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Introduction 

The purpose of this monograph is to develop the de Rham cohomology 
theory, and to apply it to obtain topological invariants of smooth 
manifolds and fibre bundles. 

In  the de Rham theory, the real cohomology algebra of a smooth 
manifold is constructed by means of the calculus of differential forms, 
which, in turn, is the natural global version of the usual differential 
calculus in R". Because of this approach, our principal technique is 
the following one: 

First, establish local analytic properties in R". 
Second, piece these together to prove global results about differential 

Finally, pass to cohomology to obtain topological properties. 
forms on a manifold. 

This interplay between local and global phenomena is of fundamental 
importance in the book, and leads to the major results of the later 
chapters. The  Euler-PoincarC-Hopf theorem is a prime instance; it 
states that on a compact manifold the index sum of a vector field equals 
the alternating sum of the Betti numbers. 

Although the final results are largely taken from algebraic topology, 
with only one exception, no formal algebraic topology (simplices, 
homology and homotopy groups, etc.) is included in the text, nor is 
any prior knowledge of the subject assumed. (In the proof of the 
de Rham theorem in article 7, Chapter V, simplicia1 complexes are 
introduced; the subsequent development, however, is independent of 
this article.) 

The  contents are organized as follows: In  the first four chapters we 
introduce manifolds and vector bundles and develop both the differential 
and integral calculus of differential forms. This is applied in Chapters V 
and VI to yield the basic properties of de Rham cohomology. In  
particular, PoincarC duality and the theory of mapping degree are 
presented as applications of integration. 

... 
XI11 
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In  Chapter VII the partial integral, J f ( x , y )  dy, appears as an 
intrinsic analytic operator associated with smooth fibre bundles. This 
fibre integral of Chern and Spanier is the main tool in Chapters VIII-X, 
which culminate in the Euler-PoincarCHopf formula and the Lefschetz 
fixed point theorem. (A more detailed description of the contents 
follows below.) 

A plentiful supply of problems of varying difficulty accompanies the 
text. They introduce a considerable amount of additional material; 
however, they are never used in the proofs in the text. 

All the material in this exposition is either in the literature or is 
well-established folklore. Nevertheless we have not attempted to 
associate with the theorems the names of their discoverers, except where 
this is already common usage. 

This monograph is intended for graduate students in mathematics, 
especially those interested in global analysis or differential geometry. 
In  particular, it could be used as a text or reference for an introductory 
course on manifolds. I t  presupposes a solid background in linear and 
multilinear algebra, and in the calculus of several real variables. The  
reader should also be familiar with elementary facts about rings and 
modules, as well as the rudiments of point set topology. 

Aside from these prerequisites, and two individual quotations, the 
book is completely self-contained. One such quotation (Sard’s theorem) 
is developed in the problems, while the other (existence of simple 
covers) occurs in article 7, Chapter V. 

Every chapter consists of a number of articles which are further 
divided into sections. The  sections, theorems, propositions, and lemmas 
are individually and consecutively numbered within each chapter. 

In  general, the reader should follow the order of presentation. 
However, sec. 1.2 contains only point set topology and could be 
omitted; the reader would then take Theorem I of that section for 
granted. Moreover, the detailed exposition of vector bundles in 
Chapter I1 has been placed at the beginning so that it could be used as 
needed. The  reader might omit articles 2, 4, and 5 of this chapter, 
and return to them only when necessary for reference. 

This volume will be followed by volume 11 (Lie groups and the 
Chern-Weil theory of characteristic classes) and volume I11 (cohomology 
of principal bundles and homogeneous spaces). 

Chapter 0. This is a summary of the algebra, analysis, and point 
set topology which is used throughout the book. Notation and definitions 
are fixed, and (with the exception of really basic material) all the results 
to be quoted later are explicitly stated, with references. 
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Chapter I. Basic Concepts. Manifolds and fibre bundles are 
defined in this chapter. In article 1 the basic properties of topological 
manifolds are established; the fundamental result is the “finite atlas” 
theorem (Theorem I, sec. 1.2). 
/Its proof is based on the following observation (Proposition 11, 

sec. 1.1): If a basis for the topology of a manifold is closed under finite 
unions and countable disjoint unions, then it contains every open set. 
The same technique is used later to establish the PoincarC isomorphism 
(sec. 5.12), the Kunneth isomorphism (sec. 5.19), and the Thom 
isomorphism (sec. 9.1). 

Smooth manifolds and smooth maps are introduced in article 2. 
The examples (spheres, products, etc.) and concepts (homotopy, parti- 
tions of unity) reappear throughout the book. 

Finally, smooth fibre bundles, (E, r, B, F), are defined in article 3; 
r, the projection, is a smooth map from the total space E to the base 
space B; and for each x E B the jibre over x, r - l ( x ) ,  may be identified 
with the smooth manifold, F (typical fibre). 

Chapter 11. Vector Bundles. Vector bundles and bundle maps 
are defined in article 1. Of particular importance is the construction 
principle (sec. 2.5) and its application to pull-backs (sec. 2.6). Article 2 
is devoted to extending the basic constructions of linear and multilinear 
algebra to vector bundles. 

In article 4 we discuss orientations, Riemannian metrics, and complex 
structures in vector bundles. 

In article 5 it is shown that the module of cross-sections in a vector 
bundle is finitely generated and projective (theorem of Swan). The 
corollaries of this result are quoted extensively in Chapter 111. The 
existence of a Riemannian metric is used to show that every vector 
bundle is a direct summand of a trivial bundle. 

Chapter 111. Tangent Bundle and Differential Forms. In 
article 1 the tangent bundle of a smooth manifold is defined; the deriva- 
tive of a smooth map appears as a bundle map between the corresponding 
tangent bundles. The inverse function theorem is translated into bundle 
language in article 2; its applications to submanifolds are cited frequently 
in the following chapters. 

Vector fields on a manifold are introduced in article 3 as cross- 
sections in the tangent bundle. It is shown that the module of vector 
fields is canonically isomorphic to the module of derivations in the ring 
of smooth functions. This article also contains the Picard theorem for 
ordinary differential equations, restated in the terminology of vector fields. 
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Differential forms (defined in article 4) are among the fundamental 
analytic objects treated in the book. They are the cross-sections in the 
exterior algebra bundle of the dual of the tangent bundle, and they 
form a graded anticommutative algebra. In particular, differential forms 
of degree n are used in article 5 to study orientations on n-manifolds. 

Chapter IV. Calculus of Differential Forms. Article 1 deals 
with the differential calculus on manifolds. Three basic operators are 
introduced: the substitution operator (sec. 4.1 ), the Lie derivative 
(sec. 4.2), and the exterior derivative (sec. 4.3). The first maps p-forms 
to ( p  - 1)-forms by evaluation on a given vector field. The second 
differentiates a p-form in the direction of a vector field, while the third 
generalizes the notion of gradient to differential forms of higher degree. 

In article 2 we consider the derivative and integral of a I-parameter 
family of.differentia1 forms-with respect to the (real) parameter. This 
is employed later to prove Stokes' theorem (article 4) and to study 
homotopy properties (sec. 5.2). 

The integral is a canonical linear function in the space of compactly 
supported n-forms on an oriented n-manifold. It is constructed in 
article 3 by glueing together local Riemann integrals via a partition 
of unity. It is shown that the basic properties of the Riemann integral 
continue to hold. 

In article 4 Stokes' theorem is established for the annulus and the 
n-ball. The general form of the theorem for manifolds-with-boundary 
(as well as the definition of these manifolds) is left to the exercises. 

Chapter V. De Rham Cohomology. The exterior derivative 
converts the algebra of differential forms on a manifold into a graded 
differential algebra. The corresponding cohomology is called the de Rham 
cohomology algebra. 

In article 1 it is shown that the de Rham cohomology satisfies the 
dimension, homotopy, disjoint union, and Mayer-Vietoris axioms. In 
article 2 various examples (retracts, PoincarC lemma, cohomology of Sn, 
and RP") are discussed. In article 3 everything is done again (with the 
appropriate modifications) for differential forms with compact carrier. 

In article 4 the integral is used to establish the PoincarC duality 
theorem for a smooth orientable manifold. This theorem is applied in 
article 5 (sec. 5.13 and 5.14) to determine the nth de Rham cohomology 
space for any n-manifold (orientable or nonorientable). In sec. 5.15 the 
duality theorem is used to show that a compact manifold has finite- 
dimensional de Rham cohomology. 

The de Rham cohomology of the product of two manifolds is computed 
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in article 6 (Kunneth theorems). In article 7 one version of the de Rham 
theorem is established. The results of this article are not quoted 
elsewhere in the book. 

Chapter VI. Mapping Degree. The degree of a smooth map 
between compact, connected, oriented n-manifolds is defined in article 1. 
It is shown that it is always an integer (Theorem I, sec. 6.3). 

In article 3 we define the local degree of a smooth map between 
oriented n-manifolds at an isolated point. If both manifolds are compact 
and connected, then the degree of the map is the sum of the local degrees 
(Theorem 11, sec. 6.13). The definitions and results of article 3 depend 
on a canonical linear map introduced in article 2. 

In article 4 the smooth version of the Hopf theorem is proved: Two 
smooth maps t,h, tp : Sn -+ Sn which have the same degree are smoothly 
homotopic. This result is applied in Chapter VIII, Proposition VII, 
sec. 8.10. 

Chapter VII. Integration over the Fibre. This chapter deals 
with a general smooth bundle &? = (E, T, B,F) .  The notion of an 
orientation of a is defined in article 2. In  article 3 it is shown that 
in the case of a vector bundle this definition coincides with that given 
in sec. 2.16. 

The fibre integral in an oriented bundle, &? = (E, T, B, F), is defined 
in article 5; it is a surjective linear map from the forms with fibre 
compact support on E to the forms on B. The derivation of its funda- 
mental properties (commuting with the exterior derivative, naturality, 
Fubini theorem) is the object of this article. 

Chapter VIII. Cohomology of Sphere Bundles. In article 1 the 
fibre integral is applied to an oriented r-sphere bundle 99 = (E, T, B, Sr) 
to obtain the Gysin sequence and the Euler class, xs E Hr+l(B). The 
Euler class is a fundamental global invariant associated with the sphere 
bundle; together with H(B) ,  it determines the cohomology of E 
(sec. 8.4). 

In article 3 we consider r-sphere bundles, where dim B = Y + 1, 
and E is oriented. Then, to every isolated singularity a of a cross- 
section, u, an integer, ja(u), called the index of (T at a, is assigned. 

If B is compact and oriented and dim B = r + 1, the Euler class, 
xr%, can be integrated over B to yield a real number. The  main theorem 
of this chapter (article 4) is a fundamental global-local result. I t  states 
that 
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where u is any cross-section with finitely many singularities. In  article 5,  
finally, it is shown that such cross-sections always exist. 

Chapter IX. Cohomology of Vector Bundles. In this chapter 
we consider vector bundles .$ = ( E ,  n, B , F ) .  In  article 1 it is shown 
that in an oriented vector bundle the fibre integral induces an isomor- 
phism from the fibre-compact cohomology of E to the cohomology of B. 
The inverse of this isomorphism is the Thom isomorphism, Th. 
The cohomology class Th(1) is a fundamental global invariant of the 
vector bundle, which is intimately related to the Euler class of the 
sphere bundle associated with .$ via a Riemannian metric (article 2). 

In  article 3 the index of a cross-section at an isolated zero is defined 
(for vector bundles whose fibre dimension is equal to the base dimension). 
With the aid of the Thom class, Th(l), this index is expressed as an 
integral over the base. Finally the theorems of Chapter VIII are applied 
to show that the index sum of a cross-section with finitely many zeros 
is the integral of the Euler class over the base. 

Chapter X. The Lefschetz Class of a Manifold. In this chapter 
the results of Chapters VIII and IX are applied to the tangent bundle 
of a compact manifold. The  goal of article 1 is to prove that the index 
sum of a vector field with finitely many zeros equals the Euler-PoincarC 
characteristic of the underlying manifold. 

Articles 2 and 3 deal with coincidence theory. Two smooth maps 
v : M -+ N ,  + : M -+ N have a E M as a coincidence point if rp(a) = +(a). 
If M and N are oriented n-manifolds, we associate an integer La(v, +) 
with each isolated coincidence point a (article 3). On the other hand, 
if M and N are compact n-manifolds, the Lefschetz number L(v, +) 
is defined by 

where 'pp : H p ( N )  -+ Hp(M) is the map induced by q~ and @' is the 
PoincarC dual of +"-P (article 2). 

The  chapter closes with the coincidence theorem in article 3 which 
states that if two maps v, + between compact oriented n-manifolds 
have only finitely many coincidence points, then 

1 La(q, $1 = 4 ~ 9 ,  +I* 
a 

If N = M and + = L ,  this result reduces to the Lefschetz fixed 
point theorem. 
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Chapter 0 

Algebraic and Analytic Preliminaries 

SI. Linear algebra 

0.0. Notation. Throughout this book l x  denotes the identity map 
of a set X. When it is clear which set we mean, we write simply 1. If 
Umi ( i  = I ,  ..., r )  are subsets of X, then U.,., ...., denotes their intersection. 
The empty set is denoted by O .  

The symbols N, Z, Q, R, and C denote the natural numbers, integers, 
rationals, reals, and complexes. 

0.1. We shall assume the fundamentals of linear and multilinear 
algebra. We will consider only real vector spaces (except for the 
occasional complex space). 

A pair of dual vector spaces is denoted by E*, E and the scalar product 
between E* and E is denoted by ( , ). If F C E, then 

FL = { y *  E E* I ( y * ,  F )  = O}. 

The dual of a linear map 'p: E + F is denoted by 'p*. A direct sum of 
spaces EP is denoted 

C E p  or B V E V .  
V 

The determinant and the trace of a linear transformation 'p: E --t E 
are denoted respectively by det 'p, tr 'p. 

A determinant function in an n-dimensional vector space is a nonzero 
skew-symmetric n-linear function. Every nonzero determinant function 
A, in a real vector space defines an orientation. 

Given two vector spaces E and F, we shall denote by L ( E ; F )  the 
space of linear maps E + F. L ( E ;  E )  will also be denoted by LE . Finally 
if El , ..., Ep , and F are vector spaces, L(El , ..., Ep ; F )  denotes the 
space of p-linear maps El x x Ep --f F. 

The group of linear automorphisms of a vector space E will be denoted 
by GL(E).  

1 
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A Euclidean space is a finite-dimensional real space, together with a 
positive definite inner product (also denoted by ( , )). A Hermitian space 
is a finite-dimensional complex space together with a positive definite 
Hermitian inner product (also denoted by ( , )). 

If F is a real vector space, make F" = @ OF into a complex space by 
setting 

F" is called the complexijcation of F.  
If ( , ) is a positive definite inner product in F ,  then 

( a  0 X, P BY)" = ab(.r, y>, a, P E @, x, y E F  

defines a Hermitian metric in F". 
An indefinite inner product in a finite-dimensional real vector space E 

is a non degenerate symmetric bilinear function ( , ). If E ,  is a maximal 
subspace in which ( , ) is positive definite, then E = E,  @ El, .  'The 
integer 

aim E ,  - dim E t  

is independent of the choice of E ,  , and is called the siEnature of ( , ). 
The  symbol 8 denotes tensor over R (unless otherwise stated); 

for other rings R we write OR . 

0.2. Quaternions and quaternionic vector spaces. Let H be an orient- 
ed four-dimensional Euclidean space. Choose a unit vector e E H ,  and 
let K = e l ;  it is a three-dimensional Euclidean space. Orient K so that, 
if e,  , e 2 ,  e3 is a positive basis of K ,  then e, e,  , e 2 ,  e3 is a positive basis 
of H .  

Now define a bilinear map H x H + H by 

P4 = - ( p , s ) e  f P  x 4 9  

p e  = p ep, P E H, 

where x denotes the cross product in the oriented Euclidean space K.  
In  this way H becomes an associative division algebra with unit element 
e. It  is called the algebra o j  quaternions and is denoted by W .  The  vectors 
of W are called quaternions and the vectors of K are called pure quater- 
nions. 

P I 4 E K  

Every quaternion can be uniquely written in the form 

p = h e + q = h + q ,  AER, q E K .  
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h and q are called the real part  and the pure quaternionic part of p .  The 
conjugate p of a quaternion p = he f q is defined by p = he - q. The 
map p -+ j defines an automorphism of the algebra W called conjugation. 
The  product of p and j5 is given by p p  = 1 p l 2  e = I p 1,. 

Multiplication and the inner product in W are connected by the 
relation 

(PY, q r )  = 0, q x y ,  r > ,  P ,  4, y E W. 

In  particular, 

l P Y l  = I P I I Y I ,  P S Y E W .  

A unit quaternion is a quaternion of norm one. A pure unit quaternion 
q satisfies the relation q 2  = -e.  If (el , e2 , e3) is a positive orthonormal 
basis in K ,  then 

e1e2 = e3 , e2e3 = el , esel = e2 I 

0.3. Algebras. An algebra A over R is a real vector space together 
with a real bilinear map A x A -+ A (called product). A system of gener- 
ators of an algebra A is a subset S C A such that every element of A can 
be written as a finite sum of products of the elements of S. 

A homomorphism between two algebras A and B is a linear map 
q ~ :  A --+ B such that 

d X Y )  = d X )  d Y ) ,  X, Y E A. 

A derivation in an algebra A is a linear map 8: A .+ A satisfying 

@Y) = w r  + X W .  

A derivation which is zero on a system of generators is identically zero. 
If dl and 8, are derivations in A,  then so is 

More generally, let rp: A -+ B be a homomorphism of algebras. Then 
a pderivation is a linear map 8: A -+ B which satisfies 

o 8, - 8, o 8, . 

@Y) = 44 d Y )  + d X )  w. 
A graded algebra A over R is a graded vector space A = C,>,, A*, 

together with an algebra structure, such that 
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then A is called anticommutative. If A has an identity, and dim Ao = 1, 
then A is called connected. 

If A and B are graded algebras, then A @ B can be made into a 
graded algebra in two ways: 

(1) (x1 OYl)(% OYZ) = XlXZ 0 YlYZ 
(2) (x1 Or1)(x2 OY2) = (-l)*lPa XlX2 OYlYZ 

where x1 , x2 E A, y1 , yz  E B, deg y1 = qI , deg x2 = p ,  . The first algebra 
is called the canonical tensor product of A and B, while the second one is 
called the anticommutative or skew tensor product of A and B. If A and B 
are anticommutative, then so is the skew tensor product. 

An antiderivation in a graded algebra A is a linear map a: A 3 A, 
homogeneous of odd degree, such that 

a(xy) = a(x)y + ( - l ) P  xa(y), x E AP, y E A. 

If al and a2 are antiderivations, then a2 o a1 + a1 0 a2 is a derivation. 
If (Y is an antiderivation and 0 is a derivation, then (Y o 0 - 0 0 a is an 
antiderivation. 

The  direct product n, A, of algebras A, is the set of infinite sequences 
{(x.) 1 x, E A,}; multiplication and addition is defined component by 
component. The  direct sum x, A, is the subalgebra of sequences with 
finitely many nonzero terms. 

0.4. Lie algebras. A Lie algebra E is a vector space (not necessarily 
of finite dimension) together with a bilinear map E x E -+ E, denoted 
by [ , 3, subject to the conditions 

[x, x] = 0 

and 

“x,YI, 21 4- “8, XI, y ]  + [ [y ,  z], x] = 0, x, y ,  z E E 

A homomorphism of Lie algebras is a linear map v: E --f I; such that 

(Jacobi identity), 

.p([x, rl) = [pl(x), pl(r)l, x, Y E E. 

0.5. Multilinear algebra. The tensor, exterior, and symmetric alge- 
bras over a vector space E are denoted by 

0 E = 1 O P E ,  AE = C APE, V E  = C VPE. 
P a 0  v>o v>o 

(If dim E = n, A E  = x;=o APE.)  
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If F is a second space, a nondegenerate pairing between E* @F* 
and E Q F is given by 

(x* @ y *, x @ y) = (x*, x)( y *, y), x * E E*, y * E F*, x E E,  y E F. 

If E or F has finite dimension, this yields an isomorphism 
E* @ F* ( E  6 F)*.  In particular, in this case (OPE)*  

Similarly, if dim E < m, we may write ( A P E ) *  = APE*, (VqE)*  = 
VqE* by setting 

OPE*.  

(x*1 A A x**, x1 A A x,) = det((x*+, xi)) 

and 

( y * 1  v v y*p, y1 v v y,) = perm((y*"yj)), 

where "perm" denotes the permanent of a matrix. 

multilinear) functions in a space E are denoted by 
The algebras of multilinear (resp. skew multilinear, symmetric 

and 
S(E) = C S,(E). 

P>O 

and 

Here SP denotes the symmetric group on p objects, while E ,  = &1 
according as the permutation u is even or odd. 

If dim E < 00, we identify the graded algebras T ( E )  and @E* (resp. 
A(E)  and A E*, S ( E )  and V E*) by setting 

@(XI ..., x,) = (0, XI @ @ x,), 0 E ODE* 

Y(xl , ..., x,) = (Y, x1 A A x,), YE APE* 
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and 
X(x1, ..., xe) = ( X ,  x1 v ..* v x r ) ,  X E  V*E*. 

A linear map y :  E + F extends uniquely to homomorphisms 

@p: B E  + O F ,  AT: AE + AF, VT: V E  -+ VF. 

These are sometimes denoted by rpo, v,, , and vV . 

given by 
To each x E E we associate the substitution operator i ( x ) :  A ( E )  -+ A ( E ) ,  

(i(x)@)(xl 7 . . . I  xD-1) = @(x, xi , ..., x p - l ) ,  @ E A”(E) ,  P >, 1, 

i(x)@ = 0, @ E Ao(E) ,  

and the multiplication operator p(x):  A E -+ A E given by 

p(x)(a) = x A a, a E AE,  

i ( x )  is an antiderivation in A ( E )  and is dual to p(x).  



§2. Homological algebra 

0.6. Rings and modules. Let R be a commutative ring. If M ,  N are 
R-modules, then the tensor product M OR N is again an R-module (cf. 
[I ,  p. AII-561 or [2, $8, Chap. 31). If Q is a third R-module and if 
y :  M x N -+ Q is a map satisfying the conditions 

(1) d x  + Y ,  4 = d x ,  4 + d Y ,  u> 
(2) d x ,  u + v )  = d x ,  u )  + d x ,  v )  

(3) ?(Ax, 4 = d x ,  Xu) 

and 

for x, y E M ,  u, v E N ,  h E R, then there is a unique additive map 
$: M OR N -+Q such that 

y(x, u )  = #(x @ u) ,  x E M ,  u E N 

(cf. [ l ,  Prop. I(b), p. AII-511 or [2, 58, Chap. 31). If (iii) is replaced by 
the stronger 

 AX, U) = Ap(x, U) = p(x, Au), x E M ,  u E N ,  X E R, 

then $ is R-linear. 

HomR(M; R) is denoted by M*. A canonical R-linear map 
The  R-module of R-linear maps M -+ N is denoted by HomR(M; N ) .  

Ly: M* @ R  N + HOmR(M; N )  

is given by 

a ( f  @ u)(x)  = f ( x ) u ,  x E M ,  u E N ,  f~ M*. 

A module M is called free if it has a basis; M is called projective if 
there exists another R-module N such that M @ N is free. If M is 
projective and finitely generated, then N can be chosen so that M @ N 
has a finite basis. 

If M is finitely generated and projective, then so is M*,  and for all 
R-modules N ,  the homomorphism CY given just above is an isomorphism. 
In  particular, the isomorphism 

M* OR M 2- Hom,(M; M )  

I 
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specifies a unique tensor tM E M* BR M such that 

a( t ~ )  7 LM . 
I t  is called the unit tensorfor M .  

distinguished such that 
A graded module is a module M in which submodules MP have been 

M =  C MP. 
P>O 

The elements of MP are called homogeneous of degree p .  If x E MP, then 
p is called the degree of x and we shall write deg x = p .  

If M and N are graded modules, then a gradation in the module 
M OR N is given by 

( M O R N ) ‘ =  1 M”@RN*. 
p+q-r 

An R-linear map between graded modules, q: M + N ,  is called 
homogeneous of degree k ,  if 

v(MP) C NPfk, p 2 0 

An R-linear map which is homogeneous of degree zero is called a 

A bigraded module is a module which is the direct sum of submodules 

An exact sequence of modules is a sequence 

homomorphism of graded modules. 

M p q p  >, 0, q >, 0). 

Pi ... --+ Mi-, -% Mi ---+ __* a * * ,  

where the v6 are R-linear maps satisfying 

ker vt = Im vd-l , 
Suppose 

P1 Pn P3 M ,  __+ M ,  -+ M ~ - -  M~ 3 M ,  

+ O!*j + c+ 

is a commutative row-exact diagram of R-linear maps. Assume that the 
maps a1 , a, , a d ,  a6 are isomorphisms. Then the jiae-lemma states that 
a3 is also an isomorphism. 
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On the other hand, if 

0 0 0 

1 1  I 

1 1 1 

1 1 1 
0 0 0 

is a commutative diagram of R-linear maps with exact columns, and if 
the middle and bottom rows are exact, then the nine-lemma states that 
the top row is exact. 

An algebra over R is an R-module A together with an R-linear map 
A OR A --t A. In particular if M is any R-module, the tensor, exterior, 
and symmetric algebras over M are written OR M, A, M and, V R  M. 
If M is finitely generated and projective, there are isomorphisms, 
(0: M)* N - 0; M*, (A: M)* g A; M*,  (V: M)* V,P M*, defined 
in exactly the same way as in sec. 0.5. 

0.7. Differential spaces. A dzfferential space is a vector space X 
together with a linear map 6: X --t X satisfying a2 = 0. 6 is called the 
differential operator in X .  The elements of the subspaces 

Z ( X )  = ker 6 and B(X)  = Im 6.  

are called, respectively, cocycles and coboundaries. The space H ( X )  = 
Z ( X ) / B ( X )  is called the cohomology space of X .  

A homomorphism of differential spaces q ~ :  (X, 6,) -P (Y, 6,) is a 
linear map for which 'p 0 6, = 6,o 9. It restricts to maps between the 
cocycle and coboundary spaces, and so induces a linear map 

px : H ( X )  + H(Y) .  

A homotopy operator for two such homomorphisms, q ~ ,  $, is a linear map 
h: X --+ Y such that 

p - + = h 0 8 + s 0 h. 

If h exists then q ~ #  = $# . 



10 0. Algebraic and Analytic Preliminaries 

Suppose 
f &? O - X - - - t Y - Z - O  

is an exact sequence of homomorphisms of differential spaces. Every 
cocycle z E Z has a preimage y E Y. In particular, 

g(6y) = 6z = 0 

and so there is a cocycle x E X for whichf(x) = Sy. The class 5 E H ( X )  
represented by x depends only on the class 5 E H ( Z )  represented by z. 
The correspondence 5 tt 5 defines a linear map 

a: H ( Z )  + H ( X )  

called the connecting homomorphism for the exact sequence. The  triangle 

is exact. 
If 

O - X - + Y - Z - O  

is a row-exact diagram of differential spaces, then 

a’ x x  = p)x a 
(a ,  8’ the connecting homomorphisms). 

0.8. Graded differential spaces and algebras. A graded space 
X = ‘&-+o X p  together with a differential operator 6 homogeneous of 
degree + 1 is called a graded differential space. In  such a case the cocycle, 
coboundary, and cohomology spaces are graded: 

D ( X )  = Z ( X )  n Xp, Bp(X) = B ( X )  n X” 

and 
HP(X) = Zp(X)/Bp(X). 
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A homomorphism of graded dtyerential spaces is a homomorphism of 

Now assume that X has finite dimension and let cp: X-+ X be a 
differential spaces, homogeneous of degree zero. 

homomorphism of graded differential spaces. Let 

‘ p p :  X p  + X’ and (‘p).)”: H p ( X )  -+ H P ( X )  

be the restrictions of cp and cp# to XP and Hp(X).  The algebraic Lefschetz 
formula states that 

C (- 1 ) ”  tr ‘ p p  = C (- 1 ) ~  tr (‘p).)~. 
P>O P>O 

In particular, if cp = L, we obtain the Euler-PoincarC formula 

1 ( - l ) p  dim XP = ( - l ) p  dim H p ( X ) .  

P>O P > O  

A graded di@rential algebra A is a graded algebra together with an 
antiderivation, 6, homogeneous of degree one such that a2 = 0. In this 
case Z(A)  is a graded subalgebra and B(A) is a graded ideal in Z(A). 
Thus H ( A )  becomes a graded algebra. It is called the cohomology algebra 
of A. If A is anticommutative, then so is H(A) .  

A homomorphism of graded diflerential algebras cp: A -+ B is a map 
which is a homomorphism of graded differential spaces and a homo- 
morphism of algebras. It induces a homomorphism between the cohomo- 
logy algebras, 

‘p). : H(A)  -+ H(B).  

’ 

Next let A and B be graded differential algebras and consider the 
skew tensor product A @ B.  Then the antiderivation in A Q B, given by 

S(X @ y )  = SX @ y  + (-1)’ x @ Sy, x E A’, y E B,  

satisfies ?i2 = 0. Thus A @ B becomes a graded differential algebra. 
The tensor multiplication between A and B induces an isomorphism 

- - 
H ( A )  @ H(B)  H ( A  @ B )  

of graded algebras. I t  is called the Kiinneth isomorphism. 



§3. Analysis and topology 

0.9. Smooth maps. Let E, F be real, finite dimensional vector spaces 
with the standard topology. Let U C E be an open subset. A map 
p: U + F is called dzjferentiable at a point a E U if for some t,ba E L(E; F )  

h E E. 

In  this case t,ba is called the derivatiwe of p at a and is denoted by p’(a). 
We shall write 

p’(a; h)  = p’(~)h = +a(h), h E E. 

If 9 is differentiable at every point u E U, it is called a differentiable map 
and the map 

p‘: U - + L ( E ; F )  

given by a I+ p’(u) is called the derivative of 9. Since L(E; F) is again a 
finite dimensional vector space, it makes sense for p’ to be differentiable. 
In  this case the derivative of p‘ is denoted by p”; it is a map 

p”: U + L(E;  L(E;  F ) )  = L(E, E ;  F ) .  

More generally, the Kth derivative of p (if it exists) is denoted by qdk), 

p(”: U + L(E,  ..., E; F ) .  

For each U E  U ,  ~ ( ~ ) ( a )  is a symmetric k-linear map of E x - - a  x E 
into F. If all derivatives of p exist, p is called injinitely dzjfmentiable, 
or smooth. 

A smooth map p: U .--+ V between open subsets U C E and V C F 
is called a diffeomorphism if it has a smooth inverse. 

Assume now that p: U + F  is a map with a continuous derivative 
such that for some point a E U 

k terms 

E ” - F  

is a linear isomorphism. Then the inverse function theorem states that 
there are neighbourhoods U of a and V of p(a) such that p restricts to a 
diffeomorphism U% V .  

12 
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We shall also need the basic properties of the Riemannian integral of 
a compactly supported function in Rn (linearity, transformation of 
coordinates, differentiation with respect to a parameter). The theory 
extends to vector-valued functions (integrate component by component). 

Finally, we shall use the Picard existence and uniqueness theorem for 
ordinary differential equations as given in [3, p. 221. 

0.10. The exponential map. Let E be an n-dimensional real or com- 
plex vector space and let u: E + E be a linear transformation. It follows 
from the standard existence theorems of differential equations that there is 
a unique smooth map T :  [w -+ LE satisfying the linear differential equation 

i = u o r  

and the initial condition ~ ( 0 )  = c. The linear transformation ~ ( 1 )  is 
called the exponential of u and is denoted by exp u. 

In this way we obtain a (nonlinear) map exp: LE -+ LE. I t  has the 
following properties: 

(0) expo  = L .  

(1) If uI 0 u2 = u2 o u1 , then exp(ul + u2) = exp u1 o exp ug . 
(2) exp(ku) = (exp u)k, K E Z. 
(3) det exp u = exp tr u. 
(4) If a Euclidean (Hermitian) inner product is defined in the real 

(complex) vector space E and if u* denotes the adjoint linear transforma- 
tion, then 

exp u* = (exp u)*. 

(All these properties are easy consequences of the uniqueness theorem 
for solutions of differential equations.) 

Relations (0) and (1) imply that exp u is an automorphism with 
(exp u)-l = exp(-u). In particular, if u is self-adjoint, then so is exp u 
and if u is skew (resp. Hermitian skew), then exp u is a proper rotation 
(resp. unitary transformation) of E. 

In terms of an infinite series we can write 

0.11. General topology. We shall assume the basics of point set topo- 
logy: manipulation with open sets and closed sets, compactness, Haus- 
dorff spaces, locally compact spaces, second countable spaces, connected- 
ness, paracompact spaces, normality, open coverings, shrinking of an 
open covering, etc. 
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The closure of a subset A of a topological space X will be denoted by 
A. If A and B are any two subsets of X, we shall write 

A - B = { X E A  j x ~ B } .  

A neighbourhood of A in X will always mean an open subset U of X such 
that U 3  A. 

An open cover of X is a family 0 of open sets whose union is X. It is 
called locally Jinite if every point has a neighbourhood which meets only 
finitely many elements of 0. 0 is called a refinement of an open cover $2 
if each 0 E 0 is a subset of some U E $2. X is called paracompact if every 
open cover of X has a locally finite refinement. 

A basis for the topology of X is a family 0 of open sets such that each 
open subset of X is the union of elements of 0. If 0 is closed under finite 
intersections, it is called an i-basis. If X has a countable basis, it is called 
second countable. 



Chapter I 

Basic Concepts 

§I. Topological manifolds 

1 . l .  n-manifolds. An n-dimensional topological manifold (or simply 
a topological n-manifold) is a Hausdorff space M with a countable basis 
which satisfies the following condition: 

Every point a E M has a neighbourhood U, which is homeomorphic 
to an open subset of an n-dimensional real vector space E.  

In  this case we write dim M = n. 

A chart for a topological n-manifold M is a triple ( U ,  u, V )  where U 
is an open subset of M ,  V is an open subset of an n-dimensional real 
vector space E, and u: U -+ V is a homeomorphism. Because the chart 
( U ,  u, V )  is determined by the pair ( U ,  u) ,  we will usually denote a 
chart by ( U ,  u).  

An atlas on an n-manifold M is a family of charts {( U,, u,) 1 a E $1, 
where 4 is an arbitrary indexing set, such that the sets U, form a cover- 
ing of M :  

M =  (J U , .  
a c 9  

An atlas is called countable (or finite) if the index set is countable (or 
finite). 

Proposition I: Every topological n-manifold M admits a countable 
atlas {( U, , ui , Wn) 1 i E N}, where the closures Ui are compact. 

Corollary I: 
member of the 

Corollary 11: 
open cover { Ui 

A compact n-manifold admits a finite atlas with each 
overing homeomorphic to R". 

Every topological n-manifold M admits a countable 
i E N} such that 

15 
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(1) 
to iWn 

(2) Di is compact 
(3) 

Ui is a finite union of open sets each of which is homeomorphic 

Di C Ui+, , i E  N. 

Next let 0 be any basis for the topology of M and let 0, be the collec- 
tion of open subsets 0 C M of the form 

k 

o = ( J o i ,  O i E O ,  1 < K < o o .  
i l l  

Then 0,3 0 is a basis for the topology of M. Next let 8, be the collec- 
tion of open subsets 0 C M of the form 

W 

o =  (J oi ,  O i E O ,  
i=l 

where the Oi are disjoint. Then 0,3 0 is a basis for the topology of M. 

Proposition XI: The basis ((0&JC contains every open subset of M. 

Proof: Let U be an arbitrary open subset of M and write 

U = (J K i ,  

where Ki is compact and Ki C K i + l .  Next construct an open cover 
{ Ui I i E N} of U so that Ui C U and 

W 

i=l 

k 

(1) u ui3Kk 
i=l 

(2) lJi  E 01 and oi is compact 

and 

(4) U i n  Uj = 0 unlessj= i- 1 o r i f  1. 

Condition (1) shows that the Ui give a cover of U .  Let 

v, = (J &,+I 1 v2 = u u2, * 
i>O i > l  
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By conditions (2), (4), Vl and V z  belong to (O&.  Hence 

u = v1 u v, E ((Pf)S)P . 
Q.E.D. 

Proposition 111: A topological n-manifold, M ,  has the following 

An open subset of M (with the induced topology) is again an 

M is connected if and only if M is pathwise connected 

properties: 

n-manifold 
( I )  

(2) 
(3) A4 is paracompact. 

Corollary: For every open covering {Urn 1 01 E S} of M, there is a 
shrinking { V,  I a: E Y } ;  i.e., there is an open covering { V, 1 01 E Y }  such 
that Fa C U, . 

1.2. Dimension theory. In  this section we develop some elementary 
results of dimension theory to prove 

Theorem I: Let 0 be an open covering of a topological manifold M. 
Then there exists a refinement (Vii}, where J' E N and i runs through a 
finite set, such that for each i 

Vij  n Vik = a,  j # k. 

T o  prove this theorem we need the following definitions and results. 
An open covering of a topological space X is said to have order < p  if 
the intersection of every p + 1 elements of the cover is empty. X is said 
to have Lebesgue dimension < p  if every open cover has a locally 
finite refinement of order < p + 1. We write this as dim X < p .  If 
dim X < p ,  dim X < p - 1, we say dim X = p .  

Proposition IV: Every topological n-manifold M satisfies 

dim M < 7". 

Remark: I t  can, in fact, be shown that dim M = n (cf. [S]), but 
we shall not need this. 

Lemma I: If d i m X  < m (m l), then dim(X x R) < 7m. 
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Proof: Let 0 be any open cover of X x R. For each n E Z, choose 
an open cover Wn of X with the following property: If W E  Wn and 
t E [n,  n + 21, then for some z > 0 and 0 E 0, W x ( t  - z, t + z) C 0. 
We may assume that each Wn is locally finite and of order < m + I 
(since dim X < m). 

By considering open sets of the form W x ( t  - E, t + z) ( W E  Wn), 
obtain a locally finite open covering of X x (n,  n+2)  of order < 2(m+ 1). 
These open coverings together provide an open covering of X x R of 
order < 4(m + 1 )  < 7m + 1. 

Q.E.D. 

Corollary: dim R" < 7". 

Lemma 11: Let X be a normal space with a countable basis. Suppose 
U and V are open sets such that dim U < n, dim V < n and X = U u V. 
Then dim X < n. 

Proof: Choose disjoint open sets U', V' C X such that 

( X -  V )  C U' C U and ( X -  V )  C V' C V 

Let 0 be an open covering of X. By refining Lo if necessary we may 
assume that 0 is of the form 

where 

is a locally finite open covering of U of order < n + 1, and 0,. is an 
open covering of V' .  

Set 0, = (0, n V I k E N). Then U, u 9,. is an open covering of V. 
Let W be a locally finite refinement of this covering of order < n + 1. 
Then #'" is the disjoint union of W( l )  and W(2), where W(l )  consists of 
those open sets contained in V' and W(z)  consists of the others. 

We denote the elements of Wcl) (resp. Wtz)) by W, (resp. W,). Thus 
each W, is contained in some 0,. Hence W(2)  is the disjoint union of 
the subcollections Wiz) given by 

WF' = {W, I W, C 0, , W, Oi , i < k}. 
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Now define open sets Yk by 

y k  = (Ok u )  u 3 

0” 

where the union is taken over those JB, such that WE, E Wi2). Set 

= {Yk I k E  N}. 

We show that %(l) = % u W(l )  is a locally finite refinement and has 
order < n + 1. 

First note that since the 0, cover U ,  the Yk cover U’. On the other 
hand, the Y,  contain all the W, , and so the W, together with the Yk 
cover V (since W covers V ) .  Since X = U‘ u V ,  it follows that %(l) is 
a cover of X .  

Next observe that Y ,  C 0, and so % refines 9. But W (and hence W(l ) )  
also refines 9. Thus CiY(’) refines 9. 

T o  show that %tl) has order < n + 1, let 

x E Ykl n ... n Y k p  n W,, n ... n Wmq , 

We distinguish two cases. 

Case I: x E U’. Then q = 0 and x E Yk, n ... n Y,. C o k l  n ... n Ok.. 
Hencep < n + 1 and s o p  + q < n + 1. 

Case 11: x 4 U’. Then for each ki there is an element WE, C Wi:) 
such that x E W, . Moreover, the WE, are necessarily distinct. Thus 

x E WE, n n Ws, n We, n ... n Wmq; 

i.e., x is in p + q distinct elements of W .  It follows that p + q < 1~ + 1. 
Distinguishing between the same two cases and using the fact that 9, 

and W are locally finite, we see that %(l) is locally finite. 
Q.E.D. 

Lemma 111: If a manifold M has a basis 0, such that for each a, 
dim 0, < p, then for every open subset 0 of M 

dim 0 < p .  

Proof: Clearly, if a space X is the disjoint union of open subsets 
with dim < p then dim X < p .  On the other hand, Lemma I1 implies 
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that if a manifold Q is a finite union with dim < p ,  then dim Q < p .  
Now the lemma follows from Proposition 11, sec. 1.1. 

Q.E.D. 

Corollary: If 0 is an open subset of W, then dim 0 < 7". 

Proof of Proposition IV: Observe that M admits a basis consisting 
of open subsets 0, homeomorphic to open subsets of Rn. Hence, by the 
corollary above, dim 0, < 7n.  Now Lemma I11 (applied with 0 = M )  
yields the proposition. 

Q.E.D. 

Proof of Theorem I: Let 0 be any open covering of M .  According 
to Proposition IV there exists a locally finite refinement of finite order. 
Thus we may assume that 0 is locally finite and of finite order p .  More- 
over, we may assume that 0 is indexed by N, 0 = {Oj l j E N}. 

Now we proceed by induction on p .  If p = 1, there is nothing to 
prove. Assume that the theorem holds for coverings of order p - 1 
and that 0 has order p .  For each distinct set v1 < . * .  < vP+, of ( p + I )  
indices let 

D f l  

0, = n o,, . 
P = l  

Since 0 has orderp these sets are disjoint. Denote them by Vl, ( i  = 1,2, ...) 
and set 

v, = u V l j .  

Next choose open sets U j  so that Dj C Oj and Ui Ui = M .  Let A 
< vP+,). 

Now the Uj provide a locally finite covering of M - A of order p - 1. 

Q.E.D. 

denote the union of all sets of the form DV1 n -.. n Dvp+l (vl < 
Then A is closed because the Oi are locally finite. 

Since M = ( M  - A )  u V ,  , the theorem follows by induction. 

Corollary: A topological manifold M admits a finite atlas. 

Proof: Let {( U ,  , u,) 1 iy E 91 be any countable atlas for M such that 
the sets u,( Ua)  are disjoint. Let { Vij  1 i < dim M + I ,  j E N} be the 
refinement of Theorem I. 
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Choose a ( i , j )  such that Vij  C Ua(i , i )  . Now let 

and define wi: Wi -+ R" by 

wi(x) = ua(i.j)(x)* x E vij 

Since the Vii are disjoint for fixed i, wi is a homeomorphism of Wi onto 

and hence {( Wi , wi ) }  is a finite atlas. 
Q.E.D. 



s2. Smooth manifolds 

1.3. Smooth atlases. Let M be a topological manifold and let 
{( U, , u,) 1 a E S} be an atlas for M .  Consider two neighbourhoods 
U, , U, such that U,, = U, n U p  # 0. Then a homeomorphism 

u,B: I l g ( u x B )  - um(G3) 

is defined by u,, = u, 0 us’. This map is called the identijcation map 
for U, and Up . By definition uvp 0 up, = u,,, in u,( U.&), and u,,(x) = x, 
x E u,( U,). These relations imply that the inverse of uaB is up, . 

The atlas {( U, , u,)} is called smooth if all its identification maps are 
smooth (as mappings between open subsets of real vector spaces). 

Two smooth atlases are equiwalent if their union is again a smooth 
atlas; i.e., {( U, , u,)} and {( Vi , vi)} are equivalent if all the maps 

W ,  u;l: u,(U, n Vi) -+ q(UU n V,) 

and their inverses are smooth. A smooth structure on M is an equivalence 
class of smooth atlases on M .  A topological manifold endowed with a 
smooth structure is called a smooth manifold. An argument similar to 
that of the corollary to Theorem I shows that every smooth manifold 
admits a finite smooth atlas. 

Henceforth we shall use the word “manifold” in the sense of a smooth 
manifold. An atlas for a manifold will mean a member of its smooth 
structure and the term chart will refer to a member of an atlas. 

1.4. Examples of manifolds. 1 .  Spheres: Let E be an n-dimen- 
sional Euclidean space with inner product ( , ). The unit sphere Sn-l 
is {x E E I (x, x) = l}. Sn-1 is a Hausdorff space with a countable basis 
in the relative topology. Let a E Sn-l and U ,  = Sn-l - {a}, U- = 
Sn-l - {-a}. Define maps u+: U+ --f a l ,  u-: U- + aL  by 

Then {( Ui , ui) 1 i = +, -} is a smooth atlas for 3- l .  Moreover, the 
atlas obtained, in this way, from a second point b E Sn-l is equivalent 
to this one. Thus the smooth manifold structure of Sn-l is independent 
of the choice of a. 

22 
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2 .  Projective Spaces: Consider the equivalence relation on S" 
whose equivalence classes are the pairs {x, -x}, x E S", and introduce 
the quotient topology on the set of equivalence classes. We call the result 
real projective n-space, RPn. 

T o  construct a smooth atlas on RP", consider the projection 
T :  Sn -+ RPn given by T ( X )  = {x, -x}. If 0 is an open set in Sn such 
that X E O  implies that - x + O ,  then ~ ( 0 )  is open in RPn and 
T: 0 3 ~ ( 0 )  is a homeomorphism. Now let {( U, , u,)} be an atlas for 
Sn such that, if x E U, , -x $ U, . Then {(T( U& u, 0 T - ~ ) }  is a smooth 
atlas for RPn. 

3 .  Tori: Denote the elements of R" by x = ((l, ..., ("), E R. 
Define an equivalence relation in Rn by x' - x if and only if 5"' - 9 E Z, 
i = 1, .,., n. Let the set of equivalence classes, with the quotient topo- 
logy, be denoted by Tn and let T :  Rn + Tn be the canonical projection. 

Consider the smooth atlas for Rn given by {( U ,  , uJ}, a E Rn, where 

u, = {x E R" 1 1 g - ai 1 < 4, i = 1, ..., n}, u,(x) = x. 

Then {(T( U,), u, 0 T-')} is a smooth atlas for Tn. 

4, One-point compact$ications: Let E be a finite-dimensional 
Euclidean space. Then its one-point compactification E, (cf. [4, p. 2461) 
can be given a smooth atlas ( U ,  , u,), ( U ,  , u,) as follows. Let x, denote 
the point at 00 and set 

U, = E ,  240 = LE 

( I  x I S  = (x, .>I 
In  the case when E is @, regarded as a two-manifold, we also obtain a 

smooth atlas when u, is replaced by ii, , where 

5. Open subsets: Let 0 be an open subset of a manifold M. If 
{( U, , u,)} is a smooth atlas for M ,  then ((0 n U, , u, l onu , ) }  is a smooth 
atlas for 0. Equivalent atlases on M yield equivalent atlases on 0. Thus 
the smooth structure of M induces a smooth structure on 0. Any open 
subset of a manifold, with the induced smooth structure, is called an 
open submanifold. 



24 I.  Basic Concepts 

1.5. Smooth maps. Let M ,  N be manifolds and assume that 
91: M -+ N is a continuous map. Let {( U,  , u,)} and {( Vi , vi)}  be atlases 
for M and N ,  respectively. Then 91 determines continuous maps 

vim: U,(U, n v-YViN - .i(Vi) 

by rpi, = ~i 0 91 0 u:'. 
(as mappings of open 

subsets of vector spaces) are smooth. (This definition is independent of 
the choice of atlases for M and N ) .  Moreover, if y :  M - +  N and 
+: N -+ P are smooth maps, then I/J 0 rp: M + P is smooth. The  set of 
smooth maps M -+ N is denoted by 9 ( M ;  N ) .  

We say that 91: M -+ N is smooth if the maps 

Proposition V: 

(2) 

(1) If p?: M -+ N is smooth and 0 C M is open, 

If p?: M -+ N is a set map such that the restriction of rp to each 
then the restriction of p? to 0 is smooth. 

element of an open covering of M is smooth, then rp is smooth. 

A smooth map rp: M + N is called a dtjfeomorphism if it has a smooth 
inverse v-l: N -+ M .  Every diffeomorphism is a homeomorphism. Two 
manifolds M and N are dtfleomorphic if there exists a diffeomorphism 
91: M -+ N .  The fundamental equivalence relation for smooth manifolds 
is that of being diffeomorphic. 

Examples: 

2. 

1. Let M and N be manifolds and let b E N .  The 
constant map p?: M 4 N given by ~ ( x )  = b, x E M ,  is smooth. 

Let E be a Euclidean space of finite dimension and let B be the 
open ball of radius r (about 0). The map y :  B+ E given by 
y(x)  = ( r2  - I x I2)-l x, where 1 x ( 2  = <x, x), is a diffeomorphism. 

Let Sn-l be the unit sphere in a Euclidean space E .  Then the 
inclusion map i :  Sn-l -+ E is smooth (use Proposition V). 

The  projection map r: S n  -+ RPn is smooth. 
Let 0 be any open submanifold of a manifold M .  Then the 

The  canonical projection of Example 3, sec. 1.4 is smooth. 
Let M be a topological manifold and suppose that { ( U r n ,  u,)} 

and {( Vi , ui ) }  are smooth atlases on M .  Denote the corresponding 
smooth manifolds by M(l) and M(2)  . The identity map L :  M(l) -+ 

is a diffeomorphism if and only if the two atlases are equivalent: i.e., if 
and only if 

3. 

4. 

5. 
inclusion map i: 0 --+ M is smooth. 

6, 

7. 

= M(2)  . 
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8. Given real numbers a, /3 with a < p, there exists a smooth non- 
decreasing function g: R -+ [0, 13 such that 

In fact define f : R -+ R by 

t < O  
t > 0. f ( t )  = I:&2), 

Then f is smooth and a suitable g is given by 

f ( t  - a> 
= f(p - t )  + f ( t  - a)  

9. The Cayley map: Let E be a real or complex vector space of 
finite dimension. Then 

0 = {uELE j det(c + u) # 0) 

is an open submanifold of the vector space LE containing 0 E LE . We 
will show that the Cayley map f : 0 -+ LE given by 

u E 0 f(u)  = ( 1  - u)(c + u)-1 

is an involution of 0. In fact, 

f ( u )  + 1 = (c - u)(c + u)-1 + ( I  + u)(c + u)-1 = 2(c + 
whence f: 0 -+ 0. Next, observe that 

u(f(u) + 1 )  = 2 4  + u)-' = c - f ( u )  

= ( 1  -f(4)(& +f(.))-' = . f ( f (4) ;  
and so 

this shows that f 2 = t o  . Sincef is clearly smooth, it is a diffeomorphism. 

10. One-point compactijications of vector spaces: We shall show 
that, if E is an n-dimensional Euclidean vector space, its one-point 
compactification E ,  (cf. Example 4, sec. 1.4) is diffeomorphic to Sn 
(cf. Example 1, sec. 1.4). 

Let S" be defined as in sec. 1.4 with charts (U-  , u-), ( U ,  , u+), con- 
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structed from a point a E Sn and identify E with the orthogonal com- 
plement of a .  Consider the map 'p: E, + Sn, defined by 

u;'(x), X E  E 
V(X) = l a ,  x = x , .  

T o  examine the smoothness properties of 'p, we use the atlas (U, , u,), 
(U, , u,) for E, described in sec. 1.4. It follows immediately that 

I(+ 0 q l o  u;l = LE , 

u- 0 T O  u,' = LE , 
while the relation 

is obtained from a straightforward computation. These formulae show 
that both pl and 'p-l are smooth. Hence 'p is a diffeomorphism. 

In the case when E = C, regarded as a two-dimensional Euclidean 
vector space, the corresponding two-sphere is customarily referred to 
as the Riemann sphere. 

Let E be a real or complex vector space 
of dimension n and assume that a positive definite symmetric (resp. 
Hermitian) inner product is defined in E. Consider the space S(E)  of 
self-adjoint linear transformations of E. Then S(E) is a real vector space 
of dimension +n(n + 1) (resp. n2). A self-adjoint map 'p: E -+ E is 
called positive, if 

11. The exponential map: 

( V ( 4 ,  x> > 0, x # 0. 

The positive self-adjoint maps form an open subset of S(E)  which will 
be denoted by S+(E).  It is easy to see that the exponential map restricts 
to a map 

exp: S(E) -+ S+(E). 

It will be shown that the map so obtained is a diffeomorphism. 
We consider first the complex case. Let 

C+ = {A E C I Re(X) > 0) 

and define a map log: C+ -+ C by 

log x = S,z-l dz, 

where y is the line segment from 1 to A. 
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Now suppose that u E S+(E) so that the eigenvalues of u are real and 
positive, and choose a circle C C C+ such that each eigenvalue of u lies 
inside C. Regard X I+ (log X ) ( h  - u)-l as a smooth S(E)-valued function 
in @+ and put 

jc log X(hc - u)-l dh, 

(log u is independent of the choice of C, see below.) Since the same C 
may be used in the construction of logo for all u belonging to some 
neighbourhood in S+(E), we conclude that log is smooth. To show that 
exp is a diffeomorphism it is then sufficient to show that log inverts it. 

But, if u E S+(E), then u has real eigenvalues A, > 0 corresponding to 
eigenvectors x, which, for v = 1, 2, ..., n, form a basis of E. Now the 
relations u(xV) = X,x, imply 

log u = u E S+(E). 

(A4 - u)-1 x, = (A - hJ-1 X” , h # A, , 
and hence 

by Cauchy’s theorem. It  follows that log u is independent of C and that 

C(exp O log)(U)l(x”) = exp(log A”) X” = A$” = u(x”), 

for v = 1, ..., n and u E S+(E). Hence 

exp 0 log = L ~ + ( ~ )  . 

A similar computation shows that 

log o exp = cs(=) 

and therefore completes the proof. 
Now suppose that E is a real Euclidean space. Consider the Hermitian 

space EC (cf. sec. 0.1). If rp: E + E is a self-adjoint map, then so is the 
map 

i c  @ ‘p: EC + E“. 

Hence we have an inclusion map j :  S(E) + S(EC). It restricts to a map 
j+: S+(E) + S+(Ee). It follows from the definitions that the diagram 

S ( E )  2 S(Ec) 

eXP1 1”PC 

S+(E) S+(EC) 
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commutes. Hence so does the diagram 

S(E)  -L S(EC) 

S(E) i_  S(EC) 

e W 4 1  lexpc’(i(4) 9 a E W). 

It follows that the map 

exp’(a): S(E) + S(E) 

is injective and hence a linear isomorphism. On the other hand, the 
first diagram shows that the map 

exp: S(E) -+ S+(E) 

is injective. Finally, if 
x l ,  ..., x, of E for which 

E S+(E), we can choose an orthonormal basis 

pxv = A p x ,  with A, > 0. 

Define 1,4 E S ( E )  by 
+x, = log A p ,  . 

Then ‘p = exp I,4 and so exp is surjective. Hence exp: S(E)  --t S+(E) is 
a diffeomorphism. 

12. The power maps P k :  S+(E) --t S+(E),  defined by 

Pk.0) = u k  (k is a nonzero integer), 

where E is a real or complex finite dimensional vector space, are diffeo- 
morphisms. In  fact, let pk: S(E)  + S(E)  be the diffeomorphism given 
by pk((l) = ka. Then 

P k  = exp 0 pk 0 exp-l 

is a diffeomorphism. 

1.6. Construction of smooth manifolds. Proposition I has the 
following analogue: 

Proposition VI: 

( 1 )  
(2) 

Let M be an n-manifold and {U.} be an arbitrary 
open covering. There is a countable atlas {( V ,  , w, , R”)} of M such that 

The  covering { V,} refines { U.}. 
Vi is compact, i E N. 
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Proposition VII: Let M be a set which is the union of a countable 
collection { W,} of subsets such that 

(1) 

(2) 

For each i E N, there is a bijection 9,: W, -+ Mi, where M$ is 

For every pair i, j ,  the subsets qi( W,,) C M ,  and q,( W,) C M j  
an n-manifold (n independent of i). 

are open and the map 

is a diffeomorphism. 
(3) For distinct points a, E W, and aj E W,, there are disjoint subsets 

U, , U, such that a, E Ui C W, , a, E U, C W, and q,( U,), q,( U,) are 
open. 

Then there is a unique smooth manifold structure on M such that 
the W, are open and the yi are diffeomorphisms. 

1.7. Products of manifolds. Let M and N be manifolds and 
consider the topological product M x N. If {( U, , u.) I a E S} and 
{( V, , vi) I i E $} are atlases for M and N, respectively, then 
{( U, x V, , u, x vi)  1 a E 9, i E $1 is an atlas for M x N. It is easy to 
see that equivalent atlases on M and N induce equivalent atlases on 
M x N. Hence a smooth structure on M x N is induced by the smooth 
structures of M and N. 

The smoothness of the following maps follows from the definitions: 

(1) the projection maps 7 r M :  M x N --t M ,  7 r N :  M x N --t N ,  
given by 

% f ( X , Y )  = X, T ’ N ( X , Y )  = r; 

(2) the diagonal map A :  M -+ M x M, defined by 

A ( x )  = (x, x), x E M ;  

(3) the interchange map M x N -+ N x M given by 

(xt r> ( Y ,  4; 

(4) the “product” map x: P - +  M x N, given by 

x(4 = (d4, #(4>, z E p,  

where q: P .+ M ,  1,6: P + N are smooth. 
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1 .a. Smooth functions and partitions of unity. A smooth junction 
on a manifold M is a smooth map f: M -+ R. I f f  and g are two such 
functions, then smooth functions Af + pg and j g  are defined by 

( A !  + P f ) W  = W ( x )  + P g ( 4  P E 

X E  M .  (fg)(x) = f(4 g(x), 

These operations make the set of smooth functions on M into an algebra 
over R, which we denote by Y(M).  The  unit element of Y ( M )  is the 
constant function M -  1. 

If A and M are Y(M)-modules, we denote their tensor product 
(over 9 ( M ) )  by 

.k & M .  

The module of Y( M)-linear maps of A into JV will be denoted by 

Horn,(&; M).  

Now suppose that tp: M --+ N is a smooth map. cp determines an 
algebra homomorphism 

I*: Y ( M )  t Y ( N )  

given by 
v*f = f o  ?J, f E  @Y(N).  

If tp is surjective, tp* is injective. If $: N -+ Q is a second smooth map, 
then 

((t 0 v)* = cp* 0 $*. 

Definition: The carrier (or support) of a smooth function f on M is 
the closure of the set {x E M I f  (x) # O}. We denote this set by carr j .  

