.5) for vector spaces that admit an at most 
denumerable basis. 

(A.24.2) Now let ( u ~ ) ~ ~  be a set of endomorphisms of the K-vector space E 
(A.2.1) and let 51 be the sum (1.8) of the sets L and K. If we define I . x = 
u,(x), then R acts on E. It is clear that the notions of linear representation 
introduced in (1 5.5) and (21 . l )  are particular cases of this general notion, 
and correspond to taking L to be an algebra or a group. The notion of 
equivalent linear representations corresponds to that of isomorphism of R- 
modules (subjected to supplementary conditions when E is infinite- 
dimensional and endowed with a topology); the notion of a finite Hilbert 
sum of representations corresponds to a particular case of the notion of 
direct sum of R-modules. Finally, if E is finite-dimensional, it comes to the 
same thing to say that a representation is irreducible or that the correspond- 
ing R-module is simple. 

(A.24.3) Consider in particular the case of a single endomorphism u of the 
vector space E; it is said to be semisimple when the corresponding R-module 
E is semisimple. The nature of the simple Q-modules will depend on the field 
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K. For example, if K = R and E is a plane, a rotation u (relative to the usual 
scalar product) other than & 1 will make E a simple R-module, and it is easy 
to give examples of vector spaces E of any given finite dimension n over a 
suitable field K that are simple 0-modules for certain endomorphisms. 

The most important case in analysis is that in which K is algebraically 
closed and E is finite-dimensional. The simple R-modules corresponding to 
an endomorphism u are then the “lines” Kx, where x is an eigenuector of u 
(A.6.9), because the restriction of u to a subspace F of E that is stable under u 
always admits at least one eigenvector in F. Hence, in this case, to say that 
u is semisimple means that there exists a basis (ej)lsjsn of E consisting of 
eigenvectors for u, or equivalently that the matrix of u with respect to this 
basis is diagonal; for this reason the endomorphism u is also said to be 
diagonalizable. If A,, . . . , A, are the distinct eigenvalues of u, the isorypic 
components of E (for u)  are the eigenspuces E(Aj; u)  for 1 S j S r (I I .I) .  The 
description of the vector subspaces of E that are stable under u can be read 
off immediately from (A.23.7): they are the direct sums F, 0 F, @ ... 0 F,, 
where Fj is any vector subspace of E(Aj; u )  for 1 5 j 5 r. 

(A.24.4) The example of a semisimple R-module that comes up in the 
theory of Lie groups is that in which K is an algebraically closed field, E a 
K-vector space with an at most denumerable basis, and R the sum (or 
disjoint union) of K and a K-oector space L. Suppose that E is the sum of a 
finite or infinite sequence (E,)osn<o (where o is an integer or +m) of 
subspaces having the following property: for each n such that 0 n < o 
there exists a linear form pn: L -+ K on L such that u 3 x = pn(u)x for all 
u E L and all x E En, the forms pn being all distinct. It is then clear that every 
“line” Kx contained in some En is a simple R-module, that two lines Kx, Ky 
contained in the same En are isomorphic R-modules, and that if Kx c En, 
Ky c Em with m # n, then Kx and Ky are not isomorphic as 0-modules. It  
follows immediately from (A.23.3) and (A.23.6) that in fact E is the direct 
sum of all the En, which are the isotypic components of the semisimple 
R-module E. Moreover, every simple R-submodule of E is a line Kx con- 
tained in one of the En, and more generally every R-submodule F of E is the 
direct sum of the F n En (A.23.7). 

25. THE CANONICAL DECOMPOSITION OF A N  ENDOMORPHISM 

(A.25.1) Part of the proof of ( I  1.3.3) for a compact operator on a normed 
space can be adapted to the case of an arbitrary endomorphism u of a 
finite-dimensional vector space E over an afgebraicafly closed field K, and 
gives a more precise result than (A.6.10). Namely, 
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(A.25.2) I f A 1 ,  . . . , 1, are the distinct eigenualues of u, the space E is the direct 
sum ofr subspaces El,  . . . , E, each stable under u, such that the restriction of u 
t o  E, has only the eigenvalue 1, . Moreover, if v is the diagonalizable endomor- 
phism of E such that u(x )  = 1,x for x E Ej (1 S j  5 r), then w = u - u is 
nilpotent, and both u and w may be written as polynomials in u with zero 
constant terms, say u = b ,  u + + b,uP, w = c 1  u + ... + cquq, with 
coefficients in K (and hence uw = wv). 

