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Foreword

This book is an outgrowth of my Introduction to Differentiable Manifolds
(1962) and Differential Manifolds (1972). Both I and my publishers felt it
worth while to keep available a brief introduction to differential manifolds.

The book gives an introduction to the basic concepts which are used in
differential topology, differential geometry, and differential equations. In dif-
ferential topology, one studies for instance homotopy classes of maps and
the possibility of finding suitable differentiable maps in them (immersions,
embeddings, isomorphisms, etc.). One may also use differentiable structures
on topological manifolds to determine the topological structure of the
manifold (for example, & la Smale [Sm 67]). In differential geometry, one
puts an additional structure on the differentiable manifold (a vector field, a
spray, a 2-form, a Riemannian metric, ad lib.) and studies properties con-
nected especially with these objects. Formally, one may say that one studies
properties invariant under the group of differentiable automorphisms which
preserve the additional structure. In differential equations, one studies vec-
tor fields and their integral curves, singular points, stable and unstable
manifolds, etc. A certain number of concepts are essential for all three, and
are so basic and elementary that it is worthwhile to collect them together so
that more advanced expositions can be given without having to start from
the very beginnings. The concepts are concerned with the general basic
theory of differential manifolds. My Fundamentals of Differential Geometry
(1999) can then be viewed as a continuation of the present book.

Charts and local coordinates. A chart on a manifold is classically a rep-
resentation of an open set of the manifold in some euclidean space. Using a
chart does not necessarily imply using coordinates. Charts will be used sys-
tematically.



vi FOREWORD

I don’t propose, of course, to do away with local coordinates. They
are useful for computations, and are also especially useful when inte-
grating differential forms, because the dx; A --- A dx,. corresponds to the
dx) ---dx, of Lebesgue measure, in oriented charts. Thus we often give
the local coordinate formulation for such applications. Much of the
literature is still covered by local coordinates, and 1 therefore hope that the
neophyte will thus be helped in getting acquainted with the literature. I
also hope to convince the expert that nothing is lost, and much is gained,
by expressing one’s geometric thoughts without hiding them under an ir-
relevant formalism.

Since this book is intended as a text to follow advanced calculus, say at
the first year graduate level or advanced undergraduate level, manifolds are
assumed finite dimensional. Since my book Fundamentals of Differential
Geometry now exists, and covers the infinite dimensional case as well, read-
ers at a more advanced level can verify for themselves that there is no es-
sential additional cost in this larger context. I am, however, following here
my own admonition in the introduction of that book, to assume from the
start that all manifolds are finite dimensional. Both presentations need to be
available, for mathematical and pedagogical reasons.

New Haven 2002 Serge Lang
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CHAPTER |

Differential Calculus

We shall recall briefly the notion of derivative and some of its useful
properties. My books on analysis [La83/97], [La 93] give a self-contained
and complete treatment. We summarize basic facts of the differential
calculus. The reader can actually skip this chapter and start immediately
with Chapter II if the reader is accustomed to thinking about the de-
rivative of a map as a linear transformation. (In the finite dimensional
case, when bases have been selected, the entries in the matrix of this
transformation are the partial derivatives of the map.) We have repeated
the proofs for the more important theorems, for the ease of the reader.

It is convenient to use throughout the language of categories. The
notion of category and morphism (whose definitions we recall in §1) is
designed to abstract what is common to certain collections of objects and
maps between them. For instance, euclidean vector spaces and linear
maps, open subsets of euclidean spaces and differentiable maps, differ-
entiable manifolds and differentiable maps, vector bundles and vector
bundle maps, topological spaces and continuous maps, sets and just plain
maps. In an arbitrary category, maps are called morphisms, and in fact
the category of differentiable manifolds is of such importance in this book
that from Chapter II on, we use the word morphism synonymously with
differentiable map (or p-times differentiable map, to be precise). All other
morphisms in other categories will be qualified by a prefix to indicate the
category to which they belong.



2 DIFFERENTIAL CALCULUS [1, §1]

I, §1. CATEGORIES

A category is a collection of objects {X, Y,...} such that for two objects
X, Y we have a set Mor(X, Y) and for three objects X, Y, Z a mapping
(composition law)

Mor(X, Y) x Mor(Y, Z) — Mor(X, Z)
satisfying the following axioms:

CAT 1. Two sets Mor(X, Y) and Mor(X', Y') are disjoint unless
X=X and Y =7Y', in which case they are equal.

CAT 2. Each Mor(X, X) has an element idy which acts as a left and
right identity under the composition law.

CAT 3. The composition law is associative.

The elements of Mor(X, Y) are called morphisms, and we write fre-
quently f: X — Y for such a morphism. The composition of two
morphisms f, g is written fg or fog.

Elements of Mor(X,X) are called endomorphisms of X, and we write

Mor(X, X) = End(X).

For a more extensive description of basic facts about categories, see my
Algebra [La 02], Chapter I, §1. Here we just remind the reader of the
basic terminology which we use. The main categories for us will be:

Vector spaces, whose morphisms are linear maps.

Open sets in a finite dimensional vector space over R, whose morphisms
are differentiable maps (of given degree of differentiability, C° C',...,
Cc™).

Manifolds, with morphisms corresponding to the morphisms just
mentioned. See Chapter II, §1.

In any category, a morphism f: X — Y is said to be an isomorphism
if it has an inverse in the category, that is, there exists a morphism
g: Y — X such that fg and gf are the identities (of ¥ and X respectively).
An isomorphism in the category of topological spaces (whose morphisms
are continuous maps) has been called a homeomorphism. We stick to the
functorial language, and call it a topological isomorphism. In general, we
describe the category to which a morphism belongs by a suitable prefix. In
the category of sets, a set-isomorphism is also called a bijection. Warning:
A map f: X — Y may be an isomorphism in one category but not in
another. For example, the map x — x> from R — R is a C°-isomorphism,
but not a C! isomorphism (the inverse is continuous, but not differentiable
at the origin). In the category of vector spaces, it is true that a bijective
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morphism is an isomorphism, but the example we just gave shows that the
conclusion does not necessarily hold in other categories.

An automorphism is an isomorphism of an object with itself. The set of
automorphisms of an object X in a category form a group, denoted by
Aut(X).

If f: X — Y is a morphism, then a section of f is defined to be a
morphism ¢g: Y — X such that fog=idy.

A functor 1: A — A’ from a category A into a category A’ is a map
which associates with each object X in 2 an object A(X) in ', and with
each morphism f: X — Y a morphism A(f): A(X) — A(Y) in A’ such
that, whenever f and g are morphisms in 2l which can be composed, then
M fg) = A(f)A(g) and A(idy) = id;(x) for all X. This is in fact a covariant
functor, and a contravariant functor is defined by reversing the arrows
(so that we have A(f): A(Y) — A(X) and A(fg) = A(9)A(f)).

In a similar way, one defines functors of many variables, which may
be covariant in some variables and contravariant in others. We shall
meet such functors when we discuss multilinear maps, differential forms,
etc.

The functors of the same variance from one category 2 to another A’
form themselves the objects of a category Fun(2l, ). Its morphisms will
sometimes be called natural transformations instead of functor morphisms.
They are defined as follows. If A, u are two functors from U to A’ (say
covariant), then a natural transformation 7: 1 — u consists of a collection
of morphisms

ty: AX) — pu(X)

as X ranges over 2, which makes the following diagram commutative for
any morphism f: X — Y in 2U:

AX) = p(x)

l(f)l lﬂ(f)

HY) — u(¥)

Vector spaces form a category, the morphisms being the linear maps.
Note that (E,F) — L(E,F) is a functor in two variables, contravariant in
the first variable and covariant in the second. If many categories are being
considered simultaneously, then an isomorphism in the category of vector
spaces and linear map is called a linear isomorphism. We write Lis(E, F)
and Laut(E) for the vector spaces of linear isomorphisms of E onto F, and
the linear automorphisms of E respectively.
The vector space of r-multilinear maps

V.EX---xE—F
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of E into F will be denoted by L"(E, F). Those which are symmetric (resp.
alternating) will be denoted by L{(E,F) or L, (E,F) (resp. L,(E,F)).
Symmetric means that the map is invariant under a permutation of its
variables. Alternating means that under a permutation, the map changes
by the sign of the permutation.

We find it convenient to denote by L(E), L"(E), L/(E), and L)(E) the
linear maps of E into R (resp. the r-multilinear, symmetric, alternating
maps of E into R). Following classical terminology, it is also convenient
to call such maps into R forms (of the corresponding type). If Ei,... E,
and F are vector spaces, then we denote by L(Ej,. .., E,;F) the multilinear

maps of the product E; x --- x E, into F. We let:
End(E) = L(E, E),
Laut(E) = elements of End(E) which are invertible in End(E).
Thus for our finite dimensional vector space E, an element of End(E) is in
Laut(E) if and only if its determinant is # 0.
Suppose E, F are given norms. They determine a natural norm on L(E, F),

namely for 4 € L(E, F), the operator norm | 4| is the greatest lower bound of all
numbers K such that

x| < K|

for all xeE.

I, §2. FINITE DIMENSIONAL VECTOR SPACES

Unless otherwise specified, vector spaces will be finite dimensional over the
real numbers. Such vector spaces are linearly isomorphic to euclidean

space R” for some n. They have norms. If a basis {ej,...,e,} is selected,

then there are two natural norms: the euclidean norm, such that for a

vector v with coordinates (xp,...,x,) with respect to the basis, we have
2 2

2
|U‘euc =X +'”+xn‘
The other natural norm is the sup norm, written |v|,, such that

0]

e}

= max |x;].

1
It is an elementary lemma that all norms on a finite dimensional vector
space E are equivalent. In other words, if ||, and | |, are norms on E,

then there exist constants Cj, C, > 0 such that for all ve E we have

Cilv]; £ o], £ G-
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A vector space with a norm is called a normed vector space. They form
a category whose morphisms are the norm preserving linear maps, which
are then necessarily injective.

By a euclidean space we mean a vector space with a positive definite
scalar product. A morphism in the euclidean category is a linear map
which preserves the scalar product. Such a map is necessarily injective.
An isomorphism in this category is called a metric or euclidean iso-
morphism. An orthonormal basis of a euclidean vector space gives rise to
a metric isomorphism with R”, mapping the unit vectors in the basis on
the usual unit vectors of R”.

Let E, F be vector spaces (so finite dimensional over R by convention).
The set of linear maps from E into F is a vector space isomorphic to the
space of m x n matrices if dim E =m and dim F = n.

Note that (E,F)+— L(E,F) is a functor, contravariant in E and co-
variant in F. Similarly, we have the vector space of multilinear maps

L(Elv'“;EraF)

of a product E; x --- X E, into F. Suppose norms are given on all E; and
F. Then a natural norm can be defined on L(E,,...,E, F), namely the
norm of a multilinear map

A E; x---xE, - F
is defined to be the greatest lower bound of all numbers K such that

(31, x5 < Kl
We have:

Proposition 2.1. The canonical map
L(E;,L(E,,...,L(E,,F)) — L'(E,,...,E,F)

from the repeated linear maps to the multilinear maps is a linear iso-
morphism which is norm preserving.

For purely differential properties, which norms are chosen are irrelevant
since all norms are equivalent. The relevance will arise when we deal with
metric structures, called Riemannian, in Chapter VII.

We note that a linear map and a multilinear map are necessarily
continuous, having assumed the vector spaces to be finite dimensional.
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I, §3. DERIVATIVES AND COMPOSITION OF MAPS

For the calculus in vector spaces, see my Undergraduate Analysis [La 83/
97]. We recall some of the statements here.
A real valued function of a real variable, defined on some neighborhood
of 0 is said to be o(¢) if
lim o(#)/t=0.

t—0
Let E, F be two vector spaces (assumed finite dimensional), and ¢ a
mapping of a neighborhood of 0 in E into F. We say that ¢ is tangent to
0 if, given a neighborhood W of 0 in F, there exists a neighborhood V" of 0

in E such that
p(tV) < o(t)W

for some function o(#). If both E, F are normed, then this amounts to the
usual condition

lp(x)] = Ixih(x)

with lim y(x) =0 as |x| — 0.

Let E, F be two vector spaces and U open in E. Let f: U —F be a
continuous map. We shall say that f is differentiable at a point xy € U if
there exists a linear map A4 of E into F such that, if we let

S(xo+y) = f(x0) + 1y + o)

for small y, then ¢ is tangent to 0. It then follows trivially that A is
uniquely determined, and we say that it is the derivative of f at x;. We
denote the derivative by D f(xy) or f'(xp). It is an element of L(E, F). If
f is differentiable at every point of U, then f’ is a map

f': U— L(E, F).
It is easy to verify the chain rule.

Proposition 3.1. If f: U — V is differentiable at xo, if g: V — W is
differentiable at f(xy), then go [ is differentiable at x, and

(g0 f)'(x0) = g'(f(x0)) o f'(x0).
Proof. We leave it as a simple (and classical) exercise.

The rest of this section is devoted to the statements of the differential
calculus.

Let U be open in E and let f: U — F be differentiable at each point of
U. If f'is continuous, then we say that f is of class C!. We define maps
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of class C? (p = 1) inductively. The p-th derivative D?f is defined as
D(DP1f) and is itself a map of U into

L(E, L(E,...,L(E, F)))

which can be identified with L?(E, F) by Proposition 2.1. A map f is said
to be of class C? if its kth derivative D*f exists for 1 < k < p, and is
continuous.

Remark. Let f be of class C?, on an open set U containing the origin.
Suppose that f is locally homogeneous of degree p near 0, that is

S (1x) = 7f ()

for all t and x sufficiently small. Then for all sufficiently small x we
have

J(x) = p—D”f (0)x,

where xP) = (x, x,...,x), p times.

This is easily seen by differentiating p times the two expressions for
f(tx), and then setting r = 0. The differentiation is a trivial application of
the chain rule.

Proposition 3.2. Let U, V be open in vector spaces. If f: U — V and
g: V—F are of class CP, then so is go f.

From Proposition 3.2, we can view open subsets of vector spaces as
the objects of a category, whose morphisms are the continuous maps of
class C?. These will be called C”-morphisms. We say that f is of class
C* if it is of class C? for all integers p = 1. From now on, p is an
integer >0 or oo (C° maps being the continuous maps). In practice, we
omit the prefix C? if the p remains fixed. Thus by morphism, throughout
the rest of this book, we mean C?-morphism with p < co. We shall use
the word morphism also for C?-morphisms of manifolds (to be defined in
the next chapter), but morphisms in any other category will always be
prefixed so as to indicate the category to which they belong (for instance
bundle morphism, continuous linear morphism, etc.).

Proposition 3.3. Let U be open in the vector space E, and let f: U — F
be a CP-morphism. Then DPf (viewed as an element of LP(E, F)) is
symmetric.

Proposition 3.4. Let U be open in E, and let fi: U — F; (i=1,...,n) be
continuous maps into spaces ¥;. Let f = (fi,...,f,) be the map of U
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into the product of the ¥;. Then fis of class C? if and only if each f; is
of class C?, and in that case

DPf = (D’fi,...,DPfy).
Let U, V be open in spaces E;, E; and let
f: UxV —F

be a continuous map into a vector space. We can introduce the notion of
partial derivative in the usual manner. If (x, y) is in U x V' and we keep
y fixed, then as a function of the first variable, we have the derivative as
defined previously. This derivative will be denoted by D, f(x, y). Thus

Dif: Ux V — L(Ey, F)

is a map of U x V into L(E;, F). We call it the partial derivative with
respect to the first variable. Similarly, we have D, f, and we could take n
factors instead of 2. The total derivative and the partials are then related
as follows.

Proposition 3.5. Let Uy,..., U, be open in the spaces Eq, ..., E, and let
f: U x---x U, — F be a continuous map. Then f is of class CP? if and
only if each partial derivative D;f: Uj x --- U, — L(E;, F) exists and is
of class CP='. If that is the case, then for x = (xi,...,x,) and

v=(v1,...,0y) €EE; X -+ X E,

we have

Df(x)-(v1,...,0,) = ZDif(x)‘Ui-

The next four propositions are concerned with continuous linear and
multilinear maps.

Proposition 3.6. Let E, F be vector spaces and f: E — F a continuous
linear map. Then for each x € E we have

f'x)=1r.

Proposition 3.7. Let E, F, G be vector spaces, and U open in E. Let
f: U—F be of clauss C? and g: F — G linear. Then go f is of class
C? and

DP(go f)=goD"f.

Proposition 3.8. If E;,... E, and F are vector spaces and

f:Ex---xE, —F
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a multilinear map, then f is of class C*, and its (r + 1)-st derivative is
0. If r=2, then Df is computed according to the usual rule for
derivative of a product (first times the derivative of the second plus
derivative of the first times the second).

Proposition 3.9. Let E, F be vector spaces which are isomorphic. If
u: E— F is an isomorphism, we denote its inverse by u='. Then the
map

u— u!

from Lis(E, F) to Lis(F, E) is a C*-isomorphism. Its derivative at a
point ug is the linear map of L(E, F) into L(F, E) given by the formula

vr—>ualvual.

Finally, we come to some statements which are of use in the theory of
vector bundles.

Proposition 3.10. Let U be open in the vector space E and let ¥, G be
vector spaces.

(i) If f: U— L(E, F) is a CP-morphism, then the map of U x E into
F given by

(x, v) = f(x)v
is a morphism.

(i) If f: U— L(E,F) and g: U — L(F, G) are morphisms, then so
is y(f, g) (y being the composition).

(iii) If f: U—R and g: U — L(E, F) are morphisms, so is fg (the
value of fg at x is f(x)g(x), ordinary multiplication by scalars).

(iv) If f, g: U— L(E, F) are morphisms, so is f +g.

This proposition concludes our summary of results assumed without
proof.

I, §4. INTEGRATION AND TAYLOR’S FORMULA

Let E be a vector space. We continue to assume finite dimensionality over
R. Let 7 denote a real, closed interval, say ¢ < ¢t < b. A step mapping

fiI—E

is a mapping such that there exists a finite number of disjoint sub-intervals
Ii,...,1, covering I such that on each interval /;, the mapping has
constant value, say v;. We do not require the intervals /; to be closed.
They may be open, closed, or half-closed.
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Given a sequence of mappings f, from [ into E, we say that it converges
uniformly if, given a neighborhood W of 0 into E, there exists an integer
ny such that, for all n, m > ny and all ¢ € I, the difference f,(¢) — f,,(¢) lies
in W. The sequence f, then converges to a mapping f of [ into E.

A ruled mapping is a uniform limit of step mappings. We leave to the
reader the proof that every continuous mapping is ruled.

If fis a step mapping as above, we define its integral

rfsz®m=§ywm,

a

where p(I;) is the length of the interval J; (its measure in the standard
Lebesgue measure). This integral is independent of the choice of intervals
I; on which f is constant.

If fis ruled and f =1limf, (lim being the uniform limit), then the

Sequence
b
Jﬂ
a

converges in E to an element of E independent of the particular sequence
fn used to approach f uniformly. We denote this limit by

rf—ff@m

and call it the integral of f. The integral is linear in f, and satisfies bthe

usual rules concerning changes of intervals. (If b < a then we define J to
be minus the integral from b to a.)

As an immediate consequence of the definition, we get:

Proposition 4.1. Let A: E — R be a linear map and let f: I — E be
ruled. Then Af = Ao f is ruled, and

/ljbf(z) dt = Jj/lf(t) dt.

a

Proof. 1If f, is a sequence of step functions converging uniformly to f,
then Af, is ruled and converges uniformly to 1f. Our formula follows at
once.

Taylor’s Formula. Let E, F be vector spaces. Let U be open in E. Let
x, ¥ be two points of U such that the segment x+ ty lies in U for
0<tr=1 Let

f: U—F
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be a CP-morphism, and denote by y\¥) the “vector” (y,...,y) p times.
Then the function DPf(x+ty)- y?) is continuous in t, and we have

Df( Dp—lf -1
fx+y) =)+ 1f)y %
ISTEY 2
L %D”f(x + 1)y dt.

Proof. 1t suffices to show that both sides give the same thing when we
apply a functional / (linear map into R). This follows at once from
Proposition 3.7 and 4.1, together with the known result when F =R. In
this case, the proof proceeds by induction on p, and integration by parts,
starting from

1

S+ )= 1) = | DA+ iy
The next two corollaries are known as the mean value theorem.

Corollary 4.2. Let E, F be two normed vector spaces, U open in
E. Let x, z be two distinct points of U such that the segment
x+t(z=x) (0=t =1)liesin U Let f: U—F be continuous and of
class C'. Then

1/ (2) = f(X) = |z = x| sup [ f"(S)],

the sup being taken over & in the segment.

Proof. This comes from the usual estimations of the integral. Indeed,
for any continuous map ¢g: I — F we have the estimate

Jb g(t) dt| < K(b—a)

a

if Kis a bound for g on I, and @ < b. This estimate is obvious for step
functions, and therefore follows at once for continuous functions.

Another version of the mean value theorem is frequently used.

Corollary 4.3. Let the hypotheses be as in Corollary 4.2. Let xy be a
point on the segment between x and z. Then

/() = f(x) = f'(x0)(z = X)| < |z = x| sup| /(&) = /' (x0)l,

the sup taken over all & on the segment.
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Proof. We apply Corollary 4.2 to the map

g(x) = f(x) = f"(x0)x.

Finally, let us make some comments on the estimate of the remainder
term in Taylor’s formula. We have assumed that D?f is continuous. There-
fore, D?f(x+ty) can be written

DPf (x+ty) = D7f (x) +y(y, 1),
where i depends on y, ¢ (and x of course), and for fixed x, we have
lim |y (y, 1) = 0
as |y| — 0. Thus we obtain:
Corollary 4.4. Let E, F be two normed vector spaces, U open in E, and x

a point of U. Let f: U — F be of class C?, p = 1. Then for all y such
that the segment x+ty lies in U (0 < ¢t < 1), we have

D)y, DG

et y) = f(x) +=7; Y +0(y)

with an error term 0(y) satisfying

lim 0(y)/|y|” = 0.
y—0

I, §5. THE INVERSE MAPPING THEOREM

The inverse function theorem and the existence theorem for differential
equations (of Chapter IV) are based on the next result.

Lemma 5.1 (Contraction Lemma or Shrinking Lemma). Let M be a
complete metric space, with distance function d, and let f: M — M be a
mapping of M into itself. Assume that there is a constant K, 0 < K < 1,
such that, for any two points x, y in M, we have

d(f(x), /() = Kd(x, ).

Then f has a unique fixed point (a point such that f(x) = x). Given any
point xy in M, the fixed point is equal to the limit of f"(xo) (iteration of
f repeated n times) as n tends to infinity.
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Proof. This is a trivial exercise in the convergence of the geometric
series, which we leave to the reader.

Theorem 5.2. Let E, F be normed vector spaces, U an open subset of E,
and let f: U — F a CP-morphism with p = 1. Assume that for some
point xo € U, the derivative f'(xo): E—F is a linear isomorphism.
Then f is a local CP-isomorphism at X.

(By a local C?-isomorphism at x), we mean that there exists an open
neighborhood ¥V of xp such that the restriction of f to V establishes a
CP-isomorphism between } and an open subset of E.)

Proof. Since a linear isomorphism is a C*-isomorphism, we may
assume without loss of generality that E=F and f'(xy) is the identity
(simply by considering f'(xo) ' o f instead of f). After translations, we
may also assume that xo =0 and f(xo) =0.

We let g(x) = x — f(x). Then ¢g’(xp) = 0 and by continuity there exists
r> 0 such that, if |x| < 2r, we have

1
l9'(x)] < 3.

maps the closed ball of radius r, B,(0) into B, (0).
We contend: Given y € B,»(0), there exists a unique element x € B,(0)
such that f(x) = y. We prove this by considering the map

From the mean value theorem, we see that |g(x)| < 1|x| and hence g

gy(x) =y +x = f(x).

If |y| < r/2 and |x| < r, then |g,(x)| < r and hence g, may be viewed as
a mapping of the complete metric space B,(0) into itself. The bound of }
on the derivative together with the mean value theorem shows that g, is a
contracting map, i.e. that

g, (x1) — gy (x2) = lg(x1) — g(x2)| £ 3|x1 — x2

for xj, x; € B,(0). By the contraction lemma, it follows that gy, has a
unique fixed point. But the fixed point of g, is precisely the solution of the
equation f(x) = y. This proves our contention.

We obtain a local inverse ¢ = f~'. This inverse is continuous, because

Ix1 —xa| < |f(x1) = f(x2)] +1g(x1) — g(x2)]

and hence

X1 —x2| < 2[f(x1) = f(x2)]-
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Furthermore ¢ is differentiable in B,»(0). Indeed, let y, = f(x1) and
¥, = f(x2) with y;, y, € B,5(0) and xi, x» € B,(0). Then

lp(r) = 0(32) = f'(2) " (= w)l = |31 =32 = £ (x2) T (f(x1) = f(3x2))].

We operate on the expression inside the norm sign with the identity

id=/"(x2)"" f'(x2).

Estimating and using the continuity of f”’, we see that for some constant
A, the preceding expression is bounded by

Alf'(x2)(x1 — x2) — f(x1) + £ (x2)].

From the differentiability of f, we conclude that this expression is
o(x1 — x) which is also o(y, — y,) in view of the continuity of ¢ proved
above. This proves that ¢ is differentiable and also that its derivative is
what it should be, namely

for y e B,/»(0). Since the mappings ¢, f’, “inverse” are continuous, it
follows that ¢’ is continuous and thus that ¢ is of class C!. Since taking
inverses is C* and f’ is CP~!, it follows inductively that ¢ is C?, as was
to be shown.

Note that this last argument also proves:

Proposition 5.3. If f: U — V is a homeomorphism and is of class CP
with p = 1, and if [ is a C'-isomorphism, then f is a CP-isomorphism.

In some applications it is necessary to know that if the derivative of a
map is close to the identity, then the image of a ball contains a ball of
only slightly smaller radius. The precise statement follows. In this book,
it will be used only in the proof of the change of variables formula, and
therefore may be omitted until the reader needs it.

Lemma 5.4. Let U be open in E, and let f: U — E be of class C'.
Assume that f(0) =0, f'(0)=1. Let r >0 and assume that B,(0) = U.
Let 0 <s <1, and assume that

/'@ = ()] = s

for all x, ze B,(0). If yeE and |y| £ (1 —s)r, then there exists a
unique x € B,(0) such that f(x) = y.
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Proof. The map g, given by g,(x) = x — f(x) + y is defined for [x[ < r
and |y| £ (1 —s)r, and maps B,(0) into itself because, from the estimate

/() = x| =1 (x) = £(0) = f'(0)x] = [x| sup|f’(z) = f'(0)] < sr,

we obtain
lgy(x)] S sr+(1—s)r=r.

Furthermore, g, is a shrinking map because, from the mean value theorem,
we get

lgy(x1) — gy(x2)] = |x1 = x2 = (f(x1) = f(x2))]
= [x1 —x2 = f7(0)(x1 — x2) +3(x1, x2)|
= |d(x1, x2)],

where
[0(x1, x2)| = [x1 — x| sup|f'(z) — f(0)] < slx1 — xa.

Hence g, has a unique fixed point x € B,(0) which is such that f(x) =
This proves the lemma.

We shall now prove some useful corollaries, which will be used in
dealing with immersions and submersions later. We assume that morphism
means CP-morphism with p = 1.

Corollary 5.5. Let U be an open subset of E, and f: U —F; xF; a
morphism of U into a product of vector spaces. Let xy € U, suppose that
f(x0) = (0, 0) and that f'(x¢) induces a linear isomorphism of E and
F; =F; x 0. Then there exists a local isomorphism g of Fi x F, at (0, 0)
such that

gof: U—F xF,

maps an open subset U; of U into ¥; x 0 and induces a local iso-
morphism of U) at xy on an open neighborhood of 0 in Fi.

Proof. We may assume without loss of generality that F; =E
(identify by means of f”(xo)) and xo =0. We define

Q: UXF2—>F1 XF2
by the formula
p(x, ¥,) = f(x) + (0, »,)

for xe U and y, € F». Then ¢(x, 0) = f(x), and

(”I(Oa O) = f’(O) + (07 1d2)
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Since f’(0) is assumed to be a linear isomorphism onto F; x 0, it follows
that ¢’(0, 0) is also a linear isomorphism. Hence by the theorem, it has a
local inverse, say g, which obviously satisfies our requirements.

Corollary 5.6. Let E, F be normed vector spaces, U open in E, and
f: U—F a CP-morphism with p = 1. Let xoe U. Suppose that
f(x0) =0 and f'(xo) gives a linear isomorphism of E on a closed
subspace of ¥. Then there exists a local isomorphism g: ¥ — Fy x F, at
0 and an open subset U, of U containing x such that the composite map
go f induces an isomorphism of Uy onto an open subset of Fy.

Considering the splitting assumption, this is a reformulation of
Corollary 5.5.

For the next corollary, dual to the preceding one, we introduce the
notion of a local projection. Given a product of two open sets of vector
spaces V| x V5 and a morphism f: V; x V, — F, we say that f is a
projection (on the first factor) if f can be factored

V]XV2~>V1—>F

into an ordinary projection and an isomorphism of /| onto an open subset
of F. We say that fis a local projection at (a;, a;) if there exists an open
neighborhood U; x U, of (aj, a;) such that the restriction of f to this
neighborhood is a projection.

Corollary 5.7. Let U be an open subset of a product of vector spaces
E, x E; and (a1, a2) a point of U. Let f: U — F be a morphism into a
Banach space, say f(ai, ay) =0, and assume that the partial derivative

sz(al, az): E2—>F

is a linear isomorphism. Then there exists a local isomorphism h of a
product Vi x V, onto an open neighborhood of (ay, a;) contained in U
such that the composite map

Vix Vs S ULF
is a projection (on the second factor).
Proof. We may assume (aj, az) = (0,0) and E; = F. We define

@: E]XE2—>E1XE2
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by
p(x1, x2) = (Xl, S(x1, Xz))

locally at (aj, az). Then ¢’ is represented by the matrix

( idy 0] )
D\f Df

and is therefore a linear isomorphism at (a;, a;). By the theorem, it has a
local inverse & which clearly satisfies our requirements.

Corollary 5.8. Let U be an open subset of a vector space E and
f: U —F a morphism into a vector space F. Let xy€ U and assume

that f'(xo) is surjective. Then there exists an open subset U' of U
containing xo and an isomorphism

h: V] X V2 — U/
such that the composite map f oh is a projection
V1 X Vz — V1 — F.

Proof. Again this is essentially a reformulation of the corollary, taking
into account the splitting assumption.

Theorem 5.9 (The Implicit Mapping Theorem). Let U, V be open sets in
normed vector spaces E, ¥ respectively, and let

frUxV—>G
be a CP mapping. Let (a,b) e U x V, and assume that
Dyf(a, b): F— G
is a linear isomorphism. Let f(a, b) = 0. Then there exists a continuous

map g: Uy — V defined on an open neighborhood Uy of a such that
g(a) = b and such that

f(xa g(x)) =0

for all xe Uy. If Uy is taken to be a sufficiently small ball, then g is
uniquely determined, and is also of class CP?.
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Proof. Let A= D,f(a, b). Replacing f by A 'of we may assume
without loss of generality that D, f(a, b) is the identity. Consider the map

p: UxV —-EXxF
given by
p(x, y) = (x, f(x, »))-

Then the derivative of ¢ at (a, b) is immediately computed to be
represented by the matrix

idg 0 idg O
Dy(a, b) = <D1f(a, b) Df(a, b)) B <D1f(a7 b) idF>

whence ¢ is locally invertible at (a, b) since the inverse of Dg(a, b) exists

and is the matrix
idg 0]
—le(a, b) ldF '

We denote the local inverse of ¢ by . We can write
V(x, z) = (x, h(x, z))
where & is some mapping of class C?”. We define
9(x) = h(x, 0).

Then certainly g is of class C” and
(x7 f(x7 g(x))) = (0()(7 g(x)) = (0()67 h(x7 0)) = (P(‘//(-xa 0)) = (x> 0)

This proves the existence of a C” map ¢ satisfying our requirements.

Now for the uniqueness, suppose that gy is a continuous map defined
near a such that go(a) =b and f(x, go(x)) = ¢ for all x near a. Then
go(x) is near b for such x, and hence

o(x, go(x)) = (x, 0).

Since ¢ is invertible near (a, b) it follows that there is a unique point
(x, y) near (a, b) such that ¢(x, y) = (x,0). Let Uy be a small ball on
which ¢ is defined. If g¢ is also defined on Uy, then the above argument
shows that g and gy coincide on some smaller neighborhood of a. Let
xe Uy and let v =x—a. Consider the set of those numbers ¢ with
0 <t <1 such that g(a+ tv) = go(a + tv). This set is not empty. Let s
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be its least upper bound. By continuity, we have g(a + sv) = go(a + sv). If
s <1, we can apply the existence and that part of the uniqueness just
proved to show that g and gy are in fact equal in a neighborhood of
a+ sv. Hence s =1, and our uniqueness statement is proved, as well as
the theorem.

Note. The particular value f(a, b) =0 in the preceding theorem is
irrelevant. If f(a, b)) = ¢ for some ¢ # 0, then the above proof goes
through replacing 0 by ¢ everywhere.



CHAPTER |

Manifolds

“Vector spaces” are assumed to be finite dimensional as before. Starting
with open subsets of vector spaces, one can glue them together with C”-
isomorphisms. The result is called a manifold. We begin by giving the
formal definition. We then make manifolds into a category, and discuss
special types of morphisms. We define the tangent space at each point,
and apply the criteria following the inverse function theorem to get a local
splitting of a manifold when the tangent space splits at a point.

We shall wait until the next chapter to give a manifold structure to the
union of all the tangent spaces.

Il, §1. ATLASES, CHARTS, MORPHISMS

Let X be a Hausdorff topological space. An atlas of class C? (p = 0) on
X is a collection of pairs (U;, ¢;) (i ranging in some indexing set), sat-
isfying the following conditions:

AT 1. Each U; is an open subset of X and the U; cover X.

AT 2. Each ¢; is a topological isomorphism of U; onto an open subset
9;U; of some vector space E; and for any i, j, ¢;(U; 0 U;) is open
in El‘.

AT 3. The map
90" 0,(Uin Up) — 9,(Uin Uy)
is a CP-isomorphism for each pair of indices i, j.

20
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Each pair (U;, ¢;) will be called a chart of the atlas. If a point x of X
lies in U;, then we say that (U;, ¢;) is a chart at x.

In condition AT 2, we did not require that the vector spaces be the
same for all indices i, or even that they be linearly isomorphic. If they are
all equal to the same space E, then we say that the atlas is an E-atlas. If
two charts (U;, ¢;) and (U}, ¢;) are such that U; and U; have a non-empty
intersection, and if p = 1, then taking the derivative of go/(pl we see that
E; and E; are linearly 1somorphlc Furthermore, the set of points x € X
for which there exists a chart (U;, ¢;) at x such that E; is linearly iso-
morphic to a given space E is both open and closed. Consequently, on
each connected component of X, we could assume that we have an E-atlas
for some fixed E.

Suppose that we are given an open subset U of X and a topological
isomorphism ¢: U — U’ onto an open subset of some vector space E. We
shall say that (U, ¢) is compatible with the atlas {(U,, ¢;)} if each map
@;0~" (defined on a suitable intersection as in AT 3) is a C?-isomorphism.
Two atlases are said to be compatible if each chart of one is compatible
with the other atlas. One verifies immediately that the relation of
compatibility between atlases is an equivalence relation. An equivalence
class of atlases of class C? on X is said to define a structure of C?-
manifold on X. If all the vector spaces E; in some atlas are linearly
isomorphic, then we can always find an equivalent atlas for which they are
all equal, say to the vector space E. We then say that X is an E-manifold
or that X is modeled on E.

If E=R" for some fixed n, then we say that the manifold is n-
dimensional. In this case, a chart

p: U—R"

is given by n coordinate functions ¢;,...,¢,. If P denotes a point of U,
these functions are often written

x1(P),...,xu(P),

or simply xi,...,x,. They are called local coordinates on the manifold.

If the integer p (which may also be o0) is fixed throughout a discussion,
we also say that X is a manifold.

The collection of C?-manifolds will be denoted by Man”. We shall
make these into categories by defining morphisms below.

Let X be a manifold, and U an open subset of X. Then it is possible, in
the obvious way, to induce a manifold structure on U, by taking as charts

the intersections
(UinU, ¢|(U;n U)).

If X is a topological space, covered by open subsets V;, and if we are
given on each V; a manifold structure such that for each pair j, j/ the
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induced structure on V; n Vjs coincides, then it is clear that we can give to
X a unique manifold structure inducing the given ones on each V.

Example. Let X be the real line, and for each open interval U;, let ¢; be
the function ¢;(f) = #>. Then the (pj(pi" are all equal to the identity, and
thus we have defined a C*-manifold structure on R!

If X, Y are two manifolds, then one can give the product X x Y a
manifold structure in the obvious way. If {(Ui, ¢;)} and {(V}, ¥;)} are
atlases for X, Y respectively, then

{(Ui <V}, i x 0;)}

is an atlas for the product, and the product of compatible atlases gives rise
to compatible atlases, so that we do get a well-defined product structure.

Let X, Y be two manifolds. Let f: X — Y be a map. We shall say
that f is a C”-morphism if, given x € X, there exists a chart (U, ¢) at x
and a chart (V, ) at f(x) such that f(U) = V, and the map

Yofop 't gU—yV

is a CP-morphism in the sense of Chapter I, §3. One sees then imme-
diately that this same condition holds for any choice of charts (U, ¢) at x
and (V, ) at f(x) such that f(U) < V.

It is clear that the composite of two C?-morphisms is itself a C?-
morphism (because it is true for open subsets of vector spaces). The
C?’-manifolds and C?-morphisms form a category. The notion of iso-
morphism is therefore defined, and we observe that in our example of the
real line, the map 7+ #° gives an isomorphism between the funny differ-
entiable structure and the usual one.

If f: X — Y is a morphism, and (U, ¢) is a chart at a point x € X,
while (V, ) is a chart at f(x), then we shall also denote by

fV,U3 oU —yV

the map v fo '
It is also convenient to have a local terminology. Let U be an open

set (of a manifold or a Banach space) containing a point xo. By a local
isomorphism at xo we mean an isomorphism

f: U=V
from some open set U; containing x( (and contained in U) to an open set

V (in some manifold or some vector space). Thus a local isomorphism is
essentially a change of chart, locally near a given point.
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Il, §2. SUBMANIFOLDS, IMMERSIONS, SUBMERSIONS

Let X be a topological space, and Y a subset of X. We say that Y is
locally closed in X if every point y € ¥ has an open neighborhood U in X
such that Y n U is closed in U. One verifies easily that a locally closed
subset is the intersection of an open set and a closed set. For instance, any
open subset of X is locally closed, and any open interval is locally closed
in the plane.

Let X be a manifold (of class C? with p = 0). Let Y be a subset of X
and assume that for each point y € Y there exists a chart (V, ) at y such
that  gives an isomorphism of V' with a product V| x V, where Vj is
open in some space E; and ¥, is open in some space E;, and such that

I/I(Yﬂ V): V] X dyp

for some point a; € ¥, (which we could take to be 0). Then it is clear that
Y is locally closed in X. Furthermore, the map  induces a bijection

lﬁl: YnV— Vl.

The collection of pairs (Y 0V, ) obtained in the above manner constitutes
an atlas for Y, of class CP. The verification of this assertion, whose formal
details we leave to the reader, depends on the following obvious fact.

Lemma 2.1. Let Uy, U,, Vi, V5 be open subsets of vector spaces, and

g: Uy x Uy, — Vi xVy a CP-morphism. Let ay € Uy, and by, € V, and
assume that g maps Uy X ay into V| x by. Then the induced map

gi: Ur— 1
is also a morphism.

Indeed, it is obtained as a composite map
U1—>U1XU2—>V1>< V2—>V1,

the first map being an inclusion and the third a projection.

We have therefore defined a C?-structure on Y which will be called a
submanifold of X. This structure satisfies a universal mapping property,
which characterizes it, namely:

Given any map [: Z — X from a manifold Z into X such that f(Z) is
contained in Y. Let fy:Z — Y be the induced map. Then f is a
morphism if and only if fy is a morphism.
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The proof of this assertion depends on Lemma 2.1, and is trivial.

Finally, we note that the inclusion of Y into X is a morphism.
If Y is also a closed subspace of X, then we say that it is a closed
submanifold.

Suppose that X is a manifold of dimension #, and that Y is a sub-
manifold of dimension r. Then from the definition we see that the local
product structure in a neighborhood of a point of Y can be expressed in
terms of local coordinates as follows. Each point P of Y has an open
neighborhood U in X with local coordinates (xj,...,x,) such that the
points of Y in U are precisely those whose last n — r coordinates are 0,
that is, those points having coordinates of type

(x1,...,%, 0,...,0).

Let f: Z — X be a morphism, and let z € Z. We shall say that f is an
immersion at z if there exists an open neighborhood Z; of z in Z such that
the restriction of f to Z; induces an isomorphism of Z; onto a sub-
manifold of X. We say that f is an immersion if it is an immersion at
every point.

Note that there exist injective immersions which are not isomorphisms
onto submanifolds, as given by the following example:

(The arrow means that the line approaches itself without touching.) An
immersion which does give an isomorphism onto a submanifold is called
an embedding, and it is called a closed embedding if this submanifold is
closed.

A morphism f: X — Y will be called a submersion at a point x € X if
there exists a chart (U, ¢) at x and a chart (V, y) at f(x) such that ¢
gives an isomorphism of U on a products U; x U, (U; and U, open in
some vector spaces), and such that the map

Ui =fry Uix U=V

is a projection. One sees then that the image of a submersion is an open
subset (a submersion is in fact an open mapping). We say that f is a
submersion if it is a submersion at every point.
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We have the usual criterion for immersions and submersions in terms of
the derivative.

Proposition 2.2. Let X, Y be manifolds of class CP (p=1). Let
f: X —Y be a CP-morphism. Let xe X. Then:

(i) f is an immersion at x if and only if there exists a chart (U, ¢) at x
and (V, ) at f(x) such that fy (px) is injective.

(i) f is a submersion at x if and only if there exists a chart (U, ¢) at x
and (V, ) at f(x) such that f} ,(px) is surjective.

Proof. This is an immediate consequence of Corollaries 5.4 and 5.6 of
the inverse mapping theorem.

The conditions expressed in (i) and (ii) depend only on the derivative,
and if they hold for one choice of charts (U, ¢) and (V, ) respectively,
then they hold for every choice of such charts. It is therefore convenient
to introduce a terminology in order to deal with such properties.

Let X be a manifold of class C? (p > 1). Let x be a point of X. We
consider triples (U, ¢, v) where (U, ¢) is a chart at x and v is an element
of the vector space in which ¢U lies. We say that two such triples
(U, ¢, v) and (V, ¥, w) are equivalent if the derivative of y¢~! at px maps
v on w. The formula reads:

(o) (px)o = w

(obviously an equivalence relation by the chain rule). An equivalence class
of such triples is called a tangent vector of X at x. The set of such tangent
vectors is called the tangent space of X at x and is denoted by T.(X).
Each chart (U, ¢) determines a bijection of 7,(X) on a vector space,
namely the equivalence class of (U, ¢, v) corresponds to the vector v. By
means of such a bijection it is possible to transport to Ty(X) the structure
of vector space given by the chart, and it is immediate that this structure is
independent of the chart selected.

If U, V are open in vector spaces, then to every morphism of class
C? (p 2 1) we can associate its derivative Df(x). If now f: X — Y is a
morphism of one manifold into another, and x a point of X, then by
means of charts we can interpret the derivative of f on each chart at x as a

mapping
df (x) = T f: To(X) — Tyo(Y).
Indeed, this map 7 f is the unique linear map having the following

property. If (U, ¢) is a chart at x and (V, ) is a chart at f(x) such that
f(U) <=V and ¢ is a tangent vector at x represented by v in the chart
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(U, p), then
T.f (o)

is the tangent vector at f(x) represented by Dfy y(x)v. The representation
of T.f on the spaces of charts can be given in the form of a diagram

T..(X) —— E

TS l lfv’,u(X)

T}(x)( Y) — F

The map 7, f is obviously linear.
As a matter of notation, we shall sometimes write f, . instead of T\ f.
The operation T satisfies an obvious functorial property, namely, if
f: X—Y and ¢g: Y — Z are morphisms, then

Ti(go f) = Ty(g) o Tu(/f),
T.(id) = id.

We may reformulate Proposition 2.2:

Proposition 2.3. Let X, Y be manifolds of class CP (p=1). Let
f: X =Y be a CP-morphism. Let xe€ X. Then:

() f is an immersion at x if and only if the map T.f is injective.
(i) f is a submersion at x if and only if the map T, f is surjective.

Example. Let E be a vector space with positive definite scalar product,
and let {x, y)> € R be its scalar product. Then the square of the norm
f(x) = <{x, x> is obviously of class C*. The derivative f”/(x) is given by
the formula

J'(xX)y=2x, )

and for any given x # 0, it follows that the derivative f'(x) is surjective.
Furthermore, its kernel is the orthogonal complement of the subspace
generated by x. Consequently the unit sphere in euclidean space is a
submanifold.

If W is a submanifold of a manifold Y of class C? (p = 1), then the
inclusion

i: W—-Y
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induces a map
T'wlli TW(W) - Tw(Y)

which is in fact an injection. It will be convenient to identify 7,,(W) in
T,,(Y) if no confusion can result.

A morphism f: X — Y will be said to be transversal over the sub-
manifold W of Y if the following condition is satisfied.

Let x € X be such that f(x) e W. Let (V, ) be a chart at f(x) such
that y: V' — V| x V, is an isomorphism on a product, with

Y(f(x)=(0,0) and  Y(WAV)="V; %0,

Then there exists an open neighborhood U of x such that the composite
map

A R A N

is a submersion.
In particular, if f is transversal over W, then f~'(W) is a submanifold
of X, because the inverse image of 0 by our local composite map

proyo f

is equal to the inverse image of W NV by .
As with immersions and submersions, we have a characterization of
transversal maps in terms of tangent spaces.

Proposition 2.4. Let X, Y be manifolds of class C? (p = 1). Let
f: X — Y be a CP-morphism, and W a submanifold of Y. The map f
is transversal over W if and only if for each x € X such that f(x) lies in
W, the composite map

Tu(X) 2L T(Y) = T(Y)/ T (W)

with w= f(x) is surjective.