If 0 is an open subset of M and j is a smooth function on 0 whose 
carrier is closed in M, then j extends to the smooth function g on M, 
given by 

In particular, i f f  E Y ( M )  has carrier in 0, and h E Y ( O ) ,  a smooth 
function j * h E Y ( M )  is given by 

(f - h)(x) = f ( x )  h(x), x E 0 and (f . h)(x)  = 0, x 4 carrf. 
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Next, suppose that {U,} is a locally finite family of open sets of M ,  
and let f, E 9 ( M )  satisfy carr f, C U, . Then for each a E M there is a 
neighbourhood V(a)  which meets only finitely many of the U, . Thus in 
this neighbourhood Em f, is a finite sum. It follows that a smooth function 
f on M is defined by 

f(4 = C f , ( X ) ,  x E M .  
01 

We write f = C, f a .  

Proposition VIII: 

(1) 

Let K ,  0 be subsets of M such that K is closed, 
0 is open and K C 0. There exists a smooth function f such that 

carrf is contained in 0 
(2) 0 <f(.) < 1, x E M  
(3) f ( x )  = 1, X E K .  

Lemma IV: Let E be a Euclidean space and a,  /3 E R be such that 
0 < a < /3. There exists a smooth function h: E -+ [0, I] C R such that 
h(x)  = 1, for I x l 2  < a, h(x) = 0, for 1 x l 2  > /3. 

Proof: Define h by h(x)  = 1 - g(1 x 1 2 ) ,  where g: R --+ R is the 
function of Example 8, sec. 1.5). 

Q.E.D. 

Proof of the proposition: 

(1) 
(2) 

Choose open sets U,, C M and compact 
sets K, C U, , subject to the following conditions (cf. sec. 1.1) 

(U,}, M - K is a locally finite open cover of M .  
Each U, is diffeomorphic to Rn and u U, C 0. 

- 

(3) U K ,  = K. 

It follows at once (via Lemma IV) that there are smooth functions h, in 
U, such that carr h, is compact and 

h,(x) = 1, 

In  particular carr h, is closed in M .  

carr h, C U ,  . Then we can form C, f, E Y ( M ) .  Evidently, 

x E K, . 

Next, extend the h, to smooth functions f, in M with carrf, = 

carr C f, C (J U, C 0 
a 
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Finally, choose a smooth map g: R -+ [0, I]  so that g(0) = 0 and 
g ( t )  = 1, t >, 1 (cf. Example 8, sec. 1.5). Then the function 

satisfies the desired conditions. 
Q.E.D. 

Definition: A partition of unity, subordinate to a locally finite open 
cowering { Ud} of M is a family { f ,> of smooth functions on M satisfying 

(1) 0 <fa( . )  < 1, x E M  
(2) carrfd C U, 
(3) Zjm = 1. 

Theorem 11: Every locally finite open covering of a manifold admits 
a subordinate partition of unity, {fa). 

Proof: Let (U,} be such a covering of M and let (V,} be a second 
open covering such that V,  C U,. In view of Proposition VIII, there are 
nonnegative smooth functions g ,  on M which have carriers in U, and 
take the value 1 at points of V,  . Thus g = C g ,  is smooth and positive. 

Q.E.D. 
Set f a  = gJg * 

Corollary: If {Ua I (Y E j }  is any open covering of M, there is a 
partition of unity { f i  1 i E $1 and a map i I--+ a(i)  of Jf into 9 such that 
carr fi C Ua(o , i E f .  

1.9. Functiongerms. Let a be a fixed point of M. Two members 
f ,  g of Y ( M )  will be called a-equiwalent, f 7 g ,  if and only if there is a 
neighbourhood U of a such that f (x) = g(x ) ,  x E U .  The equivalence 
classes so obtained are called function germs at a. We write Via for the 
germ represented by f E Y ( M )  and Y a ( M )  for the set of function germs 

Y a ( M )  an algebra. 

homomorphism. 

at a. BY setting VIa + [g la  = v + gla and Vla [g la  = [fgla,  we make 

The map Y ( M )  -P S$(M) given by f w l f l a  is a surjective 
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If tp: M +  N is smooth, then the homomorphism tp*: Y(N) -+ Y ( M )  
determines a unique homomorphism tpz: 9&)(N)  -+ Y a ( M )  (each 
a E M )  such that the diagram 

'9* 
p a w )  4 %(a,(N) 

t t 
Y ( M )  2- Y ( N )  

commutes. 
In particular, let U C M be open and consider the inclusion map 

i: U -+ M .  The induced homomorphism iz: 9,(M) -+ Ya(U)  is an 
isomorphism. In fact, by Proposition VIII we can find h E Y ( M )  such 
that carr h C U and h takes the value 1 on some neighbourhood of a. 
A linear map Y(  U )  + Y ( M )  is then given by 

g l - + h . g .  

This induces a linear map Y a ( U )  -+ Y a ( M ) ,  which is inverse to i:. 
In a similar manner we can define germs of maps. Suppose that 

a E M and tp, +: M -+ N are smooth. We say that tp, + are a-equivalent 
if there is a neighbourhood U of a such that tp(x) = $(x), for each 
x E U .  The equivalence classes so obtained are called the germs of maps 
at a, and are denoted by [tpIa. 

1.10. Homotopic maps. Let M ,  N be smooth manifolds and tp, $ 
be smooth maps of M into N .  We say that tp is homotopic to +? and write 
tp N +, if there exists a smooth map 

such that 
H : R x M - N  

H(0, x) = ~ ( x )  and H(1, x) = #(x), x E M. 

H is called a homotopy. Homotopy is an equivalence relation in the 
set of smooth maps M -+ N ,  as will now be shown. 

In fact, the relation is obviously reflexive and symmetric. To prove 
transitivity assume that tp - + via H and + - x via K.  Choose a smooth 
nondecreasing function g: R -+ [0, 13 so that g ( t )  = 0, t < 0, and 
g ( t )  = 1, t 4, (cf. Example 8, sec. 1.5). Then a smooth map 
L: R x M-+ N is given by 

H ( g ( t ) ,  4 ,  t < g  
L(t9 = 1K(g(t  - t), x), t > 4. 

Evidently L(0, x) = tp(x) and L( 1, x) = ~ ( x ) .  Thus tp is homotopic to x. 
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Lemma V: q, 4: M .--f N are homotopic if and only if there is a 
smooth map K :  R x M --f N such that 

K(t ,  x) = ~ ( x ) ,  t < 0 and K(t ,  x) = II/(x), t 2 1. 

Proof: If K exists, then q - $. If q - 4, let H be a homotopy. 
Choose a smooth function g: R + R such that 

g(t)  = 0,  t d 0 and g(t)  = 1, t 2 1, 

(cf. Example 8, sec. 1.5). Then set 

K(t,  .v) = H(g( t ) ,  x). 
Q.E.D. 

Examples: 1. Let N be any convex open subset of a real vector 
space E. Then any two smooth maps cf, 4: M --f N are homotopic. 
In  fact, let g:  R + [0, I ]  be smooth with g(0) = 0, g(1) = 1.  Put 

w, 4 = .&) 944 + ( 1  - g(tN II/W 

2, Let I? = E - {0}, where E is a Euclidean space. Suppose that 
v, 4: M -+ are smooth maps such that 

1 d.4 - #(4 < I #(X)II x E M .  

Then q and are homotopic. 
In  fact, if g is chosen as in Example 1, then 

provides a homotopy of 

Let E be an ( a  + I)-dimensional Euclidean space. Consider the 
sphere Sn = {x E E I I x I = a). Assume that y ,  4: M -+ S" are 
smooth and satisfy 

into 4. 
3. 

I d-4 - +(.)I < 2a. 

Then cp and 4 are homotopic. 
Indeed, choose g as above and define H :  [w x M -+ S7& by 
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4. If y - $: M -+ N via a homotopy H ,  and y1 N $1: N -+ Q via 
a homotopy G, then 

R O T  - + ~ o + : M ~ Q  

via the homotopy K given by 

K(t ,  X) = G(t,  H ( t ,  x ) ) .  

1.11.  Smoothpaths. A smooth path on M is a smooth map 
y :  R -+ M .  A manifold is called smoothly path-connected if, for every 
two points a, b E M ,  there exists a smooth path y such that y(0) = a 
and ~ ( 1 )  = b. 

Proposition IX: If a, b are points of a connected manifold M ,  there 
is a smooth path y on M such that 

In  particular, M is smoothly path-connected. 

Proof: exists if and only if the inclusion maps 

ja :  {point} + a E M and 

are homotopic (cf. Lemma V). Since homotopy is an equivalence 
relation an equivalence relation is induced on the points of M :  

j,: {point} -P b E M 

a - b if and only if a can be joined to b by some 9. 

If M = Rn, the proposition is obviously true (use Example 1, sec. 1.10). 
Thus in general, if ( U ,  u, Rn) is a chart in M ,  then all the points of U 
are equivalent. Hence the equivalence classes are all open and M is their 
disjoint union. Since M is connected, there is only one class; i.e., every 
a, b E M are equivalent. 

Q.E.D. 

1.12. Diffeomorphisms of smooth manifolds. In  this section we prove 

Theorem 111: Let C be a closed subset of a manifold M such that 
M - C is nonvoid and connected. Let a, b be arbitrary points of M - C. 
Then there is a diffeomorphism y :  M -+ M homotopic to c M  and such 
that ~ ( a )  = b and y(x )  = x, x E C. 

T o  this end we give the following lemma and its consequence. 
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Lemma VI: 

( I )  carr f C [-3, 31 
(2) 0 < f ( t )  < 1, ~ E R  andf(0) = 1, 
(3) If'(t)l < 1, t E 08. 

There is a smooth functionf on R such that 

Proof: Define f by 

Q.E.D. 

Corollary: 

(2) ~ ( x )  = x, for every x = ( f l ,  ..., 6%) such that maxj I 5i I > 3. 

There exists a diffeomorphism rp of Rn such that 

(1) rp(0, ... ) 0) = ( l , O ,  ..., 0) 

Proof: Define q~ by 

where f: R --t IW is the function of Lemma VI. Then the Jacobian of rp 
is given by 

n 

det 'p'(x) = 1 + f ' ( f ' )  nf(~?). 
f =2 

Det ~ ' ( x )  > 0, as follows from conditions (2), (3) on f. Thus rp is a 
local diffeomorphism. T o  see that it is in fact a global diffeomorphism 
it is only necessary to note that it induces a bijection on each of the lines 

6 2  = ti, 5s = g, ..., 6" = g. 

That  cp satisfies conditions (1) and (2) is immediate from the proper- 

Q.E.D. 
ties off. 

Proof of Theorem 111: Let - be the equivalence relation on M - C 
defined by 

x1 - x2 if and only if there is a diffeomorphism 'p: M --+ M, 

homotopic to iM , such that 'p(xl) = x, and 'p(x) = x, x E C. 
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We shall show that the equivalence classes are open. In fact, if 
a E M - C, let (U, u, W) be a chart of Msuch that a E U C M  - C. If 
b E U is arbitrary, we can compose u with an affine transformation of 
W, if necessary, and assume that .(a) = 0, u(b) = (1, 0, ..., 0). Applying 
the corollary to Lemma VI, we obtain a diffeomorphism yo: U-+ U 
such that yo(a) = b and yo  is the identity outside a compact set K such 
that b E K C U. Then tp: M -+ M defined by 

is a diffeomorphism which establishes the equivalence of a and b; hence 
all points of U are equivalent to a. 

Since the equivalence classes are open and M - C is connected, all 
points of M - C are equivalent, as required. 

Q.E.D. 

Corollary: Let M be a connected manifold of dimension n > 2 and 
(a , ,  ..., a,}, {b, , ..., bk} be two finite subsets of M. Then there is a 
diffeomorphism 'p: M --+ M, homotopic to i M ,  such that 'p(a,) = b, 
(i = 1, **., k). 

Proof: If k = 1, the result follows from the theorem with C = 0 .  
Suppose that the result has been proved for k - 1 ; i.e. a diffeomorphism 
rpo of M, homotopic to i M ,  has been found such that 'p,,(a,) = b,, 
i = 1, ..., k - 1. Noting that M - (b ,  , ..., is nonvoid and con- 
nected, we obtain, from Theorem 111, a diffeomorphism 9, of M,  
homotopic to L M ,  such that 'pl('po(ak)) = b, and 'po,(bi) = b, for 
i = 1, 2, ..., K - 1. Set 'p = 'pl 0 yo (cf. Example 4, sec. 1.10). 

Q.E.D. 
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1.13. Local product property. Let r: E - +  B be a smooth map 
between manifolds. The  map 7r will be said to have the local product 
property with respect to a manifold F if there is an open covering {U,) 
of B and a family {#ol} of diffeomorphisms 

$,,; U, x F -+ n-l(U,), 

such that 
n$,(x, Y )  = XI x E u, , y E F .  

The system {( U,, , #,)} will be called a local decomposition of 7r. 

open. 
Clearly any mapping with the local product property is surjective and 

Definition: A smooth jibre bundle is a four-tuple ( E ,  7r, B, F )  where 
n: E -+ B is a smooth map which has the local product property with 
respect to F.  A local decomposition for 7r is called a coordinate representa- 
tion for the fibre bundle. 

We call E the total or bundle space, B the base space, and F the typical 
jibre. For each x E B, the set F, = r - I ( x )  will be called the fibre over 
x. Every fibre is a closed subset of E, and E is the disjoint union of the 
fibres. 

A smooth cross-section of a fibre bundle ( E ,  7r, B, F) is a smooth map 
u: B -+ E such that r 0 D = t g  . 

If {( U, , #,)} is a coordinate representation for the bundle, we obtain 
bijections y!~,~~: F - F, , x E U, , defined by 

$ d Y )  = $a(%Y), Y El? 

I n  particular, if x E U,, , we obtain maps 4;: 0 #a,z: F -+ F. These are 
diffeomorphisms. In  fact, since and #, define diffeomorphisms of 
U,,, x F onto w1( Umo), they determine a diffeomorphism I,!J~, = 4;' 0 #a 

of U,, x F onto itself. But 

$om(xv Y )  = (x, 4;.:4,,*(Y)), x EUd ? Y E F ,  

and hence I&: 0 I / J ~ , ~  is a diffeomorphism of F. 
Suppose now that (Z?', 7 r I l  B', F') is a second fibre bundle. Then a 

38 
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smooth map g,: E -+ E' is called jibre preserving if, whenever rx1  = r z2  , 
(zl , z2 E E) ,  then v'ip(zl) = r'g,(z2). Any fibre preserving map g, 
determines a set map g,B: B .+ B' by the requirement that the following 
diagram commute: 

E A E '  

1.. . 
?'6 B ---+ B' 

T i  

We now show that i pB  is always smooth. In  fact, if {( U, , $,)} is a local 
decomposition for T and y E F is fixed, then 

V B ( X )  = (n' 0 v 0 +a)(x, Y ) ,  3~ E u a  * 

Hence rpB is smooth on each member U ,  of a covering of B. 
Let (E",  T" ,  B", F " )  be a third fibre bundle and assume that g,: E -+ E', 

g,': E' --f E" are fibre preserving. Then ip' o ip: E -+ E" is fibre preserving 
and (P)' 9 ) B  = P);' O T B  ' 

Proposition X: Let B, F be manifolds and let E be a set. Assume 
that a surjective set map T :  E -+ B is given with the following properties: 

There is an open covering { U,} of B and a family {a,!Jm} of bijections (1) 
+,: U, x F -+ ~F'U, .  

For every x E U, , y E F ,  T$,(x, y )  = x. (2) 
(3) The  maps $,,: U,, x F +  U,, x F defined by a,!J,,(x,y) = 

Then there is exactly one manifold structure on E for which (E, rr, B, F )  

0 $,)(x, y )  are diffeomorphisms. 

is a fibre bundle with coordinate representation {( U, , 4,)). 

Proof: We may assume that {a} is countable and thus apply Proposi- 
tion VII, sec. 1.6, with W, = T - ~ U ,  , y, = $;', and M ,  = U, x F 
to obtain a unique manifold structure on E such that the $, are diffeo- 
morphisms. 

Hypothesis (2) then says that the restriction of T to T - ~ U ,  is T, 0 $cl, 
where m-,: U, x F+ U,  denotes the projection onto the first factor. 
Since (cf. sec. 1.7) m-, is smooth, T is smooth on w l U a  . Hence 
T is smooth on E and then, by definition, {( U ,  , I/,)} is a local decompo- 
sition for rr. Hence (E, T ,  B, F )  is a fibre bundle with coordinate repre- 
sentation {( U, , $,)}. 

Q.E.D. 
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Proposition XI: Every smooth fibre bundle has a finite coordinate 
representation. 

Proof: Let { (Up , $J} be any coordinate representation for (E, n, B , F )  
Choose a refinement {Vt j  I i = 1, ..., p ;  j E N} of {Urn} such that 
Vij n V,, = 0 f o r j  # k (cf. Theorem I, sec. 1.2). Let Vt = ujVij  and 
define t,bd: Vi x F --+ w 1 V ,  by 

4 i ( X ,  Y) = 4 i j ( ~ ,  Y )  if x E vi, 9 Y E F ,  

where t+hdj is the restriction of some . 
Q.E.D. 



Problems 

1. The fact that a topological space is locally Euclidean (each 
point has a neighbourhood homeomorphic to an open subset of Rn) 
implies neither that the manifold is second countable nor that it is 
Hausdorff. Construct one-dimensional examples to prove this. 

2. Let M and N be manifolds and 9): M - t  N be a map such that 
rp*g E Y ( M )  whenever g E Y ( N ) .  Show that 9) is smooth. 

3. Construct a smooth injection of the two-dimensional torus 
T 2  = R2/Z2 into R3. 

4. Show that the n-torus Tn is diffeomorphic to the product of 
n circles S1. 

5. Let M and N be smooth manifolds and suppose that p is a metric 
on N .  

(i) Prove that if 4p: M -+ N is a continuous map and E > 0 is given, 
then there is a smooth map #: M .+ N such that p(cpx, #x) < E, x E M. 

(ii) Two continuous maps cp, $: M + N are called continuousEy 
homotopic, if there is a continuous map H : I  x M + N such that 
H(0, x) = 4px and H(1 ,  x) = #x. 

Prove that every continuous map is continuously homotopic to a smooth 
map. Prove that two smooth maps are smoothly homotopic if and only 
if they are continuously homotopic. 

6. Let M and N be compact smooth manifolds. Assume that 
a: Y ( M )  t Y ( N )  is a homomorphism. Show that there is a unique 
smooth map 9: M-+ N such that rp* = a. Conclude that if a is an 
isomorphism, then cp is a diffeomorphism. 

7. 

8, 

(i) R (Mobius strip). 
(ii) S' (Klein bottle). 

Classify the one-dimensional topological manifolds. 

Construct a nontrivial fibre bundle over S1 with fibre 
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9.  Let T be a diffeomorphism of a compact manifold, M ,  such that 
(i) T~ = L ,  for some k, and (ii) for each x E M ,  x, TX, ..., r k - b  are distinct. 
Define an equivalence relation in M by setting x - y  if r p x  = y for 
some p .  Show that the corresponding quotient space is a smooth manifold 
N and that ( M ,  T ,  N ,  F )  is a smooth bundle, where F is the set (0, 1, ,.., 
k - 1). 

10. Regard SZn+l as the unit sphere of an (n + 1)-dimensional 
Hermitian space E.  Define an equivalence relation on S2n+1 by setting 
x - y if y = eisx for some 0 E R. 

(i) 

(ii) 

(iii) 

Show that the equivalence classes with the quotient topology form 
a smooth 2n-manifold. It is called the complex projective space @Pn. 

Show that the projection 7-r: SZn+l -+ @Pn is the projection of a 
smooth fibre bundle (S2n+1, T ,  CP", Sl). I t  is called the Hopf $bering. 

Show that CPl is the Riemann sphere S2 and that T is given by 

Construct an explicit coordinate representation ( U ,  p), ( V ,  4)  for this 
Hopf fibering, where U = S2 - (0) and V = S2 - {zm}, so that 

11. Replace C by W in problem 10 and define the quaternionic 
projective space WP". Obtain the Hopf fiberings (S4fl+3, T ,  WPn, S3). 
Discuss the case n = 1. 

12. Imitate the definition of topological and smooth manifolds to 
define real and complex analytic manifolds. Do they admit analytic 
partitions of unity ? 

13. Grassmann manifolds. Let Rn have a positive definite inner 
product. For every k-dimensional subspace E C Rn, let pE: Rn + E and 
p i  : Rn -+ E l  be the orthogonal projections. Consider the set gR(n; k) 
of all K-dimensional subspaces of R". For E E g R ( n ;  k) set 

U ,  = {F E qR(n; k) IF n EL = (0)) 
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and define uE : U, -+ L(E; E l )  by 

%(F) = PEL O ( P F E Y  

(pFE : F 5 E is the restriction of p E ) .  

(i) 
(ii) 

(iii) 
(iv) 

Make 91R(n; k) into a smooth manifold with atlas {( UE , uE)}. 
Show that dim BR(n; K) = k(n - k). Define a natural diffeo- 

Show that BR(n + 1 ; 1) is diffeomorphic to RP". 
Do (i) and (iii) with R replaced by @. Find dim 91c(n; k). 

morphism between SR(n; k) and SR(n; n - k). 

14. Let E, F and H be real vector spaces of dimensions m, n and k 
with K < m, n. Let S(E; H) (resp. I (H;  F), GL(H)) denote the set of 
linear surjections (resp. injections, bijections) and let L(E; F; k) denote 
the set of linear maps E --t F of rank K. 

(i) Show that composition defines a set map 

T: S(E; H )  x I ( H ;  F )  + L(E; F;  k). 

(ii) Show that S ( E ;  H), I ( H ;  F), and GL(H) are open subsets of the 
spaces L(E; H), L(H;  F), and L,. Conclude that they are smooth 
manifolds. 

Construct a unique smooth structure in L(E; F; k) so that 
(S(E;  H) x I ( H ;  F ) ,  T, L(E;  F; k), GL(H)) is a smooth bundle. Find 
the dimension of L(E; F; k). 

(iii) 



Chapter I1 

Vector Bundles 

§I. Basic concepts 

2.1. Definitions. A vector bundle is a quadruple 6 = (E, r ,  B, F )  
where 

(1) (E, r, B, F )  is a smooth fibre bundle (cf. sec. 1.13) 
(2) F, and the fibres F, = r - l ( x ) ,  x E B, are real linear spaces 
(3) there is a coordinate representation {( U, , 4,)) such that the maps 

*a,x: F + Fx 
are linear isomorphisms. 

The  dimension of F is called the rank of 6. A coordinate representation 
for the bundle which satisfies (3) is called a coordinate representation for 
the vector bundle 4. We shall often denote a bundle 6 by its total space E. 

If { (U,  , 4,)) is a coordinate representation for (, then the maps 
gaB: U,, -+ GL(F) given by 

gaB(x) = *z O *B.X 

are smooth. They are called the coordinate transformations for 6 corre- 
sponding to { (U ,  , u,)}. (GL(F) is an open submanifold of L(F;  F ) . )  

A neighbourhood U in B is called a trivializing neighbourhood for 6 
if there is a diffeomorphism 

+u: U x F + n-'U 

such that qhu(x,  y )  = x (x E U,  y E F) and such that the induced maps 

4Ju.x: F - Fx 
are linear isomorphisms. &, is called a trivializing map for (. 

A subbundle 5' of a vector bundle 6 is a vector bundle with the same 
base such that each of its fibres F,' is a linear subspace of F, , and for 
which the induced inclusion map i: E' -+ E of total spaces is smooth. 

44 
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2.2, Bundle maps. If 4 = (El  T, B, F) and 5' = (E', d, B', F') are 
vector bundles, a bundle map (also called a homomorphism of oector 
bundles) 'p: 5 ---+ 5' is a smooth fibre-preserving map 'p: E ---+ E' such 
that the restrictions 

pz:  F, - F h  , x E 4 

are linear (+: B + B' denotes the smooth map induced by q ~ ,  cf. sec. 1.13). 
If 'p': 4' --f 5" is a second bundle map, then so is 'p' 0 'p. Let #, +', 

and 4'' denote the smooth maps of base manifolds induced by 'p, 'p', and 
q ~ '  0 'p. Then 

ly = $' 0 $. 

A bundle map 'p: 5 -+ is called an isomorphism if it is a diffeomor- 
phism. The  inverse of a bundle isomorphism is clearly again a bundle 
isomorphism. Inverse bundle isomorphisms induce inverse diffeomor- 
phisms between the base manifolds. Two vector bundles 5 and 5' are 
called isomorphic, ( t', if there is a bundle isomorphism 'p: 6% 6'. 

A strong bundle map between two vector bundles with the same base 
is a bundle map which induces the identity in the base. 

Now let 'p: 5 --t 5' be an arbitrary bundle map inducing I): B + B' and 
choose coordinate representations {( U,  , I),)} and {( Vi , x i ) }  for 5 and r ,  
respectively. Then smooth maps 

via : f1(Vi) n U, +L(F; F') 

are defined by 

pie(x) == XG' 0 v z  0 4a.z  t x' = $(XI* 

They are called the mapping transformations for 'p corresponding to the 
given coordinate representations. 

Proposition I: Let y :  5 --t 5' be a homomorphism of vector bundles 
inducing +: B -+ B' between the base manifolds. Then 'p is an isomor- 
phism if and only if 

(1) 
(2) 

+: B + B' is a diffeomorphism, 
each 'p,: F, +F& (x E B) is a linear isomorphism. 

Proof: If q~ is an isomorphism, then (1) and (2) are obvious. Con- 
versely, assume (1) and (2) hold. Then 9) is bijective and q~-l restricts 
to the linear isomorphisms 'p;': F, t' Pic,, . It remains to prove that 
q+ is smooth. 
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With the aid of trivializing neighbourhoods for t and 6‘ we can reduce 
to the case (E, E‘ are the total manifolds for 5, 5’) 

B = B ’ ,  E = B x F ,  E ‘ = B x F  

and (Fl is the identity map. Then x tt yz defines a smooth map 

@: B --+ L(F; F’) 

and y-l is the smooth map given by 

cp-l(x, Y’) = (x, @(x)-’(Y’)), x E B,  JJ’ EF’. 
Q.E.D. 

2.3. Examples. 1. The triwial bundle of rank r over B 

4 = ( B  x F, T, B,F) ,  

where ~ ( x , y )  = x and F is an r-dimensional real vector space. This 
bundle is often denoted by B x F or by E*. 

2 .  Restriction: Let = ( E ,  T ,  B, F) be a vector bundle. The  
restriction, t l o  , of 4 to an open submanifold 0 C B is the bundle 

4 lo = (+(O), To 9 0, F) ,  

where no is the restriction of 7r to the open set n-l(O). 

( i  = 1, 2). Their Cartesian product is the vector bundle 
3 .  Cartesian product: Let ti = (Ei, ri, Bi, Fi) be vector bundles 

t1 x f 2  = (El x E2, 7r1 x r2, B’ x B2, F1 O F 2 )  

whose fibre at (xl, x2) is the vector space 

If { (U,  , ye)} and { (V” ,  (Fly)} are coordinate representations for t1 and 
t2, then a coordinate representation {( U,  x V,  , xey)} for t1 x t2 is 
given by 

Xnu(X1 * 3c2 ; Y 1 0  Y2) = (cp.(Xl 3 Y A  M X 2  9 Y2N. 

The  projections p l :  El x E2 + El ,  p2: El x E2 + E2 are bundle maps 
x t2 + t1 and t1 x t2 ---f t2. 

The  Cartesian product 6’ x t2 has the following factorization prop- 
erty: If [ = (E, T ,  B, F) is a third vector bundle and p l :  E + El ,  
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p2: E + E2 are bundle maps, then there exists a unique bundle map 
p: E -+ El x E2 such that 

p l o p  = p l  and p 2 0 p = p 2 .  

2.4. Multilinear maps. Let fl, e2, ..., t p ,  5 be vector bundles over 
the same base B. A p-linear bundle map 

@: ( 5 1 ,  ..., p) --f 5 

is a collection of p-linear maps 

Ox: F,’ x * - -  x F Z - F , ,  

indexed by B, which satisfies the following smoothness condition: 

If {( U, , #:)}, ..., {( U, , #:)}, and {( U ,  , 4,)) are coordinate representa- 
tions of tl ,  ..., Ep and E respectively (we may assume that the covering 
(Urn} of B is the same for all bundles), then the mapping transformations 

0,: U, + L(F1, ..., F p ;  F )  

defined by 

are smooth. 
@a@) = *:,: O @I O (&,x x * * *  x Kx), 

This definition is independent of the choice of coordinate repre- 
sentations and coincides with the definition of a strong bundle map when 
p = 1.  However, if p > 1, 0 may not be regarded as a set map on 
the Cartesian product of the total spaces of tl ,  ..., 4P. 

When it is convenient to do so we shall use the notation @(x; x1 , ..., 2,) 
for @Jz1 , ..., xp). 

2.5. Construction of vector bundles. Proposition X in sec. 1.13 
provides a useful tool for the construction of vector bundles over a given 
manifold B. In  fact, consider a manifold B and an r-dimensional vector 
space F. Assume that to every point x E B there is assigned an r-dimen- 
sional vector space F, . 

Consider the disjoint union E = UzoBFa: and the natural projection 
n: E -+ B. Assume given an open covering {U,} of B, together with 
‘linear isomorphisms 

N 

F F, , x E U, 

subject to the following condition: 
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Condition S: The maps I,@: U,, + GL(F) given by 

are smooth. 

Define bijections I),: U,  x F --f n-'( U,) by setting 

Then Condition S implies that the bijections I)su = $il 0 $, of U,, x F 
are smooth. Now, by Proposition X, sec. 1.13, there is a unique smooth 
manifold structure on E which makes (E, 71, B, F) into a bundle with 
coordinate representation {( Ua , I),)}. It is clear from the construction 
that the bundle so obtained is a vector bundle. The  fibre at x E B is 
the vector space F,  . 

Example, Pull-backs: Let t = (E, n, B, F) be a vector bundle and 
let a: M -+ B be a smooth map. Assign to each x E M the vector space 
Fu(z) . Let { (V,  , yo)} be a coordinate representation for g and set 
U,  = u-l( V,) .  Define linear isomorphisms 

4a.z: F -+ F ~ M  x E u a  

where g,, are the coordinate transformations for 5. Hence it is smooth. 
Thus there is a vector bundle u*[ = (N, p, M,F) ,  with N = UzEMFu(z) 

and with coordinate representation {( U,  , I),)}. u*f is called the pull-back 
of f over u. 

The identity maps Fo(z) -+F,(,) define a bundle map 

s:  u*[ --+ .$ 

which induces a: M +  B. T restricts to linear isomorphisms in each 
fibre. 

If r )  = (N' ,  p', M, H) is a second vector bundle over M and v: r )  + 5 
is a bundle map inducing u: M + B, then we may restrict to linear 
maps 

RE: Hz - F d Z )  9 x E M .  
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These define a strong bundle map Q: 7 -P u*[, and the diagram 

+ U*f 
0 

rl 

E 

commutes. In  particular, if each ys is a linear isomorphism, then Q is 
a strong bundle isomorphism; i.e., 7 is isomorphic to the pull-back of 
.$ over a. 



§2. Algebraic operations with vector bundles 

In  this article all vector bundles will have a fixed base B. Moreover, 
6, (', r ] ,  5 will denote fixed vector bundles with typical fibres F, F', H, 
and K. In particular, we shall write ( = (El T ,  B, F ) .  

2.6. The module of strong bundle maps. Let p', $: ( + r ]  be strong 
bundle maps and letfE Y ( B ) .  Then strong bundle maps 

'p +** f ' p  : 5 - 7  

are given by 

The operations (p', $) ++ p' + I) and (f, p') ~ f p '  make the set of strong 
bundle maps into an Y(B)-module, which we denote by Hom((;7). 

Let P ) E  Horn((; r ] ) ,  $ E  Hom(r]; 5). Then the composite $ 0 ~  is a 
strong bundle map, 

*.'p: 5 - 5 .  

The correspondence (p', $) I+ + 0 p' defines an Y(B)-bilinear map 

Example 1: If 6 = B x F, r ]  = B x H are trivial bundles, then to 
each p' E Horn((; r ] )  we can associate the mapping transformation 
4: B -+L(F; H) defined by 

'p(x, W) = (x, $(x)v), x E B ,  w E F.  

This defines an isomorphism of Y(B)-modules: 
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If @, Y: (51, ..., [ p )  + 7 are p-linear maps and if f~ Y ( B ) ,  we define 
@ + y, f@: (51, . * * ,  P )  + 7 by 

(@ + w x  = @x + y x  , 
x E B. 

( f @ ) z  = f ( x )  @x ! 

The  operations (@, Y )  t+ 0 + Y, (f, @) ~ f @  make the set of p-linear 
maps (el, ..., 5”) --+ 7 into an Y(B)-module, which we denote by 
Hom(S1, ..., 5”; 7). If 7 = B x R, the elements of the module 
Hom(fl, ..., t*; 7) are called p-linear functions. 

Example 2: An Y(B)-bilinear map 

Hom(S1, ..., [P; 7) x Hom(T; 5)  -+ Hom([l, ..., 5”; 5 )  

is given by (@, 9’) E+ 9’ 0 @, where 

(9’ 0 @), = yx 0 @, , x E B. 

An element @ E Hom (5, ..., 5; 7) is called skew-symmetric (symmetric) 
if, for every x E B, the p-linear fibre maps 

@,: F,  x a * *  x F, + H ,  

are skew-symmetric (symmetric). Skew-symmetric bundle maps will be 
of particular importance in Chapter 111. The  skew-symmetric (sym- 
metric) bundle maps are submodules of Horn((, ..., 6; 7) which will be 
denoted by 1. We extend this definition to the 
case p = 0 by setting 

7) ( S p ( f ;  ~ ) ) , p  

So([; 71) = /lo([; 7) = Hom(B x R; 7). 

Now set 

Since, evidently A p ( 5 ;  7) = 0, p > rank 5 (= r), we have 

The  module of skew-symmetric p-linear functions in 5 is denoted by 
A p ( ( ) ,  and we write 

4 8  = @‘,=, AP(6).  
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As in the case of Horn([; q), if [l, ..., [ p ,  q are trivial bundles, then 

and 

2.7. Dual bundles. Suppose that a bilinear function ( , ) in (q, [) 
has been defined (cf. sec. 2.6). We say that ( , ) is nondegenerate, or a 
scalar product, if the R-bilinear functions 

are all nondegenerate. In  this case 5 and q are called dual with respect 
to ( , >. 

Now it will be shown that every vector bundle 5 admits a dual bundle 
[*. Let F,* be dual to the vector space F, (x E B )  with respect to a 
scalar product ( , ), . Let {( U, , qa)} be a coordinate representation for 5 
and define linear isomorphisms 

by setting +,,, = (p)O*;,)-l. 

[* = (E*,  rr*, B, F*) where 
Then the construction principle of sec. 2.5 yields a vector bundle 

E* = 0 F,* 
XEB 

and T*: E* .+ B is the obvious projection. 
The  scalar products ( , ), define a scalar product between [* and 5; 

thus [* and 5 are dual bundles. 
Evidently, rank (* = rank 5. 
Next, let [*, [ and q*, 9 be two pairs of dual vector bundles, with 

fibres FZ, F, and HZ, H ,  at x E B.  Suppose q: [ .+ q is a strong bundle 
map. Then a strong bundle map q*: [* c q* is given by 

( T * ) ~  = (T%)*: F,* + H:, x E B. 

q* is called the dual of q. 
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Proposition 11: If 5, r ]  are dual with respect to ( , ), then an Y ( B ) -  
module isomorphism 

Horn([, 6; B x R) -% Horn([; 7) 

is defined by @ c+ g~, where 

( ~ ( w ) ,  z) ,  = @(x; W, z), w E K, , z E F, , x E B. 

Proof: The  relation above defines unique linear maps vx: K, -+ H ,  
for each x E B. The  collection of all these maps determines a set map v 
from the total space of 5 to that of 7. The  smoothness of y follows from 
that of @; thus g~ is a strong bundle map. 

is an Y(B)-module homomorphism. On 
the other hand, a module homomorphism 

The correspondence @ H 

Horn([, 5; B x R) - Horn([; 7) 

is defined by associating to each q~ E Horn((; 7) the bilinear function CD 
given by 

@(x; W ,  Z) = ( ~ ( w ) ,  z), , w E K ,  , z E F, , x E B. 

These homomorphisms are inverse to each other, and so they are iso- 
morphisms. 

Q.E.D. 

Corollary I: Any two vector bundles which are dual to a given 
vector bundle are strongly isomorphic. 

Proof: 

E Hom(C2; (l) such that 

Suppose [I, E2 are dual to 5 with respect to bilinear func- 
tions ( , )' and ( , )2. Then the bilinear function ( , )2 determines a 

(~J , (w) ,  z): = (w, z)", w E F," , z E F, , x E B. 

I t  follows from standard linear algebra that v, is a linear isomorphism 
and so y~ is a strong bundle isomorphism. 

Q.E.D. 

Corollary 11: 

Horn(?; 5 * )  

If [*, 5 and 7*, 7 are two pairs of dual bundles, then 

Horn(7, 5 ;  B x R) Horn((, 7; B x R) E Horn((; .I*). 
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In  particular, setting 7 = 7* = B x R (with the standard scalar product 

Hom(B x R; t*) 2 Horn([; B x R). 

((x, 4, (x, P ) )  = AP) yields 

2.8, Whitneysum. A vector bundle ( is called the Whitney sum 
of the bundles P ( v  = 1, . . . , p )  if there are defined strong bundle maps 

i': 4'- 4 and pv: [ -+ p 
such that 

pv o ip = 1; V Z P  
v = p  

and 

f iu o pu = t9 . 

In  particular, the fibre F, in 4 over a point x E B is then the direct sum 
of the fibres Fi . I n  this case 4 is denoted by ( l  @ 

Next, suppose that ' p v :  5y --f 7 are strong bundle maps. Then a strong 
bundle map 'p: 5' --f 7 is given by 

u-1 

@ (*. 

7 = C q o p y .  

V 

The correspondence ('pl , ..., ' p p )  I--+ 'p defines a module isomorphism 

0, Horn(+?; 7) Hom(P @ ... @ fp; 7). 

In  particular, ( l  @ ... @ ( p  is determined up to strong isomorphism. 
Now we shall show that the Whitney sum of vector bundles always 

exists. We shall restrict ourselves to the case p = 2, the generalization 
being obvious. Assign to each x E B the vector space Fi  @ F: . Let 
{( U ,  , vi)} and {( U, , v:)} be coordinate representations for ( l ,  ga and 
assign to x E U,  the linear isomorphism 

$a,x = ~t,,  @ rp:.,: F1 @ F2 + F: @ FE . 
Then the construction principle of sec. 2.5 yields a vector bundle 

4 = (E ,  n, B, F' @ F2) ,  
where 

and rr is the obvious projection. 
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The inclusions Fi , FZ + F; @ FZ define strong bundle maps 

i l :  61 --+ [, i 2 :  6 2  --+ [. 

The projections F i  0 FZ + Ft , F: 0 F: + FZ define strong bundle 
maps 

p’: f +  61, p2: [--+ p. 

These maps satisfy the required conditions (check this at each x E B 
separately) and so f is the Whitney sum of 8’ and t2. Clearly 
rank(tl 0 t2) = rank [l + rank f2. 

2.9. Tensor product. A vector bundle q is called a tensor product 
Q @-‘ if there of the bundles 5y (v = 1, ...,p) and is denoted by t1 Q 

is defined a p-linear bundle map 

@P: (51, ..., p) --+ q 

subject to the following factorization property: For each vector bundle 
5 over B, and to every p-linear bundle map @ E Hom([l, ..., ( p ;  5) 
corresponds a unique strong bundle map v: 7 + 5 such that 

p 0 8” = 0. 

A tensor product of vector bundles 5y always exists. It is constructed 
in exactly the same way as the Whitney sum, with F: Q F: replacing 
F’: @ F: . In  particular, rank(tl Q t2) = (rank tl)(rank 4”). 

Let t1 Q *.. Q [ P  be a tensor product for vector bundles 5y. Then 
the correspondence v ++ v 0 Qp defines a module isomorphism 

N 

Hom(S1 0 ... 0 6”; 5 )  L Hom(S1, ..., f p ;  5) .  

In particular, [l Q 

extend the definition by setting 

Q [ P  is determined up to strong isomorphism. 
= [ P  = 5, we denote the tensor product by Q P t .  We If t1 = 

@Of = B x R. 

Finally, let 6, t* and q, q* be two pairs of dual vector bundles. Then 
the bilinear function in ([* Q q*, 5 Q q) given by 

(z* 0 w* ,  z 0 w) ,  = (z*, z),(w*, w) ,  , x E B, 

is a scalar product. Hence we can write 

( 5  0 q)* Lz 5* 0 q*. 



56 11. Vector Bundles 

2.10. The bundle L ( f ;  7). Recall that f ,  7 denote vector bundles 
over B with typical fibres F, H. Let {( U,  , v6)} and {( U, , &)} denote 
coordinate representations for these bundles. Now assign to  each x E B 
the vector space L(F,; H J .  Further to each x E U,  assign the linear 
isomorphism 

given by 

N - 
JJ,.,: L(F; H )  L(F,; H,) 

6.,.(4 = #a,, O (J O v;.: - 
Then the construction principle of sec. 2.5 yields a vector bundle 

L(5; 7) = (E,  73, B, L(F; H ) ) ,  
where 

E = u L(F, ; H,). 
x€B 

Its fibre at x is the space L(F,; HZ).  
If f = 7, we sometimes denote L( 4; f )  by L, . 
If f *  is a vector bundle dual to 4, then the canonical isomorphisms 

F,* 8 H ,  5 L(F,; H J ,  x E B 

define a strong bundle isomorphism 
N 

t* 0 7 L(t;  7). 

More generally, we may construct the vector bundle L(f l ,  ..., f p ;  7) 
x F$ + H ,  . whose fibre at x E B is the space of p-linear maps Fi x 

The  canonical linear isomorphisms 

L(FL, ..., FZ; H,) L(Fi @ *.. OF;; H,) (Fi)* @ @ (F;)* @ H ,  

define strong bundle isomorphisms 

L ( p ,  ..., p; 7) L(.p @ * * *  @ p; 7) g ((I)* @ ..* @ (P)* @ 7). 

T h e  bilinear bundle map 

c: (W; 7)s E )  --+ 7, 
given by 

c(x; a, 9 2,) = az(2z)r ap! E W ,  ; K!), a, EF, 9 x E B, 

is called the evaluation map, T h e  bilinear bundle map 

@: w ;  7) x L(7; 5 )  -L(t ;  0, 
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defined by 

57 

is called the composition map. 

2.1 1 .  Exterior algebra. A pth exterior power of 5 is a vector bundle 
Apt ,  together with a p-linear skew-symmetric bundle map 

A ?  ((, ..., 5) ---f A”(, 

with the following factorization property: Every p-linear skew-symmetric 
map @: (4, ..., 5) + 71 can be written uniquely in the form 

@ = p o A P ,  

where cp: A p t  -+ 71 is a strong bundle map. 
The  map cp I-+ cp 0 A P  defines a module isomorphism 

- - 
Hom(Ap(; q) 2 A p ( ( ;  7). 

An argument similar to the one used in sec. 2.9 shows that the bundle 
A p t  exists and is uniquely determined by 4 up to ‘a strong isomorphism. 
A p t  has fibre ApF, at x E B and the map A P  is given by 

AP(x; zl, ..., z”) = z1 A A Z, , Z, EF, , x E B. 

In  particular, APE = B x {0}, p > rank 4 ;  and rank(Ap4) = (L), 
1 < p < r, where r is the rank of 4. 

Now suppose 4 and [* are a pair of dual vector bundles. Then (for 
each x E B) the scalar product ( , ), between F, and FZ induces a 
scalar product, ( , ), between APF, and ApFZ, given by 

(z*l A 9 . .  A z*P, z1 A .*. A z”)~ = det((Z*,, Z,)~), z*” EF:  , z, E F ,  . 
These scalar products, in turn, define a scalar product between APE 

and A p t * .  Thus these bundles are dual, and we can write 

(A”()* = A”(*. 

We now extend the definition of A p t  to the case p = 0 by setting 
A04 = B x R. We define the exterior algebra bundle A t  to be the 
Whitney sum 

A( = @iE0 A p t ,  I = rank 5. 

A(  has fibre AF, at x E B, and its rank is 2’. 
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A strong bundle isomorphism A t  0 Ar, g A((  @ r,) is given by 

If ‘p: 6 ---f q is a strong bundle map, then the induced linear mappings 
X @ W I + Z A W ,  X E A F , ,  W E A H , ,  X E B .  

pi F, - H ,  , x E B, 

extend to algebra homomorphisms 

AT,: AF, --+ A H , .  

These define a strong bundle map, written A’p: A t  --t hq. 

2.12. Symmetric algebra. In  precisely the same manner as in the 
preceding sections we obtain for every p 2 1 a unique vector bundle 
Vpf together with a p-linear symmetric bundle map 

vp: (4 ,  ..., 5) - V1’4, 

with the following property: Every symmetric p-linear map 

!P: (t, ..’, 4 )  -+ 7 

can be written uniquely in the form Y = + o Vp, where +: V.5- q is 
a strong bundle map. V P t  is called a pth symmetric power of 5. The map + ++ y5 0 Vp defines a module isomorphism 

Horn(VT’4; 7) --% P ( 6 ;  7). 

The bundle V P t  has fibre VPF, at x E B and the map Vp:  (5, ..., I )  + V P t  
is given by 

V P ( x ; x 1  ,..., Z ~ ) = Z ~ V * . * V Z ~ ,  z , E F , ,  v =  1, . . . , p ,  X E B .  

Finally, assume that 4 and [* is a pair of dual vector bundles. Then 
(for each x E B )  the scalar product ( , ), between F, and F,* induces a 
scalar product ( , >, between VPF, and VPFZ by 

(z*l v v z*P, z1 v v z,) = perm((z*y, z,,),), z*” EF: , z,, E F ~ .  

These scalar products define a scalar product between the bundles 
V.5 and Vp5*. Thus these bundles are dual, and we can write 

(WE)* = v q * .  
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In this article 5 = (E, T, B , F )  denotes a fixed vector bundle. 

2.13. Definitions. A cross-section u in a vector bundle 6 is a smooth 
map u: B -+ E such that T 0 u = L .  Every vector bundle 5 admits the 
zero cross-section o defined by 

o(x) = 0, EF, , x E B. 

The carrier (or support) of a cross-section u is the set 

carr u = closure{x E B I u(x )  # O,}. 

Let u: U - +  E be a cross-section defined in an open subset U of B 
(i.e. u is a cross-section in the bundle 6 1"). Let f E Y ( B )  satisfy 
carr f C U .  Then a cross-section f * u in 5 is given by 

X E U  

x $ carr f. 

More generally, let {U,,} be a locally finite open cover of B, and for 
each Y let u,, be a cross-section defined over U,, . Let { f w }  be a partition 
of unity subordinate to the open cover {U,} .  Then a cross-section 
xu f w  * u,, , in 5 is given by 

(1 f w  .U") (4 = C f U ( 4  U u ( 4  
U Y 

If u is a cross-section in 5 and a,,: Uv-+ E is the restriction of u to U ,  , 
then 

u = C f " * u w .  
Y 

Examples: Let a E E and let b = ~ ( a ) .  Then there exists a 
cross-section u such that u(b) = a. 

In fact, choose a trivializing neighbourhood U of b. Then 5 I e U x F 
and so there is a cross-section T: U +  E such that ~ ( b )  = a. Choose 
f~ Y ( B )  with f (b) = 1 and carr f C U ;  then set u = f T. 

59 

1. 
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2. A vector bundle of rank 1 is trivial if and only if it admits a cross- 
section u such that 

u(x) # 0, , x E B. 

Indeed, if 4' = B x R is trivial define u by u(x) = (x, 1). Conversely, 
if u exists, define a strong isomorphism B x R + 4' by 

(x, t )  H tu(x),  x E B, t E R. 

2.14. The module of cross-sections. If u, T are cross-sections in 5 
and f E Y ( B ) ,  cross-sections u + T ,  fu in 5 are given by 

(0 + ')(x) = .(X) + T(X), (f'J)(x) = f ( x )  u(X), x E B- 

The operations (a, T )  I-+ u + T and (f, u) e f u  make the set of cross- 
sections in 4 into an Y(B)-module, which will be denoted by Sec 5. 

Examples: 1, If 5 = B x F is a trivial bundle, then every cross- 
section u determines a smooth map ?: B .+ F given by 

This defines a canonical isomorphism 
c= 

Sec [ J Y ( B ;  F )  

of Y(B)-modules. In  particular, if e l ,  ..., e, is a basis of F, then the 
cross-sections ui given by 

ui(x) = (x, ei), i = 1, ..., r ,  x E B, 

are a basis for Sec 5:  thus it is afiee Y(B)-module. 

2. Sec (tl @ [*) Sec t1 @ Sec fa .  In  fact, the homomorphisms 

Sec([1@ [a) + Sec 61 @ Sec [*, Sec [l @ Sec [* + Sec([l @ [*), 

given by 

u H ( $ 0  u, pa 0 u), (ul , u2) H i1 0 u1 + i* 0 u2 , 

respectively, are easily seen to be inverse (cf. sec. 2.8). 
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3, Let r ]  be a second vector bundle over B, with typical fibre H. 
We shall define a canonical isomorphism 

I: 

W :  SecL(5; 7) 2 Hom(f; 7) 

of Y(B)-modules. 
Indeed, fix u E SecL(f; 7). Then, for x E B, U(X) EL(F,; H,). Let 

v: f -+ r )  be the fibre-preserving set map whose restriction to each F, 
is the linear map u(x). q~ is smooth, as follows directly from the smooth- 
ness of u, with the aid of coordinate representations for [ and for 7. 
Hence q~ is a strong bundle map. 

Now define w to be the correspondence 

w :  U H V ,  

just given. o is clearly an Y(B)-module homomorphism. To show 
that it is an isomorphism we construct the inverse. Let v E Horn([; r ] )  

and define u E Sec L( [; 7) by 

U(X) = q~, EL(F, ; H,), x E B. 

Then the correspondence q~ I+ u defines a module homomorphism 
inverse to o. 

4. A canonical isomorphism 

W :  SecL(tl, ..., I”; 7) ---f Horn([’, ..., 5”; 7) 

is defined by 

w(u)(zl , ..., zp) = U(X; z1 , ..., zP), x E B, Z, E Fz , v = 1, ..., p 

(same argument as in Example 3). 
5. A canonical isomorphism 

= 
W :  SecL(Apf; 7) 2 An(.$; 7) 

is defined by 

w(u)(zl, ..., 2,) = u(X)(zl A *.* A Z p ) ,  

6. A canonical isomor-phism 

x E B, z, E F ,  , v = 1, ..., p .  

N - 
W :  SecL(Vp[; 7) 2 Sp(6; 7) 

is defined by 

w(u)(z1 , ..., zs) = U ( X ) ( X 1  v * - .  v zp),  X E B, z, EF, , v = 1, ..., p .  
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2.15. Mappings of cross-sections, In this section we describe three 
types of mappings (induced by bundle maps) between modules of 
cross-sections. 

First, let r )  = ( E ’ ,  T‘, B‘, H )  be a second vector bundle and let 
‘p: [ --f r )  be a bundle map inducing +: B --f B‘. Let (*, r)* be bundles 
dual to 8 and 7. Then ‘p induces a map 

v*: Sec t* +- Sec T *  

defined as follows: 

Let 

q~:: F,” +- H,*((,, , x E B 

be the dual of the linear map vx: F,+ H + ( x ) .  Then, for ~ ~ S e c v * ,  
define a map o: B -+ E* (the total space of [*) by 

Use the trivializing maps to show that o is smooth, and hence a cross- 
section in [*. 

We denote u by ‘p*(~). The map ‘p*: Sec r)* + Sec [*, so defined 
satisfies 

The  second type of mapping occurs when we consider bundle maps 
‘p: [ -+ 71 which restrict to linear isomorphisms ‘p, in each fibre. In this 
case a map 

@: Sec 6 +- Sec 7 

is given by 

[cpX(7)](r) = ‘p;l(~(+x)), x E B,  T E Sec 7. 

It satisfies the relations 



3. Cross-sections 63 

Thirdly consider the case that 5 and 7 are bundles over the same 
base B, and let 'p: 5 -+ 7 be a strong bundle map. Define 

v*: Sec f --f Sec 7 

by 
(v*.)(x) = V ( I J ( 4 )  = V % ( I J ( 4 ) ,  x E B, IJ E Sec f .  

Then 'p* is a homomorphism of Y(B)-modules. 
If +: 7 -+ 5 is a second strong bundle map, then 

($OF)* = **ov* * 

( h c ) *  = Lsec 6 * 

Moreover, 
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2.16. Orientable vector bundles. Let 5 = (E, r, B, F) be a vector 
bundle of rank r ,  with dual bundle 5* .  Then (cf. sec. 2.11) A"(* is a 
vector bundle of rank 1. We say that 5 is orientable if there exists a 
A E Sec AT(* such that 

d(x) # 0, X E  B. 

Such a cross-section is called a determinant function in 5. Clearly A ( x )  
is a determinant function in the vector space F, . 

According to Example 2, sec. 2.13, a vector bundle 5 of rank r is 
orientable if and only if /IT(* is trivial. 

If d, , A, are both determinant functions in 4, then there is a unique 
f~ Y ( B )  such that A, =fA,. Moreover, f ( x )  # 0 (x E B). Thus an 
equivalence relation on determinant functions is given by 

A ,  - A 2  * J ( x )  > 0, X E  B. 

Each class is called an orientation of 4. 
If a given class containing d is chosen, the vector bundle is said to 

be oriented, A is said to represent the orientation and is called positive. 
Suppose then that 5 is oriented and d represents the orientation. The  

determinant functions A ( x )  orient the fibres F, (x E B) in the sense of 
linear algebra [cf. 5, p. 1271. This orientation is independent of the 
choice of A.  A sequence z1 , ..., z, of vectors in F, will be called 
positive (with respect to the orientation) if 

d(x; z1, ..., z,) > 0. 

Now assume B is connected, and 5 is orientable. Then the functions 
f, above, are either everywhere positive or everywhere negative; thus 5 
admits precisely two orientations. 

Proposition 111: A vector bundle 5 = (E, r, B, F) is orientable if 
and only if it admits a coordinate representation {( U, , va)} whose 
coordinate transformations gaD(x) = v;: o vD,, have positive determinant. 

Proof: Assume that 5 is orientable and let d be a determinant func- 
64 
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tion in 6. Let {( Ua , +J} be a coordinate representation for 6 such that 
the U, are connected. Choose a fixed determinant function A, in F. 

Since the U,  are connected, for each a, the linear maps 

lrL,,x: F --+ Fx , x E u, 

either all preserve, or all reverse the orientations. Let p be an orientation- 
reversing isomorphism of F and define a coordinate representation 
(urn F a )  for 6 by 

*a(% Y ) ,  if $a,x preserves orientations 
qa(x, Y> = 1s a ( x, p( y ) ) ,  if $u,x reverses orientations. 

Then each qu,z preserves orientations. Hence so does q $ o  p)@,z; i.e. 

Conversely, assume that 5' admits a coordinate representation {( Ua , qa)} 
det(q,i %.2) > O* 

such that 
det(vL,lx %.x) > 0, A? ua u6 * 

Let A, be a determinant function in F and define A ,  E A'(( I v a )  
( Y  = rank 6) by 

A&; z1 9 *'., 4 = 44v;,lx(zl), .*.) Y;*lx(zr)). 

A simple computation shows that 

A,(%; Z1 , ..., z,) = det(K,'i 0 929.2) 4 ( X ;  zi ..., &), x E U, n u@, zi E F , .  

Now, assume that the cover {Ua} of B is locally finite, and let {pa} 
be a subordinate partition of unity. Define A E Sec AT(* by 

&; 21 , e s . 9  z,) = c A(.) A&; z1 , .'*, z r ) ,  X E B ,  z i € F X .  
a 

Since x a p , ( x )  = 1, pa(.) 2 0 and det(q;i 0 vBp) > 0, it follows that 

A ( x )  # 0, X E B ,  
and so 5 is orientable. 

Q.E.D. 

Corollary: Let ( be an oriented vector bundle and choose a fixed 
orientation in the typical fibre F. Then there exists a coordinate rep- 
resentation {( U,  , va)} for 6 such that the isomorphisms 

preserve the orientations. 
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If QI: e--+ 7 is a bundle map inducing linear isomorphisms on the 
fibres, then an orientation in q induces an orientation in 5. In  fact, let 
A,, be a cross-section in Ar9* ( r  = rank 7) such that A,(y) # 0 (y E B,) 
and set 

A ,  = q*A,, . 
Then A, (x )  # 0 (x E B,) and so A ,  orients 4. 

6 @ 7 is oriented by the determinant function A given by 
Let 6, 7 be vector bundles over B oriented by A ,  and A,, . Then 

A ( x )  = A,(s )  A A,,(%), x E B 

(cf. sec. 2.11). The  orientation represented by A depends only on the 
orientations represented by A ,  and A,, , and is called the induced 
orientation. 

2.17. Riemannian and pseudo-Riemannian vector bundles. Let 6 = 

( E ,  T, B, F )  be a vector bundle. A pseudo-Riemannian metric in 5 is 
an element g E S2(c) such that, for each x E B, the symmetric bilinear 
form g(x) in F, is nondegenerate. The  pair (6,g) is called a pseudo- 
Riemannian vector bundle. 

If the bilinear forms g(x) are positive definite for every x E B, then g 
is called a Riemannian metric, and (6, g) is called a Riemannian vector 
bundle. A cross-section D in a pseudo-Riemannian vector bundle is 
called normed if 

g(x; u(x), u(x)) = 1, x E B. 

A pseudo-Riemannian metric g in 5 defines a duality between 6 and 
itself. Hence (cf. sec. 2.7) if (* is any vector bundle dual to 4, g deter- 
mines a strong isomorphism 

7: 6 -=+ 6* Y 

by the equation 

(T(z ) ,  w), = g(x; Z,  w), x E B,  Z, w E F ,  . 

Examples: 1. Let 6, 7 be vector bundles over B with typical 
and 7. Then a fibres F ,  H .  Assume g, , g, are Riemannian metrics in 

Riemannian metric g in 5 0 7 is given by (x E B )  

Z, w E F ,  Ig&; z,  w), 

1:: g(x; z, w) = 
Z E F ~ ,  W E H ,  
z E 11,. , w E F z  
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2. Let 5, 7 , g ,  , g ,  be as above. Then a pseudo-Riemannian metric 
g in 5 @ 77 is given by replacing g ,  by -g, in the above definition. 