We proceed by induction on the dimension of E and, by replacing u by 
u - 1, . l,, we may assume that 1, = 0. We then form as in (11.3.3) the 
sequences of subspaces N, = u - ' ( 0 ) ,  N, = U-'(N,-~) fork > 1, F, = u(E), 
F, = u(F,- ,) for k > 1. The dimensions of the N, (resp. F,) form an increas- 
ing (resp. decreasing) sequence, and it is clear that there is a smallest integer 
n such that Nk+, = N, for k 2 n, and a smallest integer m such that 
F, + , = F, for k 2 m. We have N, n F, = {0}, because if y E F, n N, there 
exists x E E such that y = u"(x),  and on the other hand u"(y) = 0, so that 
u2,(x) = 0; which implies that x E N,, = N, and hence that y = u"(x) = 0. 
Next, we have F, c F,, and indeed F, = F,. For otherwise we should have 
m > n ;  let z E F,- c F, be such that z q! F,; since u(z)  E F, = u(F,), there 
exists r E F, such that ~ ( z )  = u( t ) ,  hence z - t E Nl  c N,; but since 
z - t E F,, it follows that z = t ,  which contradicts the choice of z. Finally, 
for each x E E, we have u"(x) E F, = F,, and since u"(F,) = F, by the 
definition of m, there exists y E F, such that u"(x) = u"(y), hence x - y E N,, 
and consequently E = F, + N,, the sum being direct because F, n N, = 
(0). The restriction of u to F, is surjective, with kernel 

F, n N, c F, n N, = {0}, 

hence is bijective; and the restriction of u to N, is nilpotent by definition. 
We now apply the inductive hypothesis to ulF, in order to obtain the 
decomposition u = u + w, where v is diagonalizable and w nilpotent; the 
restriction of L' to each E, is scalar multiplication by A,, hence commutes 
with every endomorphism of E,, and in particular with w I Ej, from which it 
follows that vw = wu. 

I t  remains to prove the last assertion. We distinguish three cases: 

(1) r = 1, so that u has only one eigenvalue 1. If 1 = 0, then u = 0 and 
w = u. If 1 # 0, then w" = 0, where n = dim(E), and v = 1 . l E ,  so that 
( u  - 1 . lE)n = 0 and therefore 

and w = u - u, which proves the result in this case. 
(2) Let uj  = u I E, and suppose that u,, = 0 for all h # j .  We can then 
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apply the result of ( 1 )  to Ej and u,. If u, = P(uj) + Q(uj) ,  where P and Q are 
polynomials with zero constant terms, P(uj) being diagonalizable and Q(uj )  
nilpotent, it is clear that u = P(u) and w = Q(u).  

(3) General case: suppose first that l j  # 0. Put 
fi= u n (u  - A h '  1 E r h  

h + j  

where nh = dim(E,); it is clear that the restriction f j  1 Eh is 0 for h # j ,  and 
I;. I Ej has only one eigenvalue, namely p, = l ,  n (l j  - Ah)n" # 0. By case (2), 

there exists a polynomial Rj with zero constant term such that 
Rj(fj) 1 Ej = l E j  and Rj(fj) I E, = 0 if h # j ;  but by definitionfj = Sj(u) ,  where 
S j  is a polynomial with zero constant term; hence Pj(u) = R,(S,(u)) is a 
polynomial in u with zero constant term, such that Pj(u) I E, = 1 E j  and 
Pj(u) IE, = 0 for h # j. If l j  = 0, then we take Pj(u) = 0. We have then 

u = 

(A.25.3) 
u of E such that f is diagonalizable, g nilpotent, and such that f g  = sf 

h F j  

r 

AjPj(u), and w = u - u, and the proof is complete. 
j =  I 

There exists only one decomposition u =f+ g oj'an endomorphism 

Let pk ( 1  5 k 5 s) be the distinct eigenvalues of J: Then E is the direct 
sum of the eigenspaces L, = E(pk;  f )  (A.24.3). Let us first show that 

g(Lk)  c L, for all k .  Indeed, let x E Lk; we may write g ( x )  = 1 zh, with 
S 

h =  1 

zh E Lh for 1 2 h s, whence f ( g ( x ) )  = 1 phzh; on the other hand, 

f ( x )  = p k x ,  so that g ( / ( x ) )  = p k z h ,  and the relation f ( g ( x ) )  = g ( f ( x ) )  

therefore takes the form 1 (p, - ph)Zh = 0, so that we have z h  = 0 for all 

h # k, because the ph are all distinct. We may therefore (A.6.12) take a basis 
of E that is the union of bases of the Lk, such that the restriction of u to each 
L, is represented by a lower triangular matrix with diagonal elements all 
equal to 1,. Consequently the p, are the eigenvalues of u, and L, is the 
subspace N(p,) consisting of vectors x E E such that (u - pk . lE)'"(x) = 0 
for large enough m. This proves that f =  u and g = w. 