Proof. If f is transversal over W, then for each point x € X such that
f(x) lies in W, we choose charts as in the definition, and reduce the
question to one of maps of open subsets of vector spaces. In that case, the
conclusion concerning the tangent spaces follows at once from the assumed
direct product decompositions. Conversely, assume our condition on the
tangent map. The question being local, we can assume that Y =
V1 x V3 is a product of open sets in vector spaces such that W = 1 x 0,
and we can also assume that X = U is open in some vector space, x = 0.
Then we let g: U — V> be the map mo f where 7 is the projection, and
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note that our assumption means that ¢’(0) is surjective. Furthermore,
g 1(0) = f~1(W). We can then use Corollary 5.7 of the inverse mapping
theorem to conclude the proof.

Remark. In the statement of our proposition, we observe that the
surjectivity of the composite map is equivalent to the fact that 7,,(Y) is
equal to the sum of the image of 7,/ and T, (W), that is

T,(Y) =Im(T.f) + Im(Ti),
where i: W — Y is the inclusion.

If E is a vector space, then the diagonal A in E X E is a closed
subspace. FEither factor Ex 0 or 0 x E is a closed complement. Con-
sequently, the diagonal is a closed submanifold of E x E. If X is any
manifold of class C?, p > 1, then the diagonal is therefore also a sub-
manifold.

Let f: X - Z and ¢g: Y — Z be two C?-morphisms, p = 1. We say
that they are transversal if the morphism

fxg: XxY—>ZxZ

is transversal over the diagonal. We remark right away that the sur-
jectivity of the map in Proposition 2.4 can be expressed in two ways.
Given two points x€ X and y e Y such that f(x)=g(y) =z, the con-
dition

Im(T./) + Im(Tg) = T:(2)

is equivalent to the condition
Im(T(x,y)(f X g)) + T(Zﬁz)(A) = T(:,:)(Z X Z)-

Thus in the finite dimensional case, we could take it as definition of
transversality.

We use transversality as a sufficient condition under which the fiber
product of two morphisms exists. We recall that in any category, the fiber
product of two morphisms f: X — Z and ¢g: Y — Z over Z consists of
an object P and two morphisms

gi: P—X and gr: P—Y
such that fog; = gog,, and satisfying the universal mapping property:

Given an object S and two morphisms u;: S — X and u;: S — Y such
that fu; = gup, there exists a unique morphism u: S — P making the
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following diagram commutative:

Z\

X \Y
The triple (P, g1, g2) is uniquely determined, up to a unique isomorphism
(in the obvious sense), and P is also denoted by X x; Y.

One can view the fiber product unsymmetrically. Given two morphisms
f, g as in the following diagram:

X —

f

assume that their fiber product exists, so that we can fill in the diagram:

Xx, Y — Y

X — Z

We say that g, is the pull back of g by f, and also write it as f*(g).
Similarly, we write X xz Y as f*(Y).

In our category of manifolds, we shall deal only with cases when the
fiber product can be taken to be the set-theoretic fiber product on which a
manifold structure has been defined. (The set-theoretic fiber product is the
set of pairs of points projecting on the same point.) This determines the
fiber product uniquely, and not only up to a unique isomorphism.

Proposition 2.5. Let f: X — Z and g: Y — Z be two CP-morphisms
with p = 1. If they are transversal, then

(f x 9)"(Az),
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together with the natural morphisms into X and Y (obtained from the
projections), is a fiber product of f and g over Z.

Proof. Obvious.

To construct a fiber product, it suffices to do it locally. Indeed, let
f: X—Z and g: Y — Z be two morphisms. Let {V;} be an open
covering of Z, and let

fio STV =V and gi: g7\ (V) = Vi

be the restrictions of f and g to the respective inverse images of V;. Let
P=(fxg) '(Az). Then P consists of the points (x, y) with x € X and
y €Y such that f(x) =g(y). We view P as a subspace of X x Y (i.e.
with the topology induced by that of X x Y). Similarly, we construct P;
with f; and g;. Then P; is open in P. The projections on the first and
second factors give natural maps of P; into f~'(V;) and g~'(V;) and of P
into X and Y.

Proposition 2.6. Assume that each P; admits a manifold structure
(compatible with its topology) such that these maps are morphisms,
making P; into a fiber product of f; and g;. Then P, with its natural
projections, is a fiber product of [ and g.

To prove the above assertion, we observe that the P; form a covering of
P. Furthermore, the manifold structure on P; n P; induced by that of P;
or P; must be the same, because it is the unique fiber product structure
over V;nVj, for the maps f; and g; (defined on ' (VinV;) and
g '(VinV;) respectively). Thus we can give P a manifold structure, in
such a way that the two projections into X and Y are morphisms, and
make P into a fiber product of f and g¢.

We shall apply the preceding discussion to vector bundles in the next
chapter, and the following local criterion will be useful.

Proposition 2.7. Let f: X — Z be a morphism, and g: Z X W — Z be
the projection on the first factor. Then f, g have a fiber product, namely
the product X x W together with the morphisms of the following
diagram:

fxid
XxW  — Zx W

| 281 l lprl

X — £
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Il, §3. PARTITIONS OF UNITY

Let X be a manifold of class C?. A function on X will be a morphism of
X into R, of class C?, unless otherwise specified. The C? functions form a
ring denoted by F”(X) or Fu”(X). The support of a function f is the
closure of the set of points x such that f(x) # 0.

Let X be a topological space. A covering of X is locally finite if every
point has a neighborhood which intersects only finitely many elements of
the covering. A refinement of a covering of X is a second covering, each
element of which is contained in an element of the first covering. A
topological space is paracompact if it is Hausdorff, and every open
covering has a locally finite open refinement.

Proposition 3.1. If X is a paracompact space, and if {U;} is an open
covering, then there exists a locally finite open covering {V;} such that
Vi< U; for each i.

Proof. Let {Vi} be a locally finite open refinement of {U;}. For each k
there is an index i(k) such that V} < Ujy). We let W; be the union of
those Vi such that i(k) =i. Then the W; form a locally finite open
covering, because any neighborhood of a point which meets infinitely
many W; must also meet infinitely many V.

Proposition 3.2. If X is paracompact, then X is normal. If, furthermore,
{U;} is a locally finite open covering of X, then there exists a locally
finite open covering {V;} such that V; < U;.

Proof. We refer the reader to Bourbaki [Bou 68].

Observe that Proposition 3.1 shows that the insistence that the indexing
set of a refinement be a given one can easily be achieved.

A partition of unity (of class C”) on a manifold X consists of an open
covering {U;} of X and a family of functions

y;: X —-R
satisfying the following conditions:
PU 1. For all xe X we have y;(x) = 0.
PU 2. The support of ; is contained in Us.

PU 3. The covering is locally finite.
PU 4. For each point x € X we have

Z‘ﬁi(x) =1
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(The sum is taken over all i, but is in fact finite for any given point x in
view of PU 3.)

We sometimes say that {(U;,y,)} is a partition of unity.

A manifold X will be said to admit partitions of unity if it is para-
compact, and if, given a locally finite open covering {U;}, there exists a
partition of unity {i;} such that the support of y; is contained in U..

If {U;} is a covering of X, then we say that a covering {V;} is
subordinated to {U;} if each Vj is contained in some U,.

It is desirable to give sufficient conditions on a manifold in order to
insure the existence of partitions of unity. There is no difficulty with the
topological aspects of this problem. It is known that a metric space is
paracompact (cf. Bourbaki [Bou 68], [Ke 55]), and on a paracompact
space, one knows how to construct continuous partitions of unity (loc.
cit.).

If E is a euclidean space, we denote by B,(«) the open ball of radius r
and center a, and by B,(a) the closed ball of radius r and center a. If
a=0, then we write B, and B, respectively. Two open balls (of finite
radius) are obviously C*-isomorphic. If X is a manifold and (V, ¢) is a
chart at a point x € X, then we say that (7, ¢) (or simply V) is a ball of
radius r if ¢V is a ball of radius r. We now use euclidean space for charts,
with the given euclidean norm.

Theorem 3.3. Let X be a manifold whose topology has a countable base.
Given an open covering of X, then there exists an atlas {(Vi, ¢;)} such
that the covering {Vi} is locally finite and subordinated to the given
covering, such that ¢, Vi is the open ball Bz, and such that the open sets
Wi = ¢ ' (B1) cover X.

Proof. Let U, U,,... be a basis for the open sets of X such that each
U, is compact. We construct inductively a sequence A1, A, ... of compact
sets whose union is X, such that A4; is contained in the interior of A;,q.
We let 4, = U;. Suppose we have constructed 4;, We let j be the
smallest integer such that 4; is contained in Uy u --- U U;. We let 4;1; be
the closed and compact set

Uvu-uUuUy.

For each point x € X we can find an arbitrarily small chart (¥, ¢,) at
x such that ¢V, is the ball of radius 3 (so that each ¥, is contained in
some element of U). We let W, = ¢, !(B)) be the ball of radius 1 in this
chart. We can cover the set

Ay — Int(Ai)
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(intuitively the closed annulus) by a finite number of these balls of radius
1, say Wi,..., W,, such that, at the same time, each one of Vi,...,V, is
contained in the open set Int(A4;,,) — A4;—; (intuitively, the open annulus of
the next bigger size). We let B; denote the collection Vy,..., V), and let B
be composed of the union of the B;. Then B is locally finite, and we are
done.

Corollary 3.4. Let X be a manifold whose topology has a countable
base. Then X admits partitions of unity.

Proof. Let {(Vk,¢,)} be as in the theorem, and Wy = ¢, '(B). We can
find a function ¥, of class C” such that 0 <, < 1, such that ¥, (x) =1
for x € Wy and ;. (x) =0 for x ¢ V. (The proof is recalled below.) We

now let
U= Yy

(a sum which is finite at each point), and we let y, =, /Y. Then
{(Vk,7,)} 1s the desired partition of unity.

We now recall the argument giving the function . First, given two
real numbers r, s with 0 < r < s, the function defined by

*»(7=e=0)

in the open interval r < ¢ < s and 0 outside the interval determines a bell-
shaped C*-function from R into R. Its integral from minus infinity to ¢,
divided by the area under the bell yields a function which lies strictly
between 0 and 1 in the interval r < ¢ <s, is equal to 0 for # <r and is
equal to 1 for r > 5. (The function is even monotone increasing.)

We can therefore find a real valued function of a real variable, say #(7),
such that #(¢) =1 for |#| < 1 and #(¢) = 0 for |7 = 1 + ¢ with small J, and
such that 0 < 7 < 1. If E is a euclidean space, then 7(|x|?) = y/(x) gives us
a function which is equal to 1 on the ball of radius 1 and 0 outside the
ball of radius 1 + . This function can then be transported to the manifold
by any given chart whose image is the ball of radius 3. For convenience,
we state separately what we have just proved.

Lemma 3.5. Let E be a euclidean space. There exists a C* real function
W on E such that y(x) =1 for |x| =1, y(x) >0 for |x| <149, and
U(x) =0 for |x| = 1+406. Alternatively, there exists a C* function h
such that

h(x) >0 for |x| <1 and h(x)=0 for |x|=1.
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In other words, one would construct a function which is > 0 on a given
ball and = 0 outside this ball.

Partitions of unity constitute the only known means of gluing together
local mappings (into objects having an addition, namely vector bundles,
discussed in the next chapter).

II, §4. MANIFOLDS WITH BOUNDARY

Let E be a vector space, and 4: E — R a linear map into R. (This will
also be called a functional on E.) We denote by Eg the kernel of 4, and by
E; (resp. E;) the set of points x € E such that A(x) = 0 (resp. A(x) <0).
We call E} a hyperplane and E] or E; a half plane.

If w is another functional and E} = E;, then there exists a number ¢ > 0
such that /. = cu. This is easily proved. Indeed, we see at once that the
kernels of A and u must be equal. Suppose A # 0. Let xy be such that

A(x0) > 0. Then u(xo) >0 also. The functional

A= (A(x0)/1(x0) ) 1

vanishes on the kernel of A (or ) and also on xy. Therefore it is the 0
functional, and ¢ = A(xo)/u(xo).

Let E, F be vector spaces, and let E] and F; be two half planes in E
and F respectively. Let U, V be two open subsets of these half planes
respectively. We shall say that a mapping

fr U=V

is a morphism of class C? if the following condition is satisfied. Given a
point x € U, there exists an open neighborhood U; of x in E, an open
neighborhood ¥ of f(x) in F, and a morphism f: U; — V) (in the sense
of Chapter I) such that the restriction of f; to Uy n U is equal to f. (We
assume that all morphisms are of class C? with p = 1.)

If our half planes are full planes (i.e. equal to the vector spaces them-
selves), then our present definition is the same as the one used previously.

If we take as objects the open subsets of half planes in vector spaces,
and as morphisms the C”-morphisms, then we obtain a category. The
notion of isomorphism is therefore defined, and the definition of manifold
by means of atlases and charts can be used as before. The manifolds of §1
should have been called manifolds without boundary, reserving the name of
manifold for our new globalized objects. However, in most of this book,
we shall deal exclusively with manifolds without boundary for simplicity.
The following remarks will give readers the means of extending any result
they wish (provided it is true) for the case of manifolds without boundaries
to the case manifolds with.
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First, concerning the notion of derivative, we have:

Proposition 4.1. Let f: U —F and g: U — F be two morphisms of
class C? (p =2 1) defined on an open subset U of E. Assume that f and g
have the same restriction to U NE] for some half plane E}, and let

xe UnE].
Then f'(x) = g'(x).

Proof. After considering the difference of f and g, we may assume
without loss of generality that the restriction of f'to U nE] is 0. It is then
obvious that f’(x)=0.

Proposition 4.2. Let U be open in E. Let u be a non-zero functional on
F and let f: U — F} be a morphism of class CP with p = 1. If x is a
point of U such that f(x) lies in Fg then f'(x) maps E into FB.

Proof. Without loss of generality, we may assume that x =0 and
f(x)=0. Let W be a given neighborhood of 0 in F. Suppose that we can
find a small element v € E such that xf”(0)v # 0. We can write (for small
1):

S i) = 1 ()0 + o()w;

with some element w, € W. By assumption, f(fv) lies in F: Applying u
we get

1 f'(0)v + o(£)u(w,) = 0.

Dividing by ¢, this yields

Replacing ¢ by —, we get a similar inequality on the other side. Letting ¢
tend to 0 shows that xf’(0)v =0, a contradiction.

Let U be open in some half plane E;. We define the boundary of U
(written 0U) to be the intersection of U with E{, and the interior of U
(written Int(U)) to be the complement of dU in U. Then Int(U) is open
in E.

It follows at once from our definition of differentiability that a half
plane is C*-isomorphic with a product

E] ~E) xR"
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where R is the set of real numbers >0, whenever A # 0. The boundary
of E] in that case is E! x 0.

Proposition 4.3. Let /. be a functional on E and u a functional on F. Let
U be open in E; and V open in F,; and assume U N E), VAF" are not
empty. Let f: U — V be an isomorphism of class C? (p =2 1). Then
A#0if and only if w# 0. If L #0, then f induces a CP-isomorphism of
Int(U) on Int(V) and of dU on V.

Proof. By the functoriality of the derivative, we know that f/(x) is a
toplinear isomorphism for each x € U. Our first assertion follows from the
preceding proposition. We also see that no interior point of U maps on a
boundary point of " and conversely. Thus f induces a bijection of dU on
0V and a bijection of Int(U) on Int(¥). Since these interiors are open in
their respective spaces, our definition of derivative shows that f induces an
isomorphism between them. As for the boundary, it is a submanifold of
the full space, and locally, our definition of derivative, together with the
product structure, shows that the restriction of f to dU must be an
isomorphism on V.

This last proposition shows that the boundary is a differentiable in-
variant, and thus that we can speak of the boundary of a manifold.

We give just two words of warning concerning manifolds with
boundary. First, products do not exist in their category. Indeed, to get
products, we are forced to define manifolds with corners, which would take
us too far afield.

Second, in defining immersions or submanifolds, there is a difference
in kind when we consider a manifold embedded in a manifold without
boundary, or a manifold embedded in another manifold with boundary.
Think of a closed interval embedded in an ordinary half plane. Two cases
arise. The case where the interval lies inside the interior of the half plane
is essentially distinct from the case where the interval has one end point
touching the hyperplane forming the boundary of the half plane. (For
instance, given two embeddings of the first type, there exists an auto-
morphism of the half plane carrying one into the other, but there cannot
exist an automorphism of the half plane carrying an embedding of the first
type into one of the second type.)

We leave it to the reader to go systematically through the notions of
tangent space, immersion, embedding (and later, tangent bundle, vector
field, etc.) for arbitrary manifolds (with boundary). For instance, Pro-
position 2.2 shows at once how to get the tangent space functorially.



CHAPTER Il

Vector Bundles

The collection of tangent spaces can be glued together to give a manifold
with a natural projection, thus giving rise to the tangent bundle. The
general glueing procedure can be used to construct more general objects
known as vector bundles, which give powerful invariants of a given
manifold. (For an interesting theorem see Mazur [Maz 61].) In this
chapter, we develop purely formally certain functorial constructions having
to do with vector bundles. In the chapters on differential forms and
Riemannian metrics, we shall discuss in greater details the constructions
associated with multilinear alternating forms, and symmetric positive
definite forms.

Partitions of unity are an essential tool when considering vector
bundles. They can be used to combine together a random collection of
morphisms into vector bundles, and we shall give a few examples showing
how this can be done (concerning exact sequences of bundles).

lll, §1. DEFINITION, PULL BACKS

Let X be a manifold (of class C?” with p =20) and let n: E— X be a
morphism. Let E be a vector space (always assumed finite dimensional).

Let {U;} be an open covering of X, and for each i, suppose that we are
given a mapping

Ti: ﬂil(Uj) — Ul‘ x E

satisfying the following conditions:
37
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VB 1. The map t; is a CP isomorphism commuting with the projec-
tion on U;, that is, such that the following diagram is commu-
tative:

Y U) —— U, x E

N/

In particular, we obtain an isomorphism on each fiber (written
7i(X) or Ti)

T 7N (x) = {x} xE
VB 2. For each pair of open sets U;, U; the map
Tjx © ‘ci;l : E—E

is a toplinear isomorphism.

VB 3. If U; and U; are two members of the covering, then the map of
UinU; into L(E,E) (actually Laut(E)) given by

x = ('),

is a morphism.

Then we shall say that {(U;, t;)} is a trivializing covering for 7 (or for E
by abuse of language), and that {r;} are its trivalizing maps. If x € U;, we
say that 7; (or U,) trivializes at x. Two trivializing coverings for 7 are
said to be VB-equivalent if taken together they also satisfy conditions VB 2,
VB 3. An equivalence class of such trivializing coverings is said to determine
a structure of vector bundle on = (or on E by abuse of language). We say
that E is the total space of the bundle, and that X is its base space. If we
wish to be very functorial, we shall write E, and X, for these spaces
respectively. The fiber 7~!(x) is also denoted by E, or m,. We also say
that the vector bundle has fiber E, or is modeled on E. Note that from
VB 2, the fiber 77! (x) above each point x € X can be given a structure of
vector space, simply by transporting the vector space structure of E to
n~!'(x) via ;.. Condition VB 2 insures that using two different trivializing
maps 7;, or 7j, will give the same structure of vector space (with equivalent
norms, of course not the same norms).

Conversely, we could replace VB 2 by a similar condition as follows.
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VB 2'. On each fiber n~'(x) we are given a structure of vector space,
and for x € U;, the trivializing map

Tix: n_](x) =FE.—E
is a linear isomorphism.

Then it follows that 7;, 0 7;': E — E is a linear isomorphism for each pair
of open sets U;, U; and xe U;n U;.
Condition VB 3 is implied by VB 2.

Proposition 1.1. Let E, F be vector spaces. Let U be open in some

vector space. Let
f: UXE—F

be a morphism such that for each x € U, the map
fir: E=F

given by f.(v) = f(x,v) is a linear map. Then the map of U into
L(E, F) given by x> f. is a morphism.

Proof. We can write F =R; x --- x R, (n copies of R). Using the fact
that L(E, F) = L(E, R;) x--- x L(E, R,), it will suffice to prove our
assertion when F = R. Similarly, we can assume that E = R also. But in
that case, the function f(x,v) can be written g(x)v for some map
g: U — R. Since f is a morphism, it follows that as a function of each
argument x, v it is also a morphism. Putting v =1 shows that g is a
morphism and concludes the proof.

Returning to the general definition of a vector bundle, we call the maps
_ -1
Tjix = Tjx © Ty

the transition maps associated with the covering. They satisfy what we call
the cocycle condition
Tkjx © Tjix = Tkix-
In particular, 7; =id and 7; = rljxl
As with manifolds, we can recover a vector bundle from a trivializing
covering.

Proposition 1.2. Let X be a manifold, and n: E — X a mapping from
some set E into X. Let {U;} be an open covering of X, and for each i
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suppose that we are given a vector space E and a bijection (commuting
with the projection on U,),

Ti: 77.'_1(U,') — Ui X E7

such that for each pair i, j and x € U; n U;, the map (t7;'), is a linear
isomorphism, and condition VB 3 is satisfied as well as the cocycle
condition. Then there exists a unique structure of manifold on E such
that 7 is a morphism, such that t; is an isomorphism making 7 into a
vector bundle, and {(Uj,t;)} into a trivialising covering.

Proof. By Proposition 3.10 of Chapter I and our condition VB 3, we
conclude that the map

77 (UinU) xE— (U;nU;) xE

is a morphism, and in fact an isomorphism since it has an inverse. From
the definition of atlases, we conclude that E has a unique manifold
structure such that the t; are isomorphisms. Since 7 is obtained locally
as a composite of morphisms (namely 7; and the projections of U; x E on
the first factor), it becomes a morphism. On each fiber 77!(x), we can
transport the vector space structure of any E such that x lies in U;, by
means of 7;.. The result is independent of the choice of U; since (7;7;!), is
a linear isomorphism. Our proposition is proved.

Remark. It is relatively rare that a vector bundle is trivial, i.e. VB-
isomorphic to a product X x E. By definition, it is always trivial locally.
In the finite dimensional case, say when E has dimension #, a trivialization
is equivalent to the existence of sections &, ..., &, such that for each x, the
vectors & (x),...,&,(x) form a basis of E,. Such a choice of sections is
called a frame of the bundle, and is used especially with the tangent
bundle, to be defined below.

The local representation of a vector bundle and
the vector component of a morphism

For arbitrary vector bundles (and especially the tangent bundle to be
defined below), we have a local representation of the bundle as a product
in a chart. For many purposes, and especially the case of a morphism

f: Y—=FE

of a manifold into the vector bundle, it is more convenient to use U to
denote an open subset of a vector space, and to let ¢: U — X be an
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isomorphism of U with an open subset of X over which £ has a
trivialization 7: 7~ !(pU) — U x E called a VB-chart. Suppose V is an
open subset of Y such that f(V) <z~ !(pU). We then have the com-
mutative diagram:

v L, aieU) —— U XE

L]

oU —— U

The composite 7o f is a morphism of V into U x E, which has two
components

to f = (fu1, fua)

such that f;;: V— U and fy,: V — E. We call f;, the vector com-
ponent of f in the vector bundle chart U x E over U. Sometimes to
simplify the notation, we omit the subscript, and merely agree that f; =
fu» denotes this vector component; or to simplify the notation further, we
may simply state that f itself denotes this vector component if a discussion
takes place entirely in a chart. In this case, we say that f = f;; represents
the morphism in the vector bundle chart, or in the chart.

Vector bundle morphisms and pull backs

We now make the set of vector bundles into a category.
Let n: E— X and #n’: E/ — X’ be two vector bundles. A VB-
morphism 7 — 7’ consists of a pair of morphisms

for X = X' and f: E—E
satisfying the following conditions.

VB Mor 1. The diagram

X — X

fo

is commutative, and the induced map for each x € X

fer Ex = Ejy

is a linear map.
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VB Mor 2. For each xoe X there exist trivializing maps
. N (U) — UxE

and

. 77N U) - U xFE

at xo and f(xo) respectively, such that f,(U) is contained in
U', and such that the map of U into L(E, E') given by

X T o frot!

is a morphism.

As a matter of notation, we shall also use f to denote the VB-
morphism, and thus write f: 7 — #’. In most applications, f, is the
identity. By Proposition 1.1, we observe that VB Mor 2 is redundant.

The next proposition is the analogue of Proposition 1.2 for VB-
morphisms.

Proposition 1.3. Let ©, ' be two vector bundles over manifolds X, X'
respectively. Let fy: X — X' be a morphism, and suppose that we are
given for each x € X a continuous linear map

Jxi T = Mgy

such that, for each xy, condition VB Mor 2 is satisfied. Then the map f
from 7 to ©' defined by f. on each fiber is a VB-morphism.

Proof. One must first check that f is a morphism. This can be done
under the assumption that z, #n’ are trivial, say equal to U x E and
U’ x E’ (following the notation of VB Mor 2), with trivialising maps equal
to the identity. Our map f is then given by

(o, v) = (fox, f30)-

Using Proposition 3.10 of Chapter I, we conclude that f is a morphism,
and hence that (f,, /) is a VB-morphism.

It is clear how to compose two VB-morphisms set theoretically. In fact,
the composite of two VB-morphisms is a VB-morphism. There is no
problem verifying condition VB Mor 1, and for VB Mor 2, we look at the
situation locally. We encounter a commutative diagram of the following
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type:
f

n—l(U) nr—-l(U/) g n//—l(U//)

UXE — U XxE — U'xE

and use Proposition 3.10 of Chapter I, to show that go f is a VB-
morphism.

We therefore have a category, denoted by VB or VB?, if we need to
specify explicitly the order of differentiability.

The vector bundles over X from a subcategory VB(X) = VB’(X)
(taking those VB-morphisms for which the map f, is the identity).

A morphism from one vector bundle into another can be given locally.
More precisely, suppose that U is an open subset of X and n: £ — X a
vector bundle over X. Let Ey =z~'(U) and

7ZU:7Z|EU

be the restriction of # to Ey. Then ny is a vector bundle over U. Let
{U;} be an open covering of the manifold X and let z, #’ be two vector
bundles over X. Suppose, given a VB-morphism

. !
ﬁ' T[Ui - T[U,'

for each i, such that f; and f; agree over U; n U; for each pair of indices i,
j. Then there exists a unique VB-morphism f: 7= — ' which agrees with
f; on each U;. The proof is trivial, but the remark will be used frequently
in the sequel.

Using the discussion at the end of Chapter II, §2 and Proposition 2.7 of
that chapter, we get immediately:

Proposition 1.4. Let n: E — Y be a vector bundle, and f: X — Y a
morphism. Then

fH(m): fUE) = X

is a vector bundle called the pull-back, and the pair ( A f)) is a VB-
morphism

()

fHE) —> E
) !n
|

X — Y

/
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In Proposition 1.4, we could take f to be the inclusion of a sub-
manifold. In that case, the pull-back is merely the restriction. As with
open sets, we can then use the usual notation:

EX:n'_l(X) and nX:ﬂ‘Ex.

Thus 7y =f*(x) in that case.
If X happens to be a point y of Y, then we have the constant map

n,: E,—y

which will sometimes be identified with E,.

If we identify each fiber (f"E), with Ey itself (a harmless identi-
fication since an element of the fiber at x is simply a pair (x, ¢) with e in
Ej(y)), then we can describe the pull-back ™ of a vector bundle n: E — Y
as follows. It is a vector bundle f*n: f*E — X satisfying the following
properties:

PB 1. For each xe X, we have (f*E), = Ef(y).

PB 2. We have a commutative diagram

JHE) — E
f*(n)‘l Jﬂ
X — 7Y

f

the top horizontal map being the identity on each fiber.

PB 3. If E is trivial, equal to Y x E, then f*E =X x E and ™7 is the
projection.

PB 4. If V is an open subset of Y and U = f~'(V), then

S (Ev) = (fTE)y,

and we have a commutative diagram:
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lll, §2. THE TANGENT BUNDLE

Let X be a manifold of class C?” with p > 1. We shall define a functor T’
from the category of such manifolds into the category of vector bundles of
class CP~!.

For each manifold X we let T(X) be the disjoint union of the tangent
spaces Ty(X). We have a natural projection

n: T(X) = X

mapping 7,(X) on x. We must make this into a vector bundle. If (U, ¢)
is a chart of X such that pU is open in the vector space E, then from the
definition of the tangent vectors as equivalence classes of triples (U, ¢, v)
we get immediately a bijection

ty: w(U)=T(U) - UxE
which commutes with the projection on U, that is such that

7 (U) — U xE

\/

U

is commutative. Furthermore, if (U;, ¢;) and (U;, ¢;) are two charts, and
if we denote by ¢;; the map ¢;p; ! (defined on ¢;(U; n Uj)), then we obtain
a transition mapping

ti = (y7;'): 9(UinUj)) x E = (U0 Uj) X E

by the formula
Tji(x, v) = ((Pﬁxa D%‘i(x) “v)

for xe U;n U; and v e E. Since the derivative Dg;; = ¢}; is of class cr!
and is an isomorphism at x, we see immediately that all the conditions of
Proposition 1.2 are verified (using Proposition 3.10 of Chapter I), thereby
making 7(X) into a vector bundle of class CP~!.

We see that the above construction can also be expressed as follows. If
the manifold X is glued together from open sets {U;} in vector spaces by
means of transition mappings {¢;}, then we can glue together products
Ui x E by means of transition mappings (¢;, Dg;) where the derivative
Dg;; can be viewed as a function of two variables (x, v). Thus locally,
for open subsets U of vector spaces, the tangent bundle can be identified
with the product U x E. The reader will note that our definition coincides
with the oldest definition employed by geometers, our tangent vectors
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being vectors which transform according to a certain rule (namely the
derivative).
If /: X — X' is a C?”-morphism, we can define

Tf: T(X) — T(X')

to be simply 7. f on each fiber T, (X). In order to verify that 7f is a VB-
morphism (of class C?~1), it suffices to look at the situation locally, i.e. we
may assume that X and X’ are open in vector spaces E, E’, and that
T.f = f'(x) is simply the derivative. Then the map Tf is given by

Tf (x, v) = (f(x), f'(x)v)

for xe X and ve E. Since f” is of class C?~! by definition, we can apply
Proposition 3.10 of Chapter I to conclude that Tf is also of class CP~!.
The functoriality property is trivially satisfied, and we have therefore
defined the functor 7 as promised.

It will sometimes be notationally convenient to write f, instead of Tf
for the induced map, which is also called the tangent map. The bundle
T(X) is called the tangent bundle of X.

Remark. The above definition of the tangent bundle fits with Steenrod’s
point of view [Ste 51]. I don’t understand why many differential geometers
have systematically rejected this point of view, when they take the defini-
tion of a tangent vector as a differential operator.

lll, §3. EXACT SEQUENCES OF BUNDLES

Let X be a manifold. Let n’: £/ — X and n: E — X be two vector
bundles over X. Let f: n’ — m be a VB-morphism. We shall say that the
sequence
;0 f
0—-n">n=n

is exact if there exists a covering of X by open sets and for each open set
U in this covering there exist trivializations

v E;, — UXE and 7. Ex - UXE

such that E can be written as a product E = E’ x F, making the following
diagram commutative:

/

Ey ——— Ey

UxE — UxE xF
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(The bottom map is the natural one: Identity on U and the injection of E’
on E' x0.)

Let 7;: E; — X be another vector bundle, and let g: n; — 7 be a VB-
morphism such that g(E)) is contained in f(E’). Since f establishes a
bijection between E’ and its image f(E’) in E, it follows that there exists
a unique map ¢;: E; — E’ such that g = f og;. We contend that g is a
VB-morphism. Indeed, to prove this we can work locally, and in view of
the definition, over an open set U as above, we can write

gr=7"oprotoyg

where pr is the projection of U x E' x F on U x E’. All the maps on
the right-hand side of our equality are VB-morphisms; this proves our
contention.

Let n: £ — X be a vector bundle. A subset S of E will be called a
subbundle if there exists an exact sequence 0 — 7’ — 7, also written

0-ELE

such that f(E’) =S. This gives S the structure of a vector bundle, and
the previous remarks show that it is unique. In fact, given another exact
sequence

0— E; L E

such that g(E;) =S, the natural map /g from E; to E' is a VB-
isomorphism.

Let us denote by E/E’ the union of all factor spaces E/E;. If we are
dealing with an exact sequence as above, then we can give E/E’ the
structure of a vector bundle. We proceed as follows. Let {U;} be our
covering, with trivialising maps 7/ and t;. We can define for each i a
bijection

n/: Ey/Ey — Ui x F

obtained in a natural way from the above commutative diagram. (With-
out loss of generality, we can assume that the vector spaces E’, F are
constant for all i.) We have to prove that these bijections satisfy the
conditions of Proposition 1.2.

Without loss of generality, we may assume that f is an inclusion (of the
total space E’ into E). For each pair i, j and x € U; n U;, the toplinear
automorphism (7;7; '), is represented by a matrix

(h”(x) h]z(X))
h21(x) /’122()6)

operating on the right on a vector (v, w) € E' x F. The map (T}’T{’*l)x on

F is induced by this matrix. Since E' =E’ x 0 has to be carried into
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itself by the matrix, we have hj»(x) = 0. Furthermore, since (t;7;!), has

an inverse, equal to (7;7;),, it follows that s (x) is a toplinear auto-
morphism of F, and represents (z/z/~!),. Therefore condition VB 3 is

satisfied, and E/E’ is a vector bundle.
The canonical map

EU — EU/E{]
is a morphism since it can be expressed in terms of 7, the projection, and
=1 Consequently, we obtain a VB-morphism
g: n—n"

in the canonical way (on the total spaces, it is the quotient mapping of E
on E/E’). We shall call z” the factor bundle.

Our map ¢ satisfies the usual universal mapping property of a cokernel.
Indeed, suppose that

v: E—G

is a VB-morphism such that o f =0 (i.e. Y, o f, =0 on each fiber E)).
We can then define set theoretically a canonical map

Y,: E/E' — G,

and we must prove that it is a VB-morphism. This can be done locally.
Using the above notation, we may assume that £ = U x E’ x F and that ¢
is the projection. In that case, s, is simply the canonical injection of
UxFin UxE'xF followed by , and is therefore a VB-morphism.
We shall therefore call g the cokernel of f.
Dually, let g: = — n” be a given VB-morphism. We shall say that the
sequence

g
1—-n"—0

is exact if g is surjective, and if there exists a covering of X by open sets,
and for each open set U in this covering there exist spaces E’, F and
trivializations

1. Ey = UxE' xF and 7" E;’]—>F
making the following diagram commutative:

E, —2 o E,

UXE xF —— UxF
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(The bottom map is the natural one: Identity on U and the projection of
E'xF on F.)

In the same way as before, one sees that the “kernel” of g, that is, the
union of the kernels E| of each g,, can be given a structure of vector
bundle. This union E’ will be called the kernel of g, and satisfies the usual
universal mapping property.

Proposition 3.1. Let X be a manifold and let
fin —n

be a VB-morphism of vector bundles over X. Assume that, for each
x e X, the continuous linear map

foi EL — E,
is injective. Then the sequence

0—nLn
is exact.

Proof. We can assume that X is connected and that the fibers of E’
and E are constant, say equal to the vector spaces E' and E. Let ae X.
Corresponding to the splitting of f, we know that we have a product
decomposition E=E’ x F and that there exists an open set U of X
containing a, together with trivializing maps

. (U)—UxE and ¢ 77'(U)— UxFE
such that the composite map

TL,I -1 f(/

E ‘> E % E,~SE xF

maps E’ on E’ x 0.
For any point x in U, we have a map

(tf7' ", E —E xF,
which can be represented by a pair of continuous linear maps

(hll(x), hz](x)).

We define
h(x): E'xF—E'xF
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<h11 (x) O )
h21 (x) id ’
operating on the right on a vector (v, w) € E’ x F. Then h(x) restricted to
E’ x 0 has the same action as (tf7'7!)..

The map x> h(x) is a morphism of U into L(E, E) and since it is
continuous, it follows that for U small enough around our fixed point a, it

maps U into the group of linear automorphisms of E. This proves our
proposition.

by the matrix

Dually to Proposition 3.1, we have:
Proposition 3.2. Let X be a manifold and let
g: n—n"

be a VB-morphism of vector bundles over X. Assume that for each
x € X, the continuous linear map

gv: Ex — E!
is surjective. Then the sequence

g
n—=n"—0
is exact.

Proof. 1t is dual to the preceding one and we leave it to the reader.
In general, a sequence of VB-morphisms
| PP AU N

is said to be exact if both ends are exact, and if the image of f is equal to
the kernel of g.

There is an important example of exact sequence. Let f: X — Y be an
immersion. By the universal mapping property of pull backs, we have a
canonical VB-morphism

Tf: T(X) — f*T(Y)

of T(X) into the pull back over X of the tangent bundle of Y. Fur-
thermore, from the manner in which the pull back is obtained locally by
taking products, and the definition of an immersion, one sees that the
sequence

0—7xX) L 7y
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is exact. The factor bundle
STT(Y)/Im(T7f)

is called the normal bundle of f. Tt is denoted by N(f), and its total
space by Ny(X) if we wish to distinguish between the two. We sometimes
identify 7'(X) with its image under 7*f and write

N(f)=/"T(Y)/T(X).

Dually, let f: X — Y be a submersion. Then we have an exact
sequence

7x) 2L 1Y) =0

whose kernel could be called the subbundle of f, or the bundle along the
fiber.

There is an interesting case where we can describe the kernel more
precisely. Let

n: E— X

be a vector bundle. Then we can form the pull back of E over itself, that
is, 7*E, and we contend that we have an exact sequence

0—-7n"E—-T(E)—n"T(X)—0.

To define the map on the left, we look at the subbundle of = more closely.
For each x € X we have an inclusion

Ey — E,
whence a natural injection
T(Ey) — T(E).

The local product structure of a bundle shows that the union of the 7T'(Ey)
as x ranges over X gives the subbundle set theoretically. On the other
hand, the total space of n*E consists of pairs of vectors (v, w) lying over
the same base point x, that is, the fiber at x of n*FE is simply E, x Ej.
Since T'(E,) has a natural identification with E, x E,, we get for each x a
bijection
(n*E), — T(E.)

which defines our map from z*E to T(E). Considering the map locally in

terms of the local product structure shows at once that it gives a VB-
isomorphism between 7z*E and the subbundle of z, as desired.
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Ill, §4. OPERATIONS ON VECTOR BUNDLES

We consider a functor
(E,F) — A(E, F)
in, say, two variables, which is, say, contravariant in the first and co-

variant in the second. (Everything we shall do extends in the obvious
manner to functors of several variables.

Example. We took a functor in two variables for definiteness, and to
illustrate both variances. However, we could consider a functor in one or
more than two variables. For instance, let us consider the functor

E— L(E,R) = L(E) = E",

which we call the dual. It is a contravariant functor in one variable. On
the other hand, the functor

E— L'(E, F)

of continuous multilinear maps of E x --- x E into a vector space F is
contravariant in E and covariant in F. The functor E — L)(E, R) gives
rise later to what we call differential forms. We shall treat such forms
systematically in Chapter V, §3.

Let f: E' — E and g: F — F’ be two linear maps. By definition, we
have a map

L(E', E) x L(F, F') — L(A(E, F), A(E/, F")),
assigning A(f, g) to (f, g)-

We shall say that 1 is of class C? if the following condition is satisfied.
Give a manifold U, and two morphisms

¢: U— L(E',E) and Yy: U— L(F, F'),
then the composite
U — L(E', E) x L(F, F') — L(A(E, F), A(E', F"))
is also a morphism. (One could also say that A is differentiable.)
Theorem 4.1. Let A be a functor as above, of class C?, p =2 0. Then for

each manifold X, there exists a functor Ay, on vector bundles (of class
CP)

Jx: VB(X) x VB(X) — VB(X)
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satisfying the following properties. For any bundles a, [ in VB(X) and
VB-morphisms
firod —wa and g: p—p

and for each x e X, we have:

OP 1. Ax(o, f), = Aoy, By)-

OP 2. }vx(f, g)x = /A“(fx? gx)'

OP 3. If a is the trivial bundle X x E and f the trivial bundle X x F,
then Ax(a, f) is the trivial bundle X x A(E, F).

OP 4. If h: Y — X is a CP-morphism, then
Ay(h o, h*B) = h*Ax (o, ).

Proof. We may assume that X is connected, so that all the fibers are
linearly isomorphic to a fixed space. For each open subset U of X we let
the total space Ay(E,, Eg) of Ay(a, f) be the union of the sets

{x} x Ao, By)
(identified harmlessly throughout with A(ay, f)), as x ranges over U. We
can find a covering {U;} of X with trivializing maps {7;} for o, and {o;}

for f,
T;: O(_I(Ui) — U,- X E,

oi: BN (U) — U; xF.
We have a bijection
MY, a0): Ay (Ey, Eg) — Ui x A(E, F)

obtained by taking on each fiber the map

Mt o) Ao, By) — A(E, F).
We must verify that VB 3 is satisfied. This means looking at the map

x — )v(rj;l, Tjx) © /1(1'1.;1, a[x)_l.
The expression on the right is equal to

i(r,—XT];l7 ajxai;l).

Since A is a functor of class C?, we see that we get a map

UinU; — L(AE, F), A(E, F))
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which is a C?-morphism. Furthermore, since 4 is a functor, the transi-
tion mappings are in fact linear isomorphisms, and VB 2, VB 3 are
proved.

The proof of the analogous statement for Ax(f, g), to the effect that
it is a VB-morphism, proceeds in an analogous way, again using the
hypothesis that 1 is of class C?. Condition OP 3 is obviously satisfied,
and OP 4 follows by localizing. This proves our theorem.

The next theorem gives us the uniqueness of the operation Ay.

Theorem 4.2. If u is another functor of class CP with the same variance
as A, and if we have a natural transformation of functors t: 1 — u, then
for each X, the mapping

ty: Ay — Uy,

defined on each fiber by the map

t((x.’»‘v ﬁ\) /1(069(, ﬁ).) - lu(a.)H ﬁx)v
is a natural transformation of functors (in the VB-category).

Proof. For simplicity of notation, assume that A and u are both
functors of one variable, and both covariant. For each open set U = U; of
a trivializing covering for f,, we have a commutative diagram:

i E
Usxi® My

Ay(0) tlo)

1(p) ————— no()

The vertical maps are trivializing VB-isomorphism, and the top horizontal
map is a VB-morphism. Hence 7y is a VB-morphism, and our assertion is
proved.

In particular, for 2 = u and ¢ = id we get the uniqueness of our functor
Ax.

(In the proof of Theorem 4.2, we do not use again explicitly the
hypotheses that A, u are differentiable.)

In practice, we omit the subscript X on A, and write A for the functor
on vector bundles.
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Examples. Let n: £ — X be a vector bundle. We take 1 to be the
dual, that is E~— EY = L(E, R). Then A(E) is denoted by E, and is
called the dual bundle. The fiber at each point x € X is the dual space E).
The dual bundle of the tangent bundle is called the cotangent bundle 7V X .

Similarly, instead of taking L(E), we could take L/ (E) to be the bundle
of alternating multilinear forms on E. The fiber at each point is the space
L}(E,) consisting of all r-multilinear alternating continuous functions on
E,. When E =TX is the tangent bundle, the sections of L)(7TX) are
called differential forms of degree r. Thus a l-form is a section of EV.
Differential forms will be treated later in detail.

For another type of operation, we have the direct sum (also called the
Whitney sum) of two bundles o, f over X. It is denoted by o @ f, and the
fiber at a point x is

(2@ f), = ox @ b

Of course, the finite direct sum of vector spaces can be identified with their
finite direct products, but we write the above operation as a direct sum in
order not to confuse it with the following direct product.

Let o: E, — X and f: Eg — Y be two vector bundles in VB(X) and
VB(Y) respectively. Then the map

axpf: EyxEpg—XxY

is a vector bundle, and it is this operation which we call the direct product
of o and f.

Let X be a manifold, and 4 a functor of class C? with p = 1. The
tensor bundle of type A over X is defined to be /lX(T(X )), also denoted by
AT(X) or T)(X). The sections of this bundle are called tensor fields of
type 4, and the set of such sections is denoted by I';(X). Suppose that we
have a trivialization of T(X), say

T(X)=X xE.

Then T,(X) =X x A(E). A section of 7;(X) in this representation is
completely described by the projection on the second factor, which is a
morphism

f: X — A(E).

We shall call it the local representation of the tensor field (in the given
trivialization). If £ is the tensor field having f as its local representation,
then
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Let f: X — Y be a morphism of class C” (p = 1). Let @ be a tensor
field of type L" over Y, which could also be called a multilinear tensor
field. For each ye Y, w(y) (also written ,) is a multilinear function on
T,(Y):

w,: Ty x---xT, —R.
For each x € X, we can define a multilinear map

fiw): Tyx---xTy—R

X

r

by the composition of maps (7.f)" and s :
’TXX e X T‘XH Tf(x) X oo X T}'(x) — R.

We contend that the map x — f(®) is a tensor field over X, of the same
type as w. To prove this, we may work with local representation. Thus
we can assume that we work with a morphism

fr U=V
of one open set in a Banach space into another, and that
w: V — L'(F)

is a morphism, V being open in F. If U is open in E, then f*(w) (now
denoting a local representation) becomes a mapping of U into L'(E),
given by the formula

@) =L"(f'(x)) -o(f(x)).

Since L": L(E, F) — L(L"(F), L"(E)) is of class C*, it follows that
f7(w) is a morphism of the same class as w. This proves what we want.

Of course, the same argument is valid for the other functors L! and L]
(symmetric and alternating multilinear maps). Special cases will be
considered in later chapters. If A denotes any one of our three functors,
then we see that we have obtained a mapping (which is in fact linear)

ST Tu(Y) — Ta(X)

which is clearly functorial in f. We use the notation f™ instead of the
more correct (but clumsy) notation f; or I';(f). No confusion will arise
from this.
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lll, §5. SPLITTING OF VECTOR BUNDLES

The next proposition expresses the fact that the VB-morphisms of one
bundle into another (over a fixed morhism) form a module over the ring of
functions.

Proposition 5.1. Let X, Y be manifolds and f,: X — Y a morphism.
Let o, f§ be vector bundles over X, Y respectively, and let f, g: o — f be
two VB-morphisms over f,. Then the map f + g defined by the formula

(f+9),=fi+9x

is also a VB-morphism. Furthermore, if y: Y — R is a function on Y,
then the map yf defined by

W) =¥ (fo()) S
is also a VB-morphism.

Proof. Both assertions are immediate consequences of Proposition 3.10
of Chapter I

We shall consider mostly the situation where X =Y and f, is the
identity, and will use it, together with partitions of unity, to glue VB-
morphisms together.

Let o, f be vector bundles over X and let {(U;, ¥,;)} be a partition of
unity on X. Suppose given for each U; a VB-morphism

S o|Ui — p|U;.