Let 5, 7, g ,  , g ,  be as above. Then a Riemannian metric g in 
6 @ 7 is given by 

3. 

g(x; z @ w, z’ 0 w’ )  = g,(x; z, z’)g,(x; w, w’). 

4. A Riemannian metric in A p t  is given by 

g(x; z1 A ... A zD , zl’ A ... A zD’) = detg(x; zi , q’). 

Proposition IV: Every vector bundle 5 admits a Riemannian metric. 

Proof: If 5 = B x F is trivial and ( , ) is a Euclidean metric in F, 
then 

g(x; Y l  ,Y2) = (Y1 ,Y2), x E B,  Y1 ,Yz E F  

defines a Riemannian metric in [. 
Now, let 5 be arbitrary, and let {( U, , F ~ ) }  be a coordinate representa- 

tion for 5 such that {U,} is a locally finite open cover of B.  Let {pol} 
be a subordinate partition of unity. 

Since the restriction 5, of 5 to U,  is trivial, there is a Riemannian 
metric g ,  in 5, . Define g by z : , p , g ,  . Then g ( x )  is a Euclidean metric 
in F, ; hence g is a Riemannian metric in 5. 

Q.E.D. 

Corollary: If 5, 5* are dual vector bundles, then 5* 5. 

Let 5 = ( E ,  , T, , B, F )  and 7 = (E ,  , T, , B’, H )  be Riemannian 
bundles and let v: 5 + 7 be a bundle map. y is called isometric or an 
isometry if the linear maps vx are isomorphisms which preserve the 
inner product. 

Proposition V: Let 5 = (E ,  T, B, F )  be a vector bundle with Rie- 
mannian metric g .  Let ( , ) be a fixed Euclidean inner product in F. 
Then there is a coordinate representation {( U, , F~) }  for 5 such that the 
maps y)y,z : F + F, are isometries. 

Proof: It is sufficient to consider the case that 5 = B x F is trivial. 
Denote g ( x )  by < , ), and let F, denote the vector space F endowed with 
the inner product ( , ), . Let e, , ..., e, be an orthonormal basis of F 
(with respect to ( , )). 
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Now let T ~ ( x ) ,  ..., T,(x)  be the orthonormal basis of F, obtained from 
el ,..., e, by the Gram-Schmidt process: 

‘((4 = (44, W‘(X)),’’* 44 ,  

4 4  = ei - 1 (et 3 ‘mi3 T,(X). 

where 
(-1 

5-1 

It follows from this formula that the T( : B + F are smooth. 

I,!I: B x F + E is defined by 
Hence a coordinate representation for ( is given by (B, i,b) where 

Moreover each i,bx : E + F, is an isometry. 
Q.E.D. 

Definition: A coordinate representation satisfying the condition of 
Proposition V will be called a Riemannian coordinate representation. 

Proposition VI: If (6, g), (7, h) are Riemannian vector bundles over 
the same base B and tp E Horn((; 7) is an isomorphism, then there exists 
an isometric isomorphism 

Proof: 

Define a E Horn((; () by 

Since h induces a Riemannian metric h on ( with respect to 
which tp is an isometry we may assume that r )  = 4. 

h(x;  OI,(Z), W )  = g(x; Z, w ) ,  x E B, Z, w E F, . 

Since h(x) and g(x) are inner products, each ax E S+(F,). In view of 
Example 12, sec. 1.5, there is a unique a,bX E S+(F,) which satisfies 
i,bz = as and which depends smoothly on as. The induced bundle map 
i,b: ( --f 5 is a strong isometric isomorphism. 

Q.E.D. 

2.18. Subbundles, Proposition VII: If 7 is a subbundle of ( (sec. 2.1), 
there is a second subbundle 5 of E such that 6 is the Whitney sum of 7 
and 5. 
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Lemma I: Suppose that r ]  = (E,  , T, ,  B, H )  is a subbundle of a 
Riemannian vector bundle (6 = ( E ,  T ,  B, F ) ,  g) and that ( , ) is an 
inner product for F. Then there exists a Riemannian coordinate repre- 
sentation {( U, , y,)  I a E B} for 6 such that if +h, is the restriction of v, 
to U, x H (without loss of generality we may assume H C F ) ,  then 
{( U,  , +ha)} is a coordinate representation of r ] .  

Proof: According to Example 1, sec. 2.14, we can find, for each 
a E B, a neighbourhood V,  and a basis ul , ..., u, (s = rank r ] )  of 
Sec(7 Iv,). In particular ul(a), ..., u8(a) is a linearly independent set of 
vectors in F, and so there are , ..., a, E Sec 5 such that ul(a), ..., a,(a) 
is a basis for F, . 

In view of the continuity of the map 

A u,(x) E A'F,, x ++ q(x )  A x E V ,  , I = rank 6, 

there exists a neighbourhood U, of a such that ul(x), ..., u,(x) forms a 
basis of F, , x E U i  . Apply the Gram-Schmidt process (proof of Propo- 
sition V above) to obtain new cross-sections T ~ ,  ..., T, in Sec(6 Iv,) 
such that T ~ ( x ) ,  ..., T,(x) is an orthonormal basis of F, (with respect to 
g(x)). Since al(x), ..., a,(x) is a basis of H, (x E U,), it follows from the 
construction that T ~ ( x ) ,  ..., T ~ ( x )  is a basis of H, . 

Now choose an orthonormal basis e l ,  ..., e,. of F such that el ,..., e, 
is a basis for H. Define maps v,: U,  x F -+ T-~U,  by 

Then {( U, , v,) I a E B} is the required coordinate representation of (. 
Q.E.D. 

Proof of Proposition VII: Assign to 6 a Riemannian metric g. 
'Choose an inner product ( , ) for F ,  and let {( U, ,v,) I a E B} be a 
coordinate representation for 6 satisfying the conditions of Lemma I. 

To construct the subbundle 5 we use the construction principle of 
sec. 2.5. Assign to x E B the vector space H j  , 

H i  = {z E F, 1 g(x; z, w) = 0 when w E H,}. 

Since 
restricts to a linear isomorphism 

: F -+ F, (x E U,) is an isometry which carries H to H, , it 

N &,: H I  4 H i .  
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The induced maps U, n U, +,!,(HI; H I )  given by 

x H *;.: O *a,x 

satisfy Condition S, sec. 2.5. Thus we obtain a vector bundle 

5 = (EL 9 9 B,  H I )  

where E,  = v,H,'. Evidently 5 is a subbundle of 5. 
The inclusions i :  v-+ 5, j :  5 -+ 5 extend to a strong bundle map 

7 7 @ 5 - , E .  

Since F, = H, @ H,' , this map restricts to isomorphisms in each 
fibre; hence it is an isomorphism. 

Q.E.D. 

2.19. Oriented Riemannian bundles. Assume thatg is a Riemannian 
metric in an oriented vector bundle 5 = ( E ,  T, B, F )  of rank Y .  Let 5* 
be any dual bundle. Then the induced isomorphism 5 &* induces a 
Riemannian metric in (*, and hence in A r t * .  There is a unique normed 
cross-section A E Sec A r t *  which is positive with respect to the orienta- 
tion of 5. I t  is called the positive normed determinant function in 5. 
For each x E B, A ( x )  is the positive normed determinant function in F, . 

Proposition VIII: If (5, g, A )  is an oriented Riemannian vector 
bundle and (F ,  ( , ), A F )  is an oriented Euclidean vector space, there 
exists a coordinate representation {( U, , vU)} for 6 such that the maps 
q,,, : F -+ F, are orientation preserving isometries. 

Proof: Apply the proof of Proposition I11 to a Riemannian coordi- 
nate representation, being careful to choose an isometric reflection, p ,  
in F. 

Q.E.D. 

2.20. The bundle &. Let 5 = ( E ,  T, B, F )  be a Riemannian vector 
bundle of rank Y and consider the rank I bundle A r t .  Let S, denote the 
unit sphere of the one-dimensional Euclidean space ArFz (x E B).  We 
shall construct a smooth bundle & = (8, p ,  B, So) such that p-'(x) = S, . 

-+ B denote the obvious projection. 
Choose a Riemannian coordinate representation {( U,  , $,)} for 5. Then 
each linear map 

Let P = uXEBSx and let p :  

&, = A'I,~,,~: A'F -+ hrFx 
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is an isometry and so {( U,  , $,)} is a Riemannian coordinate representa- 
tion for A r e .  The  corresponding coordinate transformations are given by 

$,%X = det +,a.x . 6 = %a.x . b 

where E ~ , $  = f 1, and the function x + E , , , ~  is smooth. 
Thus $, restricts to a bijection 

Cp,: u, x so + p-1( U,). 

In  particular, the map 

= o ~p, : U, n U, x SO -+ U, n U, x SO 

is given by 
%a@, t )  = ( X ,  f,,,Xt), x E u, n u,, t E so, 

and hence it is smooth. Now apply Proposition X, sec. 1.13, to obtain 
a smooth structure on B such that ( P ,  p ,  B, So) is a smooth fibre bundle. 
Since So consists of two points, B is called the double cover of B induced 
by 5. T h e  smooth involution w of P which interchanges the two points 
in each S, is called the covering transformation of B.  

Proposition IX: 
if 5 is not orientable. 

If B is connected, then B is connected if and only 

Proof: p preserves open and closed sets; hence it maps each com- 
ponent of B onto the connected manifold B. Since p-'(x) consists of two 
points (x E B),  there are two possibilities: either (i) P is connected or 
(ii) B has two components 8, , 8,, and p restricts to diffeomorphisms 

pi:  B. 
- - 

If B is not connected p ~ ' :  B 4 2, may be interpreted as a cross-section 
with no zeros in A r e ;  hence 5 is orientable. 

Conversely, suppose 5 orientable. Choose orientations in 5 and in F, 
and choose $, so that each $,$ is orientation preserving (Proposition VIII, 
sec. 2.19). Then (in the notation above) 

= Cp,,x : so + s, , x E u, n u, . 
Thus the cp, define a diffeomorphism 

~ p :  B x So 5 s. 
In  particular, B is not connected. 

Q.E.D. 
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Proposition X: Let [ = ( E ,  77, fi, F) be the pull-back of 6 to 8. Then 
the bundle [ is orientable. 

Proof: Set 0, = p-lU, and let {( 0, , I,&)} be the coordinate repre- 
sentation of [ induced by the coordinate representation {( U,  , #,)} for 
8.  Choose a determinant function A ,  in F. Then the cross-section 

Q(x, t )  = t * A , ,  x E U, , t E So, 

orients the trivial vector bundle ( U ,  x So) x F. Thus the bundle 
isomorphism 

A,: ( U ,  x So) x F -?, 0, x F -=+ +-loa 
I U X '  J, 

induces an orientation in the restriction [, of [ to 0,. 
Now a simple computation shows that the maps - - 

A;' 0 A,: [( U, n U,) x So] x F L [ (U,  n U,) x So] x F 

are orientation preserving. I t  follows that the restrictions of [, and 
[ B  to 8, n 8, have the same orientation. Hence the orientations in the 
[,, define a global orientation of [. 

Q.E.D. 

2.21. The bundle Sk, . Let (5 = (E, r, B, F), g) be a Riemannian 
vector bundle. Consider, for every x E B, the subspace 

kF, LFz > 

whose elements are the skew transformations (with respect to the inner 
product g(x)). Let 

E = u SkFzCL,  
x € B  

and let 73 denote the restriction of the bundle projection of Lt to 8. 
Finally, let ( , ) be an inner product in F and let Sk, C L, be the 
space of linear transformations of F which are skew with respect to ( , ). 
We shall show that 

Sk, = (e, 73, B, Sk,) 

is a vector bundle. 
In  fact, let {( U ,  , vv)} be a Riemannian coordinate representation 

for I .  The corresponding coordinate representation {( U ,  , x y ) }  for 
L, is given by 

Xv.x(.) = %,x 91,: I E L F  9 x * 
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Since the rpy,, are isometries, xv,+ restricts to a linear isomorphism 

Apply the construction principle of sec. 2.5 to obtain the desired bundle. 
Evidently Sk, is a subbundle of L, . 
A strong bundle isomorphism 

p: Az( -% Sk, 

is defined by 

P2(z A W )  = ax , Z, w E F ,  , x E B, 

where a, is the skew linear map in F, given by 

%(Y)  = ( z ,  Y ) x  w - ( w ,  r > x  z ,  Y EF,  9 (9)z = g(4. 

2.22. Complex vector bundles. 

( 1 )  
(2) 
(3) 

A complex vector bundle is a qua- 
druple ( = ( E ,  x ,  B, F )  where 

( E ,  x ,  B, F )  is a smooth fibre bundle. 
F ,  and the fibres F, (x E B) are complex linear spaces. 
There is a coordinate representation { ( U ,  , $,)} for ( such that 

the maps 
4u.z: F - Fx 

are complex linear isomorphisms. 

bundle (. 

the 2r-dimensional real vector space underlving F ,  and let 

The  complex dimension of F is called the rank of the complex 

Let ( = ( E ,  x ,  B, F )  be a complex vector bundle of rank r. Let F ,  be 

i :  F ,  -+ F, 

be multiplication by i E  @. Let 8, = ( E ,  x ,  B,F,)  be the real vector 
bundle obtained by forgetting the complex structure and let it E L(5,; 5,) 
be the strong bundle isomorphism which restricts to multiplication by i 
in each (F,), = (F& . Then, if {( U,  , $,)} is a coordinate representation 
for (, we have 

4,.z O i = i t ( 4  O &,z 9 x E u, * 

it is called the complex structure of 5. 
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Proposition XI: Let r ]  = ( E ,  T ,  B, FP) be a real vector bundle of 
rank 2r. Let y EL,  be a strong bundle map such that y2 = --L. 
Let F be a complex space with underlying real space F,.  Then r ]  is 
the underlying real vector bundle of a complex bundle 5 = (E,  n B, F )  
with complex structure y. 

Proof: 
such that 

We must find a coordinate representation {(Urn v0)} for r ]  

% , x  O 1 . = Y x " 9 7 a . x ,  X E  uu. 

Let Q E  B be arbitrary and choose a basis for (F& of the form 
z1 , ..., z, , yazl , ..., yaz, . By Example 1, sec. 2.13, there are a, E Sec r ]  

such that a,(a) = z, (v = 1, ..., r ) .  By the continuity of the map 

x * 01(4 A * - -  A 4 4  A ( Y * 0 , ) ( 4  A *.' A (Y*.T)(X), 

there is a neighbourhood U of a such that 

7, = 0, / u ,  Fu = (Y*u,)Iu, v = 1, . . . , y ,  

form a basis for Sec(r] I u ) .  
Let e l ,  ..., e,, i (e l ) ,  ..., i(e,) be a basis for F, and define o): U x F,+n-lU 

~ ( x ,  i (ev) )  = ?,(x), 
by 

~ ( x ,  e,) = T,,(x), v = 1, ..., Y. 

I t  is easily checked that ( U ,  o)) is a trivializing chart of 5 and that 
o)x 0 i = yx 0 vX, x E U. 

Since U is a neighbourhood of an arbitrary point a E B, the proposition 
is proved. 

Q.E.D. 
The  results of $1, 92, and 93 are essentially unchanged if we replace 

R by C and real vector bundles by complex vector bundles. In  particular 
we have the notion of complex bundle maps (the fibres being complex 
linear), the module of complex p-linear mappings, the complex tensor 
product, the complex exterior algebra bundle, and complex triviality. 

Suppose 5 = ( E ,  n, B,F) is a complex vector bundle. A Hermitian 
metric, g ,  in 5 is an element 

g E Hom(Ew 1 6,; B x @) 

such that g(x) is a Hermitian inner product in the complex vector space 
Fx for each x E B.  

In  exactly the same way that the analogous theorems for Riemannian 
bundles were proved we obtain 
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Proposition XII: A Hermitian metric can be introduced in every 
complex vector bundle. If (4,  g) is a Hermitian complex vector 
bundle, there exists a coordinate representation {( U, , qa)} of 5 such 
that the mappings 

9)n.z: F + F,  

are Hermitian isometries (F being given a fixed Hermitian metric). 



$5 .  Structure theorems 

2.23. The main theorem. This section is devoted to proving 

Theorem I: For every vector bundle 6 there exists a vector bundle 
7, over the same base, such that 5 @ 7 is trivial. 

We write, as usual, 4 = ( E ,  T ,  B, F ) .  

Lemma 11: Sec 4 is a finitely generated Y(B)-module. 

Proof: I t  follows from Theorem I, sec. 1.2 (as in Proposition XI, 
sec. 1.13) that 5 admits a finite coordinate representation {( U, , (CI,)}, 
p = 1 ,  ..., p .  Since the restrictions 6, of 5 to U, are trivial, the 
Y(U,)-modules Sec 5, are free on bases { o ~ ~ } ~ = ~ , . . , , ,  ( r  = rank 0, 
(cf. Example I ,  sec. 2.14). 

Let f,(p = 1, ..., p )  denote a partition of unity for B subordinate to 
the covering { U,}. Define cross-sections T~~ in 5 by 

~ , ~ = f , . u , , ~ ,  p = 1 ,  ..., p ;  i = l ,  ..., r .  

We shall show that the rUi generate Sec 5. 

B such that 
Since carrf, C U,, , Proposition VIII, sec. 1.8, yields functions h, on 

carr h, C U ,  and h,(x) = 1, x t carrf,. 
Thus  

hwfu = f u  

Now let w E Sec 5 and denote by w, the restriction of w to U, . Write 

Define pui E Y(B)  by pui = hugui . Then 

U ll U . i  U.i  

Q.E.D. 
76 
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Lemma 111: Let 5 = (6, +, B, p )  be a second vector bundle over the 
same base and let $: 5 --f 5 be a strong bundle map such that each 
$,: p, -+ F, is surjective. Then there is a strong bundle map g,: 5 -+ 5 
such that $ o g, = 1 .  

Proof: Give 8 and r)  Riemannian metrics. Then each i,bx determines 
an adjoint map 4;: F, +p,. Since $, is surjective, $, 0 $$ is an 
isomorphism of F, onto itself. Define g,: E -+ E by 

and use Riemannian coordinate representations for E and r)  to show 
that g, is smooth. Thus g, is a strong bundle map and $ 0 g, = L .  

Q.E.D. 

Proof of the theorem: According to Lemma I1 there is a finite 
system of generators u1 , ..., u?,, for Sec 5. Consider the trivial bundle 
B x R1” and the strong bundle map $: B x Rm -, 5 given by 

where el , ..., e,,, is a basis for Rm. Then each linear map $,: Rm ---f F, 
is surjective. 

In  fact, if z EF, , choose u E Sec 4 so that u(x)  = z (cf. Example 1, 
sec. 2.13). Since the ai generate Sec 5, we can write 

Now Lemma I11 yields a strong bundle map cp: (-+ B x R” satis- 
fying t,!~ 0 g, = L .  Since every map g,,: F, + (wnL is injective, g, makes 5 
into a subbundle of B x R”’. Thus  Proposition VII, sec. 2.18, gives a 
second subbundle r)  of B x Rm such that 

6 @ 7 = B x R“. 

Q.E.D. 
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Corollary: The  Y(B)-module Sec 5 is finitely generated and 
projective. 

Proof: By the theorem, we can write 

Sec(6 @ 7) = Sec(B x Rm), 

whence 
Sec 6 @ Sec 7 = Sec(B x Rm). 

I t  follows that Sec 5 is a direct summand of a finitely generated free 
module. 

Q.E.D. 

2.24. Applications. In  this section 5 ,  7, denote fixed vector 
bundles over B. Let v: 5 -, 7 be a strong bundle map and consider the 
map 

p+: Sec ( + Sec 7 

(cf. sec. 2.15). 

Proposition XIII: The map y ct tp* defines an isomorphism 
N - *: Horn((; 7) J Hom,(Sec 6; Sec 7) 

of Y(B)-modules, (cf. sec. 1.8 for the notation). 

Proof: Clearly, * is a homomorphism of Y(B)-modules. To show 
that it is an isomorphism consider first the case of trivial bundles, 
5 = B x F, 7 = B x H .  Let a , ,  ..., a, and b, , ..., b, be bases respec- 
tively for F and H. Then the constant cross-sections 

ai: B --f ai , Ti: B --f b, 

are, respectively, bases for Sec 5 and Sec 7. Thus the elements 
q ~ $ ~  E Hom,(Sec 5 ;  Sec 7) given by 

vi4oj) = 8 i iTk  

form a basis for Hom,(Sec 5;  Sec 7). 
On the other hand, a basis {wik} of L(F; H )  is given by 

m i d a j )  = WJ, * 
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Hence the constant cross-sections I)~~: B + uik form a basis for 

Y ( B ; L ( F ;  H ) )  = Sec(B x L(F; H ) )  = Hom(B x F; B x H ) .  

Since (+ik)* = v ik ,  it follows that * is an isomorphism. 

and q @ 4 are trivial. Then 
In  the general case choose vector bundles f and 4 such that g @ 

- - 
*: Horn([ 0 f ;  7 0 4) 2 Hom,(Sec(S 0 f ) ;  Sec(7 0 4)) 

is an isomorphism. Distributing both sides over @, we find that this 
isomorphism is the direct sum of four maps, each of which must then 
be an isomorphism. But one of these maps is 

*: Horn([; 7) + Hom,(Sec [; Sec 7). 

Q.E.D. 

This result may be extended to the multilinear case by extending 
the definition of *. In  fact, if y E Hom(fl, ..., p ;  to), we define 
v* E Hom, (Sec tl, ..., Sec ( p ;  Sec to) by 

[V*(O1 9 ...? 4 1 ( 4  = V,(+), . a * >  a,(x>), 

where uv E Sec (v = 1, ..., 9). Then 

*: Hom([l, ..., 5”; to) --f Hom,(Sec [l, ..., Sec 6”; Sec 5“) 

is an Y(B)-isomorphism. (The proof is similar to that given in the special 
case above.) 

Corollary I: If t1 = = [ P  = 5, go = q then * restricts to an 
isomorphism 

== 
A”([; 7) _C Ag(Sec [; Sec 7). 

Corollary 11: (The localization isomorphism) The  map 

E :  SecL([l, ..., 6”; 7) + Hom,(Sec [I, ..., Sec 6”; Sec T), 
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Proof: It follows from the definitions that the diagram 

SecL(51, ..., 5”; 7) >-+ Hom,(Sec 51, ..., Sec E D ;  Sec 7) 

. a * ,  5”; r l )  

commutes. Here, w is the isomorphism of Example 4, sec. 2.14. 
Q.E.D. 

Remark: If 6 ,  (* are dual, the isomorphism 
15 

E :  Sec [* L Hom,(Sec 6; Y(B) )  

is given by 
[.(.*)I(.) = (a*, .>. 

The following propositions are proved by the same argument as that 
of Proposition VIII. 

Proposition XIV: The map 

8: Sec 6 0, Sec 7 + Sec(5 0 T), 

defined by 
[ O ( U  0 4li4 = 4-4 0 49, 

is an isomorphism of Y(B)-modules. 

Corollary: An isomorphism 

01: Sec (* @A Sec 7 + HomB(Sec 6; Sec 7) 

is given by 
(Y(U* 0 7 ) :  U ( U * ,  U )T .  

Proof of the Corollary: I t  follows from the definitions that the diagram 
- 

See (* 8, Sec 7 -:+ Sec(t* 0 7) -=+ SecL(6; 7) 

Hom,(Sec f ;  Sec 7) 
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commutes, (Note that [* @ 7 
isomorphism. 

L ( [ ;  v), cf. sec. 2.10). Hence LY is an 

Q.E.D. 

Proposition XV: An isomorphism 

0: A; Sec 5 -% Sec A”( 

is defined by 

@(Ul A * * .  A 13”): X I-+ U1(X) A * * *  A U,(X). 

Applying the isomorphism 01 to the case 7 = 6, we see that there is a 
distinguished element t E Sec [ * OB Sec 5 which satisfies 

a(t) = L .  

t is called the unit tensor for the pair [*, [. Since t E Sec f *  Sec 4, 
there are finitely many cross-sections ui* E Sec f *  and ui E Sec [ such 
that 

f = 1 ui* BE (Ti . 
i 

Thus 
(T = 1 (a i * ,  U) ui , u E Sec 6. 

I 

The isomorphisms established above, together with those established 
earlier give the following isomorphisms: 

AD(.$; 7) SecL(h”f; 7) Ai(Sec f ;  Sec7) 

- N HomE(APSec f; Sec 7) Sec(hPl* @ 7) APSec f* Sec 7. 

In  particular, we have module isomorphisms 

A([)= A, Sec f* g Sec A f *  

(obtained by setting 7 = B x [w). The  algebra structure induced in 
A(()  by this isomorphism and the algebra structure in A B  Sec [* is given 
explicitly by 

1 
(0 A Y)(x; z1 * * . . I  %+9) = p!q! 1 C U w G  zuw 9 . * * )  zcl(”)) ‘U(K Z U ( ” + l )  I *.’> ZU(”+O)) 

U 

x E B,  zi EF, , @ E A”( f ) ,  Y E  AQ([ ) ,  
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where (T runs through the symmetric group of order p + q and E, is 
the sign of 0. 

2.25. Cross-sections and multilinear bundle maps. Let 4, , ..., g p  , q  
be vector bundles over B. Then, as was done above for p = 1, we can 
construct isomorphisms 

Horn([, 9 *** ,  I, ; 71) E Sec(tT 0 * * *  0 s; 0 71) 

(Sec fl)* oB Be (Sec (,)* Be Sec 7; 

i.e., we can represent multilinear bundle maps as cross-sections. For 
instance, giving a bilinear function in (I, q) is the same as constructing 
a cross-section in the bundle (* @ q*. 

In  general, theorems about these modules proved using analytical or 
geometrical techniques are most efficiently established using the form 
Sec([f 8 Q 5;; q) or Horn([, , ..., f P  ; q), while theorems which are 
established using algebraic methods are best proved using the forms 
Sec [$ BE ... BE Sec ( z  BE Sec q. In  any case, we shall use these 
forms interchangeably and without further reference from now on. We 
shall, moreover, identify the various isomorphic modules above, also 
without further reference. 

2.26. Pull backs. Let ( = (I?, i3, ,B,F) and g = (E, 7, B , F )  be 
vector bundles and let 

v 
E - E  

-1" 
$ A - B  

4 

be a bundle map restricting to linear isomorphisms in the fibres. Make 
.Y(l?) into an Y(B)-module by setting 

f ' g  = $*fag, fEY(B), g E Y ( B )  

and make .Y(J?) OB Sec [ into an Y(l?)-module by left multiplication. 
Then an Y(B)-homomorphism 

or,: Y(@ gB Sec 6 -+ Sec [ 

is given by 

or& 0 u) = g p)#a, g E Y ( A ) ,  u E Sec 5. 
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Proposition XVI: aI is an isomorphism. 

Proof: If f is trivial, let al, ..., a, be a basis for the Y(B)-module 
Sec f .  Then cp+al, ..., cp”am is a basis for Sec 6 and 1 @ a1 , ..., 1 @ a, 
is a basis for the Y(@-module 9’(@ BE Sec f .  Hence ap carries basis 
to basis and so it is an isomorphism. 

In general, choose a vector bundle 9 over B such that 5 @ 7 is trivial 
(cf. Theorem I, sec. 2.23) and consider the pull-back 4 of 9 via + (cf. 
sec. 2.5) 

P1 
4 - 7  

1 1 * B - B  

Then, since 6 is the pull-back of .$ via + (cf. sec. 2.5), it follows that 
@ 7. Hence, 6 @ $ is trivial. Hence, the map [ @ $ is the pull-back of 

aa,@pl: g ( B )  @B Set('! @ 7) - Sec(6 @ $1 

is an isomorphism. On the other hand, 

and so a+, is an isomorphism. 
Q.E.D. 



Problems 

All vector bundles are real unless otherwise stated. The  symbol s 
denotes strong bundle isomorphism. 

1 .  Quotient bundles. Suppose q is a subbundle of ( with typical 
fibre H C F. 

(i) Show that there is a unique bundle, ( /q ,  whose fibre at x is F,/H, 
and such that the projection ( +. ( / q  is a bundle map. ( / q  is called the 
quotient bundle of ( with respect to q. 

(ii) A sequence 0 + q +. (-+ p +. 0 is called short exact, if it 
restricts to a short exact sequence on each fibre. Show that a short exact 
sequence of strong bundle maps determines an isomorphism p 2% t / q .  

(iii) If q is a subbundle of 5, show that ( g q @ ( /q .  

2. Bundle maps. (i) Show that every bundle map is the composite 
of a strong bundle map and a bundle map which restricts to isomorphisms 
on the fibres. 

(ii) A strong bundle map 'p: ( +. q is said to  have constant rank, if the 
rank of the linear maps 'p, is independent of x. Show that in this case 
ker 'p = U, ker 'pz and Im 'p = u, Im 'p, are subbundles of ( and q ,  
and that Im  'p s (/ker p?. 

(iii) Let d: ( -+ ( be a strong bundle map satisfying d2 = 0 and set 
H ,  = ker d,/Im d, . If dim H, is independent of x, show that ker d, 
Im d, and ker d/Im d are vector bundles. 

(iv) Suppose 'p: ( +. q is a strong bundle map. Construct a dual 
bundle map cp*: (* t q*. If p? has constant rank, show that so has v*. 
I n  this case prove that Im  'p* @ ker 'p E t and Im 'p @ ker 'p* r ) .  

3. Given vector bundles ( and q over the same base show that ( @ r )  

is the pullback of ( x q via the diagonal map. 

4. External tensor product. 

(i) Construct a canonical bundle ( 

Let (, q be vector bundles over M, 
N with typical fibres F, H .  

q over M x N whose fibre 
at (x, y )  is F, @ H,  . I t  is called the external tensor product of 4 and q. 
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(ii) Show that if M = N ,  then [ @ r ]  is the pullback of 5 R r ]  under 
the diagonal map. 

5, Endomorphisms. Fix a strong bundle map rp: 5 -P 5, where 

(i) Let c,(rp,) denote the pth characteristic coefficient of rp, . Show 
that x + c,(rp,) is a smooth function on B. Is this true for the coefficients 
of the minimum polynomial of rp,? 

(ii) Are there always smooth functions A , ,  ..., X,  on B such that 
h,(x), ..., &(x) are the eigenvalues of rp,? 

(iii) Assume that U and V are disjoint open subsets of C such that 
for each x, the eigenvalues of rp, are contained in U u V. Construct a 
unique decomposition 4 = 5 @ p such that rp = y4 @ x and the eigen- 
values of each y4, (resp. x,) are contained in U (resp. V ) .  Conclude that 
the number of eigenvalues of rp, in U (counted with their multiplicities) 
is constant. 

(iv) Each rp, decomposes uniquely in the form rp, = rp: @ rpz , where 
r&is semisimple and rpz is nilpotent and rp: 0 rpz = rpg 0 rp: (cf. [ 5 ,  p. 4151). 
Do the rp: (resp. rpg) define strong bundle maps ? 

5 = ( E ,  r, B, F) .  

6. Pseudo-Riemannian bundles. Let g be a pseudo-Riemannian 
metric in [ = (E,  r, B, F )  and suppose B is connected. 

(i) Show that the signature of g, is independent of x. 

(ii) Construct a pseudo-Riemannian coordinate representation for 5. 
(iii) Show that 5 = [+ @ I-, where 5+ 1 4- with respect to gand  

the restriction of g to f +  (resp. 5-) is positive (resp. negative) definite. 

7. Symplectic bundles. A symplectic bundle is a vector bundle [ 
together with a skew-symmetric nondegenerate bilinear function g in 5. 

(i) Show that every symplectic bundle is of even rank and orientable. 
(ii) If 5 is a complex bundle, make tW into a symplectic bundle. 

8. Projective spaces. Interpret RP" as the space of straight lines 

(i) Construct a rank 1 vector bundle 5 over RPn whose fibre at a 

(ii) Show that 5 is nontrivial. 
(iii) Do (i) and (ii) with 08 replaced by C (cf. problem 10, Chap. I). 

through the origin in Rn+l. 

point 1 is the one-dimensional subspace 1 C Rn+l. 
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9. Classifying maps. (i) Construct a vector bundle ( n , k  over gR(n;  k) 
(cf. problem 13, Chap. I) whose fibre at E C Rn is the vector space E. 

(ii) Show that, if q is any vector bundle over a manifold B with rank 
k, then, for sufficiently large n, there is a smooth map $: B - gR(n;  k) 
such that $*( , , k  

(iii) Repeat (i) and (ii) with R replaced by CC (construct complex vector 
bundles and complex maps). 

q $ is called the classifying map for q. 

10. Homotopic maps. (i) Let 6 be a vector bundle over B x R. 
Define $: B x R -+ B x R by $(x, t )  = (x, 1). Prove that {J*( g (. 

(ii) Let ( be a vector bundle over B and let & ,  &: B + B be homo- 
topic maps. Show that $$[ = $?(. 

(iii) A connected manifold M is called contractible if b M  is homotopic 
to a constant map. Show that every vector bundle over a contractible 
manifold is trivial. 

11. Prove that every finitely generated projective module over Y(B)  
is of the form Sec 5, where ( is a vector bundle over B. 

12. The ring V(B) .  The isomorphism class of a complex vector 
bundle ( over B is the collection of all complex vector bundles which are 
strongly isomorphic to 5. I t  is written [(I. Denote the set of isomorphism 
classes by Vect(B). Let 9 ( B )  be the free abelian group with Vect(B) 
as a basis. Consider the subgroup generated by the elements of the form 
[(I + [q] - [( @ 71 and denote the factor group by V(B). 

(i) Show that the composition ([, 7) + ( @ 71 defines a commutative 
ring structure in V(B). Is there an identity? If B is compact, the ring 
so obtained is denoted by K(B). 

(ii) Let I ,  i j  denote the images of (, q in V(B). Show that 4 = i j  if and 
only if ( @ E P  7 @ EP for some p ,  where denotes the trivial 
complex bundle of rank p .  

(iii) Show that a smooth map y: B + B induces a homomorphism 
y*: V ( s )  +- V(B)  which depends only on the homotopy class of y. 

(iv) Show that the external tensor product (cf. problem 4) determines a 
homomorphism V ( M )  @ V ( N )  ---f V ( M  x N ) .  If M = N ,  show that 
this map, composed with A *, is the ring multiplication. 

13. Consider the set of all isomorphism classes of real vector bundles 
of rank 1 over B. Show that @ makes this set into a commutative group 
in which each element has order 2. 
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Tangent Bundle and Differential Forms 

$1. Tangent bundle 

3.1. Tangent space. Let M be a smooth manifold, and let Y ( M )  be 
the ring of smooth functions on M .  

Definition: A tangent vector of M at a point a E M is a linear 
map 5: Y ( M )  + R such that 

t(f& = 5 ( f )  g ( 4  +f(4 5(g),  f, g E Y(W* 

The  tangent vectors form a real vector space, T,(M),  under the linear 
operations 

( A t  + P7)( f )  = + P7(f),  A, P E R 597 E Ta(M), f E Y ( M )  

T,(M) is called the tangent space of M at a.  In  sec. 3.3 it will be shown 
that dim T J M )  = dim M. 

Lemma I: Let f E T,(M),  f E Y ( M ) .  Then the number f(f) depends 
only on the germ off at a.  

Proof: It has to be shown that ((f) = 0 iff is zero in some neighbour- 
hood U of a.  Choose g E Y ( M )  so that g(u) = 0 and gf = f. Then 

t ( f )  = 5 W )  = t ( g ) f W  +g(4 5 ( f )  = 0. 
Q.E.D. 

Corollary: I f f  is constant in a neighbourhood of a, then [(f) = 0. 

Proof: Set f ( a )  = h and let h also denote the constant function 
M 3 A. Then 

5(f) = [(A) = At(1) = At(1 * 1) = 2A5(1) = 0. 
Q.E.D. 
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Example: Let t ct x ( t )  ( to < t < t l )  be a smooth path on M. For 
each t E (to , t l )  we obtain 4 E Tz( t ) (M)  by setting 

That f does in fact belong to T z ( t ) ( M )  follows from elementary calculus. 
I t  is called the tangent vector to the path at x ( t )  and we will denote it 
by x( t ) .  

3.2. The derivative of a smooth map. Let rp: M -+ N be a smooth 
map. Recall that rp induces a homomorphism 

I*: Y ( M )  + Y ( N )  

(V*f) (X)  = f ( v ( x ) ) ,  f e  Y ( N ) ,  x E Ma 

given by 

Lemma 11: Let 6 E T,(M). Then f 0 rp* E Tw(,)(N), and the corre- 
spondence f ct f o rp* defines a linear map from T,(M) to Tor(,)(N). 

Proof: 6 0 rp* is a linear map from Y ( N )  to R. Moreover, 

( 5  O v*)( fg)  = &*f * v*g) = 4(v*f) .g(v(a))  +f(P(QN * 4(v*g) 

(f, g E Y ( N ) )  and so 5 0 rp* E Tw(,)(N). Clearly f ct f o rp* is linear. 
Q.E.D. 

Definition: Let rp: M + N be a smooth map and let a E M. The 
linear map T,(M) + Tv(,)(N) defined by f I+ 5 0 rp* is called the deriva- 
tive o f v  at a. It will be denoted by (drp), , 

((drp)&(g) = 4(v*g), g E YW), 4 E Ta(M). 

If 4: N -+ Q is a second smooth map, then 

( 4 4  O v)), = ( W W ( U )  O (dvh 9 

(4, = LT,(M) 9 

Q E M .  

Moreover, for the identity map L: M + M, we have 

Q E M 

In particular, if rp: M + N is a diffeomorphism, then 

( W o :  T,(M) - T d i V  and (4J-1)w(a): Tda)(W + Ta(M) 

are inverse linear isomorphisms. 
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Examples: 1. Let t H x ( t )  (to < t < t l )  be a smooth path on a 
manifold M .  Let f r  E (R) be the tangent vector given by 

&(f) = ”9 !€ yP(w 

Then the tangent vector i ( t )  E Tz( i ) (M)  (cf. example, sec. 3.1) is given by 

“4 = (dx), 5t  * 

2, Let 0 be an open subset of a manifold M and let j :  0 --t M 
denote the inclusion map. Then 

(di),: TdO) - T a w )  

is a linear isomorphism for each a E 0. 
We shall prove this by constructing an inverse map. Fix a E 0 and 

choose p E Y ( M )  so that p = 1 in a neighbourhood of a, and carrp C 0. 
Define /I: Tu(M) -+ T J O )  by 

(18(5))(f) = 5(Pf), !€ w4, 5 E T a w )  

That /I is well defined, and inverse to (d& follows easily from Lemma I, 
sec. 3.1. 

Using this example, we obtain 

3. Let q ~ :  M + N be a smooth map which sends a neighbourhood U 
of a point a E M diffeomorphically onto a neighbourhood V of ~ ( a )  in 
N .  Then 

(d94a:  T a w )  - T d a W  

is a linear isomorphism. 

3.3. Open subsets of vector spaces. Let E be an n-dimensional real 
vector space. Let 0 be an open subset of E and let a E 0. We shall 
define a linear isomorphism 

A,: E 5 T,(O). 

First recall that if 9: 0 --t F is a smooth map of 0 into a second vector 
space F, then the classical derivative of q~ at a is the linear map 
~ ’ ( a ) :  E -+ F given by 
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Moreover, in the special case F = R we have the product formula 

This shows that the linear map Ch:  Y(0) -+ R given by 

is a tangent vector of 0 at a.  
Hence we have a canonical linear map A,: E -+ T,(O) given by 

If q: 0 -+ F is a smooth map into a second vector space, then the diagram 

commutes, as follows easily from the ordinary chain rule. 

Proposition I: The  canonical linear map A,: E-+  T,(O) is an 
isomorphism. 

Lemma 111: Let ei(i = 1 ,  ..., a)  be a basis for E and let j~ Y ( E ) .  
Then 

n 

f = f ( 4  + c hi& ? 

i=l 

where 

(1) the functions h, E Y ( E )  are given by 

n 

x - a = hi(x)  e, , X E  E,  
i=l 

(2) the functions gi E Y ( E )  satisfy 

gi(u) = f ' ( u ;  ei) ,  i = 1, ..., n. 
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Proof: By the fundamental theorem of calculus we have 

= p ( a  + t ( x  - a) ;  x - a)  dt 

= hi(x)  r . f ' ( a  + t ( x  - a) ;  e i )  dt .  
i=l  0 

Thus the lemma follows, with 

gi(x)  = / l f ' ( a  + t ( x  - a) ;  ei) dt ,  x E E.  
0 

Q.E.D. 

Proof of Proposition I: Consider first the case 0 = E. We show 
first that A, is surjective. Let f E T,(E) and let f E Y ( E ) .  Write 

where the hi ,gi satisfy conditions (1) and (2) of Lemma 111. By the 
corollary to Lemma I, sec. 3.1, f maps the constant function f ( a )  into 
zero. Thus, 

n \ 

Since the functions hi are independent off, we can write 

Thus A, is surjective. 

for h E E 
T o  show that A, is injective, let f be any linear function in E. Then 

U h ) ( f )  = f(4.  
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Now suppose A,(h) = 0. Then 

f ( h )  = 0, 

Hence h = 0, and so A, is injective. 
Finally, let 0 be any open subset of E and let j :  0 + E be the inclusion 

map. Then j ’ (a):  E --f E is the identity map and so formula (3.1) yields 
the commutative diagram 

E 

f E E*.  

According to Example 2, sec. 3.2, (dj), is a linear isomorphism. Hence 
so is the map A,: E + T,(O). 

Q.E.D. 

Corollary: Let M be a smooth manifold and let a E M .  Then 

dim T,(M) = dim M .  

Proof: Let ( U ,  u, 0) be a chart for M such that a E U. Using the 
result of Example 2, see. 3.2, and the Proposition we find 

dim T a ( M )  = dim Ta(U) = dim U = dim M. 

Q.E.D. 

Proposition 11: The derivative of a constant map is zero. Conversely, 
let cp: M -+ N be a smooth map such that (dq) ,  = 0, a E M .  Then, if M 
is connected, cp is a constant map. 

Proof: Assume that cp is the constant map M --+ b E N .  Then, for 
g E Y(N), cp*g is the constant function given by 

X E M. (P*g)(X) = g ( h  

Hence (Corollary to Lemma I, see. 3.1), for 4 E T,(M),  x E M ,  

(dP)rn(t)(d = t(P*E) = 0. 

I t  follows that each (dcp)% = 0. 
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Conversely, assume that q ~ :  M 4 N is a smooth map satisfying 
(dp), = 0, a E M ;  and let M be connected. Then, given two points 
xo E M and x1 E M ,  there exists a smooth curve f: R --t M such that 
f (0) = xo and f (1) = x1 (cf. Proposition IX, sec. 1.1 I). 

Consider the map g = q~ 0 f: R -+ N .  We have 

(4% = (ddm O (df), = 0, 

Now using an atlas for N and applying formula (3.1) we see thatg must 
be constant. In  particular g(0) = g( 1) and so 

t E R. 

3.4. Example. Let Sn be the unit sphere in an (n + 1)-dimensional 
Euclidean space E. We shall establish a canonical isomorphism between 
T,(Sn) and the subspace &, the orthogonal complement of u in E. 

The injection i: Sn 4 E determines a linear map 

(di),: T,(Sn) -+ T,(E). 

Combining this map with the linear isomorphism Xi1: T J E )  + E,  we 
obtain a linear map 

j,: T,(Sn) + E. 

We show first that Im  j ,  C a l .  Consider the function f E Y ( E )  given 
by 

f ( ~ )  = (x, x), x E E. 

i*f is the constant function, 1, on Sn. It follows that 

5(i*f) = 0, 5 E Ta(Sn), 
whence 

f'(a;j,(E)) = &*f) = 0. 

An elementary computation shows that 

f ' ( u ;  h) = 2 ( ~ ,  h) ,  h E E. 

Thus we obtain 

2<a,ja(E)> = 0, 5 E Ta(Sn); 

i.e. Im j ,  C ul. 
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Next we prove that j ,  is injective. Consider the smooth map 
p :  E - (0) -+ S" given by 

X 
p(x) = - , x E E - (0). 

1x1 

Clearly, p 0 i = I and hence 

(+)a O @ ) a  = '* 

I t  follows that (di), is injective. Hence so is j ,  . 
Finally, to show that j ,  is a linear isomorphism onto ul observe that 

dim Ta(Sn) = n = dim E - 1 = dim ul. 

3.5. Tangent bundle. Let M be an n-manifold. Consider the dis- 
joint union 

TIM = u Ta(M),  
asM 

and let rM: TM + M be the projection, 

In  this section we shall define a manifold structure on T ,  so that 

is a vector bundle over M ,  whose fibre at a point u E M is the tangent 
space T,(M).  rM is called the tangent bundle of M .  

Let ( U ,  , u, , 0,) be a chart for M and let j,: U, + M be the inclusion 
map. For each x E U ,  there are linear isomorphisms 

c= 

La(%): R" --+ T L o 1 ~ 2 m  

Composing them we obtain a linear isomorphism 



1. Tangent bundle 95 

Finally, let {( U, , u,)) be an atlas for M .  Define maps 

4,: U, x Rn - TM 
x E u, 1 h E R". 

by 
$&, h)  = $,,&), 

If U, n U,  # 0 and u,, = u, 0 u$, the map 

(cf. formula (3.1), sec. 3.3). Hence it is smooth. 
Now it follows from sec. 2.5 that there is a unique vector bundle 

T~ = ( TM , 7rM , M ,  Rn) for which {( U,, , $,)} is a coordinate representa- 
tion. The  fibre of this bundle at x E M is the tangent space T,(M). 

Evidently this bundle structure is independent of the choice of atlas 
for M .  

Example 1: If 0 is an open subset of a vector space E,  then the 
tangent bundle ro is isomorphic to the product bundle 0 x E. In  fact, 
define a map A: 0 x E + To by setting 

h(a, h )  = Aa(h), a E 0, h E E, 

where Aa is the canonical linear map given in sec. 3.3. Then h is a strong 
bundle isomorphism. 

Next, suppose y :  M --t N is a smooth map. Then a set map 
d y :  TIM + T ,  is defined by 

M 5 )  = (&M, 5 E T,(M),  x E M .  

It is called the derivative o f y .  

Proposition 111: The  derivative of a smooth map p,: M-+ N is a 
bundle map dy:  + r N  . 

Proof: It follows from the definition that dp, is fibre preserving and 
that the restriction of dp, to each fibre is linear. T o  show that dy  is smooth 
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use atlases on M and N to reduce to the case M = Rm, N = UP. In  
this case formula (3.1), sec. 3.3, shows that 

dy:  Rn x Rn + R* x RP 

is given by 

dv(x; 4 = (y(x);  9% A)) .  

Hence it is smooth. 
Q.E.D. 

Now let 4: N ---t Q be a smooth map into a third manifold. Then 

4 4  O = 4 O ds, 

as follows from the definition. Moreover, the derivative of the identity 
map 1 :  M +  M is the identity map of TM , 

It follows that if v: M 3 N and 4: M t N are inverse diffeomorphisms, 
then dy and d# are inverse bundle isomorphisms. 

Example 2: Let U C M be an open subset and let j :  U-+ M be 
the inclusion map. The  derivative 

dj: TU+ TM 

can be regarded as a strong bundle map from T~ to the restriction, 
T~ I,,, , of T~ to U (cf. Example 2, sec. 2.3). According to Example 2, 
sec. 3.2, the restriction of dj to each fibre is a linear isomorphism. 

Thus (cf. Proposition I, sec. 2.2) dj defines a strong bundle isomor- 
phism, - - 

Tu -- TM ( u  . 

We shall often identify these bundles under the above isomorphism. In  
the process, we identify TZ( U )  and T Z ( M )  for each point x E U. 

3.6, Cotangent space and cotangent bundle. Let M be a manifold 
and let a E M .  A cotangent vector of M at a is a linear map 

w,: T,(M)+ IF!; 
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ie., it is an element of the dual space T,(M)*, which is called the 
cotangent space of M at a .  Observe that 

dim Ta(M)* = dim M .  

I n  the same way as in sec. 3.5 we can construct a vector bundle 72 
over M whose fibre at a is the cotangent space T,(M)*.  72 is called the 
cotangent bundle of M .  Clearly the tangent bundle T M  and the cotangent 
bundle 72 are dual. 

3.7. Product manifolds. Let M and N be smooth manifolds and 
consider the product manifold M x N .  We shall construct a strong 
bundle isomorphism between the tangent bundle T M X N  and the Cartesian 
product rM x r N .  

Define a strong bundle map 

where nM: M x N -t M and rN: M x N - t  N are the canonical 
projections. 

T o  show that q~ is an isomorphism we need only prove that the linear 
maps 

q a . b :  T (a ,b ) (M x N ) +  Ta(') 0 T b ( N )  

are isomorphisms. Let j,: N -t M x N, j,: M -+ M x N be the 
inclusion maps opposite a E M and b E N :  

where y,: N -t a and yb:  M ---)I b are the constant maps. These relations 
yield 

drrM 0 dja = 0, drrN o dja = L 

drrM 0 djb = L, dw, o djb = 0. 
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Now define a linear map 

4 a . b :  T a ( M )  @ T b ( N )  * T(a ,b ) (M x N ,  

by 
+ a . b ( t ,  7 )  = ( @ b ) t  + (dj,).?, 6 Ta(M) ,  r ]  Tb(N)*  

The equations above show that Fu,b o $ha,b = L .  Since these maps are 
linear maps between finite-dimensional vector spaces and since 

dim T(a,n)(M x N) = dim(M x N) = dim it4 + dim N 

= dim(T,(M) 0 Tt,(N)), 

are inverse isomorphisms. In  particular it follows that v a , b  and 
a strong bundle isomorphism. 

In  particular, we shall write 

is 

Henceforth we shall identify the bundles T M X N  and T~ x T N  via q~. 

T(a ,b ) (M N ,  = T a ( M )  @ Tb(N)* 

Our remarks above show that we are identifying (5 , r ) )  with 

(djb)t f (@a).?, 6 T a ( M ) ,  .? E T b ( N ) *  
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3.8. The main theorem. Let v: M +  N be a smooth map. Then  v 
is called a local diffeomorphism (resp. an immersion, a submersion) at a point 
a E M if the map 

(4%: T a w )  - Tda)(W 

is a linear isomorphism (resp. injective, surjective). If q~ is a local diffeo- 
morphism (resp. an immersion, a submersion) for all points a E M, it is 
called a local diyeomorphism (resp. an immersion, a submersion) of M into N .  

Theorem I: Let v: M + N be a smooth map where dim M = n 

If v is a local diffeomorphism at a, there are neighbourhoods U 

If (dv ) ,  is injective, there are neighbourhoods U of a,  I/ of b, 

and dim N = r.  Let a E M be a given point. Then 

of a and V of b such that q~ maps U diffeomorphically onto V.  

and W of 0 in Rr-n, and a diffeomorphism 

(1) 

(2) 

* : U x W Z V  

such that 
+) = *(x, O), x E u. 

(3) If (&), is surjective, there are neighbourhoods U of a,  V of b, 
and W of 0 in Rn-', and a diffeomorphism 

N 

$ : U A V x W  

such that 
d x )  = ~ V * M  x E u, 

where 7rV : V x W +  V is the projection. 

Proof: By using charts we may reduce to the case M = R", N = R'. 
I n  part (l),  then, we are assuming that v'(a): Rn + Rr is an isomorphism, 
and the conclusion is the inverse function theorem (cf. sec. 0.9). 

For part (2), we choose a subspace E of Rr such that 

Im ~ ' ( a )  @ E = Rr, 

99 
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and consider the map $: Rn x E ---f Rr given by 

+(x, Y )  = v(4 + Y ,  x E Rfi, Y E E. 

Then 
{(a, 0; h, k )  = ~ ' ( a ;  h) + k ,  h E R", k E E.  

I t  follows that $'(a, 0) is injective and thus an isomorphism 
( Y  = dim Im ~ ' ( a )  + dim E = n + dim E ) .  

Thus part (1) implies the existence of neighbourhoods U of a, V of b, 
and W of 0 in E such that $: U x W --t V is a diffeomorphism. Clearly, 
&% 0) = C p ( 4  

Finally, for part (3), we choose a subspace E of Rn such that 

ker cp'(a) @ E = R". 

Let p: Rn + E be the projection induced by this decomposition, and 
define 

+ : R n - + R r @ E  

by 
w = (v(x), P ( 4 ) ,  

{ (a ;  h)  = @(a; h),  p(h)) ,  

x E 

Then 
a E R", h E R". 

I t  follows easily that $'(a) is a linear isomorphism. Hence there are 
neighbourhoods U of a, V of b, and W of 0 E E such that $: U ---f V x W 
is a diffeomorphism. 

Q.E.D. 

Corollary: (1) If ( d q ~ ) ~  is a linear isomorphism there is a smooth 
map x: V +  U such that 

Q O X = L ~  and X O P ) ~ = L ~ ,  

where 'pU denotes the restriction of q~ to U. 
(2) If ( d ~ ) ,  is injective, there is a smooth map x: V - P  U such that 

(3) If (dv) ,  is surjective, there is a smooth map x: V + U such that 
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Proposition IV: If v: M -+ N is a smooth bijective map and if the 
maps 

(4% T d W  - T.(d(W 

are all injective, then rp is a diffeomorphism. 

Proof: Let dim M = n, dim N = Y. Since ( d ~ ) ~  is injective, we 
have Y 2 n. Now we show that Y = n. In fact, according to Theorem I, 
part (2), for every a E M there are neighbourhoods U(a) of a, V of ~ ( a )  
and W of 0 E Rr-n together with a diffeomorphism 

- 
$ha: U(a) x w=- v 

such that the diagram 

* v  4.7 U(a) x w 

U ( 4  

commutes ( i  denotes the inclusion map opposite 0). 
Choose a countable open covering U, (i = 1,2, ...) of M such that 

each 0, is compact and contained in some U(a,). Since q~ is surjective, 
it follows that ui y(  0,) 3 N. 

Now assume that Y > n. Then the diagram implies that no ~(0,) 
contains an open set. Thus, by the category theorem [4, Theorem 10.1, 
p. 2491 N could not be HausdorfT. This contradiction shows that n = Y. 

Since n = Y, tp is a local diffeomorphism. On the other hand, v is 
bijective. Since it is a local diffeomorphism, Theorem I implies that its 
inverse is smooth. Thus cp is a diffeomorphism. 

Q.E.D. 

3.9. Quotient manifolds. A quotient manifold of a manifold M 
is a manifold N together with a smooth map r: M + N such that r 
and each linear map (dr) , :  T,(M)-+ T J N )  is surjective (and thus 
dim M 2 dim N). 

Lemma IV: Let r: M --+ N make N into a quotient manifold of M. 
Then the map T is open. 

Proof: It is sufficient to show that, for each a E M, there is a neigh- 
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bourhood U of a such that the restriction of x to U is open. This follows 
at once from Theorem I, part (3), sec. 3.8. 

Q.E.D. 

Proposition V: Let x :  M-+ N make N into a quotient manifold of 
ill. Assume that rp: M -+ Q, 4: N + Q are maps into a third manifold Q 
such that the diagram 

+ Q  P M 

N 

commutes. Then cp is smooth if and only if 4 is smooth. 

Proof: Use the corollary part (3) to Theorem I, sec. 3.8. 
Q.E.D. 

Corollary: Let x,:  M --t N ,  , r2: M + N ,  be quotient manifolds. 
Assume that r l x  = xly  (x, y E M )  holds if and only if r 2 x  = x o  holds. 
Let rp: N ,  + N2 be the unique set bijection such that the diagram 

M 

commutes. Then rp is a diffeomorphism. 

3.10. Submanifolds. Let M be a manifold. An embedded manifold 
is a pair ( N ,  rp), where N is a second manifold and 'p: N + M is a smooth 
map such that the derivative 

dv: T ,  -+ TIM 

is injective. In  particular, since the maps ( d ~ ) ) ~ :  T,(N) + Tv(d)(M) are 
injective, it follows that dim N < dim M .  

Given an embedded manifold ( N ,  rp), consider the subset M ,  = rp(N). 
'p may be considered as a bijective map 

vl: N -+ M I .  
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This bijection defines a smooth structure on M ,  , such that q, becomes 
a diffeomorphism. 

A submanifold of a manifold M is an embedded manifold ( N ,  q) such 
that ql: N -+ q ( N )  is a homeomorphism, when q ( N )  is given the topology 
induced by the topology of M .  If N is a subset of M and q~ is the 
inclusion map, we say simply that N is a submanifold of M .  

Not every embedded manifold is a submanifold, as the following 
example shows: 

Let M be the 2-torus T 2  (cf. Example 3, sec. 1.4) and let N = R. 
Define a map q: R + T 2  by 

p)(t)  = Tr(t, At), t E R, 

where h is an irrational number and T: R2 -+ T 2  denotes the projection. 
Then dq: T ,  + T,z is injective and so (R, q) is an embedded manifold. 
Since X is irrational, q(R+) is dense in T2.  In  particular there are real 
numbers ai > 0 such that q(aJ + q( - 1). Thus T 2  does not induce the 
standard topology in p'( R). 

Proposition VI: Let ( N ,  i) be a submanifold of M .  Assume that Q 
is a smooth manifold and 

M 

is a commutative diagram of maps. Then q is smooth if and only if + is. 

Proof: If p' is smooth then clearly so is #. Conversely, assume that + is smooth. Fix a point a E Q and set b = +(a). Since di  is injective, 
there are neighbourhoods U ,  V of b in N and M ,  respectively, and there 
is a smooth map x: V + U such that ,y 0 iu = L (cf. Corollary, Theorem I ,  
sec. 3.8). 

Since N is a submanifold of M ,  the map q is continuous. Hence there 
is a neighbourhood W of a such that q( W )  C U .  Then 

i " 0 V W  = *w, 

where q ~ ~ ,  t,hW denote the restrictions of q, + to W. 
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It follows that 

X " 4 w  = X 0 i " O V W  = Vw 

and so tp is smooth in W ;  thus tp is a smooth map. 
Q.E.D. 

Corollary: Suppose submanifolds Nl and N ,  of M coincide as sets. 
Then they coincide as submanifolds. 

Examples: 

2. If (Q, +) is a submanifold of N, and (N, tp) is a submanifold of M 

3. Retracts: A manifold N is called a retract of a manifold M if 

1 ,  An open subset of a manifold is a submanifold. 

then (Q, 

there are smooth maps i :  N -+ M ,  p :  M -+ N so that 

o +) is a submanifold of M. 

p o l  = CN. 

p is called the retraction; i is called the inclusion. In this case (N, i )  is a 
submanifold of M. 

In particular (cf. sec. 3.4) the sphere Sn is a retract of the manifold 
E - (0) (E an (n + 1)-dimensional Euclidean space). Hence it is a 
submanifold of E. 