h =  1 
S 

h =  I 
I 

h =  1 

26. FINITELY GENERATED Z-MODULES 

(A.26.1) A Z-module M (A.8.1) that admits a system of generators 
( a j ) l s j s , ,  consisting of n elements is isomorphic to a quotient Z"/N of a 
finitely generated free Z-module. For if (u, ,  . . . , u,,) is the canonical basis of 
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Z", we may define a surjective homomorphism f: Z" 4 M by putting 
f ( u j )  = aj  for I 2 j 2 n. The study of finitely generated Z-modules is there- 
fore reduced to that of the submodules and quotient modules of a finitely 
generated free Z-module. 

(A.26.2) 
generated and free. 

Ever!! submodule of a jinitely generated free Z-module is finitely 

Let L be a Z-module having a basis (a , ,  . . . , a,) and let M be a submodule 
of L. Denote by L, ( 1  j $ n)  the submodule of L with basis a, ,  . . . , ajr and 
put M j  = M n L,. I f  (a?, . . ., a,*) is the basis dual to (a , ,  . . . , a,) in the dual 
Z-module L* (A.9.2), then the set of integers ( x ,  a?), where x E M,, is 
evidently an ideal in Z, hence is of the form mjZ, where mi is an integer 2 0. 
Hence there exists an element bj  E Mj such that ( b j ,  a!) = mi; if mj = 0, we 
take bj = 0. Let Mi be the submodule of M generated by b, ,  . . . , bj ;  we shall 
show that MJ = M,. This is obvious when j = 1, since M ,  is the set of 
multiples p .  a ,  of a ,  that belong to M, and (pa , ,  a f )  = p.  We proceed by 
induction on j .  I f  x E Mj,  we have (x, a?) = pmj for some p E Z, hence 
( x  - pb,, a?) = 0, and since by hypothesis x and bjare linear combinations 
of a , ,  . . . , a,, it  follows that x - pbj E Mj- ,, which by the inductive hypoth- 
esis is equal to MJ- , ; hence x E MJ as required. Taking j = n, we see that M 
is generated by b,,  . . . , b,, and it remains to show that the nonzero b, form a 

free system. Suppose then that we have a relation 1 k ,  b j  = 0, where the k j  b, 

are not all zero. I f  h is the largest of the indices j such that k j  b j  # 0, we have 
( khbh ,  a:) = (c k j b j ,  a:) = 0, because k,bj = 0 for j > h, and k j b j  is a 

linear combination of a , ,  . . . , aj for j < h. Hence we have kh mh = 0, contra- 

n 

j =  1 

I 

dicting k h  bh # 0. 

(A.26.3) Let L be ajinitely generated free Z-module and M a submodule of L. 
Then there exists a basis (e l ,  . . . , en) of' L and r $ n integers a,, . . . , a, which 
are>Osuchthatajdividesaj+lfor 1 S j S  r -  l,andsuchthata,e,, . . . ,  arer 
form a basis of M. Furthermore, the numbers r, n and aj (1 5 j $ r )  are 
uniquely determined by these properties. 

Let (a,,  . . . , a,) be a basis of L and (af, . . . , a,*) the dual basis of L*. We 
may assume that M # {O}. Consider the integers (x, y*)  for .x E M and 
y* E L*; by hypothesis, they are not all 0, and since ( - x ,  y*)  = - ( x ,  y*) ,  
there exists x ,  E M and y: E L* such that ( x , ,  y:) = a, is the smallest of the 
nonzero integers I ( x ,  y*)  I for x E M and y E L*. We deduce first that for 
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each s E M, the integer a = (x, y:) is a multiple of a , ;  for otherwise the 
highest common factor 6 of and a, would be such that 0 < 6 < a,, and we 
should have 6 = 1/3 + pa, by Bezout's identity, where I and p are suitable 
integers; but this would imply (2.x + p x , ,  y:) = 6, contradicting the 
definition of a ] .  One proves in the same way that (x,, y*) is a multiple of., 
for each y* E L*. In particular, all the integers (x,, a!) are multiples of a,,  
and hence there exists e, E L such that x, = a, e l .  Let L, = Ker(y:); we 
shall show that L is the direct sum of Z e ,  and L,. We have ( e l ,  y:) = 1 by 
definition; hence, for any y E L, if (y, y:) = y ,  we have (y - ye,, y:) = 0, 
that is to say, y - ye, E L,. Also, we cannot have l e ,  E L, unless 1 = 0, by 
the definition of L,,  and this establishes our assertion. Likewise, M is the 
direct sum of Z a ,  e ,  and M, = M n L,. Namely, for each x E M we have 
(x, y:) = pa, for some p E Z ,  hence (x - pa, e l ,  y:) = 0, that is to say, 
x - pi, e ,  E L, n M = MI. 