Each one of the maps y,f; (defined as in Proposition 5.1) is a VB-
morphism. Furthermore, we can extend ¥, f; to a VB-morphism of « into

p simply by putting
(wij;')x =0

for all x¢ U;. If we now define

froao—p
by the formula

[0) =Y vilx) fis(0)

for all pairs (x, v) with v € a,, then the sum is actually finite, at each ponit
x, and again by Proposition 5.1, we see that f is a VB-morphism. We
observe that if each f; is the identity, then f = >, f; is also the identity.
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Proposition 5.2. Let X be a manifold admitting partitions of unity. Let

0—ua ER S be an exact sequence of vector bundles over X. Then there
exists a surjective VB-morphism g: [ — o whose kernel splits at each
point, such that go f =id.

Proof. By the definition of exact sequence, there exists a partition of
unity {(U;, ¥;)} on X such that for each i, we can split the sequence over
U;. In other words, there exists for each i a VB-morphism

gi: PlU; — o|U;

which is surjective, whose kernel splits, and such that g; o f; =id;. We let
g =>_¥,9;. Then g is a VB-morphism of f into o« by what we have just
seen, and

gof = Vgif,=id.

It is trivial that g is surjective because g o f =id. The kernel of g, splits
at each point x because it has a closed complement, namely f.o.. This
concludes the proof.

If y is the kernel of f, then we have ff~ o @ y.

A vector bundle 7z over X will be said to be of finite type if there exists
a finite trivialization for 7 (i.e. a trivialization {(Uj;, 7;)} such that i ranges
over a finite set).

If k is an integer > 1 and E a vector space, then we denote by EX the
direct product of E with itself & times.

Proposition 5.3. Let X be a manifold admitting partitions of unity. Let
n be a vector bundle of finite type in VB(X, E). Then there exists an
integer k >0 and a vector bundle o in VB(X, EX) such that n ® « is
trivializable.

Proof. We shall prove that there exists an exact sequence
0—=m J, p
with Eg =X x Ef. Our theorem will follow from the preceding
proposition.
Let {U;, t;)} be a finite trivialization of = with i=1,...,k. Let
{(U;, ¥;)} be a partition of unity. We define
f: E,— X x EX

as follows. If xe X and v is in the fiber of E, at x, then

f0) = (x, Y1 ()71 (0), - Y ()T (v).
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The expression on the right makes sense, because in case x does not lie in
U; then ¥,(x) =0 and we do not have to worry about the expression
7;(v). If x lies in U;, then 7;(v) means 7,(v).

Given any point x, there exists some index i such that y;(x) > 0 and
hence f is injective. Furthermore, for this x and this index 7, f, maps Ex
onto a closed subspace of EX, which admits a closed complement, namely

Ex - - x0x---xE

with 0 in the i-th place. This proves our proposition.



CHAPTER IV

Vector Fields and Differential
Equations

In this chapter, we collect a number of results all of which make use of the
notion of differential equation and solutions of differential equations.

Let X be a manifold. A vector field on X assigns to each point x of X a
tangent vector, differentiably. (For the precise definition, see §2.) Given xo
in X, it is then possible to construct a unique curve o(f) starting at xo
(i.e. such that «(0) = xo) whose derivative at each point is the given
vector. It is not always possible to make the curve depend on time ¢ from
—o0 to 400, although it is possible if X is compact.

The structure of these curves presents a fruitful domain of investiga-
tion, from a number of points of view. For instance, one may ask for
topological properties of the curves, that is those which are invariant under
topological automorphisms of the manifold. (Is the curve a closed curve,
is it a spiral, is it dense, etc.?) More generally, following standard pro-
cedures, one may ask for properties which are invariant under any given
interesting group of automorphisms of X (discrete groups, Lie groups,
algebraic groups, Riemannian automorphisms, ad lib.).

We do not go into these theories, each of which proceeds according
to its own flavor. We give merely the elementary facts and definitions
associated with vector fields, and some simple applications of the existence
theorem for their curves.

Throughout this chapter, we assume all manifolds to be of class C? with
p =2 from §2 on, and p =3 from §3 on. This latter condition insures that
the tangent bundle is of class CP~' with p—12=1 (or 2).

We shall deal with mappings of several variables, say f(t, x, ), the first
of which will be a real variable. We identify Dy f(t, x, y) with

h—0 h

60
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IV, §1. EXISTENCE THEOREM FOR
DIFFERENTIAL EQUATIONS

Let E be a normed vector space and U an open subset of E. In this
section we consider vector fields locally. The notion will be globalized
later, and thus for the moment, we define (the local representation of) a
time-dependent vector field on U to be a C”-morphism (p = 0)

f: JxU-—E,

where J is an open interval containing 0 in R. We think of f as assigning
to each point x in U a vector f(¢, x) in E, depending on time ¢.

Let xy be a point of U. An integral curve for f/ with initial condition x;
is a mapping of class C" (r = 1)

o J()—>U

of an open subinterval of J containing 0, into U, such that «(0) = x( and
such that

o (1) = f(¢, a(1)).
Remark. Let a: Jy — U be a continuous map satisfying the condition

t

a(t) = xo + J S (u,(u)) du.

0

Then o is differentiable, and its derivative is f'(z, «(r)). Hence « is of class
C'. Furthermore, we can argue recursively, and conclude that if f is of
class C?, then so is . Conversely, if « is an integral curve for f with initial
condition xy, then it obviously satisfies out integral relation.

Let
f:JxU—E

be as above, and let x; be a point of U. By a local flow for f at x;, we
mean a mapping

o: Jox Uy— U

where Jy is an open subinterval of J containing 0, and U, is an open
subset of U containing x, such that for each x in U, the map

ox(t) = a(t, x)

is an integral curve for f with initial condition x (i.e. such that «(0, x) =
X).
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As a matter of notation, when we have a mapping with two arguments,
say ¢(t, x), then we denote the separate mappings in each argument when
the other is kept fixed by ¢, (¢) and ¢,(x). The choice of letters will always
prevent ambiguity.

We shall say that f satisfies a Lipschitz condition on U uniformly with
respect to J if there exists a number K > 0 such that

|f(l7 X) _f(l7 y)| §K|X— y|

for all x, y in U and ¢ in J. We call K a Lipschitz constant. If f'is of class
C!, it follows at once from the mean value theorem that fis Lipschitz on
some open neighborhood Jy x Uy of a given point (0, xy) of U, and that it
is bounded on some such neighborhood.

We shall now prove that under a Lipschitz condition, local flows exist
and are unique locally. In fact, we prove more, giving a uniformity
property for such flows. If b is real > 0, then we denote by J, the open
interval —b <t < b.

Proposition 1.1. Let J be an open interval of R containing 0, and U open
in the normed vector space E. Let xo be a point of U, and a > 0,a <1 a
real number such that the closed ball Bs,(xo) lies in U. Assume that we
have a continuous map

f:JxU—E
which is bounded by a constant L = 1 on J x U, and satisfies a Lipschitz

condition on U uniformly with respect to J, with constant K = 1. If
b <a/LK, then for each x in B,(xy) there exists a unique flow

o J[, X Ba(XQ) — U.

If fis of class CP (p 2 1), then so is each integral curve o,.

Proof. Let I, be the closed interval —b <t < b, and let x be a fixed
point in B,(xg). Let M be the set of continuous maps

o Ib — Bza(X())
of the closed interval into the closed ball of center xy and radius 2a, such

that «(0) = x. Then M is a complete metric space if we define as usual the
distance between maps «, ff to be the sup norm

lloe = Bl = sup |a(2) — (1))

tely
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We shall now define a mapping
S M—-M

of M into itself. For each o in M, we let So be defined by

t

(Sa)(t) = x+J S (u, o(u)) du.

0

Then So is certainly continuous, we have S«(0) = x, and the distance of

any point on So from x is bounded by the norm of the integral, which is
bounded by

b sup|f(u, )| < BL < a.

Thus So lies in M.
We contend that our map S is a shrinking map. Indeed,

|Soec — SB| < b sup|f (u, a(u)) — f(u, B(u))]
< bkl fl,

thereby proving our contention.

By the shrinking lemma (Chapter I, Lemma 5.1) our map has a unique
fixed point «, and by definition, o() satisfies the desired integral relation.
Our remark above concludes the proof.

Corollary 1.2. The local flow o in Proposition 1.1 is continuous.
Furthermore, the map x— oy of B,(xo) into the space of curves is
continuous, and in fact satisfies a Lipschitz condition.

Proof. The second statement obviously implies the first. So fix x in

B,(x0) and take y close to x in B,(xo). We let S, be the shrinking map of
the theorem, corresponding to the initial condition x. Then

o = Syoe]| = [[Sxore — Syon|| < [x — yl.
Let C=5bK so 0 < C< 1. Then

2 -1
lloe — Shouell = flow — Syl + [[Syoee — Syoe|| 4+ 18T o — S|
S+ Cte " Dlx =yl
Since the limit of Sja is equal to o), as n goes to infinity, the continuity

of the map x — a, follows at once. In fact, the map satisfies a Lipschitz
condition as stated.
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It is easy to formulate a uniqueness theorem for integral curves over
their whole domain of definition.

Theorem 1.3 (Uniqueness Theorem). Let U be open in E and let
f: U— E be a vector field of class CP, p=1. Let

OC]iJ]HU and 0o J2‘>U

be two integral curves for f with the same initial condition xy,. Then o
and oy are equal on J; N J,.

Proof. Let Q be the set of numbers b such that o(r) = o(¢) for
0 t<b.

Then Q contains some number b > 0 by the local uniqueness theorem. If
Q is not bounded from above, the equality of o(¢) and a,(¢) for all £ > 0
follows at once. If Q is bounded from above, let b be its least upper
bound. We must show that b is the right end point of J; nJ,. Suppose
that this is not the case. Define curves f; and f, near 0 by

pi(t) =0y (b+1) and Pr(t) = oa(b+1).

Then f, and S, are integral curves of f with the initial conditions o (b)
and op(b) respectively. The values f,(z) and f,(¢) are equal for small
negative ¢ because b is the least upper bound of Q. By continuity it
follows that o (b) = az(b), and finally we see from the local uniqueness
theorem that

Bi(1) = By(1)

for all ¢ in some neighborhood of 0, whence «; and «, are equal in a
neighborhood of b, contradicting the fact that b is a least upper bound of
Q. We can argue the same way towards the left end points, and thus
prove our statement.

For each x e U, let J(x) be the union of all open intervals containing
0 on which integral curves for f are defined, with initial condition equal
to x. The uniqueness statement allows us to define the integral curve
uniquely on all of J(x).

Remark. The choice of 0 as the initial time value is made for con-
venience. From the uniqueness statement one obtains at once (making a
time translation) the analogous statement for an integral curve defined on
any open interval; in other words, if J;, J, do not necessarily contain 0,
and £y is a point in J; nJ, such that o;(zy) = a2(#), and also we have the
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differential equations
o () = f(ou(r)  and (1) = f(o2(1)),
then o; and o, are equal on J; nJ,.
In practice, one meets vector fields which may be time dependent, and

also depend on parameters. We discuss these to show that their study
reduces to the study of the standard case.

Time-dependent vector fields
Let J be an open interval, U open in a normed vector space E, and
f:JxU—E

a C? map, which we view as depending on time ¢ € J. Thus for each ¢, the
map x+— f(¢, x) is a vector field on U. Define

f: JxU—RxE
by .
f(tx)=(1, f(1 x)),

and view f as a time-independent vector field on J x U. Let & be its flow,
so that

&', 5, x) = f(at, 5, %)), &0, 5, x) = (s, x).
We note that & has its values in J x U and thus can be expressed in terms
of two components. In fact, it follows at once that we can write & in the
form
a(t, s, x) = (t+s, (¢, s, x)).
Then &, satisfies the differential equation
D8, s, x) =f(t+s, (t, s, x))
as we see from the definition of f. Let

pt, x) = ax(t, 0, x).

Then f is a flow for f, that is f satisfies the differential equation

Dlﬁ(ta x) = f(tv ﬂ(tv X)), [))(O’ x) =X
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Given x € U, any value of ¢ such that « is defined at (¢, x) is also such that
@ is defined at (¢, 0, x) because o, and [, are integral curves of the same
vector field, with the same initial condition, hence are equal. Thus the
study of time-dependent vector fields is reduced to the study of time-
independent ones.

Dependence on parameters
Let V' be open in some space F and let
g: JxVxU—E

be a map which we view as a time-dependent vector field on U, also
depending on parameters in V. We define

G: JxVxU—FxE
by
G(t,z, ) =(0,9(¢t, z, ¥))

forteJ, zeV, and ye U. This is now a time-dependent vector field on
V x U. A local flow for G depends on three variables, say f(z, z, y), with
initial condition (0, z, y) = (z, y). The map f has two components, and
it is immediately clear that we can write

IB(ta Z, y) = (Zv O((Z, Z, y))

for some map « depending on three variables. Consequently o satisfies the
differential equation

Dia(t, z, y) = g(t, z, a(t, z,p)), (0, z, y) =y,

which gives the flow of our original vector field g depending on the
parameters ze V. This procedure reduces the study of differential
equations depending on parameters to those which are independent of
parameters.

We shall now investigate the behavior of the flow with respect to its
second argument, i.e. with respect to the points of U. We shall give two
methods for this. The first depends on approximation estimates, and the
second on the implicit mapping theorem in function spaces.

Let Jy be an open subinterval of J containing 0, and let

p: Jo—U
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be of class C!. We shall say that ¢ is an e-approximate solution of f on J,
if
0'(1) = f(1, 9(1))| S €

for all ¢ in Jy.

Proposition 1.4. Let ¢, and ¢, be two €;- and e;-approximate solutions
of f on Jy respectively, and let € = €] + €y. Assume that f is Lipschitz
with constant K on U uniformly in Jy, or that D, f exists and is bounded
by Kon J x U. Let ty be a point of Jy. Then for any t in Jy, we have

_ € _
|91(6) = 02(1)] = |91 (20) — s (t0)[ "] +E€K‘t “l.

Proof. By assumption, we have

lo1 (1) = £ (1, 9,1(0)] L e,

|03(1) = 1 (1 92(0))| £ €2
From this we get

|01(1) = 95(0) + £ (1, 92(0) = f (1, 91(1))| S e

Say t =ty to avoid putting bars around ¢ —¢,. Let

w(t) = [1(t, p,(1) — [ (1, p2(0))]-

Then, after integrating from ¢y to ¢, and using triangle inequalities we

obtain
t

|w0fwm»§dr+w+wawm

t

Se(t—1t) JrKJ Y (u) du

fo

< & [ W + /K] du

Iy

and finally the recurrence relation
I3
00 = W)+ K | W)+ /K] du

to

On any closed subinterval of Jy, our map  is bounded. If we add ¢/K to
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both sides of this last relation, then we see that our proposition will follow
from the next lemma.

Lemma 1.5. Let g be a positive real valued function on an interval,
bounded by a number L. Let ty be in the interval, say ty < t, and assume
that there are numbers A, K =0 such that

gt) A+ KJI g(u) du.

fo

Then for all integers n =2 1 we have

K(t—1o) K" Y1 —19)"!
<All+—Y 4.
9() = AT+ == b o

LK"™(t— to)"
n! '

Proof. The statement is an assumption for n=1. We proceed by
induction. We integrate from #, to ¢, multiply by K, and use the re-
currence relation. The statement with n+ 1 then drops out of the
statement with 7.

Corollary 1.6. Let f: J x U — E be continuous, and satisfy a Lipschitz
condition on U uniformly with respect to J. Let xy be a point of U. Then
there exists an open subinterval Jo of J containing 0, and an open subset
of U containing xo such that f has a unique flow

o J()XU()—>U.

We can select Jy and Uy such that o is continuous and satisfies a
Lipschitz condition on Jy x U.

Proof. Given x, y in Uy we let ¢,(1) = a(t, x) and ¢,(¢) = a(z, y), using
Proposition 1.6 to get Jy and Uy. Then ¢ =¢; =0. For s, ¢ in Jy we
obtain

(2, x) — a(s, )| = |eelt, x) — a(t, y)| + [a(t, y) —als, p)]
< |x— yle® + |1 —s|L,

if we take Jy of small length, and L is a bound for f. Indeed, the term
containing |x — y| comes from Proposition 1.4, and the term containing
|t — 5| comes from the definition of the integral curve by means of an
integral and the bound L for f. This proves our corollary.

Corollary 1.7. Let J be an open interval of R containing 0 and let U be
open in E. Let f: J x U — E be a continuous map, which is Lipschitz
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on U uniformly for every compact subinterval of J. Let ty € J and let ¢,
@, be two morphisms of class C' such that ¢,(ty) = ¢,(to) and satisfying

the relation

9'(1) = f(t, 0(1)
Sfor all t in J. Then ¢,(t) = ¢,(1).
Proof. We can take ¢ =0 in the proposition.

The above corollary gives us another proof for the uniqueness of
integral curves. Given f: J x U — E as in this corollary, we can define
an integral curve o for f on a maximal open subinterval of J having a
given value a(f) for a fixed 7y in J. Let J be the open interval (a, b) and
let (ao, by) be the interval on which o is defined. We want to know when
by = b (or ayp = a), that is when the integral curve of f can be continued to
the entire interval over which f itself is defined.

There are essentially two reasons why it is possible that the integral
curve cannot be extended to the whole domain of definition J, or cannot
be extended to infinity in case f is independent of time. One possibility is
that the integral curve tends to get out of the open set U, as on the
following picture:

This means that as ¢ approaches by, say, the curve o(t) approaches a point
which does not lie in U. Such an example can actually be constructed
artificially. If we are in a situation when a curve can be extended to
infinity, just remove a point from the open set lying on the curve. Then the
integral curve on the resulting open set cannot be continued to infinity.
The second possibility is that the vector field is unbounded. The next
corollary shows that these possibilities are the only ones. In other words,
if an integral curve does not tend to get out of the open set, and if the
vector field is bounded, then the curve can be continued as far as the
original data will allow a priori.

Corollary 1.8. Let J be the open interval (a, b) and let U be open in E.
Let f: JxU—E be a continuous map, which is Lipschitz on U,
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uniformly for every compact subset of J. Let o be an integral curve of f,
defined on a maximal open subinterval (ay, by) of J. Assume:

(i) There exists € >0 such that «((by — €, bo)) is contained in U.
(ii) There exists a number B >0 such that | f(t, «(r))| < B for all t in
(bo — €, bo).

Then by = b.

Proof. From the integral expression for o, namely
t
a(t) = a(ty) +J f(u, o(u)) du,
1o
we see that for 71, 7, in (by — €, by) we have
(1) — ot2)| = Blty — 1a.
From this it follows that the limit

i, 0

exists, and is equal to an element xy of U (by hypothesis (i)). Assume that
by # b. By the local existence theorem, there exists an integral curve f of
f defined on an open interval containing by such that f(by) = xp and
B'(1) = f(¢, B(¢)). Then ' =o' on an open interval to the left of by, and
hence «, f differ by a constant on this interval. Since their limit as t — by
are equal, this constant is 0. Thus we have extended the domain of
definition of o to a larger interval, as was to be shown.

The next proposition describes the solutions of linear differential
equations depending on parameters.

Proposition 1.9. Let J be an open interval of R containing 0, and let V
be an open set in a vector space. Let E be a vector space. Let

g: JxV — L(E, E)
be a continuous map. Then there exists a unique map
A I xV — L(E, E)
which, for each x €V, is a solution of the differential equation
DiA(t, x) = g(¢, x)A(¢, x), A0, x) = id.

This map A is continuous.
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Remark. In the present case of a linear differential equation, it is not
necessary to shrink the domain of definition of its flow. Note that the
differential equation is on the space of linear maps. The corresponding
linear equation on E itself will come out as a corollary.

Proof of Proposition 1.9. Let us first fix x € V. Consider the differential
equation
D A(t, x) = g(t, x)A(t, x),

with initial condition A(0, x) =id. This is a differential equation on
L(E, E), where f(t, z) = gx(t)z for z € L(E, E), and we write g.(¢) instead
of g(¢, x). Let the notation be as in Corollary 1.8. Then hypothesis (i) is
automatically satisfied since the open set U is all of L(E, E). On every
compact subinterval of J, g, is bounded, being continuous. Omitting the
index x for simplicity, we have

t

A(f) =id + L g(u)A(u) du,

whence for 7= 0, say

() <1 +BL ()| .

Using Lemma 1.5, we see that hypothesis (ii) of Corollary 1.8 is also
satisfied. Hence the integral curve is defined on all of J.

We shall now prove the continuity of 1. Let (f, xo) € J x V. Let I be
a compact interval contained in J, and containing #, and 0. As a function
of t, A(t, xo) is continuous (even differentiable). Let C > 0 be such that
|A(2, x0)] < C for all tel. Let V; be an open neighborhood of xy in V
such that g is bounded by a constant K >0 on I x V.

For (¢, x) eI x V; we have

(1, X) = Ato, x0)| < 12(t, ) — A(t, X0)| + |A(t, x0) — A(t0, xo)].

The second term on the right is small when ¢ is close to 7). We investigate
the first term on the right, and shall estimate it by viewing A(¢, x) and
A(t, xo) as approximate solutions of the differential equation satisfied by
Alt, x). We find
|D1A(t, xo) — g(1, X)A(1, xo)|
= [D1A(1, x0) — g(t, x)A(1, X0) + g(¢, x0)A(Z, x0) — g(1, X0)A(t, Xo)|
= |g(t7 X()) - g(tv X)| M(ta X())| = |g(l7 XO) - g(l, X)|C
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By the usual proof of uniform continuity applied to the compact set
I x {x¢}, given € > 0, there exists an open neighborhood ¥Vj of xy con-
tained in V7, such that for all (¢, x) eI x V, we have

lg(z, x) —g(t, x0)| < ¢/C.

This implies that A(z, xo) is an e-approximate solution of the differential
equation satisfied by A(z, x). We apply Proposition 1.4 to the two curves

oo(1) = A(t, xo) and 0. (1) = A(t, x)

for each x e V. We use the fact that 1(0, x) = 4(0, xo) =id. We then

find
|A(2, x) = A2, x0)| < €K

for some constant K; > 0, thereby proving the continuity of 4 at (y, xo).

Corollary 1.10. Let the notation be as in Proposition 1.9. For each
xe€V and z € E the curve

P, x, z) = At, x)z

with initial condition B(0, x, z) =z is a solution of the differential
equation
D, x, z) = g(1, x)B(1, x, z).

Furthermore, f is continuous in its three variables.
Proof. Obvious.

Theorem 1.11 (Local Smoothness Theorem). Let J be an open interval in
R containing 0 and U open in the vector space E. Let

f:JxU—E

be a CP-morphism with p =1, and let xo € U. There exists a unique
local flow for f at xo. We can select an open subinterval Jy of J
containing 0 and an open subset Uy of U containing xo such that the
unique local flow

o J() X U() — U

is of class C?, and such that Dya satisfies the differential equation

D\ Dsa(t, x) = Ds f (1, a(t, x)) Dyo(t, x)

on Jy x Uy with initial condition D»a(0, x) = id.
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Proof. Let
g: JxU— L(E, E)
be given by g(¢, x) = D>f (¢, a(t, x)). Select J; and Up such that « is
bounded and Lipschitz on J; x Uy (by Corollary 1.6), and such that g is
continuous and bounded on J; x V.- Let Jy be an open subinterval of J;
containing 0 such that its closure J, is contained in J;.

Let A(t, x) be the solution of the differential equation on L(E, E) given
by

DiA(t, x) = g(t, x)A(t, x), (0, x) = id,
as in Proposition 1.9. We contend that D,o exists and is equal to 4 on

Jo x Uy. This will prove that D, is continuous, on Jy x U.
Fix xe Uy. Let

0(t, h) = a(t, x + h) — a(t, x).
Then
D, 0(t, h) = Dya(t, x + h) — Dyo(t, x)
= f(t, o(t, x+ h)) = f(1, a(t, x)).
By the mean value theorem, we obtain
|D19(ta h) - g(ta x)@(t, h)|
= |/ (t, alt, x+h)) = £ (2, a(t, x)) = Dof (1, a(t, x))0(t, h)|
= |h| sup |D2f(lv y) _DZf(lv O((l, X))|7

where y ranges over the segment between o(#, x) and «(¢, x + /h). By the
compactness of Jy it follows that our last expression is bounded by ||y (h)
where y(h) tends to 0 with 4, uniformly for ¢ in Jy. Hence we obtain

10 (2, h) — g(t, x)0(t, h)| < [l (h),

for all z in Jo. This shows that 0(z, i) is an |h|y(h) approximate solution
for the differential equation satisfied by A(¢, x)h, namely

Dl/l(lv X)h - g(ta X)i(l, X)/’l = 0;

with the initial condition A(0, x)h2 = h. We note that 6(¢, ) has the same
initial condition, 6(0, &) = h. Taking f) = 0 in Proposition 1.4, we obtain
the estimate

|0(t, h) — (2, x)h| < Ci[hly(h)
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for all ¢ in Jo. This proves that Do is equal to A on Jy x Up, and is
therefore continuous on Jy x Uj.

We have now proved that Djo and D,o exist and are continuous on
Jo x Uy, and hence that o is of class C! on Jy x Uj.

Furthermore, Do satisfies the differential equation given in the
statement of our theorem on Jy x U;. Thus our theorem is proved when

p=1

A flow which satisfies the properties stated in the theorem will be called
locally of class C?.

Consider now again the linear equation of Proposition 1.9. We re-
formulate it to eliminate formally the parameters, namely we define a
vector field

G: JxV xLE,E)— Fx L(E, E)

to be the map such that

G(t, x, w) = (0, g(t, x)a))
for w € L(E, E). The flow for this vector field is then given by the map A
such that

A(t, x, ) = (x, A1, X)o).
If ¢ is of class C! we can now conclude that the flow A is locally of class
C', and hence putting ® = id, that 1 is locally of class C!.

We apply this to the case when g(#, x) = D>/ (¢, «(t, x)), and to the
solution D,o of the differential equation

D (Dy0)(t, x) = g(t, x)Daa(t, x)

locally at each point (0, x), xe U. Let p =2 be an integer and assume
out theorem proved up to p — 1, so that we can assume « locally of class
CP~1, and f of class C?. Then g is locally of class C?~!, whence Dju is
locally C?~'. From the expression

Dyo(t, x) = f(1, a(t, x))
we conclude that Do is CP~!, whence o is locally C”.

If fis C*, and if we knew that « is of class C? for every integer p on
its domain of definition, then we could conclude that « is C*; in other
words, there is no shrinkage in the inductive application of the local
theorem.
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We now give the arguments needed to globalize the smoothness. We
may limit ourselves to the time-independent case. We have seen that the
time-dependent case reduces to the other.

Let U be open in a vector space E, and let f: U — E be a C? vector
field. We let J(x) be the domain of the integral curve with initial
condition equal to w.

Let D(f) be the set of all points (¢, x) in R x U such that ¢ lies in
J(x). Then we have a map

a: D(f)—=U

defined on all of D(f), letting a(z, x) = a,(¢) be the integral curve on J(x)
having x as initial condition. We call this the flow determined by f, and
we call D(f) its domain of definition.

Lemma 1.12. Let f: U — E be a C? vector field on the open set U of
E, and let o be its flow. Abbreviate o(t, x) by tx, if (¢, x) is in the
domain of definition of the flow. Let xe U. If ty lies in J(x), then

J(tox) =J(x) — 1o
(translation of J(x) by —t), and we have for all t in J(x)—to:
(tox) = (1 + 10)x.
Proof. The two curves defined by
1+ a(t, oty, X)) and 1 a(t+ 1o, X)

are integral curves of the same vector field, with the same initial condition
tox at t=0. Hence they have the same domain of definition J(zyx).
Hence ¢, lies in J(#x) if and only if #; + 7 lies in J(x). This proves the
first assertion. The second assertion comes from the uniqueness of the
integral curve having given initial condition, whence the theorem follows.

Theorem 1.13 (Global Smoothness of the Flow). If f'is of class C? (with
p < o), then its flow is of class CP on its domain of definition.

Proof. First let p be an integer = 1. We know that the flow is locally
of class C? at each point (0, x), by the local theorem. Let xy € U and let
J(xo) be the maximal interval of definition of the integral curve having x
as initial condition. Let D(f) be the domain of definition of the flow, and
let o be the flow. Let Q be the set of numbers b > 0 such that for each ¢
with 0 < 7 < b there exists an open interval J containing ¢ and an open set
V containing xj such that J x V is contained in D(f) and such that « is of
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class C? on J x V. Then Q is not empty by the local theorem. If Q is not
bounded from above, then we are done looking toward the right end point
of J(xp). If Q is bounded from above, we let b be its least upper bound.
We must prove that b is the right end point of J(xy). Suppose that this
is not the case. Then «(b, xo) is defined. Let x; = a(b, xg). By the local
theorem, we have a unique local flow at x|, which we denote by f:

B: Jax p,(x1) = U, B0, x) =x,

defined for some open interval J, = (—a, a) and open ball B,(x;) of radius
a centered at x;. Let 0 be so small that whenever b — 0 < t < b we have

a(t, Xo) € Byja(x1).
We can find such 0 because

lim oz, xo) = x;
t—b

by continuity. Select a point #; such that b—J <t <b. By the
hypothesis on b, we can select an open interval J; containing #; and an
open set U; containing xy so that

a: Jy x Up — Byp(xr)

maps J; x Uy into B,(x1). We can do this because « is continuous at
(1, x0), being in fact C? at this point. If |t —#;| < a and x € U}, we define

o(t, x) =Bt — 1, a(t1, x)).

Then
(11, x) = B(0, a(t1, x)) = a(t1, x)

and
Dl(p(l, x) = D]ﬂ(l -1, oc(tl, x))

= f(ﬂ(t =1, O‘(tlv x)))
= f((ﬂ(l, x))

Hence both ¢, and «, are integral curves for f with the same value at ¢,.
They coincide on any interval on which they are defined by the uniqueness
theorem. If we take J very small compared to a, say J < a/4, we see that
@ is an extension of « to an open set containing (71, o), and also
containing (b, xp). Furthermore, ¢ is of class C?, thus contradicting the
fact that b is strictly smaller than the end point of J(xp). Similarly, one
proves the analogous statement on the other side, and we therefore see
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that D(f) is open in R x U and that o is of class C? on D(f), as was to
be shown.

The idea of the above proof is very simple geometrically. We go as far
to the right as possible in such a way that the given flow o is of class C?
locally at (¢, xp). At the point a(b, xo) we then use the flow S to extend
differentiably the flow o in case b is not the right-hand point of J(xy). The
flow S at a(b, xo) has a fixed local domain of definition, and we simply
take ¢ close enough to b so that f gives an extension of «, as described in
the above proof.

Of course, if f'is of class C*, then we have shown that « is of class C?
for each positive integer p, and therefore the flow is also of class C*.

In the next section, we shall see how these arguments globalize even
more to manifolds.

IV, §2. VECTOR FIELDS, CURVES, AND FLOWS

Let X be a manifold of class C” with p = 2. Let n: T(X) — X be its
tangent bundle. Then T(X) is of class C*~!, p—1=1.

By a (time-independent) vector field on X we mean a cross section of
the tangent bundle, i.e. a morphism (of class C7~1)

& X —-TX)

such that &(x) lies in the tangent space 7.(X) for each x € X, or in other
words, such that n& = id.

If T(X) is trivial, and say X is an E-manifold, so that we have a VB-
isomorphism of 7(X) with X x E, then the morphism & is completely
determined by its projection on the second factor, and we are essentially in
the situation of the preceding paragraph, except for the fact that our
vector field is independent of time. In such a product representation, the
projection of ¢ on the second factor will be called the local representation
of &, It is a CP~'-morphism

f: X —E

and &(x) = (x, f(x)). We shall also say that ¢ is represented by f locally if
we work over an open subset U of X over which the tangent bundle
admits a trivialisation. We then frequently use ¢ itself to denote this local
representation.

Let J be an open interval of R. The tangent bundle of J is then J x R
and we have a canonical section 7 such that 1(¢) =1 for all reJ. We
sometimes write 7, instead of (7).
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By a curve in X we mean a morphism (always of class = 1 unless
otherwise specified)
o J— X

from an open interval in R into X. If g: X — Y is a morphism, then go «
is a curve in Y. From a given curve o, we get an induced map on the
tangent bundles:

J xR — T(X)

L

J — X

o

and o, o1 will be denoted by o’ or by dua/dt if we take its value at a point
t in J. Thus o is a curve in T(X), of class CP~! if o is of class C”.
Unless otherwise specified, it is always understood in the sequel that we
start with enough differentiability to begin with so that we never end up
with maps of class < 1. Thus to be able to take derivatives freely we have
to take X and o of class C? with p = 2.

If g: X — Y is a morphism, then

(g o) (1) = guo'(1).

This follows at once from the functoriality of the tangent bundle and the
definitions.

Suppose that J contains 0, and let us consider curves defined on J and
such that «(0) is equal to a fixed point xo. We could say that two such
curves oy, o are tangent at 0 if «{(0) = 5(0). The reader will verify
immediately that there is a natural bijection between tangency classes of
curves with a(0) = xo and the tangent space Ty, (X) of X at xo. The
tangent space could therefore have been defined alternatively by taking
equivalence classes of curves through the point.

Let & be a vector field on X and xy a point of X. An integral curve for
the vector field ¢ with initial condition xj, or starting at xo, is a curve (of
class Cr1)

o J— X

mapping an open interval J of R containing 0 into X, such that «(0) = x
and such that

for all teJ. Using a local representation of the vector field, we know
from the preceding section that integral curves exist locally. The next
theorem gives us their global existence and uniqueness.
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Theorem 2.1. Let o: Jy — X and ap: Jy — X be two integral curves of
the vector field & on X, with the same initial condition xo. Then oy and
oy are equal on Jy N J,.

Proof. Let J* be the set of points ¢ such that o;(¢) = ax(¢). Then J*
certainly contains a neighborhood of 0 by the local uniqueness theorem.
Furthermore, since X is Hausdorff, we see that J* is closed. We must
show that it is open. Let ¢* be in J* and define f,, f, near 0 by

Then f, and f, are integral curves of ¢ with initial condition o;(¢*) and
op(t*) respectively, so by the local uniqueness theorem, f#;, and f, agree in
a neighborhood of 0 and thus «;, o, agree in a neighborhood of ¢*,
thereby proving our theorem.

It follows from Theorem 2.1 that the union of the domains of all
integral curves of ¢ with a given initial condition Xy is an open interval
which we denote by J(x¢). Its end points are denoted by r"(xp) and
1~ (xo) respectively. (We do not exclude +o0 and —o0.)

Let D(&) be the subset of R x X consisting of all points (7, x) such that

(x) <t<r(x).
A (global) flow for ¢ is a mapping
% D) — X,
such that for each x € X, the map a,: J(x) — X given by
oy () = a(t, x)

defined on the open interval J(x) is a morphism and is an integral curve
for & with initial condition x. When we select a chart at a point x; of X,
then one sees at once that this definition of flow coincides with the
definition we gave locally in the previous section, for the local repre-
sentation of our vector field.

Given a point x € X and a number ¢, we say that tx is defined if (7, x) is
in the domain of «, and we denote «(¢, x) by tx in that case.

Theorem 2.2. Let & be a vector field on X, and o its flows. Let x be a
point of X. If ty lies in J(x), then

J(l()x) = J(X) — 1y
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(translation of J(x) by —ty), and we have for all t in J(x)—ty:
(tox) = (¢ + 19)x.

Proof. Our first assertion follows immediately from the maximality
assumption concerning the domains of the integral curves. The second is
equivalent to saying that the two curves given by the left-hand side and
right-hand side of the last equality are equal. They are both integral
curves for the vector field, with initial condition #yx and must therefore be
equal.

In particular, if ¢, #, are two numbers such that #;x is defined and
r(t1x) is also defined, then so is (#; + t;)x and they are equal.

Theorem 2.3. Let & be a vector field on X, and x a point of X. Assume
that t*(x) < oo. Given a compact set A = X, there exists € > 0 such that
Sor all t > tt(x) — ¢, the point tx does not lie in A, and similarly for t~.

Proof. Suppose such e does not exist. Then we can find a sequence z,
of real numbers approaching 7" (x) from below, such that z,x lies in A.
Since A4 is compact, taking a subsequence if necessary, we may assume
that #,x converges to a point in 4. By the local existence theorem, there
exists a neighborhood U of this point y and a number 6 > 0 such that
t7(z) >0 for all ze U. Taking n large, we have

F(x)<d+1,
and #,x is in U. Then by Theorem 2.2,
(7(x) = 7 (tyx) + 1, > 5+ 1, > 11(x)
contradiction.
Corollary 2.4. If X is compact, and & is a vector field on X, then
D) =RxX.

It is also useful to give one other criterion when D(&) =R x X, even
when X is not compact. Such a criterion must involve some structure
stronger than the differentiable structure (essentially a metric of some sort),
because we can always dig holes in a compact manifold by taking away a
point.

Proposition 2.5. Let E be a normed vector space, and X an E-manifold.

Let & be a vector field on X. Assume that there exist numbers a > 0 and
K > 0 such that every point x of X admits a chart (U, ¢) at x such that
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the local representation f of the vector field on this chart is bounded by K,
and so is its derivative f'. Assume also that U contains a ball of radius
a around gx. Then D(£) =R x X.

Proof. This follows at once from the global continuation theorem, and
the uniformity of Proposition 1.1.

We shall prove finally that D(&) is open and that o is a morphism.

Theorem 2.6. Let & be a vector field of class CP~' on the CP-manifold
X 2= p=o0). Then D(E) is open in R x X, and the flow o for & is a
CP~'-morphism.

Proof. Let first p be an integer = 2. Let xo € X. Let J* be the set of
points in J(xp) for which there exists a number b >0 and an open
neighborhood U of xy such that ( — b, 1+ b) U is contained in D(¢), and
such that the restriction of the flow o to this product is a C?~!-morphism.
Then J* is open in J(xp), and certainly contains 0 by the local theorem.
We must therefore show that J* is closed in J(xp).

Let s be in its closure. By the local theorem, we can select a
neighborhood V' of sxo = a(s, xo) so that we have a unique local flow

B JuxV — X

for some number a > 0, with initial condition $(0, x) = x for all xe V,
and such that this local flow f is C?~ !,

The integral curve with initial condition x; is certainly continuous on
J(xo0). Thus txo approaches sx(, as ¢ approaches s. Let V) be a given
small neighborhood of sx¢ contained in V. By the definition of J*, we can
find an element ¢; in J* very close to s, and a small number b (compared
to @) and a small neighborhood U of x( such that « maps the product

(h=b, 1 +b)x U
into ¥, and is C?~! on this product. For teJ, + t; and x € U, we define
o(t, x) = ﬁ(l — 11, o(t, x))
Then ¢(t1, x) = B(0, a(t1, x)) = a(11, x), and

Dl(p(l, X)Dlﬁ(l — 11, Ot(ll, x))
=¢(p(t—n, a(n, x))
= é(w(l’ x))
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Hence both ¢, o, are integral curves for &, with the same value at 7.
They coincide on any interval on which they are defined, so that ¢, is
a continuation of o, to a bigger interval containing s. Since o is C?~! on
the product (#; —b, t; +b) x U, we conclude that ¢ is also C”~! on
(Jo+ 1) x U. From this we see that D(¢) is open in R x X, and that o is
of class CP~! on its full domain D(&). If p = co, then we can now
conclude that o is of class C” for each positive integer r on (&), and
hence is C*, as desired.

Corollary 2.7. For each teR, the set of xe€ X such that (t, x) is
contained in the domain D(E) is open in X.

Corollary 2.8. The functions t*(x) and t=(x) are upper and lower
semicontinuous respectively.

Theorem 2.9. Let & be a vector field on X and o its flow. Let D,(&) be
the set of points x of X such that (¢, x) lies in D(E). Then D,() is open
for each t e R, and o, is an isomorphism of D,(&) onto an open subset of
X. In fact, 0,(®,) =D, and o;' = o_,.

Proof. Immediate from the preceding theorem.

Corollary 2.10. If x¢ is a point of X and t is in J(xy), then there exists
an open neighborhood U of x such that t lies in J(x) for all x e U, and
the map

X = IX

is an isomorphism of U onto an open neighborhood of txy.

Critical points

Let & be a vector field. A critical point of & is a point xy such that
&(x0) = 0. Critical points play a significant role in the study of vector
fields, notably in the Morse theory. We don’t go into this here, but just
make a few remarks to show at the basic level how they affect the
behavior of integral curves.

Proposition 2.11. If « is an integral curve of a C' vector field, &, and o

passes through a critical point, then o is constant, that is o(t) = xo for
all t.

Proof. The constant curve through xy is an integral curve for the vector
field, and the uniqueness theorem shows that it is the only one.
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Some smoothness of the vector field in addition to continuity must be
assumed for the uniqueness. For instance, the following picture illustrates
a situation where the integral curves are not unique. They consist in
translations of the curve y = x> in the plane. The vector field is con-
tinuous but not locally Lipschitz.

Proposition 2.12. Let & be a vector field and o an integral curve for &.
Assume that all t = 0 are in the domain of «, and that

lim o(f) = x
t—0

exists. Then x| is a critical point for &, that is £(x;) = 0.
Proof. Selecting ¢ large, we may assume that we are dealing with the

local representation f of the vector field near x;. Then for ¢’ > ¢ large, we
have

Write f(x(u)) = f(x1) + g(u), where limg(u) = 0. Then

el =t < Ja(t’) = a(D)] + 1 = t] suplg(u)],

where the sup is taken for u large, and hence for small values of g(u).
Dividing by |t/ — t] shows that f(x;) is arbitrarily small, hence equal to 0,
as was to be shown.

Proposition 2.13. Suppose on the other hand that xy is not a critical
point of the vector field &. Then there exists a chart at xy such that the
local representation of the vector field on this chart is constant.
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Proof. In an arbitrary chart the vector field has a representation as a
morphism
¢ U—E

near xo. Let o be its flow. We wish to “straighten out” the integral curves
of the vector field according to the next figure.

¥ z . a(r(z), Pz)

Pz

In other words, let v = &(xp). We want to find a local isomorphism ¢ at
Xxo such that

9'(x)o = &(p(x)).
We inspire ourselves from the picture. Without loss of generality, we may

assume that xo =0. Let 1 be a functional such that A(v) #0. We de-
compose E as a direct sum

E=F®Ry,

where F is the kernel of 4. Let P be the projection on F. We can write
any x near 0 in the form

x = Px + 7(x)v,

where

We then bend the picture on the left to give the picture on the right using
the flow o of &, namely we define

o(x) = a(t(x), Px).

This means that starting at Px, instead of going linearly in the direction of
v for a time 7(x), we follow the flow (integral curve) for this amount of
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time. We find that

¢'(x) = Dya(t(x), Px) ﬁ + Dyo(t(x), Px) P.

Hence ¢'(0) =id, so by the inverse mapping theorem, ¢ is a local iso-
morphism at 0. Furthermore, since Pv =0 by definition, we have

¢’ (x)v = Dia(z(x), Px) = &(p(x)),

thus proving Proposition 2.13.

IV, §3. SPRAYS

Second-order vector fields and differential equations

Let X be a manifold of class C” with p = 3. Then its tangent bundle
T(X) is of class C?~!, and the tangent bundle of the tangent bundle
T(T(x)) is of class CP~2, with p—22>1.

Let a: J — X be a curve of class C? (¢ < p). A lifting of o into T(X)
is a curve ff: J — T(X) such that zff =«. We shall always deal with
g = 2 so that a lift will be assumed of class ¢ — 1 = 1. Such lifts always
exist, for instance the curve o’ discussed in the previous section, called the
canonical lifting of o.

A second-order vector field over X is a vector field F on the tangent
bundle T'(X) (of class C”~!) such that, if z: TX — X denotes the canoni-
cal projection of T(X) on X, then

n.o F =id., thatis n.F(v) =v forallvin T(X).
Observe that the succession of symbols makes sense, because
.. TT(X) — T(X)
maps the double tangent bundle into 7'(X) itself.

A vector field F on TX is a second-order vector field on X if and only if it
satisfies the following condition: Each integral curve f§ of F is equal to the
canonical lifting of nfS, in other words

(np) = B.

Here, 78 is the canonical projection of f on X, and if we put the
argument f, then our formula reads

(mp) (1) = B(z)
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for all ¢ in the domain of . The proof is immediate from the definitions,
because

(f) = =m0 Fop

We then use the fact that given a vector v € TX, there is an integral curve
p =p, with f,(0) =v (initial condition v).

Let o: J — X be a curve in X, defined on an interval J. We define o to
be a geodesic with respect to F if the curve

o J—=TX

is an integral curve of F. Since ma’ = a, that is o’ lies above o in TX, we
can express the geodesic condition equivalently by stating that o satisfies
the relation

This relation for curves o in X is called the second-order differential
equation for the curve o, determined by F. Observe that by definition, if
is an integral curve of F in TX, then nf is a geodesic for the second order
vector field F.

Next we shall give the representation of the second order vector field
and of the integral curves in a chart.

Representation in charts
Let U be open in the vector space E, so that T(U)= U x E, and

T(T(U)) =(U xE)x (ExE). Then n: UxE — U is simply the pro-
jection, and we have a commutative diagram:

(UxE)x (ExE) —*> UxE

| |

UxE _ U

T

The map =n, on each fiber E x E is constant, and is simply the projection
of E x E on the first factor E, that is

7. (x, v, u, w) = (x, u).
Any vector field on U x E has a local representation
f: UXE—-EXxE

which has therefore two components, /' = (f,, f5), each f; mapping U x E
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into E. The next statement describes second order vector fields locally in
the chart.

Let U be open in the vector space E, and let T(U)=U x E be the
tangent bundle. A CP~2-morphism

f: UXE—EXE

is the local representation of a second order vector field on U if and
only if
f(x,v) = (v, fr(x, v)).

The above statement is merely making explicit the relation =, F = id, in
the chart. If we write f = (f}, f3), then we see that

fil (X7 l)) =0
We express the above relations in terms of integral curves as follows.

Let f = f(¢r) be an integral curve for the vector field F on 7X. In the
chart, the curve has two components

B(t) = (x(1), v(t)) e U x E.
By definition, if f is the local representation of F, we must have
dp dx dv
= (E’ E) = f(x,v) = (v, folx, V).

Consequently, our differential equation can be rewritten in the following
manner:

dx
i v(1),
d*x  dv dx
(1) dlz _E_f2<xa E)v

which is of course familiar.

Sprays

We shall be interested in special kinds of second-order differential

equations. Before we discuss these, we make a few technical remarks.
Let s be a real number, and z: E — X be a vector bundle. If v is in E,

so in E, for some x in X, then sv is again in E, since E, is a vector
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space. We write sg for the mapping of E into itself given by this scalar
multiplication. This maping is in fact a VB-morphism, and even a VB-
isomorphism if s # 0. Then

T(sg) = (se).: T(E) — T(E)

is the usual induced map on the tangent bundle of E.
Now let E=TX be the tangent bundle itself. Then our map sry
satisfies the property

(s7x), o STTY = STTX © (STX),"

which follows from the linearity of s7y on each fiber, and can also be seen
directly from the representation on charts given below.