Let (E, T ,  B, F )  be a smooth fibre bundle and 
fix b E B. Let {( U, , +,)) be a coordinate representation for the bundle 
and choose U,  to contain b. Then the bijection 

4. Fibre bundles: 

4 u . b :  -b Fb 

defines a manifold structure on F, (independent of the choice of coordi- 
nate representation). 

Since the inclusion F-+  U,  x F opposite b and the projection 
U,  x F --+ F make F into a retract of U,  x F it follows via the diffeomor- 
phism I/, that F, is a retract of the open set v-'U, . In particular it is a 
submanifold of T - ~ U ,  and hence a submanifold of E. 

Let 4 = (E, T ,  B, F) be a vector bundle. Then the zero cross- 
section o: B -+ E makes B into a retract of E. Hence (B, o)  is a closed 
submanifold of E. 

= F, - (0) (x E B). Then 

5. 

On the other hand, set k' = F - (0) and 

B =  V F x  
XEB 
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is the complement of o(B) in E ;  hence, it is an open submanifold. If 
{( U, , #,)} is a coordinate representation for 5, the +,, restrict to diffe- 
omorphisms 

u, x F -5 7j-1( U,), 

where 7j: 8-+ B is the restriction of x .  Hence 8 = ( E ,  7i, B, #) is a 
fibre bundle, called the deleted bundle for 5. 

Assume the vector bundle 5 above has been given a Riemannian 
metric and let S,  (resp. S )  denote the unit sphere of the Euclidean space 
F, , x E B (resp. of F). Set 

6.  

E, = u sx 
XE B 

and let xs:  E, -+ B be the restriction of x .  Then 5, = (E ,  , rS , B, S) is 
a fibre bundle. 

In  fact, let {( U, , (Cl,)} be a Riemannian coordinate representation for 
6. Then the maps 9. restrict to bijections 

The  bijections v;' 0 9, in U ,  n U,  x S are the restrictions of the 
diffeomorphisms I/J;' 0 I/J, . Since S is a submanifold of F, ( U ,  n U,) x S 
is a submanifold of U, n U,  x F; thus Proposition VI implies that 
qa-' 0 vs is smooth. Now it follows from Proposition X, sec. 1.13, that 
,fs is a smooth bundle. 

4, is called the sphere bundle associated with 5. The  map p: l?+ E, 
given by 

z P(4 = - ~ E F , ,  X E B ,  

is smooth, and makes E, into a retract of 8. In  particular, Es is a 
submanifold of E. 

Finally, observe that an isometry rp: 5 -+ 5' between Riemannian 
vector bundles restricts to a fibre preserving map 

l z l  ' 

vS: E,+ E& 

which, by Proposition VI is smooth. In  particular, since isomorphic 
bundles are isometric (Proposition VI, sec. 2.17), the bundle 5, is 
independent of the choice of metric in f .  
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3.1 1 .  Vector fields. Definition: A vector field X on a manifold M is 
a cross-section in the tangent bundle 7, .  Thus a vector field X assigns 
to every point x E M a tangent vector X ( x )  such that the map M -+ T ,  
so obtained is smooth. The  vector fields on M form a module over the 
ring Y ( M ) ,  which will be denoted by %(M).  

Proposition VII: There is a canonical isomorphism of %(M)  onto 
the Y(M)-module, Der Y ( M ) ,  of derivations in the algebra Y ( M ) .  

Proof: Let X be a vector field. For eachfE Y ( M ) ,  define a function 
on M by 

am) = W)(f) ,  x E M -  

X ( f )  is smooth. T o  see this we may assume that M = R". But then 
(cf. sec. 3.3) 

X ( f ) ( x )  = f ' k  X(xN 
is smooth. 

given by 
Hence every vector field X on M determines a map 8,: Y ( M )  + Y ( M )  

edf) = W).  
Obviously 0, is a derivation in the algebra Y ( M ) .  The  assignment 
X b 8, defines a homomorphism 

8: X ( M )  + Der Y ( M ) .  

We show now that 0 is an isomorphism. 
Suppose 8, = 0, for some X E %(M).  Then 

X(x)f  = 0, x E M ,  J - €  Y ( M ) .  

This implies that X ( x )  = 0; i.e. X = 0. 
T o  prove that 0 is surjective, let @ be any derivation in Y ( M ) .  Then 

@ determines, for every point x E M ,  the vector fZ E T,(M),  given by 

4 d f )  = @(.mh J - E  Y ( M ) *  
106 
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Define X :  M - t  T ,  by X ( x )  = 5,. T o  show that this map is smooth, 
fix a point a E M .  Using a chart, it is easy to construct vector fields 
X i  ( i  = 1, ..., n) and smooth functions fi (i = 1,  ..., n; n = dim M )  on 
M such that X i ( x ) h  = Sij , x E V ,  (V  some neighbourhood of a). Then 
the vectors Xi(.) ( i  = 1, ..., n) form a basis for T J M )  (x E V ) .  

Hence, for each X E  V ,  there is a unique system of numbers A t  
(i = 1, ..., n) such that 

n 

5, = 1 h”i(4. 
i=l 

Applying 5, to fi , we obtain 

Hence 

Since the O( fi) are smooth functions on M ,  this equation shows that X 
is smooth in V ;  i.e. X is a vector field. 

Finally, it follows from the definition that 

ex = qr. 

Thus B is surjective. 
Q.E.D. 

Corollary: The  Y(M)-module Der Y ( M )  is finitely generated and 
projective. 

Proof: 
sec. 2.23. 

Apply the Proposition and the corollary of Theorem I, 

Q.E.D. 

3.12. Lie product. The Y(M)-module Der Y ( M )  is a Lie algebra 
over R, the Lie product being given by 

[e, , e,] = el e2 - e2 e, 

Note that the Lie product is not bilinear over SP(M). In  fact, we have 

[el ,f@,l = f[4 9 021 + O , ( f )  8 2  9 
f E  Y ( M ) ,  0, , 8 2  Der WM). 
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Identifying %(M)  with Der Y ( M )  under the isomorphism of Proposi- 
tion VII we obtain a Lie algebra structure in X ( M ) .  The Lie product of 
two vector fields X and Y is given by 

[X, YI(f) = mv)) - Y ( X ( f ) ) ,  f E  Y ( M ) *  

I t  is bilinear over [w, skew symmetric, and satisfies the Jacobi identity. 
Moreover, forfE Y ( M )  we have 

[fX, Y] =f[x, Y] - Y(f)X and [X,fYl =f[X YI + X ( f ) Y .  

Examples: 1. Let M be an open subset of a vector space E. Accord- 
ing to Example 1,  sec. 3.5, we can write 

T ,  = M x E.  

A vector field X on M given by 

X(X) = (x, h),  x E M ,  

for some fixed h E E will be called the constant field corresponding to 
h E E .  

If X is the constant field corresponding to h then 

X(f)(.) = f ’ ( x ;  h),  X E M ,  f s  qw, 
Thus if Y is a second constant vector field, corresponding to  K E E, then 

YX(f)(X) = f ” ( x ;  h,  k )  = f ” ( x ;  k, h) = XY(f)(x), 

whence [ X ,  Y] = 0. 

Let M be an open subset of a real vector space E and consider 
X ,  Y E  X ( M )  defined by X(x) = h and Y(x) = x, where h E E is fixed. 
Then [X, Y] = X. In  fact, let f be any linear function in E. Then 

2. 

X ( f ) ( x )  = f ’ ( x ;  h)  = f ( h ) ,  x E E, 

while 
Y(f)(x) = f ’ ( x ;  X) = f ( x ) ,  x E E ;  

i.e., X ( f )  is the constant function x t + f ( h ) ,  while Y ( f )  = f .  I t  follows 
that 

[ X ,  Yl(f) = X(f), f e  E** 

This shows that [X, Y] = X .  
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3.13. 
say that 
if 

cp-related vector fields. Let y :  M + N be a smooth map. We 
two vector fields X E X ( M )  and Y E X(N) are prelated,  X 7 Y ,  

Lemma V: 
if and only if 

Two vector fields X E % ( M )  and Y E  X(N) are prelated 

v*(Y(g)) = - w * P ) ?  g E Y ( N ) *  (3.3) 

Example: Let U be an open subset of M and let X E .T(M). Then 
X induces a vector field X u  on U ,  given by Xu(x)  = X ( x ) ,  x E U .  X u  
is called the restriction of X to U .  If i: U -+ M is the inclusion map, then 
clearly X u  y X .  

Proposition VIII: Suppose that y :  M + N is smooth and X 7 X ,  , 
Y 7 Yl . Then 

Proof: An easy consequence of Lemma V. 
Q.E.D. 

Remark: If v: M-+ N is surjective, then for every X E %(M) ,  
there is at most one Y E  X(N) such that X 7 Y. 

Now let v: M 2  N be a diffeomorphism. Then the map 

p*: Y ( M )  + Y ( N )  
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is an isomorphism. Hence every vector field X on M determines a vector 
field ~ I * X  on N, given by 

(V*X)(E) = (P*)-'(x(V*g)), g E Y(N). 

Explicitly we have 

(V*X)(dX)) = 44X(X)),  x E M .  

This formula shows that the vector fields X and cp*X are cp-related. 
I t  follows at once from the definition and Proposition VIII that the 

correspondence X ++ ~ I * X  defines an isomorphism of Lie algebras, 

v*: Z ( M )  - %(N);  
in particular, 

V * [ X l *  xi71 = [V*Xl,  V*X21, XI 9 x2 E %(M)* 

If +: N + Q is a second diffeomorphism, then 

( + o d *  = + * o v * .  

3.14. Product manifolds. Let M and N be manifolds and consider 
the product manifold M x N. Recall (sec. 3.7) that TMXN = T M  x TN . 
Now let X be a vector field on M. Then a vector field iMX on M x N 
is given by 

(iMX)(X, Y )  = (X(X),O), (X, Y )  E M x N .  

Similarly, every vector field Y on N determines a vector field iNY on 
M x N given by 

( i N y ) ( X ,  y) = (0, y ( y ) ) ,  (x, Y )  x N* 

I t  follows from these definitions that 

iMX X and iNY - Y .  
"N 

Moreover, we have the relations 

( i M x ) ( ? r & f )  = n%X(f)) ,  ( i N Y ) ( w C f )  = O, f E  Y(') 

(iNy)("*Ng) = ?rg(y(g))l  ( i M x ) ( ? r k )  = O, g Y(N)* 
(3.4) 

Lemma VI: Assume that 2 is a vector field on M x N such that 

Z("Lf) = 0 ( f ~  9 ' (M) )  and Z(w:g) = 0 ( g  E Y ( N ) ) .  

Then 2 = 0. 
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Proof: 
can write 

Let a E M, b E N be arbitrary and set Z(a, b) = 5 .  Then we 

(cf. sec. 3.7). It follows (via the relations of sec. 3.7) that 

0 = &3) = 5 ( f ) ,  f E WW, 
whence ( = 0. Similarly, we obtain 7 = 0 and so 5 = 0. 

Q.E.D. 

Proposition M: The  maps 

iM: S ( M )  + S ( M  x N )  and iN: S(N) + S ( M  x N )  

are homomorphisms of Lie algebras. Moreover, 

[iMX, iNY]  = 0, X E %(&I), Y E  S ( N ) .  

Proof: Let X,, X , E I ( M ) .  The  relations (3.4) imply that the 
vector fields [ i M X , ,  iMX,]  and iMIXl, X,] agree when applied to func- 
tions of the form .rr&f ( f ~  Y ( M ) )  or r$g  (g E Y ( N ) ) .  Thus Lemma VI 
shows that 

[iMX, 9 &4&1 = iM[XI , Xzl 

and so iM is a homomorphism of Lie algebras. The  rest of the proposition 
is proved in the same way. 

Q.E.D. 
Next, consider an arbitrary vector field Z on M x N. 2 determines 

vector fields Z M  and Z N  on M x N by the equations 

Z(% Y )  = ZM(X, Y )  + ZN(X, Y ) ,  (x, y )  E M x N ,  

where 

Z M ( x ,  y )  E T,(M) and ZN(x,  y )  E T,(N). 

Definition: The M-product of two vector fields 2, and 2, on M x N, 
denoted by (2, , Z , ) M ,  is the vector field on M x N given by 
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The N-product of 2, and 2, is defined by 

(zl 1 zZ)N = Lz; zZ 1 f [zl 9 z,"] - [zl 9 zZ]"* 

T h e  following lemma states obvious properties: 

3.15. Differential equations. Let X be a vector field on a manifold 
M .  An orbit for X is a smooth map a: I -+ M ( I  C R some open interval) 
such that 

&(t )  = X(a(t)) ,  t E I .  

Proposition X: Let X be a vector field on M .  Fix a E M and to E R. 
Then there is an interval I 3  to and an orbit a: I + M of X such that 

Moreover, if a,  /I: J +  M are orbits for X which agree at somes, E J ,  
a(to) = a. 

then a = p. 

Proof: For the first statement of the proposition we may assume 
M = Rn. In  this case it is the standard Picard existence theorem 
(cf. [3, Theorem 7.1, p. 221). 

T o  prove the second part we show that the set of s E J for which 
a ( s )  = P ( s )  is both closed and open, and hence all of J. It is obviously 
closed. T o  show that it is open we may assume M = Rn and then apply 
the Picard uniqueness theorem (cf. [3,-p. 221). 

~. . 

Q.E.D. 
Now consider the product manifold R x M .  We call a subset 

W C R x M radial if for each a E M 

W n ( R x u ) = Z , x u  or W n ( R x u ) =  e, 

where I ,  is an open interval on R containing the point 0. The  union and 
finite intersection of radial sets is again radial. 
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Theorem 11: Let X be a vector field on a manifold M .  Then there 
is a radial neighbourhood W, of 0 x M in R x M and a smooth map 
p: W +  M such that 

where q, is given by q,(f) = p(f, x). Moreover, q is uniquely determined 
by X .  

Remark: 9 is called the jlow generated by X. Each yz: I ,  -+ M is 
an orbit of X satisfying ~ ~ ( 0 )  = x. 

Proof: Let (( U,,  u,)} be an atlas for M. The  Picard existence theorem 
[3, p. 221 implies our theorem for each U , .  Hence there are radial 
neighbourhoods W, of 0 x U, in R x U,  and there are smooth maps 
p,: W ,  -+ U, such that 

@At* 2) = -Vv,(t, XI), ( t ,  x) E w, 
and 

y,(O, x) = x, x E u, . 
Now set W = U, W, . Then W is a radial neighbourhood of 0 x M 

in [w x M .  Moreover, W, n W, is a radial neighbourhood of 0 x (U,  n Us); 
if x E U,  n U,  , then W, n W, n (R x x) is an interval I containing 0. 
Clearly pa ) yo: I x x -+ M are orbits of X agreeing at 0, and so by 
Proposition X they agree in 1. I t  follows that they agree in W, n W, . 
Thus the p, define a smooth map 9: W -+ M which has the desired 
properties. 

The  uniqueness of q is immediate from Proposition X. 
Q.E.D. 

Corollary: If (t ,  x), (s, q(t ,  x)), and (t + s, x) are a11 in W, then 

d s ,  q(t, x)) = p)(t + s, 4. 

Proof: Since W is radial there is an open interval I3 0, s and such 
that 

( t  + I )  x x C W and I x p(t, x) C W. 

Thus orbits 01, /3: I --+ M of X are given by 

4 ~ )  = du, d t ,  x)) and N u )  = ~ ( t  + u, 4, 11 €1. 
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Since a(0) = v ( t ,  x) = /?(O), Proposition X implies that u = /?; in 
particular, a($) = /?(s). 

Q.E.D. 

Remark: If we write ~ ( t ,  x) = ~ ~ ( x ) ,  then the corollary reads 

((Pa O (Pd4 = Vs+t(X)* 

For this reason cp is often called the local one-parameter group generated 
by X .  
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3.16. One-forms. A one-form on a manifold M is a cross-section in 
the cotangent bundle; i.e., a one-form assigns (smoothly) to every point 
x E M a linear function W(X) E T,(M)*. 

The one-forms on M are an Y(M)-module, which will be denoted 
by A1(M).  The duality between T,(M) and T,(M)* induces an Y ( M ) -  
bilinear map A1(M)  x %(M) ---t Y ( M )  given by 

(w ,  X>(4 = (44, X(x)>, w E A1(M), X E WW. 
It follows from the remark following Corollary I1 to Proposition XIII, 
sec. 2.24, that the associated map 

A1(M) --f HOmM(%(M); Y ( M ) )  

is an isomorphism. 

dv: T~ + rN yields a dual map 
Now let v: M - t  N be a smooth map. Then the bundle map 

(+)*: Sec T; + Sec T: 

(cf. sec. 2.15). We shall denote this map by v*, 
lp*: A l p )  c A'(N). 

Explicitly, we have 

(v*w)(x; 5 )  = w ( v ( 4 ;  M e ) ) ,  x E M ,  e E T,(M). 

According to sec. 2.15 

v*(f1w1 +fzwz) = v*f1 * v*w1 + v*fz * v*wz, fl ,fz E Y ( N ) ,  w19 wz E A1(N). 

3.17. The gradient. Every smooth function f on a manifold M deter- 
mines an Y(M)-module homomorphism 

vt: %(M) + Y ( M )  

given by vt: X t+ X ( f )  (X E %(&I)). In view of the isomorphism of the 
last section, there exists a unique S ~ E  A1(M)  such that 

X ( f )  = w, X>,  x E %(M). 

We call Sf the gradient off. 
115 
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From the fact that vector fields act as (real linear) derivations in 
Y ( M )  we obtain that 

Wf + pg) = Mf + A, P E R, f, g E Y ( V ,  

and 
S(f 'g) = Sf 'g +f .Sg. 

Next, consider a smooth map cp: M +  N. For the induced map 
cp*: A1(M) t A1(N) we have the relation 

V*Sf = S(V*f), f €909 (3.5) 

as follows from a simple computation. 

U C M we have 
In particular, if i: U - t  M is the inclusion map of an open subset 

i*Sf = S P f .  

But i*Sf is the restriction of the one-form Sf to U. Thus it follows that 

carr Sf C carr f, f E Y ( M ) .  

Examples: 1 A vector field d/d t  on R is given by f b f', 
j~ .Y(R). If we write T R  = R x R, then d/dt is the vector field 
s tt (s, 1). On the other hand, the identity map L :  R ---+ R is a smooth 
function. Hence its gradient is a one-form; we denote it by St. A simple 
computation shows that 

(S t ,  d/dt)(s) = 1, s E R. 

2 Let f E Y ( M ) .  Then f = L o f  = f * L  and hence 

Sf = f *St .  

On the other hand, the derivative off is the bundle map 

df: T M  -+ Ta = R x 08. 

Using Example 1 we obtain, for 5 E T,(M): 

df(f) = (ffx), Sf (x; 5))-  

In particular it follows that Sf = 0 if and only if df = 0. Thus 
Proposition 11, sec. 3.3, yields the following 
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Proposition XI: The gradient of a constant function is zero. Con- 
versely i f f  E Y ( M )  satisfies 6f = 0 and if M is connected, then f is 
constant. 

Corollary: If f E Y ( M )  is constant in some open subset U C M, 
then 

S f ( x )  = 0, X E  u. 

Example 3: Let f E 9( U),g E Y ( M )  ( U  an open subset of M). Assume 
carr g C U. Then considering 6( fg), fig, and gSf as one-forms on U we 
see they all have carrier contained in carrg. Hence they extend to M 
(put them equal to 0 outside U). Denote their extensions again by 
6( fg), fag, and g6f, and observe that 

S( fg)  =Pg + g w  

Proposition XII: The Y(M)-module A1(M) is generated by 
gradients. 

Proof: Consider first the case that M is an open subset of Rn. Fix 
a basis e, (i = 1, ..., n) of Rn and define vector fields X ,  E X ( M ) ,  by 

X,(x) = (x, ei) ,  x E MI ei E Rn. 

I t  is an immediate consequence of Example 1, sec. 3.5, that S ( M )  is a 
module with basis X ,  (i = 1, ..., n). 

Now let e*i (i = 1, ..., n) be the dual basis in (Rn)*. Considering the 
e*i as smooth functions on M we see that 

(6e*i, X,} = e*i(e,) = 8;. 

I t  follows that the 6e*i form a basis for the module A1(M). In particular, 
A1(M)  is generated by gradients. 

Now let M be any manifold. According to sec. 1.3 and the corollary 
to Theorem I, sec. 1.2, M admits a finite atlas {U,) (a = 1, ..., k). Let 
p ,  (a = 1, ..., k) be a partition of unity subordinate to this covering. 
Since, for w E A1(M),  

k 

w = 1 P E W ,  

,=l 

and carr(p,p) C U , ,  it is sufficient to consider the case carr w C U, 
where (U, u )  is a chart on M. 
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By the first part of the proof we can define smooth functionsf, E Y(  U )  
such that the Sfi form a basis of A1( U )  over Y( U). Hence, if wu denotes 
the restriction of w to U ,  we have 

n 

i=l 
W" = c hi8fi , hi E 9 ( U ) .  

Since the Sfi form a basis for A'( U), it follows that 

carr hi C carr w C U ,  i = 1, ..., n, 

so that we can extend the hi to M by setting hi(x) = 0, x 6 carr w .  With 
this convention, we have 

Finally, since carr hi C U ,  it follows that hifi E 9'(M).  On the other 
hand, choose g E Y ( M )  so that g(x )  = 1 (x E carr w) and carr g C U. 
Then gfi E Y ( M )  and 

gfi . Sh, = f i  Sh, . 
Thus (3.6) can be rewritten as 

This completes the proof. 
Q.E.D. 

3.18. Tensor fields. Let M be a manifold and consider the cotangent 
bundle 7% . A covariant tensor field of degree p is a cross-section in the 
vector bundle 

Thus a covariant tensor field of degree p assigns to each point x E M 
an element of the space T,(M)* @ *.. Q T,(M)*. The covariant tensor 
fields of degree p on M form an Y(M)-module, which we denote by 
P ( M ) .  (In particular, 9 ( M )  = Al(M). )  We extend the definition by 
putting %^O(M) = Y ( M ) .  By the corollary to Theorem I, sec. 2.23, 
each P ' ( M )  is finitely generated and projective. 

The  product of two covariant tensor fields @ E %P(M), YE 3 9 ( M )  
is defined to be the covariant tensor field of degree p + q given by 

(@ * Y)(x) = @(x) @ Y(x), x E M .  
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The assignment (@, Y) ++ @ Y defines an Y(M)-bilinear map 

P ( M )  x P ( M )  -+ D + * ( M ) .  

In this way the direct sum xp>O%p(M) becomes an algebra over 
Y ( M ) .  Proposition XIV, sec. 2.24, implies that this is the Y(M)-tensor 
algebra over A1(M)  (= %l(M)) .  

Analogously, we define a contravariant tensor field of degree p on M 
to be an element of Sec T,(M), where T,(M) = T~ @ @ T~ (p factors). 

The scalar product between T,(M)* and T,(M) induces a bilinear 
map %p(M) x z p ( M )  -+ Y ( M ) ,  given by 

<@, W ( X )  = <@(XI, Y(X)>, x E M .  

are isomorphisms (cf. sec. 2.24). 
Finally, a mixed tensor field of type (p, q) is an element of 

% i ( M )  = Sec T ~ ( M ) ,  where < ( M )  = TP(M) @ T*(M). We may iden- 
tify %:(M) with Hom,(%s(M); Y ( M ) ) .  

Example: The unit tensor field t is the tensor field of type (1,l) 
given by 

t(x; 8*, 5 )  = <8*, 43, t E TAM) ,  8* E T,(M)*. 

Since (cf. sec. 2.24) 

we may write 
m 

t = c ui 8 xi, ui E A’(M), x, E%(M). 
i=l 

3.19. Differential forms. Recall that the exterior algebra bundle 
Ar& over the cotangent bundle T& is the Whitney sum of bundles 
A P T & ,  p = 0, ..., n, with AOT& = M x R (cf. sec. 2.11). The fibres 
of A P T &  are the vector spaces APT,(M)*, which may be identified with 
the spaces of skew-symmetric p-linear maps 

T,(M) x *.. x T,(M)-+ R. 



120 111. Tangent Bundle and Differential Forms 

Definition: A dzflerential form of degree p on M (a p-form) is an 
element of Sec( A*T$). We denote the Y(M)-module of p-forms by 
A*(M) (cf. sec. 2.6). Thus if @ E A*(M), then @(x) may be regarded as 
a skew-symmetric p-linear function in T,(M), (x E M ) .  

The  exterior product of two differential forms @ E A P ( M )  and 
YE AQ(M)  is defined to be the differential form @ A Y E  Ap+P(M) 
given by 

(@ A y)(x) = @(x) A y(x), X E M .  

where o runs over the symmetric group S p + Q  and em = 1 (-1) if u is 
an even (odd) permutation. The  product map (@, Y )  b @ A Y makes 
the direct sum 

A ( M )  = Ap(M), n = dim M 
p=o 

into an anticommutative graded algebra over the ring Y ( M ) .  It follows 
from Proposition XV of sec. 2.24 that the algebra A ( M )  is an exterior 
algebra over the Y(M)-module A'(M). 

A ( M ) ,  considered as an algebra over R, is generated by gradients and 
functions since, by Proposition XII, sec. 3.17, the real vector space 
A1(M)  is generated by gradients and functions. 

A p-form @ on M determines a p-linear (over Y ( M ) )  skew-symmetric 
map 9 ( M )  x x 9 ( M )  + Y ( M )  given by 

( X ,  , ..., X,) I+ @(x; Xl(x), ..., X,(x)), x E M .  

In  this way we obtain an Y(M)-homomorphism 

A q M )  + A y q M ) ;  Y ( M ) ) .  

Applying the isomorphisms of sec. 2.24 following Proposition XV we 
see that this map is an isomorphism, 

A q M )  g AP(S(M));  Y ( M ) ) .  

Henceforth we shall identify these modules without further reference. 
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Example: Suppose that 0 is an open subset of a vector space E. 
Then (cf. sec. 3.5) we have ro = 0 x E, whence 

AT; = 0 x AE*. 

Thus cross-sections in AT$ may be interpreted as smooth maps 
0 -t AE*;  i.e. 

A ( 0 )  = Y(0; AE*) = Y(0) AE*. 

Next, let y :  M -P N be a smooth map. Then every p-form Y on N 
determines a p-form on M, denoted by y * Y  and given by 

(v*Wx; 51 9 '.*, f v )  = W?w; (4) 51 , en.9 (44 f v ) .  

T o  see that q*Y is indeed a p-form observe that 

y*Y = ( A P  dy)* Y, 

where dq:  rM -t rN is the bundle map induced by v. 

Proposition XIII: (1) y* is a homomorphism of graded R-algebras. 
In particular, 

v*(f. @) = y*f * y*@, f. Y ( N ) ,  @ E A(N). 

(2) If $: N - t  Q is a smooth map into a third manifold, then 

($h 0 y)* = v* 0 $h*. 

(3) For the identity map L ~ :  M - t  M, we have 

62 = LA(M)  * 

3.20. Examples: 1. 
Writing ru = T~ I u  (cf. sec. 3.5) we obtain 

AT: = A 7 2  1 " .  

Thus if @ E A ( M ) ,  its restriction to U is a differential form on U. If 
i: U - +  M denotes the inclusion map we have, clearly, 

i*@ = @ I u .  

Let U be an open subset of a manifold M. 

2. Products: Let M and N be manifolds. Since T(z,v)(M x N) = 
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T,(M) @ T,(N), the fibre of 
A T,(M)* @ A T,(N)*. The direct decompositions 

at ( q y )  is the vector space 

AT,(M)* 0 AT,(N)* = 1 A”T,(M)* @ A*T,(N)* 
P , q  

define a decomposition of A T & ~ ~  as a Whitney sum of subbundles. 
The  corresponding decomposition of A ( M  x N )  as a direct sum of 
submodules is written 

Evidently this makes A ( M  x N )  into a bigraded algebra. 

define homomorphisms 
Next observe that the projections ?rM: M x N + M ,  x N :  M x N -+ N 

77;: A ( M )  --f A ( M  x N ) ,  7r;: A ( N )  + A(M x N ) .  

If Q, E A ( M ) ,  Y E  A(N) ,  we establish the following notation conwention: 

If 0 E Ap(M),  Y E  Aq(N), then 0 x Y E  Ap*Q(M x N ) .  

3. Quotient manifolds: Let T :  M + N make N into a quotient 
manifold of M .  Then each (dx),  is surjective; hence so is each A (dn-)5. 
I t  follows that the dual maps 

are injective. Hence x * :  A ( M )  c A ( N )  is injective. 

4. Involutions: Let w be an involution of N (w2 = lN). Then o* 
is an involution of A(N) .  Hence A ( N )  is the direct sum of the graded 
subspaces A+(N) and A J N ) ,  where 

A+(N) = {pb I w*@ = q, A-(N) = {O I w * o  = -@}. 

Since w* is a homomorphism, A+(N)  is a graded subalgebra of A(N) .  
M is a surjective local diffeomorphism such 

that, for x E M ,  x-l(x) is of the form 
Now assume that x :  N 

7r-’(x) = {z, w(z)} .  
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We shall show that 7r* can be considered as an isomorphism 

A ( M )  T+ A+(N). 

In  fact by Example 3 above, 7r* is injective. Since 7r 0 w = T ,  we have 
w* 0 7r* = 7r*; hence Im 7r* C A+(N). Finally, let @ E A+(N). Fix 
x E M and suppose ~ ( z )  = x. Since ( d ~ ) ~  is an isomorphism there is a 
unique Yz E A T,(M)* such that 

A(d7r):(Yz) = O(Z). (3.7) 

Since w*@ = @ and r 1 ( x )  = {z, w(z)},  it follows that this relation holds 
with z replaced by ~ ( z ) .  

In  particular let U,  V be open sets in M ,  N so that the restriction 
7 r v  of 7r to V is a diffeomorphism onto U (Theorem I, sec. 3.8). Then 
Yz = (T;')* @(x), x E U .  Hence x ++ Yz is smooth in U ;  hence it is 
smooth in M .  Let Y E  A ( M )  be the differential form defined in this way. 
Then relation (3.7) implies that 7r*Y = @; i.e. A+(N) C Im 7r*. 

Remark: The situation discussed in Example 4 arises in the case of 
the double cover induced by a vector bundle (cf. sec. 2.20). 
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3.21. Orientable manifolds. An n-manifold M is called orientable if 
the tangent bundle T,,, is orientable (cf. sec. 2.16); in other words, M is 
orientable if there exists an n-form d on M such that 

A ( x )  # 0, X E  M. 

An orientation of M is an equivalence class of such n-forms under the 
equivalence relation 

A ,  - A ,  if and only if A ,  = f A , ,  

where f is a smooth function on M such thatf(x) > 0, x E M. 
If M is an orientable manifold, the choice of an orientation, or 

representing n-form, is said to orient M. An element of the representing 
class is called a positive n-form on the oriented manifold M. A basis 
t l ,  ..., 5, of a tangent space T J M )  of an oriented manifold is called 
positive, if 

A @ ;  5 1  9 . * * ,5 , )  > 0, 

where d represents the orientation. Because A n ( M )  = Sec A%; and 
dim AnT$(M) = 1, if d orients M, then every @ E An(M)  is uniquely 
of the form @ = f - A ,  f E Y ( M ) .  

Examples: 1. Let A denote a determinant function in Rn. Then 
d may be considered as an element of An(Rn) which orients Rn. Thus 
the definition of orientation for R" coincides with that given in [ 5 ,  p. 1271. 

Let S" denote the unit sphere of an (n + 1)-dimensional Eucli- 
dean space E and recall that we may identify Tz(Sn) with the subspace 
XI C E (x E Sn) (cf. sec. 3.4). Let d denote a determinant function in E. 
Then the n-form s2 E An(Sn) given by 

2. 

Q(x; 51 , **., 5,) = A(x,  51 9 * * * ,  t n ) ,  x E S", ti E Tz(Sn), 

orients S". Evidently, for h > 0, M induces the same orientation in 
S". Thus the orientation of Sn depends only on the orientation of E. 
It is called the orientation of Sn induced by the orientation of E. 

124 
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3. Let RPn be the real n-dimensional projective space (i.e. the 
n-sphere with antipodes identified). We shall show that 

orientable if n is odd 
nonorientable if n is even. R P ~  is 1 

Consider Sn as the unit sphere of Rn+l (with respect to some inner 
product) and let A be a determinant function in Rn+l. Then 

Q(x; 5'1 *** ,  En) = d(x, 5 1 ,  e e . 9  En),  x E Sn, Ei E Te(Sn), 

orients Sn. Let u: Sn --f Sn be the diffeomorphism given by u(x) = -x. 
Then we have 

0*52 = (-l)n+Q. (3.8) 

Thus, if n is odd, u * 9  = 9. It follows from Example 4, sec. 3.20, 
that L2 = T*O, for some fi E An([WPn), where T: Sn -+ R P  is the 
projection. Since T is a local diffeomorphism, it follows that 

O(x) # 0, x E RPn. 

Hence 0 orients R P .  

Then 
On the other hand, consider the case that n is even. Let &J E An(RP). 

**77*d = n*&. (3.9) 

Since SZ orients Sn, we can write 

rr*& = f * 52, f E 9(S") .  

Since n is even, we obtain from (3.8) and (3.9) that u*f = -f; i.e. 
f(-x) = - f (x ) ,  x E Sn. Now the connectivity of Sn implies that 
f (x) = 0 for some x E Sn. I t  follows that 

&(TX) = 0. 

Thus IWP is not orientable. 

4. Consider the equivalence relation in R2 given by 

(x, y )  - (x + k, (-1)'"y + 4, h, E z, x, y E IW. 

I t  is easy to see that the quotient space under this relation is a connected 
two-manifold K (Klein bottle). It will be shown that K is nonorientable. 
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I n  fact, let T: R2 --f K be the map which assigns to every pair (x, y )  E R2 
its equivalence class. Then the diagram 

commutes, where u is the map given by 

4 x 9  y )  = (. + 1, -Y). 

Now assume that @ is a two-form on K. Then T*@ is a two-form on 
R2 which satisfies 

U*rr*@ = a*@. 

Choosing a fixed determinant function d in R2 we can write 

a*@ = f . A ,  f €  Y(R2).  

Since u*d = -d, it follows that u*f = -f; i.e.f(x + 1,  -y) = - f ( x ,  y). 
Hencef must have a zero, (xo, yo). It follows that 

@(+o 9 Yo)) = 0. 

5. Let U be an open subset of a manifold M which is oriented by 
d E An(M).  Then the restriction of d to U orients U. The orientation 
of U so obtained depends only on the original orientation of M ,  and is 
called the induced orientation. 

Let { U,} be a locally finite open cover of a manifold M .  Suppose 
each U, is oriented, and that the orientations in U, and U ,  induce the 
same orientation in U, n U ,  for each pair U,, U , .  Then there is a 
unique orientation of M which induces the given orientations in the 
U ,  . (A simple partition of unity argument.) 

6. 

7. The real line R has a canonical orientation; namely, it is oriented 
by the one-form 6 t  (cf. Example 1, sec. 3.17). 

8. If M and N are orientable manifolds, then so is M x N .  In  fact, 
let A ,  E A n ( M )  and A,,, E Ar(N)  orient these manifolds. Then 

A ,  x d, E An+r(M x N )  
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(cf. Example 2, sec. 3.20) orients M x N .  The  orientation represented 
by A M  x A ,  depends only on the orientations represented by A M  and 
A ,  ; it is called the product orientation. 

If ti (i = 1, ..., n) and rli ( j  = 1, ..., r )  are positive bases of T,(M), 
T,(N),  then the vectors C k ,  given by 

li = (ti, O), i = 1, ..., n; lj+, = (0, Tj), j = 1, ... ) T ,  

form a positive basis of T(,,,)(M x N ) .  

Let M be a connected nonorientable manifold and denote by 
m the double cover of M obtained via the tangent bundle T~ 

(cf. sec. 2.20). According to Proposition IX, sec. 2.20, A? is connected. 
We show that i@ is an orientable manifold. 

In  fact, the projection rr: A?-+ M is a local diffeomorphism. Hence 
the derivative 

9. 

drr: TG -+ rM 

restricts to a linear isomorphism in each fibre. Thus (cf. the example of 
sec. 2.5) ~ f i  is strongly isomorphic to the pull-back of T M  ; and so by 
Proposition X, sec. 2.20, it is orientable. Thus A? is orientable. 

3.22. Orientation preserving maps. Let y :  M .--f N be a local dif- 
feomorphism between oriented manifolds. Let A M  and A ,  be n-forms on 
M and N ,  respectively, which represent the orientations. Then we have 

V*AN = f . A , ,  f E Y ( M ) ,  

where f ( x )  # 0, x E M .  The mapping y is called orientation preserving 
if f ( x )  > 0 (x E M ) ,  and orientation reversing if f ( x )  < 0 (x E M ) .  If 
I): N --f Q is a local diffeomorphism into a third oriented manifold, then 
t,4 0 v preserves the orientation if the maps y and t,4 both preserve (or 
both reverse) the orientation. If M is connected, y either preserves or 
reverses orientations. 

Now let v be a diffeomorphism of a connected orientable manifold M 
onto itself. Then whether or not q~ is orientation preserv.ing with respect 
to a single orientation of M is independent of the choice of orientation. 
If every diffeomorphism of M is orientation preserving, M is called 
irreversible (see sec. 5.16). 

Examples: 1. The  map o: Sn --+ Sn given by u(x) = -xis orienta- 
tion preserving if n is odd, and orientation reversing if n is even, as 
follows from Example 3, sec. 3.21. 
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2. Let I? = E - (0) where E is an n-dimensional Euclidean space. 
Consider the diffeomorphism cp: s -+ I? given by 

X 
cp(X) = -- 

I X 1 2 '  
x E E. 

Then q reverses the orientation. 
In  fact, it is easy to verify that the derivative of cp is given by 

In  particular, if 1 x 1 = 1, we have 

dcp(5) = 5 - 2<x, 4 ) X .  

This linear map is the reflection of E in the space which is orthogonal 
to x. This shows that 

det((44,) < 0 

and hence cp reverses the orientation. 

Let E be a Euclidean space of dimension n + 1 ( A  2 1 )  and let 
I? = E - {O}. Let R+ = { t  E R t > 0) and consider the diffeomorphism 

3. 

given by 
a: R+ x S" + B 

a(1, X) = ix, 

where Sn is the unit sphere of E. 
Let Sn, 2 have the orientations induced from a given orientation of E 

(cf. Examples 2, and 5 ,  sec. 3.21) and let R+ have the orientation defined 
by the one-form 6t E A'(R+) (Example 7, sec. 3.21). Finally, let Rf x Sn 
have the product orientation. Then or is orientation preserving. 

In  fact, since R+ x Sn is connected, it is sufficient to prove that or is 
orientation preserving at some point; i.e., it is sufficient to prove that if 
to , ..., t,, is a positive basis for R+ x S" at (1, x), then 

da(t,), * * - *  d 4 t , )  

is a positive basis for E. 
But such a positive basis is given by the vectors 

(44 01, (0, a, *..# (0, t n h  
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where t1 , ..., 4, is a positive basis for T,(Sn). A short computation shows 
that 

(d4(l,,,(d/df, 0) = x 
and 

(d4(1,@!)(0, 4t) = 4r 1 i = 1, *.., n. 

Thus if d is a determinant function representing the orientation of E, 
then 

~ ( d 4 W ,  O), d40, 41), * * a ,  da(0, 4,)) = 4 x 2  41 9 * * a 2  En) = q x ;  E l  9 ..., 5,) > 0 

4 d / d f ,  01, d40, 4119 *.., d40, 6n) 
and so 

is a positive basis for E. 
Let M be an n-manifold and consider the 2n-manifold TM. I t  

is orientable. To see this, let 7 ~ :  TM -, M be the projection, and let 
{( U, , u,)} be a locally finite atlas for M. Then each 

4. 

du,: 7r-l U, -+ u,( U,) x Iw" 

is a diffeomorphism. Hence {(wl( U,), du,)} is a locally finite atlas for TM . 
Now assign a fixed orientation to Eln, and let R" x Iwn have the product 

orientation. Then there is a unique orientation in rr-lU, such that du, 
is orientation preserving. In view of Example 6, sec. 3.21, we have only 
to show that the orientations in T-'( U, n U,) induced from those given 
in T - ~ U ,  and r l U B  coincide. In other words, we must prove that the 
identification maps 

$,, = du, o du;': u,( U, n U,) x R" -+ u,( U, n U,) x UP 

are orientation preserving. Hence it is sufficient to prove the following 

Lemma VIII: Let y :  U -+ V be a diffeomorphism between two open 
subsets U ,  V of a vector space E, and let 

~ ' ( a ) :  E -+ E 

be the derivative of 9) at a point a E U. Consider the map 

@: U x E - P  V x E 

given by 
@(x, 5 )  = (cp(x), F'(T 01, x E U, 5 E E. 
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Then the derivative of @, 

W(x,y): E @ E - + E @ E  

has positive determinant for every x E U and y E E. 

Proof: It follows from the definition of @ that 

Qi'(x, rl)  = (v'(x; I), v"@; Y ,  5 )  + v ' b  rl)h I ,  rl E E. 

This relation implies that 

det @'(x, y )  = [det p'(x)I2 > 0 

and so the lemma is proved. 
Q.E.D. 

Example 5: Let M and N be connected oriented n-manifolds. 
Assume that v: M -+ N and +: M + N are diffeomorphisms which are 
connected by a homotopy H: R x M - t  N such that every map 
H,: M -+ N is a diffeomorphism. Then v and both preserve or both 
reverse the orientations. 

I n  fact, let A, represent the orientation of N. Let x E M be fixed and 
definefE Y ( R  x M) by 

f ( 4  4 (v*&)(4 = ( H t 4 W 9  x E M .  

Then f is never zero andf(0, x) = I ; because M is connected, it follows 
thatf(t, x) > 0 for all t E R, x E M. Hence #*A,  - v*d, (set t = 1). 



Problems 

1. Local coordinates. A local coordinate system on a smooth manifold 
M is a chart (U, u) together with a basis e l ,  ..., en of R". For such a 
system the functions xi in U given by x i ( x )  = (e*i, u ( x ) )  are called 
coordinate functions. 

(i) If ( U, , u, , ei) and ( U ,  , u, , fi) are two overlapping coordinate 
systems and u,, is the identification map, relate the corresponding 
coordinate functions in terms of u,, . 

(ii) Let (U, u, ei) be a local coordinate system on M. Consider the 
vector fields a /ax i  (i = 1, ..., n)  in U corresponding under u to the 
constant vector fields ei in u( U). Show that, for a E U ,  ( a / a x i ) ( a )  and 
(6xi)(a) is a pair of dual bases of Tu(M) and T,(M)*. 

(iii) Given overlapping coordinate systems (U, u, ei) and ( V ,  o, fi) 
with corresponding bases a /ax i  and a/ay* of Tu( U n V ) ,  use (u 0 o-l)' 
to find the matrix which expresses one basis in terms of the other. 

(iv) Let @ E Ap(M) and let (U, u, ei) be a local coordinate system. The  
functions C D ~ ~ . . . ~ ~ ( X )  = @(x; a /ax i l ,  ..., a/axi9) (il < < i,) are called 
the components of @ with respect to the given local coordinate system. 
If (V, o, fi) is a second system and x E U n V, express one set of com- 
ponents at x in terms of the other. 

2. Vector fields. (i) E is a Euclidean space, 2 = E - (0). Define 
X, Y E  %(E) by X ( x )  = a and Y(x)  = x/l  x 1 (a fixed). Compute [X, v]. 

(ii) Show that the Lie product of two vector fields in Rn is given by 

[ X ,  Y] (x)  = X(x; Y(x))  - Y'(x; X(x)) .  

Conclude that the Lie product of two constant vector fields is zero. 
(iii) Let X E % ( M )  satisfy X ( a )  # 0. Find a local coordinate system 

(U, u, ei) about a such that, in U,  X = a /ax l .  Hence show that if 
f E Y ( M ) ,  there is a g E 9( U )  such that X ( g )  = f in U. 

(iv) Suppose dim M = 2, X ,  Y E % ( M )  and for each a E M, X(a)  
and Y(a)  are linearly independent. For each a E M find a neighbourhood 
U(a) and functions f, g E 9'( U )  such that f (x) and g(x) are never zero and 
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[ fX,gYI  = 0. 
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(v) Assume M compact. Show that the flow of any X E %(M) can be 
defined in all of R x M. 

(vi) Let X E %(M),  M arbitrary. Find f E Y ( M )  with f ( x )  > 0 for 
all x, such that the flow generated by fX can be defined in all of R x M .  

3. Consider the map v: R2 -+ R3 given by 

~ ( t ,  T )  = { (b  + a cos t )  cos T ,  ( b  + a cos t )  sin T ,  a sin t } ,  t ,  T E R, 

where b > a > 0 are real numbers. 

(i) Show that each map (drp)(l,r) is injective. 
(ii) Show that Im cp is a smooth manifold and is diffeomorphic to the 

2-torus. 

4, Construct a quotient manifold T: M + N, where T is not the 
projection of a fibre bundle. 

5. Cayley numbers. Consider Re = W @ W with the induced inner 
product. Define a multiplication in R8 by 

(P, d ( P ’ 9  d )  = (PP’ - 6’41 q? + 4F)l P I  4 E W, 

where p denotes the conjugate of p. 
(i) Show that, for x1 , x 2 ,  y 1  , y 2  E RE, 

( X l Y ,  1 X 2 Y d  + (X2Yl I X I Y J  = 2 < X l  9 X2)(Y1 I Y2)- 

(ii) Use (i) to prove that the product defined above makes R8 into 
a (nonassociative) division algebra over R. I t  is called the algebra of 
Cayley numbers. 

(iii) Show that if 1 is the identity of W then e = (1,O) is the identity 
of the Cayley numbers. Regard S6 as the unit sphere of e l  and make T ~ O  

into a complex vector bundle. 
(iv) Use the Cayley numbers to construct a smooth bundle 

(S16, T, SS, S’). 

6. Jet bundles for functions. M is an n-manifold. Let a E M and 
let 4ra(M) C Y a ( M )  be the ideal of germs which vanish at a. 

(i) Show that 4ra(M) is the unique maximal ideal in Ya(M) .  
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(ii) Denote A ( M )  A ( M )  ( p  factors) by Y g ( M ) .  LetfE Y ( M ) .  
Show that the following are equivalent: (a) The germ o f f  at a is in 
JZ(M). (b) For any Xl ..., X, E x ( M ) ,  (4 < p ) ,  

-wG(**. (-%f>)(4 = 0. 

(c) If ( U ,  u)  is a chart containing a, then the first p derivatives of f 0 u-l 
are zero at .(a). 

(iii) Show that the spaces Ya(M) /9Z(M)  ( u E M )  are the fibres of 
a vector bundle $p(M) over M whose typical fibre is the space 
xy=o V’([Wn)*. $p(M) is called the pth jet bundle over M. Show that 
rank$p(M) = (‘pfp). 

(iv) Show that each f~ Y ( M )  determines a cross-section jp(f)  in 
$p(M),  its pth je t .  Construct an isomorphism , f l ( M )  (M x R) @ T$ 

and show that jl(f)(x) = ( f ( ~ ) ,  (Sf)(.)). 
(v) Let Y p ( M )  be the bundle dual to $p(M).  If u E Sec f p ( M ) ,  define 

D: Y ( M )  --.t Y ( M )  by Df = (a, jp(f)). D is called apth order dzflerential 
operator. Suppose X I ,  . . . I  X, E X ( M )  and show that there is a unique 
u E Sec j p ( M )  such that Df = Xl(... (Xpf)). Show that with respect 
to a local coordinate system ( U ,  u, ec) a pth order dzflerential operator 
has the form 

with E 9’( U). 
(vi) Construct exact sequences 

and 

If >: $,(M) -+ V~T, , ,  is the projection and u E Sec Y p ( M ) ,  then p 0 cr is 
a cross-section in the bundle V ~ T , , ,  . I t  is called the symbol of the differen- 
tial operator D. 

(vii) Show that a smooth map p): M -+ N induces bundle maps 
$,(M) -+ $,(N) which dualize to maps Sec$p(M) t Sec$p(N). 
Interpret these via d y  and y* when p = 1. Express (for general p )  these 
maps in terms of a coordinate system. 
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7, 

(i) Carry out the constructions of problem 6, replacing Y ( M )  by Sec 5, 
to obtain a vector bundle $ p ( [ )  whose typical fibre is x:,"=,, Vi(Rm)* @ F 
(F, typical fibre of [). Show that each a E Sec 5 determines a cross- 
section j p ( u )  in$p(f), its pthjet. 

(ii) If r )  is a second vector bundle over M with typical fibre H ,  a pth 
order dtjferential operator from [ to r )  is a map D: Sec [ -+ Sec r )  of the 
form D(o) = g , ( j p a )  where g, E SecL($p(t); 7). Express D in local 
coordinates. 

Jet bundles of vector bundles. Fix a vector bundle [ over M. 

(iii) Construct canonical exact sequences of bundles 

0 --f V'T; 0 6 - y'(6) -+ $"-l(t) --f 0 
and 

If q~ E SecL($p(f); r ) ) ,  its symbol is p o g,; p v ( x )  is a p-linear map from 
T t ( M )  to L(F,; H,). If for each X E  M and nonzero h* E T g ( M )  
pg,(x; h*, ..., h*) is an isomorphism, D is called elliptic. 

(iv) Let D: Sec 4 -+ Sec r )  be a pth order elliptic differential operator. 
Let (, ?j denote the pullback of 5, r )  to the deleted bundle +&. Show 
that ( and ?j are strongly isomorphic. 

8. Distributions. A distribution on M is a subbundle 5 of r M .  

It is called inoolutioe, if, whenever X, Y E  Sec [, then [X, r] E Sec 5. 

(i) Let f be a distribution on M with fibre F, at x and let X E X ( M )  
have orbits g,,(x). Show that the conditions (a) [X, Y] E Sec 5, if Y E  Sec [ 
and (b) dyr: F, -+ Fq(,) for all x and for sufficiently small t, are equivalent. 

(ii) Show that 4 is involutive if and only if for each point a E M there 
is a submanifold N ,  of M containing a such that T,(N,) = F, (local 
Frobenius theorem). 

(iii) Show that if [ is involutive, then M is the disjoint union of 
maximal connected embedded manifolds N ,  with T,(N,) = F, (global 
Frobenius theorem). In  particular, show that the N,  are second countable. 

9.  Second tangent bundle. Consider the tangent bundles 

and & = ( T h  , q ,  TM, Ra*). TM = ( T M ,  m, M ,  R") 
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(i) Show that no dn = n o  nT. If q ~ :  M 4 N is smooth, show that 
d(&) commutes with dn and nT . 

(ii) Let U be open in R". Write 

T i  = T(U x R") = Tu x T,, = ( U  x R") x (R" x R"). 

Define an involution wu of U by 

wu(x; 5, 17, 5 )  = (x, 17, 5, 5 ) .  

Show that for q ~ :  U -+ V ( V open in R") 

d(dqJ) 0 w u  = w y  0 d(dqI). 

Thus obtain a canonical involution w, of T L  such that for $: M + N ,  

d(d$) wM = wN d(dV). 

Show that nT 0 w, = dn. Is there an intrinsic definition of w,? 

(iii) Let X E %(M).  Show that wM 0 d X :  TM -+ T L  is a vector field 
on TM . Relate its orbits to the orbits of X .  

(iv) Let j ,: T,(M) --t TM be the inclusion. Regard (4.JZ as a linear 
injection T,(M) --t T,(T,) (x = TZ). Show that Im(4.Je = ker(dn), . 
Prove that these spaces are the fibres of a subbundle of rL . Denote its 
total space by V ,  . If X E % ( M ) ,  show that X(Z) = (dj,),X(x) (x = nz) 
defines a vector field on TM . Show that for X, Y E  % ( M )  

A 
[ X ,  Y ]  o Y = dY o X - w, o dX o Y .  

Generalize as far as possible to the tangent bundle of the total manifold 
of any vector bundle. 

10. Sprays. A spray on M is a vector field 2 on 7, such that 
dn 0 2 = 6. A spray is called a . .ne ,  if (pJJ  = ( l / t )Z  (t # 0), where pt 
is the diffeomorphism f H t f  of TM . 

(i) Show that M admits affine sprays. 
(ii) Let 2 be an affine spray with flow $. Show that for sufficiently 

small t ,  7 and for 5 E TM , $(t ,  ~ 6 )  = r$(tr, 6). 
(iii) For 6 sufficiently close to zero show that $( 1, f )  is defined and set 

exp f = n+( 1, f ) .  Show that exp is a smooth map from a neighbourhood 
of o(M)  (0,  the zero vector field) in TM to M. 
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(iv) Let (exp)x denote the restriction of exp to T,(M).  Show that its 

(v) If M is compact, show that exp can be defined in all of T M .  

derivative at zero is the identity map. 

Hint: See Appendix A. 

11. Measure zero. A subset A C Rn has Lebesgue measure zero if for 
every E > 0 there is a countable covering of A by Euclidean n-balls Bi 
such that xx volume(Bi) < E. 

(i) Show that a smooth map between open subsets of Rn preserves 
sets of measure zero. 

(ii) Show that a countable union of sets of measure zero has again 

A subset A of a manifold M is said to have measure zero, if there is an 
atlas (( U, , u,)} for M such that each set u,( U,  n A )  has zero measure. 

(iii) Show that this definition is independent of the choice of the atlas. 
(iv) Show that the countable union of sets A, C M of measure zero 

(v) Show that a smooth map between n-manifolds preserves sets of 

measure zero. 

has again measure zero. 

measure zero. 

12. Critical points. Let y :  M +  N be a smooth map with dim M =  m, 
dim N = n. We call a E M a regular point, if (dy) ,  is surjective; otherwise 
a is called critical. The  set of critical points is written Crit rp. A point 
b E N is called a regular value, if all points of rp-l(b) are regular or if 
rp-l(b) is empty; otherwise b is called a critical value. The  set of critical 
values is written CV(rp). 

(i) If b is a regular value for rp show that y-'(b) is a closed submanifold 
of M .  

(ii) Let Q C M be a submanifold of M and let I,!I denote the restriction 
of rp to Q. Show that if a E Q  is a critical point for rp, it is a critical point 
for I,!I. 

13. Sard's theorem. Sard's theorem asserts that, for a smooth map 
q: M -+ N, the set of critical values has measure zero. 

First, let rp: IWm ---t IW" be a smooth map. Write x = (xl, ..., x") and 
q ( x )  = (@'(x), ..., @"(x)). Assume that, for some p (0 < p < n), 
@(x) = xi (i = 1, ...,p). 
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(i) Show that the conditions rank p'(x) = p and (a@/ax')(x) = 0 

(ii) Set W = {x E Rm I rank p'(x) = p } .  Write W = U U V ,  where U 

( i , j  3 p + l), on x E Rn, are equivalent. 

consists of those points x E W such that 

and V consists of the other points. Let K C Rm be compact and 
choose an integer r satisfying r(n - p )  > m - p .  Show that, for 
x E K n  U , Y E K  

I 'p" - py I < " K h P  I xi - yi I + sup I xi - y t  IT}, 
t < V  i > V t l  

where oiK is a constant depending only on K. 

dimensional submanifolds of W. 
(iii) Show that Vis contained in the union of countable many ( m  - 1)- 

(iv) Given E = l / N ,  divide each unit box of [Wm into boxes whose 
first p diameters are er and whose last ( m  - p )  diameters are E .  Conclude 
that p'( U )  has measure zero. 

(v) Prove Sard's theorem by induction on m. 

14. Let p': E -+F be a smooth map between vector spaces, where 
dim E = m, dim F = n. If n 3 2m, show that for some 4 E L ( E ;  F )  
arbitrarily close to zero, q~ + $1 is an immersion. Hint: Apply Sard's 
theorem to the maps 

L(E;  F ;  m) x E - L ( E ; F ) ,  

given by (x, x) I+ x - p'(x), where L ( E ;  F ;  m )  is the manifold of linear 
maps E -+ F of rank m (cf. problem 14, Chap. I). 

15. 

(i) If n >, 2m, show that p is homotopic to an immersion. 

(ii) If n > 2m show that p is homotopic to an embedding. 

Let p: M -+ N be a smooth map, where dim M = m, dim N = n. 

16. Prove Whitney's embedding theorem: Every n-manifold can be 
embedded into RZnf1 as a closed submanifold. 
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17. (i) Show that the map v: S2 --f R4 given by 

d x l  , x2 , x3) = (4 - 4) el + x1x2e2 + xlx3e3 + x . ~ e ,  

x = (xl , x2 , x3) E s2 

induces an embedding of RP2 in R4 (el e 2 ,  e, e 4 ,  a basis of R4). 

(ii) Use the embedding in (i) to construct an immersion of RP2 in R3. 

18. Morse functions. Let f E Y(M). a E M is called a critical point 
for f, if 8 f ( a )  = 0. 

(i) Suppose a is a critical point for f. If X, Y E  %(M),  show that 
X ( Y f ) ( a )  depends only on X ( a )  and Y(a) and defines a symmetric 
bilinear function in T,( M), the Hessian off at a. Phrase this in jet bundle 
terminology. 

(ii) A critical point is called nondegenerate, if the Hessian off at a is 
nondegenerate. Show that the nondegenerate critical points are isolated. 

(iii) Given a nondegenerate critical point of f, construct a local 
coordinate system such that near a 

(Morse lemma). 

(iv) A function all of whose critical points are nondegenerate is called 
a Morse function. Given g E Y ( M )  and E > 0 construct a Morse function 
f such that 

If(4 -g(4 < E ,  x E M .  

19. 

(i) Show that ( d v )  T ,  is a subbundle of T J ,  . The corresponding 
quotient bundle is called the normal bundle of N (with respect to v). 

(ii) Find the normal bundle of Sn in Rn+l. 

Normal bundle. Let v: N -+ M be an immersion. 

20. Tubular neighbourhoods. Let N be a closed submanifold of M. 
Construct a diffeomorphism q~ from its normal bundle onto a neigh- 
bourhood U of N such that p)(oz) = x, X E N .  U is called a tubular 
neighbourhood of N .  Hint: Use the exponential map of problem 10 (iii). 
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21. Orientations. (i) Show that the product of two manifolds is 

(ii) Let M be orientable. When is the diffeomorphism of M x M 

(iii) When is the diffeomorphism w,,, of T L  defined in problem 9 (ii) 

(iv) Show that the equations 

orientable if and only if both manifolds are. 

given by (x, y )  I-+ ( y ,  x) orientation preserving ? 

orientation preserving ? 

(i) j el + (sin v - u cos - e2 + ue3, v(u, v )  = (cos v + u sin 

define a nonorientable submanifold of R3. 