By virtue of (A.26.2), L, admits a basis, and from the previous paragraph 
and the invariance of the number of elements in a basis of L (A.8.3), any 
basis of L, must have n - 1 elements. By induction on n, we may assume 
that there is a basis (ez,  ..., en) of L, and r - 1 S n - 1 integers a 2 , .  . ., a, 
such that aj  divides a j+  , for 2 S j r - 1 and such that a2 e 2 , .  . . , a, e, form 
a basis of M I .  I t  remains therefore to prove that a, divides az . If (e:, . . . , e,*) 
is the basis of L* dual to ( e l ,  ..., en), we have ( a l e l ,  e : )  = a l  and 
( a 2 e 2 ,  e : )  = a 2 .  If a2 were not a multiple of al ,  there would exist 
I, p E Z such that 6 = lal + pa2 satisfied 0 < 6 < a l ,  and since 

( a l e l  + a2 e2 ,  1e: + p e : )  = 6, 

this would contradict the definition of a l .  
It is clear that the quotient Z-module L/M is isomorphic to the direct 

sum of Zn-' and r cyclic groups Z / a j Z  (1 S j 5 r ) ;  the integers 1 such that 
1(L/M) is free are therefore exactly the multiples of a,, and for these integers 
2(L/M) is isomorphic to Z"-'. This already shows (A.8.3) that the integers n 
and r are well determined, as is the submodule T of L/M consisting of the 
elements of finite order in this group. Observe next that if Z / m Z  is a cyclic 
group and p a prime number, we have p k ( Z / m Z )  = Z / m Z  if p does not divide 
m ;  whereas if m = phm', where p does not divide m', we have p'(Z/mZ) = 

Z/(p"'km')Z if k < h, and pk(Z/mZ)  = Z/m'Z if k 2 h. If p , ,  . . . , P h  are the 
prime numbers dividing a,, it follows that the orders of the groups p;T 
determine the exponents of the p j  in the ai :  the order of p;T is the product of 
the order of p;+,T by p j ,  where v is the number of ai divisible by p ; + ' .  This 
shows that the ai are well determined. 

The numbers ai are called the inoariantfactors of M with respect to L. 
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We have also established: 

(A.26.4) Eaery finitely generated Z-module N is isomorphic to the product of 
a free Z-module Z s  and r cyclic groups Z / a j Z  (1 5 j 5 r )  such that aj divides 
aj+ I lor  1 5 j 5 r - 1 ; and the numbers s, r, and aj (1 5 j 5 r )  are uniquely 
determined by these properties. 

(A.26.5) Keeping the notation of (A.26.3), suppose in addition that r = n, 
so that L/M is a finite group. I f  we putfj = a j e j ,  the& (1 5 j 5 n )  form a 
basis of M, and the matrix of the canonical injection u:  M + L relative to the 
bases ( f j )  and ( e j )  (A.5.2) is the diagonal matrix diag(a,, . . . , an). This is 
therefore also the matrix of the transpose ' u :  L* + M* relative to the dual 
bases ( e f )  and ( f f )  (A.9.4). Hence L* may be canonically identified with the 
submodule of M* having as basis the aj f f, and M*/L* is isomorphic to L/M. 

(A.26.6) In order that a submodule M of afinitely generated free Z-module L 
should admit a supplement in L, it is necessary and suficient that the invariant 
factors ofM with respect to L should all be equal to 1. 

The condition is clearly sufficient by virtue of (A.26.3): the e j  such that 
r + 1 2 j 5 n form a basis of a supplement of M. Conversely, if M admits a 
supplement N, then L/M is isomorphic to N and hence is a free Z-module 
(A.26.2); this implies that all the cyclic modules Z / a j Z  must be trivial, hence 
a j =  1 for 1 5 j s r .  
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