We define a spray to be a second-order vector field which satisfies the
homogeneous quadratic condition:

SPR 1. For all seR and ve T(X), we have
F(sv) = (s7x),sF(v).

It is immediate from the conditions defining sprays (second-order vector
field satisfying SPR 1) that sprays form a convex set! Hence if we can
exhibit sprays over open subsets of vector spaces, then we can glue them
together by means of partitions of unity, and we obtain at once the

following global existence theorem.

Theorem 3.1. Let X be a manifold of class C? (p =2 3). If X admits
partitions of unity, then there exists a spray over X.

Representations in a chart
Let U be open in E, so that TU = U x E. Then
TTU = (U xE) x (E x E),

and the representations of sy and (sry), in the chart are given by the
maps

stu: (x, v) — (x, sv) and (stv),: (x, v, u, w) — (x, sv, u, sw).

Thus

stru o (stu),: (x, v, u, w) — (x, sv, su, szw).
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We may now give the local condition for a second-order vector field F
to be a spray.

Proposition 3.2. In a chart U XE for TX, let f: UXxE—EXE
represent F, with f = (f|, f5). Then f represents a spray if and only if,
for all s € R we have

S, 50) = 52 fo(x, v).

Proof. The proof follows at once from the definitions and the formula
giving the chart representation of s(srx),.

Thus we see that the condition SPR 1 (in addition to being a second-
order vector field), simply means that f, is homogeneous of degree 2 in the
variable v. By the remark in Chapter I, §3, it follows that f, is a quadratic
map in its second variable, and specifically, this quadratic map is given by

f(x, v) =3 D3 f5(x, 0)(v, v).

Thus the spray is induced by a symmetric bilinear map given at each point
x in a chart by

(2) B(x) =3D3 f5(x, 0).
Conversely, suppose given a morphism

U— Lszym (E, E) given by X — B(x)
from U into the space of symmetric bilinear maps E x E — E. Thus for
each v, we E the value of B(x) at (v, w) is denoted by B(x; v, w) or
B(x)(v, w). Define f3(x,v) = B(x; v,v). Then f, is quadratic in its
second variable, and the map f defined by

f(x,v) = (v, B(x; v,0)) = (v, fr(x, v))

represents a spray over U. We call B the symmetric bilinear map asso-
ciated with the spray. From the local representations in (1) and (2), we
conclude that a curve o is a geodesic if and only if o satisfies the differential
equation

(3) o (1) = By (o (1), /(1)) for all .

We recall the trivial fact from linear algebra that the bilinear map B is
determined purely algebraically from the quadratic map, by the formula

B(v, w) = 3[f2(v+w) = fo(v) = fo(w)].
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We have suppressed the x from the notation to focus on the relevant
second variable v. Thus the quadratic map and the symmetric bilinear
map determine each other uniquely.

The above discussion has been local, over an open set U in a Banach
space. In Proposition 3.4 and the subsequent discussion of connections, we
show how to globalize the bilinear map B intrinsically on the manifold.

Examples. As a trivial special case, we can always take f5(x, v) = (v, 0)
to represent the second component of a spray in the chart.

In the chapter on Riemannian metrics, we shall see how to construct a
spray in a natural fashion, depending on the metric.

In [La 99] the chapter on covariant derivatives, we show how a spray
gives rise to such derivatives.

Next, let us give the transformation rule for a spray under a change of
charts, i.e. an isomorphism 4#: U — V. On TU, the map Th is represented
by a morphism (its vector component)

H: UxE—-ExE givenby  H(x, v) = (h(x), h'(x)v).

We then have one further lift to the double tangent bundle 77U, and we
may represent the diagram of maps symbolically as follows:

(UxE)x (ExE) -5, (v« E)x (E x E)
UXE H=GK V x E
U —i——> |4

Then the derivative H'(x, v) is given by the Jacobian matrix operating on
column vectors ‘(u, w) with u, w e E, namely

e (40 ) = e (2)-(0 11 (2)

Thus the top map on elements in the diagram is given by
(H, H'): (x, 0, u, w) — (h(x), ' (x)v, B (x)u, h" (x)(u, v) + 1’ (x)w).

For the application, we put u = v because f(x, v) = v, and w = fy, 5(x, v),
where f;; and fj, denote the representations of the spray over U and V'
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respectively. It follows that f;; and f} are related by the formula
Sy (h(x), B (x)v) = (1" (x)v, B"(x)(v, v) + ' (X) fy 2 (x, v)).
Therefore we obtain:

Proposition 3.3. Change of variable formula for the quadratic part of a
spray:

fv 2 (h(x), B (x)v) = h"(x)(v, v) + ' (x) fy 2 (x, 0),
By (h(x); h'(x)v, k' (x)w) = h"(x)(v, w) + h'(x)Bu(x; v, w).

Proposition 3.3 admits a converse:

Proposition 3.4. Suppose we are given a covering of the manifold X by

open sets corresponding to charts U, V..., and for each U we are given
a morphism
By: U— L}, (E E)

which transforms according to the formula of Proposition 3.3 under an
isomorphism h: U — V. Then there exists a unique spray whose asso-
ciated bilinear map in the chart U is given by By.

Proof. We leave the verification to the reader.

Remarks. Note that By(x; v, w) does not transform like a tensor of
type L, (E, E), ie. a section of the bundle L, (TX, TX). There are
several ways of defining the bilinear map B intrinsically. One of them is
via second order bundles, or bundles of second order jets, and to extend
the terminology we have established previously to such bundles, and even
higher order jet bundles involving higher derivatives, as in [Po 62].
Another way is in [La 99], via connections. For our immediate purposes,
it suffices to have the above discussion on second-order differential
equations together with Proposition 3.3 and 3.4. Sprays were introduced
by Ambrose, Palais, and Singer [APS 60], and I used them (as recom-
mended by Palais) in the earliest version [La 62]. In [Lo 69] the bilinear
map By is expressed in terms of second order jets. The basics
of differential topology and geometry were being established in the early
sixties. Cf. the bibliographical notes from [Lo 69] at the end of his first
chapter.

Connections

We now show how to define the bilinear map B intrinsically and directly.
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Matters will be clearer if we start with an arbitrary vector bundle
p: E—=X

over a manifold X. As it happens we also need the notion of a fiber
bundle when the fibers are not necessarily vector spaces, so don’t have a
linear structure. Let f: ¥ — X be a morphism. We say that f (or Y over
X) is a fiber bundle if 1 is surjective, and if each point x of X has an open
neighborhood U, and there is some manifold Z and an isomorphism
h: f *I(U) — U x Z such that the following diagram is commutative:

) — L uxz

S U pr

Thus locally, f: Y — X looks like the projection from a product space.
The reason why we need a fiber bundle is that the tangent bundle

ng: TE — FE

is a vector bundle over E, but the composite f = pong: TE — X is only
a fiber bundle over X, a fact which is obvious by picking trivializations in
charts. Indeed, if U is a chart in X, and if U x F — U is a vector bundle
chart for E, with fiber F, and Y = TE, then we have a natural iso-
morphism of fiber bundles over U:

fUU) ———————  (UxF)x(E xF)

Pri2

Note that U being a chart in X implies that U x E — U is a vector bundle
chart for the tangent bundle TU over U.

The tangent bundle TE has two natural maps making it a vector
bundle:

ng: TE — E is a vector bundle over E;

T(p): TE — TX is a vector bundle over TX.

Therefore we have a natural morphism of fiber bundle (not vector bundle)
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over X:
(ng, T(p)): TE—-E®TX  givenby W (ngW, T(p)W)

for WeTE. If W e T.E with ec E,, then ngW € E, and T(p)W € T, X.
After these preliminaries, we define a connection to be a morphism of
fiber bundles over X, from the direct sum E® TX into TE:

H: E®QTX - TE

such that
(7‘[5, T(p)) oH = idE@ TX 5

and such that H is bilinear, in other words H,: E.® T, X — TE is
bilinear.
Consider a chart U as in the above diagram, so

TU =U % E and T(UxF)=(UxF)x(ExF).
Then our map H has a coordinate representation
H(x, e, v) = (x, e, Hi(x, e, v), Hy(x, e, v)) for ee F and v € E.

The fact that (nE, T(p)) o H = idgg 1y implies at once that H,(x, e, v) = v.
The bilinearity condition implies that for fixed x, the map

(e, v) — Hy(x, e, v)

is bilinear as a map F x E — E. We shall therefore denote this map by
B(x), and we write in the chart

H(x, e, v) = (x, e, v, B(x)(e, v)) or also (x, e, v, B(x, e, v)).

Now take the special case when £ = TX. We say that the connection
is symmetric if the bilinear map B is symmetric. Suppose this is the case.
We may define the corresponding quadratic map 7X — T TX by letting
f>(x, v) = B(x, v, v). Globally, this amounts to defining a morphism

F: TX - TTX such that F = H o diagonal
where the diagonal is taken in TX @ TX, in each fiber. Thus
F(v) = H(v, v) forve T\ X.
Then F is a vector field on TX, and the condition (7., 7)o H =id on

TX ® TX implies that F is a second-order vector field on X, in other
words, F defines a spray. It is obvious that all sprays can be obtained in
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this fashion. Thus we have shown how to describe geometrically the
bilinear map associated with a spray.

Going back to the general case of a vector bundle E unrelated to TX,
we note that the image of a connection H is a vector subbundle over E.
Let V denote the kernel of the map T'(p): TE — TX. We leave it to the
reader to verify in charts that V' is a vector subbundle of TFE over E, and
that the image of H is a complementary subbundle. One calls V' the
vertical subbundle, canonically defined, and one calls H the horizontal
subbundle determined by the connection. Cf. Kobayashi [Ko 57,
Dombrowski [Do 68], and Besse [Be 78] for more basic material on
connections.

IV, §4. THE FLOW OF A SPRAY AND
THE EXPONENTIAL MAP

The condition we have taken to define a spray is equivalent to other
conditions concerning the integral curves of the second-order vector field
F. We shall list these conditions systematically. We shall use the fol-
lowing relation. If «: J — X is a curve, and o; is the curve defined by
o1 (2) = a(st), then
oy (1) = sot'(s1),
this being the chain rule for differentiation.

If v is a vector in TX, let 5, be the unique integral curve of F with
initial condition v (i.e. such that f,(0) =v). In the next three conditions,
the sentence should begin with “for each v in TX”.

SPR 2. A number t is in the domain of B, if and only if st is in the
domain of B, and then

ﬁsv(l) = Sﬂv(St)'

SPR 3. If's, t are numbers, st is in the domain of p, if and only if s is in
the domain of B, and then

nﬂtv(s) = nﬂu(‘yt)'

SPR 4. A number t is in the domain of f, if and only if 1 is in the
domain of f,, and then

(1) = 7, (1)-

We shall now prove the equivalence between all four conditions.
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Assume SPR 1, and let s be fixed. For all ¢ such that sz is in the
domain of f,, the curve f,(st) is defined and we have

% (sB,(st)) = susPi(st) = s.sF(B,(s1)) = F(sB,(st)).

Hence the curve sf,(s?) is an integral curve for F, with initial condition
sp,(0) = sv. By uniqueness we must have

sPu(st) = (1)

This proves SPR 2.
Assume SPR 2. Since f, is an integral curve of F for each v, with
initial condition v, we have by definition

Bo(0) = F(sv).

Using our assumption, we also have

BLt) = 5 (s (50) = 5.5, (s0).

Put 1 = 0. Then SPR 1 follows because f,, and 5, are integral curves of F
with initial conditions sv and v respectively.

It is obvious that SPR 2 implies SPR 3. Conversely, assume SPR 3.
To prove SPR 2, we have

Bualt) = (RB.0Y (1) = B, (1) = s(B,) (51) = o, s0).

which proves SPR 2.

Assume SPR 4. Then s7 is in the domain of §, if and only if 1 is in the
domain of g, and s is in the domain of f,, if and only if 1 is in the
domain of f,,. This proves the first assertion of SPR 3, and again by
SPR 4, assuming these relations, we get SPR 3.

It is similarly clear that SPR 3 implies SPR 4.

Next we consider further properties of the integral curves of a spray.
Let F be a spray on X. As above, we let 5, be the integral curve with
initial condition v. Let ® be the set of vectors v in 7'(X) such that f, is
defined at least on the interval [0, 1]. We know from Corollary 2.7 that D
is an open set in 7(X), and by Theorem 2.6 the map

vi— f(1)
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is a morphism of D into 7(X). We now define the exponential map
exp: D—- X

to be
exp (v) = nf,(1).

Then exp is a CP~2-morphism. We also call © the domain of the ex-
ponential map (associated with F).

If x e X and 0, denotes the zero vector in T, then from SPR 1, taking
s =0, we see that F(0,) =0. Hence

exp (0y) = x.

Thus our exponential map coincides with 7 on the zero cross section, and
so induces an isomorphism of the cross section onto X. It will be
convenient to denote the zero cross section of a vector bundle E over X by
(g(X) or simply (X if the reference to E is clear. Here, E is the tangent
bundle.

We denote by exp, the restriction of exp to the tangent space Tx. Thus

exp,: T — X.
Theorem 4.1. Let X be a manifold and F a spray on X. Then
exp,: Ty — X

induces a local isomorphism at O, and in fact (exp,), is the identity at
0.

Proof. We prove the second assertion first because the main assertion
follows from it by the inverse mapping theorem. Furthermore, since 7T is
a vector space, it suffices to determine the derivative of exp, on rays, in
other words, to determine the derivative with respect to ¢ of a curve
exp,(tv). This is done by using SPR 3, and we find

d
Eﬂﬁrv = ﬂtv'

Evaluating this at 1 =0 and taking into account that f,, has w as initial
condition for any w gives us

(exp,), (0x) = id.

This concludes the proof of Theorem 4.1.
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Helgason gave a general formula for the differential of the exponential
map on analytic manifolds [He 61], reproduced in [He 78], Chapter I,
Theorem 6.5.

Next we describe all geodesics.

Proposition 4.2. The images of straight segments through the origin in
Ty, under the exponential map exp,, are geodesics. In other words, if
ve T, and we let

a(v, 1) = o,(1) = exp,(tv),

then a, is a geodesic. Conversely, let o: J — X be a C? geodesic defined
on an interval J containing 0, and such that o(0) = x. Let o'(0) =v.
Then o(t) = exp,(tv).

Proof. The first statement by definition means that o) is an integral
curve of the spray F. Indeed, by the SPR conditions, we know that

(v, 1) = (1) = f, (1) = 7, (1),

and (nB,)’ = f, is indeed an integral curve of the spray. Thus our as-
sertion that the curves ¢ exp(fv) are geodesics is obvious from the
definition of the exponential map and the SPR conditions.

Conversely, given a geodesic «: J — X, by definition o’ satisfies the
differential equation

The two curves ¢+ a(f) and ¢+— exp,(fv) satisfy the same differential
equation and have the same initial conditions, so the two curves are
equal. This proves the second statement and concludes the proof of the
proposition.

Remark. From the theorem, we note that a C' curve in X is a geodesic
if and only if, after a linear reparametrization of its interval of definition,
it is simply ¢+ exp,(fv) for some x and some v.

We call the map (v, t) — a(v, ?) the geodesic flow on X. It is defined on
an open subset of 7X x R, with a(v, 0) = x if ve T, X. Note that since
n(sp,(t)) = np,(1) for seR, we obtain from SPR 2 the property

a(sv, t) = o(v, st)
for the geodesic flow. Precisely, ¢ is in the domain of ay, if and only if st is

in the domain of «,, and in that case the formula holds. As a slightly
more precise version of Theorem 4.1 in this light, we obtain:
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Corollary 4.3. Let F be a spray on X, and let xo € X. There exists an
open neighborhood U of xy, and an open neighborhood V of 0y, in TX
satisfying the following condition. For every xe U and ve V nT.X,
there exists a unique geodesic

o (=2,2) = X

such that
w(0)=x and & (0) =0

Observe that in a chart, we may pick V as a product
V=UxTV,0)cUxE
where 7,(0) is a neighborhood of 0 in E. Then the geodesic flow is
defined on U x V,(0) x J, where J = (-2,2). We picked (-2, 2) for
concreteness. What we really want is that 0 and 1 lie in the interval. Any
bounded interval J containing 0 and 1 could have been selected in the

statement of the corollary. Then of course, U and V (or ¥>(0)) depend
on J.

IV, §5. EXISTENCE OF TUBULAR NEIGHBORHOODS
Let X be a submanifold of a manifold Y. A tubular neighborhood of X in
Y consists of a vector bundle n: £ — X over X, an open neighborhood Z
of the zero section (X in E, and an isomorphism

f:Z2-U

of Z onto an open set in Y containing X, which commutes with (:

N

Uy

Y

We shall call f the tubular map and Z or its image f(Z) the corresponding
tube (in E or Y respectively). The bottom map j is simply the inclusion.
We could obviously assume that it is an embedding and define tubular
neighborhoods for embeddings in the same way. We shall say that our
tubular neighborhood is total if Z = E. In this section, we investigate
conditions under which such neighborhoods exist. We shall consider the
uniqueness problem in the next section.
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Theorem 5.1. Let Y be of class CP (p = 3) and admit partitions of unity.
Let X be a closed submanifold. Then there exists a tubular neighborhood
of X in Y, of class CP~2.

Proof. Consider the exact sequence of tangent bundles:
0—-TX)—=T(Y)|X —-NX)—0.
We know that this sequence splits, and thus there exists some splitting
T(Y)X=T(X)®N(X)

where N(X) may be identified with a subbundle of 7(Y)|X. Following
Palais, we construct a spray ¢ on T(Y) using Theorem 3.1 and obtain
the corresponding exponential map. We shall use its restriction to N(X),
denoted by exp|N. Thus

exp|N: DnN(X)— Y.

We contend that this map is a local isomorphism. To prove this, we may
work locally. Corresponding to the submanifold, we have a product
decomposition U = U; x U,, with X = U} x 0. If U is open in E, then we
may take U, U, open in F;, F, respectively. Then the injection of N(X)
in 7(Y)|X may be represented locally by an exact sequence

0— Ul Xin U1 XF1 XFz,
and the inclusion of T(Y)|X in 7(Y) is simply the inclusion
U1 XF1 XF2—> U1 X U2XF1 XFZ.

We work at the point (x;, 0) in U; x F,. We must compute the derivative
of the composite map

exp

U1XF2L U1XU2XF1XF2—>Y

at (x1, 0). We can do this by the formula for the partial derivatives. Since
the exponential map coincides with the projection on the zero cross
section, its “‘horizontal” partial derivative is the identity. By Theorem 4.1
we know that its ““vertical” derivative is also the identity. Let

Y = (exp) o ¢

(where ¢ is simply ¢ followed by the inclusion). Then for any vector
(w1, wp) in F; x F, we get

Dy(x1, 0) - (wy, w2) = (w1, 0) + ¢, (w2),
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where ¢, is the linear map given by ¢ on the fiber over x;. By hypothesis,
we know that F; x F; is the direct sum of F; x 0 and of the image of ¢, .
This proves that Dy(x;, 0) is a toplinear isomorphism, and in fact proves
that the exponential map restricted to a normal bundle is a local iso-
morphism on the zero cross section.

We have thus shown that there exists a vector bundle £ — X, an open
neighborhood Z of the zero section in E, and a mapping f: Z — Y
which, for each x in (g, is a local isomorphism at x. We must show that
Z can be shrunk so that f restricts to an isomorphism. To do this we
follow Godement ((God 58], p. 150). We can find a locally finite open
covering of X by open sets U; in Y such that, for each i we have inverse
isomorphisms

f;-: Zl'—> Ul‘ and gi: Ul'—>Zl'

between U; and open sets Z; in Z, such that each Z; contains a point x of
X, such that f;, g; are the identity on X (viewed as a subset of both Z and
Y) and such that f; is the restriction of f to Z;. We now find a locally
finite covering {V;} of X by open sets of Y such that V; = U;, and let
V= U Vi. We let W be the subset of elements y € V' such that, if y lies in
an intersection V; NV}, then g;(y) = g;(»). Then W certainly contains X.
We contend that W contains an open subset containing X.

Let xe X. There exists an open neighborhood G, of x in Y which

meets only a finite number of Vi, say V;,,...,V;. Taking Gy small enough,
we can assume that x lies in each one of these, and that G, is contained in
each one of the sets U;,...,U;. Since x lies in each V..., V;, it is
contained in U, ,..., U; and our maps g;,,...,g; take the same value at x,
namely x itself. Using the fact that f;,..., f; are restrictions of f, we see
at once that our finite number of maps g;,,...,g; must agree on G, if we

take G, small enough.
Let G be the union of the G,. Then G is open, and we can define a
map

g9: G—g(G)=Z
by taking g equal to g; on G V;. Then ¢g(G) is open in Z, and the
restriction of f to ¢g(G) is an inverse for g. This proves that f, g are
inverse isomorphisms on G and ¢(G), and concludes the proof of the

theorem.

A vector bundle £ — X will be said to be compressible if, given an
open neighborhood Z of the zero section, there exists an isomorphism

@: E—>Zl

of E with an open subset Z; of Z containing the zero section, which
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commutes with the projection on X:

N

It is clear that if a bundle is compressible, and if we have a tubular
neighborhood defined on Z, then we can get a total tubular neighborhood
defined on E. We shall see in the chapter on Riemannian metrics that
certain types of vector bundles are compressible.

E

Z,

IV, §6. UNIQUENESS OF TUBULAR NEIGHBORHOODS

Let X, Y be two manifolds, and F: R x X — Y a morphism. We shall
say that F is an isotopy (of embeddings) if it satisfies the following
conditions. First, for each 7 € R, the map F; given by F;(x) = F(¢, x) is an
embedding. Second, there exist numbers #y < #; such that F; = F;, for all
t <ty and F;, = F, for all t = t;. We then say that the interval [z, ;] is a
proper domain for the isotopy, and the constant embeddings on the left
and right will also be denoted by F_,, and F, ., respectively. We say that
two embeddings f: X — Y and g: X — Y are isotopic if there exists an
isotopy F, as above such that /' = F,) and g = F;, (notation as above). We
write f &~ g for f isotopic to g¢.

Using translations of intervals, and multiplication by scalars, we can
always transform an isotopy to a new one whose proper domain is
contained in the interval (0,1). Furthermore, the relation of isotopy
between embeddings is an equivalence relation. It is obviously symmetric
and reflexive, and for transitivity, suppose f ~ ¢ and g ~h. We can
choose the ranges of these isotopies so that the first one ends and stays
constant at g before the second starts moving. Thus it is clear how to
compose isotopies in this case.

If 5o <s; are two numbers, and o: R — R is a function (morphism)
such that a(s) =ty for s < 50 and o(s) = 1, for s = 51, and ¢ is monotone
increasing, then from a given isotopy F;, we obtain another one,
G, = F,(;. Such a function ¢ can be used to smooth out a piece of isotopy
given only on a closed interval.

Remark. We shall frequently use the following trivial fact: If
fir X = Y is an isotopy, and if ¢g: X; — X and h: Y — Y; are two
embeddings, then the composite map

]’lftgt X] — Y]
is also an isotopy.
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Let Y be a manifold and X a submanifold. Let z: E — X be a vector
bundle, and Z an open neighborhood of the zero section. An isotopy
fi: Z— Y of open embeddings such that each f, is a tubular neigh-
borhood of X will be called an isotopy of tubular neighborhoods. In what
follows, the domain will usually be all of E.

Proposition 6.1. Let X be a manifold. Let n: E— X and n;: Ey — X
be two vector bundles over X. Let

fi E—E

be a tubular neighborhood of X in E; (identifying X with its zero section
in E\). Then there exists an isotopy

fii E— E

with proper domain [0, 1] such that f; = f and f, is a VB-isomorphism.
(If f, =, m are of class CP then f; can be chosen of class CP~'))

Proof. We define F by the formula

Fi(e)=1""[(te)

for t#0 and ee E. Then F, is an embedding since it is composed
of embeddings (the scalar multiplications by ¢, ¢! are in fact VB-
isomorphism).

We must investigate what happens at ¢t = 0.

Given ee E, we find an open neighborhood U; of me over which
FE) admits a trivialization U; x E;. We then find a still smaller open
neighborhood U of we and an open ball B around 0 in the typical fiber E
of E such that E admits a trivialization U x E over U, and such that the
representation f of f on U x B (contained in U x E) maps U x B into
U, x E;. This is possible by continuity. On U x B we can represent f by
two morphisms,

f(xv U) = ((ﬂ(xa U)v lp(X, U))
and ¢(x, 0) = x while ¥(x, 0) = 0. Observe that for all ¢ sufficiently small,

te is contained in U x B (in the local representation).
We can represent F; locally on U x B as the mapping

Fi(x, v) = (p(x, ), £ "Y(x, w)).

The map ¢ is then a morphism in the three variables x, v, and ¢ even at
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t=0. The second component of F; can be written
1
W (x, ) =17" J Dy (x, stv) - (tv) ds
0
and thus ' cancels ¢ to yield simply

1
J Dyyr(x, stv) - v ds.
0

This is a morphism in ¢, even at t = 0. Furthermore, for t = 0, we obtain
F()(X, U) = (X7 D2¢(x7 O)U)

Since f was originally assumed to be an embedding, it follows that
Dyy(x,0) is a toplinear isomorphism, and therefore F, is a VB-
isomorphism. To get our isotopy in standard form, we can use a function
o: R — R such that (1) =0 for t<0 and o(f) =1 for r =1, and o is
monotone increasing. This proves our proposition.

Theorem 6.2. Let X be a submanifold of Y. Let
n. E—X and n: Ey— X

be two wvector bundles, and assume that E is compressible. Let
f: E—=Y and g: Ey — Y be two tubular neighborhoods of X in Y.
Then there exists a CP~'-isotopy

fit E—=Y

of tubular neighborhoods with proper domain [0, 1] and a VB-isomorphism
A E — Ey such that f, = f and f, = gl

Proof. We observe that f(E) and g(E;) are open neighborhoods of X
in Y. Let U= f‘l(f(E) nyg(Ey)) and let ¢: E— U be a compression.
Let ¢ be the composite map

vy

Y = (f|U)op. Then ¢ is a tubular neighborhood, and ¥/(E) is contained
in g(Ey). Therefore g~'y: E — Ej is a tubular neighborhood of the same
type considered in the previous proposition. There exists an isotopy of
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tubular neighborhoods of X:
G;: E— E;

such that Gy =g 'Y and G, is a VB-isomorphism. Considering the
isotopy ¢G,, we find an isotopy of tubular neighborhoods

v E—Y

such that ¥, =y and Y, = go where w: E — E; is a VB-isomorphism.
We have thus shown that iy and gw are isotopic (by an isotopy of tubular
neighborhoods). Similarly, we see that y and fu are isotopic for some
VB-isomorphism

u E— E.

Consequently, adjusting the proper domains of our isotopies suitably, we
get an isotopy of tubular neighborhoods going from gw to fu, say F;.
Then F,u~! will give us the desired isotopy from gwu~! to f, and we can
put A =wu ' to conclude the proof.

(By the way, the uniqueness proof did not use the existence theorem for
differential equations.)



CHAPTER V

Operations on Vector Fields
and Differential Forms

If E— X is a vector bundle, then it is of considerable interest to
investigate the special operation derived from the functor ‘“multilinear
alternating forms.” Applying it to the tangent bundle, we call the sections
of our new bundle differential forms. One can define formally certain
relations between functions, vector fields, and differential forms which lie
at the foundations of differential and Riemannian geometry. We shall give
the basic system surrounding such forms. In order to have at least one
application, we discuss the fundamental 2-form, and in the next chapter
connect it with Riemannian metrics in order to construct canonically the
spray associated with such a metric.

We assume throughout that our manifolds are sufficiently differentiable
so that all of our statements make sense.

V, §1. VECTOR FIELDS, DIFFERENTIAL OPERATORS,
BRACKETS

Let X be a manifold of class C” and ¢ a function defined on an open set
U, that is a morphism
p: U—R.

Let ¢ be a vector field of class C?~!'. Recall that
Typ: T‘C(U) - T‘C(R) =R

is a linear map. With it, we shall define a new function to be denoted by
Ep or -9, or &(p). (There will be no confusion with this notation and
composition of mappings.)

105
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Proposition 1.1. There exists a unique function Ep on U of class CP~!

such that
(Cp)(x) = (Tvp)<(x).

If U is open in the vector space E and & denotes the local representation
of the vector field on U, then

(p)(x) = ¢'(x)¢(x).

Proof. The first formula certainly defines a mapping of U into R. The
local formula defines a C?~!-morphism on U. It follows at once from
the definitions that the first formula expresses invariantly in terms of the
tangent bundle the same mapping as the second. Thus it allows us to
define £p as a morphism globally, as desired.

Let Fu” denote the ring of functions (of class C”). Then our operation
@ — Ep gives rise to a linear map

d:: Fu?(U) — Fu? ! (U),  defined by d:¢ = &p.

A mapping
J0: R— S

from a ring R into an R-algebra S is called a derivation if it satisfies the
usual formalism: Linearity, and d(ab) = ad(b) + 0(a)b.

Proposition 1.2. Let X be a manifold and U open in X. Let & be a
vector field over X. If 0z =0, then &(x) =0 for all xe U. Each 0¢ is a
derivation of Fu”(U) into Fu?~'(U).

Proof. Suppose &(x) #0 for some x. We work with the local rep-
resentations, and take ¢ to be a linear map of E into R such that
9(&(x)) #0. Then ¢'(y) = ¢ for all y € U, and we see that ¢'(x)&(x) # 0,
thus proving the first assertion. The second is obvious from the local
formula.

From Proposition 1.2 we deduce that if two vector fields induce the
same differential operator on the functions, then they are equal.

Given two vector fields &, # on X, we shall now define a new vector
field [&, 5], called their bracket product.

Proposition 1.3. Let &, 5 be two vector fields of class CP~' on X. Then
there exists a unique vector field [£, ] of class CP~% such that for each
open set U and function ¢ on U we have

£, nlp = E(nlp)) —n(£(p)).
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If Uis open in E and &, n are the local representations of the vector
fields, then [&, i) is given by the local formula

€, nlo(x) = 9" (x) (" (x)&(x) — &' (x)n(x)).

Thus the local representation of [£, ] is given by

£, n(x) = n'(x)E(x) = &(x)n(x).

Proof. By Proposition 1.2, any vector field having the desired effect on
functions is uniquely determined. We check that the local formula gives us
this effect locally. Differentiating formally, we have (using the law for the
derivative of a product):

(ne)'¢ — (Eo)n=(p'n)'E = (9"
=o'n'E+9"nE—9'En— 9"y

The terms involving ¢” must be understood correctly. For instance, the
first such term at a point x is simply ¢”(x)(#(x),&(x)) remembering that
¢"(x) is a bilinear map, and can thus be evaluated at the two vectors 7(x)
and &(x). However, we know that ¢”(x) is symmetric. Hence the two
terms involving the second derivative of ¢ cancel, and give us our formula.

Corollary 1.4. The bracket [£, 5] is bilinear in both arguments, we have
(&, 1] = —[n, €], and Jacobi’s identity

(&, [n, Q1) = [1& . ] + [, (€, €]

In other words, for each & the map n w— [&, i is a derivation with respect
to the Lie product (n, () — [y, {].
If ¢ is a function, then

&, onl = o+ oS, nl,  and  [pS, 0] = e[S, 1] — (np)é.

Proof. The first two assertions are obvious. The third comes from the
definition of the bracket. We apply the vector field on the left of the
equality to a function ¢. All the terms cancel out (the reader will write
it out as well or better than the author). The last two formulas are
immediate.

We make some comments concerning the functoriality of vector fields.
Let
[ X—>Y

be an isomorphism. Let & be a vector field over X. Then we obtain an
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induced vector field £, over Y, defined by the formula

(LO( (%) = T/ (6())-
It is the vector field making the following diagram commutative:

Ui
TX — TY

NG

X —— Y
7

We shall also write /™ for (f *1)* when applied to a vector field. Thus we
have the formulas

fié=Tfolof! and frE=Tf"oéof.

If f is not an isomorphism, then one cannot in general define the direct
or inverse image of a vector field as done above. However, let ¢ be a
vector field over X, and let # be a vector field over Y. If for each xe X
we have

Tf(E(x) =n(f(x),

then we shall say that f maps & into #, or that & and # are f-related. If this
is the case, then we may denote by f,¢ the map from f(X) into TY
defined by the above formula.

Let &, & be vector fields over X, and let iy, n, be vector fields over Y. If
& is frelated to m; for i =1, 2 then as maps on f(X) we have

Ll&rs &) = [y, mal-

We may write suggestively the formula in the form

f;k[élaéﬂ = [f*éla f*éZ]

Of course, this is meaningless in general, since f,£; may not be a vector
field on Y. When f is an isomorphism, then it is a correct formulation of
the other formula. In any case, it suggests the correct formula.
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To prove the formula, we work with the local representations, when
X=Uisopenin E, and Y = V is open in F. Then &;, #; are maps of U,
V into the spaces E, F respectively. For x € X we have

(filé1, &D(x) = f1(0)(&(x)& (x) = & (0)E(x)).

On the other hand, by assumption, we have

ni(f(x)) = f1(0)& (),

so that

1, ) (£ (x)) = m5(f () (f (% ) ( (x))n2 (f(x))
=13 (f()) S ()& (x) = ni (f(x)) S/ (0)Ex(x)
= (0 f) (x)&1(x) — (771 o f) (x)&2(x)

= f"(x) - &(x) - &i(x) + £ ()& (x0)E(x)
— (%) - &1 (x) - &S(x) = f1(x)E] (%) (x).

Since f”(x) is symmetric, two terms cancel, and the remaining two terms
give the same value as (f,[¢), &])(x), as was to be shown.

The bracket between vector fields gives an infinitesimal criterion for
commutativity in various contexts. We give here one theorem of a general
nature as an example of this phenomenon.

Theorem 1.5. Let &, n be vector fields on X, and assume that [£, n] = 0.
Let o and f be the flows for & and n respectively. Then for real values t,
s we have

o0 fy =, 0a.

Or in other words, for any x € X we have

rx(t, B, x)) :ﬂ(s, a(t, x)),

in the sense that if for some value of t a value of s is in the domain of one
of these expressions, then it is in the domain of the other and the two
expressions are equal.

Proof. For a fixed value of ¢, the two curves in s given by the right-

and left-hand side of the last formula have the same initial condition,
namely o,(x). The curve on the right

s — B(s, (1, x))
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is by definition the integral curve of 5. The curve on the left

S — oc(l, B(s, x))

is the image under o, of the integral curve for # having initial condition Xx.
Since x is fixed, let us denote f(s, x) simply by f(s). What we must show
is that the two curves on the right and on the left satisfy the same
differential equation.

8(s, alt, )

B(s)

a(t, x)

T

In the above figure, we see that the flow «, shoves the curve on the left to
the curve on the right. We must compute the tangent vectors to the curve
on the right. We have

& ((Bls)) = Do, BB )

= Daa(t, B(s))n(B(s))-
Now fix s, and denote this last expression by F(z). We must show that if

G(1) = n(a(t, B(5))),

then

We have trivially F(0) = G(0), in other words the curves F and G have the
same initial condition. On the other hand,
F'(1) = &' (a1, B(5))) D2ox(t, B(5))n(B(s))

and

G'(1) = ' (a(t, B(s)))&(a(t, (s)))
— &' (a1, B(s)))n(a(t, B(s)))  (because [, 7] = 0).

Hence we see that our two curves F and G satisfy the same differential
equation, whence they are equal. This proves our theorem.
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Vector fields &, # such that [£, #] =0 are said to commute. One can
generalize the process of straightening out vector fields to a finite number
of commuting vector fields, using the same method of proof, using
Theorem 1.5. As another application, one can prove that if the Lie
algebra of a connected Lie group is commutative, then the group is
commutative. Cf. the section on Lie groups.

V, §2. LIE DERIVATIVE

Let 2 be a differentiable functor on vector spaces. For convenience, take A
to be covariant and in one variable. What we shall say in the rest of this
section would hold in the same way (with slightly more involved notation)
if 4 had several variables and were covariant in some and contravariant in
others.

Given a manifold X, we can take A(7(X)). It is a vector bundle over
X, which we denote by T,(X) as in Chapter III. Its sections I';(X) are the
tensor fields of type A.

Let & be a vector field on X, and U open in X. It is then possible to
associate with £ a map

L T(U) — Ti(U)

(with a loss of two derivatives). This is done as follows.

Given a point x of U and a local flow « for ¢ at x, we have for each ¢
sufficiently small a local isomorphism o, in a neighborhood of our point
x. Recall that locally, o; ! = a_,. If 5 is a tensor field of type 4, then the
composite mapping # o o, has its range in 7,(X). Finally, we can take the
tangent map 7(o_,) = (a—,), to return to 7;(X) in the fiber above x. We
thus obtain a composite map

F(t, x) = (a). 0 0 ou(x) = (o7)(x),

which is a morphism, locally at x. We take its derivative with respect to ¢
and evaluate it at 0. After looking at the situation locally in a triviali-
zation of T(X) and T(X) at x, one sees that the map one obtains gives a
section of T (U), that is a tensor field of type 4 over U. This is our map
&:. To summarize,

d
Lon=y| ()onomn

This map % is called the Lie derivative. We shall determine the Lie
derivative on functions and on vector fields in terms of notions already
discussed.
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First let ¢ be a function. Then by the general definition, the Lie
derivative of this function with respect to the vector field & with flow o is
defined to be

1
Zeo(x) = lim —[p(x(1, x)) = 9(x)],
or in other words,
d
f _ *
f(ﬂ d[ (af gﬂ) -0

Our assertion is then that

To prove this, let

Then
F'(1) = ¢'(a(t, x)) Dreu(t, x)

= o' (a(t, ))& (a(t, ¥)),

because « is a flow for &. Using the initial condition at ¢t = 0, we find that

which is precisely the value of &p at x, thus proving our assertion.

If &, n are vector fields, then

Len =&, 7).

As before, let o be a flow for £. The Lie derivative is given by
d
Len =— (o)

Letting & and # denote the local representations of the vector fields, we
note that the local representation of («;#)(x) is given by

(o;m)(x) = F(t) = Dyo(—t, x);y(oc(t, x))
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We must therefore compute F'(¢), and then F’(0). Using the chain rule,
the formula for the derivative of a product, and the differential equation
satisfied by D,o, we obtain

F'(t) = =D\ Dra(—t, x)n(a(t, x)) + Dao(—1, x)n' (a(t, x)) Dya(t, x)
= —¢&'(a(—t, x)) Dao(—t, x)n(a(t, x)) + Droe(—1, x)n’ (a(z, x)).

Putting ¢ = 0 proves our formula, taking into account the initial conditions

(0, x) = x and D,u(0, x) = id.

V, §3. EXTERIOR DERIVATIVE

Let X be a manifold. The functor L} (r-multilinear continuous alternating
forms) extends to arbitrary vector bundles, and in particular, to the
tangent bundle of X. A differential form of degree r, or simply an r-form
on X, is a section of L}(7T(X)), that is a tensor field of type L. If X is
of class C?, forms will be assumed to be of a suitable class C* with
1 <5< p—1. The set of differential forms of degree r will be denoted by
"(X) (o for alternating). It is not only a vector space (infinite di-
mensional) over R but a module over the ring of functions on X (of the
appropriate order of differentiability). If w is an r-form, then w(x) is an
element of L!(7\(X)), and is thus an r-multilinear alternating form of
T.(X) into R. We sometimes denote w(x) by w,.

Suppose U is open in the vector space E. Then L;‘(T(U)) is equal to
U x L}(E) and a differential form is entirely described by the projection
on the second factor, which we call its local representation, following our
general system (Chapter 111, §4). Such a local representation is therefore a
morphism

w: U— L) (E).
Let w be in L)(E) and vy,...,v, elements of E. We denote the value
o(vy,...,v,) also by
(@, v] X -+ X v).
Similarly, let &;,...,¢&, be vector fields on an open set U, and let w be an

r-form on X. We denote by
(@, & x -+ x &)

the mapping from U into R whose value at a point x in U is

{@(x), &1(x) x -+ x G (x)).
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Looking at the situation locally on an open set U such that T(U) is trivial,
we see at once that this mapping is a morphism (i.e. a function on U) of
the same degree of differentiability as w and the &,.

Proposition 3.1. Let xy be a point of X and w an r-form on X. If

(@, & x - x &) (x0)

is equal to O for all vector fields &,... ¢, at xy (i.e. defined on some
neighborhood of xo), then w(xg) = 0.

Proof. Considering things locally in terms of their local representations,
we see that if w(xp) is not 0, then it does not vanish at some r-tuple of
vectors (vy,...,v,). We can take vector fields at xo which take on these
values at xo and from this our assertion is obvious.

It is convenient to agree that a differential form of degree 0 is a
function. In the next proposition, we describe the exterior derivative of an
r-form, and it is convenient to describe this situation separately in the case
of functions.

Therefore let f: X — R be a function. For each x e X, the tangent
map

Tof: T(X) — Tf(x)(R) =R

is a continuous linear map, and looking at local representations shows
at once that the collection of such maps defines a 1-form which will be
denoted by df. Furthermore, from the definition of the operation of vector
fields on functions, it is clear that df is the unique 1-form such that for
every vector field & we have

(dr,o)=<f.
To extend the definition of d to forms of higher degree, we recall that if
w: U— L)(E)
is the local representation of an r-form over an open set U of E, then for
each x in U,

o'(x): E— L/(E)

is a continuous linear map. Applied to a vector v in E, it therefore gives
rise to an r-form on E.

Proposition 3.2. Let o be an r-form of class CP~' on X. Then there
exists a unique (r+ 1)-form dw on X of class CP~? such that, for any
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open set U of X and vector fields &,,..., & on U we have
(do, &g x -+ x &)

—Z G, Gy x o x & x o x &)

+Y (Do, (6, Gl x G x o x Ex e x g xx &),

i<j

If furthermore U is open in E and w, &,..., ¢, are the local repre-
sentations of the form and the vector fields respectively, then at a point x
the value of the expression above is equal to

r
—

D (D@ ()& (), Eolx) x - x &i(x) x oo x E(x)).

i=0

Proof. As before, we observe that the local formula defines a differ-
ential form. If we can prove that it gives the same thing as the first
formulas, which is expressed invariantly, then we can globalize it, and we
are done. Let us denote by S; and S, the two sums occurring in the
invariant expression, and let L be the local expression. We must show that
S1+ S, = L. We consider S;, and apply the definition of &; operating on
a function locally, as in Proposition 1.1, at a point x. We obtain

r

Si= (=DYw, & x -+ x & x - x &) (X)E(x).

i=0

The derivative is perhaps best computed by going back to the definition.
Applying this definition directly, and discarding second order terms, we
find that S; is equal to

S (=D (0 (X&), Eo(x) x e x E(X) x - x E(x)
£33 (D) (), Eo(x) x- - X EN(X)E () x - X E(x) X x & (x))

£33 e X CER) X X EE) X - x &),

i j<i

Of these there sums, the first one is the local formula L. As for the
other two, permuting j and / in the first, and moving the term é; (x)¢&i(x) to
the first position, we see that they combine to give (symbolically)

_ZZ ) (o , (&& - f,{f_/‘)Xéox"'xéix"'xéjx"'Xér>

i<y
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(evaluated at x). Using Proposition 1.3, we see that this combination is
equal to —S,. This proves that S} + S, = L, as desired.

We call dw the exterior derivative of w. Leaving out the order of
differentiability for simplicity, we see that d is an R-linear map

d: Ar(X) — o(X).

We now look into the multiplicative properties of d with respect to the
wedge product.

Let w,  be multilinear alternating forms of degree r and s respec-
tively on the vector space E. In multilinear algebra, one defines their
wedge product as an (r+s) multilinear alternating form, by the
formula

1
(@ AY)(v1,. . Urps) = WZ e(@)o(vet, .-, Um‘)‘/’(”a(l‘ﬂ)a ce Ua(r+s))

the sum being taken over all permutations o of (1,...,r+s). This
definition extends at once to differential forms on a manifold, if we view it
as giving the value for @ A Y at a point x. The v; are then elements of the
tangent space Ty, and considering the local representations shows at once
that the wedge product so defined gives a morphism of the manifold X
into L™ (T(X)), and is therefore a differential form.

Remark. The coefficient 1/r!s! is not universally taken to define the
wedge product. Some people, e.g. [He 78] and [KoN 63], take 1/(r +s)!,
which causes constants to appear later. I have taken the same factor as
[AbM 78] and [GHL 87/93]. I recommend that the reader check out the
case with r=s=1 so r+s=2 to see how a factor % comes in. With
either convention, the wedge product between forms is associative, so
with some care, one can carry out a consistent theory with either conven-
tion. I leave the proof of associativity to the reader. It follows by
induction that if wy,...,w,, are forms of degrees ry,...,r, respectively,
and r=r +---+r,, then

1
(@1 A -+ Aoy (v1,...,0) :m;e(a)ﬂlm

where
Q, = w1 (Vg1 - - - s Vor, )2 (Uu(r1+1)7 S Ua(r1+r2)) - -CUm(Ug(r—r,,,-o—]), oo Ugr),

and where the sum is taken over all permutations of (1,...,r).
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If we regard functions on X as differential forms of degree 0, then the
ordinary product of a function by a differential form can be viewed as the
wedge product. Thus if f is a function and w a differential form, then

fo=f Ao

(The form on the left has the value f(x)w(x) at x.)
The next proposition gives us more formulas concerning differential
forms.

Proposition 3.3. Let w,  be differential forms on X. Then

EXD 1. d(w A Y) =do A Y+ (—1)* 0 A dy.
EXD 2. ddw =0 (with enough differentiability, say p = 4).

Proof. This is a simple formal exercise in the use of the local formula
for the local representation of the exterior derivative. We leave it to the
reader.

One can give a local representation for differential forms and the
exterior derivative in terms of local coordinates, which are especially useful
in integration which fits the notation better. We shall therefore carry out
this local formulation in full. It dates back to Cartan [Ca 28]. There is in
addition a theoretical point which needs clarifying. We shall use at first
the wedge /\ in two senses. One sense is defined as above, giving rise to
Proposition 3.3. Another sense will come from Theorem A. We shall
comment on their relation after Theorem B.

We recall first two simple results from linear (or rather multilinear)
algebra. We use the notation E”) = Ex E x --- x E, r times.