- + < . < a ,  VER, 

(3 

22. Manifolds-with-boundary. A Euclidean half space H is the closed 
subset of a Euclidean space Rn given by (x, a )  2 0, where a E Rn is a 
fixed nonzero vector. The  (n - 1)-dimensional subspace of Rn given 
by (x, a )  = 0 is called the boundary of H .  If 0 is an open subset of H 
and 97: 0 4 H ,  is a map of 0 into another half space, then is called 
smooth, if it extends to a smooth map U + H ,  , where U is an open 
subset of [Wn containing 0. 

A manifold-with-boundary is a second countable HausdorlT space M 
which admits an open covering U, with the following properties: (a) For 
each CY there is a homeomorphism u, : U, -P 0, , where 0, is an open 
subset of a half space. (b) The  identification maps 

are diffeomorphisms. A map between manifolds-with-boundary is called 
smooth if it is locally smooth. 

(i) With the same definition of tangent space as given in sec. 3.1 
construct the tangent bundle of a manifold-with-boundary. Generalize 
the results of sec. 2, Chap. 111, to this case. 

(ii) Let a E M and let ( U ,  , u,) be a chart such that a E U, . Show 
that the property u,(a) E F (F,  boundary of H )  is independent of the 
choice of ( U ,  , u,). The  points a for which u,(a) E F are called the bound- 
ary points of M .  Show that the set of boundary points of M (with the 
induced topology) is an (n - 1)-dimensional submanifold of M. It is 
called the boundary of M and is denoted by aM. T h e  open subset 
M - aM is called the interior of M .  
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(iii) Construct a cross-section u of r M  l aM which “points out of M.” 
Show that u @ TaM = r M  laM . If M is orientable, use a to orient aM. 

(iv) Show that aM has a neighbourhood in M diffeomorphic to I x aM, 
where I = {t E R I 0 < t < l} (see part i). 

23. 

( i )  Let A C aM, B C aN be unions of boundary components chosen 
so that there is a diffeomorphism v: A % B. Consider the disjoint 
union M U  N and divide out by the equivalence relation x - ~ ( x ) ,  
x E A.  Show that the quotient space is a quotient manifold of M u N .  

(ii) Let M be a compact manifold-with-boundary. Set N = M ,  
A = B = 8M and carry out the procedure of (i) to obtain a compact 
manifold (without boundary). I t  is called the double of M .  Show that the 
diffeomorphism of M v M interchange induces an involution w of the 
double of M .  If the double is orientable, does w preserve or reverse 
orientations ? 

Let M and N be compact manifolds-with-boundary. 

24, Suppose M and N are manifolds (without boundary). Delete open 
balls from M and N to construct manifolds-with-boundary. Identify the 
boundary spheres via a diffeomorphism to obtain a manifold (without 
boundary). This manifold is called the connected sum of M and N and is 
denoted by M # N .  Modify the construction if M and N have boundaries. 

25, Let ( E ,  T, B,  F )  be a Riemannian vector bundle. 

(i) Show that the vectors of length < 1 form a manifold-with- 
boundary. 

(ii) Show that the Hopf fibering (problem 10, Chap. I )  is the unit 
sphere bundle of the canonical vector bundle over CPn (problem 8, 
Chap. 11). Use this to find a manifold which is not diffeomorphic to the 
ball and whose boundary is diffeomorphic to a sphere. 

(iii) Let A?! be obtained from a 2n-manifold M by deleting a ball B(a) 
and replacing it by the manifold constructed in (ii). Construct a smooth 
map q: A?! -+ M such that 

q-l(a) = C P - l  and q ~ :  - CPn-l --f M - {a} 

is a diffeomorphism. 
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Calculus of Differential Forms 

SI. The operators i, 8, 6 

4.1. The substitution operator. Given a p-form @ ( p  3 1) and a 
vector field X on a manifold M ,  we define a ( p  - 1)-form i (X )@ by 

(i(X)@)(Xi , ..., X p - 1 )  = @(X,  Xi > Xp-i), Xi E s ( M ) ,  

or, equivalently, 

(W@)(T 51 9 * * a ,  &I-1) = @(*; X(4, 51 3 "*, 5p-11, * E M ,  ti E T,(M). 

(Observe that we are regarding Ap(M) as the module of skew p-linear 
maps from X ( M )  to Y ( M ) . )  The  definition is extended to Ao(M) by 
putting 

i ( X ) f  = 0, f~ Y ( M ) .  

For a one-form w ,  we have 

i (X)w = ( w ,  X ) .  

Thus in particular, for a gradient 8f, 

i ( X )  Sf = XU) 
(cf. sec. 3.17). 

The  map i ( X ) :  A ( M )  -+ A ( M )  defined in this way is called the 
substitution operator induced by X. It is homogeneous of degree - 1, 
and satisfies 

i ( X ) ( f  - @ + g . Y) = f * i (X)@ + g * i (X )Y  

and 
i (X) (@ A y) = i ( X )  @ A + @ A i ( X ) y ,  

f, g E Y ( M ) ,  @ E AP(M), Y E  A(M).  

Thus, for each X E X ( M ) ,  i ( X )  is an antiderivation in the algebra A(M).  
141 
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If Y is a second vector field on M ,  we have 

i(f X + g * Y )  = f . i (X)  + g - i (Y)  

and 
i (X)  i( Y )  = -i( Y )  i (x )  (f, g E Y ( M ) ) .  

Lemma I: If @E AP(M) ( p  >, 1)  satisfies i (X)@ = 0 for every 
X E 9 ( M ) ,  then @ = 0. 

4.2. The Lie derivative. Fix a vector field X E Z ( M ) .  Given a 
p-form @ E Ap(M) ( p  2 1) define a map 

%(M) x . * *  x %(M) + Y ( M )  
Q factors 

by 

This map is obviously skew-symmetric and p-linear over R. Moreover, 
the relations 

X ( . f * g )  = ' g  + f . X ( g )  

[Xf. YI = f [ X ,  YI + Wf) y ,  f , g  E YW), 
and 

(cf. sec. 3.12) imply that it is p-linear over Y ( M ) .  Thus it defines a 
p-form on M. 

Definition: Let X E Z ( M ) .  Then the Lie derivative with respect to 
X is the real linear map d(X): A ( M )  -+ A(M),  homogeneous of degree 
zero, given by 

P 

( ~ ( ~ ) @ ) ( X l  9 *.*, X,) = -q@(X,  # **-, X,)) - c @(& , .**, [ X ,  X,], '.., &I), 

,-1 

and 
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Example: Let 0 be an open subset of a vector space E. As in the 
example of sec. 3.19, write 

A(0) = Y(0; hE*).  

Let @ E Ap(0)  be given by @(x) = f ( x )  - a where a E APE* and 
f~ Y(0). Let X be a constant vector field on 0. Then from Example 1 
of sec. 3.12 it is easy to see that 

In particular, if X is given by X(x)  = (x, h) for some fixed h E E, then 

Proposition I: The Lie derivative has the following properties: 

(1 e(x) sf = sqx) f = sx(j) 
(2) i ( [X ,  Y ] )  = e ( X )  i (Y)  - i (Y )  O(X) f E Y(M) 
(3) e(x)(@ A Y )  = e(xp A Y + A e(x)lu X ,  Y E  T(M) 

(4) e ( [ x  YI) = d(X)  W )  - e(Y)  e ( X )  @, Y E  A(M). 

( 5 )  e( f - X )  = f * e(x) + P @ f )  4x1 
Here p denotes the multiplication operator in A(M) ,  

p(@)y = @ A y. 

Remark: Property (3) states that for every vector field X on M 
e (X)  is a derivation in A(M). Property (4) shows that the map 
T ( M )  ---t Der A ( M )  given by X --t e ( X )  is a homomorphism of Lie 
algebras. 

Proof: (1) We have, 

( (TWaf,  y>  = -w(f)) - [ X ,  Yl(f) 
= Y ( X ( f ) )  = (W(f)), y>,  YE%(M), 

whence the result. 
(2) Clear. 
(3) We may assume that @ E A ~ ( M ) ;  Y E A ~ ( M )  and induct on 

p + q. If p + q = 0, then (3) reduces to the derivation property of X 
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on functions. If (3) is true for p + q < k, then, for p + q = k, 
X, Y E  X ( M ) ,  (2) gives 

i ( ~ )  e(x)(@ A Y) 

= e(x)i(~)p A Y) - i([x, YI)(@ A Y) 

= O(X)[i(Y)@ A Y + (-1)W A i(Y)Y] - i ( [ X ,  Y])@ A Y 

A i([x, Y])y 

= e(x) i ( ~ > @  A Y + i ( ~ p  A e(x)v/ + ( - 1 ) ~  o(x)@ A ~ ( Y ) Y  

+( - l )P@ A e(X)i(Y)Y - i ( [ X ,  Y])@ A Y - ( - l )p@ A i ( [X,  Y])Y, 

the last equality following from the inductive hypothesis. 

and obtain 
Now apply (2) and the antiderivation rule for i ( Y )  to this relation 

i(Y) e(X)(@ A Y) = i(Y)[O(X)@ A Y + @ A e (X)Y] ,  Y E %(M). 

Thus Lemma I implies that 

e ( x p  A Y) = e(xp A Y + 0 A e ( x y  
and the induction is closed. 

Both sides of (4) are derivations in A ( M ) .  Since A ( M )  is generated 
(as an algebra over W) by functions and gradients (cf. sec. 3.19) it is 
sufficient to show that the effect of both sides of (4) on functions and 
gradients is the same. But (4), applied to functions, is the definition 
of the Lie product, while (1) yields 

(4) 

(5) Both sides of (5) are derivations in A(M) .  But each side, applied 
to g E Y ( M )  yields f * X (  g); and applied to 6g, yields 

S ( f .  X ( g ) )  = f * WJg))  + Sf A X ( g ) -  
Q.E.D. 

Definition: A differential form @ is called invariant with respect to 
X E %(M)  if O(X)@ = 0. The  set of forms invariant with respect to X 
is a subalgebra of A ( M )  because d ( X )  is a derivation. (Recall that A ( M )  
is considered as an algebra over R.) 
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4.3. The exterior derivative. 
manifold M and consider the map 

Let @ be a p-form ( p  2 1) on a 

I ( M )  x * * *  x b ( M )  + Y ( M )  
pi.1 f&ctors 

given by 
9 

(Xo 9 * ** ,  X,) * C (-1)’ Xj(WX0 .**, 2, , .**, Xp))  
5-0 

+ (-l)i+j @([Xi, Xi] ,  ..., x*, ..., x,, ..., X,) 
O G i t l G P  

(the notation gj means that the argument X, is deleted). T h e  relations 

X ( f * g )  = X ( f ) . g + f . X ( g ) ,  f , g E y ( M ) ,  X ,  Y E m w  

[X,f* YI = f *  [ X ,  YI + X ( f )  * y 

imply that this map is ( p  + 1)-linear over Y ( M ) .  Since it is obviously 
skew-symmetric, it determines a (p  + 1)-form on M. 

and 

Definition: The  exterior derivative is the R-linear map 6 :  
A ( M )  --+ A(M) ,  homogeneous of degree 1, defined by 

P 

6@(Xo , ..., Xu)  = c ( - l ) j  Xj(@(X0 , ..., xi , ..., X,)) 

c (- l)i+j @([Xi , X,], ..., xi , ..., x, , ..., X,) 

@ E AP(M), p 2 1 ,  Xj E X ( M ) ,  

j=O 

+ 
O<i<j<p 

(4.1) 
and 

( W X )  = x’(f)l f E  Y(W, X E 

The  differential form 6@ is called the exterior derivative of @. Observe 
that 6f is the gradient of f  (cf. sec. 3.17). 

Combining the definition of the exterior derivative with that of the 
Lie derivative (cf. sec. 4.2) we obtain a second expression for a@, 

P 

6@(x0 , ..., x,) = C (-i)j(e(xj))@(xo , ..., 2, , ..., xu) 
j = O  

- C (-l) i+j @([Xi , Xj], Xo , ..., xi , ..., 2, , ..., X,). 
i < j  

(4.2) 
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In  particular, for a one-form these equations read 

Proposition II: The exterior derivative has the following properties: 

(1) e(x) = i(x) s + s i(x), x E ~ M )  

(3) 6 2  = 0 
(4) s e(x) = e(x) S .  

(2) a(@ A y) = 8@ A + (- A Sy, @ E Ap(M), A ( M )  

Remark: (2) states that S is an antiderivation in A(M). 

Proof: (1) This is an immediate consequence of the definitions. 
(2) This identity may be proved by induction in essentially the 

same way that property (3) of Proposition I was proved. We omit the 
details except to remark that property (1) plays the same role in this 
proof as property (2) of Proposition I did in the earlier proof. 

(3) Since S is an antiderivation, aa is a derivation. Since A(M),  
as an R-algebra, is generated by functions and gradients, it is sufficient 
to show that 

saf = 0, P ( 8 f )  = 0, f €  Y ( M ) .  

But 

Q.E.D. 

Example: Let 0 be an open subset of a vector space E and recall 
from sec. 3.19 that a p-form on 0 can be regarded as a smooth map 
0 --f APE*. For any smooth function f E Y ( O ) ,  the gradient is given by 

(Sf(.), h )  = f ' ( x ;  h) ,  x E 0, h E E. 

More generally, for @ E AP( 0), we have 
U 

(s@(X), ho A * * '  A h,) = 1 (-1)' (@'(X; hj), h, , ..., h i ,  ..., hD). 
j-0 
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If e, , e*" (v = 1 ,  ..., n) is a pair of dual bases for E and E* and 
@ E AP( 0) is given by 

@ = C fil...ipe*il A -.. A e* 'p ,  fil...i, E Y(o), 
i, < ... < i p  

then 
n 

(a@)@) = C C f i l . . . i p (x ;  e,) e*j  A e*'1 A A e*'*. 
j-1 i l<***<ip  

4.4. Smooth maps. Proposition 111: 

(1) q ~ *  0 i (Y)  = i ( X )  o q* 

Suppose that 9: M -P N is a 
smooth map and that X E %(M), Y E %(N) are ?-related. Then 

(2) ?* e(Y) = e(x) ?* 
(3) ?* 0 6 = 6 0 ?*. 

Proof: Observe that all the operators in (l), (2), and (3) are ?*- 
derivations or ?*-antiderivations. Hence it is sufficient to show that 
both sides agree on functions and gradients. This is immediate from 
Lemma V, sec. 3.13, and Equation (3.5) of sec. 3.17. 

Q.E.D. 

4.5. Carriers. Let @ E A ( M )  be a differential form on M. Recall 
from sec. 2.13 that the carrier of @ is the closure of the set 

{x E I @(x) # 0). 

It is denoted by carr @. 

Definition: A differential form @ on M is said to have compact 
carrier, if carr @ is compact. The set of differential forms on M with 
compact carrier is denoted by A,(M). 

Proposition IV: Let X and Y be vector fields on M and let 

(1) carr(@ + Y )  C carr @ u carr Y 
(2) carr(@ A Y )  C carr @ n carr Y 
(3) carr[X, Y] C carr X n carr Y 
(4) carr i (X)@ C carr X n carr @ 

carr O(X)@ C carr X n carr @ 
(5) carr 8@ C carr @. 

Corollary: 

@, YE A(M).  Then 

A,(M) is a graded ideal in A ( M )  and is stable under 
the operators i ( X ) ,  d (X)  (X E %(M)), and 6. 
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4.6. Product manifolds. Let M, N be manifolds. For X E S(M), 
Y E  S(N) let the vector fields iMX, iNY E 9 ( M  x N) (cf. sec. 3.14) be 
denoted simply by X and Y .  Then for @ E A P ( M ) ,  ??‘EA(N) the 
relations 

i (X)(@ x Y) = i (X)@ x Y, 

e(xp x Y) = e(xp x Y, 

i(Y)(@ x Y) = (-1)PO x i(Y)Y 

e(y)(@ x Y) = @ x e(qy 
and 

6(@ x Y) = 6@ x Y + (-l)P@ x 6Y 

(cf. Example 2, sec. 3.20) follow from the formulae of sec. 3.14, together 
with the antiderivation or derivation properties of i (X) ,  O(X), 8. 

Now consider a differential form 9 E Ar(M x N). Lemma VII, (1) 
and (2), sec. 3.14, implies that the map 

%(M x N )  x * * *  x %(M x N ) +  Y ( M  x N )  
r+l factors 

given by 
r 

(Z0 , ..., Z,) H 1 (-1y zy(Q(zo , ..., 2, , ..., Z,)) 
j-0 

+ C ( -q i+5  Q((zi Zj),w t Zo 9 . - a t  2i -*., 2j 8 .*., Zr) 
0 6 1  <j<r 

is skew-symmetric and (r  + 1)-linear over Y ( M  x N). Thus it defines 
an ( I  + 1)-form on M x N. 

Definition: The partial exterior derivative with respect to M is the 
linear map, homogeneous of degree 1, aM : A(M x N )  --f A(M x N) 
given by 
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As an immediate consequence of the definition we have the formulae 

(%4Q)(XO 9 **’, x, 9 Yl , *.*, Yp) 

9 

= c (-1y XV(Q(XO , ..., ifv , ..., x, , Y* , ... , U,) 
v-0 

Proposition V: The partial exterior derivatives have the following 
properties: 

(1) 6 = 6, + 8, p S& = 0, 8% = 0, 6,6, + SNS, = 0 

(2) S M  and 8, are antiderivations in A(M x N), homogeneous of 
bidegrees (1,O) and (0, I), respectively. 

(3) i(X)SM + S M V )  = qx), x E %(M), 

(4) i ( Y ) S N  + SNi(Y) = e(Y), y E %(N), 
i(X)S, + S,i(X) = 0 

i(Y)S, + S,i(Y) = 0 
( 5 )  8 M q . q  = e(Z)S, , Z E %(M) or %(N), 

s,e(z) = e(z)s, 
(6) SM(@ x Y) = S @  x Y, 

&(@ x Y) = ( - l )P@ x SY. 
@ E AP(M), Y E  A(N),  

Proof: Use Lemma VII, sec. 3.14, and sec. 4.3 together with 

Q.E.D. 
elementary arguments on bidegrees. 

4.7, Vector-valued differential forms. Differential forms generalize 
as follows: Let M be a manifold and let E be a finite dimensional vector 



I50 IV. Calculus of Differential Forms 

space. Consider the bundle L ( A P 7 ,  ; M x E) (cf. sec. 2.10) whose 
fibre at x E M consists of the p-linear skew-symmetric maps 

Definition: A p-form on M with values in E is a cross-section in 
the vector bundle L ( A P T ~  ; M x E). In other words, an E-valued 
p-form, SZ, on M is a smooth assignment to the points of M of skew- 
symmetric p-linear maps 

Q,: T,(M) x * * a  x T , ( M ) +  E.  

The  E-valued p-forms on M form a module over Y ( M ) ,  which will 
be denoted by AP(M; E). The  direct sum of the modules Ap(M; E) is 
denoted by A ( M ;  E) 

A ( M ;  E )  = C AP(M; E ) .  
P 

In particular, we have 
AP(M; R) = AD(M). 

The  following lemma is trivial: 

Lemma 11: An Y(M)-module isomorphism 

A ( M )  0 E -+ A(M;  E )  

The  operators i ( X ) ,  e ( X )  (X E S ( M ) )  and 6 extend to operators 
i ( X )  @ iE  , e ( X )  0 iE and 6 @ L E  in A ( M ;  E). We denote them also 
by i ( X ) ,  8 (X) ,  and 6. 

X ,  Y E 9 ( M ) .  
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Proof: 

Next consider the Y(M)-bilinear map 

Apply Proposition I, sec. 4.2, and Proposition 11, sec. 4.3. 
Q.E.D. 

A ( M )  x A ( M ;  E )  ---+ A ( M ;  E )  
given by 

( @ , Y ' @ a ) - ( @ h Y ) @ a ,  @ , ~ E A ( M ) ,  U E E .  

We shall write 

(@, Q) F+ @ A Q, @ E A(M) ,  .f2 E A ( M ;  E).  

This map makes A ( M ;  E) into a graded module over the graded algebra 
A(M) .  The following relations are straightforward consequences of 
Proposition I, sec. 4.2, and Proposition 11, sec. 4.3: 

i(x)(@ A Q) = i(x)@ A 52 + ( - I ) ,  @ A i(x)Q 
e ( x p  A Q) = e(xp A Q + A e(xp 

a(@ A Q) = 862 A Q + ( - l ) p @  A SQ 

x E S ( M ) ,  @ E A*(M), Q E A(M; E ) .  

A smooth map v: M -+ N induces an R-linear map 

q*: A ( M ;  E )  + A(N;  E )  

(v*Q)(x; I1 , a ' . ,  I D )  = Q(v(x); +I1 , '", dvI,), 

given by 

Q E A*(N; E),  x E M ,  ti E T,(M) 

or, equivalently, 

v*(@ 0 4 = v * @ @ a ,  @ E A ( N ) ,  U E E .  

Proposition I11 of sec. 4.4 generalizes in an obvious way. 
Every linear map a: E -+ F induces a map 

a*: A(M;  E )  ---+ A ( M ;  F )  

(a*Q)(x; 51, .*., 5,) = 4 Q ( x ;  51 , ..*, 5 p N ,  

given by 

Q E A'(M; E ) ,  x E M ,  ti E T J M ) .  

Evidently 

.*i(X) = i ( X )  a* ,  c Q ( X )  = O(X) a*, and a,S = Sa, . 
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Proposition IV, sec. 4.5, generalizes to vector-valued forms. The set 
of E-valued forms with compact support is denoted by A,(M; E); it 
is a module over A ( M ) .  

Finally, assume that E is a (not necessarily associative or com- 
mutative) algebra. Then the multiplication in E induces a multiplication 
in the space A(M;  E), the product being given by 

(@ w x ;  51 9 .*., 5 P i - q )  

@ E A’(M; E),  Y E  AQ(M; E),  x E M ,  f i  E T,(M). 

The algebra A ( M ;  E) so obtained is isomorphic to the algebra 
A(M) @ E. The following special cases are of particular importance: 

(1) if E is commutative, 

@ * Y  = (-1)PQY * @  

(2) if E is skew-commutative, 

@ . y = (--1)’Q+1 y . @ 

(3) if E is a Lie algebra 

(-l)’Q(@ . Y) x + ( -1)yX.  @) Y + (-l)Qy?J * X) * @ = 0 

@ E AP(IM, E),  Y E  AQ(M; E) ,  X E  A‘(M, E) .  

Relation (3), a consequence of the Jacobi identity, implies that 

( @ * @ ) * @ = O ,  @€AA’(M;E).  
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4.8. Smooth families of cross-sections. 

u: R + Sec 6 

is a set map; i.e., u assigns to every real number t E R a cross-section 
u, of 5. Such a map will be called a smooth family of cross-sections, if 
the map R x M -+ E (also denoted by u) given by u(t, x) = uL(x) is 
smooth. The set of smooth families of cross-sections in 4 will be denoted 

Each such family determines, for each fixed x E M, a smooth map 

Let 5 = (E, T,  M, F) be a 
vector bundle. Suppose that 

by {Sect S>,ER - 
a, : R -+ F, given by u,(t) = u(t, x). 

Definition: Let u be a smooth family of cross-sections in [. The 
derieratiere of u is the smooth family u given by 

~ ( t  + S, X) - a(t, X) d 
u(t, X) = lim 

8+O S 

The integral (from a E R) of u is the smooth family Ja u given by 

The definite integral c u is the cross-section in 5 given by 

It  is often written f ul dt. 

The fundamental theorem of calculus yields the relations 

j : d , d t = o , - u , ,  a , b E R  

and 
(1, u)' (f, x) = u(t, x), t E R, x E M ,  

for a smooth family u. 
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(4.5) 
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4.9. Smooth families of differential forms. A smooth family of p- 
forms on a manifold M is a smooth family of cross-sections in the vector 
bundle A P T & .  The  set of smooth families of p-forms on M will be 
denoted by {AP(M))l ,R . Evidently, (cf. Example 2, sec. 3.20) 

{AP(M)},,, = A y R  x M ) .  

Thus a smooth family of p-forms on M is a differential form on R x M ,  
homogeneous of bidegree (0, p ) .  

In  particular, if X E Z ( M )  and if we consider X as a vector field 
on R x M (cf. sec. 3.14 and 4.6) then for a smooth family @ ofp-forms 
on M ,  

i (X)@ E AO-"-'([W x M )  = {A;-l(M)}t,R , 

are again smooth families of differential forms on M .  
Let j l  : M -+ R x M be the inclusion map: j , ( x )  = ( t ,  x). If 

@ E Ao*p(R x M )  is a smooth family of p-forms, then the p-forms @, 
on M are given by 

0, = j:@, ~ E R .  

Thus the smooth family i (X )@ ( X  E Z ( M ) )  is given by 

( i (X)@),  = j t i ( X ) @  = i (X) j?@ = i ( X )  . 
Similarly, 

(O(X)@), = B(X)@, and (&&J)~ = a@,. 

Now consider a smooth map v: M -+ N .  Then 

( I  x p)*: A(R x M )  + A(R x N )  

restricts to linear maps 

(L x p)*: A O , P ( l W  x M )  +- A y R  x N ) .  

Thus v induces a map (6  x y)* of smooth families of p-forms. If 
@ E Ao*p(R x N )  is a smooth family, then 

( ( I  x p)*@), = $ ( I  x p)*@ = p*j?@ = v*Gt.  
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Proposition VII: Let v: M -+ N be a smooth map, and let @ be a 
smooth family of p-forms on N. Then 

b 
j : p * @ , d t  = v* j @ , d t .  

a 
(4.7) 

Proof: Let Qg : R + APT,(N)* be the smooth map given by 

@,(t) = q t ,  y), t E R, y E N .  
Then 

( ( I  x a)*@)Z = AP(dv): 0 : R + APT,(M)*, x E M .  

Since AP(dv)f is a linear map, it follows that 

d d 
ds - [ ( I  x d * @ I Z  = AP(dv): O -& @oh!); 

i.e., 
“ L  x v)*@132 = AP(dv): O = [ ( b  x v*)l& * 

This proves (4.6). 
Formula (4.7) is proved in the same way. 

Q.E.D. 

Proposition VIII: Let @ be a smooth family of p-forms on M. Then 

(1) i ( X )  sft C D t  dt = J: i (X)@, dt 

(2) e(x) sft @6 dt = J“, e ( x ) @ t  dt, S(M) ,  
(3) 6 J: @6 dt = sft 6@t dt. 

Proof: (1) is clear. Next we verify (3). Using an atlas on M, reduce 
to the case M is a vector space E. In  this case 

Ao*p(R x E )  = 9’(R x E;  APE*) 

(cf. the example of sec. 3.19). Since both sides of (3) are linear we 
may restrict to the case @(t, x) = f ( t ,  x)a where a E A P E * ,  f E Y ( R  x E). 
In  this case (3) is equivalent to (cf. the example of sec. 4.3) 

f [$ r f ( t ,  x) dt] e*” A a = 
V=l a 

where e*’, e, is a pair of dual bases for E*, E and a/ae, denotes the 
partial derivative in the e, direction. But this is standard calculus. 
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Finally, (2) follows from (l) ,  (3), and the relation 

4.10. The operator 1: . Let M be a manifold and let 52 E AP(R x M).  
Then 52 can be uniquely decomposed in the form 

sz = @ + Y, @ E AO."(R x M ) ,  YE A'J-'(R x M ) .  

Now consider the smooth family of p-forms @. I t  satisfies 

We shall abuse notation, and denote this smooth family byj*sZ, (j*52), = 
jT52. 

Integrating this family yields a differential form 

J a  

on M. The assignment 52 ++ It52 defines a linear map 

1; : A(R x M )  + A ( M )  

homogeneous of degree zero. 

Lemma 111: Let T denote the vector field d/dt on R; consider it 
as a vector field on R x M. Then 

Proof: We may assume that M is a vector space E, and that 
52 E Ao*p(R x E) is of the form 

w, X) = f ( t ,  

for f~ Y ( R  x E) and a E APE*. Then 

Q.E.D. 
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Proposition IX: 

(2) j$ - j$  = 1: 0 e( T )  = 6 o I," 0 i( T )  + I: o i( T )  0 6 .  

The operator 1: satisfies 

(1) = 6 0 1 :  

Proof: .( 1) Apply Proposition VIII, sec. 4.9. 

(2) Formula (4.5) and Lemma 111 yield 

b 

a 
j$Q -j,*Q = I (j*Q)i ds = I:O(T)Q. 

Now (2) follows from (1). 
Q.E.D. 

4.11. Orbits. Let X be a vector field on M which generates a 
one-parameter group of diffeomorphisms 

cp:R x M + M  

(cf. sec. 3.15). Then, for @ E A(M) ,  p*@, *e(x)@ A(R x M ) .  
The corresponding smooth families of differential forms on M are 

given by 

( j*p*@)t = vT@ and (j*cp*O(X)@), = tpTO(X)@, 

where qr : M + M is the map, tpl(x) = ~ ( t ,  x). 

Proposition X: Let @ f A p ( M ) .  Then the family tpf@ satisfies 
the relation: 

t 
cpT@ - @ = (vzO(X)@) ds. Jo 

In particular, 
(cp;q; = e(x)@. 

Proof: Observe first that T - X. It follows that tp*O(X) = e( T)tp*. 
Hence rp 

f cpp:e(xp ds = f j,*e(T) p*@ ds = i;e(T) cp*@ 
0 0 

= jTcp*@ - jtcp*@ = g$@ - @. 

Now (4.5) yields 

cp34XP = (d@ - @X = (cpp:@); 9 
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whence 
e(x)@ = q,,*e(x)@ = (&q;. 

This completes the proof. 
Q.E.D. 

Corollary: A differential form @ is invariant with respect to X 
if and only if it satisfies 

(cf. sec. 4.2). 
q I T @ = @ ,  t € R  
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4.12. Integration in a vector space. Let 0 be an open subset of an 
oriented n-dimensional vector space E. We shall define a linear map 

so: &(E) -+ R 

which depends only on the orientation of E. 
First, let A be a positive determinant function in E and let e l ,  ..., en 

be a basis of E such that A(el , ..., en) = 1. Each 0 E A;(E) can be 
written 0 = f - A some f E Y C ( E ) .  We define So by 

1, @ = / , f ( x )  dx' * . *  dx", 

where xl, ..., xn are the coordinate functions associated with the basis 
el , ..., en . 

Then so is a linear map; it has to be shown that it is independent 
of the choice of A and of the basis. But if d is a second positive deter- 
minant function, and d(g1 , ..., Fn) = 1, we write @ = J * d and note 
that 

J(x)  = @(x; g1 , ..., Z,,) = f ( x )  A(g1 , ..., gn), x E E.  

Set Fi = xj a{ei and rewrite this relation as 

f ( x )  = det(a:)f(x), x E E.  

Since A,  d are positive, so are the bases {e,}, {Zi}; hence 

det(a?;) > 0. 

Now the transformation formula for Riemannian integrals yields 

J ( x )  d.9 dz  - f ( x )  det(a:) d 9  dTn 
S O  " - S o  

= I 0 f ( x )  dxl a * *  dx". 

Hence So depends only on the orientation of E. 

Remark: An intrinsic definition of the integral is given in [9] and [12]. 
159 
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Lemma IVt If carr 0 C W (W an open set), then 

I,@ = jonw@, Q, E AZ(E). 

Lemma V: Let U CF, V C E be open subsets of oriented n-di- 
mensional vector spaces. Suppose rp: U 2 V is a diffeomorphism, either 
orientation preserving or reversing. Then, for 4j E At(  V )  C A:(E), 
F*@ E At(  U), and 

so v*@ = S,,,? 
(0 an open subset of U). Here E = +1 (resp. -1) if rp is orientation 
preserving (resp. reversing). 

Proof: This is a straight translation of the "transformation of 

Q.E.D. 
variables" law for Riemannian integrals. 

4.13. Integration in manifolds. Let M be an oriented n-manifold 
and let 0 be an open subset of M. We shall define a linear map 

j,: &(M) + R. 

Let Qi E A : ( M )  and suppose first that carr @ C  U for some chart 
(U, u, Rn) on M. Give R" the orientation induced from M via u, and set 

If ( V ,  w, Rn) is a second such chart (with R" given the orientation induced 
from V ) ,  set W = U n V. Then Lemmas IV and V of sec. 4.12 give 

J ('c-l)*Q, = j (u-')*@ = J (24 0 w-l)*(u-l)*@ 

J)-l)*@- 

u(onu) don W )  don W) 

- - 

Thus the definition (4.8) is independent of the choice of (U, u, UP). 

be a family of charts such that 
Finally, let Qi E &(M) be arbitrary. Let (Ui  , ui , Rn) (i = 1, ..., Y) 

r 
carr @ C (J Ui . 

1 
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Set U,  = M - carr @ and let {p,},=o,...,r be a partition of unity sub- 
ordinate to the open cover { U,}. Then 

7 

@ = 1 p ,  * @ and pi - @ E .A;( U,). 
is1 

We define 

where sopi  * @ is given by (4.8) (i = 1 ,  ..., Y). 

It  has to be shown that this definition is independent of the choice 
of the U, , u, , and p ,  . Let (V,  , u, , Rn),,l ,..., be a second family of 
charts on M such that carr @ C U, V, . Set V, = M - carr @ and let 
{qi}i=o,...,s be a partition of unity subordinate to the open cover {V,}. 

We must prove that 

Since qo * @ = 0, p ,  @ = 0, we have 
8 

p i  * @ = 1 qjpi * @, 
j=1 

whence 

J q j  
0 

i = 1 ,  ..., I ,  

The elementary properties of the integral of an n-form are listed in 
the following 

Proposition XI: Let M be an oriented n-manifold and @ E A:(M). 
Then 

(1) Jd@ = 0. 
(2) If { x  E U I @(x) # 0} = { x  E V I @(x) # 0}, where U,  V are 

open subsets of M, then 

Iu@ = I,@* 
In particular, if @ I u  = 0, then Ju @ = 0. 

(3) If U, V are disjoint open subsets of M, then 

U V 
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(4) Let @ = f - A ,  wherefe .Yc(M) and d represents the orientation. 
Assume f ( x )  >, 0, x E M, (@ is called nonnegatiwe), and 45 # 0. Then 

Proof: With the aid of a suitable partition of unity, it is easy to 
reduce to the case M = UP. In this case these properties restate standard 
properties of the Riemannian integral (of functions). 

Q.E.D. 

Proposition XU: Let M, N be oriented n-manifolds and let 
cp: M --+ N be a diffeomorphism (either orientation preserving or 
reversing). Then 

J 0 P*@ = * Jw(o) @* 

where z = 1 (resp. -l), if rp is 

Write @ = xI=l @, 
feomorphic to W. It  is clearly 

Proof: 

0 E A:(N), 0 open, 0 C M ,  

orientation preserving (resp. reversing). 

with carr @$ C U, where U, is dif- 
sufficient to prove the proposition for 

each @; ; i.e., we may assume carr @ C U,  U E Rn. Sike-rp is a dif- 
feomorphism, the proposition follows from Lemma V, sec. 4.12. 

Q.E.D. 

Proposition XI11 (Fubini): Let M, N be oriented m- and n-manifolds 
and give M x N the product orientation. Then 

@ x Y = J  @ a !  Y, @ E A F ( M ) ,  Y E A : ( N ) .  
I M X N  M N 

Remark: carr(@ x Y) C carr @ x carr Y is compact. 

Proof: Use partitions of unity to reduce to the case that M and N 
are vector spaces. But in this case the proposition is a restatement of 
the formula 

for Riemannian integrals of functions f, g with compact support. 
Q.E.D. 
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Proposition XIV:  
@ E A:-'(M). Then 

Let M be an oriented n-manifold and assume 

Proof: Choose finitely many charts (U,  , u, , Rn) (i = 1, ..., r )  so that 
the U, cover carr @. Use a partition of unity to write @ = + + @,. 
with @, E A;-l(M) having carrier in U, . It is sufficient to prove that 

JWsoi = = 0, i = 1, ..., Y; J Vi 

we are thus reduced to the case M = Rn. 

Then @ E A:-l(Rn) is a sum of terms of the form 
Choose a positive basis e l ,  ..., en of Rn with dual basis e*l, ..., e*n. 

A 
fi . ,*I A ... e*i ... A e*n, f* E yc(Rn) .  

Hence it is sufficient to consider the case 

8 = f 1 e*2 A A e*n, f E Yc(Rn). 

But then (cf. the example, sec. 4.3) 

(68)(x) = f '(x; el) e*1  A ..- A e*n. 

Since e*l A A e*n is a determinant function in Rn, and 
(e*1 A ..* A e*", el A ... A en) = 1, we obtain 

1,. 6@ = 1, f ' (x;  el) dxl dx - - /Rn-l [I-, * ae,ds'] ef dx2 ... dxn 

= 0. 

Q.E.D. 

4.14. Vector-valued forms. Let M be an oriented n-manifold and E 
be a finite-dimensional vector space. Recall the definition of the E-valued 
differential forms on M, A ( M ;  E), and the relation 

A(M; E )  = A ( M )  @ E 

(cf. sec. 4.7). The space of E-valued forms with compact carrier is 
denoted A,(M; E). Evidently 

A,(M; E )  = &(M) @ E.  
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Now let SZ E A%(M; E) and write 
r 

Sa = 1 o1@ai 

where a, , ..., a, is a basis of E, and @$ E A:(M). It is easy to see that 
the vector in E, given by 

i=1 

(0 an open subset of M), is independent of 
We define the integral of SZ to be this vector, 

the choice of basis {ai}. 

Let a: E --t F be a linear map of finite-dimensional vector spaces. 
a*: A ( M ;  E )  .--t A ( M ;  F) restricts to a linear map 

a*: &(M, E )  -+ &(M; F )  

(cf. sec. 4.7). Evidently 

(4.9) 

Finally, observe that Propositions XI1 and XIV continue to hold for 
vector-valued forms. 

4.15. Forms with noncompact carrier. Let U be an open subset 
of an oriented n-manifold M. Let @ E A"(M) satisfy carr @ n U = K is 
compact. Choose f E Y C ( M )  with f = 1 in K. Then Y = f * @ E A:(M) 
and satisfies 

Y(X) = @(x), X E  u. (4.10) 

Moreover, if X E A:(M) also satisfies this equation, then it follows 
from Proposition XI, part 2, applied to X - Y, that 

S,x= 1,~. 
Thus we can define the integral of @ over U by 

where Y E  A:((M) satisfies (4.10). 
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In particular, if 0 is compact ewery n-form on M can be integrated 
over U. 

Examples: 1. Let S1 be the unit circle in the complex plane C, 

s ' = { s € C I I s I  = I}. 

A determinant function A in C is given by 

d(zl , z2) = Im(zl - z2), 

Hence a one-form 9 E A1( Sl) is given by 

zt E @. 

Q(z; 7) = Im(% 7) = Im(q/z), 2 E 151, 7) E T,(151), 

and SZ orients S. 

Then 
Now consider the smooth map rp: R --f S1 given by rp(t) = exp(2mit). 

tp*sZ(s; d/dt)  = 27r Im(i e-2nia+2nia ) = 27r. 

In particular, rp is orientation preserving. 
Clearly rp restricts to a diffeomorphism 

qJ: (0, 1) 2 s1 - {I} .  

Moreover, iff E 9(S1), then 

/ f . Q = /  f . 5 2 .  
S' S'-{lJ 

Hence 
1 / f * Q = / qJ*f * qJ*Q = 27r / (+*f)(t) dt; 

S' (0.1) 0 

i.e., 

In particular, JSl 9 = 277. 
Let E be an oriented (n + 1)-dimensional Euclidean space and 

let Sn denote the unit sphere in E. Denote by A, the positive normed 
determinant function in E. Orient Sn by the form SZ E An(Sn) given by 

2. 

Q ( y ;  71 9 **., 7,) = &(Y, 71 9 *.., 7n), y E sn, 7i E T,(S") 

(cf. Example 2, sec. 3.21). We shall compute Jsn9. Choose 

O < a < b < c o .  
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Let 9 = ( a ,  b)  and let A C E be the annulus 

A = { x l a < l x l  < b } .  

The orientation preserving diffeomorphism a: Rf x Sn --+ & given by 

( t ,  x )  w t x  

restricts to an orientation preserving diffeomorphism 

9 x S n Z A  

(cf. Example 3, sec. 3.22). A simple computation shows that 

a*A, = (1" * 8 t )  x SZ 

( t :  R -+ R is the identity map). 
Next consider the (n + 1)-form 0 in E given by 

@(x)  = e-(x*x)  . A E  , 

(a*@)(t, y)  = (e-t't" * 8t )  x SZ(y). 

Since A and 3 are compact, any (n + 1)-form defined in I? (resp. 
in R+ x 5'") can be integrated over A (resp. over 9). Thus Proposi- 
tion XI1 and Proposition XIII, sec. 4.13, give 

x E E. 
Then 

a*@ = S, e-tatn St * S, sz 

= e-@tn dt . 52. 

1, @ = Jy,sn 

a n 

On the other hand, 

1, Q, = I, e-(XJ) dx, dx,+, , 

where xl, ..., x,+~ are the coordinate functions corresponding to an 
orthonormal basis. Taking limits as a --+ 0, b --+ 00 gives 

la e-t2tn dt . /,Q = j e-(xl*+...+x~+,) dxl . . . 
0 E 

m n+l 
= (1 e-x2 dx) 

-m 

It follows that 

rrm, n = 2m, m 2 1 
1 * 3 ... (2m - 1) 

n = 2 m + l ,  m > O .  
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4.16. The annulus. Let M be an oriented n-manifold. A graded 
&stable ideal A M @  x M) C A(R x M) is defined as follows: 
@ E AM(R x M) if, for all closed, finite intervals K 

carr dr n ( K  x M )  

is compact. Next, let R be oriented by the one-form 6t (cf. Example 7, 
sec. 3.21) and give R x M the product orientation. Let 9 denote a 
finite open interval (a, b) C R and let j ,  , j , :  M + R x M be the 
inclusions opposite a and b. 

Then, for QEA&+'(R x M), carrQ n (9 x M) is compact. Thus 
(cf. sec. 4.15) we can form the integral 

In this section we prove 

Theorem I (Stokes): Let M be an oriented n-manifold. Then, for 
Q, E A&(R x M ) ,  

= J jzo - J" j,*@. 
J$XM M M 

Remark: Since Q, E A$(R x M), j$Q, and j$Q, E A:(M). 

Proof: First, consider the vector field T on R x M given by 

T(s, X) = (d/df, 0), s E R, x E M .  

T determines an operator (cf. sec. 4.10) 

1: 0 i (T)  : A q R  x M )  -+ AP-l(M), 

which clearly restricts to an operator 

I," 0 i (T )  : A&(R x M )  --+ A:-l(M). 

167 
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Lemma VI: 

sz = j Z:i(T)SZ, B E A ~ ~ , + ' ( I w  x M I .  

Use a finite partition of unity in M, to reduce 

!$xM M 

Proof of Lemma VI: 
to the case M = Rn and 

carr Ica C R x L 

where L is a compact subset of IW,. 

a positive (n + 1)-form in R x R". Write 
Let e, , ..., e, be a positive basis of Rn. Then St A e * l  A * . -  A e*n is 

Ica = f * 6t A e*1 A s.9 A e*n, f~ 9'(Rn+l), carrfC R x L. 

Then i(T)Q = f - e * l  A A e*%. 
It follows that 

b 

a 
( I : ~ ( T ) s z ) ( ~ )  = (1 j ( t ,  x) A A e*n 

f f ( t ,  x) dt dxl 

and so 

s,,,.D. jWmZ:i(T)SZ = dxn = 
W" a 

Q.E.D. 

We return to the proof of Theorem I. Lemma VI yields 

6@ = j (Zft 0 i (T) )  SQi. 
j 3 X M  M 

According to Proposition IX, sec. 4.10, 

I:i(T) 6 0  = j c @  - jzQi - 6Z$(T)@. 

Since @ E A&(R x M ) ,  IfCi(T)@ E A;-'(M). Thus Proposition XIV, 
sec. 4.13, implies that 

j 6Zi(T)@ = 0. 
M 

Hence 
/MI: i (T)S@ = J" j t @  - 1 j z ~ .  

M M 

Q.E.D. 

4.17. Stokes' theorem for the ball. Let B be the open unit ball in 
an oriented Euclidean (n + 1)-space E, and let S be the unit n-sphere 
with the induced orientation (cf. Example 2, sec. 3.21). Let i: S + E 
be the inclusion. 
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Theorem 11: Let @ E A”( U )  where U is a neighbourhood of the 
closed unit-ball B. Then 

(4.11) 

Proof: Let p be a smooth function in E such that 

p ( x )  = 1, I x i  < 1 and carrpC U. 

Then neither side of (4.1 1) is changed if we replace @ by p * @. But 
p * CP E Az(E) and thus we may assume that 0 E AZ(E). 

Next let q be a smooth function in E such that 

q ( x ) =  1, 1x1 <+; q ( x ) = O ,  1x1 2 4 .  
Then 

i*(l - q)@ = i*@. 

Moreover, since q * @ E A:(B), Proposition XIV, sec. 4.13 gives 

Thus both sides of (4.1 1) are unchanged if we replace @ by (1 - q) * @; 
in other words, it is sufficient to consider the case @(x) = 0, I x I < a .  
Then we have 

Next consider the diffeomorphism a: R+ x S --+ E - {0} given by 
a(t, x) = t x  ( t  E R+, x E S). Then a preserves orientations (cf. Exam- 
ple 3, sec. 3.22). Hence, setting 9 = ($, l), we find 

/,a@ = /,a@ = J”Nxk*a@ = jNxp(a*@). 
Applying Theorem I of the preceding section, we obtain 

because i = a 0 jl and jf,4a*@ = 0. 
Q.E.D. 



Problems 

1. Fields of n-frames. AJield of n-frames over an open set 0 C M 
(M a manifold) is an n-tuple el , ..., e, of vector fields in 0 such that for 
each x E 0 the vectors el(x), ..., e,(x) form a basis of T,(M). Then 
e*l, ..., e*n is the n-tuple of dual 1-forms. 

(i) Show that 

6 = 1 &*") e(eJ + c d e * "  A e * 9  i ( [e ,  , 4) 

and use this to prove that 6 is an antiderivation. 

relations 

0 "$6 

(ii) Define functions C$ in 0 by [e,, e,] = x,, C:@e,. Verify the 

O(e,) e*' = - c C$e*' 

Given manifolds M and N, regard Y(M x N) as an Y ( N ) -  
module and show that the Y(M x N)-modules Aoop(M x N) and 
Y(M x N) BN Ap(N) are isomorphic. 

Let X E X ( M ) ,  @ e E A n ( M ) ,  where M is a compact oriented 
n-manifold. Show that J,,, f?(X)@ = 0. 

Let U be a domain in W, star-shaped with respect to 0. Define 

and 6e*P = - 8 c C&e*a A e*'. 
6 4 

2. 

3. 

4. 

h: AP(U)-+ AP-'(U) ( p  >, 1) 

1 
by 

(h@)(x;  t1 , *-., t v - 1 )  = j @(% x, tt1 9 .*., t t v - 1 )  dt. 

(i) Show that 6 0 h + h 0 6 = L. 

(ii) I f f  E Y( U )  and d is a determinant function show that f - d = 

S(g . @), where 

5. Define the integral of an n-form over an oriented manifold-with- 
boundary. Establish Stokes' theorem for compact oriented manifolds- 
with-boundary. 

170 
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6. Solid angle. Define 52 E An-1(@ (E an oriented Euclidean 

1 
1x1 

n-space, 8 = E - (0)) by 

51 9 a * * ,  5n-1) = 7 4 %  El I * * * ,  L l ) ,  

where d is the positive normed determinant function. 

(i) Show that 652 = 0. 
(ii) Fix a unit vector a, and let U = E - {ta I t 2 O}. Construct an 

(n - 2)-form Y in Usuch that 52 = 6Y in U. 
(iii) Let M be a compact oriented (n - 2)-manifold and let a: M + U 

be smooth. Show that J M  a*Y (Y defined in (ii)) is independent of the 
choice of Y. (Hint: Compare problem 4.) JM a*Y is called the solid angle 
enclosed by a(M). If p:  M + U is a second map such that #3 = f * a, 

f E Y ( M ) ,  show that a ( M )  and p ( M )  enclose the same angle. 
(iv) Let N be a compact oriented (n - 1)-manifold with boundary aN 

and let q ~ :  N + E be a smooth map. Then JN q1*52 (52 defined in (i)) is 
called the solid angle subtended by ~ I ( N ) .  If rp(N) C U ,  show that this 
coincides with the solid angle enclosed by rp( aN).  Assume I): N + U is 
a second smooth map such that rp(x) = h,I)(x) for x E aN. Show that 
v ( N )  and + ( N )  subtend the same angle. 

7. Show that a p-form 0 ( p  3 1) which satisfies O(X)@ = 0 for 
every vector field X must be zero. 

8. Densities. A p-density on an n-manifold M is a cross-section 
in the bundle Anr$ @ A P T M .  The  module of p-densities is denoted 

(i) Express densities in terms of components with respect to a local 
coordinate system and find the transformation formula in an overlap of 
two coordinate systems. 

by D P ( M ) *  

(ii) Let F be an n-dimensional vector space. Show that 

Q, @ (xl A - . *  A x p )  w i(x,)  i(xl)@ Q, E AnF*, x, E F  

defines a canonical isomorphism AnF* @ APF -+ A n - P F * .  Obtain the 
Poincare' isomorphism (of Y( M)-modules) 

(iii) Define the divergence operator a: D J M )  -+ Dp-l(M) by a = 
(-1)pD o 6 o D-l. Show that a2 = 0 and express au in terms of the 
components of u with respect to a local coordinate system. 
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(iv) Suppose M is compact and oriented. Set 

(@, u) = @ A D-lu, @ E AP(m), u E D,(M). 
M 

Prove the formula 

(a@, u) = (0, au) @ E AP-l(M), u E D,(M). 

9. Laplacian. Let M be an oriented n-manifold and let ( , ) be 

(i) Use ( , ) and the orientation to identify Sec APTM with AP(M) and 

a Riemannian metric in T M  . 

hence obtain Y(M)-isomorphisms 
3 

A q M )  -=+ D,(M). 

(ii) Use these isomorphisms to obtain, from the divergence, an 
operator S*: Ap(M) ---f AP-l(M). Express S*@ in terms of the com- 
ponents of @ with respect to a local coordinate system. 

(iii) Assume M to be compact and let d be the positive normed 
determinant function on M. Set 

(@, P) = J (0, V A .  
M 

Show that 
(S@, !P) = (0, S*4)  @ E AP(M), Y €  AP+'(M). 

(iv) The  Laplace operator A :  D ( M )  -+ AP(M) is defined by 
4 = S o S* + S* 0 6. Establish Green's formula 

(ti@, SY) + (a*@, S*Y) = (40, Y), @, YE AP(M), 

and conclude that 4@ = 0 if and only if 6@ = 0 and 6*@ = 0. 
(v) Find a square root of 4. 

(vi) Show that 6, a, S*, 4 are differential operators in the sense of 
problem 7, Chap. 111. Compute their symbols and decide which are 
elliptic. 

10. Let M be a compact oriented n-manifold. Let @ and Y represent 
the orientation of M. Show that J M  @ = sM Y if and only if there is an 
orientation preserving diffeomorphism q of M such that Y = q*@. 
(Hint :  If JM X = 0, then X = 6Q; cf. Theorem 11, sec. 5.13.) 

11. Symplectic manifolds. A symplectic manifold is a manifold 
together with a closed 2-form w such that each W(X) is a nondegenerate 
bilinear function in TZ( M). 
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(i) Show that a symplectic manifold is even dimensional and 

(ii) Show that if M is compact and p < &dim M ,  then w A A w 

(iii) Show that T :  X H i ( X ) w  is an Y(M)-isomorphism from % ( M )  

(iv) Set X, = ~-l(Sf) ( f ~  Y ( M ) )  and define the Poisson bracket by 

orientable. 

( p factors) is not of the form 80 (See hint of problem 10.) 

to A'(M). 

Show that X L , , ~ ]  = [ X ,  , X,] and conclude that the map (f, g) H [f, g] 
makes Y ( M )  into a Lie algebra. 

(v) Suppose X, generates the I-parameter group q ~ ~ .  Prove that 

(vi) Assume dim M = 4k and the class represented by w generates 
the algebra H ( M ) .  If M is compact prove that M is irreversible. Is this 
true if M is not compact ? ( H ( M )  is defined in sec. 5.1.) 

y f w  = w .  

12. Cotangent bundle. 

(i) Show that a 1-form 8 is defined on T& by 

Let T& = (T& , T ,  M ,  Rn) be the cotangent 
bundle of an n-manifold. 

@; 1) = (z ,  (WO, 5 E WTf).  

(ii) Suppose U is open in Rn and write T$ = U x (&In)*. A basis ei 
of Rn determines coordinate functions xi in U. Coordinate functions in 
(&I")* are given by pz :  e* t-+ ( e * ,  ei) and the xi together with the pi are 
coordinate functions in T*, . Show that, in T$ , 

(iii) Show that ( T z  , SO) is a symplectic manifold. Use 68 and 8 to 
obtain a canonical vector field Z on T& and express it in local coordinates. 
Show that if z E T,(M)*, then Z(z) is tangent to T,(M)*. Thus  interpret 
Z(z) as a vector in T,(M)* and show that Z(z) = z. 

(iv) A diffeomorphism y :  T& -+ T$ which preserves the symplectic 
structures is called a canonical transformation. Prove that each diffeo- 
morphism M -+ N induces a canonical transformation T S  -+ T$ . 

(v) Let T denote the isomorphism of problem 11, iii, for the symplectic 
manifold (T& ,SO) .  Show that a vector field X on T& generates a local 
I-parameter family y 1  of canonical transformations if and only if the 
1-form T X  is closed. 



174 IV. Calculus of Differential Forms 

(vi) Suppose f E 9( T&) and let X! = 7-'(Sf ). Show thatf is  constant 
along the orbits of X ,  . Show that in local coordinates the differential 
equation for an orbit X ,  is the classical Hamilton-Jacobi equation 

(vii) If X E %( Tz) interpret the condition O(X)O = 0 geometrically. 

13. Integration. Let M be an n-manifold oriented by A. A continuous 
n-form on M is a continuous map @: M -+ AnT& such that rr 0 @ = L. 

(i) Define the integral of continuous compactly supported n-forms 
and show that the basic properties continue to hold. 

(ii) Let @ be a positive continuous n-form (i.e., @(x) = h(x)  A ( x ) ,  
X(x) 2 0). Let U, be an open covering of M such that 0, C U,+, , and a, 
is compact. Show that a, = Jui @ is an increasing sequence and that 
a = limi,m a, < co depends only on @. Show that a coincides with 
the integral whenever it is defined as in (i). Set J,,, @ = a in any case. 

(iii) Let @ be any continuous n-form on M. Construct a continuous 
positive n-form, @+, such that @+(x) = @(x) or @+(x) = -@(x). 
Assuming that J,,, @+ < co, define JM @. Show that J,,, @ < j w @ + .  

14. Parallelizable manifolds. Let 5 be the vector bundle over 
M x M whose fibre at (x, y )  is the spaceL(T,(M); TJM)). Aparallelism 
on M is a cross-section P in 5 such that 

P(z, y )  0 P(x, z) = P(x, y)  and P(x, x) = L, x,y,  2 E M .  

A vector field X is called parallel (with respect to P) if 

4% Y )  X(X)  = X ( Y ) ,  x, y E M.  

A manifold which admits a parallelism is called parallelizable. 
Let (M, P) and (i@,p) be manifolds with parallelisms. A diffeo- 

morphism rp: M --t i@ is called parallelism preserving if dtp o P(x, y )  = 

(i) Given a parallelism P, fix a point a E M. Show that (x, 6 )  M P(a, x)g 
defines a strong bundle isomorphism M x TJM) -% T,,, . In  this way 
obtain a bijection between parallelisms on M and trivializations of r M  . 
Show that the parallel vector fields correspond to the constant cross- 
sections under this bijection. 

(ii) Let P be a parallelism. Fix a point a and set TJM) = F. Define 
Oa E A1(M;F) by Oa(x; () = P(a, x)-l(. Show that the relation 

fYrpx, rpy) O (drp), 

q x ;  4,771 = - q a ,  x> W ( x ;  5 9 7 7 )  
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defines a tensor field, S, of type (2, 1) on M and that this tensor field is 
independent of a .  It is called the torsion of P. Regard S as a map 
9 ( M )  x $(M)  + X ( M )  and show that if X and Y are parallel, then 
S(X,  Y) = [X ,  Y] .  

(iii) Show that if tp is parallelism preserving, then 

S ( d 4 ;  ( 4 4 5 %  ( d d d  = (49 t, ?1)- 

(iv) Assume that P is a parallelism such that S = 0. Show that for 
every point a E M there exists a neighbourhood U and a parallelism 
preserving diffeomorphism of U onto an open subset 7? of Rn, where 7? 
is given the parallelism induced by that of Rn. 

(v) Use the Cayley numbers (problem 5,  Chap. 111) to define a paral- 
lelism on S7. Compute its torsion. 

(vi) Two parallelisms, P, p on M are called conjugate, if whenever X 
is P-parallel and Y is p-parallel, then [X, Y] = 0. Show that if M is 
connected then a parallelism has at most one conjugate parallelism. 
Show that the torsions of conjugate parallelisms are connected by 
s = -s. 

(vii) Show that if P admits a conjugate parallelism, then S satisfies 

q z ,  Y )  S(x; 5, 7) = q Y ;  P(X, r)5, w, Yh). 

Conversely, if this relation holds, show that every point has a neigh- 

(viii) Show that the parallelism of S7 (part v) does not admit a con- 
bourhood in which a conjugate parallelism exists. 

jugate parallelism. 

15. Legendre transformation. Let L E Y(  T M )  and let 

&: T3E(W - T M  

be the inclusion map. Regard (+Jh as a linear map from TZ(M).  

(i) Show that (9((), 7) = 6L( t ;  djz(q)), f ,  77 E T,(M), defines a 
strong bundle map 9: 7M + 7% . It is called the Legendre transformation 
induced by L. When is 9 an isomorphism? 

(ii) Suppose ( , ) is a Riemannian metric on M and let f E Y ( M ) .  
Define T, V E Y(TM) by T ( ( )  = a((, f ) ,  V = r*f .  Show that the 
function L = T - V induces an invertible Legendre transformation. 

(iii) If 9’ is an isomorphism define H E 9’( T&) by 

H ( t * )  = ([*, .E”-y*> - L(.E”-lt*). 

I f L  is defined as in (ii), show that 9 * H  = T + V .  
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De Rham Cohomology 

SI. The axioms 

5.1. Cohomology algebra of a manifold. Given an n-manifold M 
consider the graded algebra 

n 

A ( M ) =  1 AP(M) 
P-0 

of differential forms on M .  It follows from Proposition I1 of sec. 4.3 
that the exterior derivative makes A ( M )  into a graded differential 
algebra. The  cocycles in this differential algebra consist of the differential 
forms @ which satisfy the condition a@ = 0. Such a differential form 
is called closed. Since 6 is an antiderivation, the closed forms are a 
graded subalgebra Z ( M )  of A ( M ) .  