Theorem A. Let E be a vector space over the reals of dimension n. For
each positive integer r with 1 <r < n there exists a vector space /\rE
and a multilinear alternating map

E"Y — A\'E

denoted by (uy,...,u;) — u; A -+ A U, having the following property:
If {vi,...,v,} is a basis of E, then the elements

{U,‘l/\"'/\U,‘r}, i <ip<-- <,
form a basis of /\"E.
We recall that alternating means that uy A -+ A u, =0 if u; =u; for

some i # j. We call /\"E the re -th alternating product (or exterior product)
on E. If r=0, we define A E=R. Elements of /\"E which can be
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written in the form u; A --- A u, are called ‘decomposable. Such elements
generate /\"E. If r > dim E, we define /\"E = {0}.

Theorem B. For each pair of positive integers (r, s), there exists a unique
product (bilinear map)

NEx A\N'E— NTE
such that if up,...,u;, wi,...,ws€E then
(A s At) X (WEA o AWg) = ULA - Ally AWLA =+ A Wy
This product is associative.

The proofs for these two statements can be found, for instance, in my
Linear Algebra.

Let EY be the dual space, EY = L(E, R). If E=R" and 4,,...,4, are
the coordinate functions, then each 4; is an element of the dual space, and
in fact {41,...,4,} is a basis of this dual space. Let E=R". There is a
linear isomorphism

N'EY 5 LI(E, R)

given in the following manner. If gi,...,g, € EY and vy,...,v, € E, then
the value

det(g:(v)))
is multilinear alternating both as a function of (gi,...,¢,) and (vy,...,v,).

Thus it induces a pairing

N'EY xE —R
and a map
N EY — LI(E, R).

This map is the isomorphism mentioned above. Using bases, it is easy to
verify that it is an isomorphism (at the level of elementary algebra).
Thus in the finite dimensional case, we may identify L!(E, R) with the
alternating product /\"EY, and consequently we may view the local
representation of a differential form of degree r to be a map

w: U— /\FEv

from U into the rth alternating product of EY. We say that the form is of
class C? if the map is of class C?. (We view /\"E" as a normed vector
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space, using any norm. It does not matter which, since all norms on a
finite dimensional vector space are equivalent.) The wedge product as we
gave it is compatible with the wedge product and the isomorphism of /\r E
with L(E, R) given above. If we had taken a different convention for the
wedge product of alternating forms, then a constant would have appeared
in front of the above determinant to establish the above identification (e.g.
the constant 1 in the 2 x 2 case).

Since {Ai,...,4,} is a basis of EY, we can express each differential
form in terms of its coordinate functions with respect to the basis

{dg A oo A i}y (ip < -+ <iy),

namely for each xe U we have
w(x) = Z'f;l“‘ir(x))“il A o A /’Ll',la
()

where f = f;., 1s a function on U. Each such function has the same
order of differentiability as w. We call the preceding expression the
standard form of w. We say that a form is decomposable if it can be
written as just one term f(x)4; A --- A ;. Every differential form is a
sum of decomposable ones.

We agree to the convention that functions are differential forms of
degree 0.

As before, the differential forms on U of given degree r form a vector
space, denoted by «/"(U).

Let E=R". Let f be a function on U. For each x € U the derivative

f'(x): R”" =R
is a linear map, and thus an element of the dual space. Thus
f': U—EY
represents a differential form of degree 1, which is usually denoted by df.

If fis of class C?, then df is class CP~'.
Let A; be the i-th coordinate function. Then we know that

for each xe U because A'(x) =/ for any linear map 4. Whenever
{x1,...,x,} are used systematically for the coordinates of a point in R", it
is customary in the literature to use the notation

dii(x) = dxi.
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This is slightly incorrect, but is useful in formal computations. We shall
also use it in this book on occasions. Similarly, we also write (incorrectly)

w:Zf(i) dxiy A - Adx;
(0

instead of the correct

In terms of coordinates, the map df (or f') is given by
df(x) = f/(x) = le(x)j'l +e an(X)ﬂm

where D;f(x) = 0df/dx; is the i-th partial derivative. This is simply a

restatement of the fact that if i = (hy,...,h,) is a vector, then
of of
! - — DEEERY
S (x)h= o hy + + o, h,.

Thus in old notation, we have

0 0
df(x):a—)édx1+~~+a){

dx,,.

We shall develop the theory of the alternating product and the exterior
derivative directly without assuming Propositions 3.2 or 3.3.

Let @ and ¢ be forms of degrees r and s respectively, on the open set
U. For each x € U we can then take the alternating product w(x) A y(x)
and we define the alternating product » A by

(@ A Y)(x) = o(x) A(x).
(It is an exercise to verify that this product corresponds to the product
defined previously before Proposition 3.3 under the isomorphism between

L/(E, R) and the r-th alternating product.) If f is a differential form of
degree 0, that is a function, then we have again

fro=fo,
where (fw)(x) = f(x)w(x). By definition, we then have

oA fy=fon.
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We shall now define the exterior derivative dw for any differential form
. We have already done it for functions. We shall do it in general first
in terms of coordinates, and then show that there is a characterization
independent of these coordinates. If

0= fodin - Adhy,
G

we define

do =Y "dfy ~ndig n - A dd,.
B

Example. Suppose n =2 and w is a 1-form, given in terms of the two
coordinates (x, y) by

o(x, y) = f(x,y) dx+g(x, y) dy.
Then

do(x,y) =df (x, y) A dx+dg(x, y) A dy

of of a9 a9
(0 dx+a dy)/\dx+(axdx+ay dy ) Andy

Zfd /\dx+idx/\dy
_ (Y %
= ((,W 0x> dy A dx

because the terms involving dx A dx and dy A dy are equal to 0.

Proposition 3.4. The map d is linear, and satisfies
dloAy)=do A+ (=)o A dy

if r=degw. The map d is uniquely determined by these properties, and
by the fact that for a function f, we have df = f'.

Proof. The linearity of d is obvious. Hence it suffices to prove the
formula for decomposable forms. We note that for any function f we have

d(fo)=df Ao+ f do.

Indeed, if w is a function g, then from the derivative of a product we get
d(fg)=fdg+gdf. If

o=gdin - Adi,
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where ¢ is a function, then

d(fo)=d(fgdiyn -+ ~AdA)=d(fg) ndriy,~n -+ Ad,;
=(fdg+gdf)ndiyn - rdi,
= fdw+df r o,

as desired. Now suppose that

w=fdlsn - ~ndi and Vo =gdin - Adi
:fﬁ)v :qll;v

with ij < --- <, and j; <--- <j, as usual. If some i, = j,, then from the
definitions we see that the expressions on both sides of the equality in the
theorem are equal to 0. Hence we may assume that the sets of indices
ijy ..., b and ji,...,js; have no element in common. Then d(® A ) = 0 by
definition, and

d(w A y) =d(fgd A ) =d(fg) nd A Y
=(gdf +fdg) n> A
=do A+ fdgnony
=do A+ (=1)"fo ndgn
=do A+ (=)o A dy,

thus proving the desired formula, in the present case. (We used the fact
that dg A @ = (—1)"@ A dg whose proof is left to the reader.) The
formula in the general case follows because any differential form can be
expressed as a sum of forms of the type just considered, and one can then
use the bilinearity of the product. Finally, d is uniquely determined by the
formula, and its effect on functions, because any differential form is a sum
of forms of type f dA; A --- A dA;, and the formula gives an expression of
d in terms of its effect on forms of lower degree. By induction, if the value
of d on functions is known, its value can then be determined on forms of
degree =1. This proves our assertion.

Proposition 3.5. Let w be a form of class C*. Then ddw = 0.

Proof. 1f fis a function, then

9=3 &
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and
n n 6
Oxy Ox g

ddf (x dxy A dx;.

j=1 k=1

Using the fact that the partials commute, and the fact that for any two
positive integers r, s we have dx, A dx; = —dx, A dx,, we see that the
preceding double sum is equal to 0. A similar argument shows that the
theorem is true for 1-forms, of type g(x) dx; where g is a function, and
thus for all 1-forms by linearity. We proceed by induction. It suffices to
prove the formula in general for decomposable forms. Let w be decom-
posable of degree r, and write

w=1AY,

where deg y = 1. Using the formula for the derivative of an alternating
product twice, and the fact that ddyy = 0 and ddy = 0 by induction, we see
at once that ddw = 0, as was to be shown.

We conclude this section by giving some properties of the pull-back
of forms. As we saw at the end of Chapter III, §4, if f: X — Y is a
morphism and if w is a differential form on Y, then we get a differential
form f*(w) on X, which is given at a point x € X by the formula

f*(w) = Wf(x) ( xf)

if w is of degree r. This holds for r= 1. The corresponding local
representation formula reads

(fo(x), &1(x) x - x & (x)) = (@(f(x)), [/ (x)E(x) x - x f1(0)E(x))

if &,...,¢&, are vector fields.

In the case of a 0-form, that is a function, its pull-back is simply the
composite function. In other words, if ¢ is a function on Y, viewed as a
form of degree 0, then

fp)=9of.

It is clear that the pull-back is linear, and satisfies the following properties.
Property 1. If w,  are two differential forms on Y, then
[ ony)=f o)A W)

Property 2. If w is a differential form on Y, then

df*(w) = /" (dw).
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Property 3. If f: X — Y and g: Y — Z are two morphisms, and o is
a differential form on Z, then

(g (@) = (g0 f) ().
Finally, in the case of forms of degree O:

Property 4. If f: X — Y is a morphism, and g is a function on Y, then
d(go f) = f"(dg)
and at a point x € X, the value of this 1-form is given by
Trggo Tof = (dg), o T f.

The verifications are all easy, and even trivial, except possibly for
Property 2. We shall give the proof of Property 2.
For a form of degree 1, say

o(y) = g(y) dy,

(f"dw)(x) = (¢'(f(x)) o f'(x)) A dfi(x).

Using the fact that ddf; =0, together with Proposition 3.4 we get

(df ") (x) = (d(g o f))(x) A dfi(x),

which is equal to the preceding expression. Any l-form can be expressed
as a linear combination of form ¢; dy;, so that our assertion is proved for
forms of degree 1.

The general formula can now be proved by induction. Using the
linearity of f*, we may assume that w is expressed as w = A n where ,
n have lower degree. We apply Proposition 3.3 and Property 1 to

frdo = fr(dy An)+ (=1 A dn)

and we see at once that this is equal to df*w, because by induction,
f*dy=df*y and f*dny=df*n. This proves Property 2.

Example 1. Let y,...,», be the coordinates on V, and let g, be the
Jjth coordinate function, j=1,...,m, so that y; = 1;(yy,...,»,). Let

f:U—-V
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be the map with coordinate functions

¢ ¥ =1i(x) = o f(x).
o(y) =g(y) dyy A -+ A dy;,

is a differential form on V, then

[fo=(gof)dfn - rdf.

Indeed, we have for xe U :
(ff@)(x) = g(f(0)) (w, o /(X)) A - A (g, 0 f1(x))
fix) = (o £)'(x) = g0 f'(x) = dfi().

and

Example 2. Let f: [a, b] — R? be a map from an interval into the
plane, and let x, y be the coordinates of the plane. Let # be the coordinate
in [a, b]. A differential form in the plane can be written in the form

w(x, y) =g(x, y) dx + h(x, y) dy,
where ¢, h are functions. Then by definition,

[ro(t) = g(x(1), y(t))% dt + h(x(1), y(;))% dr,

if we write f(f) = (x(¢), y(¢)). Let G = (g, h) be the vector field whose
components are g and 4. Then we can write

[ro(t)=G(f(1) - f'(1) dt,

which is essentially the expression which is integrated when defining the
integral of a vector field along a curve.

Example 3. Let U, V' be both open sets in n-space, and let /: U — V
be a C?” map. If
w(y) =g(y)dyrn -+ A dyy,

where y. = fi(x) is the j-th coordinate of y, then
Yi=1J J y

dy; = Dy f;(x) dxi + - -+ + D, f;(x) dx,

; ;
dyj:a% dx1+~~~+ai}‘; dxo,
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and consequently, expanding out the alternating product according to the
usual multilinear and alternating rules, we find that

fro(x) =g(f(x)Ar(x) dxy A -+ A dxy,

where A, is the determinant of the Jacobian matrix of f.

V, §4. THE POINCARE LEMMA

If w is a differential form on a manifold and is such that dw = 0, then it is
customary to say that w is closed. If there exists a form i such that
w = dy, then one says that w is exact. We shall now prove that locally,
every closed form is exact.

Theorem 4.1 (Poincaré Lemma). Let U be an open ball in E and let @
be a differential form of degree = 1 on U such that dw = 0. Then there
exists a differential form  on U such that dy = o.

Proof. We shall construct a linear map k from the r-forms to the
(r— 1)-forms (r = 1) such that

dk + kd = id.
From this relation, it will follow that whenever dw = 0, then
dkw = w,

thereby proving our proposition. We may assume that the center of the
ball is the origin. If w is an r-form, then we define kw by the formula

1

((kw),, v1 X -+ X v,_1) :J "N (tx), x X 0] X -+ X v,_1) dt.
0

We can assume that we deal with local representations and that v; € E.
We have

((dke)

V] X e X U

=D (=D (kw) (x)vr, 1 X -+ X B x X vy)

i=1

. 1
= ZHWJ 1 Ne(tx), v; X 0] X - X D X -+ X v,) di

0

o
—I—Z(—I)IHJ (@' (1xX)viy X X 0] X +++ X D X -+ X v,) d.
0
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On the other hand, we also have
((kdw)(x), v x -+ X v;)

1
=J t"{dw(x), x X v; X -+ X v,) dt
0

1
:J (@' (tx)x, v1 X -+ X v,) dt
0

1
+ _1iJ (@ (1X)v1, X X U1 X o+ X D X -+ X v,) db.
D=1 e () | )

We observe that the second terms in the expressions for kdw and dkw
occur with opposite signs and cancel when we take the sum. As to the
first terms, if we shift v; to the i-th place in the expression for dkw, then
we get an extra coefficient of (—1)*!. Thus

1
dkw + kdw =J rt" Nw(tx), vp x -+ x v,) dt
0

1
+J (@' (tx)x, v1 X -+ X v,) dI.
0

This last integral is simply the integral of the derivative with respect to
t of
(t"o(tx), v; X - X v.).
Evaluating this expression between =0 and =1 yields
(w(x), v1 X -+ X v,)

which proves the theorem.

We observe that we could have taken our open set U to be star-shaped
instead of an open ball.

V, §5. CONTRACTIONS AND LIE DERIVATIVE

Let & be a vector field and let @ be an r-form on a manifold X, r = 1.
Then we can define an (r — 1)-form Cew by the formula

(Ce)(x)(va, ..., ) = @(E(X), vay ..., 1y),

for vy,...,v, € Tyx. Using local representations shows at once that C: has
the appropriate order of differentiability (the minimum of w and &). We
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call C:zw the contraction of w by ¢, and also denote C:w by
wol.

If fis a function, we define Csf = 0. Leaving out the order of differ-
entiability, we see that contraction gives an R-linear map

Ce: A"(X) — o 1(X).
This operation of contraction satisfies the following properties.

CON 1. C:0 C: = 0.

CON 2. The association (&, w) — Czw = wo ¢ is bilinear. It is in fact
bilinear with respect to functions, that is if ¢ is a function, then

Coe =9Ce and  Ce(pw) = pCew.
CON 3. If w, Y are differential forms and r = deg w, then
Ce(w A ) = (Ceo) A+ (1)@ A Cap.
These three properties follow at once from the definitions.
Example. Let X = R”, and let
o(x) =dx; A -+ A dxy,.

If ¢ is a vector field on R”, then we have the local representation
(@o&)(x) =Y (~D)TEW) dyia - AdxiA o A dx,
i=1

We also have immediately from the definition of the exterior derivative,

dwo &) = dew\-ux\dxm
i=1 0x;
letting & = (&y,...,¢&,) in terms of its components ¢&;.

We can define the Lie derivative of an r-form as we did before for
vector fields. Namely, we shall evaluate the following limit:

(Zeo)(x) = lim [(z0)(x) ~ ()],
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or in other words,

a..
Ve =2 (570)

=0
where o is the flow of the vector field &, and we call % the Lie derivative

again, applied to the differential form w. We may rewrite this definition in
terms of the value on vector fields &,...,¢&, as follows:

d
(géw)(éla' &) = E(COO oy Uy X o X o)

=0

Proposition 5.1. Let & be a vector field and w a differential form of
degree r = 1. The Lie derivative ¢ is a derivation, in the sense that

gﬁ(w(il,-“;ér)) = (h(fiw)(él,"'aél') +Zw(élv"'7$§£ia"'vér)
i=1

where of course L:& = [E, &.

If & &, o denote the local representations of the vector fields and
the form respectively, then the Lie derivative Lz has the local
representation

(Zew)(x), &1(x) x -+ x & (x))
(@' (x)&(x), &1(x) x -+ x &(x))

r

+ D (o(x), E(x) x - x E(X)E(x) x - x & (x)).

i=1

Proof. The proof is routine using the definitions. The first assertion
is obvious by the definition of the pull back of a form. For the local
expression we actually derive more, namely we derive a local expression

d . . .
for ofw and Eoc,* @ which are characterized by their values at (&,...,¢&,).

So we let

(1) F(1) = (a7 @)(x), &1(x) x -+ x &(x))
= (w(a(t, x)), Dra(t, x)&(x) x - X Doa(t, x)&,(x)).

Then the Lie derivative (Z:w)(x) is precisely F’'(0), but we obtain also

. d
the local representation for %ocl* w:
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@ F0) = (GHom. @ < x60m) =
(3) (w’(oc(t, x))Dloc(t, x), Dyo(t, x)&1(x) X -+ x Dya(t, x)&.(x))

+ Z(w(a(l, x)), Daa(t, x)&1(x) x -+ x DyDaa(t, X)&;(x) x -+ - x Dyo(t, x)&,(x))
[

by the rule for the derivative of a product. Putting 7 = 0 and using the
differential equation satisfied by D,a(t, x), we get precisely the local
expression as stated in the proposition. Remember the initial condition
Dya(0, x) = id.

From Proposition 5.1, we conclude that the Lie derivative gives an
R-linear map
Pe: (X)) — A(X).

We may use expressions (1) and (3) in the above proof to derive a formula
which holds even more generally for time-dependent vector fields.

Proposition 5.2. Let &; be a time-dependent vector field, o its flow, and
let @ be a differential form. Then

d * * d * *
- (O‘z 60) =% ("?@w) or - ((xt CO) =% (giw)

dt dt
for a time-independent vector field.

Proof. Proposition 5.1 gives us a local expression for (L w)(y), re-
placing x by y because we shall now put y = «(¢, x). On the other hand,
from (1) in the proof of Proposition 5.1, we obtain

o/ (Ze,0)(x) = (Le,)(y), D21, x)E1(x) X -+ X Dao(t, x)&(x))-

Substituting the local expression for (% w)(y), we get expression (3) from
the proof of Proposition 5.1, thereby proving Proposition 5.2.

Proposition 5.3. As a map on differential forms, the Lie derivative
satisfies the following properties.

LIE 1. s =doC:+ Ceod, so %= Csod on functions.

LIE 2. Z:(w AY)=ZLroo A+ o A L.

LIE 3. %: commutes with d and Ck.

LIE 4. Zs )= Leo Ly — &0 L.
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LIE 5. C¢ = L:0Cy— Cjo Z.
LIE 6. L:o0 = fL:0+df N Ceo for all forms w and functions f.
Proof. Let &;,...,¢&, be vector fields, and w an r-form. Using the

definition of the contraction and the local formula of Proposition 5.1, we
find that C: dw is given locally by

(Cedo(x), & (x) x - x & (x))
= (0'(x)&(x), &1(x) x -+ x &(x))

£ @ (W), ) X Eu(x) x - x ER) x & ().
=1

On the other hand, dC:w is given by
<dC560(X), il(x) X X ér(x»

=3 (=D TH(Cew) (0)E(x), E1(x) % - x E(x) % x ().

i=1

To compute (C:w)'(x) is easy, going back to the definition of the
derivative. At vectors vy,...,v,_1, the form Czw(x) has the value

(w(x), E(x) X v1 X -+ X U,_1).

Differentiating this last expression with respect to x and evaluating at a
vector 1 we get

(' (X)h, E(x) x v] X -+ X v,_1) + (0(x), E(X)h x v X -+ X 0,_1).

Hence (dC:w(x), &j(x) x --- x &(x)) is equal to

S D) (R (), €)X &) x -+ x &) X -+ x &(x)
i=1

—

£ D (), EREG) x G0 x - x EE) x - x &),
i=1

Shifting ¢'(x)¢&;(x) to the i-th place in the second sum contributes a sign of
(=1)"! which gives 1 when multiplied by (—1)""'. Adding the two local
representations for dC:w and Cs dw, we find precisely the expression of
Proposition 5.1, thus proving LIE 1.

As for LIE 2, it consists in using the derivation rule for d and Ce
in Proposition 3.3, EXD 1, and CON 3. The corresponding rule for
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& follows at once. (Terms will cancel just the right way.) The other
properties are then clear.

V, §6. VECTOR FIELDS AND 1-FORMS
UNDER SELF DUALITY

Let E be a vector space and let
(v, w) — (v, w)

be a bilinear function of E x E — R. We call such a function a bilinear
form. This form induced a linear map

Ai E—EY
which to each v e E associates the functional A, such that
A(w) = (v, w).

We have a similar map on the other side. If both these mappings are
linear isomorphisms of E and EY then we say that the bilinear form is
non-singular. Such a non-singular form exists, and we say that E is
self-dual with respect to this form. For instance, a euclidean space is self-
dual.

It suffices for a bilinear form to be non-singular that its kernels on the
right and on the left be 0. (The kernels are the kernels of the associated
maps A as above.)

Let E be self dual with respect to the non-singular form (v, w) —
(v, w), and let

Q: EXE—R
be a continuous bilinear map. There exists a unique operator 4 such that
Qv, w) = (4v, w)
for all v, we E. (An operator is a linear map E — E by definition.)
Remarks. Suppose that the form (v, w) — (v, w) is symmetric, i.e.
(v, wy = (w, v)

for all v, w e E. Then Q is symmetric (resp. alternating) if and only if 4 is
symmetric (resp. skew-symmetric). Recall that 4 symmetric (with respect
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to (,)) means that
(Av, w) = (v, Aw) for all v, weE.

That A is skew-symmetric means that (Av, w) = —(Aw, w) for all v, w e E.
For any operator 4: E — E there is another operator ‘4 (the transpose of
A with respect to the non-singular form (, )) such that for all v, w e E we
have

(Av, w) = (v, "Aw).

Thus A4 is symmetric (resp. skew-symmetric) if and only if ‘4 = A (resp.
"4 =—4A).

The above remarks apply to any bilinear form Q. For invertibility, we
have the criterion:

The form Q is non-singular if and only if the operator A representing the
Sform with respect to (,) is invertible.

The easy verification is left to the reader. Of course, invertibility or non-
singularity can be checked by verifying that the matrix representing the
linear map with respect to bases has non-zero determinant. Similarly, the
form is also represented by a matrix with respect to a choice of bases, and
its being non-singular is equivalent to the matrix representing the form
being invertible.

We recall that the set of invertible operators in Laut(E) is an open
subset. Alternatively, the set of non-singular bilinear forms on E is an
open subset of L?(E).

We may now globalize these notions to a vector bundle (and eventually
especially to the tangent bundle) as follows.

Let X be a manifold, and z: £ — X a vector bundle over X with fibers
which are linearly isomorphic to E, or as we shall also say, modeled on E.
Let Q be a tensor field of type L?> on E, that is to say, a section of the
bundle L*(E) (or L*(r)), or as we shall also say, a bilinear tensor field on
E. Then for each x € X, we have a bilinear form Q, on E,.

If Q, is non-singular for each x € X then we say that Q is non-singular.
If z is trivial, and we have a trivalisation X x E, then the local repre-
sentation of Q can be described by a morphism of X into the space of
operators. If Q is non-singular, then the image of this morphism is
contained in the open set of invertible operators. (If Q is a 2-form, this
image is contained in the submanifold of skew-symmetric operators.) For
example, in a chart U, we can represent Q over U by a morphism

A: U— L(E, E) such that Q. (v, w) = (A0, w)

for all v, we E. Here we wrote A, instead of A(x) to simplify the
typography.
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A non-singular Q as above can be used to establish a linear
isomorphism

['(E) —» TLY(E), also denoted by I'L(E) or TE",

between the (infinite dimensional) R-vector spaces of sections T'(E) of E
and the 1-forms on E in the following manner. Let ¢ be a section of E.
For each x € X we define a continuous linear map

(Qoé).: Ec—R

by the formula
(Qo&) . (w) =Q(E(x), w).

Looking at local trivialisations of 7, we see at once that Qo ¢ is a 1-form
on E.

Conversely, let @ be a given l-form on E. For each xe X, w, is
therefore a 1-form on E, and since Q is non-singular, there exists a unique
element &(x) of E, such that

Q. (&(x), w) = wy(w)

for all w e E,. In this fashion, we obtain a mapping ¢ of X into E and we
contend that £ is a morphism (and therefore a section).

To prove our contention we can look at the local representations. We
use Q and w to denote these. They are represented over a suitable open
set U by two morphisms

A: U — Aut(E) and n: U—E
such that

Q. (v, w) = (Ao, w) and  wy(w) = (n(x), w).

From this we see that
&(x) = A7 "'n(x),

from which it is clear that & is a morphism. We may summarize our
discussion as follows.

Proposition 6.1. Let X be a manifold and n: E — X a vector bundle
over X modeled on E. Let Q be a non-singular bilinear tensor field on E.
Then Q induces an isomorphism of Fu(X)-modules

e —-TE".

A section & corresponds to a l-form w if and only if Qoé = w.
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In many applications, one takes the differential form to be df for some
function f. The vector field corresponding to df is then called the gradient
of f with respect to Q.

Remark. There is no universally accepted notation to denote the
correspondence between a 1-form and a vector field under Q as above.
Some authors use sharps and flats, which have two disadvantages. First,
they do not provide a symbol for the mapping, and second they do not
contain the Q in the notation. I would propose the check sign VQ to
denote either isomorphism

\/q: TL(E) = TE  denoted on elements by o« — \/qo=0" =¢,
and also
\/q: TE - TL(E)  denoted on elements by & — \/ & =¢Y = we.

If Q is fixed throughout a discussion and need not be referred to, then it
is useful to write ¢¥ or 1Y in some formulas. We have \/Q o \/Q =id.
Instead of the sharp and flat superscript, I prefer the single v sign.

Many important applications of the above duality occur when Q is a
non-singular symmetric bilinear tensor field on the tangent bundle TX.
Such a tensor field is then usually denoted by g. If & # are vector fields,
we may then define their scalar product to be the function

(& my=9g&n).

On the other hand, by the duality of Proposition 6.1, if ie. w, 4 are
1-forms, i.e. sections of the dual bundle TV X, then w" and A" are vector
fields, and we define the scalar product of the 1-forms to be

This duality is especially important for Riemannian metrics, as in Chapter
X.

The rest of this section will not be used in the book.

In Proposition 6.1, we dealt with a quite general non-singular bilinear
tensor field on E. We now specialize to the case when E = TX is the
tangent bundle of X, and Q is a 2-form, i.e. Q is alternating. A pair
(X, Q) consisting of a manifold and a non-singular closed 2-form is called
a symplectic manifold. (Recall that closed means dQ = 0.)

We denote by &, n vector fields over X, and by f, /& functions on X,
so that df, dh are 1-forms. We let {; be the vector field on X which
corresponds to df under the 2-form Q, according to Proposition 6.1.
Vector fields on X which are of type &4 are called Hamiltonian (with
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respect to the 2-form). More generally, we denote by &, the vector field
corresponding to a 1-form w. By definition we have the formula

Q1. Qol,=w so in particular Qoly =df.

In Chapter VII, §7 we shall consider a particularly important example,
when the base manifold is the cotangent bundle; the function is the kinetic
energy

K(v) = 3(v, v)

g

with respect to the scalar product g of a Riemannian or pseudo Rie-
mannian metric, and the 2-form Q arises canonically from the pseudo
Riemannian metric.

In general, by LIE 1 of Proposition 5.3 formula ©1, and the fact that
dQ =0, we find for any l-form o that:

Q2. Z: Q= do.

The next proposition reinterprets this formula in terms of the flow when
dw = 0.

Proposition 6.2. Let w be such that dw = 0. Let o be the flow of &,.
Then o;Q =Q for all t (in the domain of the flow).

Proof. By Proposition 5.2,

d
aoct*Q:oct*Lﬁng:O by Q2.

Hence «;Q is constant, equal to ojQ =, as was to be shown.
A special case of Proposition 6.2 in Hamiltonian mechanics is when

o = dh for some function 4. Next by LIE 5, we obtain for any vector
fields &, #:

Ze(Qon) = (LeQ)on+ QoL 7).
In particular, since ddf =0, we get
Q3. gf,g/»(Q © fdh) =Qo [édfv fdh]~

One defines the Poisson bracket between two functions f, /& to be

{f, h} =<y -



[V, §7] THE CANONICAL 2-FORM 137

Then the preceding formula may be rewritten in the form

Q4. [Cars San) = Sagr.my-

It follows immediately from the definitions and the antisymmetry of the
ordinary bracket between vector fields that the Poisson bracket is also
antisymmetric, namely

{fv h}:_{ha f}

In particular, we find that

Sy - f=0.

In the case of the cotangent bundle with a symplectic 2-form as in the next
section, physicists think of f as an energy function, and interpret this
formula as a law of conservation of energy. The formula expresses the
property that f is constant on the integral curves of the vector field .
This property follows at once from the definition of the Lie derivative of a
function. Furthermore:

Proposition 6.3. If (- h =0 then &y - f = 0.

This is immediate from the antisymmetry of the Poisson bracket. It
is interpreted as conservation of momentum in the physical theory of
Hamiltonian mechanics, when one deals with the canonical 2-form on the
cotangent bundle, to be defined in the next section.

V, §7. THE CANONICAL 2-FORM

Consider the functor E — L(E) (linear forms). If E — X is a vector
bundle, then L(E) will be called the dual bundle, and will be denoted by
EY. For each x e X, the fiber of the dual bundle is simply L(E,).

If E=T(X) is the tangent bundle, then its dual is denoted by 7 (X)
and is called the cotangent bundle. Its elements are called cotangent
vectors. The fiber of TV (X) over a point x of X is denoted by 7Y (X).
For each x € X we have a pairing

TY xT, —R

X

given by

for 2e T and ue Ty (it is the value of the linear form /4 at u).
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We shall now describe how to construct a canonical 1-form on the
cotangent bundle 7V (X). For each A€ TV (X) we must define a 1-form
on T,(T" (X)).

Let n: TV(X) — X be the canonical projection. Then the induced
tangent map

Tn=n: T(T" (X)) — T(X)

can be applied to an element z of 7,(7T (X)) and one sees at once that
mz lies in Tx(X) if 4 lies in 7Y (X). Thus we can take the pairing

(4, mz) = 0)(2)
to define a map (which is obviously continuous linear):
0;: T;_(TV (X)) — R.

Proposition 7.1. This map defines a 1-form on TV (X). Let X = U be
open in E and

TY(U)=UxE", T(T"(U))=(UxE")x (ExE),

If (x,))eUXEY and (u, o) e ExE" then the local representation
O(x,1) is given by

(0.0, (u,)) = Au).

Proof. We observe that the projection n: U x EY — U is linear, and
hence that its derivative at each point is constant, equal to the projection
on the first factor. Our formula is then an immediate consequence of the
definition. The local formula shows that @ is in fact a 1-form locally, and
therefore globally since it has an invariant description.

Our 1-form is called the canonical 1-form on the cotangent bundle. We
define the canonical 2-form Q on the cotangent bundle 7V X to be

Q= —do.
The next proposition gives a local description of Q.

Proposition 7.2. Let U be open in E, and let Q be the local
representation of the canonical 2-form on TYU =UXxEY. Let
(x, ) e UxE". Let (u, w) and (up, wy) be elements of Ex E".
Then

Q.2 (1, 01) X (u2, m2)) = (U1, w2) — (U2, 1)

= COQ(M]) — 601(1/[2).
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Proof. We observe that 0 is linear, and thus that 0’ is constant. We
then apply the local formula for the exterior derivative, given in Pro-
position 3.2. Our assertion becomes obvious.

The canonical 2-form plays a fundamental role in Lagrangian and
Hamiltonian mechanics, cf. [AbM 78], Chapter 3, §3. I have taken the
sign of the canonical 2-form both so that its value is a 2 x 2 determinant,
and so that it fits with, for instance, [LoS 68] and [AbM 78]. We observe
that Q is closed, that is dQ = 0, because Q = —df. Thus (T X, Q) is a
symplectic manifold, to which the properties listed at the end of the last
section apply.

In particular, let & be a vector field on X. Then to & is associated a
function called the momentum function

f;r TVX —R such that  f:(4) = A:(¢(x))

for A, e TYX. Then df: is a l-form on TVX. Classical Hamiltonian
mechanics then applies Propositions 6.2 and 6.3 to this situation. We refer
the interested reader to [LoS 68] and [AbM 78] for further information on
this topic. For an important theorem of Marsden—Weinstein [MaW 74|
and applications to vector bundles, see [Ko 87].

V, §8. DARBOUX’S THEOREM

If E =R" then the usual scalar product establishes the self-duality of R”.
This self-duality arises from other forms, and in this section we are
especially interested in the self-duality arising from alternating forms. If E
is finite dimensional and o is an element of L2(E), that is an alternating
2-form, which is non-singular, then one sees easily that the dimension of E
is even.

Example. An example of such a form on R* is the following. Let
U =010, Up, O],...,0)),

!/ !
W= (Wiy.ooy Wy Wi, oo, W),

w;, wl. Letting

be elements of R*", with components v;, v/ !

i’
n
(v, w) = Z(viw; —vjwy)

i=1

defines a non-singular 2-form ® on R*". It is an exercise of linear algebra
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to prove that any non-singular 2-form on R?" is linearly isomorphic to this
particular one in the following sense. If

f: E—=F

is a linear isomorphism between two finite dimensional spaces, then it
induces an isomorphism

f7 Ly(F) — Lg(E).

We call forms w on E and y on F linearly isomorphic if there exists a
linear isomorphism f such that f*y = w. Thus up to a linear isomor-
phism, there is only one non-singular 2-form on R*". (For a proof, cf. for
instance my book Algebra.)

We are interested in the same question on a manifold locally. Let U be
open in the Banach space E and let xo e U. A 2-form

w: U— LX(E)

is said to be non-singular if each form w(x) is non-singular. If £ is a vector
field on U, then wo ¢ is a 1-form, whose value at (x, w) is given

(@0 Q) (x)(w) = (x)(E(x), w).

As a special case of Proposition 6.1, we have:

Let @ be a non-singular 2-form on an open set U in E. The association
¢ wol

is a linear isomorphism between the space of vector fields on U and the
space of 1-forms on U.

Let
w: U— L2(U)

be a 2-form on an open set U in E. If there exists a local isomorphism f at
a point xg € U, say
S U — T,

and a 2-form  on V7 such that /™) = w (or more accurately, w restricted
to Uj), then we say that w is locally isomorphic to  at x;. Observe that
in the case of an isomorphism we can take a direct image of forms, and
we shall also write

fo=y
instead of @ = f*. In other words, f, = (f~1)".
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Example. On R?" we have the constant form of the previous example.
In terms of local coordinates (xi,...,X;, ¥;,...,»,), this form has the
local expression

o(x, y) = Z dx; A dy;.
i1

This 2-form will be called the standard 2-form on R

The Darboux theorem states that any non-singular closed 2-form in R**
is locally isomorphic to the standard form, that is that in a suitable chart
at a point, it has the standard expression of the above example. A
technique to show that certain forms are isomorphic was used by Moser
[Mo 65], who pointed out that his arguments also prove the classical
Darboux theorem.

Theorem 8.1 (Darboux Theorem). Let
w: U — LX(E)

be a non-singular closed 2-form on an open set of E, and let xy € U. Then
 is locally isomorphic at xy to the constant form w(x).

Proof. Let wy = w(xp), and let
w; = W + (o — ), 0.
We wish to find a time-dependent vector field &; locally at 0 such that if «
denotes its flow, then
o W = .

Then the local isomorphism oy satisfies the requirements of the theo-
rem. By the Poincaré lemma, there exists a 1-form 6 locally at 0 such
that

w— wy = do,

and without loss of generality, we may assume that 6(xp) =0. We
contend that the time-dependent vector field &,, such that

wtoét = _67

has the desired property. Let « be its flow. If we shrink the domain of the
vector field near x( sufficiently, and use the fact that 0(xy) = 0, then we
can use the local existence theorem (Proposition 1.1 of Chapter IV) to see
that the flow can be integrated at least to t =1 for all points x in this
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small domain. We shall now verify that

d
— (o) = 0.

dt
This will prove that o, is constant. Since we have ajwy = wo because
a(0, x) = x and D,0(0, x) = id,
it will conclude the proof of the theorem.
We compute locally. We use the local formula of Proposition 5.2, and
formula LIE 1, which reduces to

gé,wt = d(a)t o ét)?

because dw; = 0. We find

d d
G600 =3 (o) 45 (Z:0)

= OCr* (%wt + d(wz o 5;))

(w0 — wy — dO)

*
at
0.

This proves Darboux’s theorem.

Remark 1. For the analogous uniqueness statement in the case of a
non-singular symmetric form, see the Morse—Palais lemma of Chapter VII,

§5.

Remark 2. The proof of the Poincaré lemma can also be cast in the
above style. For instance, let ¢,(x) = tx be a retraction of a star shaped
open set around 0. Let &, be the vector field whose flow is ¢,, and let w be
a closed form. Then

d * * * *
E(/ﬁtw =¢, L:0=¢; dCor0 = dp; C;, .

Since ¢y =0 and ¢; is the identity, we see that

1 1
a):¢;‘w—¢ngj %qﬁfwdt:dj ¢; Cz 0 dt
0

0

is exact, thus concluding a proof of Poincaré’s theorem.



CHAPTER VI

The Theorem of Frobenius

Having acquired the language of vector fields, we return to differential
equations and give a generalization of the local existence theorem known
as the Frobenius theorem, whose proof will be reduced to the standard
case discussed in Chapter IV. We state the theorem in §1. Readers should
note that one needs only to know the definition of the bracket of two vector
fields in order to understand the proof. It is convenient to insert also a
formulation in terms of differential forms, for which the reader needs to
know the local definition of the exterior derivative. However, the con-
dition involving differential forms is proved to be equivalent to the vector
field condition at the very beginning, and does not reappear explicitly
afterwards.

We shall follow essentially the proof given by Dieudonné in his
Foundations of Modern Analysis, allowing for the fact that we use freely
the geometric language of vector bundles, which is easier to grasp.

It is convenient to recall in §2 the statements concerning the existence
theorems for differential equations depending on parameters. The proof of
the Frobenius theorem proper is given in §3. An important application to
Lie groups is given in §5, after formulating the theorem globally.

The present chapter will not be used in the rest of this book.

Vi, §1. STATEMENT OF THE THEOREM

Let X be a manifold of class C? (p =22). A subbundle E of its
tangent bundle will also be called a tangent subbundle over X. We
contend that the following two conditions concerning such a subbundle are
equivalent.

143
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FR 1. For each point z € X and vector fields &, n at z (i.e. defined on an
open neighborhood of z) which lie in E (i.e. such that the image of
each point of X under &, n lies in E), the bracket [&, 5] also lies in
E.

FR 2. For each point z € X and differential form w of degree 1 at z
which vanishes on E, the form dw vanishes on & x n whenever &, i
are two vector fields at z which lie in E.

The equivalence is essentially a triviality. Indeed, assume FR 1. Let w
vanish to E. Then

(do, &x ) = —(o, [§, 1)) —n(w, &) + L, n).

By assumption the right-hand side is 0 when evaluated at z. Conversely,
assume FR 2. Let & 5 be two vector fields at z lying in E. If [&, #](z) is
not in E, then we see immediately from a local product representation that
there exists a differential form w of degree 1 defined on a neighborhood of
z which is 0 on E. and non-zero on [&, #](z), thereby contradicting the
above formula.

We shall now give a third condition equivalent to the above two, and
actually, we shall not refer to FR 2 any more. We remark merely that, it
is easy to prove that when a differential form w satisfies condition FR 2,
then dw can be expressed locally in a neighborhood of each point as a

finite sum
do = Z Vi A O

where y; and w; are of degree 1 and each w; vanishes on E. We leave this
as an exercise to the reader.

Let E be a tangent subbundle over X. We shall say that E is integrable

at a point xq if there exists a submanifold Y of X containing x; such that
the tangent map of the inclusion

jr Y- X

induces a VB-isomorphism of 7'Y with the subbundle E restricted to Y.
Equivalently, we could say that for each point y € Y, the tangent map

T,j: T,Y — T,X
induces a linear isomorphism of 7,Y on E,. Note that our condition

defining integrability is local at xyp. We say that E is integrable if it is
integrable at every point.
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Using the functoriality of vector fields, and their relations under tangent
maps and the bracket product, we see at once that if E is integrable, then
it satisfies FR 1. Indeed, locally vector fields having their values in E are
related to vector fields over Y under the inclusion mapping.

Frobenius’ theorem asserts the converse.

Theorem 1.1. Let X be a manifold of class CP (p = 2) and let E be a
tangent subbundle over X. Then E is integrable if and only if E satisfies
condition FR 1.

The proof of Frobenius’ theorem will be carried out by analyzing the
situation locally and reducing it to the standard theorem for ordinary
differential equations. Thus we now analyze the condition FR 1 in terms
of its local representation.

Suppose that we work locally, over a product U x V' of open subsets
of vector spaces E and F. Then the tangent bundle 7(U x V) can be
written in a natural way as a direct sum. Indeed, for each point (x, y) in
U x V we have

T (UxV)=T(U)x T,(V).

One sees at once that the collection of fibers T (U) x 0 (contained in
T.(U) x T,(V)) forms a subbundle which will be denoted by 7,(U x V)
and will be called the first factor of the tangent bundle. One could define
T>(U x V) similarly, and

T(UxV)=T(Ux V)® To(U x V).

A subbundle E of T(X) is integrable at a point z€ X if and only if
there exists an open neighborhood W of z and an isomorphism

p: UXV —->W

of a product onto W such that the composition of maps

inc.

Ty(U x V) ™ 7(U x V) 2% (W)

induces a VB-isomorphism of T1(U x V) onto E|W (over ¢). Denoting
by ¢, the map of U into W given by ¢,(x) = ¢(x, y), we can also express
the integrability condition by saying that 7,p, should induce a linear
isomorphism of E onto E, ) for all (x, y) in U x V. We note that in
terms of our local product structure, T.¢, is nothing but the partial
derivative Dgp(x, y). V

Given a subbundle of 7(X), and a point in the base space X, we know
from the definition of a subbundle in terms of a local product decom-
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position that we can find a product decomposition of an open neigh-
borhood of this point, say U x V, such that the point has coordinates
(x0, yo) and such that the subbundle can be written in the form of an
exact sequence

0—>U><V><EL>U><V><E><F

with the map
f(xo,yo): E—-ExF

equal to the canonical embedding of E on E x 0. For a point (x, y) in
U x V the map f(x, y) has two components f;(x, y) and f,(x, y) into E
and F respectively. Taking a suitable VB-automorphism of U x V' x E if
necessary, we may assume without loss of generality that f|(x, y) is the
identity. We now write f(x, y) = f5(x, y). Then

f: Ux V — L(E, F)

is a morphism (of class C”~!') which describes our subbundle completely.
We shall interpret condition FR 1 in terms of the present situation. If

& UxV —-ExF

is the local representation of a vector field over U x V, we let £; and ¢, be
its projections on E and F respectively. Then & lies in the image of f if
and only if

62(X7 y) = f(X7 y)él(xa y)

for all (x, y) in U x V, or in other words, if and only if ¢ is of the form

E(x, ) = (&i(x, p), f(x, 9)E1(x, )

for some morphism (of class CP~!)
& UxV —E.

We shall also write the above condition symbolically, namely

(1) E= (&, S &)

If &, n are the local representations of vector fields over U x V', then the
reader will verify at once from the local definition of the bracket
(Proposition 1.3 of Chapter V) that [£, #] lies in the image of f if and only
if

Df(x,y)-&(x, y) - m(x, y) = Df (x, y) - n(x, y) - & (%, p)
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or symbolically,
(2) Df-&-m =Df -n- &y

We have now expressed all the hypotheses of Theorem 1.1 in terms of
local data, and the heart of the proof will consist in proving the following
result.

Theorem 1.2. Let U, V be open subsets of vector spaces E, F
respectively. Let

f: UxV — L(E, F)
be a C"-morphism (r 2 1). Assume that if
¢,m: UxV—E

are two morphisms, and if we let

E=(&, f-4) and n= 0, f-m)

then relation (2) above is satisfied. Let (xo, yo) be a point of U x V.
Then there exists open neighborhoods Uy, Vo of Xxo, y, respectively,
contained in U, V, and a unique morphism o: Uy x Vo — V such that

DlOC(X, J/) = f(x7 OC(X, y))
and o(xo, y) = y for all (x,y) in Uy x V.

We shall prove Theorem 1.2 in §3. We now indicate how Theorem 1.1
follows from it. We denote by a, the map a,(x) = a(x, y), viewed as a
map of Uy into V. Then our differential equation can be written

Day(x) = f(x, a,(x)).
We let
Q: Uo X V() —-UxV
be the map ¢(x, y) = (x, a,(x)). It is obvious that Dg(xo, yy) is a

toplinear isomorphism, so that ¢ is a local isomorphism at (xg, y,)-
Furthermore, for (u, v) € E x F we have

Dig(x, y) - (u, v) = (u, Doy(x) - u) = (u, f(x, 0,(x)) - u)

which shows that our subbundle is integrable.
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Vi, §2. DIFFERENTIAL EQUATIONS DEPENDING
ON A PARAMETER

Proposition 2.1. Let U, V be open sets in vector spaces E, F respec-
tively. Let J be an open interval of R containing 0, and let

g: I xUxV —=F

be a morphism of class C" (r 2 1). Let (xo, yo) be a point in U x V.
Then there exists open balls Jy, Uy, Vo centered at 0, xo, y, and
contained J, U, V respectively, and a unique morphism of class C"

ﬂ: J()XU()XV()—)V
such that p(0, x, y) =y and

Dlﬂ(ta X, y) = g([a X, ﬁ(ta X, y))
Sfor all (t, x, y) e Jy x Uy x V.

Proof. This follows from the existence and uniqueness of local flows, by
considering the ordinary vector field on U x V'

G JxUxV —-ExF

given by G(¢, x, ) = (0, g(¢, x, »)). If B(, x, y) is the local flow for G,
then we let (¢, x, y) be the projection on the second factor of B(f, x, y).
The reader will verify at once that f satisfies the desired conditions. The
uniqueness is clear.

Let us keep the initial condition y fixed, and write

ﬁ(tv x) :ﬁ(tv X, y)

From Chapter 1V, §1, we obtain also the differential equation satisfied by
f in its second variable:

Proposition 2.2. Let notation be as in Proposition 2.1, and with y fixed,
let p(t, x) = (¢, x, ). Then D2f(t, x) satisfies the differential equation

D\Dy(1, x) - v=Dayg(t, x, B(t, x)) - v+ Dsg(t, x, B(t, x)) - D2(1, x) - v,

for every veE.
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Proof. Here again, we consider the vector field as in the proof of
Proposition 2.1, and apply the formula for the differential equation
satisfied by D,f as in Chapter IV, §l.

Vi, §3. PROOF OF THE THEOREM

In the application of Proposition 2.1 to the proof of Theorem 1.2, we take
our morphism ¢ to be

g(tv Z, y) :f(x0+tzv y)Z

with z in a small ball Ey, around the origin in E, and y in V. It is
convenient to make a translation, and without loss of generality we can
assume that xp =0 and y, =0. From Proposition 2.1 we then obtain

ﬂ: J()XE()XV()—>V

with initial condition f(0, z, y) = y for all z € Ey, satistfying the differential
equation

D\ p(t, z, y) = f(tz7 Blt, z, y)) .z,

Making a change of variables of type ¢t =as and z=a 'x for a small
positive number a, we see at once that we may assume that Jy contains 1,
provided we take E, sufficiently small. As we shall keep y fixed from now
on, we omit it from the notation, and write (¢, z) instead of (¢, z, y).
Then our differential equation is

3) D\p(t, z) = f(lZ, B, Z)) 2.

We observe that if we knew the existence of o in the statement of
Theorem 1.2, then letting (¢, z) = a(xo + tz) would yield a solution of our
differential equation. Thus the uniqueness of « follows. To prove its
existence, we start with f and contend that the map

a(x) = f(1, x)

has the required properties for small |x|. To prove our contention it will
suffice to prove that

(4) Daf(t, z) = tf (tz, B(t, 2))
because if that relation holds, then
DO‘(X) = DZﬂ(L x) = f(x, ﬂ(l, X)) = f(x, O‘(x»

which is precisely what we want.
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From Proposition 2.2, we obtain for any vector v e E,

D\Dyf(t, z) -v=tD f (tz, p(t, z)) - v~z
—|—D2f(tz, pe, z)) “Dyf(t,z) - v-z+ f(lz, pt, z)) - .

We now let k(1) = D,f(t, z) - v—tf(z, B(t, z)) - v. Then one sees at once
that k(0) =0 and we contend that

(5) Dk(t) = Dy f (z, Bl1, 2)) - k(1) - .

We use the main hypothesis of our theorem, namely relation (2), in which
we take &, and 7, to be the fields v and z respectively. We compute Df
using the formula for the partial derivatives, and apply it to this special
case. Then (5) follows immediately. It is a linear differential equation
satisfied by k(7), and by Corollary 1.7 of Chapter IV, we know that the
solution 0 is the unique solution. Thus k(f) =0 and relation (4) is
proved. The theorem also.

Vi, §4. THE GLOBAL FORMULATION

Let X be a manifold. Let F be a tangent subbundle. By an integral
manifold for F, we shall mean an injective immersion

[ Y—X
such that at every point y e Y, the tangent map
Tyf: T,Y — Ty X

induces a linear isomorphism of 7,Y on the subspace Fy(,) of T;yX.
Thus 7f induces locally an isomorphism of the tangent bundle of Y with
the bundle F over f(Y).

Observe that the image f(Y) itself may not be a submanifold of X. For
instance, if F has dimension 1 (i.e. the fibers of F have dimension 1), an
integral manifold for F is nothing but an integral curve from the theory of
differential equations, and this curve may wind around X in such a way
that its image is dense. A special case of this occurs if we consider the
torus as the quotient of the plane by the subgroup generated by the two
unit vectors. A straight line with irrational slope in the plane gets mapped
on a dense integral curve on the torus.

If Y is a submanifold of X, then of course the inclusion j: ¥ — X is an
injective immersion, and in this case, the condition that it be an integral
manifold for F simply means that T(Y) = F|Y (F restricted to Y).
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We now have the local uniqueness of integral manifolds, corresponding
to the local uniqueness of integral curves.

Theorem 4.1. Let Y, Z be integral submanifolds of X for the subbundle F
of TX, passing through a point xo. Then there exists an open neigh-
borhood U of xy in X, such that

YnU=272nU.

Proof. Let U be an open neighborhood of xy in X such that we have a
chart
U—=VxW

with
Xo = (Yo, Wo),

and Y corresponds to all points (y, wy), ye V. In other words, Y
corresponds to a factor in the product in the chart. If V' is open in F; and
W open in F,, with F; x F; = E, then the subbundle F is represented by
the projection

VxWxF

|

VxW

Shrinking Z, we may assume that Z < U. Let h: Z — V x W be the
restriction of the chart to Z, and let &1 = (h,hy) be represented by its two
components. By assumption, 4’(x) maps E into F, for every x € Z. Hence
hy is constant, so that 4(Z) is contained in the factor V' x {wg}. It follows
at once that i#(Z) = ¥} x {wy} for some open V; in V, and we can shrink
U to a product ¥} x W) (where W) is a small open set in W containing
wp) to conclude the proof.

We wish to get a maximal connected integral manifold for an integrable
subbundle F of TX passing through a given point, just as we obtained a
maximal integral curve. For this, it is just as easy to deal with the
nonconnected case, following Chevalley’s treatment in his book on Lie
Groups. (Note the historical curiosity that vector bundles were invented
about a year after Chevalley published his book, so that the language
of vector bundles, or the tangent bundle, is absent from Chevalley’s
presentation. In fact, Chevalley used a terminology which now appears
terribly confusing for the notion of a tangent subbundle, and it will not be
repeated here!)

We give a new manifold structure to X, depending on the integrable
tangent subbundle F, and the manifold thus obtained will be denoted by
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Xp. This manifold has the same set of points as X. Let x € X. We know
from the local uniqueness theorem that a submanifold Y of X which is at
the same time an integral manifold for F is locally uniquely determined. A
chart for this submanifold locally at x is taken to be a chart for Xg. It is
immediately verified that the collection of such charts is an atlas, which
defines our manifold Xr. (We lose one order of differentiability.) The
identity mapping
jr Xp— X

is then obviously an injective immersion, satisfying the following universal
properties.

Theorem 4.2. Let F be an integrable tangent subbundle over X. If
f:Y—=X

is a morphism such that Tf: TY — TX maps TY into F, then the
induced map
fr: Y — Xp

(same values as f but viewed as a map into the new manifold Xr) is also a
morphism. Furthermore, if f is an injective immersion, then fr induces an
isomorphism of 'Y onto an open subset of Xp.

Proof. Using the local product structure as in the proof of the local
uniqueness Theorem 4.1, we see at once that f5 is a morphism. In other
words, locally, f maps a neighborhood of each point of Y into a sub-
manifold of X which is tangent to F. If in addition f is an injective
immersion, then from the definition of the charts on Xp, we see that fr
maps Y bijectively onto an open subset of Xz, and is a local isomorphism
at each point. Hence f; induces an isomorphism of Y with an open
subset of X, as was to be shown.

Corollary 4.3. Let Xr(xo) be the connected component of X containing
a point xo. If f: Y — X is an integral manifold for F passing through
Xxo, and Y is connected, then there exists a unique morphism

h: Y — Xr(x)
making the following diagram commutative :
Y s Xp(x0)
! J
X

and h induces an isomorphism of Y onto an open subset of Xr(xo).
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Proof. Clear from the preceding discussion.
Note the general functorial behavior of the integral manifold. If
g: X - X’

is an isomorphism, and F' is an integrable tangent subbundle over X, then
F' = (Tg)(F) = g.F is an integrable bundle over X’'. Then the following
diagram is commutative:

X, 2 X

| ]

X — X
g
The map gr is, of course, the map having the same values as g, but viewed
as a map on the manifold Xp.

VI, §5. LIE GROUPS AND SUBGROUPS

It is not our purpose here to delve extensively into Lie groups, but to lay
the groundwork for their theory. For more results, we refer the reader
to texts on Lie groups, differential geometry, and also to the paper by
W. Graeub [Gr 61].

By a group manifold, or a Lie group G, we mean a manifold with a
group structure, that is a law of composition and inverse,

7:. GXG@— G and G—G
which are morphisms. Thus each x € G gives rise to a left translation

™ G— G
such that 7¥(y) = xy.

When dealing with groups, we shall have to distinguish between iso-
morphisms in the category of manifolds, and isomorphisms in the category
of group manifolds, which are also group homomorphisms. Thus we shall
use prefixes, and speak of group manifold isomorphism, or manifold iso-
morphism as the case may be. We abbreviate these by GM-isomorphism
or M-isomorphism. We see that left translation is an M-isomorphism, but
not a GM-isomorphism.

Let e denote the origin (unit element) of G. If ve T.G is a tangent
vector at the origin, then we can translate it, and we obtain a map

(x, v) = v = &, (x)
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which is easily verified to be a VB-isomorphism
GxT,G— TG

from the product bundle to the tangent bundle of G. This is done at once
using charts. Recall that 7,G can be viewed as a vector space, using any
local trivialization of G at e to get a linear isomorphism of 7,G with the
standard space on which G is modeled. Thus we see that the tangent
bundle of a Lie group is trivializable.

A vector field & over G is called left invariant if 7 = & for all xe G.
Note that the map

x =&y (x)
described above is a left invariant vector field, and that the association
v ¢,
obviously establishes a linear isomorphism between 7,G and the vector
space of left invariant vector fields on G. The space of such vector fields

will be denoted by g or I(G), and will be called the Lie algebra of G,
because of the following results.

Proposition 5.1. Let & n be left invariant vector fields on G. Then [&, 7]
is also left invariant.

Proof. This follows from the general functorial formula
(&l = [€ i) = (& ).

Under the linear isomorphism of 7,G with [(G), we can view [(G) as a
vector space. By a Lie subalgebra of [(G) we shall mean a closed subspace
h having the property that if &, e, then [, 5] €l also.

Let G, H be Lie groups. A map

f: H—>G
will be called a homomorphism if it is a group homomorphism and a
morphism in the category of manifolds. Such a homomorphism induces a
linear map
T.f=f.: T.H— TG,

and it is clear that it also induces a corresponding linear map

I(H) — 1(G),
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also denoted by f,. Namely, if ve T.H and &, is the left invariant vector
field on H induced by v, then

f*fv = ff*L

The general functorial property of related vector fields applies to this case,
and shows that the induced map

S (H) = [(G)
is also a Lie algebra homomorphism, namely for &, » € (H) we have

LS n) =18, funl.

Now suppose that the homomorphism f: H — G is also an immersion
at the origin of H. Then by translation, one sees that it is an immersion at
every point. If in addition it is an injective immersion, then we shall say
that f is a Lie subgroup of G. We see that in this case, f induces an
injection

£ (H) — 1(G).

The image of I(H) in I(G) is a Lie subalgebra of I(G).
In general, let ) be a Lie subalgebra of [(G) and let F, be the corre-
sponding subspace of 7,G. For each x e G, let

F,=1F,.

Then F, is a subspace of 7,G, and using local charts, it is clear that the
collection F = {F,} is a subbundle of TG, which is left invariant. Fur-
thermore, if

f+ H—G

is a homomorphism which is an injective immersion, and if b is the image
of [(H), then we also see that f'is an integral manifold for the subbundle
F. We shall now see that the converse holds, using Frobenius’ theorem.

Theorem 5.2. Let G be a Lie group, \) a Lie subalgebra of 1(G), and
let F be the corresponding left invariant subbundle of TG. Then F is
integrable.

Proof. 1 owe the proof to Alan Weinstein. It is based on the following
lemma.

Lemma 5.3. Let X be a manifold, let &, n be vector fields at a point xy,
and let F be a subbundle of TX. If &(x0) =0 and & is contained in F,
then [, n](x) € F.
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Proof. We can deal with the local representations, such that X = U is
open in E, and F corresponds to a factor, that is

TXZUXleFz and F=U><F1.

We may also assume without loss of generality that xo=0. Then
£(0) =0, and ¢: U — F; may be viewed as a map into F;. We may write

with a morphism A4: U — L(E, F;). Indeed,

1
Ex) = J &) dr - x,

0

1
and A(x) = pr, OJ &'(1x) dt, where pr, is the projection on F;. Then
0

€, nl(x) =

"(x)¢(x) = &(x)n(x)

n
7' (x)A(x)x — A'(x) - x - n(x) = A(x) - (),

whence
€, 1](0) = A4(0)»(0).

Since 4(0) maps E into F;, we have proved our lemma.

Back to the proof of the proposition. Let &, # be vector fields at a
point xy in G, both contained in the invariant subbundle F. There exist
invariant vector fields &, and 7, and x( such that

¢(x0) = Co(xo)  and  5(x0) = 1p(x0)-

Let
&L =¢-¢ and Ny =n—"1p-

Then &, n, vanish at xp and lie in F. We get:

& n) = & nl
o

The proposition now follows at once from the lemma.

Theorem 5.4. Let G be a Lie group, let ) be a Lie subalgebra of 1(G),
and let F be its associated invariant subbundle. Let

j: H— G
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be the maximal connected integral manifold of F passing through e. Then
H is a subgroup of G, and j: H — G is a Lie subgroup of G. The
association between ) and j: H — G establishes a bijection between Lie
subalgebras of 1(G) and Lie subgroups of G.

Proof. Let xe H. The M-isomorphism 7* induces a VB-isomorphism
of F onto itself, in other words, F is invariant under t}. Furthermore,
since H passes through e, and xe lies in H, it follows that j: H — G is
also the maximal connected integral manifold of F passing through x.
Hence x maps H onto itself. From this we conclude that if y € H, then
xy e H, and there exists some y e H such that xy = e, whence x ' € H.
Hence H is a subgroup. The other assertions are then clear.

If H is a Lie subgroup of G, belonging to the Lie algebra ), and F is
the associated integrable left invariant tangent subbundle, then the integral
manifold for F passing through a given point x is simply the translation
xH, as one sees from first functorial principles.

When b is 1-dimensional, then it is easy to see that the Lie subgroup is
in fact a homomorphic image of an integral curve

«: R— G

which is a homomorphism, and such that «’(0) = v is any vector in 7,G
which is the value at e of a non-zero element of ). Changing this vector
merely reparametrizes the curve. The integral curve may coincide with the
subgroup, or it comes back on itself, and then the subgroup is essentially
a circle. Thus the integral curve need not be equal to the subgroup.
However, locally near r = 0, they do coincide. Such an integral curve is
called a one-parameter subgroup of G.

Using Theorem 1.5 of Chapter V, it is then easy to see that if the Lie
algebra of a connected Lie group G is commutative, then G itself is
commutative. One first proves this for elements in a neighborhood of the
origin, using l-parameter subgroups, and then one gets the statement
globally by expressing G as a union of products

vu---U,

where U is a symmetric connected open neighborhood of the unit element.
All of these statements are easy to prove, and belong to the first chapter
of a book on Lie groups. Our purpose here is merely to lay the general
foundations essentially belonging to general manifold theory.



CHAPTER VIl

Metrics

In our discussion of vector bundles, we put no greater structure on the
fibers than that of topological vector space (of the same category as those
used to build up manifolds). One can strengthen the notion so as to
include the metric structure, and we are thus led to consider Hilbert
bundles, whose fibers are Hilbert spaces.

Aside from the definitions, and basic properties, we deal with two
special topics. On the one hand, we complete our uniqueness theorem
on tubular neighborhoods by showing that when a Riemannian metric is
given, a tubular neighborhood can be straightened out to a metric one.
Secondly, we show how a Riemannian metric gives rise in a natural way
to a spray, and thus how one recovers geodesics. The fundamental 2-form
is used to identify the vector fields and I-forms on the tangent bundle,
identified with the cotangent bundle by the Riemannian metric.

We assume throughout that our manifolds are sufficiently differentiable
so that all our statements make sense. (For instance, when dealing with
sprays, we take p = 3.)

Of necessity, we shall use the standard spectral theorem for (bounded)
symmetric operators. A self-contained treatment will be given in the
appendix.

Vil, §1. DEFINITION AND FUNCTORIALITY

For Riemannian geometry, we shall deal with a euclidean vector space,
that is a vector space with a positive definite scalar product.

It turns out that some basic properties have only to do with a weaker
property of the space E on which a manifold is modeled, namely that the

158
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space E is self dual, via a symmetric non-singular bilinear form. Thus we
only assume this property until more is needed. We recall that such a
form is a bilinear map

(v, w) = (v, w) of EXxE—R

such that (v, w) = (w, v) for all v, w € E, and the corresponding map of E
into the dual space L(E) is a linear isomorphism.

Examples. Of course, the standard positive definite scalar product on
Euclidean space provides the easiest (in some sense) example of a self dual
vector space. But the physicists are interested in R* with the scalar
product such that the square of a vector (x, y, z, t) is x> + > 4+ z2 — £2.
This scalar product is non-singular. For one among many nice appli-
cations of the indefinite case, cf. for instance [He 84] and [Gu 91], dealing
with Huygens’ principle.

We consider Lszym(E), the vector space of continuous bilinear forms

A EXxE—R

which are symmetric. If x is fixed in E, then the linear form
Ax(y) = A(x, p) is represented by an element of E which we denote by Ax,
where A is a linear map of E into itself. The symmetry of A implies that 4
is symmetric, that is we have

Mx, p) = (Ax, y) = (x, 4y)

for all x, ye E. Conversely, given a symmetric continuous linear map
A: E — E we can define a continuous bilinear form on E by this formula.
Thus Lszym(E) is in bijection with the set of such operators, and is itself a
vector space, the norm being the usual operator norm. Suppose E is a
euclidean space, and in particular, E is self dual.

The subset of Lszym(E) consisting of those forms corresponding to
symmetric positive definite operators (by definition such that 4 = el for
some ¢ > 0) will be called the Riemannian of E and be denoted by Ri(E).
Forms 4 in Ri(E) are called positive definite. The associated operator 4
of such a form is invertible, because its spectrum does not contain 0.

In general, suppose only that E is self dual. The space Lszym(E) contains
as an open subset the set of non-singular symmetric bilinear forms, which
we denote by Met(E), and which we call the set of metrics or pseudo
Riemannian metrics. In view of the operations on vector bundles (Chapter
III, §4) we can apply the functor LSZym to any bundle whose fibers are self
dual. Thus if z: E — X is such a bundle, then we can form L, (n). A
section of L2 _(x) will be called by definition a symmetric bilinear form

sym
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on 7. A (pseudo Riemannian) metric on 7 (or on E) is defined to be a
symmetric bilinear form on 7, whose image lies in the open set of metrics
at each point. We let Met(n) be the set of metrics on = , which we also
call the set of metrics on E, and may denote by Met(E).

If E is a euclidean space and the image of the section of Lszym(n) lies in
the Riemannian space Ri(n,) at each point x, in order words, if on the
fiber at each point the non-singular symmetric bilinear form is actually
positive definite, then we call the metric Riemannian. Let us denote a
metric by g, so that g(x) € Met(E,) for each x € X, and lies in Ri(E,) if
the metric is Riemannian. Then g(x) is a non-singular symmetric bilinear
form in general, and in the Riemannian case, it is positive definite in
addition.

A pair (X, g) consisting of a manifold X and a (pseudo Riemannian)
metric g will be called a pseudo Riemannian manifold. It will be called a
Riemannian manifold if the manifold is modeled on a euclidean space, and
the metric is Riemannian.

Observe that the sections of LZ, (%) form an infinite dimensional vector
space (abstract) but that the Riemannian metrics do not. They form a
convex cone. Indeed, if @, b > 0 and g¢,, g» are two Riemannian metrics,
then ag, + bg, is also a Riemannian metric.

Suppose we are given a VB-trivialization of 7 over an open subset U of
X, say

. 7 (U) — U x E.

We can transport a given pseudo Riemannian metric g (or rather its
restriction to 7~ '(U)) to U x E. In the local representation, this means
that for each xe U we can identify g(x) with a symmetric invertible
operator A, giving rise to the metric. The operator A, is positive definite
in the Riemannian case. Furthermore, the map

x— A,

from U into the vector space L(E, E) is a morphism.

As a matter of notation, we sometimes write g, instead of g(x). Thus
if v, w are two vectors in E,, then g.(v, w) is a number, and is more
convenient to write than g(x)(v, w). We shall also write (v, w), if the
metric ¢ is fixed once for all.

Proposition 1.1. Let X be a manifold admitting partitions of unity. Let
n: E— X be a vector bundle whose fibers are euclidean vector spaces.
Then © admits a Riemannian metric.

Proof. Find a partition of unity {U;, ¢;} such that z|U; is trivial, that is
such that we have a trivialization

i n’l(Ui) — U; xE
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(working over a connected component of X, so that we may assume the
fibers toplinearly isomorphic to a fixed space E). We can then find a
Riemannian metric on U; X E in a trivial way. By transport of structure,
there exists a Riemannian metric ¢g; on #|U; and we let

9= 09

Then ¢ is a Riemannian metric on Xx.

Let us investigate the functorial behavior of metrics.
Consider a VB-morphism

f

EF — E

X — Y
fo

with vector bundles E’ and E over X and Y respectively, whose fibers are
self dual spaces. Let g be a symmetric bilinear form on 7, so that for each
y€ Y we have a bilinear, symmetric map

g(y): E, x E, — R.
Then the composite map
E;XE;—)E},XE),—)R

with y = f(x) is a symmetric bilinear form on E, and one verlﬁes
immediately that it gives rise to such a form, on the vector bundle 7/,
which will be denoted by f™(g). Then f induces a map

Lim(f) = 175 Lgg(m) = Ly (@),

Furthermore, if f is injective and splits for each x € X, and g is a metric
(resp. g is a Riemannian metric in the euclidean case), then obviously so is
f7(g9), and we can view f” as mapping Met(z) into Met(zn’) (resp. Ri(n)
into Ri(z’) in the Riemannian case).

Let X be a manifold modeled on a euclidean space and let T(X) be its
tangent bundle. By abuse of language, we call a metric on 7(X) also a
metric on X and write Met(X) instead of Met(7'(X)). Similarly, we write
Ri(X) instead of Ri(7(X)).

Let f: X — Y be an immersion. Then for each x € X, the linear map

Tof: To(X) = Ty (Y)
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is injective, and splits, and thus we obtain a contravariant map
f*: Ri(Y) — Ri(X),

each Riemannian metric on Y inducing a Riemannian metric on X.

A similar result applies in the pseudo Riemannian case. If (Y, g) is
Riemannian, and f is merely of class C! but not necessarily an immersion,
then the pull back f*(g) is not necessarily positive definite, but is merely
what we call semipositive. In general, if (X, &) is pseudo Riemannian and
h(v, v) 20 for all ve T, X, all x, then (X, /) is called semi Riemannian.
Thus the pull back of a semi Riemannian metric is semi Riemannian.

The next five sections will be devoted to considerations which apply
specifically to the Riemannian case, where positivity plays a central role.

Vil, §2. THE METRIC GROUP

Let E be a euclidean vector space. The group of linear automorphisms
Laut(E) contains the group Maut(E) of metric automorphisms, that is
those linear automorphisms which preserve the inner product:

(Av, Aw) = (v, w)

for all v, we E. We note that 4 is metric if and only if 4¥4 = 1.

As usual, we say that a linear map A: E — E is symmetric if 4* = 4
and that it is skew-symmetric if 4* = —4. We have a direct sum de-
composition of the space L(E, E) in terms of the two closed subspaces of
symmetric and skew-symmetric operators:

A=A+4")+5i(4-4").
We denote by Sym(E) and Sk(E) the vector spaces of symmetric and
skew-symmetric maps respectively. The word operator will always mean

linear map of E into itself.

Proposition 2.1. For all operators A, the series

2

A
exp(A):I—l—A—&-F-i-“-

converges. If A commutes with B, then

exp(A4 + B) = exp(A4) exp(B).
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For all operators sufficiently close to the identity I, the series

2
log(A):(Al_I)—F(A;I) +--

converges, and if A commutes with B, then

log(AB) = log(A4) + log(B).
Proof. Standard.

We leave it as an exercise to the reader to show that the exponential
function gives a C*-morphism of L(E, E) into itself. Similarly, a function
admitting a development in power series say around 0 can be applied to
the set of operators whose bound is smaller than the radius of convergence
of the series, and gives a C*-morphism.

Proposition 2.2. If' A is symmetric (resp. skew-symmetric), then exp(A) is
symmetric positive definite (resp. metric). If A is a linear automorphism
sufficiently close to I and is positive definite symmetric (resp. metric), then
log(A) is symmetric (resp. skew-symmetric).

Proof. The proofs are straightforward. As an example, let us carry out
the proof of the last statement. Suppose A4 is Hilbertian and sufficiently
close to I. Then A*4A =1 and A* = A~'. Then

(4" = 1)
1

=log(4™").

10g(A>*: + .-

If A is close to I, so is A, so that these statements make sense. We now
conclude by noting that log(4~') = —log(4). All the other proofs are
carried out in a similar fashion, taking a star operator in series term by
term, under conditions which insure convergence.

The exponential and logarithm functions give inverse C* mappings
between neighborhoods of 0 in L(E, E) and neighborhoods of I in
Laut(E). Furthermore, the direct sum decomposition of L(E, E) into
symmetric and skew-symmetric subspaces is reflected locally in a neigh-
borhood of I by a C* direct product decomposition into positive definite
and metric automorphisms. This direct product decomposition can be
translated multiplicatively to any linear automorphism, because if
AeLlaut(E) and B is close to A, then

B=AA"'B=A(I- (I - A'B))
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and (I — A7'B) is small. This proves:

Proposition 2.3. The group of metric automorphisms Maut(E) of E is a
closed submanifold of Laut(E).

In addition to this local result, we get a global one also:

Proposition 2.4. The exponential map gives a C*-isomorphism from the
space Sym(E) of symmetric endomorphisms of E and the space Pos(E) of
symmetric positive definite automorphisms of E.

Proof. We must construct its inverse, and for this we use the spectral
theorem. Given A4, symmetric positive definite, the analytic function log ¢
is defined on the spectrum of A, and thus log A4 is symmetric. One verifies
immediately that it is the inverse of the exponential function (which can be
viewed in the same way). We can expand log ¢ around a large positive
number ¢, in a power series uniformly and absolutely convergent in an
interval 0 < e < ¢ < 2c¢—¢, to achieve our purposes.

Proposition 2.5. The manifold of linear automorphisms of the Euclidean
space E is C*-isomorphic to the product of the metric automorphisms
and the positive definite symmetric automorphisms, under the mapping

Maut(E) x Pos(E) — Laut(E)

given by
(H, P) — HP.

Proof. Our map is induced by a continuous bilinear map of
L(E,E) x L(E, E)

into L(E, E) and so is C*. We must construct an inverse, or in other
words express any given linear automorphism A4 in a unique way as a
product A = HP where H is metric, P is symmetric positive definite, and
both H, P depend C* on A. This is done as follows. First we note that
A*A4 is symmetric positive definite (because (4*Av, v) = (Av, Av), and
furthermore, 4*A4 is a linear automorphism. By linear algebra, 4*4 can
be diagonalized. We let
P = (A *A)I/Z

and let H = AP~'. Then H is metric, because

H*H= (P Y4 4P ' =1
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Both P and H depend differentiably on A since all constructions involved
are differentiable.

There remains to be shown that the expression as a product is unique.
If A= HP;, where H|, P, are metric and symmetric positive definite
respectively, then

H'H) = PP/,

and we get H, = PP{! for some metric automorphism H,. By definition,
I=H;H, = (PP;")" PP;!
and from the fact that P* =P and P; = P;, we find
P> =P

Taking the log, we find 2 log P =2 log P;. We now divide by 2 and take
the exponential, thus giving P = P, and finally H = H;. This proves our
proposition.

Vil, §3. REDUCTION TO THE METRIC GROUP

We define a new category of bundles, namely the metric bundles over
X, denoted by MB(X). As before, we would denote by MB(X, E) those
metric bundles whose fiber is a euclidean space E.

Let n: E — X be a vector bundle over X, and assume that it has a
trivialization {(U;, 7;)} with trivializing maps

T;: 7[71(U,') — Ul‘ x E

where E is a euclidean space, such that each linear automorphism (z;7;!),
is a metric automorphism. Equivalently, we could also say that 7, is
a metric isomorphism. Such a trivialization will be called a metric
trivialization. Two such trivializations are called metric-compatible if their
union is again a metric trivialization. An equivalence class of such
compatible trivializations constitutes what we call a metric bundle over
X. Any such metric bundle determines a unique vector bundle, simply by
taking the VB-equivalence class determined by the trivialization.

Given a metric trivialization {(U;, 7;)} of a vector bundle n over X, we
can define on each fiber 7, a euclidean structure. Indeed, for each x we
select an open set U; in which x lies, and then transport to 7z, the scalar
product in E by means of 7;,. By assumption, this is independent of the
choice of U; in which x lies. Thus in a metric bundle, we can assume that
the fibers are metric spaces.
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It is perfectly possible that several distinct metric bundles determine the
same vector bundle.

Any metric bundle determining a given vector bundle = will be said to
be a reduction of n to the metric group.

We can make metric bundles into a category, if we take for the MB-
morphisms the VB-morphisms which are injective at each point, and which
preserve the metric, again at each point.

Each reduction of a vector bundle to the metric group determines a
Riemannian metric on the bundle. Indeed, defining for each ze X and
v, w e m, the scalar product

gx(l], W) = <‘L',‘XU, Tixw>
with any metric-trivializing map 7;, such that x € U;, we get a morphism
X = gx

of X into the sections of Lszym(n) which are positive definite. We also have
the converse.

Theorem 3.1. Let 7 be a vector bundle over a manifold X, and assume
that the fibers of © are all linearly isomorphic to a euclidean space E.
Then the above map, from reductions of m to the metric group, into the
Riemannian metrics, is a bijection.

Proof. Suppose that we are given an ordinary VB-trivialization
{(U;, t;)} of =. We must construct an MB-trivialization. For each i, let g;
be the Riemannian metric on U; x E transported from z~'(U;) by means
of 7;. Then for each x € U;, we have a positive definite symmetric operator
A;. such that

gix(v, w) = (A0, w)

for all v, we E. Let B;, be the square root of A4;,,. We define the
trivialization o; by the formula

Oix = Bn Tix

and contend that {(U;, o;)} is a metric trivialization. Indeed, from the
definition of g;y, it suffices to verify that the VB-isomorphism

B,'Z U,‘XE—>[][XE

given by B;, on each fiber, carries g; on the usual metric. But we have, for
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v,we E:

(Bixv, Bixw) = (Ajv, w)

since B;, is symmetric, and equal to the square root of A;.. This proves
what we want.

At this point, it is convenient to make an additional comment on
normal bundles.

Let o, § be two metric bundles over the manifold X, and let f: o — f
be an MB-morphism. Assume that

0—>oci>ﬂ

is exact. Then by using the Riemannian metric, there is a natural way of
constructing a splitting for this sequence (cf. Chapter III, §5).

By elementary linear algebra, if F is a subspace of a euclidean space,
then E is the direct sum

E=F@®F*

of F and its orthogonal complement, consisting of all vectors perpendicular
to F.

In our exact sequence, we may view f as an injection. For each x we
let o be the orthogonal complement of o, in .. Then we shall find an
exact sequence of VB-morphisms

p a0
whose kernel is o' (set theoretically). In this manner, the collection of
orthogonal complements o can be given the structure of a metric bundle.

For each x we can write 8, = o, @ o) and we define i, to be the
projection in this direct sum decomposition. This gives us a mapping
h: f — «, and it will suffice to prove that /s is a VB-morphism. In order
to do this, we may work locally. In that case, after taking suitable VB-
automorphisms over a small open set U of X, we can assume that we deal
with the following situation.

Our vector bundle f is equal to U x E and « is equal to U x F for
some subspace F of E, so that we can writt E=F x F*©. Our MB-
morphism is then represented for each x by an injection f.: F — E:

UxF-L UxE.
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By the definition of exact sequences, we can find two VB-isomorphisms 7
and o such that the following diagram is commutative:

UxF—f>U><E

UxF — UxE

and such that the bottom map is simply given by the ordinary inclusion of
F in E. We can transport the Riemannian structure of the bundles on top
to the bundles on the bottom by means of ¢! and 7! respectively. We
are therefore reduced to the situation where f is given by the simple
inclusion, and the Riemannian metric on U x E is given by a family 4, of
symmetric positive definite operators on E (x € U). At each point x, we
have (v, w), = (4,0, w). We observe that the map

A: UXE — UXxE

given by A, on each fiber is a VB-automorphism of U x E. Let pry be the
projection of U x E on U x F. It is a VB-morphism. Then the composite

h=rprpoA
gives us a VB-morphism of U x E on U x F, and the sequence
UxEL UxF—0
is exact. Finally, we note that the kernel of /& consists precisely of the

orthogonal complement of U x F in each fiber. This proves what we
wanted.

Vil, §4. METRIC TUBULAR NEIGHBORHOODS

Let E be a euclidean space. Then the open ball of radius 1 is isomorphic
to E itself under the mapping

v
(1 =o'

U

the inverse mapping being

w
1+ wH)'?

W —
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If @ > 0, then any ball of radius « is isomorphic to the unit ball under
multiplication by the scalar a (or a™').

Let X be a manifold, and ¢: X — R a function (morphism) such that
o(x) >0 for all xe X. Let n: E — X be a metric bundle over X. We
denote by E(c) the subset of E consisting of those vectors v such that, if v
lies in E,, then

[v], < a(x).

Then E(o) is an open neighborhood of the zero section.

Proposition 4.1. Let X be a manifold and n: E — X a metric bundle.
Let g: X — R be a morphism such that o(x) >0 for all x. Then the

mapping
a(mw)w

- 012
(1+ w)"
gives an isomorphism of E onto E(o).

Proof. Obvious. The inverse mapping is constructed in the obvious
way.

Corollary 4.2. Let X be a manifold admitting partitions of unity, and let
n: E — X be a metric bundle over X. Then E is compressible.

Proof. Let Z be an open neighborhood of the zero section. For each
x € X, there exists an open neighborhood V. and a number a, > 0 such
that the vectors in 7z—!(¥) which are of length < a, liec in Z. We can find
a partition of unity {(U;, ¢;)} on X such that each U; is contained in some
Vi@ We let o be the function

Z Ax(i)P;-

Then E(o) is contained in Z, and our assertion follows from the
proposition.

Proposition 4.3. Let X be a manifold. Let n: E— X and ny: E| — X
be two metric bundles over X. Let

A E— E;
be a VB-isomorphism. Then there exists an isotopy of VB-isomorphisms
).,Z E— E1

with proper domain [0, 1] such that Ay = A and 2y is an MB-isomorphism.
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Proof. We find reductions of £ and E; to the metric group, with metric
trivializations {(U;, 7;)} for E and {(U;, p,;)} for E;. We can then factor
pi/t7! as in Proposition 2.5, applied to each fiber map:

UXE — U XE — U xE

75_1(Ui) T" ”(Ui_l) T’ nfl(Ui)

and obtain a factorization of A into A= Aylp where Ay is a MB-
isomorphism and Ap is a positive definite symmetric VB-automorphism.
The latter form a convex set, and our isotopy is simply

A= rmo (tI+ (1+1)p).
(Smooth out the end points if you wish.)

Theorem 4.4. Let X be a submanifold of Y. Let n: E— X and
n1: E1 — X be two metric bundles. Assume that E is compressible. Let
f: E—=Y and g: Ey — Y be two tubular neighborhoods of X in Y.
Then there exists an isotopy

fir E—=Y

of tubular neighborhoods with proper domain [0, 1] and there exists an
MB-isomorphism p: E — Ey such that fi = f and fo = gpu.

Proof. From Theorem 6.2 of Chapter IV, we know already that there
exists a VB-isomorphism A such that f ~gl. Using the preceding
proposition, we know that 4 ~ u where i is a MB-isomorphism. Thus
gA ~ gu and by transitivity, f ~ u, as was to be shown.

Remark. In view of Proposition 4.1, we could of course replace the
condition that E be compressible by the more useful condition (in practice)
that X admit partitions of unity.

Vil, §5. THE MORSE LEMMA

Let U be an open set in some euclidean space E, and let f be a C?*2
function on U, with p = 1. We say that xo is a critical point for f if
Df(xo) =0. We wish to investigate the behavior of f at a critical point.
After translations, we can assume that xo =0 and that f(xp) =0. We
observe that the second derivative D?f(0) is a continuous bilinear form on
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E. Let A= D?f(0), and for each x € E let 4, be the functional such that
y+— A(x, y). If the map x — A is a linear isomorphism of E with its dual
space EV, then we say that A is non-singular, and we say that the critical
point is non-degenerate.

We recall that a local C?-isomorphism ¢ at 0 is a C”-invertible map
defined on an open set containing 0.

Theorem 5.1. Let f be a CP*? function defined on an open neighborhood
of 0 in the euclidean space E, with p =2 1. Assume that f(0) =0, and
that 0 is a non-degenerate critical point of f. Then there exists a local
C?-isomorphism at 0, say ¢, and an invertible symmetric operator A such
that

J(x) = {4g(x), p(x)).

Proof. We may assume that U is a ball around 0. We have

1

F(x) = f(x) - £(0) = L Df (1) dt,

and applying the same formula to Df instead of f, we get

1,1
f(x) = J J D*f (stx)tx - x ds dt = g(x)(x, x)

where

g(x) = JIJ] D*f (stx)t ds dt.

0J0

Then ¢ is a C? map into the vector space of bilinear maps on E, and even
the space of symmetric such maps. We know that this vector space is
linearly isomorphic to the space of symmetric operators on E, and thus we
can write

S (x) = {A(x)x, x)

where 4: U — Sym(E) is a C” map of U into the space of symmetric
operators on E. A straightforward computation shows that

D (0)(v, w) = {A(0)v, w).

Since we assumed that D2f(0) is non-singular, this means that A(0) is

invertible, and hence A(x) is invertible for all x sufficiently near 0.
Theorem 5.1 is then a consequence of the following result, which

expresses locally the uniqueness of a non-singular symmetric form.
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Theorem 5.2. Let A: U — Sym(E) be a C? map of U into the open set
of invertible symmetric operators on E. Then there exists a C? iso-
morphism of an open subset U, containing 0, of the form

p(x) = C(x)x, with a CP map C: U — Laut(E)
such that

{(A(x)x, x) = (4(0)p(x), p(x)) = (A(0)C(x)x, C(x)x).

Proof. We seek a map C such that

If we let B(x) = 4(0) "' A(x), then B(x) is close to the identity I for small
x. The square root function has a power series expansion near 1, which is
a uniform limit of polynomials, and is C* on a neighborhood of 7, and
we can therefore take the square root of B(x), so that we let

C(x) = B(x)"%.

We contend that this C(x) does what we want. Indeed, since both A(0)
and A(x) (or A(x)"') are self-adjoint, we find that

whence

But C(x) is a power series in I — B(x), and C(x)" is the same power series
in I — B(x)". The preceding relation holds if we replace B(x) by any
power of B(x) (by induction), hence it holds if we replace B(x) by any
polynomial in I — B(x), and hence finally, it holds if we replace B(x) by
C(x), and thus

which is the desired relation.

All that remains to be shown is that ¢ is a local C?-isomorphism at 0.
But one verifies that in fact, Dp(0) = C(0), so that what we need follows
from the inverse mapping theorem. This concludes the proof of Theorems
5.1 and 5.2.

Corollary 5.3. Let f be a CP*? function near 0 on the euclidean space E,
such that 0 is a non-degenerate critical point. Then there exists a local
CP-isomorphism W at 0, and an orthogonal decomposition E = F + F*,
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such that if we write y(x) =y +z with yeF and z e F*, then

f(W(x)) = <ya y> - <Zv Z>'

Proof. On a space where A is positive definite, we can always make the
toplinear isomorphism x —A4'/2x to get the quadratic form to become the
given hermitian product (,), and similarly on a space where A is negative
definite. In general, we decompose E into a direct orthogonal sum such
that the restriction of 4 to the factors is positive definite and negative
definite respectively.

Note. The Morse lemma was proved originally by Morse in the finite
dimensional case, using the Gram-Schmidt orthogonalization process.
The above proof is due to Palais [Pa 69]. It shows (in the language of
coordinate systems) that a function near a critical point can be expressed
as a quadratic form after a suitable change of coordinate system (satisfying
requirements of differentiability).

VIl, §6. THE RIEMANNIAN DISTANCE
Let (X, g) be a Riemannian manifold. For each C! curve

y: la, b = X
we define its length

b
G0,y Oy de = 7)), a

The norm is the one associated with the positive definite scalar product,
i.e. the euclidean norm at each point. We can extend the length to
piecewise C! paths by taking the sum over the C! curves constituting the
path. We assume that X is connected, which is equivalent to the property
that any two points can be joined by a piecewise C' path. (If X is
connected, then the set of points which can be joined to a given point
Xo by a piecewise C! path is immediately verified to be open and closed,
so equal to X. The converse, that pathwise connectedness implies con-
nectedness, is even more obvious.)

We define the g-distance on X for any two points x, y € X by:
dist, (x, y) =greatest lower bound of L(y) for paths y in X joining x and y.

When ¢ is fixed throughout, we may omit g from the notation and write
simply dist(x, y). It is clear that dist, is a semidistance, namely it is
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symmetric in (x, y) and satisfies the triangle inequality. To prove that it is
a distance, we have to show that if x # y then dist,(x, y) > 0. In a chart,
there is a neighborhood U of x which contains a closed ball B(x, ) with
r > 0, and such that y lies outside this closed ball. Then any path between
x and y has to cross the sphere S(x, r). Here we are using the euclidean
norm in the chart. We can also take r so small that the norm in the chart
is given by

(U, Wy = (v, A(x)w),

for v, w e E, and x — A(x) is a morphism from U into the set of invertible
symmetric positive definite operators, such that there exist a number
C; > 0 for which

A(x) = CiI  for all xeB(x, r).

We then claim that there exists a constant C > 0 depending only on r,
such that for any piecewise C! path y between x and a point on the sphere
S(x, r) we have

L(y) =z Cr.

This will prove that dist,(x, y) = Cr > 0, and will conclude the proof that
dist, is a distance.

By breaking up the path into a sum of C! curves, we may assume
without loss of generality that our path is such a curve. Furthermore, we
may take the interval [a, ] on which y is defined to be such that y(b)
is the first point such that y() lies on S(x, r), and otherwise y(¢) € B(x, r)
for t€[a, b]. Let yp(b) =ru, where u is a unit vector. Write E as an
orthogonal direct sum

E=RuLF,

where F is a subspace. Then p(t) = s(f)u = w(t) with |s(r)| <r, s(a) =0,
s(b) =r and w(¢) e F. Then

b b
L) = | 170l di= [ /0. a60) )" a

1/2 b / / 1/2
e j<y<z>,y<r>> dt

b
> Cll/zj |s'(1)| dt by Pythagoras
= Cll/zr

as was to be shown.
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In addition, the above local argument also proves:
Proposition 6.1. The distance dist, defines the given topology on X.
Equivalently, a sequence {x,} in X converges to a point x in the given
topology if and only if disty(x,, x) converges to 0.
We conclude this section with some remarks on reparametrization. Let

v la, bl = X

be a piecewise C! path in X. To reparametrize y, we may do so on each
subinterval where y is actually C', so assume y is C!. Let

p: ¢, d] — |a, b]

be a C! map such that ¢(c) =a and ¢(d) =b. Then yog is C!, and is
called a reparametrization of y. The chain rule shows that

L(yop) = L(p).

Define the function s: [a, b)) — R by

s(t) = J Hy(t)”g dr, so s(b) =L =L(y).

Then s is monotone and s(a) = 0, while s(b) = L(y). Suppose that there is
only a finite number of values 7 € [a, b] such that y'(¢) = 0. We may then
break up [a, b] into subintervals where y’(¢) # 0 except at the end points of
the subintervals. Consider each subinterval separately, and say

a<a <b <b

with y'(¢) # 0 for ¢ € (aj, by). Let s(a;) be the length of the curve over the
interval [a, a;]. Define

t
s(t) = s(ar) —&-J Hy’(l)Hg dt  for ay <t =<b.

Then s is strictly increasing, and therefore the inverse function # = ¢(s) is
defined over the interval. Thus we can reparametrize the curve by the
variable s over the interval a; <t < by, with the variable s satisfying

s(a1) <5 < s(by).



176 METRICS [VII, §7]

Thus the whole path y on [a, b] is reparametrized by another path
yoe: [0, L] = X

via a piecewise map f: [0, L] — [a, b], such that

(ow)G),=1 and  Li(yoy)=s.

We now define a path y: [a, b)) — X to be parametrized by arc length if
Hy’(l)Hq =1 for all 7€ [a, b]. We see that starting with any path y, with
the condition that there is only a finite number of points where y'(¢) =0
for convenience, there is a reparametrization of the path by arc length.

Let f: Y — X be a C” map with p > 1. We shall deal with several
notions of isomorphisms in different categories, so in the C? category,
we may call f a differential morphism. Suppose (X, ¢) and (Y, h) are
Riemannian manifolds. We say that f is an isometry, or a differential
metric isomorphism if f is a differential isomorphism and f*(g) =h. If f
is an isometry, then it is immediate that f preserves distances, i.e. that

disty (f(»1), f(y2)) = dista(y1, y2) forall yi, €Y.

Note that there is another circumstance of interest with somewhat weaker
conditions when f: Y — X is an immersion, so induces an injection
If(y): T,Y — Ty, X for every ye Y, and we can speak of f being a
metric immersion if f*(g) =h. It may even happen that f is a local
differential isomorphism at each point of y, as for instance if f is covering
map. In such a case, f may be a local isometry, but not a global one,
whereby f may not preserve distances on all of Y, possibly because two

points y; # y, may have the same image f(y1) = f()2).

Vil, §7. THE CANONICAL SPRAY

We now come back to the pseudo Riemannian case.

Let X be a pseudo Riemannian manifold, modeled on the self dual
space E. The scalar product (, ) in E identifies E with its dual E¥. The
metric on X gives a linear isomorphism of each tangent space 7 (X) with
T (X). If we work locally with X = U open in E and we make the
identification

T(WU)=UxE and TY(U)=UxE" ~T(U)
then the metric gives a VB-isomorphism

h: T(U) — T(U)
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by means of a morphism

g: U— L(E, E)

such that i (x, v) = (x,g(x)v). (With respect to an orthonormal basis, g(x)
is represented by a symmetric matrix (g;(x)), so the notation here fits
what’s in other books with their g;;.) The scalar product of the metric at
each point x is then given by the formula

(v, w), = (v, g(x)w) = (g(x)v, w) for v, wekE.