The  subset B ( M )  = M ( M )  is a graded ideal in Z(M) .  The  differential 
forms in B ( M )  are called exact, or coboundaries. The  corresponding 
(graded) cohomology algebra is given by 

H ( M )  = Z(M)/B(M).  

I t  is called the de Rham cohomology algebra of M. 
Suppose v: M + N is a smooth map. Then 

tp*: A ( M )  + A ( N )  

is a homomorphism of graded differential algebras ( A ( M )  and A ( N )  
are considered as real algebras) as was shown in sec. 4.4 (Proposition 111). 
Thus v* induces a homomorphism of cohomology algebras, homo- 
geneous of degree zero, denoted by 

tp#: H ( M )  + H(N) .  

If +: N + Q is another smooth map, then (+ 0 v)* = v* 0 $* and so 

($I 0 cp)" = 0 $I*. 
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Moreover, 
(d* = 'H(M) * 

In  particular, if 9) and $ are inverse diffeomorphisms, then rp# and $# 
are inverse isomorphisms. 

The  gradation of H ( M )  is given by 
n 

H ( M )  = c H q M ) ,  
p=o 

where 
H q M )  = Zp(M)/B*(M). 

Since Ap(M) = 0 for p > n it follows that 

and 
H P ( M ) = O ,  p > n  

H y M )  = An(M)/B"(M). 

On the other hand, Bo(M) = 0, so that 

Ho(M) = .To(&'). 

Now ZO(M) consists of the smooth functions f on M which satisfy 
Sf = 0, and hence Proposition XI of sec. 3.17 can be restated in the 
form: 

If M is connected, then Ho(M)  R; 

i.e., the cohomology algebra of a connected manifold is connected 
(cf. sec. 0.3). 

In  any case the constant functions represent elements of Ho(M).  
In  particular, the function 1 : M + 1 represents the identity element, 1, 
of the algebra H ( M ) .  If M is connected, the map h I+ h * 1 provides 
a canonical isomorphism R -3 Ho(M).  

Example: If M consists of a single point, then 

Hp(M)  = 0 (p 3 1) and Ho(M)  = R. 

If the spaces H p ( M )  have finite dimension (it will be shown in 
sec. 5.15 and, independently, in sec. 5.22 that this is the case for a 
compact manifold), then the number 

b,  = dim H p ( M )  
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is called the pth Betti number of M ,  and the polynomial 
n 

p=o 
fh&) = c b l P  

is called the Poincarkpolynomial of M. The alternating sum 
n 

x,&f = c ( - - I )”b ,  = f d - l )  
P-0 

is called the Euler-Poincard characteristic of M .  

de Rham cohomology. 
Al: H(point) = R 
A2: 
A3: 
M a ,  then 

I t  is the purpose of this article to establish the following axioms for 

(homotopy axiom) If cp N #: M ---+ N, then q9+ = ##. 
(disjoint union) If M is the disjoint union of open submanifolds 

H ( M )  = n H(M,). 
LI 

A4: 
triangle 

(Mayer-Vietoris) If M = U u V ( U ,  V open) there is an exact 

H ( U n  V )  

5.2. Homotopy. Recall from sec. 1.10 that two smooth maps 
cp, +: M -+ N are homotopic if there is a smooth map H: R x M -+ N 
such that 

H(0, x) = ~ ( x )  and H(1 ,  x) = +(x). 

Given such a homotopy H, define a linear map 

h: A ( M )  + A ( N )  

homogeneous of degree - 1, by 

h = I ,’oi(T)oH*. 

( T  = (d/dt ,  0), and I: is defined in sec. 4.10.) h is called the homotopy 
operator induced from H. 
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Remark: Let @ E A ( N )  and assume 

(H-l(carr @)) n ([0, 11 x M )  C [0, 11 x C 

for some closed set C C M. Then 

carr(i(T)H*@) n ([0, 11 x M )  C [0, 11 x C 

and so 
carr h@ C C. 

Proposition I: The homotopy operator h satisfies 

+* - q ~ *  = hS + Sh. 

Proof: Let if:  M --t R x M denote inclusion opposite t. Apply 
Proposition IX, sec. 4.10, to obtain 

(j;" - j,*)H* = Sh + ha. 

Then observe that H o j l  = t,h and H o j o  = T. 
Q.E.D. 

Corollary: If cp u t,h: M + N, then 

qJ* = p: H ( M )  + H(N) .  

5.3. Disjoint unions. Let M be a manifold which is the disjoint 
union of open submanifolds Mu, 

M =  U M , .  
U 

The inclusion map i,: Mu --f M induces a homomorphism 

i:: A(M,) +- A(M) .  

Denoting the direct product of the algebras A(M,)  by nIu A(M,) we 
obtain a homomorphism 

i*: A ( M )  + n A(M,) 
0 

given by 
(i*@),, = i:@, @ E A ( M ) .  
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Clearly, i* is an isomorphism of graded differential algebras if 
nu A(&?,) is given the differential operator nu 6, (6, denotes the 
exterior derivative in A(M,)). Hence i* induces an isomorphism 

N - 
i#: H ( M )  2 n H(M,) 

U 

given by 
(W, = i," (71, Y E W M ) .  

5.4. Mayer-Vietoris sequence. Let M be a manifold and let U,  , U, 
be open subsets such that U,  u U ,  = M. Consider the inclusion maps 

j : ,  U, n U, -, U, , 
i,: U, + M ,  

They induce a sequence of linear mappings 
B 

j,: U, n U, --+ U, 

i2: U,  -+ M .  

o - A ( M )  A A(u,) o A(u,) - A(U, n u,) - o (5.1) 

given by 

and 
or@ = (iF@, iz@), @ E A ( M )  

/3(@,,@,) =j,*@,-j;@,, @fEA(Uf), i =  1,2. 

Denote the exterior derivatives in A(U,),  A(U,), A(U, n U,), and 
A ( M )  by a, ,  a,, a,, , and 6 respectively. Then 

01 0 6 = (8, @ 6,) 0 01 and /3 o (6, @ 6,) = a,, o /3 

and so a, f l  induce linear maps 

a+ : H ( M )  - H( Ud 0 H( U,), /3# : H( U,) 0 H( U,) + H( Ul n U,). 

Lemma I: 

Proof: 

The sequence (5.1) is exact. 

(1) f l  is surjectiwe: Let p, , p ,  be a partition of unity for M 
subordinate to the covering U ,  , U,  . Then 

carr iFp, , carr igp, C U, n U, . 
Now let @ E A( U ,  n U,). Define 

0, = i:p, * @ E A(U,), @, = is*pl @ E A(U,). 
Then 

@ = P(@l, -@J. 
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(2) ker ,!I = Im a: Clearly /3 o a = 0 so that ker ,!I 3 Im a. T o  prove 
equality, let (@, , 0,) E ker /I. Then, if x E U, n U, , @,(x) = @,(x). 
Thus a differential form 0 E A ( M )  is given by 

Clearly a@ = (@, , a,); thus Im a 3 ker /3. 
(3) 01 is injective: If a@ = 0 (some @ E A ( M ) ) ,  then @(x) = 0, for 

Q.E.D. 
X E  U1u u, = M .  

The short exact sequence (5.1) induces an exact triangle 

H(U1 n U2) 

where a is homogeneous of degree $1 (cf. sec. 0.7). In other words, 
we have a long exact sequence 

Is 

This sequence is called the Muyer-Vietoris sequence of the triple 
(M, U , ,  U,). a is called the connecting homomorphism: However, it is 
not an algebra homomorphism. If a E H (  U ,  n U,) is represented by X 
and !Pi E A( Ui) satisfy Y, - Y, (U,nU, = X, then aa is repre- 
sented by 52, where 52 I u i  = &!Pi. 

Now let N be a second manifold and let V,  , V,  C N be open sets 
such that N = V ,  u V,.  Let q ~ :  M -+ N be a smooth map which 
restricts to maps 

IJJ,: U,  -+ V, and 'pz: U, -+ V,  . 

-, H ~ M )  -Z HP(UJ 0 H P ( U ~ )  xc H*(u, n u,) % H P + ~ ( M )  -+ . 

Then q~ restricts to a map y,,: U ,  n U ,  -+ V,  n V,  . 
The commutative diagram 

o --, A ( M > X  A(UJ 0 A(u,) 2 A(U, n u,) - o 
o - A(N)  z A(v,) 0 A(v,) k A(V, n v,) - o P* f.p.; 1.: (5.2) 
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induces the commutative diagram 



$2. Examples 

5.5. Retracts. Let N be a retract of M with inclusion i and retrac- 
tion p (cf. Example 3, sec. 3.10). Since p 0 i = CN it follows that 

MN) 

Thus p* is injective, i* is surjective, and 

i* 0 p* = 

H ( M )  = Im p* @ ker i*. 

If in addition i 0 p :  M + M is homotopic to the identity map of M, 
then N is called a deformation retract of N .  In this case 

L H ( M )  p* o i* = 

and so p* and i* are inverse isomorphisms. 

Examples: 1. A manifold M is called contractible if it contains a 
point a E M as deformation retract (equivalently, the constant map 
y :  M --t a is homotopic to the identity). The homotopy connecting LM 

and y is called a contraction, or a contracting homotopy. 
If M is contractible, then 

P > O  
p = 0. 

Hp(M)  Hp(point) = ti, 
As a special case we have the 

Poincark lemma: If M is a star-shaped domain of a vector space, 

Let M be a manifold, and let N be a manifold contractible 

then H p ( M )  = 0 ( p > 0) and Ho(M)  = R. 

to a point b. Then 
2. 

TM: M x N -+ M ,  j , :  M -+ M x N .  

(nM the projection, j b  the inclusion opposite b) make M into a deformation 
retract of M x N. 

In  fact, nM 0 j b  = i M .  Moreover, if H is a contracting homotopy 
for N, then 

+(4 x, r) = (x, w, Y)),  t E R x E M ,  y E N 

183 
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defines a homotopy connecting L~~~ and j b  0 T ~ .  Hence 

T:: H ( M )  z H(M x N ) .  

3. Let 4 = (E, T,  B, F) be a vector bundle, and let 0: B -+ E be 
the zero cross-section. Then T 0 o = L ,  and so B is a retract of E. 
Moreover, the homotopy H: R x E -+ E given by H ( t ,  a) = 2% ( t  E R, 
a E E )  connects c E  and o 0 T .  Thus B is a deformation retract of E. 
In particular 

T # :  H(B)  -+ H ( E )  and o#: H ( E )  + H(B)  

are inverse isomorphisms. 

Assign a Riemannian metric to the bundle of Example 3. Let 
8 = (8, +, B, &') and SS = (E, , rs , B, S) be the deleted bundle and the 
associated sphere bundle (cf. sec. 3.10, Examples 5,  6). Recall that 
i: E, --+ 8, p: 8 --f Es (p(z) = x/l x I) make Es into a retract of 8. 

On the other hand, a homotopy H: R x 8 -+ 8 connecting i 0 p and 
cg is given by 

4. 

Thus Es is a deformation retract of 8; in particular 

p#: H(E,) + H ( 2 )  and i#: H(&) + H(E,) 

are inverse isomorphisms. 

5. Consider the special case of Example 4 in which 

E = F, B = (point). 

In this case Example 4 states that the unit sphere, S, of F is a deformation 
retract of &' = F - {0}, and so H ( S )  H(&'). 

6. Let a E S" (n  2 1) be a fixed point. Then 

sn-1 = {x E S" I (a,  x) = 0) 

is the unit sphere of the Euclidean space F = a1 C E. Let U C Sn be 
the open set given by 

U = {x E S" I --f < (a, x) < E} 

for some fixed Q with 0 < E < 1. Then Sn-l is a deformation retract 
of u. 
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In fact, let i: Sn-l + U be the inclusion map, and define 

p:  u+ sn-1 

by 
x - (x, a)a , X E U  

p(x)  = 1 x - (x, a)a I 

(observe that x - (x, a)a # 0, for x E V ) .  Clearly p 0 i = c. 
Finally, define H: R x U + U by 

x - t(x, a)a 
I x - t(x, a)a I ' H(t ,  x) = X E  u, t E R .  

Then H connects i o  p and the identity map of U. 
7. Let q,#: M +  Sn (n >, 1) be smooth maps such that 

~ ( x )  # -#(x), for x E M .  Then q - # (cf. Example 3, sec. 1.10). Thus 
tp = p. 

5.6. The cohomology of S". As an application of the Mayer- 
Vietoris sequence we shall determine the cohomology of Sn. 

Proposition II: H(Sn) (n >, 1) is given by 

HO(S") g H"(S") R 

and 
H q S n )  = 0 (1 G p  G n - 1). 

Proof: Consider Sn as embedded in an (n + 1)-dimensional 
Euclidean space E. Since Sn is connected, Ho(Sn) = R. Now let a E Sn 
and fix E E (0, 1). Define open sets U,  V C Sn by 

u = {x E S" 1 (x, a)  > -€}, V = {x G S" I (x, a)  < €}. 

Then Sn = U u V ,  and so there is a long exact Mayer-Vietoris sequence 

... + Hp(Sn) -+ H q U )  @ H y V )  -+ Hp(U n V )  -+ H p + l ( S n )  + . 
Next observe that U and Vare contractible, while U n V contains 

Sn-l as a deformation retract (Example 6, sec. 5.5). Thus we may 
rewrite the Mayer-Vietoris sequence as the exact sequence 

-+ Hp(S*) + Hp(point) @ HP(point) -+ Hp((Sn-1) -+ H*l(Sn) -+ ... . 
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Hence it splits into the exact sequences 

0 -+ HO(S") -+ Ho(point) @ Ho(point) ---f HO(Sn-') -+ H1(Sn) -+ 0 

and 
0 __f H*(S"-1) 5 HP+'(S") - 0, p 2 1.  

From the first of these we obtain 

0 = dim H1(S") - dim HO(Sn-l) + 2 dim Ho(point) - dim Ho(Sn). 

Since Sn-' is connected if n 3 2, while So consists of two points, 
this equation yields 

R, n = l  
, n > l .  H'(S") lo 

Finally, the second of the exact sequences shows that HP(S") E 

Q.E.D. 
HI( Sn-P+l ) (1 < p < n) and the proposition follows. 

Corollary I: The  algebra H(Sn)  is the exterior algebra over the 
one-dimensional graded space Hn( S"). 

Corollary 11: The PoincarC polynomial of Sn is given by 

f ( t )  = 1 + t" (n 2 1). 

The Euler-Poincart characteristic of Sn is given by 

n odd 
x s n  = 1;; n even. 

Remark: Consider Sn as a submanifold of Euclidean space E. Orient 
Sn by the n-form SZ given by Q(x; h, , ..., h,) = d(x, h, , ..., h,), where 
d is a determinant function in E. Then 

Hence Proposition XIV, sec. 4.13, shows that SZ is not exact; i.e., it 
represents a nontrivial element a E Hn(Sn). 

Since Hn(Sn)  R, a is a basis of Hn(Sn). 

5.7. Free involutions. Let w be an involution of a manifold M 
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(w2 = I )  without fixed points. Assume n: M --t N is a surjective local 
diffeomorphism with 

&(x) = {z, w(z)} ,  x E N .  

Recall from Example 4, sec. 3.20, that 

A ( W  = A+(W 0 A-(M) ,  

whereA+(M) = {@ I w*@ = @}andA-(M) = {@ 1 w*@ = -@}. More- 
over, n* may be considered as an isomorphism A ( N )  3 A+(M).  

Since w*6 = 6w*,  it follows from the definitions that A+(M) ,  A J M )  
are stable under 6. Hence 

H ( M )  = H(A+(M),  8) 0 H(A-(M),  8) = H + ( M )  0 H-(M) ,  
where 

H+(M)  = {a I d ( a )  = a} and H - ( M )  = {a  1 &(a) = -a}. 

Moreover, n# may be considered as an isomorphism H ( N )  -% H + ( M ) .  

Example: The cohomology of RP" (n 2 1) is given by 

Ho(RPn) = R, HP(RPn) = 0, 1 < p < n 
and 

In fact, applying the discussion above to the projection n: S" -+ RP" 
and the involution w :  z I+ -z of S", we find that 

H ( R P )  = H+(S"). 
It follows that 

Ho(RPn) = R and H*(RPn) = 0 (1  < p < n). 

Finally the positive n-form 52 E A"(Sn) of Example 3, sec. 3.21, 
satisfies w*Q = (-1)"+'52. By the remark at the end of sec. 5.6, 52 
represents a basis of Hn(Sn) .  Thus 

and so 

H " ( R P )  = H?(S") = 

n even 
n odd 

n even I;, n odd. 
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5.8. Germs of forms. Let M be a manifold and let b E M .  Consider 
the set $b of differential forms Q, which are zero in some neighbourhood 
of b (possibly dependent on @). Then @ B #b if and only if b 4 carr 0. 
Proposition IV, sec. 4.5, shows that #b is a graded ideal in A ( M )  stable 
under 6. 

Denote the factor algebra A(M)/$b by Ab(M). 6 induces an operator 
6, in Ab(M) which makes Ab(M) into a graded differential algebra. 
A,(M) is called the algebra of germs of forms at b. 

Proposition 111: Let M be any manifold. Then 

Ho(&,(M), 6,) = R and H*(&(M), 6,) = 0, p > 0. 

Proof: Let 7r: A ( M )  + &(M) be the projection. Assume first that 
6bnf = 0, for some f E Y ( M )  = Ao(M).  Then 7rSf = 6bn-f = 0 and 
hence 6f is zero in some neighbourhood of 6 .  

It follows (cf. Proposition XI, sec. 3.17) that f is constant in some 
neighbourhood of b, whence, for some X E R, 7rf = 7rX. 

Thus 
Ho(Ab(M)) = Zo(Ab(M)) = n(R * 1) = R. 

Now let 7r@ E Ap(M) ( p 2, 1) satisfy 6bV@ = 0. Then the restriction 
of @ to some neighbourhood U of b is closed. Choose a contractible 
neighbourhood V of b such that V C U. Then according to Example I ,  
sec. 5.5,  there is a ( p - 1)-form Y E  Ap--l(  V) such that (6Y')(x) = @(x) 

Choose Q E A ~ - ~ ( M )  so that f2 equals Y in some neighbourhood 
( X E  V) .  

of b. Then 
6,VQ = w652 = T# 

and hence Hp(Ab(M))  = 0, p >, 1. 
Q.E.D. 

Corollary: Let ~ E H P ( M )  ( p  3 1). Then there is a representing 
cocycle @ such that @ is zero in a neighbourhood of b. 

Proof: Let be any cocycle representing a. Then 

?r@l = 6 b v y  = ?dY, 

for some !P E Ap-l(M). Set @ = - 8Y, 
Q.E.D. 
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5.9. Let M be a manifold. Recall (sec. 4.5) that A,(M) C A ( M )  is 
the graded ideal of forms with compact carrier. I t  is stable under i ( X ) ,  
O(X) (X E ?&(M)) and 6.  

Definition: The graded algebra (possibly without unit) H(A,(M), 6 )  
is called the cohomology of M with compact supports, and is denoted by 
HC(M), 

n 

P-0 

H,(M) = H f ( M ) ,  n = dim M. 

Since A,(M) is an ideal, multiplication in A(M) restricts to a real 
bilinear map A ( M )  x A,(M) --+ A,(M) which makes A,(M) into a left 
graded A(M)-module. This map induces a bilinear map 

H ( M )  x &(M) + Hc(M) 
written 

(a, 8) - a * 8, a E H ( W ,  8 E W M ) ,  

which makes H,(M) into a left graded H(M)-module. Similarly, H,(M) 
is made into a right graded H(M)-module, and we write * a, ,9 E H,(M),  

The inclusion map y M :  A,(M) --+ A ( M )  induces an algebra homomor- 
a E H(M) .  

phism 
(Yhf)#: H C ( W  + H ( M h  

which converts the module structures above to ordinary multiplication. 

Example: 

In fact, 

Let M be a manifold with no compact component. Then 
H:(M) = 0. In particular H:(Rn) = 0. 

H,O(M) = {f€ Y C ( M )  I Sf = 0). 

But Sf = 0 if and only if f is constant on each component of M. 
Moreover, iff has compact support, and is constant on each component, 
it can be different from zero only on compact components. Thus, if M 
has no compact components, f = 0; i.e., H:(M) = 0. 

189 
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Remark: If M is compact, A,(M) = A(M) ,  Hc(M) = H ( M ) .  

A smooth map v: M ---f N is called proper if the inverse image under y 
of every compact subset of N is compact. For any CP E A ( N ) ,  

carr v*@ C ql(carr 0). 

Thus if cp is proper, rp* restricts to a homomorphism of graded differential 
algebras 9):: A6(N) + A,(M) which in turn induces a homomorphism 

6 : H C ( W  - Hc(N) .  

In  particular, a diffeomorphism v: M -% N induces isomorphisms, 

Next, let v: M + N be a diffeomorphism onto an open subset U 
d, 9):. 

of N .  If CP E A c ( M ) ,  we can form 

(v-% @ E AC(W 

We extend this to a differential form (y,)*@ E A,(N) by setting 

(vC)* @(x) = 0, x $ carr(v-l)f@. 

(Since carr(v-l):CP is compact, it is closed in N ) .  
In  this way we obtain a homomorphism 

(vc)*: A c ( M )  + A m  

which commutes with 6 .  Thus it induces a homomorphism 

( vc )u :  ffC(M) -+ ffc" 

5.10. Axioms for H,(M).  In  this section we establish axioms for 
cohomology with compact supports, analogous to those given at the 
end of sec. 5.1. 

Proposition IV: The cohomology of Rn with compact supports is 
given by 

Proof: If n = 0, the proposition is trivial. For n > 0 consider Sn 
as the one-point compactification of Rn (cf. Example 10, sec. 1.5) and 
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let b E Sn be the compactifying point; i.e. Sn - {b} = Rn. Recall from 
sec. 5.8 the short exact sequence 

0 + . Y b  + A(S") + A*(S") + 0, 

where 3 b  denotes the ideal of differential forms on Sn which are zero 
in a neighbourhood of b. Clearly then, 3 b  = A,(Rn). 

The short exact sequence above gives rise to a long exact sequence 
in cohomology. Since (sec. 5.8) H(Ab(Sn)) = H(point), this sequence 
splits into exact sequences 

0 + H,(R") + HO(S") --f R --f Hi(R") -+ Hl(S") -+ 0 

0 - HF(R") - HP(S") 0, p >, 2. 

and 
N - 

Since H @ P )  = 0 (Example of sec. 5.9), while Ho(Sn) = R, the 
first sequence gives the exact sequence 

N - 
0 + HE(R") -=+ H'(S") - 0. 

In  view of the second sequence the proposition follows from Proposi- 
tion 11, sec. 5.6. 

Q.E.D. 
Next a homotopy axiom is established. Let H: R x M -+ N be a 

homotopy connecting smooth maps y, $: M -+ N. H will be called a 
proper homotopy if, for all compact sets K C N, H-l(K) n ([0, 11 x M) 
is compact (equivalently, the restriction of H to [0, 11 x M is a proper 
map). If H is a proper homotopy y and $ are proper maps, because 
they are the restrictions of H to 0 x M and 1 x M. 

Proposition V: Assume v, $: M -+ N are connected by a proper 
homotopy H: R x M --t N. Then the induced homotopy operator h 
restricts to a linear map 

and 
hc: Ac(N)  + Ac(M)  

$$ - cpt = hc6 + 6 h c .  

In  particular $: = v:. 

Proof: Apply the remark of sec. 5.2, together with Proposition I 

Q.E.D. 
of that section. 
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Next suppose M = (J, Ma is the disjoint union of open submanifolds 
Mu. The inclusion maps i u :  M, M induce homomorphisms 

Moreover, the linear map 

is an isomorphism of graded differential algebras. Here @,A,(M,) is 
given the differential operator 0, 6, (6, denotes the exterior derivative 
in Mu). Observe that this is the direct sum; in sec. 5.3 we used the 
direct product. 

It follows that i, induces an isomorphism 
N - 

i#: 0, Hc(M,) _C Hc(M), 

given by 

Finally, suppose M = U,  U US ( U ,  open). Let 

y: Ula + U , ,  iv: U v +  M ,  v = 1,2 

denote the inclusion maps. Define a sequence 

of linear maps by 

(This should be contrasted with the situation of sec. 5.4.) 
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An argument similar to that of sec. 5.4 shows that this sequence is 
short exact. The induced exact triangle of cohomology reads 

( P o ) ,  
Hc( Ul,) - Hc( 4) 0 Hc( U,) 

where 8, is the connecting homomorphism, homogeneous of degree + 1. 
The corresponding long exact sequence 

' * * + H:( U12) + H:( U,) @ H:( U,) + H t ( M )  .-% H:+y U12) + - * 

is called the Muy-Vie tor i s  sequence for the triple ( M ,  U , ,  U,) with 
respect to compact curriers. If a E H,(M) is represented by @ and 
Yt E Ac( U,) satisfy Y, + Y, = @, then aca is represented by SY, = 4Y2. 

If N = V ,  u V, is a second manifold and rp: M --+ N restricts to 
proper maps rpy: U, + V ,  (rp is then proper), then the following diagrams 
commute: 
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5.11. Definition. Let M be an oriented n-manifold. Recall (Proposi- 
tion XIV, sec. 4.13) that the surjective linear map 

j,: A,"(M) 3 R 

satisfies j M  0 6 = 0. It follows that it induces a surjective linear map 

Definition: The  Poincark scalar product 

9; : HP(M) x H,n-p(M) -+ R 

is the bilinear map given by 

9 E ( a ,  p)  = jl a * p,  a E HP(M), p E H,n-=(M) 

(cf. sec. 5.9). 
Evidently, 

G(1, B)  = I* B, B E H,"(M) 
M 

and 
%i+q(a - y,  B)  = P i ( %  y * P), (5.6) 

a E HP(M), y E H*(M), /3 E H,"-P-*(M). 

Finally, combine the 9% into a single bilinear map 

8,: H ( M )  x H,(k?) --f 

by setting 
9',(HP(M), H z ( M ) )  = 0, p + 4 # n* 

Now denote by H:(M)* the space L(H:(M);  R) of linear functions 
in HE(M). Then H,(M)* = xp H:(M)* is the space of linear functions 
in H,(M).  The PoincarC scalar products determine linear maps 

D$ : H P ( M )  + H,"-'(M)* 

194 
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by the equation 

(Dza, p )  = P$(a, /I), a E Hp(M), p E HF-”(M), 

Combining these maps yields a linear map 

DM: H ( M )  + Hc(M)*. 

(It will be shown in sec. 5.12 that DM is a Linear isomorphism.) 

Example: The linear function JL E H t ( M ) *  is given by 

Now consider an orientation preserving diffeomorphism q: M --t N 
of A4 onto an open subset of an oriented n-manifold N. q induces 
homomorphisms 

q~*: H ( M )  + H ( N )  and (qc)#: Hc(M) ---f Hc(N). 

Let (pJ: denote the linear map dual to (qc )# .  

Proposition VI: The diagram 

commutes. 

Proof: Let 01 E HP(N),  f l  E HzPP(M)  be represented by @ E AP(N), 
Y E  AZ-P(M). Then (qo)#fl E HE-P(N) is represented by (qc)*Y, and 

v*(@ A (vc)*y)  = v*@ A y. 

Hence Proposition XII, sec. 4.13, can be applied to give 

I* (Tea) * = I v*@ A !f‘ = @ A (cpc)*y = s# a * (%)& 
M M N N 

Thus 
B) = K@, (PC)#P) 

and the proposition follows. 
Q.E.D. 
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Next, suppose M = U u V (U,  V open). Recall, from secs. 5.4 and 
5.10, the Mayer-Vietoris sequences 

a a .-- - Hp(M) - HP( V )  @ H P (  V )  - HP( U n V )  - H*l(M) - ..- 
and 

Dualizing the second sequence and replacing a by (- l )P+la  we obtain 
the row-exact diagram 

Proposition VII: The diagram (5.7) commutes. 

Proof: I t  is immediate from Proposition VI that squares (iJ and @ 
commute. T o  show that @ commutes, let 

(Y E Hp(U n V) and p E H;-’-’(M) 

be cohomology classes, and let @ E AP( U n V), Y E  A:-+’(M) be 
representing cocycles. We must prove that 

9 & + 1 ( ( - 1 ) P + l  aa, p)  = 9 & ( ( Y ,  a&). 

Then aor is represented by SZ, where 

LI I u  = and l2 I v  = 

Next, choose Yl E A:+-’( U) ,  Y2 E V )  so that 

Y = Y 1 + Y 2 .  

Then SYl = -SY2 E A:-p(  U n V) and ac/3 is represented by SY, . 
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It follows that 

.PL+l((-l)P+l aa, /3) 

But Ql A Y1 E A:-'( U), Q2 A Y2 E A:-'( V ) .  Thus by Proposition XIV, 
sec. 4.13, 

/ U V 
A yl) = 0 = / 8(aZ A yz). 

Hence 

9L+1((-1)p+1 &, 8) = / a1 A 8 y l  + aZ A 8y2 
U V 

and so @) commutes. 
Q.E.D. 

5.12. The main theorem. Theorem I: Let M be an oriented 
n-manifold. Then 

D M M :  H ( M )  + Hc(M)* 

is a linear isomorphism. 

Definition: D M  will be called the Poincart isomorphism. 

Before proving the theorem we establish three lemmas. Let 0 be an 
i-basis for the topology of M. Denote by 0, the open sets of M which 
can be expressed as finite unions of elements in 0. Denote by 0, the 
open subsets of M which can be expressed as (at most countable) disjoint 
unions of elements of 0. Then 0, and 0, are i-bases for the topology of M 
(cf. sec. 0.11 and sec. 1.1). 

Lemma 11: Let 0 be an i-basis for the topology of M .  Assume Do 
is an isomorphism for every 0 €0. Then Do is an isomorphism for 
every 0 E 0, . 
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Proof: If 0 E 0, , we can write 

o = o l u ~ * * u o , ,  0 , E O .  

Set U = 0, , V = 0, u * - .  u 0,. Then 

U n V = (0, n 0,) u ..- u (0, n Om). 

Since 0 is an i-basis each 0, n 0, E 8. Thus we may assume by induc- 
tion on m that D ,  , Dv , and Dun" are all isomorphisms. 

Now apply the five-lemma to the commutative diagram of Proposi- 
tion VII, sec. 5.1 1, to obtain that Do is an isomorphism. 

Q.E.D. 

Lemma 111: Let 0 be a basis for the topology of M. Assume that 
Do is an isomorphism for every OEO. Then Do is an isomorphism 
for every 0 E 0,. 

Proof: An element 0 E 0, can be written 
m 

o =  uo, ,  O i E O  
i=l 

where the 0, are disjoint. Now recall (cf. secs. 5.3 and 5.10) the canonical 
isomorphisms 

N - 
H(O) J fi H(Oi) 

i-1 

and 
N - 

H 4 0 )  @L, HC(0i). 

The latter dualizes to yield an isomorphism 
m 

Y 

H,(O)* -=+ n HC(Oi)*. 
1-1 

Denote the linear isomorphisms Do, by D, . An elementary computa- 
tion shows that the diagram 

commutes. It follows that Do is an isomorphism. 
Q.E.D. 
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Lemma IV: Let 0 be an i-basis for the topology of M. Assume Do 
is an isomorphism for every OEO. Then Do is an isomorphism for 
every open subset 0 C M. 

Proof: According to Proposition 11, sec. 1.1, the basis ((Of)& 

Q.E.D. 
contains all the open sets of M. Now apply Lemmas I1 and 111. 

Proof of Theorem I: We come to the actual proof of Theorem I, 

Case I: M = Rn. Since (cf. Example 1, sec. 5.5, and Proposi- 

and proceed in three stages: 

tion IV, sec. 5.10) 

R, p = o  R, p = n  
P Z O  9 p + n ,  

and Ht(R")  = lo 
we need only show that 

D:  Ho(Rn) -+ H;(R")* 

is a linear isomorphism. Moreover, since 

dimHo(IWn) = 1 = dimHg(Rn)*, 

it is sufficient to show that D # 0. 
Let d be a positive determinant function in R,, and let f E .Ul,(Rn) 

be a nonnegative function which is not identically zero. Then, for a 
suitable basis of R,, 

J" f a d = /  f ( x ) d x l * * . d x n > O .  

Thus, in view of Proposition XIV, sec. 4.13, f - d represents an element 
/I # . O  in H:(R"). 

W" W" 

But it follows immediately from the definitions that 

(D(l),B> = J" 1 A (f.4 = SW"f * A  f 0. 
6P 

Hence D(1) # 0, and so D # 0. 

If x E R", write x = 
Case 11: M is an open subset of Rn. Let el , ..., e, be a basis of R". 

xie, . Then the open subsets of the form 

0 = {x E R" I ai < xi < b', i = 1 ,  ..., n} 
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are an i-basis for the topology of R". Each such 0 is diffeomorphic to R". 
Thus Proposition VI, sec. 5.11, together with Case I imply that Do 
is an isomorphism for each such 0. Now it follows from Lemma I V  
above that D ,  is an isomorphism for every open set M C R". 

Let 0 be the collection of open subsets 
of M which are diffeomorphic to open subsets of Rn. Clearly 0 is an 
i-basis for the topology of M. In view of Proposition VI, sec. 5.1 1, and 
Case 11 above, Do is an isomorphism for every O E  0. Thus 
Lemma IV above implies that DLI is an isomorphism for every open 
subset U C M. In particular, D ,  is an isomorphism, 

Case 111.- M atbitraty. 

Y - 
D M :  H ( M )  2 Hc(M)*. 

Q.E.D. 

Corollary I: The bilinear maps 8, , 85  are nondegenerate 
(i.e., scalar products in the sense of linear algebra). 

Corollary 11: Let M be an oriented manifold, and let j :  U -+ M 
be the inclusion of an open subset. Then 

j": H ( U )  + H ( M )  

is an isomorphism if and only if 

(ic)*: Hc(U)  --+ H C P )  

is an isomorphism. 

Proof: Apply Proposition VI, sec. 5.11 and Theorem I. 
Q.E.D. 
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5.13. Orientation class. Theorem 11: Let M be a connected 
oriented n-manifold. Then 

is a linear isomorphism. Moreover, 

Proof: The second statement is an immediate consequence of the 
first. To  prove the first observe that Theorem 1, sec. 5.12, gives 

dim X ( M )  = dim Ho(M)  = 1 

(since M is connected). Since JL is surjective (cf. sec. 5.1 l), it must be an 
isomorphism. 

Q.E.D. 

Definition: The unique cohomology class uM E H r ( M )  which 
satisfies 

/* W M  = 1 
M 

is called the orientation class for M. 

Remark: If M is compact s#M is an isomorphism from Hn(M),  and 
E H y M ) .  

5.14. Nonorientable manifolds. Let M be a connected non- 
orientable n-manifold, and let T: i@ + M be the induced double cover 
(cf. Example 9, sec. 3.21). Thus i@ is a connected orientable manifold. 
Let T :  i@ --t i@ be the covering transformation. 

Lemma V: T is orientation reversing. 
201 
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Proof: Suppose A E Am(&?) orients l@. Then T*A = f * A where 
either f > 0 or f < 0 (because l@ is connected). Iff  > 0, the n-form 

Q = A + ~ * d = ( l + f ) * d  

would have no zeros. 
On the other hand T*SZ = SZ; hence by Example 4, sec. 3.20, 

SZ = T*@ for some @ E A ~ ( M ) .  If SZ has no zeros, neither does Qi, 
thus @ would orient M. It follows that f -=c 0; i.e. T reverses orientations. 

Q.E.D. 

Next, write (in analogy with Example 4, sec. 3.20) 

&(a) = ( - 4 c ) + ( f i )  0 (&-(fi), 

where @ E (Ac)+(&f) (resp. (Ac)-(l@)) if T*@ = @ (resp. T*@ = -@). 
This leads to the decomposition 

H c ( f i )  = (Hc)+(f i )  0 (Hc)- ( f i ) ,  

where a ~ ( H , ) + ( & f )  (resp. (Hc)-(l@)) if 7201 = a (resp. ~ z 0 1  = -a). 
Thus 

(Hc)+(f i )  = H((&)+(fi) ,  9 

&(M) 2 (&)+(A), 

( H c ) - ( f i )  = ~((&)-(m, 6). 

H C ( W  -=+ (Hc)+(f i ) .  

T: ,  T;  can be considered as isomorphisms 
N N - 

Lemma VI: HE(&?) = ( H E ) - ( @ ) ;  (Hz)+(l@) = 0. 

Proof: Since $2 is connected and orientable, dim H F ( n )  = 1 (by 
Theorem 11, sec. 5.13). Since 

H,n(W = ( H : ) + ( m  0 (fC)-(fi) 
it is sufficient to prove that (HE)-(l@) # 0. 

Orient l@ and let SZ E A:(@) be positive. Since T reverses orientations, 

4j = sz - r*sz 

is again positive. Hence JG @ > 0; i.e. @ represents a nontrivial 
cohomology class 01 E H:(l@). But T*@ = -@; thus 

and so 
a E (H,n)-(fl) 

(H,n)-(fi) # 0. 
Q.E.D. 
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Corollary: H t ( M )  = 0. 

Proof: Recall H,!!(M) g (HE")+(&?). 
Q.E.D. 

Proposition VIII: If M is a nonorientable connected n-manifold 
with double cover A?, then 

(1) %2(H+(R), (HrP)+(m)  = 0 

q H ! ( R ) ,  (H,n-")-(R)) = 0 
and 

(2) DG restricts to linear isomorphisms 
- - 

H+(N) 5 (Hc) - (R)* ,  H - ( R )  2 (Hc)+(R)*.  

Proof: If OL E HT(M),  /I E ( H t - p ) + ( A ? ) ,  then 

OL * /3 E (H,")+(A) = 0 

(cf. Lemma VI, above). Hence .P$((Y, j?) = 0 and the first relation 
of (1) is proved. The second equation in (1) follows in the same way. 
Finally, (2) is an immediate consequence of (1) and some elementary 
linear algebra. 

Q.E.D. 

Corollary I: Precomposing D ,  with T# yields a linear isomorphism 

Corollary 11: Composing Dfi with (T:)* yields a linear isomorphism 
- - 

K(R) __ H,(M)*. 

5.15. Compact manifolds. Let M be a compact oriented n-manifold. 
Then H,(M) = H ( M )  and so the PoincarC scalar products are bilinear 
maps, 

9; : HP(M) x H y M )  + R 

while the PoincarC isomorphism is a linear map 

D,: H ( M )  5 H(M)*.  
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Formula (5.6), sec, 5.1 1, becomes 

The duality theorem has the following further corollaries. 

Corollary 111: 
some /3 E H"-p(M), 

If ar E Hp(M), a! # 0 (M compact oriented), then for 

a * P = U M .  

Proof: Choose f l  so that $%(a!, /3) = 1. 
Q.E.D. 

Corollary IV: Suppose cp: Q 3 M is smooth (M compact oriented). 
Assume cp#w,,., # 0. Then I$+ is injective. 

Proof: ker cp# is an ideal in H ( M )  not containing wM . Corollary I11 
implies that every nonzero ideal in H ( M )  contains w M  . Hence ker cp* = 0. 

Q.E.D. 

Theorem 111: Let M be any compact manifold. Then 

dim H ( M )  < 00. 
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Proof: Assume first that M is orientable. In view of the duality 
theorem, formula (5.8) above shows that 9% induces two linear 
isomorphisms; namely 

HP(M) A H"-p(M)* and H"-p(M) 5 Hp(M)*.  

It follows now from elementary linear algebra that each Hp(M)  has 
finite dimension; hence the theorem, in this case. 

If M is nonorientable the double cover fi is orientable (and compact). 
In this case we have (cf. sec. 5.7) 

dim H ( M )  = dim El+(*) < dim H(*) < co. 
Q.E.D. 

Corollary: If M is compact then the Betti numbers bp = dim H p ( M )  
are defined. If, in addition, M is orientable, then 

b p  = bn-p  1 O < p < n .  

Proposition IX: 
and orientable, then 

Otherwise, 

Let M be a connected n-manifold. If M is compact 

H " ( M ) z  R. 

H " ( M )  = 0. 

Proof: Suppose first that M is compact. If M is orientable, 
Theorem I1 of sec. 5.13 implies H"(M) E R. If M is nonorientable, 
the Corollary to Lemma VI, sec. 5.14, gives H"(M) = 0. 

Next assume M is not compact. If M is orientable, the duality theorem 
gives 

H"(M) gz H:(M)* = 0 

(use the example of sec. 5.9). If M is nonorientable the double cover 
il? is connected, orientable, and noncompact. Hence 

H"(M) H,"(B)  c H"(*) = 0. 
Q.E.D. 

Let M be a compact n- 
manifold. Recall from sec. 5.1 that the Euler characteristic x M  is defined 

5.16. Euler characteristic and signature. 

by 
n 

XM = ( - l ) p b ,  
p=o 

where bp is the pth Betti number of M. 
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Next, consider a compact oriented 2m-manifold M. According to 
formula (5.8), sec. 5.15, the nondegenerate scalar product 

9;: H"(M) x Hm(M)+ R 

is skew-symmetric if m is odd and symmetric if m is even. 

product, 
Recall (sec. 0.1) the definition of the signature of a symmetric scalar 

Definition: If M is a compact oriented manifold of dimension 4k 
then the signature of the scalar product 9% is called the signature of M. 
It will be denoted by Sig(M). 

Theorem IV: 

(1) If n is odd, then x M  = 0. 
(2) If n = 2m, m odd, then xM = b, = 0 (mod 2). 
(3) If n = 2m = 4K, then Sig(M) 3 b, = xM (mod 2). 
(4) If n = 4k and Sig(M) # 0, then M is irreversible. 

Let M be a compact oriented n-manifold. 

Proof: The corollary to Theorem 111, sec. 5.15, yields 

XM = C ( - l ) 9 b p  = C ( - l ) p b , - P  = ( - l )"C( - l )" -"b , -P  = ( - l )"X, .  
P P 9 

This implies that xw = 0 if n is odd and so (1) is proved. 

to Theorem 111) 
Now assume that n = 2m. Then we have (again via the corollary 

m-1 

9=0 

XM = 2 1 (-lIP b,  + ( -1 ) "bm 9 

whence xM = b, (mod 2). Since FM is skew and nondegenerate 
if m is odd, b, 3 0 (mod 2), in this case. 

Next, assume that n = 2m = 4k. It is evident that 

b, = Sig(M) (mod 2) 

and (3) follows. 
Finally, assume that n = 2m = 4k and let ip: M -+ M be an orienta- 

tion-reversing diffeomorphism. We must show that PM has zero 
signature. Proposition XII, sec. 4.13, shows that 

I p*@ = - @, @ E  A"(M). 
M M 
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Hence it follows from Theorem 11, sec. 5.13, that 

si#y = -y, y E Hn(M). 

Now, for a, /3 E Hm(M),  we have 

Thus part (4) of the theorem follows from Lemma VII below: 

Lemma VII: Let E be a finite-dimensional real vector space with 
a symmetric scalar product ( , ). Assume cp: E -P E is a linear map 
such that 

(PW, d Y ) >  = -(& Y>, *, Y E E. 

Then ( , ) has zero signature. 

Proof: Let F be a subspace of maximum dimension, s, such that 
the restriction of ( , ) to F is positive definite. Then the relation 

(9(4, 9(4> = 4% x> 

shows that the restriction of ( , ) to v (F)  is negative definite. Moreover, 
v(F)  is a subspace of maximum dimension with this property. Finally, 
our hypothesis implies that is injective. Hence 

dim F = dim p(F) 

and so the signature of ( , ) is zero. 
Q.E.D. 
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5.17. Kunneth homomorphisms. Recall that the tensor product of 
two graded differential (W-algebras (E, 6,) and (F, 6,) is the graded 
algebra E @ F (anticommutative tensor product) together with the 
differential operator B E @ ,  given by 

6 q , ~ ( a  @ b)  = 6,(U) @ b + (-l)PU @ 6,(b), a E E', b EF. 

If a, b are cocycles representing a E H(E) ,  p E H(F) ,  then the cohomology 
class y E H(E Q F) represented by a Q b depends only on 01 and p. 
Thus a Q p w y defines a linear map H ( E )  @ H(F)  -+ H(E @ F). 

Moreover (cf. [6, pp. 54-60]) this linear map is an isomorphism of grad- 
ed algebras. Henceforth we shall identify H ( E )  @ H(F)  with H ( E  @ F) 
under this isomorphism. 

Now let M and N be manifolds. The  linear map 

K :  A ( M )  @ A ( N )  -+ A(M x N )  

defined by 

(cf. Example 2, sec. 3.20) is a homomorphism of graded differential 
algebras. Thus it induces a homomorphism 

K(@ 0 Y) = @ x Y 

K # :  H ( M )  @ H ( N )  + H(M x N )  

called the Kunneth homomorphism : 

K d . 0  B )  = (Q#4 ' (%#B), 01 E W M ) ,  B E W N ) .  

Suppose v: M --+ Ml and $: N + Nl are smooth maps. Then the 
diagram 

H ( M )  @ H ( N )  a H(M x N )  

H(M1) 0 H(N1) - H(M1 x Nl) 

pa** ](PX*)* 

K# 

In  sec. 5.20 it will be shown that K #  is an isomorphism whenever 
commutes. 

dim H ( M )  < 00 or dim H ( N )  < 00. 

208 
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Examples: 1. The multiplication map: If M is a manifold, the 
multiplication map is the homomorphism of graded differential algebras 

p: A ( M )  0 A ( M )  + A ( M )  

given by 
p(@ 0 Y )  = @ A !f? 

On the other hand, the diagonal map A:  M -+ M x M is the smooth 
map defined by 

A(x) = (x, x), x E M .  

Let rL: M x M -+ M be projection on the left factor. Since  IT^ 0 A = &M ? 

we have 
L l * K ( @  0 1) = Ll*7T@ = @ = p(@ 0 l), @ E A(M) .  

Similarly, 
d * K ( 1  @ y ) = Y = p ( l  By), y E A ( M ) .  

Now A*, K ,  and p are algebra homomorphisms, and A ( M )  @ 1, 
1 @ A ( M )  generate A ( M )  @ A ( M ) .  Thus these relations imply that 
the diagram 

> A ( M X M )  

A ( M )  
commutes. 

Passing to cohomology gives the commutative diagram 

H ( M )  0 H ( W  K* * H ( M x M )  

H ( W  
Thus 

a - p = d * K * ( a  0 p),  a, p E H ( M ) .  

2 .  Fibre projection: Let M and N be manifolds such that M is 
connected. Fix a E M. The inclusion map opposite a, j a :  N -+ M x N, 
induces a homomorphism 

j:: H ( N )  +- H(M x N ) .  
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If b E M is a second point, there is a smooth path f: R --+ M such 
that f ( 0 )  = a and f(1) = b (cf. sec. 1.11). f is a homotopy between 
ja and j b  ; thus 

j :  = j:. 

The homomorphism jz, which is independent of a,  is called the jibre 
projection. 

On the other hand, since M is connected, we have (cf. sec. 5.1) 
H ( M )  = R @ H + ( M )  ( H + ( M )  = Hp(M)) .  Hence a homomorphism 
p N :  H ( M )  @ H(N)  --+ H ( N )  is defined by 

A trivial argument shows that the diagram 

H ( M )  @ H ( N )  KX H(M x N )  

\ J 
commutes. 

5.18. The homomorphism (tee)#, Let M and N be manifolds. K 

restricts to a homomorphism 

and K~ induces a homomorphism 

(K,) ,  is called the compact Kunneth homomorphism. 
The homomorphisms K# and (K& are related as follows, via 

PoincarC duality. Let .E denote the linear isomorphism of H ( M )  @ H ( N )  
given by 

€(a @ p)  = ( - l ) ( f f l - -P)P 01 @ p, 01 E HP(M), 8 E H*(N)  

(m = dimM). 
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Proposition X: Suppose M, N are oriented manifolds and give 
M x N the product orientation. Then the diagram 

Hc(M x N)* 

commutes, where i is the standard inclusion map. 

Proof: Fix a E Hp(M),  f l  E H*(N), y E HF-p(M), A E Ht*(N) 
(m = dim M, n = dim N). We must show that 

( - l ) 'm-p)'(DMa 8 D N P ,  y 0 = (DMXNK#(a 0 P), (KC)#(y 8 '1). 

Let Qjl E Ap(M),  Yl E Aq(N), Qj, E AT-p(M), Y2 E A;*(N) represent 
a, f l ,  y ,  A. Then Qjl x Yl represents .#(a @ f l ) ;  Qj, x Y, represents 
( K ~ ) # ( Y  @ A).  Thus we must show 

But this follows at once from Proposition XIII, sec. 4.13. 
Q.E.D. 

5.19. The Kunneth theorem for (K&. Theorem V: The compact 
Kiinneth homomorphism is an isomorphism, 

c% 

(KC)# :  Hc(M) 0 Hc(N)  2 Hc(M x N ) .  

Corollary: If M and N are compact, then the Kiinneth homomor- 
phism is an isomorphism, 

N 

K#:  H ( M )  @ H ( N )  a H(M x N ) .  

In particular, the PoincarC polynomial of a product of two compact 
manifolds is given by 

f M d t )  = f M ( t )  ' f N ( t ) *  
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T o  prove Theorem V, we begin with preliminary results. Recall that 
if 0 is an i-basis for the topology of M, then 0, is the an i-basis con- 
sisting of finite unions of open sets 0, E 0 while 0, is the i-basis consisting 
of disjoint, at most countable, unions of open sets 0, E 0 (cf. sec. 1.1). 

Lemma VIII: Suppose 0 is an i-basis for the topology of M and that 

(5.9) 

i,s an isomorphism for each O E O .  Then (5.9) is an isomorphism for 
every 0 E 0, . 

( K c ) * :  HC(0) 0 HCW) - HC(0 x N )  

Proof: Let 0 E 0, and write 

o =  u,u-**v  u,, U * E O .  

S e t U =  U , , V =  U , u - . . u U , , W =  U n V . T h e n  

W = (U,  n U,) u -.. u (U,  n U,) 

and each U,  n U, E 0. Thus by induction on p we may assume the 
lemma holds for U, V, and W. 

Now consider (cf. sec. 5.10) the exact sequences 

0 - Ac( W )  - A,( U )  0 A,( V )  - Ac(0)  --f 0 

O ~ ~ c ( W x N ) - A c ( U x N ) ~ A c ( V x N ) - t A c ( O  x N ) - 0 .  

Tensoring the first with A,(N) yields the row-exact commutative 
diagram 

and 

0 -A c( W) @A c(N) - [A c( U)OA C(N)lO [A c( V )  @A c( N ) ]  -A c ( 0 )  @A c( N )  - 0 

O-Ac(Wx N)-Ac(U x N ) @ A c ( V x  N ) - A c ( 0  x N)-0.  
1.C ~ K C Q K ~  1.c 

(5.10) 
By induction the maps 

and 
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are isomorphisms. Thus applying the five-lemma to the row-exact 
commutative diagram of cohomology induced by (5.10) we find that 

( K c ) , :  HC(0) 0 Hc(N) - Hc(0  x N )  

is an isomorphism. 
Q.E.D. 

Lemma M: Let 0 be a basis for the topology of M and assume that 

( K C ) # :  HC(0) 0 Hc(N) - HC(0 x N )  (5.1 1) 

is an isomorphism for every 0 E 0. Then (5.11) is an isomorphism for 
every 0 E 0,. 

Proof: If 0 E 0, we can write 0 as the disjoint union 

o =  (Jo,, 0 , E O .  
(I 

Using sec. 5.10 we can construct a commutative diagram 

0, HC(0a x N )  

’ HC(0 x N ) ,  

@,(KC)+’ 0 ,(HC(Ou) 0 W N ) )  

HC(0) 0 &(N) 

‘p1” -1 
(KC), 

where is the composite map 

are isomorphisms. The lemma follows. 
Q.E.D. 

Proposition XI: Suppose that for some i-basis 0 of the topology of M 

( K c ) , :  W O )  0 Hc(N) - HC(0 x N )  (5.12) 

is an isomorphism for every 0 E 0. Then (5.12) is an isomorphism for 
every open subset of M. 
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Proof: Lemma VIII shows that (5.12) is an isomorphism for every 
0 E 0,. Thus Lemma IX implies that (5.12) is an isomorphism for 
every 0 E (O&.  Applying Lemma VIII again we see that (5.12) is an 
isomorphism for every 0 E ((Of)& . But according to Proposition 11, 
sec. 1.1, every open subset of M is in ((Of).Jf. 

Q.B.D. 

Proof of Theorem V: Case 1: M = R", N = Rr: Let f~ Y c ( M )  
and g E Y c ( N )  be nonzero nonnegative functions. Let A M  and A N  be 
determinant functions in Rn and R'. Then (using Proposition XIII, 
sec. 4.13) 

and 

Thus according to Proposition XIV, sec. 4.13, f - A ,  ,g * A ,  and 
f * A M  x g * AN = K,( f * A M  @ g * A N )  represent nonzero classes in 
H:(M), HE(N) and HE+'(M x N). 

Hence 

( K ~ ) # :  H,"(R") @ H: ([w') + H,"+'(R"+') 

is nonzero. Now it follows immediately from Proposition IV, sec. 5.10, 
that 

(KC)+ :  H c ( [ w n )  @ Hc( [w ' )  + H c ( R n + ' )  

is an isomorphism. 

of the topology of Rn consisting of the sets 
Case 2: M is an open subset of R", N = R': Consider the i-basis 

u = {(d, ..., x") I .i < xi < bi, i = 1, ..., n}. 

Each of these sets is diffeomorphic to R". Thus (in view of Case 1) 
Proposition XI implies that 

is an isomorphism for any open subset M of Rn. 
The fact that ( K ~ ) ,  is an isomor- 

phism in this case, follows from Proposition XI and Case 2, once we 
observe that M has an i-basis of open sets each diffeomorphic to an open 
subset of R". 

Case 3: M arbitrary, N = Rr: 
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Case 4: M arbitrary, N an open subset of R': Evidently Proposi- 
tion XI continues to hold if M and N are interchanged. Applying it 
to an i-basis for the topology of Rr consisting of open sets diffeomorphic 
to R' we see that ( K J #  is an isomorphism if N is an open subset of R'. 

Apply Proposition XI to an i-basis of 
the topology of N consisting of open sets diffeomorphic to open subsets 
of R'. 

Q.E.D. 

Case 5: M and N arbitrary: 

Examples: 1. Let 
II/I = Skl x ... x S k r  

where Skj is a sphere of dimension kj . Since the PoincarC polynomial 
of Ski is given by 

f ( t )  = 1 + t k J  

(cf. sec. 5.6), it follows that the PoincarC polynomial for M is given by 

2. Let Tn be the n-torus. Since Tn is diffeomorphic to S1 x x S1 
(n factors) and the PoincarC polynomial of S1 is given byf(t)  = 1 + t 
it follows that 

fT"(t) = (1 + t)". 

5.20. The Kiinneth theorem for K# . Theorem VI: Let M and N 
be manifolds such that either dim H ( M )  < co or dim H ( N )  < co. Then 

K # :  H ( M )  @ H ( N )  + H(M x N )  

is an isomorphism. 

Proof: Assume first that M and N are orientable, and consider the 
diagram of Proposition X, sec. 5.18. Since ( K J ,  (Theorem V above) 
is an isomorphism we need only show that the inclusion 

i: H,(M)* @ H,(N)* + [H,(M) @ H,(N)]* 

is surjective. But this is the case since either H,(M)* 
H,(N)* g H ( N )  has finite dimension (cf. Theorem I, sec. 5.12). 

H ( M )  or 
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Next, assume M nonorientable, N orientable. Let p: A? --+ M be the 
double cover, and consider i@ x N as a double cover of M x N. 
A? x N is orientable and the isomorphism K# for A? x N satisfies 

K# 0 (T" @ I )  = (T x I)# 0 K# , 

where 7 is the covering transformation of n. Hence it restricts to an 
isomorphism 

K # :  H+(m)  .@ H ( N )  5 H+(@ x N ) .  

Now the commutative diagram 

H+(m) @ H ( N )  5 'c. - H + ( m  x N) 

p#@lt= + a x  L)# 

H ( M )  @ H ( N )  - H(M x N )  
K# 

establishes the theorem. 

nonorientable) are proved in the same way. 
The remaining two cases (M orientable and N nonorientable; M ,  N 

Q.E.D. 
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5.21. The nerve of an open cover. Let 9 be a set. An abstract 
simplicial complex is a collection, K, of finite subsets of 9 subject to the 
following condition: if a E K, then every subset of u is also in K .  An 
element {i, , ..., i,} of K is called a p-simplex, and the 0-simplices are 
called the wertices of K (cf. [l 13). 

Let @ = { U, I i E 9) be an open cover of a manifold M. The nerve JV 
of such a cover is the abstract simplicial complex whose vertices are the 
indices i E 9, and which is defined as follows: A set {i ,  , ..., iq} of distinct 
elements of 9 is a q-simplex of JV if and only if 

Ui, n ..- n UiQ # la. 

(If the covering is such that each U, meets only a finite number of 
the U, we call it star-finite. Then the corresponding nerve Jlr is a 
locally finite simplicial complex.) 

An ordered q-simplex of Jlr is an ordered set a = ( i , ,  ..., iq) of 
elements of 9 (not necessarily distinct) such that the distinct elements 
form a simplex ofM.  If 7 = (il , ..., iq), we write a = (i,, T) .  Every ordered 
q-simplex a determines a nonempty open subset U, = Uio n *.. n UiQ 
of M. If a is an ordered q-simplex of JV (q l),  we define a,u to be the 
ordered (q - 1)-simplex given by 

aju = (i,, ... i, 
(ij means the argument, i , ,  is deleted). 

i,) 
A 

We call a,a thejth face of a and we note that 

aia, = a,a,+l, j G i. 

Denote the set of ordered q-simplices of Jt’ by J l r q .  Then the set 
maps J t ’ q  -+ R form a real vector space, Cq(Jlr); the linear structure 
being given by 

(Af + pg)(.) = . f ( 4  + p - g(4, A, p E R, f, g E C U ( 4 ,  0 E .Ng- 

The graded space 

217 
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is made into a graded algebra by the following multiplication map: 

(f * g ) ( w )  = f(.) g(4, f E cq.4 g E C * ( N ) ,  W E Jv-v+q, 

where, if w = (i, , ..., i,,,) E N p + Y ,  then u, T are defined by 

U = (io , ..., Zv), T (i, , ..., i,+*). 