For each x € U we note that ¢'(x) maps E into L(E, E). For xe U and
u, ve E we write

(9'(x)u) (v) = ¢'(x)u - v = g'(x)(u, v).

From the symmetry of ¢, differentiating the symmetry relation of the
scalar product, we find that for all u, v, we E,

(o' (X)u - w, v) = (g'(X)u -, w).

So we can interchange the last two arguments in the scalar product
without changing the value.
Observe that locally, the tangent linear map

T(h): T(T(U)) — T(T(U))
is then given by

T(h): (x, v, u1, up) — (x, g(x)v, ur, g'(x)u ~v+g(x)u2).

If we pull back the canonical 2-form described in Proposition 7.2 of
Chapter V from TV (U)~ T(U) to T(U) by means of / then its de-
scription locally can be written on U x E in the following manner.

(1) Qv (w1, u2) X (w1, wa)) =
(ur, g(x)wa) — (u2, g(x)w1) — <gl(x)“l v, wi) + <Q'(x)wl -0, Up).

From the simple formula giving our canonical 2-form on the cotangent
bundle in Chapter V, we see at once that it is nonsingular on 7'(U). Since
h is a VB-isomorphism, it follows that the pull-back of this 2-form to the
tangent bundle is also non-singular.

We shall now apply the results of the preceding section. To do so,
we construct a I-form on T(X). Indeed, we have a function (kinetic
energy!)

K: T(X) >R
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given by K(v) =3(v,v), if v is in 7,. Then dK is a Il-form. By
Proposition 6.1 of Chapter V, it corresponds to a vector field on T(X),
and we contend:

Theorem 7.1. The vector field F on T(X) corresponding to —dK under
the canonical 2-form is a spray over X, called the canonical spray.

Proof. We work locally. We take U open in E and have the double
tangent bundle

(U xE) x(E x E)

UxE

Our function K can be written
K(x, v) =3 (v, v), =5 (v, g(x)),
and dK at a point (x, v) is simply the ordinary derivative
DK(x,v): ExE — R.

The derivative DK is completely described by the two partial derivatives,
and we have

DK (x, v) - (w1, wa) = D1K(x, v) - w; + D2K(x, v) - wa.
From the definition of derivative, we find

DiK(x, v) - wi =5 (v, ¢'(x)w1 - v)

DyK(x, v) - wa = (w2, g(x)v) = (v, g(x)w2).
We use the notation of Proposition 3.2 of Chapter IV. We can represent
the vector field F corresponding to dK under the canonical 2-form Q by

a morphism f: U X E — E x E, which we write in terms of its two
components:

f(x’ U) = (fl(xv U),fz(x, U)) = (ula u2)'
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Then by definition:

(2) <Q(x,v)a (fl (xv 1)),f2()€, U)) X (le W2)> = <DK(X, U)7 (le W2)>
= DK (x, v) - w; + (v, g(x)w2).

Comparing expressions (1) to (2), we find that as functions of w, they have
only one term on the right side depending on w,. From the equality of the
two expressions, we conclude that

{(fi(x, ), g(x)wa) = (v, g(x)w2)

for all wy, and hence that fi(x, v) = v, whence our vector field F is a
second order vector field on X.

Again we compare expression (1) and (2), using the fact just proved
that u; = fi(x, v) = v. Setting the right sides of the two expressions equal
to each other, and using u, = f>(u, v), we obtain:

Proposition 7.2. In the chart U, let f=(f1,/): UXE—EXE
represent F. Then f>(x, v) is the unique vector such that for all w) € E
we have:

(fa(x, 0), g(x)wi) = 3(g"(x)w1 - v, v) = (g'(x) v v, w1).

From this one sees that f; is homogeneous of degree 2 in the second
variable v, in other words that it represents a spray. This concludes the
proof of Theorem 7.1.



CHAPTER VIl

Integration of Differential
Forms

The material of this chapter is also contained in my book on real analysis
[La 93], but it may be useful to the reader to have it also here in a rather
self contained way, based only on standard properties of integration in
Euclidean space.

Throughout this chapter, u is Lebesque measure on R”.
If A is a subset of R", we write ¥'(A) instead of ¥'(4, u, C).
Manifolds may have a boundary.

Vill, §1. SETS OF MEASURE 0

We recall that a set has measure 0 in R” if and only if, given ¢, there
exists a covering of the set by a sequence of rectangles {R;} such that
> u(R;) <e. We denote by R; the closed rectangles, and we may always
assume that the interiors R cover the set, at the cost of increasing the
lengths of the sides of our rectangles very slightly (an ¢/2" argument). We
shall prove here some criteria for a set to have measure 0. We leave it to
the reader to verify that instead of rectangles, we could have used cubes in
our characterization of a set of a measure 0 (a cube being a rectangle all
of whose sides have the same length).

We recall that a map f satisfies a Lipschitz condition on a set A4 if there
exists a number C such that

|/ (x) = f()] = Clx — y|

for all x, ye A. Any C'! map f satisfies locally at each point a Lipschitz
180
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condition, because its derivative is bounded in a neighborhood of each
point, and we can then use the mean value estimate,

1/ (x) = SO = |x = yl suplf'(2)],

the sup being taken for z on the segment between x and y. We can take
the neighborhood of the point to be a ball, say, so that the segment
between any two points is contained in the neighborhood.

Lemma 1.1. Let A have measure 0 in R" and let f: A — R" satisfy a
Lipschitz condition. Then f(A) has measure 0.

Proof. Let C be a Lipschitz constant for f. Let {R;} be a sequence of
cubes covering A4 such that ) u(R;) < e. Let r; be the length of the side of
R;. Then for each j we see that f(4 N S;) is contained in a cube R; whose
sides have length < 2Cr;. Hence

y(ij) < 2”C”rj’7 =2"C"u(R;).
Our lemma follows.

Lemma 1.2. Let U be open in R" and let f: U — R" be a C' map. Let
Z be a set of measure 0 in U. Then f(Z) has measure 0.

Proof. For each x € U there exists a rectangle R, contained in U such
that the family {R?} of interiors covers Z. Since U is separable, there
exists a denumerable subfamily covering Z, say {R;}. It suffices to prove
that f(Z N R;) has measure 0 for each j. But f satisfies a Lipschitz
condition on R; since R; is compact and f’ is bounded on R;, being
continuous. Our lemma follows from Lemma 1.1.

Lemma 1.3. Let A be a subset of R™. Assume that m < n. Let
f: 4A—R"
satisfy a Lipschitz condition. Then f(A) has measure 0.
Proof. We view R™ as embedded in R” on the space of the first m
coordinates. Then R™ has measure 0 in R”, so that 4 has also »n-

dimensional measure 0. Lemma 1.3 is therefore a consequence of Lemma
1.1.

Note. All three lemmas may be viewed as stating that certain para-
metrized sets have measure 0. Lemma 1.3 shows that parametrizing a set
by strictly lower dimensional spaces always yields an image having
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measure 0. The other two lemmas deal with a map from one space into
another of the same dimension. Observe that Lemma 1.3 would be false if
fis only assumed to be continuous (Peano curves).

The next theorem will be used later only in the proof of the residue
theorem, but it is worthwhile inserting it at this point.

Let f: X — Y be a morphism of class C?, with p = 1, and assume
throughout this section that X, Y are finite dimensional. A point x € X is
called a critical point of f if f is not a submersion at x. This means that

I.f: T\X — T/"(vc)Y

is not surjective, according to our differrential criterion for a submersion.

Assume that a manifold X has a countable base for its charts. Then we
can say that a set has measure 0 in X if its intersection with each chart has
measure 0.

Theorem 1.4 (Sard’s Theorem). Let f: X — Y be a C* morphism of
manifolds having a countable base. Let Z be the set of critical points of [
in X. Then f(Z) has measure 0 in Y.

Proof. (Due to Dieudonné.) By induction on the dimension n of X.
The assertion is trivial if # = 0. Assume n = 1. It will suffice to prove the
theorem locally in the neighborhood of a point in Z. We may assume that
X =U is open in R” and

f: U—=R’
can be expressed in terms of coordinate functions,

f=U 0 0)

Dot — D;‘] .._D:l(n

We let us usual

be a differential operator, and call |o| = oy + -+ + o, its order. We let

Zy=7 and for m =1 we let Z,, be the set of points x € Z such that
D*fi(x) =0

for all j=1,...,p and all a with 1 < |¢| <m. We shall prove:

(1) For each m =20 the set f(Z, — Zy11) has measure 0.

Q) If mzn/p, then f(Z,) has measure 0.

This will obviously prove Sard’s theorem.
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Proof of 1). Let ae Z,, — Z,,.1. Suppose first that m = 0. Then for
some coordinate function, say j=1, and after a renumbering of the
variables if necessary, we have

D fi(a) # 0.
The map

g: x— (fi(x), x2,...,%p)

obviously has an invertible derivative at x =«a, and hence is a local
isomorphism at a. Considering f o g~! instead of f, we are reduced to the
case where f is given by

() = (x1, fo(x),- 0 fp(3) = (31, A(x)),

where /1 is the projection of f on the last p —1 coordinates and is
therefore a morphism /4: ¥ — R?~! defined on some open V containing a.

Then
mn%(i&@)

From this it is clear that x is a critical point for f if and only if x is a
critical point for /, and it follows that #(Z ~ V) has measure 0 in R~
Since f(Z) is contained in R! x h(Z), we conclude that f(Z) has measure
0 in R” as desired.

Next suppose that m = 1. Then for some o with |¢| =m + 1, and say
j=1, we have

D*fi(a) # 0.
Again after a renumbering of the indices, we may write
D’fi = Digi

for some function g;, and we observe that g;(x) =0 for all xe Z,,, in a
neighborhood of a. The map

g: X (gl(x)7 x27~~~>xn)

is then a local isomorphism at @, say on an open set V containing a, and
we see that
9(Zn V) < {0} x R"L.

We view ¢ as a change of charts, and considering f og~! instead of f,
together with the invariance of critical points under changes of charts, we
may view f as defined on an open subset of R”"~!. We can then apply
induction again to conclude the proof of our first assertion.
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Proof of (2). Again we work locally, and we may view f as defined on
the closed n-cube of radius r centered at some point . We denote this
cube by C.(a). For m = n/p, it will suffice to prove that

f(Znn Cla))

has measure 0. For large N, we cut up each side of the cube into N equal
segments, thus obtaining a decomposition of the cube into N” small
cubes. By Taylor’s formula, if a small cube contains a critical point
X € Z,, then for any point y of this small cube we have

1f(») = f(x)] < Klx — y|"" < K(2r/N)™,

where K is a bound for the derivatives of f up to order m + 1, and we use
the sup norm. Hence the image of Z,, contained in small cube is itself
contained in a cube whose radius is given by the right-hand side, and
whose volume in R” is therefore bounded by

K?(2r/N)P" D,
We have at most N” such images to consider and we therefore see that
f(Zy n Cila))

is contained in a union of cubes in R?, the sum of whose volumes is
bounded by

KpN,1(2r/N)p(m+1) < Kp(zr)p(mﬁLl)anp(erl).
Since m = n/p, we see that the right-hand side of this estimate behaves
like 1/N as N becomes large, and hence that the union of the cubes in R”

has arbitrarily small measure, thereby proving Sard’s theorem.

Sard’s theorem is harder to prove in the case f is C? with finite p, see
[Str 64/83], but p = oo already is quite useful.

Vill, §2. CHANGE OF VARIABLES FORMULA

We first deal with the simplest of cases. We consider vectors vy,...,v, in
R" and we define the block B spanned by these vectors to be the set of
points

Hor+ -ty

with 0 < ¢, < 1. We say that the block is degenerate (in R") if the vectors
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vy,...,v, are linearly dependent. Otherwise, we say that the block is non-
degenerate, or is a proper block in R”.

4}

v

We see that a block in R? is nothing but a parallelogram, and a block in
R? is nothing but a parallelepiped (when not degenerate).
We shall sometimes use the word volume instead of measure when
applied to blocks or their images under maps, for the sake of geometry.
We denote by Vol(vy,...,v,) the volume of the block B spanned by
v1,...,0,. We define the oriented volume

Vol®(vy,...,0,) = +Vol(vy,...,v,),
taking the + sign if Det(vy,...,v,) >0 and the — sign if
Det(vy,...,v,) <O0.
The determinant is viewed as the determinant of the matrix whose column
vectors are vy,...,0,, in that order.
We recall the following characterization of determinants. Suppose that
we have a product

(V1,c.cyUn) P UL AL A -~ Ay

which to each n-tuple of vectors associates a number, such that the product
is multilinear, alternating, and such that

ey N Ae,=1
if e1,...,e, are the unit vectors. Then this product is necessarily the
determinant, that is, it is uniquely determined. “Alternating” means that if
v; = v; for some i# j, then

vy A - AU, =0.
The uniqueness is easily proved, and we recall this short proof. We can

write
v = aje; + -+ Ay
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for suitable numbers a@;, and then
vi A A= (aner+ o+ amen) Ao A (amer + o+ duen)

= Z ay,6(1)€a(1) N N po(n)€a(n)
= Z ai1,6(1) " An,e(n)€o(1) N~ N €5(n)-

The sum is taken over all maps o: {l,...,n} — {1,...,n}, but because
of the alternating property, whenever o is not a permutation the term
corresponding to o is equal to 0. Hence the sum may be taken only over
all permutations. Since

eo(ly A = 0 Aoy = €(0)er A -+ A ey

where €(0) =1 or —1 is a sign depending only on g, it follows that the
alternating product is completely determined by its value e; A -+ A e,
and in particular is the determinant if this value is equal to 1.

Proposition 2.1. We have

Vol°(vy,...,0,) = Det(vy,...,0,)

and
vol(vy,...,v,) = |Det(vy, ..., v,)l.

Proof. If vy,...,v, are linearly dependent, then the determinant is equal
to 0, and the volume is also equal to 0, for instance by Lemma 1.3. So
our formula holds in the case. It is clear that

Volo(eh...,e,,): 1.

To show that Vol” satisfies the characteristic properties of the determinant,
all we have to do now is to show that it is linear in each variable, say the
first. In other words, we must prove

(%) Volo(cv7 V2, ... v0) = ¢ Vol (v, v, ..., 0p) for c eR,

(%) Volo(v F W, 02y, 0) = Volo(v, U2y, 0) Volo(w7 U2y vy Un)ey

As to the first assertion, suppose first that ¢ is some positive integer k. Let
B be the block spanned by v,v;,...,v,. We may assume without loss of
generality that v, vs,...,v, are linearly independent (otherwise, the relation
is obviously true, both sides being equal to 0). We verify at once from the
definition that if B(v, v, ...,v,) denotes the block spanned by v,vs,...,0,
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then B(kv, vp,...,v,) is the union of the two sets
B((k = 1)v, va,...,vn) and B(v, vg,...,v,) + (k—1)v

which have only a set of measure 0 in common, as one verifies at once
from the definitions.

Therefore, we find that

Vol(kv, va,...,v,) = Vol((k — 1)v, va,...,vs) + Vol(v, va, ..., )
= (k—1) Vol(v, va,...,0,) + Vol(v, v2,...,0,)
=k Vol(v, va,...,v,),

as was to be shown.

Now let
v=u/k

for a positive integer k. Then applying what we have just proved shows
that

1 1
Vol(Evl, Uz,...,Un> =7 Vol(vy,...,v,).

Writing a positive rational number in the form m/k =m-1/k, we con-
clude that the first relation holds when ¢ is a positive rational number. If r
is a positive real number, we find positive rational numbers ¢, ¢’ such that
c<r=<c'. Since

B(cv, va,...,v,) < B(rv, va,...,v,) = B(c'v, va,...,v,),

we conclude that

c¢Vol(v, vp,...,0,) £ Vol(rv, va,...,v,) < " Vol(v, va,...,1,).
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Letting ¢, ¢’ approach r as a limit, we conclude that for any real number
r =0 we have

Vol(rv, va,...,0,) = r Vol(v, va,...,v,).
Finally, we note that B(—v, v3,...,v,) is the translation of
B(v, va,...,0y)

by —v so that these two blocks have the same volume. This proves the
first assertion.

As for the second, we look at the geometry of the situation, which is
made clear by the following picture in case v = vy, w = vs.

The block spanned by vy, v,,... consists of two “triangles” 7T, T’ having
only a set of measure zero in common. The block spanned by v; 4+ v, and
vr consists of T’ and the translation 7 + v,. It follows that these two
blocks have the same volume. We conclude that for any number c,

Volo(vl + vy, U2y, 0y) = Volo(vl, 02y e ey Up).
Indeed, if ¢ =0 this is obvious, and if ¢ # 0 then

c Volo(vl + cva, 1) = V010(01 + cva, cvy)
= Vol®(v; + cvy) = ¢ Vol®(uvy, 1y).
We can then cancel ¢ to get our conclusion.
To prove the linearity of Vol® with respect to its first variable, we may
assume that vp,...,v, are linearly independent, otherwise both sides of

(%) are equal to 0. Let v; be so chosen that {v;,...,v,} is a basis of R".
Then by induction, and what has been proved above,

0
Vol”(civy + -+ + Cubu, 02,...,n)
0
= Vol'(cvy + -+ 4 Coo1Vp—1, U2, .., )
0
= Vol™(c1v1, v2,..., )

= (] Volo(vl,...,vn).

From this the linearity follows at once, and the theorem is proved.
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Corollary 2.2. Let S be the unit cube spanned by the unit vectors in R".
Let A: R" — R" be a linear map. Then

Vol A(S) = |Det(2)].

Proof. 1f vy,...,v, are the images of ej,...,e, under A, then A(S) is the
block spanned by vy,...,v,. If we represent A by the matrix 4 = (a;),
then

vj = ajjer + -+ Apiln,

and hence Det(v,...,v,) = Det(4) = Det(4). This proves the corollary.

Corollary 2.3. If R is any rectangle in R" and 1: R" — R" is a linear
map, then
Vol A(R) = |Det(4)|Vol(R).

Proof. After a translation, we can assume that the rectangle is a block.
If R=A4(S) where S is the unit cube, then

MR) = 40 (S),
whence by Corollary 2.2,

Vol i(R) = [Det(i.0 i1)| = |Det() Det(4;)| = [Det(2)| Vol(R).

The next theorem extends Corollary 2.3 to the more general case where
the linear map 4 is replaced by an arbitrary C!-invertible map. The proof
then consists of replacing the linear map by its derivative and estimat-
ing the error thus introduced. For this purpose, we have the Jacobian
determinant

As(x) = Det J;(x) = Det f'(x),

where Jy(x) is the Jacobian matrix, and f'(x) is the derivative of the map
f: U—R"

Proposition 2.4. Let R be a rectangle in R", contained in some open set
U. Let f: U—R" be a C' map, which is C'-invertible on U. Then

u(f(R)) = [ Al dp

Proof. When f is linear, this is nothing but Corollary 2.3 of the
preceding theorem. We shall prove the general case by approximating f
by its derivative. Let us first assume that R is a cube for simplicity. Given
€, let P be a partition of R, obtained by dividing each side of R into N
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equal segments for large N. Then R is partitioned into N" subcubes which
we denote by S; (j=1,...,N"). We let q; be the center of S.
We have

Vol f(R) = Vol f(S))

because the images f(S;) have only sets of measure 0 in common. We
investigate f(S;) for each j. The derivative f” is uniformly continuous on
R. Given ¢, we assume that NV has been taken so large that for x € §; we
have

J(x) = fla) + 4(x — @) + o(x — ),
where 4; = f'(a;) and
lo(x — a))| < |x — ale.

To determine Vol f(S;) we must therefore investigate f(S) where S is a
cube centered at the origin, and f has the form

Jx) =Ax+0(x),  lo(x)| = |xle

on the cube S. (We have made suitable translations which don’t affect
volumes.) We have

o f(x) =x+ 2" o g(x),

so that A~ o f is nearly the identity map. For some constant C, we have
for xe S

127" o p(x)] £ Ce.

From the lemma after the proof of the inverse mapping theorem, we
conclude that 2~ o f(S) contains a cube of radius

(1 — Ce)(radius S),
and trivial estimates show that 2~' o f(S) is contained in a cube of radius
(1 + Ce)(radius S).

We apply 4 to these cubes, and determine their volumes. Putting indices j
on everything, we find that

[Det f'()| Vol(S;) — eC1Vol(S))
< Vol f(S)) = Det f'(a)| VoI(S)) + eC1Vol(S))



[VIII, §2] CHANGE OF VARIABLES FORMULA 191

with some fixed constant C;. Summing over ;j and estimating |Ay|, we see
that our theorem follows at once.

Remark. We assumed for simplicity that R was a cube. Actually, by
changing the norm on each side, multiplying by a suitable constant, and
taking the sup of the adjusting norms, we see that this involves no loss of
generality. Alternatively, we can approximate a given rectangle by cubes.

Corollary 2.5. If g is continuous on f(R), then
| gau=| @orialan
/(R) R

Proof. The functions g and (go f)|As| are uniformly continuous on
f(R) and R respectively. Let us take a partition of R and let {S;} be the
subrectangles of this partition. If ¢ is the maximum length of the sides of
the subrectangles of the partition, then f(S;) is contained in a rectangle
whose sides have length < CJ for some constant C. We have

gdu= J gdu.
Jf(R) 2.,

IR

The sup and inf of g of f(S;) differ only by e if ¢ is taken sufficiently
small. Using the theorem, applied to each S;, and replacing ¢ by its
minimum m; and maximum M; on S;, we see that the corollary follows at
once.

Theorem 2.6 (Change of Variables Formula). Let U be open in R" and
let £ U—R" be a C' map, which is C' invertible on U. Let g be in
LYf(U)). Then (go f)|As| is in L' (U) and we have

J_ gdﬂzj (90 )|Ar] dp.
1) v

Proof. Let R be a closed rectangle contained in U. We shall first prove
that the restriction of (go f)|As| to R is in #'(R), and that the formula
holds when U is replaced by R. We know that C.(f(U)) is L'-dense in
Z(f(U)), by [La 93], Theorem 3.1 of Chapter IX. Hence there exists a
sequence {gi} in C.(f(U)) which in L'-convergent to g. Using [La 93],
Theorem 5.2 of Chapter VI, we may assume that {g;} converges pointwise
to g except on a set Z of measure 0 in f(U). By Lemma 1.2, we know
that f~'(Z) has measure 0.

Let g; = (gk o f)|As|. Each function g; is continuous on R. The
sequence {g;} converges almost everywhere to (g o f)|As| restricted to R.
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It is in fact an L'-Cauchy sequence in #'(R). To see this, we have by the
result for rectangles and continuous functions (corollary of the preceding
theorem):

Jlgi—g,’;ldﬂ=J |9k — gm| dp,
R /(R)

so the Cauchy nature of the sequence {g;} is clear from that of {g;}. It
follows that the restriction of (g o f)|As| to R is the L'-limit of {g;}, and
is in Z!(R). Tt also follows that the formula of the theorem holds for R,
that is

J gdu= J (go f)lAr| dp
1(4) 4

when 4 = R.

The theorem is now seen to hold for any measurable subset 4 of R,
since f(A) is measurable, and since a function g in & 1( f(A)) can be
extended to a function in #'(f(R)) by giving it the value 0 outside f(4).
From this it follows that the theorem holds if 4 is a finite union of
rectangles contained in U. We can find a sequence of rectangles {R,,}
contained in U whose union is equal to U, because U is separable. Taking
the usual stepwise complementation, we can find a disjoint sequence of
measurable sets

Am =Ry — (Rl Yo URm—l)
whose union is U, and such that our theorem holds if 4 = 4,,. Let

him = gf(a,) = 9Xf(A,) and hyy = (hm o f)|Ar].

Then ) h, converges to g and ) A converges to (go f)|As]. Our
theorem follows from Corollary 5.13 of the dominated convergence
theorem in [La 93].

Note. In dealing with polar coordinates or the like, one sometimes
meets a map f which is invertible except on a set of measure 0, e.g. the
polar coordinate map. It is now trivial to recover a result covering this
type of situation.

Corollary 2.7. Let U be open in R" and let f: U — R" be a C' map.
Let A be a measurable subset of U such that the boundary of A has

measure 0, and such that f is C' invertible on the interior of A. Let g be
in L' (f(A)). Then (go f)|As| is in L' (A) and

J gdu=J (90 f/)|Ar| dp.
1(4) 4
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Proof. Let Uy be the interior of 4. The sets f(4) and f(U,) differ
only by a set of measure 0, namely f(0A4). Also the sets 4, U, differ only
by a set of measure 0. Consequently we can replace the domains of
integration f(A4) and 4 by f(U)) and Uy, respectively. The theorem
applies to conclude the proof of the corollary.

VIil, §3. ORIENTATION

Let U, V be open sets in half spaces of R” and let ¢p: U — V be a C!
isomorphism. We shall say that ¢ is orientation preserving if the Jacobian
determinant A,(x) is >0, all xe U. If the Jacobian determinant is
negative, then we say that ¢ is orientation reversing.

Let X be a C? manifold, p = 1, and let {(U;, ¢;)} be an atlas. We say
that this atlas is oriented if all transition maps ¢; o ¢, ! are orientation
preserving. Two atlases {(U;, ¢,)} and {(V,, ¥,)} are said to define the
same orientation, or to be orientation equivalent, if their union is oriented.
We can also define locally a chart (7, /) to be orientation compatible with
the oriented atlas {(U;, ¢;)} if all transition maps ¢;0 ¢! (defined
whenever U; N V' is not empty) are orientation preserving. An orientation
equivalence class of oriented atlases is said to define an oriented manifold,
or to be an orientation of the manifold. It is a simple exercise to verify
that if a connected manifold has an orientation, then it has two distinct
orientations.

The standard examples of the Moebius strip or projective plane show
that not all manifolds admit orientations. We shall now see that the
boundary of an oriented manifold with boundary can be given a natural
orientation.

Let ¢p: U — R" be an oriented chart at a boundary point of X, such that:

(1) if (x1,...,x,) are the local coordinates of the chart, then the
boundary points correspond to those points in R" satisfying x; = 0;
and

(2) the points of U not in the boundary have coordinates satisfying
x1 < 0.

Then (x,,...,x,) are the local coordinates for a chart of the boundary,

namely the restriction of ¢ to 0X n U, and the picture is as follows.

(%, ..., Zn)

|

.
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We may say that we have considered a chart ¢ such that the manifold lies
to the left of its boundary. If the reader thinks of a domain in R?, having
a smooth curve for its boundary, as on the following picture, the reader
will see that our choice of chart corresponds to what is usually visualized
as “‘counterclockwise” orientation.

The collection of all pairs (U ndX,p|(Un0X)), chosen according to
the criteria described above, is obviously an atlas for the boundary 0X,
and we contend that it is an oriented atlas.

We prove this easily as follows. If

(X1,..,%) =X and W1seeosm) =y

are coordinate systems at a boundary point corresponding to choices of
charts made according to our specifications, then we can write y = f(x)
where f = (fi,...,f,) is the transition mapping. Since we deal with
oriented charts for X, we know that As(x) >0 for all x. Since f maps
boundary into boundary, we have

S100, x2,...,x,) =0

for all xp,...,x,. Consequently the Jacobian matrix of f at a point
(0, x2,...,x,) is equal to

Difi(0, x2,...,%,) 0-----0

*

(n-1) ;
% Ag”

*

where Aé’“l) is the Jacobian matrix of the transition map g induced by f
on the boundary, and given by

y2 = f2(07 x2a"'7x1’l)a

Yn = fn(07 X27...,Xn).
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However, we have

1 hvx,...,xn
lel((), Xz,...,xn):}?li%%

k)
taking the limit with 4 < 0 since by prescription, points of X have coor-
dinates with x; < 0. Furthermore, for the same reason we have

ﬁ(ha x2;--~,xn) <O

Consequently
D1 f1(0, x2,...,x,) > 0.

From this it follows that Aé”_l)(xz, ...,Xy) >0, thus proving our assertion
that the atlas we have defined for dX is oriented.

From now on, when we deal with an oriented manifold, it is understood
that its boundary is taken with orientation described above, and called the
induced orientation.

Viil, §4. THE MEASURE ASSOCIATED WITH
A DIFFERENTIAL FORM

Let X be a manifold of class C? with p = 1. We assume from now on
that X has a countable base. Then we know that X admits C? partitions
of unity, subordinated to any given open covering.

(Actually, instead of the conditions we assumed, we could just as well
have assumed the existence of C” partitions of unity, which is the precise
condition to be used in the sequel.)

We can define the support of a differential form as we defined the
support of a function. It is the closure of the set of all x € X such that
o(x) #0. If w is a form of class C? and o is a C? function on X, then we
can form the product acw, which is the form whose value at x is a(x)w(x).
If o has compact support, then aw has compact support. Later, we shall
study the integration of forms, and reduce this to a local problem by
means of partitions of unity, in which we multiply a form by functions.

We assume that the reader is familiar with the correspondence between
certain functionals on continuous functions with compact support and
measures. Cf. [La 93] for this. We just recall some terminology.

We denote by C.(X) the infinite dimensional vector space of continuous
functions on X with compact support (i.c. vanishing outside a compact
set). We write C.(X, R) or C.(X, C) if we wish to distinguish between the
real or complex valued functions.
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We denote by Ck(X) the subspace of C.(X) consisting of those
functions which vanish outside K. (Same notation Cs(X) for those
functions which are 0 outside any subset S of X. Most of the time, the
useful subsets in this context are the compact subsets K.)

A linear map 4 of C.(X) into the complex numbers (or into a normed
vector space, for that matter) is said to be bounded if there exists some
C = 0 such that we have for the sup norm

/1= ClA

for all f € C.(X). Thus A is bounded if and only if 1 is continuous for the
norm topology.

A linear map 4 of C.(X) into the complex numbers is said to be
positive if we have 1f = 0 whenever f is real and = 0.

Lemma 4.1. Let A: C.(X)— C be a positive linear map. Then A is
bounded on Ck(X) for any compact K.

Proof. By the corollary of Urysohn’s lemma, there exists a continuous
real function g 20 on X which is 1 on K has compact support. If
feCk(X), let b=|f||. Say f is real. Then bg + f =0, whence

A(bg) £ 2f =0
and |Af| < bA(g). Thus Jg is our desired bound.

A complex valued linear map on C.(X) which is bounded on each
subspace Ck(X) for every compact K will be called a C.-functional on
C.(X), or more simply, a functional. A functional on C.(X) which is also
continuous for the sup norm will be called a bounded functional. It is clear
that a bounded functional is also a C.-functional.

Lemma 4.2. Let {W,} be an open covering of X. For each index o, let
Ay be a functional on C.(W,). Assume that for each pair of indices o, f§
the functionals 7., and A are equal on C.(W, n Wp). Then there exists a
unique functional J. on X whose restriction to each C.(W,) is equal to A,.
If each A, is positive, then so is .

Proof. Let f e C,X) and let K be the support of f. Let {/;} be a
partition of unity over K subordinated to a covering of K by a finite
number of the open sets W,. Then each h;f has support in some W,
and we define

A= dati (i)
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We contend that this sum is independent of the choice of «(i), and also of
the choice of partition of unity. Once this is proved, it is then obvious
that A is a functional which satisfies our requirements. We now prove this
independence. First note that if W, is another one of the open sets W,
in which the support of 4;f is contained, then /4;f has support in the
intersection W, ;) N W,.(;), and our assumption concerning our functionals
Ay shows that the corresponding term in the sum does not depend on the
choice of index «(i). Next, let {g;} be another partition of unity over K
subordinated to some covering of K by a finite number of the open sets
W,. Then for each i,

hif = Z gihi f,
ke

whence

Z Dotiy(if ) =D Dty (g hi).

i k

If the support of gih; f is in some W,, then the value 4,(gih;f) is inde-
pendent of the choice of index «. The expression on the right is then
symmetric with respect to our two partitions of unity, whence our theorem
follows.

Theorem 4.3. Let dim X = n and let w be an n-form on X of class C°,
that is continuous. Then there exists a unique positive functional A on
C.(X) having the following property. If (U, @) is a chart and

o(x) = f(x)dx; A -+ A dx,

is the local representation of w in this chart, then for any g € C.(X) with
support in U, we have

(1) 2g = J a0 ()] d

where g, represents g in the chart [i.e. g,(x) =g(p~'(x))], and dx is
Lebesgue measure.

Proof. The integral in (1) defines a positive functional on C.(U). The
change of variables formula shows that if (U, ¢) and (V, ¢) are two
charts, and if g has support in U n V, then the value of the functional is
independent of the choice of charts. Thus we get a positive functional by
the general localization lemma for functionals.

The positive measure corresponding to the functional in Theorem 4.3
will be called the measure associated with ||, and can be denoted by g,
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Theorem 4.3 does not need any orientability assumption. With such
an assumption, we have a similar theorem, obtained without taking the
absolute value.

Theorem 4.4. Let dim X = n and assume that X is oriented. Let w be
an n-form on X of class C°. Then there exists a unique functional . on
C.(X) having the following property. If (U, @) is an oriented chart and

w(x) = f(x)dxi, A -+ A dxy,

is the local representation of w in this chart, then for any g € C.(X) with
support in U, we have

Ag = J . gp(x) f(x) dx,

where g, represents g in the chart, and dx is Lebesque measure.

Proof. Since the Jacobian determinant of transition maps belonging to
oriented charts is positive, we see that Theorem 4.4 follows like Theorem
4.3 from the change of variables formula (in which the absolute value sign
now becomes unnecessary) and the existence of partitions of unity.

If 2 is the functional of Theorem 4.4, we shall call it the functional
associated with . For any function g € C.(X), we define

J gw = Ag.
X

If in particular w has compact support, we can also proceed directly as
follows. Let {o;} be a partition of unity over X such that each o; has
compact support. We define

wa N Z:Jxaiw,

all but a finite number of terms in this sum being equal to 0. As usual, it
is immediately verified that this sum is in fact independent of the choice of
partition of unity, and in fact, we could just as well use only a partition
of unity over the support of w. Alternatively, if o is a function in C.(X)
which is equal to 1 on the support of w, then we could also define

ol
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It is clear that these two possible definitions are equivalent. In particular,
we obtain the following variation of Theorem 4.4.

Theorem 4.5. Let X be an oriented manifold of dimension n. Let o/!(X)
be the R-space of differential forms with compact support. There exists a
unique linear map

a)r—>Jw of J'(X)—R
X

such that, if w has support in an oriented chart U with coordinates
Xiy.ooy Xy and o(x) = f(x) dx; A -+ A dx, in this chart, then

wa:JU f(x) dxy---dx,.

Let X be an oriented manifold. By a volume form Q we mean a form
such that in every oriented chart, the form can be written as

Qx) = f(x)dx1 A -+ A dx,

with f(x) >0 for all x. In Chapter X, §2 we shall see how to get a
volume form from a Riemannian metric. For densities, see [La99] Chapter
XVI, §4. They include as special case the absolute value of a volume
form.



CHAPTER IX

Stokes’ Theorem

Throughout the chapter, manifolds may have a boundary.

IX, §1. STOKES’ THEOREM FOR A
RECTANGULAR SIMPLEX

If X is a manifold and Y a submanifold, then any differential form on X
induces a form on Y. We can view this as a very special case of the
inverse image of a form, under the embedding (injection) map

d: Y — X.

In particular, if Y has dimension n — 1, and if (xi,...,x,) is a system of
coordinates for X at some point of Y such that the points of Y corre-
spond to those coordinates satisfying x; = ¢ for some fixed number ¢, and
index j, and if the form on X is given in terms of these coordinates by

w(X):f(X1,...,xn) Xm AR /\dxn,

then the restriction of w to Y (or the form induced on Y) has the
representation

f(x1,co0 600 x0) dxp A - /\aT\xj A o Adxy.

We should denote this induced form by wy, although occasionally we omit
the subscript Y. We shall use such an induced form especially when Y is
the boundary of a manifold X.

200
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Let
R = [al, bl] X - X [a,,, bn}

be a rectangle in n-space, that is a product of n closed intervals. The set
theoretic boundary of R consists of the union over all i =1,...,n of the
pieces

RY = a1, by] x - x {a;} x -+ x {ay, by},

R} =lar, bi] x -+ x {b;} X -+ X [ay, by].

If

O(xX1, .., %) = (X1, %) dxi A - Adxg A - A dxy

is an (n — 1)-form, and the roof over anything means that this thing is to
be omitted, then we define

by b by e
J w:J J J (X1, ) dxy - dxg - dxy,
RO

aj aj An

if i=j, and 0 otherwise. And similarly for the integral over R!. We
define the integral over the oriented boundary to be

LOR - i (71)i JR? J‘R,1‘| '

Stokes’ Theorem for Rectangles. Let R be a rectangle in an open set U
in n-space. Let @ be an (n— 1)-form on U. Then

J dco:J .
R "R

Proof. In two dimensions, the picture looks like this:

1
_RZ

0 1
—Rl Rl

02 —+

-+

ay by
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It suffices to prove the assertion when w is a decomposable form, say
o(x) = f(x1,...,x,) dxi A - /\cij A e A dxy.

We then evaluate the integral over the boundary of R. If i #j, then it is

clear that
J w=0= J ,
R? R!

—

e b by —
(71)"J J J U@, oixn) — f(X1,000, by, 00 X)) dxy - - dxg - - - dx,.

. n
a; a

On the other hand, from the definitions we find that

do(x) = (6%/; dx; +-~-+§—)’; dx,,> Adxy A --- /\J\xj A o Adxy,
= (l)jlaaj:j dxy A <o+ A dxy,.
(The (—1)~' comes from interchanging dx; with dxy, ..., dx;_1. All other

terms disappear by the alternating rule.)

Integrating dw over R, we may use repeated integration and integrate
df /0x; with respect to x; first. Then the fundamental theorem of calculus
for one variable yields

. 6_x, dx; = f(x1,...,bj, ..., x0) — f(X1,.. .., ..., Xn).

[,
We then integrate with respect to the other variables, and multiply by
(—1)’71. This yields precisely the value found for the integral of w over
the oriented boundary @°R, and proves the theorem.

Remark. Stokes’ theorem for a rectangle extends at once to a version in
which we parametrize a subset of some space by a rectangle. Indeed, if
o: R— V is a C! map of a rectangle of dimension » into an open set
in RY, and if @ is an (n— 1)-form in ¥, we may define

J dw :J c*dw.
g R
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One can define

and then we have a formula

In the next section, we prove a somewhat less formal result.

IX, §2. STOKES’ THEOREM ON A MANIFOLD

Theorem 2.1. Let X be an oriented manifold of class C?, dimension n,
and let @ be an (n—1)-form on X, of class C'. Assume that o has

compact support. Then
J do = J .
X ox

Proof. Let {o;},.; be a partition of unity, of class C?. Then

E 0w = o,

iel

and this sum has only a finite number of non-zero terms since the support
of w is compact. Using the additivity of the operation d, and that of the
integral, we find

JX do= ZJX Hes o).

iel

Suppose that o; has compact support in some open set V; of X and that
we can prove

J d(o;w) = J o; @,
Vi Vi ox

in other words we can prove Stokes’ theorem locally in V;. We can write

J o = J o @,
VindX 1.4
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and similarly

JV,- d(o; ) = JX d(a; o).

Using the additivity of the integral once more, we get

L{d(o N ZJXd(oc,-a)) N ZLXOCNU N wa7

iel iel

which yields Stokes’ theorem on the whole manifold. Thus our argument
with partitions of unity reduces Stokes’ theorem to the local case, namely
it suffices to prove that for each point of X these exists an open
neighborhood ¥ such that if w has compact support in ¥, then Stokes’
theorem holds with X replaced by V. We now do this.

If the point is not a boundary point, we take an oriented chart (U, ¢)
at the point, containing an open neighborhood V of the point, satisfying
the following conditions: ¢U is an open ball, and ¢V is the interior of
a rectangle, whose closure is contained in pU. If w has compact support
in V, then its local representation in @U has compact support in ¢V
Applying Stokes’ theorem for rectangles as proved in the preceding
section, we find that the two integrals occurring in Stokes’ formula are
equal to 0 in this case (the integral over an empty boundary being equal to
0 by convention).

Now suppose that we deal with a boundary point. We take an oriented
chart (U, ¢) at the point, having the following properties. First, U is
described by the following inequalities in terms of local coordinates

(X1, Xp):
—-2<x =1 and —2<x <2 for j=2,...,n.

Next, the given point has coordinates (1,0,...,0), and that part of U on
the boundary of X, namely U n 0X, is given in terms of these coordinates
by the equation x; = 1. We then let V' consist of those points whose local
coordinates satisfy

0<x =1 and -1<x <1 for j=2,...,n.

If w has compact support in V, then w is equal to 0 on the boundary of
the rectangle R equal to the closure of ¢V, except on the face given by
x1; = 1, which defines that part of the rectangle corresponding to dX n V.
Thus the support of w looks like the shaded portion of the following
picture.
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In the sum giving the integral over the boundary of a rectangle as in the
previous section, only one term will give a non-zero contribution, corre-

sponding to i =1, which is
| o] ol
Ry R|

Furthermore, the integral over RY will also be 0, and in the contribution of
the integral over R}, the two minus signs will cancel, and yield the integral
of w over the part of the boundary lying in V/, because our charts are
so chosen that (xp,...,x,) is an oriented system of coordinates for the
boundary. Thus we find

(=1

J dco:J w,
14 VAox

which proves Stokes’ theorem locally in this case, and concludes the proof
of Theorem 2.7.

Corollary 2.2. Suppose X is an oriented manifold without boundary, and
w has compact support. Then

[ dw = 0.
Jx

For any number of reasons, some of which we consider in the next
section, it is useful to formulate conditions under which Stokes’ theorem
holds even when the form w does not have compact support. We shall say
that w has almost compact support if there exists a decreasing sequence of
open sets {Ui} in X such that the intersection

8

Uk

k=1
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is empty, and a sequence of C' functions {g;}, having the following
properties:

AC 1. We have 0 < g £ 1, gr = 1 outside Uy, and grw has compact
support.

AC 2. If 1y, is the measure associated with |dgrx A ®| on X, then

lim ﬂk(Uk) =0.

k—o0
We then have the following application of Stokes’ theorem.
Corollary 2.3. Let X be a C? oriented manifold, of dimension n, and let
® be an (n—1)-form on X, of class C'. Assume that w has almost

compact support, and that the measures associated with |do| on X and
|w| on 0X are finite. Then

J dw:J .
X ox

Proof. By our standard form of Stokes’ theorem we have
J gkw:J d(gkw):J dgr /\60+J gk do.
ox X X X
We estimate the left-hand side by

J w—J gkw‘ =
ox ox

Since the intersection of the sets Uy is empty, it follows for a purely
measure-theoretic reason that

Lx(l - gk)w’ = ﬂ\m|(Uk N oX).

lim gk = .
k=0 Jox ox

Similarly,

lim J gk dw:J do.
k—owo )y X

The integral of dgx A @ over X approaches 0 as k — oo by assumption,
and the fact that dg; A w is equal to 0 on the complement of Uy since gy
is constant on this complement. This proves our corollary.

The above proof shows that the second condition AC 2 is a very
natural one to reduce the integral of an arbitrary form to that of a form
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with compact support. In the next section, we relate this condition to a
question of singularities when the manifold is embedded in some bigger
space.

IX, §3. STOKES’ THEOREM WITH SINGULARITIES

If X is a compact manifold, then of course every differential form on X
has compact support. However, the version of Stokes’ theorem which we
have given is useful in contexts when we start with an object which is not
a manifold, say as a subset of R”, but is such that when we remove a
portion of it, what remains is a manifold. For instance, consider a cone
(say the solid cone) as illustrated in the next picture.

The vertex and the circle surrounding the base disc prevent the cone from
being a submanifold of R®. However, if we delete the vertex and this
circle, what remains is a submanifold with boundary embedded in R3.
The boundary consists of the conical shell, and of the base disc (without
its surrounding circle). Another example is given by polyhedra, as on the
following figure.

The idea is to approximate a given form by a form with compact
support, to which we can apply Theorem 2.1, and then take the limit. We
shall indicate one possible technique to do this.

The word “boundary” has been used in two senses: The sense of point
set topology, and the sense of boundary of a manifold. Up to now, they
were used in different contexts so no confusion could arise. We must now
make a distinction, and therefore use the word boundary only in its
manifold sense. If X is a subset of RY, we denote its closure by X as
usual. We call the set-theoretic difference X — X the frontier of X in RY,
and denote it by fr(X).
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Let X be a submanifold without boundary of RY, of dimension n. We
know that this means that at each point of X there exists a chart for an
open neighborhood of this point in R" such that the points of X in this
chart correspond to a factor in a product. A point P of X — X will be
called a regular frontier point of X if there exists a chart at P in RY with
local coordinates (xi,...,xy) such that P has coordinates (0,...,0); the
points of X are those with coordinates

Xpp1=-=xy=0 and X, <0;

and the points of the frontier of X which lie in the chart are those with
coordinates satisfying

Xp = Xpp1 = =xy =0.

The set of all regular frontier points of X will be denoted by d.X, and will
be called the boundary of X. We may say that X U JX is a submanifold
of RY, possibly with boundary.

A point of the frontier of X which is not regular will be called singular.
It is clear that the set of singular points is closed in RY. We now
formulate a version of Theorem 2.1 when @ does not necessarily have
compact support in X UdX. Let S be a subset of RY. By a fundamental
sequence of open neighborhoods of S we shall mean a sequence {Uy} of
open sets containing S such that, if ¥ is an open set containing S, then
Uiy <« W for all sufficiently large k.

Let S be the set of singular frontier points of X and let w be a form
defined on an open neighborhood of X, and having compact support. The
intersection of supp @ with (X U dX) need not be compact, so that we
cannot apply Theorem 2.1 as it stands. The idea is to find a fundamental
sequence of neighborhods {U;} of S, and a function g, which is 0 on a
neighborhood of S and 1 outside Uy so that giw differs from w only inside
Uy. We can then apply Theorem 2.1 to gy and we hope that taking the
limit yields Stokes’ theorem for w itself. However, we have

J d(gkcu):J dgk/\erJ gi do.
X X X

Thus we have an extra term on the right, which should go to 0 as k — o
if we wish to apply this method. In view of this, we make the following
definition.

Let S be a closed subset of RY. We shall say that S is negligible for X
if there exists an open neighborhood U of S in RY a fundamental
sequence of open neighborhoods {U;} of S in U, with Uy = U, and a
sequence of C' functions {g;}, having the following properties.
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NEG 1. We have 0 < g, < 1. Also, gi(x) =0 for x in some open
neighborhood of S, and gi(x) =1 for x & Uy.