In  C ( N )  we define a linear operator, d, homogeneous of degree + 1,  by 
V 

( d f ) ( o )  = c (-1)Vf(a,u), f E C q N - ) ,  u E N D .  
"=O 

It is easy to verify that d is an antiderivation of square zero. Thus 
( C ( N ) ,  d )  is a graded differential algebra. The  corresponding cohomology 
algebra will be denoted by H ( N ) ,  and called the cohomology algebra 

If @ is finite then C ( N )  (and hence H ( N ) )  are finite dimensional. 
of *Ar. 

5.22. Simple covers. An open cover 4? = { Ui I i E 9} of a manifold 
n UiP 

we have, then, that 
M is called simple if all the nonvoid intersections Ui, n 
( Uiy  E a) are contractible. For a simple open cover 

H+(Ui,  n . - *  n Ui9) = 0, Ui,€ 4'. 

It is easy to see that if, in the terminology of [7, p. 341 each Ui E % 
is simple and convex, then 4? is a simple cover. Hence Lemma 6.4 
of [7, p. 351 implies that every manifold admits a simple cover. 

It is the purpose of this article to establish the following fundamental 
theorem. 

Theorem VII (De Rham): The cohomology algebra of a manifold 
is isomorphic to the cohomology algebra of the nerve of a simple covering 
(as graded algebras). 

Corollary: 

The proof of Theorem VII is carried out in the next five sections. 

If M is compact, then H ( M )  has finite dimension. 

5.23. Cochains of differential forms. Let U be an open subset of 
M and let V be an open subset of U .  The  inclusion map j :  V + U 
induces a homomorphism, j * :  A( V )  c A( U ) ,  which, in this article, is 
denoted p v  

p; : A( U )  - A( V) .  
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Clearly, we have 
p g = p I ; o p :  if W C V C U  

and 
Pu" = ba(v). 

Now let @ be an open cover of M with nerve N. If CJ is a face of 
a simplex T E N we shall denote the restriction 

P$A(UO) + 4 U J  

by P:. 

Definition: Let @ be an open cover of a manifold M, with ne rveN.  
A q-cochain of differential forms for the covering Q is a function f 
which assigns to each ordered q-simplex u a differential form f(u)  
in U,. 

In  particular, a 0-cochain of differential forms assigns to each index i 
a differential form on Ui . If for each ordered q-simplex u,f(u) E A P (  U,), 
we call f a q-cochains of p-forms. 

I f f  and g are q-cochains of forms we define Af + pg by 

(V + pg)(.) = A f ( 4  + pg(4, A, p E R, E 

With this definition the set of q-cochains of p-forms becomes a vector 
space, denoted by CP.9. We put 

C*.q = 1 CP.q and CP.. = 1 CP.9. 

P 9 

Finally, we define the space of cochains of differential forms to be the 
bigraded vector space 

c = 1 C P . 9 .  

P . 9  

Next we introduce a multiplication in C as follows: Let f E Cp'q 
and g E C's8. Given an ordered (q + s)-simplex w = (i,, , ..., iq+J of N, 
write 

u = (io , ..., i,) and T = (i, , ..., i,+#). 

Then f A g, defined by 

(f A g)(w) = (- 1 ) 9 + P : ( f ( 4 )  A P g  g(7h 
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is a (q  + s)-cochain of ( p + r)-forms. I t  is easily seen that this multipli- 
cation makes C into a bigraded associative algebra. The  unit element 
is the O-cochain which assigns to every index i the constant function 

X H I ,  X E U i .  

5.24. The operator 6. Every q-cochain, f, of p-forms determines the 
q-cochain of ( p  + 1)-forms, Sf, given by 

Sf(.) = S(f(a)), a E JP. 

The operator 6: f I+ 6f so obtained is homogeneous of bidegree (1,O). 
Clearly 

8 ( f  A g) = 6f A g + ( - l ) p + q f  A 8g, f E CPSa, g E c, 
and a2 = 0. Thus we can form the (bigraded) cohomology algebra of C 
with respect to 6, 

H(C, 6) = ker S/Im 6; H(C,  6) = H'*q(C, 8). 
P.O 

Denote ker 6 by 2, , 
2 6 = c Zb"'? 

PsQdO 

Lemma X: If 9 is a simple cover, then the inclusion 

2;' -+ c 

z;.' 2 H(C, 6). 

induces an isomorphism 
Y 

Proof: Evidently 

H y C ,  6) = zp, p 2 0. 

Thus we have only to show that 

H+*Q(C, 8 )  = 0, p 2 0. 

Consider the map 
yo: C'.'1+ fl A(&) 

( r a ( f ) ) u  = f(4, . fe  c"p* 

U € N  * 
given by 
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Evidently, 

where 6, is the exterior derivative in A( U,). Moreover, yq is an isomor- 
phism. Thus it induces isomorphisms 

By hypothesis each U, is contractible. Hence 

H+(Uo) = 0, U E M Q ,  q 2 0  

and so 
Hf*Q(C, 8) = 0, q 2 0. 

Q.E.D. 

5.25. The operator D. Consider the operator D: C'fJ .--+ C'*q+' given 
by 

where o is an ordered (4 + 1)-simplex. In particular, for q = 0 and 
q = 1 we have 

( - 1 ) ~  = p ' l J ( j )  - ~Lf(i) 

(-1)p Df(i,j, K) = p % f ( j ,  K) - p:;d(i, A) + p&.f(i, j ) .  

and 

The operator D is homogeneous of bidegree (0, 1). Moreover, it has 
the following properties: 

D ( f  A g) = Df A g + (--I)P+Qf A Dg, f~ CPsQ, g E c (5.13) 

and 
D2 = 0, (5.14) 

as follows directly from the relations a& = aja,, of sec. 5.21. 

cohomology algebra 
In view of relations (5.13) and (5.14), we can form the bigraded 

H(C, D) = ker D/Im D; H(C, D )  = 1 Hp*@(C, 0). 
P A  
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Denote ker D by 2, , 

Lemma XI: The  inclusion 

induces an isomorphism 
N 

2;' - H(C, D) .  

Proof: As in Lemma X, we have only to show that 

HP-+(C, D )  = 0, p 3 0. 

Choose a partition of unity {pi} subordinate to the covering {U,}. 
Let 7 be a face of u and let i be an index such that U, n U, # 0. 
Then, for @ E A( U, n U,), p ,  * @ E A( U,), and 

pO'(pi * a) = pi * (p::;:!a)* 

Now consider the operator 

given by 
kf(il , ..., i,) = pi . f ( i ,  il ,..., i,), f E C'nq. 

i e 9  

(Observe that p ,  . f ( i ,  i, , ..., i,) = 0, if U ,  n Uil ,..., ,, = 0, and so this 
is a finite sum!) Then k is a homotopy operator for D in C'*+, 

k o D + D o k = L : C'*q + C'*Q, q 2 1. 

In  fact, letfE C P * a ,  g 3 1. Then we have, for a 9-simplex (T = (i, , ..., i,) 

Dkf(io , ..., i,) = (-1)" p,a."(k(f))(i,, , ... ..., i,) 
"=O 

= ( - 1 ) ' p y  (1 pi . f ( i ,  i,, ... iv ..., i,)). 
P O  

But since 

p,a."p,f(i, io , ... i ..., i,) = o if ui n U, = 0 ,  
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the sum has only to be taken over the indices for which U, n U, # 0 .  
Hence, 

( u,nu,# w 
~ ( i o ,  ..., i,) = i (-1)"py 1 pi .j(i, io , ... iv ..., i.)) 

u=o 

= 1 p ,  (i (-l)q;:yf(i, io, ...; ..., ia)). 
ujnua#O U=O 

On the other hand, we have 

kDj(io , ..., ia) = 1 pi * of(;, io , ..., ia) 
u,nu,# w 

= 1 Pi * P?i ,m, f ( io  9 ... 9 4) 
u,nu,# w 

5.26. The operator V. Define an operator V in C by 

V = S + D  

Grade C by setting Cr = xp+q=r C p , q ;  then V is an antiderivation. 
A simple computation shows that D6 + 6D = 0. It follows that V2 = 0 
and so we can form the graded cohomology algebra 

H(C, V )  = ker V/Im V .  

Next, observe that since D o 6 = - 6 o D, 2, is stable under 6 while 
Z8 is stable under D. In  particular, we have the graded differential 
algebras 

(Z,".', D)  and ( . Z ; s 0 ,  6). 

Moreover, the inclusions 

u: Zd"*' --+ c, 7: . Z > O +  c 
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are homogeneous of degree zero, and satisfy 

VO = OD and V r  = 78. 

Hence they induce homomorphisms 

u*: N(Z:-', D )  -+ H(C, V )  

and 
r#: H(Z;;O, 8 )  -+ H(C, V). 

of graded algebras. 

Lemma XII: If the cover 9 is simple, then (r# and T#  are 
isomorphisms of graded algebras. 

Proof: To show that O~ is an isomorphism we recall first from 

It follows that there is a linear map, homogeneous of bidegree (0, 0), 
Lemma X, sec. 5.24, that H(C, 6) Z:*'. 

T: c + zy 

and a linear map, homogeneous of bidegree (- 1, 0), 

h : C + C  

such that TO = L and UT - L = hS + Sh. 
Define a: C --f C by 

a = hV + Vh + L. 

Evidently, 
a = hD + Dh + OT. 

Since D is homogeneous of bidegree (0, l), hD + Dh is homogeneous 
of bidegree (- I., 1). It follows that 

.(C..') c CP-1.' + CO.'. 

In particular, for every f E C there is an integer p such that 

Moreover, note that a is homogeneous of total degree zero, so that if 
f has degree q, then 

a" ( f )  E COJ. 
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Now we show that u, is surjective. In fact, let z E W ( C ,  V) and let 
f E ker V be a representing cocycle of degree q. Choose an integer p 
so that 

g = ."(f) E C0.Q. 

Since or = hV + Vh + L ,  we have orV = Vor and 

aL# = L : H(C, V )  -+ H(C, V ) .  

Thus g E ker V and represents x. 
But 

Since 
Sg E C1.Q and Dg E Co.Q+l. 

0 = Vg = Sg -+ Dg, 

it follows that Sg = 0 = Dg. Thus g E Z;nq n ker D; i.e., it represents 
an element w in H(Z?', D). Because g represents x in H(C, V) we have 
u,w = z. Hence u, is surjective. 

Next we show that a, is injective. In fact, suppose 

f E Z,".g n ker D and f = Vg.  

We must show that 
f = Dg* (5.15) 

for some g, E Z!*q-l. We may assume g to be homogeneous of degree 
q - 1. Choose p so that 

g ,  = ."(g) E C0.Q-1. 

Now observe that since f E ker 6 n ker D, Vf = 0. Moreover, since 
f E Co*', h ( f )  = 0. Hence 

.(f) = (hV + V h ) f  + f  = f ,  

f = a"( f) = ."Vg = V.'( g )  = v g ,  . 
and so 

Sicceg, E CO9q-l and Sg, = f - Dg, , we have 

Sg, E C'SQ-~ n CO.9 = 0, 

whence g, E Z,"sq-'. Thus 

f = Vg1 = Dg, 
and (5.15) is proved. 



226 V. De Rham Cohornology 

It  has now been established that u# is an isomorphism. The identical 
argument, using Lemma XI, sec. 5.25, shows that T* is an isomorphism. 

Q.E.D. 

5.27. Proof of De Rham's theorem. Define an inclusion map 

QJ: C ( N )  + CO.' 

as follows: if f E O(.N), let y(  f) be the q-cochain which assigns to 
each u E N g  the constant function 

u, -f (4. 
Evidently y is a homomorphism of graded algebras. Moreover, it is 
clear that 6 0 y = 0. Thus y can be considered as a homomorphism 

QJ: C ( N )  + z;.' 
of graded algebras. 

Lemma XIII: y is an isomorphism of graded differential algebras, 

Proof: It follows from the definitions that 

p o d =  D o p .  

If y ( f )  = 0, then f(u)  = 0 for all U E N ;  whence f = 0. Thus 
y is injective. If @ E Zg*q, then to each u E MQ, @ assigns a function 
@, E 9( U,,) such that 

80, = 0. 

Since U,, is contractible, it is connected. I t  follows (cf. sec. 5.1) that 
@, is constant. Hence an element f E Cq(N)  is defined by 

f (u) = @,(x), x E u, , 

and clearly y(  f) = @. Thus y is surjective. 

u E &Q 

Q.E.D. 
Now we define an inclusion map 

*: A ( M )  + C'*O c c. 
In fact, if @ E Ap(M),  we define +(@) E CPfJ by 

#(@)(i> = pf,(@), i E NO. 



7. The De Rham theorem 227 

Evidently t,h is a homomorphism of graded algebras. Moreover, for 
@ E A(M) ,  

W ( @ ) ) ( i ,  i) = /J:M@))(i) - P f M @ ) ) ( i )  
= @ lUlj - @ lull = 0. 

4: A ( M )  + 2;;o 

Thus $I can be regarded as a homomorphism 

of graded algebras, and it is obvious that t,h o 6 = 6 o t,h. 

Lemma XIV: t,h is an isomorphism of graded differential algebras. 

Proof: Evidently t,h is injective. Moreover, if f E Zgo, then the 
differential forms f ( i )  E AP( U,) satisfy 

f ( j ) l U i ,  - f ( i ) I U l j  = (-1P Df(4iS = 0. 

Hence a global p-form @ E A ( M )  is given by 

p&(@) = f ( i ) ,  i E N 0 .  

Clearly t,h(@) = f, and so t,h is surjective. 
Q.E.D. 

Proof of the theorem: Lemmas XI11 and XIV yield isomorphisms of 
graded algebras 

N - v*: H ( N )  2 H(Z,O.', D) 

I)#: H ( M )  - H(z;O,s). 
and 

N - - 

On the other hand, Lemma XI1 provides an isomorphism 
N - 

7;10 u* : H(Z,O", D )  a H(Z;;O, 8) 

of graded algebras. Combining these isomorphisms we obtain an 
isomorphism 

N 

H ( N )  = H ( M )  

of graded algebras, as was desired. 
Q.E.D. 
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M and N are smooth manifolds. 

1. Mayer-Vietoris sequence. Suppose M = U u V (U, V open), 
and a is the connecting homomorphism. 

(i) Show that Im a is an ideal in H ( M ) .  If i,: U --.t M, iy: V + M are 
the inclusions and if a, /3 E H ( M )  satisfy iga = 0, iF/3 = 0, show that 
a - /3 = 0. Conclude that, if y1 , ya E Im a, then y1 . y, = 0. 

(ii) Suppose M = Ul u -.* u U p ,  where each U, is open and 
H+( U,) = 0. Show that, if a, E H+(M)  ( i  = 1,  ..., p ) ,  then a1 - - ap = 0. 

(iii) Suppose M = Ul U u Up (U, open). Assume that, for each 
sequence 1 < il < < iq < p, the intersection U,, n -.. n U, has 
finite dimensional cohomology and let x(il ,..., iq) denote its huler 
characteristic. Show that M has finite dimensional cohomology and that 

xw = (-1)g-i c x(il, ..., i ~ .  
Q-1 1<r,<.- <i,<P 

2. Compute the cohomology of M # N in terms of H ( M )  and H(N) .  
Thus obtain the cohomology of the compact surfaces Ta # ... # Ta 
and T2 # -.* # Te # RPa ( Ta is the 2-torus) (cf. problem 24, Chap. 3). 

3. The Massey triple product, Let a, /3, y E H ( M )  be of degrees p ,  
q, r and represented by @, Y, X. Assume that 0 A Y = 6Ql , Y A X = 

(i) Show that @ A 9, - (-l)N,Il A X is closed and that the class it 
represents depends only a, /3, and y. It  is called the Massey triple product 
and written [a, /3, 71. 

(ii) Define the Massey triple product in H ( N )  (N is the nerve of a 
simple covering of M) and show that the de Rham isomorphism preserves 
the Massey triple product. 

ma. 

4. Opensubsetsof compact manifolds. (i)  Let 0 be an open 
subset of a compact manifold. Show that the map (yo)#: H,(O) + H(0) 
has finite dimensional image. 

(ii) Find a manifold which is not an open subset of a compact manifold. 
228 
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5. Wangsequence, Consider a smooth fibre bundle (E, 7, Sn, F) 
which is trivial over Sn - {a} (a  E Sn). 

Remark: It can be shown that every fibre bundle over a contractible 
base is trivial. 

Obtain a Mayer-Vietoris triangle 

H(F) 0 HP)  

and derive the long exact Wang sequence 

6. (i) Suppose w € A 1 ( M )  (M compact) satisfies w(x) # 0, X E M .  
Show that w is not exact. 

(ii) Construct 1-forms wl, w 2 ,  w3 on S3 such that for each x the wt(x) 
form a basis of T,(S3)* and such that wi A wI is exact. 

(iii) Let @ be a p-form on M such that for each x E M, @(x) is the 
product of p independent covectors at x. Let F, = {h E T,(M) I i(h) 
@(x) = O}. Show that the spaces F, are the fibres of a subbundle of T~ . 

If @ is exact and N is a compact p-submanifold of M, prove that for 
some y E N, T,(N) n F, # 0. Does this hold if @ is only assumed to be 
closed ? 

7. Hopf invariant. Assume that M and N are compact and oriented, 
dim M = m, dim N = n with m > n. Let rp: M --f N be smooth. 
Write ker rp# = K = & Kp. Suppose a E KP+l, f l  E Km* are represented 
by @, Y and write rp*@ = 6Q. 

(i) Show that SM SZ A rp*Y depends only on a, f l ,  and rp. Hence obtain 
a bilinear map 

( , ), : KP+' x Km-p --t R. 

(ii) Show that 

( a ,  B>, = ( - l ) m ( p + l ) ( B ,  a>, * 

(iii) Prove that ( , ), depends only on the homotopy class of rp. 
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(iv) Suppose q: SZn-l + Sn (n 3 2). Show that q*w = 0, where w 

is the orientation class of Sn. The  number h(v) = ( w ,  w ) ~  is called the 
Hopf invariant of q. 

(v) Compute the Hopf invariant of the Hopf fiberings S3 --t S2 and 
S7 + S4 (cf. problems 10, 1 I ,  Chap. I). 

8. The n-torus. Recall from sec. 1.4 the projection 7r: Rn -+ Tn. 
Let oj: S1 + Tn be defined by 

u,(exp 2 d )  = ~(0, ..., t ,  ..., 0). 

(i) Construct classes aj E H1( T") such that J:l oj+aj = Sij . Show that 

(ii) Show that a1 * . -  - an is an orientation class for Tn. 
(iii) Interpret the at via the Kunneth isomorphism ( Tn 

they are uniquely determined by these conditions. 

S1 x x S1). 
Show that H{ Tn) is isomorphic to the exterior algebra of an n-dimen- 
sional vector space. 

(iv) Consider TP as a submanifold of Tn and compute the cohomology 
algebra of the manifold Tn - T p .  Does it contain a compact manifold as 
retract ? as deformation retract ? 

9. Let N be a closed submanifold of M. Let 

4 = { @ E A ( M ) I c a r r @ n N =  01. 

(i) Show that .Y is an ideal in A ( M )  and that the factor algebra, 

(ii) Show that the inclusion map N -+ M induces a homomorphism 

(iii) Show that the induced map H(A(N;  M)) --t H ( N )  is an isomor- 
phism. Hint: Consider open subsets U C N such that U g Rr and U 
has trivial normal bundle in M - cf. problem 20, Chap. 111. 

A ( N ;  M), is a graded differential algebra. 

A(N;  M )  --f A(N). 

(iv) If M is compact, establish an exact triangle 

where a is homogeneous of degree + 1. 
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10. Manifolds-with-boundary. Let M be a compact n-manifold- 
(cf. problem 24, Chap. 111). Let with-boundary aM and interior 

i: aM --t M denote the inclusion map. 

(i) Show that the inclusion map A? + M induces an isomorphism 
H(&) 2 H ( M ) .  Is this true for cohomology with compact supports ? 

(ii) Show that the sequence 

A,(&) - A ( M )  2 A(BM) 

leads to an exact triangle in cohomology (cf. problem 9, above). 

homomorphism of (ii) (cf. problem 5, Chap. IV). 
(iii) If M is oriented interpret Stokes' theorem via the connecting 

1 1 .  Harmonic forms. Let M be compact, oriented, and have a 
Riemannian metric. The space 2 + ( M )  of harmonic forms consists of 
those forms @ satisfying A @  = 0 (cf. problem 9, Chap. IV). Show that 
d imZP(M)  < b,(M). (In fact, the Hodge theorem asserts that 
d imZp(M)  = b,(M).) 

12. Smooth homology. Let E be a vector space with a fixed 
countable basis a,, , a, ,  ... . The p-dimensional standard simplex is the 
set defined by 

A smooth p-simplex on a manifold M is a smooth map u: A, + M 
(a smooth map from a closed subset A of Iwp into M is a map A + M 
which extends to a smooth map from a neighbourhood of A into M). 
The ith face of u is the smooth ( p - 1)-simplex given by 

Let R be any subring of Iw (eg. R = Z or Q or OX). Denote by CJM;  R) 
the free R-module with basis the smooth p-simplices on M. Define an 
R-linear map a: Cp(M; R) --t C,_,(M; R) ( p  2 I )  by 

V 

au = c (-l)i aiu. 
i=O 

(i) Verify that a2 = 0. The graded module H,(M;  R) = ker a/Im a 
is called the smooth homology of M with coeficients in R. An element in 
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C,(M; R) (resp. Z,(M; R) = (ker a), ) BJM;  R) = (Im a), , H,(M; R)) 
is called ap-chain (resp. p-cycle, p-boundary, p-dimensional homology class). 

(ii) Show that a smooth map v: M -P N induces a module homo- 
morphism q*: C,(M; R) + C,(N; R) such that a 0 v* = tp* 0 a. Obtain 
induced homomorphisms between the cycle, boundary, and homology 
modules. The last is written y#: H,(M; A) + H,(N; R). 

(iii) Let U be an open subset of a vector space, star-shaped with 
respect to some x,. Define an R-linear map k: C,( U ;  R) --f C,+,( U ;  R) by 

wheref: R + 08 satisfies 0 < f ( t )  < l , f ( O )  = O,f(t) = 1 ( 2  > 1 - E). 

Show that k 0 a + 8 o k = L in C,( U ;  R) and conclude that H+( U ;  A) = 0. 
(iv) Establish a homotopy axiom, a disjoint union axiom, and a 

Mayer-Vietoris axiom for H , ( M ;  R). Hint: If M = U u V and u is 
a smooth simplex in M ,  find smooth chains a in U ,  b in V and c in M 
such that u = a + b + ac. 

(v) If H,(M; Z) is finitely generated, show that H,(M; Z) = Fp @ Tp , 
where F, is a free, finitely generated abelian group and Tp consists of 
the elements of finite order. Fp is called the 9th Betti group and Tp is 
called the pth torsion group of M. A basis of Fp is called a homology basis 

(vi) If M is compact show that each H,(M; Z) is finitely generated 

(vii) Construct canonical isomorphisms 

of H,(M; Z). 

and hence has a homology basis. 

N N 

H,(M; Z) OZ Q J H,(M; Q) and H,(M; Z) OZ R H,(M; R) 

(universal coefficient theorem). 

Uio n 
for p > r. 

(viii) Suppose M has a finite simple cover {Ui}  such that each 
n Ui, = 0 (r is fixed). Prove by induction that H,(M; R) = 0 

(ix) Show that 
Hp(S"; Z) = 0 (1 < p < n - 1) 

H,(S"; Z) g Z 

H,(S"; Z) z. 

13. Integration and homology. The  vertices (a,, ..., a,) of the 
standard p-simplex A, span an affine p-plane in E. This is oriented so 
that (a, - a,, , ..., ap. - ao) is a positive basis. The  interior of A,, d, , is 
an open subset of this plane. Hence, if u is a smooth p-simplex in M and 
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Q, E Ap(M), we can integrate the form u*@ over d p  . This integral is 
denoted by So Q, and is called the integral of Q, over the smooth p-simplex u. 

If c = C hioi , A, E R, we set 

and call JC@ the integral of Q, over c. 

(i) Establish Stokes' theorem for chains; 

/,W = J,, ?P Y E  AP(M), c E C,+l(M; R). 

Conclude that (@, c)  t, JC Q, defines an R-bilinear map 

( , ) : AP(M) x C,(M; R)  --f R 

and that (SY, c )  = (Y, ac).  
(ii) Show that JC Q, = 0 if c is a cycle and Q, is exact, or if c is a boundary 

and Q, is closed. Thus obtain an R-bilinear map HP(M) x H,(M; R) --+ R. 
(iii) A cohomology class O L E  HP(M) is called integral, if (a, /3) E Z 

for every /I E H,(M; Z). Show that a closed p-form represents an integral 
class if and only if its integral over every integral cycle is an integer. 

(iv) Define a map A: HP(M) --+ Hom,(H,(M; Z); R) by 

Use problem 12, iv, to conclude that h is an isomorphism of real vector 
spaces. 

(v) If M is compact and al, ..., (Yk is a homology basis for H,(M; Z) 
(cf. problem 7, vi) show that there are unique classes pi E Hp(M) such 
that (& , aj) = 6, . Conclude that the flz are a basis of HP(M) consisting 
of integral classes. 

Let zi represent at (ai as in (v)). If @ 
is a closed p-form, the numbers Jsi @ are called the periods of @ with 
respect to the homology basis a1 , ..., ak . Given real numbers hl , ..., hk , 
show that there exists a closed p-form @ on M with the Xi as periods. 
Show that Q, is uniquely determined up to an exact form. 

(vi) De Rham existence theorem: 

14. Homology and densities. Assume M connected and oriented. 
Let Dg(M) denote the space of p-densities on M with compact carrier 
(cf. problem 8, Chap. IV). Let ?2 be a simple covering of M with nerve Jv: 
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Define a graded differential space (C*(A’”), a) as follows: the ordered 
p-simplices of A’” are a basis for C,(,Y.) and a is given by 

n 

qi, , ..., i,) = 1 (- 1y (i, , ..., g , ..., i,). 
v=o 

H(A’”,a) is called the simplicial homology of M .  Let C,,,CDi(M) @ C,(N) 
be the subspace generated by the elements of the form @ @ (T with 
carr @ C 9Yo . (Note : 

(i) Use the divergence operator and boundary operator in C, to obtain 
a differential operator in c,,, C,,, (cf. problem 8, Chap. IV). 

(ii) Use integration to define a linear map C,,, + C,(M). Use the 
linear map C,(M) + R which sends each simplex to 1 to define a 
linear map CP,, --+ Di(M) .  

(iii) Mimic the proof of the de Rham theorem to construct an iso- 
morphism H,(DC(M)) -% H , ( N ) .  Derive from this another proof of 
the PoincarC duality theorem. 

(iv) Replace D“(M) by the group of integral smooth chains and 
replace C,(M) by the free abelian group generated by the simplices of 
A’”. Repeat the argument and show that (even if M is not orientable) 
the integral smooth homology of M is isomorphic to the integral sim- 
plicial homology of JK 

All vector spaces have coefficient field W). 

IS, Line integrals. M is a connected n-manifold, and a: [0, 1 1  + M 
is a smooth path. The  line integral along a of w E A1(M)  is the number 

1, w = J: w(a(t ) ;  U(t)) dt. 

(i) Suppose that w is closed and H,(M, Z) consists only of torsion 
elements. Show that Ju w depends only on the endpoints of a. Fix 
x, E A4 and setf(x) = JU, w ,  where a, is any smooth path joining x, to x. 
Show that f is smooth, and that 6f = w. Conclude that H,(R2 - (0); Z) 
is an infinite group. 

(ii) Let h E 9 ( M ;  C) satisfy h ( x )  # 0, X E  M .  Show that w = 
(1/27ri)(I/h) 6h is a closed C-valued I-form, and that w differs from a 
real form by a coboundary. Prove that Jz w E Z for each integral cycle z. 

(iii) Let w E A1(M) be closed and integral. Construct h E Y ( M ;  C) 
such that I h(x)l = 1, x E M ,  and (1/27ri)(l /h) 6h = w. 

(iv) Assume that H,(M; Z) = 0. Let f and g be functions on M 
satisfying f ( x ) 2  + g(x)2 = 1, x E M. Construct a function 0 on M 
such that 

sin o 0 = g. cos o 6’ = f, 
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Show that if O1 is another such function, then O1 - 6 = 2 ~ k ,  where k 
is a fixed integer. 

16. Assume that H ( M )  ( M  an n-manifold) is isomorphic to the 
exterior algebra over an n-dimensional subspace of H ( M ) .  Find a 
smooth map p,: M + Tn such that q+ is an isomorphism. 

17. Assume M compact and connected. Let w be a closed 1-form 
such that w(x) # 0, x E M .  Construct a submersion T: M + S1. Show 
that T is the projection of a smooth fibre bundle over S1 with M as 
total space. 

18. Cauchy’s integral theorem. Let 0 be an open subset of C 
and let Sz E A1(O; C) denote the gradient of the identity function. 

(i) If f~ Y(0; C), show that ( f 6 z ) ( x ;  h) = f ( x )  * h, x E 0, h E C. 
(ii) Show thatf - Sz is closed if and only iff is complex differentiable. 
(iii) Let a: [0, 11 -+ 0 be a smooth path in 0. Show that J a f  * Sz = 

(iv) Prove Cauchy’s integral theorem: I f f  is complex differentiable 
in 0, then Sacf (z )  dz = 0, where c is a 2-chain in 0. 

(v) Let f be a complex differentiable function in I z I < 1 which 
extends to a continuous function in I z I < 1. Show that Js l f ( z )  dz = 0. 

S a f  (4 dz. 

19. Simply-connected manifolds. Let M be connected. Two smooth 
paths a: [0, 11 + M and b:  [0, 11 + M having the same initial point xo 
and the same endpoint x1 are called homotopic, if there is a homotopy 
connecting a and b and leaving x,, and x1 fixed. A manifold is called 
simply-connected, if every closed path is homotopic to the constant path. 

(i) Show that if M is simply-connected, then H l ( M ;  Z) = 0. 
(ii) Let M be simply-connected. Let Q, E A1(M; LF) (F  a vector space). 

Assume that Q, satisfies SO + Q, 0 Q, = 0 (cf. sec. 4.7). Given points 
a E M and b E F, show that there exists precisely one smooth map 
y :  M -+ F such that dp, = @(p,) and ?(a) = b. 

(iii) Assume that P is a parallelism on M (cf. problem 14, Chap. IV). 
The  torsion S of P is called parallel, if 

P(x, Y )  S(x; 5 , q )  = S(y ;  P(x,  r)5, P(x,  Y)17), x, Y E M ,  5, 17 E TAM).  

Show that if P admits a conjugate parallelism, then the torsion is parallel. 
If M is simply-connected show the converse. 



236 V. De Rham Cohomology 

20. Simplicia1 complexes in Rn. Let A = (a,, a, , ..., up), where 
a, E Rn and the vectors a, - a, (i = 1, ..., p) are linearly independent. 
Then the set 

is called an afine simplex with vertices a, , If in addition the a, are ordered, 
then I A I is called an ordered afine simplex. The  interior of A is given by 

i = O  i=O 

and its boundary is A - d. Let A C Rn be a closed set which is the 
disjoint union of finitely many 6, (u, is an affine p,-simplex). If the u, form 
an abstract simplicia1 complex, K, then A is called a jn i te  afine simplicial 
complex and is written I K I .  The maximum of the p, is called the 
dimension of 1 K I. The union of the affine simplices of dimension < k 
is called the k-skeleton of I K I . 

Let 1 K I C Rn be an affine simplicial complex of dimension r .  Find 
an open subset 0 C Rn such that I K I C 0 and such that 0 admits a 
simple covering with nerve K. Conclude that W(0) = 0, if p > r. 

21. Degenerate and invisible chains. A smooth p-simplex a on M 
is called degenerate if, for each a ELI,, rank(du), < p .  A p-chain 
c = xi Aiui (Ai # 0) is called degenerate, if all p-simplices u, are. A 
p-chain c is called invisible if, for every p-form @, jc @ = 0. 

(i) Show that a degenerate chain is invisible and that the boundary of 
an invisible chain is invisible. 

(ii) Let g,: A, + F be smooth, where F denotes the plane through 
a,, ..., a, . Assume that Im g, C A, and that g, restricts to the identity 
near the boundary of A, , For each smooth p-simplex a, find a degenerate 
integral ( p  + 1)-chain c such that u - u 0 p, = ac. Conclude that 
u - u 0 cp is invisible. Extend the result to smooth chains. 

(iii) Let c = C Aiu, (A, # 0) be a p-chain on M. A point x E M is 
called a regular value for c, if, for each i, u~'(x) C dp and x is a regular 
value for u, . Otherwise x will be called a critical value for c. Denote by 
Crit(c) the set of critical values. Let N C M be a p-dimensional 
submanifold. Show that N n  Crit(c) has measure zero in N .  Hint: 
Compare problem 12, Chap. 111. 

(iv) Let R be a subring of R. Given c = C Atu, E C,(M; R )  (A, # 0) 
define I m c  = & I m  ud and call it the image of c. Let x ~ I m c  be a 
regular value for c. Assume that there is a neighbourhood U of x 
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and a p-submanifold N C M such that U n Im c C N .  Show that 
c = a + ha + ab, where 

(1) 
(2) 
(3) x $ I m a .  
(4) b is degenerate. 

a E C,(M; R), b E C,+,(M; R),  h E R. 
a: A,  -+ M is a smooth embedding and x E .(A,). 

Conclude that c is invisible if and only if h = 0 and a is invisible. 

22. The invisibility theorem. Show that every invisible cycle, z ,  
in C,(M; R)  is the boundary of some c E C,+,(M; R)  (invisibility 
theorem). 

Hint: One method is as follows: 

(i) Use a tubular neighbourhood of an embedding of M in RN to 
reduce to the case when M is an open subset of RN (cf. problem 20, 
Chap. 111). 

(ii) Construct an affine simplicia1 complex, I K 1 C RN, such that 
Im z C I K I (cf. problem 20). 

(iii) Suppose Im z is contained in the r-skeleton of 1 K 1. If r > p, 
no r-simplex of I K I is contained in Im x. Hence find a smooth map of 
M + M ,  homotopic to iM , which carries z into the ( r  - 1)-skeleton 
I K I (cf. problem 13, Chap. 111). 

(iv) Suppose Im z is contained in the p-skeleton of I K 1 .  Modify 
problem 21, iv, to show that there is a b E C,+,(M; R)  such that 

(1) Im  ab is contained in the p-skeleton of 1 K I and 
(2) No p-simplex of I K I is contained in Im(x + ab). Thus find 

a smooth map of M ,  homotopic to L ~ ,  which carries z + ab into the 
( p - 1)-skeleton of I K I. 

(v) Use problem 20 and problem 12, viii, to complete the proof. 

23. The fundamental cycle. Let M be connected. Use the invisi- 
bility theorem, and problem 21, to establish the following results: 

(i) 
(ii) H J M ;  Z) 

H,(M; Z) = 0, p > n. 
Z, if M is compact and oriented and H,(M; Z) = 0 

(iii) Let M be compact and oriented. Show that there is a unique 
otherwise. 

generator COG E H J M ;  Z) such that 
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where x is a representing cycle. w& is called the fundamental class of the 
oriented manifold M. Conclude that (wM , 0')  = 1, where w M  is the 
orientation class. I n  particular, show that the orientation class is integral. 

(iv) Let ( M ,  aM) be a compact orientable manifold-with-boundary. 
Let (aM), , ..., (aM), be the components of aM with inclusion maps 
iA: (aM), + M and induced fundamental classes L X ~  . Show that 

(v) Let 'p: N -+ M be a smooth map (N a compact oriented r-mani- 
fold). Suppose @ E Ar(M)  is an integral closed form. Show that s,'p*@~Z. 

M 

EA ( i A ) # f f A  = O. 

24. Direct limits. Let 9 be a partially ordered set such that, 
for all a, p E 9, there is some y E 9 with a < y and /3 < y. Let {A,} 
be a family of vector spaces, indexed by 9. Let b;: A, -+ AB}a<B be a 
family of linear maps such that if a < /3 < y ,  p t  = p! 0 @ .  Then 
{A, , p;} is called a directed system of vector spaces. Its direct limit, written 
linJ A,, is the space A/B,  where A = 0, A, and B C A is the sub- 
space generated by the vectors of the form xg - p;(x,). 

(i) Define canonical linear maps i,: A, -+ h A, . If q,: A, -+ C are 
linear maps satisfying qB o p; = 'pa, show that they induce a unique 
linear map 'p: lir~ A, -+ C such that 'p o i, = q, for each 01 E Y. 

(ii) Suppose the A, are algebras (resp. graded algebras, differential 
algebras) and assume that the p; are homomorphisms. Make linJ A, into 
an algebra (resp. a graded algebra, differential algebra) so that each i, 
is a homomorphism. In  the third case show that 

H ( h  A,) = H(A,). 

25, cech cohomology. Let 9 = {U,  I a E Y} be a star-finite open 
covering of M and let Y = { V ,  I j E f }  be a refinement of 9. Let A& 
and Jv; denote the corresponding nerves. Choose a map a: f -+ 3 
such that V, C U,(,, . 

(i) Show that a map A$: C(N,) -+ C(Nv)  is defined by 

(ASf)( io  8 ..., i,) = f ( 4 o ) ,  a * ' ,  4,)) 

and that A; is a homomorphism of graded differential algebras. 
(ii) Show that (A$)# is independent of the choice of a. Show that the 

algebras H(N,) form a direct system of graded algebras. The  direct 
limit is called the tech cohomology of M and is written 

R ( M )  = linJ H(.A&). 
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(iii) Given a star-finite open covering 42 of M imitate the proof of 
the de Rham theorem to obtain a homomorphism H(N*)  + H ( M ) .  
Hence obtain a homomorphism R ( M )  + H ( M ) .  Show that this is an 
isomorphism, R ( M )  H ( M ) .  

26. Dimension theory. Show that the Lebesgue dimension (cf. 
sec. 1.2) of an n-manifold is n. Hint: Proceed as follows: 

(i) Show that, if 0 C M is open, then dim 0 < dim M. 
(ii) Show that dim M = dim Rn = dim Sn. 

(iii) By brutal force show that dim Rn < n. 
(iv) Use problem 25 to show that, if dim M < p ,  then Hi(M)  = 0, 

i > p .  Conclude that dim Sn 2 n. 
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Mapping Degree 

$1. Global degree 

All manifolds in this article are connected, compact, and oriented, 
unless otherwise stated. 

6.1. Definition. Let cp: M + N be a smooth map between 
n-manifolds. The  linear isomorphisms 

N - j* : H"(M) 4 R, j# : H"(N)  5 R 
M N 

(cf. sec. 5.13) determine a unique linear map 

f,: R --f R 

which makes the diagram 

H"(M) z H"(N) 

Cl 1s; 
R-R 

f, 
commute. 

The  (mapping) degree of is defined by 

deg p, = M). 
I t  follows from the definition that 

where @ E P ( N )  satisfies J, @ = 1. More generally, if @ is any n-form 
on N we have 

240 
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Note that the sign of the mapping degree changes if either the orientation 
of M ,  or that of N ,  is reversed. In  particular, the degree of a map 
v: M -+ M is independent of the orientation of M .  

Proposition I: 

( 1 )  
n-manifolds. Then 

The  mapping degree has the following properties: 

Let q ~ :  M + N and #: N 4 Q be smooth maps between oriented 

deg(# 0 p,) = deg p, . deg #. 

(2) The  degree of the identity map is one, 
degc, = 1. 

(3) If the maps v, #: M -+ N are homotopic, then 

degp, = deg#. 

(4) 
( 5 )  

If deg rp # 0, then rp is surjective. 
Let v1: M ,  --t N ,  and rp,: M ,  ---+ N ,  be smooth maps, where 

dim M ,  = dim Nl and dim M ,  = dim N ,  . Then the degree of the 
map rpl x q2: M I  x M ,  -+ N ,  x N ,  is given by 

deg(p,, x v2) = deg p,l * deg v 2  . 

(6) If v: M -+ N is a diffeomorphism, then degrp = $1 when 
preserves orientations, and deg cp = - 1 when y~ reverses orientations. 

Proof: 

(4) 

Properties (1)-(3) are immediate consequences of the defini- 
tion. Property (6) follows from Proposition XII, sec. 4.13. 

Assume that rp is not surjective. Then rp(M) is a proper compact 
subset of N (since M is compact). Let (9 be a nonnegative nonzero 
n-form on N with 

carr @ C N - p,(M). 

Then rp*@ = 0. Hence 

0 = j p,*@ = degp, * 

M 

Since JN (9 > 0, deg rp = 0. 
( 5 )  Choose differential forms Y1 E A(N,) and Y, E A(N,) such that 
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Then according to Proposition XIII, sec. 4.13, 

JN 
Y1 x Y2 = 1. 

i X N a  

Hence 

deg(v1 x 972) = j Pl*Yl x v2*y2 
M1XMe 

Corollary I: If rp: M -+ N and t,h: M -+ N are inverse diffeomor- 
phisms, then deg rp * deg t,h = 1. 

Corollary II: If a map rp: M -+ N is homotopic to a constant map, 
then deg rp = 0. If a map is homotopic to the identity, then deg rp = 1. 

Remark: In sec. 6.3 it will be shown that the mapping degree 
is always an integer. 

6.2, Examples: 1. Let M = N = Sn be the unit sphere in a 
Euclidean space E of dimension n + 1 and let T :  E -+ E be a Euclidean 
rotation. Then deg T = det T.  (Recall that det T = fl.) 

In fact, let d E  be a determinant function in E. Then the n-form 

sa(x; 61 ! .*.) 6,) = 61 > * * * )  6,)) s", 6 C  T ~ ( s " ) ~  

orients sn (cf. Example 2, sec. 3.21). Since t is linear, (dT)g = ~ ( t ) ,  
whence 

T*Q = det T 52. 

I t  follows that Jsn T*Q = det T Jsn Q; i.e. deg T = det T.  

In  particular, let T be the rotation given by T ( X )  = -x. Then 
deg T = (- 1)"fl and so T is not homotopic to the identity if n is even. 

2. Let rp, t,h: Sn -+ Sn be smooth maps such that 

v (x )  # -#(x), x E sn. 

Then rp and t,h are homotopic (cf. Example 7, sec. 5.5) and hence 
Proposition I, part 3, sec. 6.1 implies that 

deg v = deg #. 
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In particular, if 'p(x) # -x  (x E Sn) we have deg tp = 1, while if 
'p(x) # x (x E Sn), it follows that deg 'p = (-l)n+l (cf. Example 1). 
Hence if n is even, no smooth map 'p: S" -+ Sn satisfies ('p(x), x) = 0 
(x E S") (for then both the conditions 'p(x) # x, 'p(x) # --x would be 
satisfied). 

3. Let C be the complex plane and consider the unit circle 
S1 = {z E C I I z I = l}. Definef: S1 -+ S1 byf(z) = zp. Then degf = p. 

In fact, a determinant function d is given in C = R2 by 

d ( z , ,  z2) = Im(T1z,). 

Hence an orienting one-form D on S1 is defined by 

Q(z; 5 )  = Im(%[), z E S, 5 E Tz(S1), 

and 
(f*SZ)(z; 5) = S Z ( z P ;  p z P - 1 5 )  = pSZ(z; 5). 

I t  follows that degf = p. 

restricting the map z tt z p  has degree -p .  

complex inverse. Define x :  S' -+ S1 by 

A similar argument shows that the map 'p: S1 + S1 obtained by 

4. Let 'p, 9: S1 -+ S1 be smooth. If w E C - {0}, w-l denotes its 

Then 

In fact, for 5 E T,(S1), 

x ( 4 - l  (dx)5 = v(z>-l (4% - 4(4- l (d4)5-  

Now (in the notation of Example 3) a simple calculation shows that 
x*Q = 'p*D - $*D, whence 

degx SZ = p,*Q - js +*SZ = (degp, - deg4) 1 SZ. 
S' S' 1 S' 

Proposition 11: If two smooth maps 'p, t,h: S1 + S1 have the same 
degree, they are homotopic. 

Lemma I: Assume 'p: S1 -+ S1 has zero degree. Let a: R -+ S1 be 
the map given by a(t) = exp(2~rit) (t E R). Then there exists a smooth 
map g: S1 -+ R such that 'p = a 0 g. 
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Proof: Since 

p,*B = deg p, $,, B = 0, 
SS1 

Theorem 11, sec. 5.13, implies that rp*Q = 2nSg for some smooth 
g: S1 .--t R. Choose g so that 

a(g(1)) = 941). 

Now let 6t  E Al(R) be the exterior derivative of the identity function- 
cf. Example 1, sec. 3.17. Then g*6t = Sg. Moreover, a*Q = 2nSt. 
These formulae yield 

(a og)*B = g*(27&) = 2Tr6g = p,*B. 

Define x: S1 --t S' by x(z) = tp(z)[a( g(z))]-l. Then, as in Example 4 
above, 

x*B = p,*Q - (a 0 g)*B = 0. 

Hence dx = 0 and so x is constant; 

x(z) = x(1) = 1. 
It follows that rp = a 0 g. 

Q.E.D. 

Proof of the proposition: Define x: S' -P S' by x(z) = rp(z) #(z)-'. 
Then (Example 4) 

degx = degp, -deg# = 0 

Hence for some smooth map g: S' + R, x = a o g  (Lemma I). It 
follows that 

944 = $44 * .(g(z)), x E sl. 

Since R is contractible, a 0 g is homotopic to the constant map S1 + 1 
via H: R x S1 ---+ S1. Now 

w, 4 = 444 w, 4 
is a homotopy connecting rp and t,h. 

Q.E.D. 

6.3. Regular values. Let rp: M + N be a smooth map between 
(not necessarily compact or oriented) n-manifolds. A point b E N is 
called a regular d u e ,  if either b 4 Im rp or (drp)% is a linear isomorphism 
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for every x E rp-l(b). Otherwise b is called a critical value of rp. Sard's 
theorem (cf. [lo, Lemma 3.2, p. 471) asserts that every smooth map 
between n-manifolds has infinitely many regular values (if n > 1). 

Suppose b ~ I m q  is a regular value for rp. Let x ~ r p - l ( b ) .  Since 
(dp))%: T,(M) -+ Tb(N)  is a linear isomorphism, there exist neighbour- 
hoods U,  of x and u b  of b such that rp maps U, diffeomorphically 
onto u b  . In  particular 

u, f l  q-yb )  = x. 

It follows that rp-l(b) is a closed, discrete subset of M .  Thus, if M is 
compact, rp-'(b) must be finite. 

Now assume that M and N are oriented. Then rp determines an 
integer-valued function x F+ ~ ( x )  on M ,  given by 

0 if (dp), is not a linear isomorphism 
+1 if (dq), preserves the orientation 
-1 if (dp), reverses the orientation. 

Theorem I: Let M and N be compact connected oriented 
n-manifolds and let rp: M 4 N be a smooth map. Assume that b E N is 
a regular value for q and let { x l ,  x 2 ,  ..., x,} be the preimage of b (if 
b E Im rp). Then 

and 
degp  = 0 if b $ I m q  

1, 

degq = .(xi) if b ~ I m p .  
i-1 

In  particular the mapping degree is an integer. 

Proof: If b 4 Im rp, rp is not surjective and deg rp = 0 (Proposition I, 
sec. 6.1). Assume b E Im rp. Choose neighbourhoods Ui of xi ( i  = 1, ..., p )  
so that Ui n U j  = 0 ( i  # j )  and so that the restriction of rp to U, 
is a diffeomorphism onto rp( Ui). Then A = M - Ui U, is a closed, and 
hence compact, subset of M ,  Thus ?(A) is compact. 

Now since b 4 A ,  there is a neighbourhood V of b in N such that 
rp(A) n V = 0 ; i.e. rp-l( V )  C Ui Ui . Since each rp( Ui) is a neighbour- 
hood of b, we can choose V so that 

v c f j  dud. 
i=l 

Let W, = rp-l( V )  n Ui . Then y-l( V )  is the disjoint union of the Wi , 
and the restriction of rp to each Wi is a diffeomorphism of Wi onto V. 
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Now let d E A"(N) satisfy carr d C V and JNd = 1. Since 
carr y*d C y-I( V )  = ui Wi , it follows that 

But v: Wi -+ V is a diffeomorphism. Thus by Proposition XII, sec. 4.13, 

v*A = .(xi) A = .(xi) 1 A = .(xi) 
V N 

and so 
B 

degp, = €(x i ) .  
i=l 

Q.E.D. 

Corollary: Let y :  M + N be a local diffeomorphism. Then deg g, = 1 
if and only if g, is an orientation preserving diffeomorphism. 

Proof: If v is an orientation preserving diffeomorphism, then 
deg g, = 1 follows immediately from Proposition I,6, sec. 6.1. Con- 
versely, assume p7 is a local diffeomorphism with degg, = 1. Define 
~ ( x )  (x E M) as above and set 

U+ = {x E M 1 ~ ( x )  = l }  and U- = {x E M I ~ ( x )  = -1}. 

Then U ,  and U- are open. Since v is a local diffeomorphism, 

M =  u+v u-. 
Since M is connected, it follows that M = U ,  or M = U- . Set 

Now let b E N be arbitrary. Since g, is a local diffeomorphism and 
M is compact, the set g,-'(b) is finite, 

v-'(b) = {a,, ..., a,}. 

Moreover, in view of the theorem, 
rn 

deg cp = C €(ai) = ~(p))  - m, 
i=l 
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whence 
e(v) = m = 1. 

Thus p, is injective and preserves orientations at each point. On the 
other hand, since deg p, # 0, p, is surjective. Thus p, is a diffeomorphism. 

Q.E.D. 

6.4. Examples: 1. Consider S2 as the one point compactification 
of the complex plane C (cf. Example 10, sec. 1.5). Every polynomial 
with complex coefficients and leading coefficient 1 determines a smooth 
map cp: S2 + S2 given by 

j=O 

and 
v ( z m >  = xn * 

We show that p, is homotopic to the map $: S2 .+ S2 given by 

#(z) = 9, Z € C  

#(zm) = z m  * 

Define a smooth map H: R x S2 -+ S2 by 
n-1 

j=O 

H ( t ,  2) = 2" + c ai t z j ,  

H ( t ,  z,) = z, . 

Z E  c 

Then H is a homotopy connecting p, and #. In  particular, deg cp = deg $. 
T o  compute deg # observe that 1 is a regular value for 4 and that 

#-l(l) = { a l ,  ..., an), where uk = exp(2kni/n) (K = 0, I ,  ..., n - 1). It 
is easy to show that $ is orientation preserving at each of these points 
and so we have degp, = deg# = n. 

In  particular it follows that p, must be surjective if n >, 1 and so 
there exists at least one zero of p, (('fundamental theorem of algebra"). 

2. Consider S3 as the unit sphere in the space of quaternions 
(cf. sec. 0.2). Denote the unit quaternion by e. Let cp: S3 -+ S3 be the 
map given by p,(x) = x3. T o  determine the degree of cp, let a E S3 be 
a fixed vector such that (a ,  e) = 0. We shall construct the solutions 
of the equation x3 = a. 

Write 
x = he + y, (e ,  y )  = 0, h E R. 
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Then x3 = X3e + 3A2y + 3Xy2 + y3. But 

and so 
y2 = - (y ,  y)e = -( 1 - h2)e 

x9 = [As - 3h(l - h2)]e + [3h2 - ( 1  - X2)]y. 

Thus x3 = a is equivalent to 

h(4P - 3) = 0, (4x2 - 1)y = a. 

It follows that the solutions'of x3 = a are given by 

x1 = i(d3 e + a),  x, = +(-d/3 e + a) ,  x3 = -a. 

Moreover, it is easy to see that a is a regular value for rp, and that 
e(xJ = 1 (i = 1, 2, 3). Hence 

degp, = 3. 

3. Let Tn be the n-dimensional torus (cf. Example 3, sec. 1.4). 
Recall that the points x E T n  are n-tuples of residue classes of R (mod 1). 
Let p be a positive integer and define rp: Tn + Tn by 

Then all points of T n  are regular values and rp preserves orientations. 
Since the equation rp(x) = 0 has precisely the solutions 

[ 5 ' ] = [ v / p ] ,  v = o  ,..., p - 1 ,  i = l ,  ..., n, 

it follows that deg rp = pn. 
4. Let M be any compact connected oriented n-manifold. We 

shall construct a smooth map rp: M -+ Sn which has degree 1. Let 
( V ,  $, E) be a chart on M (E a Euclidean n-space). Denote by A the 
closed subset of M which corresponds to (z E E I I z I < 2) under 
this map. 

Consider SQ as the one-point compactification of E: 
Sn = E u {zm} 

(Example 10, sec. 1.5) and construct a smooth map a: E -+ Sn so that 

(i) a(.) = z, I x I < 1 
(ii) a-l(O) = 0 

and 

(iii) a(.) = z, , I z I > 2. 
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Define rp: M ---t Sn by 
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rp is well defined and smooth, as follows from (iii). Since 1/1 is a 
diffeomorphism, conditions (i) and (ii) imply that 0 E E C Sn is a regular 
value for rp, and that rp-'(O) = @l(O). Hence deg 9 = &l. In view of 
Example 1, sec. 6.2, there is a smooth map /3: Sn --t Sn with deg /? = - 1. 
Hence, if deg cp = -1, set 'pl = /? 0 rp. Then Proposition I yields 
degrpl = 1. 

6.5. PoincarC duality. Let rp: M -+ N be a smooth map between 
compact oriented n-manifolds. Dualizing rp#: H ( M )  t H ( N )  we obtain 
a linear map (rp#)*: H(M)* --t H(N)* .  

Proposition 111: The diagram 

H ( M )  H ( N )  

D"lr 1 deg'?'DN 

H(M)*  - H(N)*  
('?")* 

commutes (cf. sec. 5.11 for DM , DN). 

Proof: Let ~ E H ( N )  be arbitrary. Then we have, for B E  

<('p#)* DMMp)*a, p> = (DMMP;'(% @p> 

= deg 'p . /* (Y . p = deg ~ p )  (DNa,  p).  
N 

Q.E.D. 

Let rp: M + N be a smooth map between compact 
oriented connected n-manifolds, with deg rp # 0. Then rp#: H ( M )  +- H ( N )  
is injective. 

Proof: 

Corollary I: 

Since deg rp # 0, Proposition I11 implies that (rp*)* 0 DM 0 q~* 

Q.E.D. 
is a linear isomorphism. Hence rp# is injective. 
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Corollary 11: Let y :  S7& + M be a smooth map ( M ,  a compact 
connected oriented n-manifold) with degp, # 0. Then Hp(M)  = 0 
( 1  < p  < n -  1). 

6.6. Mappings through products of spheres. Let S,  , S, denote 
oriented n-spheres with base points a E S,  , b E S,  . Denote the projections 
S,  x S,  --+ Si by pi and let the inclusions Si + S, x S,  opposite 
a, b be denoted by j ,  , j b  . 

Consider smooth maps 
,P * M -+ S1 x S 2  -+ N 

( M ,  N compact oriented n-manifolds) and write 

v1 = p1 0 v3 = 4 o j a  

* b  = * O . i b .  v 2  = P z O %  

Proposition IV: With the hypotheses and notation above, 

deg(+ O v) = deg +b . deg v1 + deg *a * deg v2 * 

Lemma 11: Let 01 E H"(S ,  x S2). Then . = Plft.jb*. + pZ*j(ju*.. 

Proof: By the Kunneth theorem (cf. sec. 5.20), an isomorphism 
E 

K # :  H(S1) 0 H(S2) H(S1 x s 2 )  

is given by 
K # ( %  0 "2) = P1% * Pi?#% . 

Thus K #  restricts to the isomorphism 
N_ 

(H"(S,)  @ I )  @ ( 1  0 H"(S,)) - W(S1 x S2) 

K#(% 0 1 + J 0 . 2 )  = p1#.1 + p2ff.2. 

given by 

Now let 01 E HT'(S, x S,) be arbitrary. Write 01 = p1*a1 + p2#a2 and 
apply the equations 

jo# 0 p2# = I ,  

jb* 0 pL# = 0, 

ja* 0 pl* = 0 

jb# 0 pl# = I .  

Q.E.D. 
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Proof of the proposition: Let wN be the orientation class, s: w N  = 1. 
Then 



s2. The canonical map aM 

6.7. Definition: Let M be an oriented n-manifold and let a E M 
be a point. We shall denote M - {a} by M .  In  this section we shall 
construct a linear map 

(YM: H"-'(M) -+ R. 

First, choose a smooth function f on M so that f = 0 in a neighbour- 
hood of a, and f = 1 outside a compact set. Then Sf is closed and 
has compact carrier contained in A$; thus Sf represents an element 
a, E H:(M). If another such function g is chosen, then f - g E sP0(M) 
and so Sg also represents a,. I t  follows that a, is independent of the 
choice off :  a, is called the localizing class at a. 

Now define aM by setting (cf. sec. 5.9) 

If @ E A"-'(A?Z) represents /3 and Sf represents a, , then 

Next consider a smooth map between oriented n-manifolds, 9): M --t N .  
= N - {q~(a)} and assume that 9) restricts Let A? = M - {a} and 

to a map I+: M -+ N .  

Proposition V: Assume that (dq~),  is a linear isomorphism. Then 
the diagram 

fp-l(n;r) <L fp-l(fi) 

4 1.. 
R+- R 

c 

commutes, where ~ ( t )  = t ( t  E R) if (dy) ,  preserves the orientations and 
~ ( t )  = --t if (dq~),  reverses the orientations. 

252 
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Proof: Since is a linear isomorphism there are connected 
neighbourhoods U of a and V of ~ ( a )  such that tp restricts to a diff- 
eomorphism of U onto V (cf. Theorem I, sec. 3.8). Choose g E Y(N) 
so that g is zero in a neighbourhood of ~ ( a )  and so that carr( g - 1) 
is compact and contained in V.  Define f E Y ( M )  by 

Then Sf and Sg represent aa and . 
Now consider a closed form YE A"-l(N). Then 

8g A yEA,?(V) 

and thus, by Proposition XII, sec. 4.13, 

On the other hand, since Sf(x) = (Sv*g)(x) (x E U )  and carr S fC  U, 
we have 

It follows that 

whence 

Q.E.D. 

6.8. Euclidean spaces. Let S denote the unit sphere of an oriented 
n-dimensional Euclidean space E (n 2 2) and let I? = E - {O}. The 
inclusion map i: S ---+ E induces an isomorphism 

i*: H"-'(S) E H"-1(8) 

(cf. Example 5 ,  sec. 5.5). On the other hand, consider the isomorphism 
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and the canonical linear map aE: Hn-l(&) --t R, where S is given the 
orientation induced by the orientation of E. 

Proposition VI: 

In  particular, aE is an isomorphism. 