NEG 2. If w is an (n — 1)-form of class C' on U, and . is the measure
associated with |dgr A o| on U X, then w, is finite for large
k, and
lim @ (UnX)=0.
k— o0
From our first condition, we see that gpw vanishes on an open
neighborhood of S. Since gy =1 on the complement of Uy, we have
dgir = 0 on this complement, and therefore our second condition implies
that the measures induced on X near the singular frontier by |dgi A ]
(for k=1,2,...), are concentrated on shrinking neighborhoods and tend
to 0 as k — oo.

Theorem 3.1 (Stokes’ Theorem with Singularities). Ler X be an oriented,
C? submanifold without boundary of RY. Let dim X =n. Let w be an
(n — 1)-form of class C' on an open neighborhood of X in R”, and with
compact support. Assume that:

(i) If S is the set of singular points in the frontier of X, then
S nsupp w is negligible for X.
(i) The measures associated with |dw| on X, and |w| on 0X, are finite.

Then
J do = J .
X ox

Proof. Let U, {Ui}, and {gi} satisfy conditions NEG 1 and NEG 2.
Then grw is 0 on an open neighborhood of S, and since w is assumed to
have compact support, one verifies immediately that

(supp gx @) N (X v 0X)

is compact. Thus Theorem 2.1 is applicable, and we get

J gkw:J d(gkw)zj dgk/\w—i—J gx dw.
ax X X X

ol
X X

UA»('\B

We have

Since the intersection of all sets Uy N 0X is empty, it follows from purely
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measure-theoretic reasons that the limit of the right-hand side is 0 as
k — oco. Thus

lim J gkw:J .

k= Jox ox

For similar reasons, we have

lim J gkda):J dow.
X X

k— o0

Our second assumption NEG 2 guarantees that the integral of dgx A @
over X approaches 0. This proves our theorem.

Criterion 1. Let S, T be compact negligible sets for a submanifold X of
RY (assuming X without boundary). Then the union S U T is negligible
for X.

Proof. Let U, {Ux}, {gx} and V, {Vi}, {h} be triples associated with
S and T respectively as in condition NEG 1 and NEG 2 (with V replacing
U and & replacing g when T replaces S). Let

WwW=UuV, Wi = U v Vi, and S = 9k Dk

Then the open sets {W)} form a fundamental sequence of open neigh-
borhoods of SU T in W, and NEG 1 is trivially satisfied. As for NEG 2,
we have

d(grhi) A o = hi dgi A 0+ gk dhie A @,

so that NEG 2 is also trivially satisfied, thus proving our criterion.

Criterion 2. Let X be an open set, and let S be a compact subset in R".
Assume that there exists a closed rectangle R of dimension m < n — 2 and
a C' map o: R— R" such that S = a(R). Then S is negligible for X.

Before giving the proof, we make a couple of simple remarks. First, we
could always take m = n — 2, since any parametrization by a rectangle of
dimension <n — 2 can be extended to a parametrization by a rectangle of
dimension n — 2 simply by projecting away coordinates. Second, by our
first criterion, we see that a finite union of sets as described above, that is
parametrized smoothly by rectangles of codimension = 2, are negligible.
Third, our Criterion 2, combined with the first criterion, shows that
negligibility in this case is local, that is we can subdivide a rectangle into
small pieces.

We now prove Criterion 2. Composing ¢ with a suitable linear map,
we may assume that R is a unit cube. We cut up each side of the cube
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into k equal segments and thus get k£ small cubes. Since the derivative of
o is bounded on a compact set, the image of each small cube is contained
in an n-cube in RY of radius < C/k (by the mean value theorem), whose
n-dimensional volume is < (2C)"/k". Thus we can cover the image by
small cubes such that the sum of their n-dimensional volumes is

< (20)"/k"™ < (20)" k2.

Lemma 3.2. Let S be a compact subset of R". Let Uy be the open set of
points x such that d(x, S) < 2/k. There exists a C* function g on R"
which is equal to 0 in some open neighborhood of S, equal to 1 outside
Uk, 0 £ g £ 1, and such that all partial derivatives of g are bounded by
Cik, where C) is a constant depending only on n.

Proof. Let ¢ be a C* function such that 0 < ¢ <1, and

p(x)=0 if 0=|x[| =3,
px) =1 if 1 =x].

We use || || for the sup norm in R”. The graph of ¢ looks like this:

NS

T i T

2| s =

For each positive integer k, let ¢, (x) = ¢(kx). Then each partial deri-
vative D;gp, satisfies the bound

[1Digy || = K| Digl|,

which is thus bounded by a constant times k. Let L denote the lattice of
integral points in R”. For each /e L, we consider the function

/

This function has the same shape as ¢, but is translated to the point //2k.
Consider the product

)= [Toe (v~ 5¢)
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taken over all / € L such that d(//2k, S) < 1/k. If x is a point of R" such
that d(x, S) < 1/4k, then we pick an / such that

d(x, 1)2k) < 1/2k.

For this / we have d(//2, S) < 1/k, so that this / occurs in the product,
and

or(x —1/2k) = 0.

Therefore g; is equal to 0 in an open neighborhood of S. If, on the other
hand, we have d(x, S) > 2/k and if / occurs in the product, that is

d(l/2k, S) < 1/k,
then
d(x, 1/2k) > 1/k,

and hence gx(x) =1. The partial derivatives of g; the bounded in the
desired manner. This is easily seen, for if xy is a point where g, is not
identically 1 in a neighborhood of xy, then |xo — lp/2k|| < 1/k for some
lo. All other factors ¢, (x —1/2k) will be identically 1 near x unless
llxo — 1/2k|| < 1/k. But then ||/ — || £ 4 whence the number of such / is
bounded as a function of n (in fact by 9"). Thus when we take the
derivative, we get a sum of a most 9” terms, each one having a derivative
bounded by C;k for some constant C;. This proves our lemma.

We return to the proof of Criterion 2. We observe that when an
(n—1)-form w is expressed n terms of its coordinates,

o(x) =D fix)dxi A Adxp A A dy,

then the coefficients f; are bounded on a compact neighborhood of S. We
take Uy as in the lemma. Then for k large, each function

x = fi(x) Djgi(x)

is bounded on U, by a bound C,k, where C, depends on a bound for w,
and on the constant of the lemma. The Lebesgue measure of U is
bounded by Cs/k?, as we saw previously. Hence the measure of Uy
associated with |dgx A | is bounded by Cu/k, and tends to 0 as k — oo.
This proves our criterion.

As an example, we now state a simpler version of Stokes’ theorem,
applying our criteria.
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Theorem 3.3. Let X be an open subset of R". Let S be the set of
singular points in the closure of X, and assume that S is the finite union
of C' images of m-rectangles with m <n —2. Let o be an (n— 1)-form
defined on an open neighborhood of X. Assume that  has compact
support, and that the measure associated with || on 0X and with |dw| on

X are finite. Then
J do = J .
X ax

Proof. Immediate from our two criteria and Theorem 3.2.

We can apply Theorem 3.3 when, for instance, X is the interior of a
polyhedron, whose interior is open in R”. When we deal with a sub-
manifold X of dimension », embedded in a higher dimensional space R”,
then one can reduce the analysis of the singular set to Criterion 2 provided
that there exists a finite number of charts for X near this singular set on
which the given form o is bounded. This would for instance be the case
with the surface of our cone mentioned at the beginning of the section.
Criterion 2 is also the natural one when dealing with manifolds defined by
algebraic inequalities. By using Hironaka’s resolution of singularities, one
can parametrize a compact set of algebraic singularities as in Criterion 2.

Finally, we note that the condition that w have compact support in an
open neighborhood of X is a very mild condition. If for instance X is a
bounded open subset of R”, then X is compact. If w is any form on some
open set containing X, then we can find another form # which is equal to
@ on some open neighborhood of X and which has compact support. The
integrals of # entering into Stokes” formula will be the same as those of w.
To find #, we simply multiply @ with a suitable C* function which is 1 in
a neighborhood of X and vanishes a little further away. Thus Theorem
3.3 provides a reasonably useful version of Stokes’ theorem which can be
applied easily to all the cases likely to arise naturally.



CHAPTER X

Applications of Stokes’
Theorem

In this chapter we give a survey of applications of Stokes’ theorem,
concerning many situations. Some come just from the differential theory,
such as the computation of the maximal de Rham cohomology (the space
of all forms of maximal degree modulo the subspace of exact forms); some
come from Riemannian geometry; and some come from complex mani-
folds, as in Cauchy’s theorem and the Poincaré residue theorem. I hope
that the selection of topics will give readers an outlook conducive for
further expansion of perspectives. The sections of this chapter are logically
independent of each other, so the reader can pick and choose according to
taste or need.

X, §1. THE MAXIMAL DE RHAM COHOMOLOGY

Let X be a manifold of dimension n without boundary. Let r be an
integer = 0. We let .«/"(X) be the R-vector space of differential forms on
X of degree r. Thus &/"(X)=0if r>n. If we #"(X), we define the
support of w to be the closure of the set of points x e X such that

o(x) # 0.

Examples. If w(x) = f(x) dx; A --- Adx, on some open subset of R",
then the support of w is the closure of the set of x such that f(x) #0.

We denote the support of a form @ by supp(w). By definition, the
support is closed in X. We are interested in the space of maximal degree
forms .«/"(X). Every form w e .«/"(X) is such that dw = 0. On the other
hand, .«/"(X) contains the subspace of exact forms, which are defined to

214
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be those forms equal to dy for some 5 € .o/""'(X). The factor space is
defined to be the de Rham cohomology H"(X) = H"(X, R). The main
theorem of this section can then be formulated.

Theorem 1.1. Assume that X is compact, orientable, and connected.
Then the map
w — J w
X

induces an isomorphism of H"(X) with R itself. In particular, if o is in
A" (X) then there exists n e .o/" '(X) such that dy = if and only if

J w=0.
X

Actually the hypothesis of compactness on X is not needed. What is
needed is compactness on the support of the differential forms. Thus we
are led to define .27/ (X) to be the vector space of n-forms with compact
support. We call a form compactly exact if it is equal to dy for some
ned1(X). We let

H!"(X) = factor space «/"(X)/d.«/"~(X).
Then we have the more general version:

Theorem 1.2. Let X be a manifold without boundary, of dimension n.
Suppose that X is orientable and connected. Then the map

o J o
X
induces an isomorphism of H!(X) with R itself.

Proof. By Stokes’ theorem (Chapter IX, Corollary 2.2) the integral
vanishes on exact forms (with compact support), and hence induces an
R-linear map of H(X) into R. The theorem amounts to proving the
converse statement: if

J =0,
X

then there exists some 7 € /"' (X) such that @ = dy. For this, we first
have to prove the result locally in R”, which we now do.
As a matter of notation, we let

" =(0,1)"

be the open n-cube in R”. What we want is:
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Lemma 1.3. Let @ be an n-form on 1", with compact support, and such

that
J w=0.

Then there exists a form n € &/L’,’*l(l "=1Y with compact support, such that

w = dy.
We will prove Lemma 1.3 by induction, but it is necessary to load to
induction to carry it out. So we need to prove a stronger version of

Lemma 1.3 as follows.

Lemma 1.4. Let o be an (n—1)-form on I"™' whose coefficient is a
Sfunction of n variables (xy,...,x,) so

o(x) = f(x1,..., %) dX1 A -+ Adx,_y.

(Of course, all functions, like forms, are assumed C*.) Suppose that w
has compact support in I"™'. Assume that

J o =0.
Jn-1

Then there exists an (n — 1)-form n, whose coefficients are C* functions
of X1,...,Xx, with compact support such that

CU(Xl,...,Xn,1 ; xn) =d, | 77()61,.. <y Xn—13 xn)-

The symbol d,_\ here means the usual exterior derivative taken with
respect to the first n — 1 variables.

Proof. By induction. We first prove the theorem when n — 1 = 1. First
we carry out the proof leaving out the extra variable, just to see what’s
going on. So let

where f has compact support in the open interval (0, 1). This means
there exists ¢ > 0 such that f(x) =0if0<x<eandif l —e<x=<1. We
assume

Jlf(x) dx =0.

0
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Let

Then g(x) =0if 0 < x <€, and also if | — e < x < 1, because for instance
if 1 —e<xZ<1, then

Then f(x) dx = dg(x), and the lemma is proved in this case. Note that we
could have carried out the proof with the extra variable x;, starting from

o(x) = f(x1, x2) dxy,
so that
1

g(x1, x2) = J S(t, x2) dt.
0
We can differentiate under the integral sign to verify that g is C* in the
pair of variables (xi, x7).
Now let n = 3 and assume that theorem proved for » — 1 by induction.
To simplify the notation, let us omit the extra variable x,.;, and write

o(x) = f(X1,...,Xa) dxi A - Adxy,

with compact support in /”. Then there exists ¢ > 0 such that the support
of f is contained in the closed cube

Th

I'(e)=1[e, 1 —¢]".

The following figure illustrates this support in dimension 2.

Let ¢ be an (n—1)-form on 1", y(x) = ¥(xy,...,x, 1) such that

| =1,
-1
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and  has compact support. Let

g(xn) ZJ (X1, e Xt X)) dX1 A - Adxgg
Jn-1

:J_ S Xy ) dxy A e X
" (o)

Note here that we do have the parameter x, coming in at the inductive
step. Let

wx) = f(x)dxyn - Adxp—y — g(x)P(x1, ..., Xn1),
o)

(*) ,u(x) A dx" = w(x) - g(xn)lp(x) A dxn~

J,H 1= g(x,) = g(x) = 0.

Furthermore, since f has compact support, so does g (look at the figure).
By induction, there exists an (n — 1)-form #, of the first n — 1 variables,
but depending on the parameter x,, that is

ﬂ(x) = 77(x17 sy Xp—1; xn)

such that

,u(xl,- ey Xn—13 xn) = dnflﬂ(-xl»' ey Xp—13 xn)-

Here d,_; denotes the exterior derivative with respect to the first n — 1
variables. Then trivially,

,u(xl,...,x,,,l 5 xn) A dxn = Up—1 ﬂ(xlw"vxnfl 5 xn) A dxn

= dn(x),

where dn is now the exterior derivative taken with respect to all n
variables. Hence finally from equation (x) we obtain

(k) o(x) =dn(x) + g(xa)P(x1, ..., Xno1) A dxp.

To conclude the proof of Lemma 1.3, it suffices to show that the second
term on the right of () is exact. We are back to a one-variable
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problem. Let

h(x,) = J g(t) dr.

0

Then dh(x,) = g(x,)dx,, and h has compact support in the interval (0, 1),
just as in the start of the induction. Then

d(h(xa)Y(x1, ..., x0-1)) = dh(x,) A Y(x1,. .., X0m1)
= (=D)" g (xn, o Xut) A dxy

because diyy =0. Of course we could have carried along the extra
parameter all the way through. This concludes the proof of Lemma 1.3.

We formulate an immediate consequence of Lemma 1.3 directly on the
manifold.

Lemma 1.5. Let U be an open subset of X, isomorphic to I". Let
v e (U) be such that

o

Let we o/"(U). Then there exists ceR and ne.o/"'(U) such that

w—cy =dy.

Proof. We take C:J a)/J Y and apply Lemma 1.3 to @ — c.
U U

Observe that the hypothesis of connectedness has not yet entered the
picture. The preceding lemmas were purely local. We now globalize.

Lemma 1.6. Assume that X is connected and oriented. Let U,  be as in
Lemma 1.5. Let V be the set of points x € X having the following
property. There exists a neighborhood U (x) of x isomorphic to I" such
that for every we o/"(U(x)) there exist ceR and ne o/ (X) such
that

w—cy =dy.

Then V = X.

Proof. Lemma 1.5 asserts that V' > U. Since X is connected, it suffices
to prove that V is both open and closed. It is immediate from the
definition of V" that V' is open, so there remains to prove its closure. Let z
be in the closure of V. Let W be a neighborhood of z isomorphic to 7".
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There exists a point x € V" n W. There exists a neighborhood U(x) as in
the definition of 7 such that U(x) < W. For instance, we may take

U(x) ~ (a1, b1) X -+ X (ay, by) = I"

with a; sufficiently close to 0 and b; sufficiently close to 1, and of course
0<a;<bfori=1,...,n. Let y €.o/"(U(x)) be such that

J Yy =1
U(x)

Let we./!(W). By the definition of V, there exist ¢; e R and
n € ZX) such that
Yy —cry =dn,.

By Lemma 1.5, there exists ¢; € R and 7, € &/”(X) such that
w— e = dn,.

Then
o — ey = d(ny + camy),

thus concluding the proof of Lemma 1.6.
We have now reached the final step in the proof of Theorem 1.2,

namely we first fix a form ¥ € ./(U) with U ~I" and J Y #0. Let
X

w e /"(X). Tt suffices to prove that there exist ce R and 5 e /" (X)
such that
w—cy =dy.

Let K be the compact support of w. Cover K by a finite number of open

neighborhoods U(xy),..., U(x,,) satisfying the property of Lemma 1.6.
Let {¢;} be a partition of unity subordinated to this covering, so that we

can write
w= E @;0.

Then each form ¢;» has support in some U(x;). Hence by Lemma 1.6,
there exist ¢; e R and 7, € /" '(X) such that

@0 — Cil// = d’?ia

whence w — cy =dn, with ¢ =5 ¢; and n=>_ ;. This concludes the
proof of Theorems 1.1 and 1.2.



X, §2] VOLUME FORMS AND THE DIVERGENCE 221

X, §2. VOLUME FORMS AND THE DIVERGENCE

Let V' be a euclidean vector space over R, of dimension n. We assume
given a positive definite symmetric scalar product g, denoted by

(v, w) = (v, w), = g(v, w) forv, we V.

The space A"V has dimension 1. If {ej,...,e,} and {uy,...,u,} are
orthonormal bases of V, then

LA s A€y =TFUL A o AU,

Two such orthonormal bases are said to have the same orientation, or to
be orientation equivalent, if the plus sign occurs in the above relation. A
choice of an equivalence class of orthonormal bases having the same
orientation is defined to be an orientation of V. Thus an orientation
determines a basis for the one-dimensional space A"V over R. Such a
basis will be called a volume. There exists a unique n-form Q on V
(alternating), also denoted by vol,, such that for every oriented ortho-
normal basis {ej,...,e,} we have

Qer,...,ey) = 1.

Conversely, given a non-zero n-form Q on V, all orthonormal bases
{e1,...,e,} such that Q(e,...,e,) > 0 are orientation equivalent, and on
such bases Q2 has a constant value.

Let (X, g) be a Riemannian manifold. By an orientation of (X, g) we
mean a choice of a volume form Q, and an orientation of each tangent
space T,X (xe X) such that for any oriented orthonormal basis
{e1,...,e,} of T.X we have

Q.ler,...,ey) = 1.

The form gives a coherent way of making the orientations at different
points compatible. It is an exercise to show that if (X, g) has such an
orientation, and X is connected, then (X, g) has exactly two orientations.
By an oriented chart, with coordinates xi,...,x, in R”, we mean a chart
such that with respect to these coordinates, the form has the representation

Q(x) =p(x)dx; A -+ Adxy,

with a function ¢ which is positive at every point of the chart. We call Q
the Riemannian volume form, and also denote it by vol,, so

voly(x) = Q(x) = Q..
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We return to our vector space V, with positive definite metric g, and
oriented.

Proposition 2.1. Let Q=vol,. Then for all n-tuples of vectors
{vi,... o0} and {wy,...,w,} in V, we have

Qv1,...,0,)Qw1, ..., w,) = det(v;, wy)

g

In particular,
Q(uy,...,0,)" = det(v;, Ui)g-
Proof. The determinant on the right side of the first formula is
multilinear and alternating in each n-tuple {v;,...,v,} and {wy,...,w,}.
Hence there exists a number ¢ € R such that

det(vi, wj), = cQ(v1, ..., ) Q(W1, ..., W)

for all such n-tuples. Evaluating on an oriented orthonormal basis shows
that ¢ =1, thus proving the proposition.

Applying Proposition 2.1 to an oriented Riemannian manifold yields:

Proposition 2.2. Let (X, g) be an oriented Riemannian manifold. Let
Q =voly. For all vector fields {&,...,&,} and {n,...,n,} on X, we
have

Q(fh s 76)1)9(']1a cee 77711) = det<éi7 77/>g

In particular,

Q(éh e 757!)2 = det<éi> £/>q

Furthermore, if &Y denotes the one-form dual to & (characterized by
&Y (n) = (&, m), for all vector fields n), then

Q(élaaén)gzélv/\ /\é,;/

This last formula is merely an application of the definition of the wedge
product of forms, taking into account the preceding formulas concerning
the determinant.

At a point, the space of n-forms is 1-dimensional. Hence any n-form
on a Riemannian manifold can be written as a product ¢Q where ¢ is a
function and Q is the Riemannian volume form.

If £ is a vector field, then Qo ¢ is an (n — 1)-form, and so there exists a
function ¢ such that

d(Qo &) = pQ.
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We call ¢ the divergence of ¢ with respect to Q, or with respect to the
Riemannian metric. We denote it by divg & or simply div &, Thus by
definition,

d(Qo &) = (div §)Q.
Example. Looking back at Chapter V, §3 we see that if
Qx)=dxi A -+ A dxy

is the canonical form on R” and & is a vector field, & =" p,u; where
{ui,...,u,} are the standard unit vectors, and ¢; are the coordinate
functions, then

n

divg =" %
i=1

ox;
For the formula with a general metric, see Proposition 2.5.
On 1-forms, we define the operator
d*: ' (X) — 4°(X)

by duality, that is if ¥ denotes the vector field corresponding to A under
the Riemannian metric, then we define

d*A=—div 1.

Let us define the Laplacian or Laplace operator on functions by the
formula

A =d*d = —div o grad.
Proposition 2.3. For functions ¢, Y we have

Alpy) = oAy + YAp — 2(dy, dy),.
Proof. The routine gives:
Alpy) =d*d(pp) = d"( dp + ¢ di)
= —div(y&g,) — div(pcsy)
= —y div fd(p - (dlp)fd(/) — ¢ div édxp - (d(ﬂ)fdw
= YAp + gAY — 2(dg, dy),

as was to be shown.
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Recall that
(do, dy), = (grad ¢, grad ¥),,
so there is an alternative expression for the last term in the formula.
We shall tabulate some formulas concerning the gradient. For sim-
plicity of notation, we shall omit the subscript g in the scalar product,

because we now fix g. We shall also write simply gr ¢ instead of grad, ¢.

gr 1. For functions ¢,  we have
gr(py) = ¢ gr(¥) + ¢ gr(p).
gr 2. The map ¢ +— (gr(p))/p = ¢~ ' gr(p) is a homomorphism, from

the multiplicative group of functions never 0, to the additive
group of functions. In particular, for a positive function ¢,

207" gi(9'?) = 97" gr(p) = grlog ¢
because d log ¢ = ¢! dg.
gr 3. gr(e) -y = er(y) -9 = (gr(p), gr(y)),.

We use these formulas to give two versions of certain operators which
arise in practice. For any function ¢, we write for the Lie derivative

[er ¢ = Ly
Corollary 2.4. Let 6 be a positive function. Then
A — [grlog ] =07 2A 082 —5712A(5'/?).
Proof. For a function , by Proposition 2.3,

(Aod" )y =A@"y)
=0'"2AY + YA(0"?) — 2(gr 6'77) - .
We apply the right side of the equality to be proved to a function y. We
use the formula just derived, mutliplied by 6~'/2. The term 6~ /2A(5"/?)y
cancels, and we obtain

(right side)(y) = Ay — 20~ (gr 6'/%) - y.

We use gr 2 to conclude the proof.
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General definition of the divergence

Although the most important case of the divergence is on a Riemannian
manifold, some properties are most clearly expressed in a more general
case which we now describe. Let T be a vector space of finite dimension n
over R. Then A"T is of dimension 1, and will be called the determinant of
T, so by definition,

det T = \"T = N\'T.

Observe that we also have det TY. A non-zero element of det 7V will be
called a volume form on 7.

The vector space of sections of /\"TVX on a manifold X of dimension n
is also a module over the ring of functions. By a volume form on X we
mean section which is nowhere 0, so a volume form is a basis for this
space over the ring of functions. Instead of saying that Q is a volume
form, one may also say that Q is non-singular. If ¥ is any n-form on X,
then there exists a function f such that ¥ = fQ. So let Q be a volume
form. Let & be a vector field on X. We define the divergence of & with
respect to Q just as we did for the Riemannian volume form, namely
divg(&) is defined by the property

DIV 1. d(Qo &) = (diva(&))Q.

From Chapter V, Proposition 5.3, LIE 1, we also have the equivalent
defining property

DIV 2. Z:Q = (diva(&))Q.
Directly from DIV 2 and LIE 2, we get for any functions ¢, f-
DIV 3. divg(pé) = ¢ diva(E) + & - .
DIV 4. df A (Qo&)=(&- Q.
Proof. First we have Z:(fQ) = (¢- [)Q+ f diva(£)Q, and second,

Le(fQ) =d(fQol)=df A (Qol)+[d(QoQ)
=df A (Qoé)+ f divg()Q.
Then DIV 4 follows from these two expressions.
One can define an orientation on the general vector space T depend-

ing on the non-singular form Q. Of course in general, we don’t have
the notion of orthogonality. But we say that a basis {vj,...,v,} of
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T is positively oriented, or simply oriented, with respect to Q if
Qvy,...,v,) > 0. Let Q, ¥ be volume forms. We say that they have the
same orientation, or that they are positive with respect to each other, if
there exists a positive function / such that Q = A%¥Y. Forms with the same
orientation define the same orientation on bases. A manifold which
admits a volume form is said to be orientable, and the class of volume
forms having the same orientation is said to define the orientation.

Let 6 be a positive function on X, and let ¥ be a volume form. Then:

DIV 5. divey (&) = (£ - log o) + dive(&).

Proof. By Proposition 5.3 of Chapter V, LIE 1, we have

d(O¥ 0 &) = L:(0W) = (&-0)07'0F +0.L:(P)
= (& - log 0)(0%W) + 0 dive (&),

which proves the formula.

The divergence in a chart

Next we obtain an expression for the divergence in a chart. Let U be
an open set of a chart for X in R” with its standard unit vectors uy, ..., u,.
There exists a function 6 never 0 on U such that in this chart,

Q=0dx; A - Adx,.

Suppose U is connected. Then we have 6 > 0 on U or 6 < 0 on U since Q
is assumed non-singular. For simplicity, assume J > 0.

Example. If Q = Q, is the Riemannian volume form, then
5 = (det g)'/%.
In other words,
1/2
Qy(x) = (det g(x)) " dx; A -+ A dx,.

Here g(x) denotes the matrix representing g with respect to the standard
basis of R”.

We write ¢ in the chart U as a linear combination

¢ = Z Qu;
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with coordinate functions ¢,,...,¢,. We let 0; be the i-th partial deri-
vative. We write the coordinate vector of ¢ vertically, that is

?1
?n
We let ‘Dg be the row vector of operators

Mg = (0) + 1 log b, ...,0, + 0, log o).

Proposition 2.5.
divg £ =6"">" 0i(dp,)

= Z 0ip; + Z (0 log 6)g;.
In matrix form,
divg & = "D®; or also divo =67 "D o 4.
Proof. We have
(Qo&)(uy,y ...yt uy) =QE Uy, .o llyy .. tty)

= (=D"'Quy, .. E )
= (*1)i715¢i-

Hence

Qo) =D (=1)""0, dxi A -+ Adx; A oo A dxy,
and since ddx; =0 for all j, we obtain
d(Qo&) =" (=1)""0:0p,) dxi A dxi A - Adx; A A dx,
= Z(’Jf(é(p,) dx; A -+ Adxy,
="' 0:(0p)Q.
This proves the proposition.

We return to the gradient, for which we give an expression in local
coordinates, with an application to the Laplacian.
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Proposition 2.6. Let gr(y) => ou;. Let g(x) be the nxn matrix
representing the metric at a point x. Then the coordinate vector of gr(y)
is

1 oy
o= : | =g :
(on 6}1‘//
In other words,
=g oy,
where 0 is the vector differential operator such that '0 = (0y,...,0,).

Proof. By definition,
(gr(¥), ), = (dp)(w;) = 0.
The left side is equal to (gr(y), g(x)u;) at a point x. Note that here the
scalar product is the usual dot product on R”, without the subscript g.

The formula of the proposition then follows at once.

Proposition 2.7. Let f and y be function, and let gr(y) = > gu; as in
Proposition 2.6. Then

o) £ =5 (00
=

Proof. Since u;- f = 0;f, the formula is clear.

From Propositions 2.5 and 2.6, we obtain the coordinate representation
of the Laplacian via a matrix:

Proposition 2.8. On an open set of R", with metric matrix g, 6 =
(det 9)'/, and Laplacian Ay, we have

— Ay =div, gr, = "Dyg 0
=o' 105,'0.

Here, D, abbreviates Dq,, and div, abbreviates divq, .

Putting all the indices in, we get

(1) A =0T 4 (62 g”@f’)
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where in classical notation, g~'(x) is the matrix (¢%(x)) for x e R”. Using
the rule for the derivative of a product, we write (1) in the form

2) A= 9100 + LS,

i, j=1

where L, is a first-order differential operator, that is a linear combination
of the partials 0y,...,0d, with coefficients which are functions, depending
on g. From this expression, we see that the matrix g~' = (g¥) is the
matrix of the second-order term, quadratic in the partials 0;, J;. Hence we
obtain:

Theorem 2.9. Let X be a Riemannian manifold. Then the Laplacian
determines the metric, i.e. if two Riemannian metrics have the same
Laplacian, they are equal. If F: X — Y is a differential isomorphism of
Riemannian manifolds, and F maps Ay on Ay, that is F commutes with
the Laplacians, then F is an isometry.

Note that the second statement about the differential isomorphism is just a
piece of functorial abstract nonsense, in light of the first statement. Indeed,
F maps the metric gy to a metric F.gxy on Y, and similarly for the
Laplacian. By assumption, F,Ay = Ay. Hence Ay is the Laplacian of gy
and of F.gy, so gy = F.gy by the first statement in the theorem.

Example. Let 4 =R" x --- x R be the product of positive multi-
plicative groups, taken n times, so we view 4 as an open subset of R”. We
let a denote the variable in 4, so a = “(ay,...,a,) with a; > 0. We identify
the tangent space T, A4 = T, with R” so a vector ve T, is an ordinary
n-tuple,

v="(c1,...,cn) with ci e R.

Let g be the metric on A defined by the formula

n

<U, U>a = Z Clz/a12
i=1
Then g is represented by the diagonal matrix g(a) = diag(a;?,...,a;?),
that is

(v, v), = (v, g(a)v),

where the scalar product without indices denotes the standard scalar
product on R”. Then

8(a) = det g(a)'* = f[a,.—' —d(a)™
i=1
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where d(a) =a;---a, is the product of the coordinates. Thus for a
function  on A4, we have the explicit determination for the gradient,

(1) (g4 ¥)(a) = g(a)~ 0y = ({0, ... a;00) ().
The Laplacian A4 from Proposition 2.8 is seen to be
(2) 7AA = Z a,-@,- -+ Z alzﬁlz
i=1 i=1
This comes from matrix multiplication,
d(a)flalzal
d(a)(01,...,0,) :
d(a)"'a2o,

X, §3. THE DIVERGENCE THEOREM

Let X be an oriented manifold of dimension n possibly with boundary, and
let Q be an n-form on X. Let & be a vector field on X. Then dQ =0, and
hence the basic formula for the Lie derivative (Chapter V, Proposition 5.3)
shows that

ZL:Q=d(Qol).

Consequently in this case, Stokes’ theorem yields:

Theorem 3.1 (Divergence Theorem).

Remark. Even if the manifold is not orientable, it is possible to use the
notion of density to formulate a Stokes theorem for densities. Cf. Loomis—
Sternberg [LoS 68] for the formulation, due to Rasala. However, this
formulation reduces at once to a local question (using partitions of unity
on densities). Since locally every manifold is orientable, and a density
then amounts to a differential form, this more general formulation again
reduces to the standard one on an orientable manifold.

Suppose that (X, g) is a Riemannian manifold, assumed oriented for
simplicity. We let Q or vol, be the volume form defined in §2. Let w be
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the canonical Riemannian volume form on dX for the metric induced by
g on the boundary. Let n, be a unit vector in the tangent space T.(X)
such that u is perpendicular to Tx(0X). Such a unit vector is determined
up to sign. Denote by n its dual functional, i.e. the component on the

X
projection along mn,. We select n, with the sign such that

n) A o(x)=Q(x).

We then shall call n, the unit outward normal vector to the boundary at x.
In an oriented chart, it looks like this.

w(z)

Then by formula CON 3 of Chapter V, §5 we find
Qoé=mEw—n" A (wol),
and the restriction of this form to 0X is simply (n, {)w. Thus we get:

Theorem 3.2 (Gauss Theorem). Let X be a Riemannian manifold. Let o
be the canonical Riemannian volume form on 0X and let Q be the
canonical Riemannian volume form on X itself. Let n be the unit outward
normal vector field to the boundary, and let & be a C' vector field on X,
with compact support. Then

Jx(din HA = J (n, &)w.

1.4

The next thing is to show that the map d* from §2 is the adjoint for
a scalar product defined by integration. First we expand slightly the
formalism of d* for this application. Recall that for any vector field &, the
divergence of & is defined by the property

(1) d(vol, o &) = (div &)vol,,.
Note the trivial derivation formula for a function ¢:

(2) div(p¢) = ¢ div < + (do) (<)
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If 2 is a 1-form, ie. in TL'(TX) = .«'(X), we have the corresponding
vector field £, = 1Y uniquely determined by the condition that

(S m)y = Aln) for all vector fields #.
For a 1-form A4, we define the operator
d*: 4" (X) — #°(X)=Fu(X) by d'i=—divé,
s0 by (1),
(3) (d*2) vol, = d(voly 0 &)).
We get a formula analogous to (2) for d*, namely
4) d*(pl) = pd*2 — (dg, ).

Indeed, d*(p2) = —div ¢, = —div(pd;) = —p divE; — (dp)(&;) by (2),
which proves the formula.

Let 2, we /' (TX). We define the scalar product via duality
(4, )y = (&), o)y
Then for a function ¢ we have the formula
(5) (do, 2),voly = (pd*2) vol, — d(voly o ¢&;).

Indeed,
(dg, 2),voly = [p d*7 — d"(pA)] vol, by (4)
= (pd*2)voly — d(vol, o p&;) by (3)

thus proving (5). Note that the congruence of the two forms (dg, ), vol,
and (@d*Z)vol, modulo exact forms is significant, and is designed for
Proposition 3.3 below.

Observe that the scalar product between two forms above is a function,
which when multiplied by the volume form vol, may be integrated over
X. Thus we define the global scalar product on 1-forms with compact
support to be

(A, a)>(X’ g = (Ao)y = JX</1, a)>g voly.

Applying Stokes’ theorem, we then find:
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Proposition 3.3. Let (X, g) be a Riemannian manifold, oriented and
without boundary. Then d* is the adjoint of d with respect to the global
scalar product, i.e.

(do, )y = (9, d" 2)x.
We define the Laplacian (operating on functions) to be the operator
A=d"d.

For a manifold with boundary, we define the normal derivative of a
function ¢ to be the function on the boundary given by

an »= <n7 gd(p>g = <n7 gradg ¢>g

Theorem 3.4 (Green’s Formula). Ler (X, g) be an oriented Riemannian
manifold possibly with boundary, and let ¢, \y be functions on X with
compact support. Let w be the canonical volume form associated with the
induced metric on the boundary. Then

|| ons—waoyvol, == | (p0uw—vinoyo

¢
Proof. From formula (4) we get
d*(p dp) = oAy — (dp, diy),,
whence

PAY — YAp = d*(p diy) — d* (Y dp)
= —div(p dy) + div(y dg).

We apply Theorem 3.2 to conclude the proof.

Remark. Of course, if X has no boundary in Theorem 3.7, then the
integral on the left side is equal to 0.

Corollary 3.5 (E. Hopf). Let X be an oriented Riemannian manifold
without boundary, and let f be a C* function on X with compact support,
such that Af 20. Then f is constant. In particular, every harmonic

function with compact support is constant.

Proof. By Green’s formula we get

J Af vol, = 0.
b
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Since Af =0, it follows that in fact Af =0, so we are reduced to the
harmonic case. We now apply Green’s formula to f2, and get

0= J Af? vol, = J 2fAf vol, — J 2(grad f)*vol,.
X X X

Hence (grad f)* =0 because Af =0, and finally grad f =0, so df =0
and f is constant, thus proving the corollary.

X, §4. CAUCHY’S THEOREM

It is possible to define a complex analytic (analytic, for short) manifold,
using open sets in C” and charts such that the transition mappings are
analytic. Since analytic amps are C*, we see that we get a C* manifold,
but with an additional structure, and we call such a manifold complex
analytic. It is verified at once that the analytic charts of such a manifold
define an orientation. Indeed, under a complex analytic change of charts,
the Jacobian changes by a complex number times its complex conjugate,
so changes by a positive real number.
If zy,...,z, are the complex coordinates of C”, then

(Z1, 3 Zny 21y -5 2n)

can be used as C® local coordinates, viewing C" as R”. If z; = x; + Vi,
then
dzy = dx + i dyy and dzi = dx; — i dyy.

Differential forms can then be expressed in terms of wedge products of the
dz; and dZz,. For instance

dzi A dZ =20 dyg A dxy.

The complex standard expression for a differential form is then
w(z) = Z¢<i7_/)(z) dziy A -+ Ndzi A dZi A - AdEL
(i, )

Under an analytic change of coordinates, one sees that the numbers r and
s remain unchanged, and that if s = 0 in one analytic chart, then s = 0 in
any other analytic chart. Similarly for ». Thus we can speak of a form of
type (r, s). A form is said to be analytic if s =0, that is if it is of type
(r, 0).

We can decompose the exterior derivative d into two components.
Namely, we note that if w is of type (r, s), then dw is a sum of forms of
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type (r+1,s) and (r, s+ 1), say

do = (dw) .y g+ ([do), )
We define
(36() - (dw)(r+l’ S) and 560 = (da))(r s+1)'

In terms of local coordinates, it is then easy to verify that if w is decom-
posable, and is expressed as

o(z) =p(z)dziy A -~ ANdzij, A dZj A -+ ANdZ = 0D,

then

0 .
awzza—idzk/\w.

and

_ 0 5
ﬁwzza—;idfk/\w.

In particular, we have

o _ Yo 0N g S _1fo. .
aZk_2 Oxy 0Vk afk_2 Oxy OVk '

(Warning: Note the position of the plus and minus signs in these
expressions.)

Thus we have ~
d=0+0,

and operating with @ or d follows rules similar to the rules for operating
with d.

Note that f is analytic if and only if df = 0. Similarly, we say that a
differential form is analytic if in its standard expression, the functions ¢; ;
are analytic and the form is of type (r, 0), that is there are no dZ; present.
Equivalently, this amounts to saying that dw = 0. The following extension
of Cauchy’s theorem to several variables is due to Martinelli.

We let |z| be the euclidean norm,
|zl = (2121 + -+ + za20) 2.

Theorem 4.1 (Cauchy’s Theorem). Let f be analytic on an open set in C"
containing the closed ball of radius R centered at a point {. Let

or(z) =dzi A - Adzg ANdZIA - NdZR A -2 AdZ,
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and n

o(z) =Y (=) zan(2).

k=1

Let Sr be the sphere of radius R centered at {. Then

NIV IC I
1O = g | et =0

where e(n) = (—1)""D/2,

Proof. We may assume { = 0. First note that
do(z) =Y (~D)*dzi A ox(z) = (=1)"'ndz & dz,
k=1
where dz = dzy A --- Adz, and similarly for dZ. Next, observe that if

W =18

- |Z|2I1

o(z),
then
dy = 0.

This is easily seen. On the one hand, 0y =0 because w already has
dzy A -+ Adz,, and any further dz; wedged with this gives 0. On the other
hand, since f is analytic, we find that

éwazf@w<ﬁ2>=0

|z

by the rule for differentiating a product and a trivial computation.
Therefore, by Stokes’ theorem, applied to the annulus between two
spheres, for any r with 0 <r < R we get

JSRlpJS,.l/I :0’

or in other words,

| ro9d-] o2
Sk |z] s, ||
= |, 1@

Using Stokes’ theorem once more, and the fact that dw = 0, we see that
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this is
p2n : ® p2n : @.

We can write f(z) = f(0) + g(z), where g(z) tends to 0 as z tends to 0.
Thus in taking the limit as r — 0, we may replace f by f(0). Hence our
last expression has the same limit as

f05] do=r105 | 1t

)

But
dz Adz=(=1)"""D2m2m gy Adxy A Adyy A dix,.
Interchanging dy; and dx; to get the proper orientation gives another

contribution of (—1)", together with the form giving Lebesgue measure.
Hence our expression is equal to

SO (20" (),

where V(B,) is the Lebesgue volume of the ball of radius r in R*", and is
classically known to be equal to n”7*"/n!. Thus finally we see that our
expression is equal to

This proves Cauchy’s theorem.

X, §5. THE RESIDUE THEOREM

Let f be an analytic function in an open set U of C". The set of zeros of
fis called a divisor, which we denote by ' = V’y. In the neighborhood of
a regular point a, that is a point where f(a) = 0 but some complex partial
derivative of f is not zero, the set V' is a complex submanifold of U. In
fact, if, say, D, f(a) # 0, then the map

(Zla"'vzn) = (Zla"'vzn—lvf(z))

gives a local analytic chart (analytic isomorphism) in a neighborhood of
a. Thus we may use f as the last coordinate, and locally ¥ is simply
obtained by the projection on the set f = 0. This is a special case of the
complex analytic inverse function theorem.
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It is always true that the function log | f| is locally in #'. We give the
proof only in the neighborhood of a regular point a. In this case, we can
change f by a chart (which is known as a change-of-variable formula),
and we may therefore assume that f(z) = z,. Then log|f| = log |z,|, and
the Lebesgue integral decomposes into a simple product integral, which
reduces our problem to the case of one variable, that is to the fact that
log|z| is locally integrable near 0 in the ordinary complex plane. Writing
z=re'’, our assertion is obvious since the function rlogr is locally
integrable near 0 on the real line.

Note. In a neighborhood of a singular point the fastest way and
formally clearest, is to invoke Hironaka’s resolution of singularities, which
reduces the question to the non-singular case.

For the next theorem, it is convenient to let

1 _
C=_—(0—-0).
4ni( )

Note that

c_i )
dd¢ = 27[06.

The advantage of dealing with d and d¢ is that they are real operators.

The next theorem, whose proof consists of repeated applications of
Stokes’ theorem, is due to Poincaré. It relates integration in V" and U by a
suitable kernel.

Theorem 5.1 (Residue Theorem). Let f be analytic on an open set U of
C" and let V be its divisor of zeros in U. Let y be a C* form with
compact support in U, of degree 2n — 2 and type (n—1,n—1). Then

JV v = JU log | /| dd‘y.

(As usual, the integral on the left is the integral of the restriction of Y to
V, and by definition, it is taken over the regular points of V.)

Proof. Since  and dd“yy have compact support, the theorem is local
(using partitions of unity). We give the proof only in the neighborhood of
a regular point. Therefore we may assume that U is selected sufficiently
small so that every point of the divisor of fin U is regular, and such that,
for small ¢, the set of points

U={zeU, |f(2)| 2z ¢
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is a submanifold with boundary in U. The boundary of U, is then the set
of points z such that |f(z)] = €. (Actually to make this set a submanifold
we only need to select ¢ to be a regular value, which can be done for
arbitrarily small ¢ by Sard’s theorem.) For convenience we let S, be the
boundary of U,, that is the set of points z such that |f(z)| =e.

Since log | f] is locally in %!, it follows that

J log | ] dd"lpzlimj log | f] dd*y.
U. c—0 U.

Using the trivial identity

d(log |f| dY) = d log | f| A dY +log | f] dd*y,

we conclude by Stokes’ theorem that this limit is equal to

limU 10g|f\d"¢—J dlog |f| A dY|.
e—0 S. U.

The first integral under the limit sign approaches 0. Indeed, we may
assume hat f(z) =z, = re’’. On S, we have |f(z)| = ¢, so log | f| = log .
There exist forms ,, ¥, in the first n — 1 variables such that

dY =y Adzy + Y, A dZy,
and the restriction of dz, to S, is equal to
eie'? do,

with a similar expression for dz,. Hence our boundary integral is of type

e log eJ o,
Se

where w is a bounded form. From this it is clear that the limit is O.
Now we compute the second integral. Since y is assumed to be of type
(n—1,n—1) it follows that for any function g,

0g A Oy =0 and dg A 0y = 0.

Replacing d and d¢ by their values in terms of @ and 4, it follows that

—J dlog |f] /\d"tﬁzj d¢log |f| A dy.
U, U

e
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We have
d(d* log | /] A ) = dd* log | f| A Y — d* log | /] A d.

Furthermore dd* is a constant times 00, and dd® log | f |2 =0 in any open
set where f # 0, because

00 log | f|* = 00 (log f + log f) =0

since dlog f = 0 and 0 log f = 0 by the local analyticity of log /. Hence
we obtain the following values for the second integral by Stokes:

jU d<1og |1 A dis = L d<tog [ A .

Since

d*log | = (0 — §)(log f +log /)

(always assuming f(z) =z,), we conclude that if z, =re’’, then the
restriction of d¢log |f|?> to S, is given by

ress, d°log f = ?
T

Now write  in the form
Y=y, +y¥,

where /| contains only dz;, dZ; for j=1,...,n—1 and , contains dz, or
dz,. Then the restriction of i, to S, contains d0, and consequently

; 2 [ 40
L‘d log | f] /\lP—Ltzn A (| Se)-

The integral over S, decomposes into a product integral, we respect to the
first n — 1 variables, and with respect to df. Let

(n-1)
J Vi(2)]Se = 9(zn).



[X, §5] THE RESIDUE THEOREM 241
Then simply by the continuity of g we get
1 2n )
lim —J g(ee'?) do = ¢(0).

e—0 27 0

Hence

. do
im [ 52 A GIs)=] v

Zn

But the restriction of ¥, to the set z, = 0 (which is precisely V) is the same
as the restriction of y to V. This proves the residue theorem.
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atlas 20

automorphism 3

B

base space 38
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decomposable 118, 119

degenerate block 184
247



248 INDEX

dependence on parameters 66 gradient 135, 224
de Rham cohomology 215 Green’s formula 233
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Frobenius theorem 145
frontier 207 Laplace operator 223, 233
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operations on vector bundles 52
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oriented volume 185

outward normal 231

P

paracompact 31
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parametrized by arc length 176

partial derivative 8

partition of unity 31

Poincaré lemma 126
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positive definite 159

projection 16
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pseudo Riemannian manifold 160
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R
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refinement 31

regular 208
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residue theorem 238
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Sard theorem 182

second-order differential equation
86

second-order vector field 85

section 3

semi Riemannian 162
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singular 208
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transversal 27, 28 volume form 199, 221
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