Proof: Let 0 E be a closed form and let f E Y ( E )  satisfy 

We must show that 

j 8 j A  @ = j i*@. 
E S 

Let B be the open unit ball in E. Then Sf A 0 has carrier in B. Moreover, 
since 0 is closed, Sf A @ = S( f - 0). Now Stokes' theorem (Theorem 11, 
sec. 4.17) yields 

6 

8f A @ = 8( f .  @) = J i * ( f '  @) = 1 i*@. 
E B S S 

Q.E.D. 
In view of Proposition V, sec. 6.7, Proposition VI has the obvious 

Corollary: 
to R". Let a E M ,  

Let M be an orientedn-manifold (n 3 2) diffeomorphic 
= M - {a}. Then the map 

OLM: H"-'(M) --f R 

is a linear isomorphism. 

6.9. Mayer-Vietoris sequences. Let M be a compact oriented 
n-manifold. Suppose U, (i = 1, ..., Y )  are disjoint open subsets of M 
and that ai E Ui (i = 1, ..., Y ) .  Set 

7- 

u = u Ui , V = M - { a l ,  ..., a,} 
i=l 

and 
rid = ui - { ui}, i = 1, ..., Y. 
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Then 
c 

U U V = M  and u n V = ( J O i .  

Thus according to sec. 5.4 we have the exact triangle 

i=l 

H ( M )  ' H ( U )  0 H ( V )  

On the other hand, consider the linear maps 

aUi: H"--1(Ui) .+ [w, i = 1 ,  ..., r ,  

as defined above. We denote them simply by ai . These maps determine 
the linear map 

a : @ ;=, H"-'( 02) --f [W 

given by 
T 

481 0 * * -  0 8 7 )  = c %(Pi), 
1 

Proposition VII: With the hypotheses 
the diagram 

pi E Hn-l(Ui) .  

and notation defined above, 

Proof: It is sufficient to show that 

jp ap = a1(/3), p E H"-l( UJ. 
M 

Let @ E /I7'-'( 0,) be a closed form representing p. Extend @ to U n V 
by setting 

@(x) = 0, x E i, ui . 
i=2 
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Choose a partition of unity { f , g }  for M subordinate to the open 
covering by U and V. Then 

f * @ E &-I( V ) ,  g * @ E A"-,( U),  

and the element i3g is represented by the form Q E A " ( M )  given by 

S(g@)(x), x E u 
B(x) = I -8( f@) (x ) ,  x E v. 

Hence 

j* ap = j B. 
M M 

On the other hand, carr LR C U ,  . Thus 

J M n  = ju , '  = JU, 8g A @. 

Moreover, f and g can be chosen so that g = 0 in a neighbourhood 
of a, , and g = 1 in U1 - K for some compact set K C U ,  . With this 
choice 

J' @ = 1 = 1 8g A @ = a,@). 
M M u1 

Q.E.D. 

6.10. Products. Let M and N be oriented manifolds of dimensions m 
and n respectively, and give M x N the product orientation. Choose 
points a E M, b E N and set 

M = M - {a}, 1ST = N - {b} ,  M jC N = M x N - {(a, b)}.  

Then we have linear maps 

aM: Hrn-l(M)+ R, aN:  H y N )  + R 

and 
a M X N :  Hrn+n-l(M i< N )  + R 

Now consider the open covering U ,  V of M x N given by 

U = M x N ,  V = M X N .  

Then 

u n v = n;l x 10. 
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Hence we obtain the exact triangle 

H ( M  x N )  

(cf. sec. 5.4) and the exact triangle 

(cf. sec. 5.10). Moreover, the Kunneth homomorphisms 

K # :  H ( M )  @ H(&) -+ H(M x m), (Kc) * :  Hc(M) @ Hc(N)  + H c ( f i  X N )  

are defined (cf. sec. 5.17 and sec. 5.18). 

Proposition VIII: With the hypotheses and notation above the 
diagram 

fp-l($f) @ H n - l ( N )  L+ Hm+n-2 ( M  x rn) 

Hm+n-'(M i< N )  
(-1)muM aa.1 la 

" M x N  
R 4  

commutes. 

Lemma 111: The localizing classes a, E Hk(&), ab E Hk(m), and 
E HE(M i< N) are related by 

Proof: Choose f E Y ( M )  so that f is zero near a and f - 1 has 
compact carrier. Choose g E Y(N) to be zero near b and so that g - 1 
has compact carrier. Then Sf x Sg represents (.,.)#(a, @I a*). 
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Next observe that a closed form w E A;(M x N) is defined by 

w = (f- I )  x sg + Sf x (g - 1). 

Moreover, 

(f - 1) x Sg E AA(M x N )  and 

Thus, if w represents y E Ht(M 2 N), then acy is represented by 
Sf x 6g; i.e. 

Sf x (g - 1) E AA(II;I x N ) .  

aCy = (.C)#(% 8 Olb). 

Finally, define h E Y(M x N) by 

h = f x  1 + I  x g - f x g  

and note that 
w = -ah. 

When f ( x )  = 0, g ( y )  = 0, then h(x ,y )  = 0; thus h is zero in a 
neighbourhood of (a, b) .  1 - h can be written 

1 - h = (1  -f) x (1 -g) 

and so carr( 1 - h) C carr( 1 - f) x carr( 1 - g) is compact. It follows 
that Sh represents C Y ( ~ , ~ )  ; i.e. 

Proof of the proposition: Let u E Hm-l(@), 7 E Hn-'(N). Then it 
follows from Proposition VII, sec. 5.11, that 

aCa(a ,b)  * 8 - - 

Applying the lemma, and using Proposition XIII, sec. 4.13, yields 

Q.E.D. 
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Let F: M + N be a smooth map between oriented 
n-manifolds (n 2 2). A point a E M will be called isolated for q ~ ,  if 
there exists a neighbourhood U of a such that 

6.11. Definition. 

d.4 # da) ,  x E u - {a>. 

We shall define the local degree of q~ at an isolated point a. Choose 
charts (U, u, Rn) on M and (V, o, Rn) on N so that a E U, ~ ( a )  E V and 
9) restricts to a smooth map 

Write U - {a} = 0, v - {cp(a)} = P. 
9:  u - {a} + v - {&)}. 

The corollary to Proposition VI, sec. 6.8, gives linear isomorphisms 

a": H"-l(U) 5 R, ay: H'+l(V) -% R. 

Thus a linear map fw: R --t R is determined by the commutative diagram 

H ~ z - l ( o ) ~  +* f f n - l ( p )  

."1S +" 
R-R 

fW 

Lemma IV: 

Proof: 

The map fa is independent of the choice of U and V. 
Let (U', u', Rn) and (V, o', Rn) be a second pair of charts 

satisfying the conditions above. It is easy to reduce to the case U' C U,  
V' C V. Then Proposition V, sec. 6.7, implies that the diagram 

H"-'( U )  i @ H"-'( P) 

R-R , /  fW \ 
Hn-'( U )  Hn-y  P) 

v 
commutes, and the lemma follows. Q.E.D. 

259 
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Definition: The number f,(l) is called the local degree of cp at a 
and will be denoted by deg,cp. 

The defining diagram shows that 

degap, = % V ( Y ) ,  

where y E Hn-l( P) is the unique element satisfying a&) = 1. 

Example: Maps between Euclidean spaces: Suppose cp: E --+ F is a 
smooth map between oriented Euclidean spaces of dimension n (n >, 2) 
such that cp-l(O) = 0. Set l? = E - {0}, # = F - (0) and denote the 
unit spheres of E and F by SE and SF , respectively, with inclusion maps 

iE: SE ---+ B and iF: S, + F. 

Let pF: # --+ S, be the projection y H y/l y 1. Then 

4 = p F o 9 ) O i E :  sE+ SF 
is a smooth map. 

Proposition Ix: With the hypotheses and notation above 

deg $ = deg, p,. 

Proof: Let +: --+ # denote the restriction of cp. Let 

= q ( 1 )  E H f y F ) .  

Then, using Proposition VI, sec. 6.8, we find 

On the other hand, recall from Example 5 ,  sec. 5.5, that pp" = (i;)-l. 
Thus 

S E  

= deg 4 * j' iF#(/3) = deg 4 * = deg 4. 
SF 

Q.E.D. 
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Proposition X: Let q: M + N be a smooth map between oriented 
n-manifolds (n >, 2). Suppose a E M is isolated for q. 

(1) If (dv),  is a linear isomorphism, then 

where E = +1 if (dq), preserves the orientations, and E = -1 if 
(dq), reverses the orientations. 

(2) If #: N +  Q is a second smooth map between oriented 
n-manifolds and q(a) is isolated for #, then a is an isolated point 
for # 0 q and 

dega(4 0 V) = degw(a) + * dega V. 

(3) 
(4) 

deg, q is an integer. 
Let 4: P --t Q be a smooth map between oriented r-manifolds. 

Suppose b E P is an isolated point for #. Then (a, b) is an isolated 
point for q x a,b and 

deg(a,dV x 4)  = dega 'P . deg, (6. 

Proof: (1) follows from Proposition V, sec. 6.7. (2) is obvious. 
(3) follows from (1) and (2), together with Proposition IX and Theorem I, 
sec. 6.3. (4) is a consequence of Proposition VIII, sec. 6.10, formula 
5.3, sec. 5.4, and some elementary diagram chasing. 

Q.E.D. 

6.12. Examples: 1. Let E and F be oriented n-dimensional vector 
spaces (n 2 2) and let q: E +F be a linear isomorphism. Then 
degoq = 1 if q preserves the orientations, and deg,q = -1 if q 
reverses the orientations, as follows from Proposition X, (l), sec. 6.11. 

In particular, if u: E + E denotes the map x t-t -x, then 

deg, (I = (-l)n. 

2. Let q: E .--t F be a smooth map between oriented n-dimensional 
vector spaces (n >, 2) such that q-'(O) = 0. Define a map -q: E --t F by 

(-V)(X) = -'P(x), 

dego(-'P) = (- 1)" dego P. 

X E E.  

Then 
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In fact, write -p = a 0 p where a: F -+ F is the linear isomorphism 
given by y t+ -y. Then, Proposition X, (2), together with Example 1, 
yields 

deg,( -9) = deg, u deg, v = (- 1 >” deg, I, 

3, Let p: C ---t C be defined by 

v(z) = z p ,  p = 1,2, ..., * 

Then Proposition IX, sec. 6.1 1, shows that 

dego v = P, 

since the restriction of p to the unit circle S’ has degree p (cf. Example 3, 
sec. 6.2). 

4. Maps Sn + Sn with given degree: Let E be an oriented 
(n + 1)-dimensional vector space, n 2 1. Write E = C @ F, where F 
is an (n - 1)-dimensional vector space. Introduce an orientation in F 
so that the product orientation coincides with the given orientation of E. 

Let p: C -+ C be the map given by 

v(z) = zp, p = 1,2, ..., 

and consider the map p x L :  E --t E. Combining Example 3 with 
Proposition X, (4), we obtain 

deg,(g, x I )  = deg, tp = p .  

Next, endow E with a Euclidean metric, and let Sn be the unit 
sphere. Then a smooth map #: Sn -+ Sn is given by 

It follows from Proposition IX, sec. 6.1 1, that 

deg (G. = deg,(p, x L) = p .  

In a similar way a map #: Sn -+ Sn of degree - p  can be constructed. 

Remark: Let M be any compact connected oriented n-manifold. 
According to Example 4, sec. 6.4, there exists a smooth map p: M -+ Sn 
with deg # = 1. Composing with the map # yields a map M 4 Sn 
of degree p .  
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Example 5: Let E be an oriented Euclidean n-space. Define 
qx E - +  E by 

p(x )  = - ( x ,  X ) U  + 2 ( ~ ,  U)X ,  x E E,  

where a is a fixed unit vector. Then cp restricts to a map 9: l? -+ I?. 
We shall show that 

deg,p = 1 + (-l)n. 

Let Sn-' denote the unit sphere of E and define +: Sn-l -+ Sn-l by 

x E 5-1. 

Proposition IX, sec. 6.1 1, shows that 

deg 4 = deg, p, 

T o  compute deg $, we use Theorem I of sec. 6.3. 
First it will be shown that +-l(u) = {a, -a}. Suppose $(x) = a. Then 

-(x, x ) a  + 2(x ,  a )x  = ha, h E R, h > 0; 

i.e., 
(A + ( x ,  x ) ) a  = 2(x ,  a )x .  

Since h > 0, it follows that h + I x l 2  > 0, whence (x, a)  # 0. Thus 
we obtain 

+ ( x ,  x> a. 
X =  

2 (x ,  a)  

Since I a I = 1, it follows that x = f a .  On the other hand, clearly, 
#(a) = $(-a) = a and so +-l(a) = {-a, a}. 

Next we compute (d,h), and (d$)-a. Observe that the linear maps 
rp'(a) and tp'(-a) are given by 

p'(a) = 2~ and p'(-a) = -2~.  

Now let h E T,(Sn-'). Evidently 

(~$)J'Z = 2h. 

Similarly, 
(d*)-a h = -2h, h E T-,(S"-l). 
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These relations show that (@), is orientation preserving, and that 
(di,h)-, is orientation preserving if and only if n is even. Thus a is a 
regular value for #, and Theorem I yields 

deg# = 1 + (-1y. 

6.13. Local degree and global degree. In  this section we shall prove: 

Theorem 11: Let rp: M .+ N be a smooth map between compact, 
connected, oriented n-manifolds (n >, 2). Let b E N be a point for 
which the set {rp-l(b)} is finite, 

v-'(b) = {a,  , ..., a?}. 

Then 

Remark: This generalizes Theorem I of sec. 6.3. 

Proof: Choose charts ( Ui , u, , UP) on M and (W, w, Iw") on N so 
that the U, are disjoint and a, E U, (i = 1, ..., Y) and b E W. Set 

f 

u* = ui - { ai}, V = M - {a, ,  ..., a7}, U = u U, . 
i=l 

Then 
7 

U u V = M ,  u n v = u u i .  
1-1 

Assume the choices of U , ,  W have been made so that rp restricts 
to smooth maps rp,: Ui --+ W. Then cpi restricts to (i,: 0, --+ l@ 
(l@ = W - {b}). By definition 

degas 'p = mu, ~$~#a;;'( 1). 

The  (i, define a map rpunv: U n V .+ 

On the other hand set a, = aui and write 
(simply the restriction of cp). 

a = @;=l ai : Hn-l(U n V )  --+ Iw. 
We have 

r c degus 'p = (a  O v;n y O ail)(  1). 
i=l 
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Finally, the triples ( M ,  U, V )  and ( N ,  W,  N - {b)) lead to exact 
Mayer-Vietoris triangles. Denote the connecting homomorphisms by 
8,: H ( U  n V )  + H ( M ) ,  a,: H ( w )  + H ( N ) .  Then (cf. sec. 5.4) 

a M ~ # v r \ v  = ~ " a ,  - 
Thus we can apply Proposition VII, sec. 6.9, twice to obtain 

= deg p 1' aNail(  1 )  = deg p. 
N 

Q.E.D. 
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Let M be a compact connected oriented n-manifold. Recall, from Prop- 
osition I, sec. 6.1, that any two homotopic smooth maps rp, +: M -+ Sn 
have the same degree. The  converse is true as well: if rp, +: M --t Sn 
have the same degree then rp and + are homotopic. This is a theorem 
of H. Hopf, cf. [8, p. 1491. It is the purpose of this article to establish 
this result in the case M = Sn. (The reader is invited to attempt the 
proof of the general theorem.) 

6.14. Suspension. Consider the unit sphere Sn (n 2 1) of an 
(n + 1)-dimensional Euclidean space E. Choose two fixed points 
xN E Sn and xs = -xN E Sn, called the north pole and the south pole. 
The  (n - 1)-sphere given by 

{x E s" I (x, XN) = o} Sn-1 = 

will be called the equator sphere. The  closed subsets of Sn given by 

H N  = {x E 8" I (x, XN) 2 0) 

and 
Hs = {x E S" 1 (x, XN) < O} 

will be called the north and the south hemisphere. 
Now fix a smooth function w :  R -+ R which satisfies the conditions: 

(1) w(-t) = - w(t) 

(3) w-1(0) = 0. 
(2) I w ( t )  I < 4 2 ,  t E R, and w(t )  = ~ / 2 ,  t > 1 - E > 0, 

Set @(t)  = sin o(t) and Y(t) = cos w(t ) ,  t E R, and, for each smooth 
map f: Sn-l 3 Sn-l, define a smooth map a,: Sn --+ Sn as follows: let 
y = (x, xN) and put 

x = XN 

uf(x) = @('Y) xN + y(y) f ( I - yxN ), # xN > xS 
- yxN I 

x = x s .  I::: 266 
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u, will be called the suspension off. It extends f and preserves the north 
and south hemispheres of Sn. Moreover ufl(Sn-l) = Sn-l. 

Lemma V: If f: Sn-l-+ Sn-l  and g: Sn-' -+ Sn-l are homotopic 
maps, then so are the suspensions uf and ug . 

Proof: Let h: IW x Sn-l -+ Sn-l be a homotopy connecting f and g. 
Define H: 08 x Sn + Sn by 

H(t ,  x) = %*(X), 

where h,(y) = h(t,  y). Then H is a homotopy connecting at and ug, 
Q.E.D. 

Proposition XI: Let f: Sn-l -+ Sn-l ( n  2 2) be a smooth map and 
let a, be the suspension off. Then 

deg uf = deg f. 

Proof: Define open sets U ,  V on Sn by 

Similarly, set (for 0 < a < 1) 

and 

Since of preserves north and south hemispheres, for some a E (0, l),  

uf( U,) C U and uf( V,) C V. 

The triples (Sn, U, V) and (Sn, U,, V,) induce exact cohomology 
triangles (cf. sec. 5.4). In view of formula 5.3, sec. 5.4, we obtain a 
commutative diagram: 

~ n - l (  U ,  n VJ -% H"(S") 

a , q  t.,* 
Hn-'( U n V )  ---+ Hn(Sn) , a 
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where cI: U ,  n V ,  --t U n V is the restriction of uf . Since U, , V ,  , 
U,  and V are all contractible and n 2 2, it follows from the exactness 
of the cohomology triangles that the linear maps 8 and a, are isomor- 
phisms. 

Since of extends f, the inclusions 

i,: Sn-' -+ U, n V, , i :Sn- l+Un V ,  

induce a commutative diagram 

Moreover, according to Example 6, sec. 5.5, the horizontal arrows are 
isomorphisms. Combining (6.1) and (6.2) gives the commutative 
diagram 

Hn-l(Sn-l , Hn( Sn) 
E 

) 

t OfX (6.3) 
N - 

f* t 
Hn-1(Sn-1) H n ( S n ) .  

a 4 P - l  

Finally, the inclusion (S", U,  , V,) -+ (Sn, U ,  V) induces an isomor- 
phism of Mayer-Vietoris sequences: in particular we have the com- 
mutative diagram 

Hn-l(U, n V,) 

p - l (  Sn-1 1 Hn(Sn) 

Hn-l(  U n V )  

It follows that a, o (ia#)-l = a o (i#)-l. The proposition is now an 
obvious consequence of (6.3). 

Q.E.D. 
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6.15. Proof of the Hopf theorem. Lemma VI: Let 9: Sn --t Sn 
be a smooth map such that v ( H N ) C  H N  and v(Hs)C Hs and let 
f: S"-' --t Sn-l be the restriction of v. Then q~ is homotopic to a,. 

Proof: Since 
d H N )  H N  3 d H S )  H S  

and 
u j ( H N )  C H N  , u, (HS)  C Hs , u;'(S"-') = Sn-l, 

it follows that 
v(x) # -+), x E sn. 

Hence, according to Example 7, sec. 5.5, v is homotopic to uf. 
Q.E.D. 

Lemma VII: Every map q ~ :  S" -+ S" is homotopic to a map 
+: S" -+ Sn which satisfies 

#: H N  - Sn - {x,}, 4: H S  4 S" - { x N } .  

Proof: Choose regular values a, b for q. Then the sets v-l(a) and 
cp-l(b) are finite (possibly empty): 

cp-'(a) = {a,, ..., U D } ,  +(b) = {b,  , ..., bq}. 

In  view of the corollary to Theorem 111, sec. 1.12, there exists a dif- 
feomorphism a: S" --+ Sn homotopic to the identity and satisfying 

.(a,) E Sn - H S  , ~ ( b j )  E S" - H N  , i = 1, ..., p ;  j = 1, ..., 4. 

Similarly, there is a diffeomorphism 8: S" 
identity, such that 

S", homotopic to the 

!(a) = xN and !(b) = xs . 
o 01-l satisfies the required conditions (cf. sec. 1.10). 

Q.E.D. 
The map + = f l  o 

Lemma VIII: Every smooth map 9: S" -+ S" is homotopic to a 
smooth map +: S" -+ S" which satisfies +(ElN)  C H N  and J/(Hs) C Hs . 

Proof: In view of Lemma VII we may assume that 

T ( H N )  Sn - {x.S}~ d H S )  '" - {xN)* 
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Since v(HN) and v(Hs) are compact, there is an a ~ ( 0 ,  1 )  such that 

d H N )  uu and d H S )  va . 

Here U,  , V ,  are the sets in the proof of Proposition XI. 

Let A: R --+ R be a smooth function satisfying the conditions 

(1) 0 < A(t) < 1 
(2) A ( t ) = O , I t l > l - €  ( O < E < l - U )  

(3) A(t) = 1, I t 1 < a. 

Define a map x: Sn -+ Sn by 

where y (x )  = (x, xN). Then x is homotopic to the identity and 

x ( u u )  HN > x ( v a )  H S  * 

Set # = x 0 v. Then # - rp and 

#(HN) HN 9 # ( H S )  H S  * 

Q.E.D. 

Proposition XII: Let y :  Sn --f Sn be smooth (n 2 2). Then there 
is a smooth mapf: Sn-l -+ Sn-l such that v is homotopic to a,. 

Proof: Choose #: Sn -+ Sn to satisfy the conditions of Lemma VIII. 
Let f be the restriction of # to Sn-’. Then Lemma VI gives 

v -* “Of * 

Q.E.D. 

Theorem I11 (Hopf): Let v: Sn + Sn and t,b: Sn --t Sn (n 2 1) be 
smooth maps such that 

Then v and # are homotopic. 

deg = deg #, 

Proof: The case n = 1 has been settled in Proposition 11, sec. 6.2. 
Now we proceed by induction on n. Assume the theorem holds for 
some n - 1 2 1 and let v: Sn --t Sn, I#: Sn + Sn be maps such that 

deg ‘p = deg 
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According to Proposition XII, there are smooth maps f: 
g: Sn-' -P Sn-'such that 

-+ Sn-1, 

v -uf  and # - u g ,  

Now Proposition XI implies that 

deg f = deg rp = deg + = degg. 

Hence, by induction, the maps f and g are homotopic. Applying 
Lemma V, sec. 6.14, we find 

v - or - u g  - 4, 
whence cp - +. 

Corollary I: A map cp: Sn -+ Sn of degree 
identity map. 

Corollary 11: Let cp: Sn -+ Sn be a smooth 
Then tp can be extended to a smooth map 

*: Rn+l+ S" 

so that 

Q.E.D. 

is homotopic to the 

map of degree zero. 

Proof: Fix e E Sn. In view of Theorem I11 there is a smooth map 
h: R x Sn -+ Sn such that 

h(t,  x) = e ( t  < 0) and h(t ,  x) = ~ ( x )  ( t  2 l), x E Sn. 

Choose a smooth function A: R -+ R such that 

I t I 2 1, 

I t I < e. 

A(t) = 1, 

A(t) = 0, 

and 

(some E E (0, 1)). Define + by 

Q.E.D. 
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Next, let E, F be oriented Euclidean spaces of dimension n + 1 
(n 2 1) .  Let S, and S, denote the unit spheres of E and F and let 
I? = E - {0}, # = F - {O}. Assume 'p: I? -+ # is a smooth map and 
define 9: S ,  + SF by 

Corollary 111: With the notation defined above, assume 

deg + = 0. 

Then there is a smooth map q :  E -+ # so that 



Problems 

1. 

(i) Show that 

Let 8, B be closed oriented unit balls in Euclidean n-spaces. Let 
Q:  B ---t B be a smooth map which restricts to a map $: Sn-l 4 Sn-l. 

(ii) Assume that b E B is a point such that y-l(b) consists of finitely 
many points {a,}, all in the interior of 8. Show that 

deg * = 1 degq P- 
i 

(iii) Generalize these results to arbitrary oriented connected compact 
manifolds-with-boundary. 

2. Let (M, aM) be a compact connected oriented (n + 1)-manifold- 
with-boundary. Let N be a compact connected oriented n-manifold and 
assume that $: aM -+ N extends to a smooth map y :  M + N. Show 
that deg$ = 0. 

3. Proper maps. Let y :  M + N be a proper smooth map between 
connected, oriented n-manifolds. Define deg Q by the relation 

(PC)*WN = deg P * mA4 9 

where uM and uN are the orientation classes. 

(i) Show that the properties of the mapping degree generalize appro- 
priately. In particular, show that degF is an integer, invariant under 
proper homotopies. 

(ii) Find examples of proper maps which are homotopic but not 
properly homotopic. 

(iii) If y-l(b) consists of finitely many points, {u,}, show that 

deg P = c dega, P. 
i 

4. Suppose y :  M ---t N is a smooth injective map between compact 
oriented n-manifolds. Prove that deg Q = &l and conclude that Q is 

273 
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bijective. Show that deg, cp = deg cp, a E M. Is cp necessarily a diffeo- 
morphism ? 

5 .  Suppose a E M is an isolated point for a smooth map cp: M --+ N 
of n-manifolds. If deg, cp # 0,- show that, if U C M is any open set 
containing a, there is an open set V in N such that cp(a) E V C cp( U). 

6 .  Let ( E ,  ir, B, F )  be a smooth bundle. Assume that E and B are 
compact, oriented and connected, and that F consists of p points. Com- 
pute the degree of x .  

7. Degree mod 2. Let q: M - t  N be a smooth map between compact 
connected n-manifolds (not necessarily orientable). 

(i) Let a E M be an isolated point for cp. Choose local orientations in 
charts about a and cp(a) and define deg,cp with respect to these. Let 
Deg,q be the mod 2-reduction of the integer deg,cp. Show that it is 
independent of the choice of local orientations. 

(ii) Let b E N be such that cp-l(b) = {ai}  is finite. Show that the sum 
Ci Degai cp (addition in Z,) is independent of the choice of b. It is called 
the mod 2-degree of q. 

(iii) Show that, if the mod 2-degree of a map is nonzero, then the map 
is surjective. 

(iv) Let U C N be chosen so that U and v-'U are orientable and let 
$ be the restriction of to cp-lU. Show that $ is proper. Show that 
reduction mod 2 of deg $ is independent of the choice of orientations 
in U and q-'U and coincides with the mod 2-degree of cp. 

8. Complex functions. In  this problem S2 is the Riemann sphere. 

(i) Let f and g be polynomials with complex coefficients. Interpret f/g 
as a smooth map S2 -t S2 and compute its degree. 

(ii) Le t fbe  a complex differentiable function with an isolated zero or 
pole (of order > 0) at a and regard f as a map into S2. Show that a is 
an isolated point for f and that 

where c is a sufficiently small positively oriented circle about a. How is 
deg, f related to the order of the zero or pole a ? 

(iii) Let f be a complex differentiable function defined for I z I < r ,  
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r > 1,  with no zeros or poles on S1. Define cp: S' + S1 by cp(z) = 

f(x)/lf(z)l. Show that 

Interpret this in terms of the zeros and poles offinsideSl(cf. problem1,ii). 

9. RouchC's theorem. Let cp) I): & -+ # ( E ,  F oriented Euclidean 

I x I = a* 

n-spaces) satisfy (for some a > 0) 

I P ) ( 4  -*(.)I < I a(x)l, 
Show that 

dego v = dego * 
10. Quaternions. Consider S3 as the unit sphere in the space of 

quaternions and consider S4 as the 1-point compactification of W. 

(i) Find the degree of the map S3 + S3 given by x + xp ( p  E Z). 
(ii) Letf and g be polynomials with quaternionic coefficients. Interpret 

(iii) Show that if q E W and f is as in (ii) then the equationf(x) = q 
g-yand fg-l as smooth maps S4 + S4 and compute the degrees. 

has a solution. 

11. Smooth maps from S". (i) Let cp: Sn -+ Rnfl be a smooth 
map (n even). Show that cp(a) = ha for some a E Sn, h E R; conclude that 
every vector field on Sn has a zero. Is this true for n odd ? 

(ii) Let cp: Sn + Sn (any n) satisfy +x) # ~ ( x ) ,  for x E Sn. Show 
that cp has odd degree and conclude that is surjective. (Hint: Reduce 
to the case cp(-x) = -cp(x).) 

Let cp: Sn + Rn (any n). Show that 
cp(a) = cp(-a) for some a E Sn. Conclude that iffi E Y ( S n )  (z' = 1, ..., n)  
are odd functions, they have a common zero. 

(iii) (Borsuk-Ulam theorem) 

12. Consider a covering of Sn by n + 2 closed sets A , ,  ...) A,,, 
such that none of the Ai contains a pair of antipodal points. Show that 

A, n ... n An+2 = D ,  

while for e a c h j  ( 1  < j  < n + 2) 

A ,  n ... n A, ... n An+2 # i a .  

Express this property in terms of the nerve of the covering. Conclude 
that, for every covering of Sn by n+ 1 closed sets, at least one of these sets 
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contains a pair of antipodal points (theorem of Lusternik-schnirelmann- 
Borsuk). Hint: Use problem 11. 

13. Linking number. Let M, N be compact, connected, oriented 
manifolds, respectively of dimensions p and q. Let E be an oriented 
Euclidean ( n  + 1)-space, where n = p + q. If cp: M -+ E, $: N -+ E 
are smooth maps such that p)(x) # $( y )  (x E M ,  y E N ) ,  their Zinking 
number, l(p, $), is defined by &cp, $) = deg x, where x: M x N + Sn 
is given by 

(i) Show that l(q, 4) = (-l)(p+l)(Q+l)l(#, q). 
(ii) If v t ,  $ t  are homotopies such that v t ( x )  

t R), show that 4% , $0) = 4% 9 $1). 

(iii) If cp(M) and $ ( N )  can be separated by a hyperplane, show that 

(iv) Define xl: M x N -+ 2 by xl(x, y) = #( y) - ~ ( x ) .  Let A ,  be 
the positive normed determinant function in E. Define $2 E An(,!?) by 

4% $1 = 0. 

1 
Q(x; h, , ..., hn) = - A,(x, h1 > * * * i  hn)* I x y + 1  

Show that 

where K~ = vol Sn (cf. sec. 4.15, and problem 6, Chap. IV). 
(v) If A4 = N = S', show that 

14. Winding number. Let M be a compact oriented connected 
n-manifold and let Rnfl be an oriented Euclidean (n + 1)-space. Let 
cp: M -+ Rn+l be smooth and assume that a Im cp. The integer 

w a ( d  = k d 

(where a is regarded as the constant map {u} + Rn+') is called the 
winding number of about a. 

(i) Show that w,(cp) is the degree of the map M -+ Sn given by 
x I-F ( d x )  - 4ll d x )  - a 1. 
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(ii) Show that if v and 4: M -+ Rnfl - {a} are homotopic (as maps 

(iii) Interpret w,(p)) via an integral (problem 13, iv), and via solid 

(iv) Show that the function a I+ w,(v) is constant in each component 

into Rn+l - { a 11, then w d v )  = wa(4). 

angles (problem 6, Chap. IV). 

of Rn+l - I m  y .  

w,(v) # 0. Conclude that Rn+l - Im tp has at least two components. 
Use a tubular neighbourhood of Im y to show that Rnfl - I m  y consists 
of exactly two components. 

(vi) Show that every compact n-dimensional submanifold of Rn+l 
is orientable. (Hint: Use problem 7.) 

(v) If is an embedding, show that for some a E Rn+l - I m  % 

15. Rotation number. Let R2 be an oriented Euclidean plane. 
Let d be the positive normed determinant function. Suppose cp: S1 -+ R2 
is an immersion and define f: R -+ R2 by f ( t )  = tp(exp 2 4 .  The  
rotation number of cp is defined by 

(i) Show that p(v )  is the winding number of I$: S1 -+ R2 about the 
origin. Conclude that p(v) E Z. 

(ii) (Whitney-Graustein theorem) Two immersions vo and pll of S1 
into R2 are called i-homotopic, if there exists a connecting homotopy 
vT (0 < T < 1) such that each map qT: S1 -+ R2 is an immersion. Show 
that two immersions are i-homotopic if and only if they have the same 
rotation number. Hint: T o  show that the condition p(q0) = p(vl) is 
sufficient consider first the case that the rotation number is different 
from zero. Establish the following lemma: Let z: R -+ R2 be a non- 
constant smooth map satisfying z(t + 1) = z( t )  and I z(t)l = 1. Then, 
I J : z ( t ) d t I  < 1. 

(iii) Consider the mapf: R -+ R2 given by 

f ( t )  = (--& 1 + cosa 2 d  cos 2Tt,  - 2& sin h t ) .  

Show thatfdetermines an immersion S1 ---t R2. Show that this immersion 
is not i-homotopic to the standard immersion S1 -+ R2. 

(iv) Show that the rotation number of an embedding is f2n. Hint: 
Use parts v and vi. 
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(v) Letf: R + R2 be a smooth map satisfying If( t) l  = 1 andf(t) = f ( ~ )  
if and only if t - T E Z. Define F :  R --+ S' by 

t E E ,  

where ~ ( t )  = 1, if 2k < t < 2k + 1 and ~ ( t )  = -1, if 2k + 1 < t < 2k, 
k E Z. Show that F is smooth. Find a function w E Y ( R )  such that 
F ( t )  = (cos w ( t ) ,  sin w ( t ) )  (cf. problem 15, Chap. V). Prove that 
w(1) - w ( 0 )  = ktn. 

(vi) Letf, E be as in (v). Define @: R x R + R2 by 

t - , - E n .  

Show that @ is smooth. Find !2 E Y ( R 2 )  such that 

@ ( t )  = (cos Q(t) ,  sin Q(t) )  and Q(0, 0) = w(0). 

Conclude that Q(1, 1 )  - Q(0,O) = f2v.  

16. Parallelisms. Let M be a compact connected oriented manifold 

(i) Show that there is a unique parallel n-form, d, on M such that 

(ii) Let v: M ---f M be smooth and fix a E M .  Set P(a, x) = P(x)  and 

with parallelism P (cf. problem 14, Chap. IV). 

JM d = 1. I f f €  Y ( M ) ,  set J M f ( x )  d~ = JMf .d .  

define F :  M + L( T J M ) )  by 

F ( x )  = mWP1 O (dV>Z O w4. 
Show that for f E Y ( M )  

( ~ * f ) ( x )  detF(x) dx = deg g~ f ( x )  dx. 
M M 

17. Fundamental class. Let z = xi kioi be a smooth integral cycle 
on a compact oriented n-manifold representing the fundamental class. 
Suppose b E M satisfies the following condition: For each i, o;l(b) = {aij} 
is finite and contained in d, (cf. problem 12, Chap. V). Show that 

ki dega,, u, = I .  
i . i  
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18, Show that two maps from a compact oriented connected n- 
manifold into Sn are homotopic if and only if they have the same degree. 

19. Let 'p: M -+ N be a smooth map between compact connected 
oriented n-manifolds. Show that 'p is homotopic to a map t,h: M - t  N 
such that for some b E N, t,h-l(b) contains I deg v I points. In  particular, 
show that if deg 'p = 0 then y is homotopic to a map which is not 
surjective. 

20. 

(i) 

Denote by @, the Riemann sphere. 

Show that the 2-form 0 in C given by 

extends to a %-form, Y, in C, such that Y(zm) # 0. 
(ii) Use Y to show that the map 9: Cm + C, given by 

v(4  = zp,  P E z, 
has degree 1 p I . 

Let S2 denote the sphere of radius 4 in R3 with north pole N 
and south pole S and let r~ be the stereographic projection of S2 from N 
to Ts(S2). Identify T'(S2) with @ and show that u * Y is the restriction 
of the positive normed determinant function in R3 (with respect to an 
appropriate orientation) to S2.  

(iii) 



Chapter VII 

Integration over the Fibre 

SI. Tangent bundle of a fibre bundle 

7.1. The vertical subbundle. Let (E, T,  B, F )  be a smooth fibre 
bundle with dim B = n, d i m F  = r.  The  derivative of n is a bundle 
map between the tangent bundles; 

dn: TE -+ 78. 

Definition: The  space 

V z ( E )  = ker(dn), , z E E,  

is called the vertical subspace of T,(E). The vectors of V,(E) are called 
vertical. 

The  linear maps ( d ~ ) ~  are all surjective; hence 

dim Vs(E) = dim E - dim B = dim F. 

Recall from Example 4, sec. 3.10, that for each a E B the fibre Fa = 
d ( u )  is a submanifold of E. Denote the inclusion by 

j,: Fa -+ E. 

Proof: Since T o ja is the constant map Fa + a, 

dn 0 dj, = 0. 

Hence 
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On the other hand, since (dja). is injective 

dim Im(dj& = dimF = dim V,(E). 

The  lemma follows. 
Q.E.D. 

Now consider the subset V E  C TE given by 

VE = u VZ(E). 
Z E E  

We shall make V ,  into a subbundle of the tangent bundle, T ~ ;  it will be 
called the vertical subbundle. Let {( U,  , &)} be a coordinate representation 
for (E, n, B, F). Then the commutative diagram 

restricts to a commutative diagram 

u u  x TF - I: VE ln-'(V,f - 

1 
N 

1 
U, x F T - ~ ( U , )  

*U 

from which the subbundle structure of V E  is obvious. 
V E  is a submanifold of T E  and 

dim VE = n + 2r. 

Lemma I states that the maps dja: TFa + TE can be considered as 
bundle maps dja: TF, --t V E  inducing linear isomorphisms on the fibres. 
For this reason V E  is often called the bundle along theJibres. 

If (I?, ii, 8, P )  is a second fibre bundle and 'p: E +  I? is a fibre 
preserving map, then dy restricts to a bundle map 

(&)V: V E  - V,!? * 

A vector field Z on E is called vertical, if for every z E E the vector Z(z) 
is vertical, or equivalently, if 

2 7 0  
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(cf. sec. 3.13). The  Lie product of two vertical vector fields 2, and 2, 
is again vertical. In  fact, if 2 , ~  0 and 2, N 0 then, by Proposition VIII, 
sec. 3.13, 

[Zl, Z2l 7 0. 

Thus the vertical vector fields form a subalgebra, T V ( E ) ,  of the Lie 
algebra Z(E). 

On the other hand, since the vertical vector fields are the cross- 
sections in V ,  , Z v ( E )  is a finitely generated module over the ring Y ( E )  
(cf. the corollary to Theorem I, sec. 2.23). 

7.2. Horizontal subbundles. If ( E ,  n, B, F )  is a smooth fibre bundle, 
a subbundle H E  of 78 will be called horizontal if 

Proposition VII, sec. 2.18, guarantees the existence of horizontal 
subbundles. The  fibres H,(E) (z  E E )  of a horizontal subbundle will be 
called the horizontal subspaces (with respect to the choice of H E ) .  

Suppose now that a horizontal subbundle, H E ,  has been fixed. Then 
the derivative dn: 7, + 78  restricts to a bundle map HE -+ T ~ ;  this map 
induces linear isomorphisms in each fibre. Hence H E  is strongly isomor- 
phic to the pull-back (via n) of 7 8 .  The manifold HE has dimension 
2n + r (n = dim B, r = dimF). A vector field Z on E is called horizontal if 

Z(z) E H,(E),  z E E.  

The horizontal vector fields on E form a finitely generated projective 
module 9,(E) over Y ( E ) .  However, they do not, in general, form a 
subalgebra of the Lie algebra Z ( E ) .  

Every vector field 2 on E can be uniquely decomposed in the form 

T h e  vector fields 2, and 2, are called the wertical and horizontal com- 
ponents of 2. 

Examples: 1. Consider the product bundle E = B x F. Then 
the vertical subbundle is given by V B X F  = B x TF , and HBXF = T B  x F 
is a horizontal subbundle of T ~ ~ ~ .  

Let (E ,  n, B, F )  be any fibre bundle and choose a Riemannian 2. 
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metric on E. Let H,(E) denote the orthogonal complement of Vz(E) in 
Tz(E)  with respect to the inner product. Then 

H E  = u H z ( E )  
zeE 

is a horizontal subbundle. 

7.3. Differential forms. Let (E, T, B, F) be a smooth fibre bundle. 
A differential form @ E A ( E )  is called horizontal if 

i (X)@ = 0, X E X , ( E ) .  

Since each i ( X )  is a homogeneous antiderivation, the horizontal forms 
are a graded subalgebra of A(E).  This algebra is called the horizontal 
subalgebra, and is denoted by AH(E). 

Now assume that a horizontal subbundle HE of 78 has been chosen, 
and let T H ( E )  be the Y(E)-module of horizontal vector fields on E. 
Define a graded subalgebra A,(E) C A(E)  by 

A@) = {@ E A(E)  I i (X)@ = 0, x E %;l(E)}. 

A,(E) is called the vertical subalgebra of A(E),  and depends on the 
choice of H E .  

Now form the graded anticommutative algebra AH(E)  BE A.(E) 
(anticommutative tensor product of algebras). 

Proposition I: The multiplication map @ @ Y I+ @ A Y defines an 
isomorphism 

of graded algebras. 
p: A&) A@) -% A(E)  

Proof: p is clearly a homomorphism of graded algebras. To show 
that p is bijective, let 

H,: TJE) - H J E )  and V,: T,(E) - Vz(E) 

be the projections induced by the decomposition rE = H E  @ V ,  . Then 
isomorphisms 

and 
N N 

f H  : Sec AH: 2 A,(E) 

of Y(E)-modules are given by 

fv : Sec A V: _C A,(E) 

f H @ ( z ;  51 , * * a ,  5,) = @(z; H Z 5 1  3 a * . ,  HA) ,  5, E Tz (El, 
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Sec AH,* Sec A Vz 

commutes, where f denotes the isomorphism induced by the bundle 
isomorphism 

AH,*@ A V ; ~  nTg 

(cf. Proposition XIV, sec. 2.24). Hence p is an isomorphism. 
Q.E.D. 

Next, observe that the inclusion A V E  --f  AT^ induces a homomorphism 
of Y(E)-algebras 

pv: Sec A V,* + A(E);  

p v w ;  51 9 *.., 5,) = w; 51 9 * * * ,  5,)s E E, c* E VzP) 
(independent of the choice of a horizontal subbundle). The map pv is 
surjective: in fact, let HE be a horizontal subbundle and let A,(E) be 
the corresponding vertical subalgebra. Then the restriction of pv to A,(E) 
is inverse to the isomorphism fv defined in the proof of Proposition I 
above. 
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7.4. Orientable fibre bundles. Let B = (E, rr, B, F )  be a smooth 
fibre bundle with dim B = n, d i m F  = r. Recall that the fibre F, at 
x E B is a submanifold of E (Example 4, sec. 3.10) and denote the 
inclusion by j,: F, -+ E. 

Consider those differential forms Y E  Ar(E) such that for each x E B 
the differential form jzY E Ar(F,) orients F, (there may be none). Two 
such forms Yl , Y2 are called equivalent, if j z Y l  and j z Y 2  induce the 
same orientation on F, for every x E B. 

Definition: The bundle B is called orientable if there exists an 
r-form Y on E such that j g Y  orients F, for every x E B. An equivalence 
class of such r-forms is called an orientation for the bundle and a member 
of the equivalence class is said to represent the orientation. 

Remark: I t  will be shown in sec. 7.8 that this definition coincides 
with the definition of sec. 2.16 if a is a vector bundle. 

An orientation in the bundle specifies an orientation in each fibre F, . 
In particular, the typical fibre of an orientable bundle is orientable. 

If YE Ay(E) orients the bundle (E, 72, B, F) and U is an open subset 
of B, then the restriction of Y to rr-lU orients the bundle (&U, rr, U ,  F). 

Example: The trivial bundle (B x F, rr, B, F) is orientable if and 
only if F is orientable. 

In fact, we have seen above that if the bundle is orientable then so is F. 
Conversely, assume that F is orientable and let d, E R ( F )  be an orienting 
r-form. Then 

jz(1 x A,) = A , ,  x E B. 

I t  follows that 1 x d, orients the bundle. 

Recall the map pv: A(E)  -+ Sec AVZ defined in sec. 7.3. For z E E, 
we can regard A(dj,)* (x .= m) as an isomorphism 

us: A T,(F,) 5 A(  VZ(E))# 

285 
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Then for Y E  A(E) ,  

u:(pvY(z)) = ( j$Y)(z), z E E,  x = TZ. (7.1) 

Proposition II: (1) If Y E Ar(E) orients the fibre bundle (E, T ,  B, F) 
then p v Y  E Sec ArVZ orients the vector bundle V ,  in the sense of 
sec. 2.16. 

(2) @ and Y represent the same orientations of the bundle if and 
only if pv@ and p v Y  represent the same orientation of V E  . 

(3) The map so obtained, from orientations of the fibre bundle to 
orientations of V ,  , is a bijection. 

Proof: (1) Since Y orients the bundle we have 

( j :Y)(z) # 0, z EF, , x E B. 

I t  follows from this and (7.1) that (pvY)(z) # 0, z E E. Thus pvY orients 

If @ and Y orient the bundle, then there are unique nonzero 
VE * 

(2) 
scalars A, (z E E) such that 

( j :Y)(z) = A, * (jZ@)(z), z E F, , x E B. 

I t  follows from (7.1) that 

Hence both conditions of (2) are equivalent to 

A, > 0, 2 E E. 

(3) We have already shown in (1) and (2) that Y H p v Y  defines an 
injection from orientations of the bundle to orientations of V,. Let 
SZ E Sec Ar Vg orient the vertical bundle. Choose a horizontal subbundle, 
and let A,(E) C A(E)  be the corresponding vertical subalgebra (cf. sec. 
7.3). Then pv maps A,(E) isomorphically onto Sec A V;, and so, for 
a unique Y E  AL(E), 

p p  = Q. 

With the aid of formula (7.1), it is simple to verify that Y orients 

Q.E.D. 
the bundle. 
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Proposition III: Let (E, T, B, F) be a smooth bundle over a con- 
nected base B. Let @, ! P E A ~ ( E )  orient the bundle, and assume that 
for some a E B, jz@ and j$Y represent the same orientation in F a .  

Then @ and Y represent the same orientation in the bundle. 

Proof: For any component 0 of E the restriction of T to 0 defines 
a smooth bundle (0, no , B, Fo) where Fo is the union of components 
of F. Moreover, since j z @  and j,*Y represent the same orientation in Fa , 
they represent the same orientation in (Fo)a .  Thus we may reduce to 
the case that E is connected. 

Now assume that E is connected. Since pv@, pvY orient the vector 
bundle VIE in the sense of sec. 2.16 (cf. Proposition 11), it follows that 

Pv@ = f - P V K  

where f E Y ( E )  has no zeros. Thus, because E is connected, either 
f > 0 or f < 0. By hypothesis there are positive numbers A, such that 

In view of formula (7.1), 

f ( z )  = A, > 0 

and hencef > 0. 

tion follows now from Proposition 11, (2). 
Thus pvO and pvY represent the same orientation in V E ;  the proposi- 

Q.E.D. 

Corollary: Let B be connected and assume Y E  A'(B x F) orients 
the trivial bundle 99 = (B x F, T, B, F). Fix a E B and let A ,  = 
j$Y E A'(F). Then 1 x A ,  represents the same orientation in 99 as Y. 

7.5. Orientation preserving maps. Let 9Y = (E, T ,  B, F) and d = 
(I?, 6, 8, P )  be smooth bundles. Assume 9: E -+ I? is a smooth fibre- 
preserving map (cf. sec. 1.13) which induces #: B -+ s. Suppose 
further that q restricts to local diffeomorphisms 

If and 4 are oriented, q. will be said to preserve (resp. reverse) the 
bundle orientations if each qz is orientation preserving (resp. reversing). 
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Suppose YEA'(I?) represents the orientation of 0. Since for each 
X E B  

je* P*Y = cP3:(s,~, 

it follows that q*Y orients a and that q preserves (resp. reverses) the 
bundle orientations if and only if q*Y (resp. -~J*Y) represents the 
orientation of B, 

Proposition IV: Let = (E, T, B, F) and d = (I?, 8 , 8 ,  P )  be 
oriented bundles, with B connected. Assume that q: E -+ l? is a fibre 
preserving map which restricts to local diffeomorphisms 

9%: Fx - f;*(x) , x E B. 

If va is orientation preserving (resp. orientation reversing) for some 
a E B, then v preserves (resp. reverses) the bundle orientations. 

Proof: Assume first that cpa is orientation preserving. Let Y 
represent the orientation of 4 and let @ represent the orientation of a. 
By hypothesis 

j :@ and jz q*Y = cp:jz(a)y/ 

represent the same orientation of Fa . Hence, by Proposition 111, sec. 7.4, 
q*Y represents the orientation of B, i.e., g~ is orientation preserving. 

The case that cpa reverses orientations is treated in the same way. 
Q.E.D. 

7.6. Local product orientation. Let (E, 71, B, F) be a fibre bundle, 
oriented by an r-form Y. Assume further that A, E A"(B) orients B. 

Lemma 11: The (n + r)-form 

orients the manifold E. The orientation of E represented by A, depends 
only on the orientation of the bundle and the orientation of B. 

Proof: It is clearly sufficient to consider the case E = B x F where 
B is connected. Fix a E B and set A ,  = j,*Y. Then A ,  orients F. According 
to the corollary to Proposition 111, sec. 7.4, 1 x A, represents the same 
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orientation as Y. Hence by Proposition 11, sec. 7.4, p v Y  and pv( 1 x A F )  
represent the same orientation in V p :  

P v ~ = = f ' P v ( l  x A F ) ,  

where f E Y ( B  x F )  satisfies f > 0. 
Using formula (7.1), sec. 7.4, we find 

and it follows easily that 

n*AB A y = .f * n*d,  A rr*,AF. 

On the other hand, according to Example 8, sec. 3.21, the form 
T*A,  A n-,*AF orients B x F. Moreover, the orientation so obtained 
depends only on the orientations of B and F represented by A, and A , .  
Sincef is strictly positive, the lemma follows. 

Q.E.D. 

Definition: Let (E, T, B, F) be an oriented bundle over an oriented 
base B. Let Y E  Ar(E) represent the orientation of the bundle and let 
A , e A n ( B )  represent the orientation of B. Then the orientation of E 
represented by n-*A, A Y is called the local product orientation. 

Next, consider oriented bundles (E, T, B, F )  and (8, 7j, 8, P )  over 
oriented bases B and 8. Let rp: E -+ 8 be a fibre-preserving map which 
restricts to local diffeomorphisms 

y,: F, + $&(*. , x E B. 

Assume further that the induced map +: B -+ 8 is a local diffeomorphism. 
Then 9 is a local diffeomorphism. 

Proposition V: With the hypotheses and notation above, assume 
further that rp preserves the bundle orientations. Then 'p: E --t l? 
preserves (resp. reverses) the local product orientations if $: B -+ 8 
preserves (resp. reverses) the orientations. 

Proof: Let Y E  Ar(8) represent the orientation of the bundle 
(8, ii, 8, P).  Then (cf. sec. 7.5) v*Y represents the orientation of the 
bundle (E, T, B, F). Next, let A E An(@ represent the orientation of 8. 
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Then c #*A represents the orientation of B, where c = + I  (resp. 
c = -1) if I,4 is orientation preserving (resp. orientation reversing). 

Thus the local product orientations of E and I? are represented by 

Thus q~ preserves (resp. reverses) orientations if I,4 does. 
Q.E.D. 

Example: Let K be the Klein bottle (cf. Example 4, sec. 3.21). 
Define a smooth map K 3 S1 by the commutative diagram 

R 2 L - K  

J 
S1 > 

where q~ is the projection defined in sec. 3.21 and 

rrl(x, y )  = exp(hix), (x, y )  E R2. 

I t  is easy to see that (K, T, S1, Sl) is a fibre bundle. Since K is non- 
orientable and S1 is orientable, it follows that the bundle is non- 
orientable. 
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7.7. The bundle maps a and p. Let 5 = ( E ,  T, B, F )  be a vector 
bundle of rank r over an n-manifold and consider the tangent bundle 
T E  = ( T E  , TE , E,  [Wn+'J. For x E B,  z E F, , we may identify the vector 
spaces F, and T,(F,), and regard (dj& as a linear isomorphism 

N 

%:F$l(z) = VZ(E). 

Denote w;l by as. The  isomorphisms a, define a bundle map 
a: V ,  -+ E inducing T as map of base manifolds: 

E - + B  
x 

(the smoothness of a is easily shown). 
On the other hand, if cr is a cross-section in 5, a bundle map 

B -  E 
(I 

is defined by 

The bundle maps a and flu restrict to isomorphisms in the fibres and 
satisfy 

m o p u  = I.  

The  bundle map induced from the zero cross-section will be denoted 
simply by p. 

Next, define a vertical vector field 2 on E by setting 

Z(Z) = w,(z), z E E 

291 
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(use a coordinate representation for 6 to check that 2 is smooth). 2 is 
called the radial vertical vector field. Evidently 

~ ( Z ( Z ) )  = Z, z E E,  

and Z is the unique vertical vector field which satisfies this relation. 
Now fix t E R and define a strong bundle map pt , in 5 by setting 

pt(z) = tz, z E E.  

Then 

z z z  
or equivalently 

&(Z(Z)) = Z(tz) ,  

In  fact, this relation follows, after a simple computation, from 

z E E. 

Z(Z) = w,(z) = (dj.J,(z), z E F,  , x E B. 

7.8. Orientations in vector bundles. Let 5 = ( E ,  n, B, F) be a vector 
bundle of rank r .  In  sec. 2.16 and in sec. 7.4 we gave different definitions 
for orientations in 4. Now it will be shown that these definitions coincide. 

In  fact, in Proposition 11, sec. 7.4, there was established a canonical 
bijection between orientations of the fibre bundle 8 (in the sense of 
sec. 7.4), and orientations of the vector bundle V ,  (in the sense of sec. 
2.16). 

It remains to construct a bijection between the orientations of the 
vector bundles 4 and V ,  . Without loss of generality we may assume B 
(and hence E )  is connected. Thus the set O(5) of orientations in 5 
contains two elements, or is void. Similarly O(VE) contains two 
elements, or is void. Consider the bundle maps 

a: V, + E and p: E + V, . 

Since a and /3 restrict to isomorphisms in each fibre they induce maps 

OZ: O( V,) + O(5) and 8:  O(6) + fl(V,). 

(cf. sec. 2.16). Since 01 0 /3 = L ,  it follows that 

b o a  = L .  

Thus either O(V,) = O(5) = 0,  or else both sets have two elements 
and 6,  ji? are inverse bijections. 
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7.9. Associated sphere bundle. Let g = ( E ,  n, B, F )  be an oriented 
Riemannian vector bundle of rank r ( r  3 I) ,  with dim B = n. Let 5, = 
(E, , r, , B, S )  be the associated sphere bundle with inclusion map 
i: E, + E (cf. Example 6, sec. 3.10). 

Lemma 111: Suppose SZ E A'(E) orients E.  Then 

sz, = i*(i(Z)Q) E A7-'(Es) 

orients (, (2 is the radial vertical vector field of sec. 7.7). 

Proof: 2 restricts to the vector field 2, on the vector space F, given 
by Z,(z) = z. Since SZ orients (, SZ restricts to an orienting r-form 
SZ, E A'(F,). Thus 

f i x =  f a d ,  

where f > 0 and A ,  is a positive determinant function in F, . 

given by 
Hence the restriction of Q, to a fibre S, is the ( r  - 1)-form (SZS), 

(QS)dY; 71 **.) 77-1) = f (Y) ' Ax(zdY),  71 9 *.-) 77-1) 

= f ( r )  * A d Y ,  71 ? * * * ?  77-1), Y E  sx ? 71 E T,(SZ)* 

Thus according to Example 2, sec. 3.21, (Q,), orients S, . Hence Q, 

Q.E.D. 
orients 6, . 

Definition: The  orientation of the associated sphere bundle defined 
by the ( I  - 1)-form SZ, is called the induced orientation. 

Remark: If B consists of a point, then the definition of the induced 
orientation coincides with that of sec. 3.21. 

Next, assume that an orientation is defined in the bundle manifold E 
of 5. Let A ,  E An+'(E) represent the orientation and again let Z be the 
radial vertical vector field on E.  

Lemma IV: Let 
A ,  = (-l)'%*(i(Z)AE). 
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Then A, orients E, . Moreover, if B and 4 are oriented and if A, repre- 
sents the local product orientation, then A ,  represents the local product 
orientation in E, determined by B and the induced orientation of & . 

Proof: It is sufficient to consider the case that 5 is trivial and B 
connected. In this case we may without loss of generality suppose that A, 
represents the local product orientation with respect to orientations in f 
and B. Thus 

A ,  = f * n*dB A y, 

where Y E Ar(E) orients 5, A, orients B, and f E Y ( E )  is strictly positive. 

A ,  = i*f * i*(n*dB) A i*(i(Z)Y) 

= i*f w ~ A B  A i*(i(Z)Y).  

It follows that 

According to Lemma 111, i*(i(Z)Y) orients 5, . Hence Lemma 11, 
sec. 7.6, implies that A, orients E, . I t  obviously represents the local 
product orientation. 

Q.E.D. 

Definition: The orientation of E, represented by the differential 
form A, is called the induced orientation of E, . 
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7.10. Let ( E ,  r, B, F )  be a smooth fibre bundle. A differential form 
SZ E A(E)  will be said to have fibre-compact carrier (or support) if, for 
every compact subset K C B, the intersection .n-l(K) n carr D is com- 
pact. The set of forms with fibre-compact support is a graded ideal in 
A(E),  which will be denoted by A,(E). It is stable under the operators 
i ( Z ) ,  O(2) (2 E X(E)) and 6. The cohomology algebra H(A,(E), 6) will 
be denoted by HF(E).  

Evidently A,(E) C A,(E) C A(E).  If B is compact, then A,(E) = A,(E); 
if F is compact then A,(E) = A(E).  

Lemma V: Let {(Urn , &)} be a coordinate representation of E. 
Then SZ E A,(E) if and only if, for each a, 

t,h;Q E AF(Un x F).  

Proof: Obvious. 

Now let (8, 6, B, P )  be a second smooth bundle. Assume rp: E -+ I? 
is a smooth fibre preserving map inducing +: B -+ B. Suppose further 
that each rpz maps F, diffeomorphically onto an open subset of P4cz) . 

Proposition VI: 
Y E Ap(I?) satisfies 

With the notation and hypotheses above assume 

p+(z) n carr Y C Im pz , x E B. 

Then rp*Y E A,(E). 

Lemma VI: Suppose E = B x F and 8 = B x P.  Define 
x: B x F-+ B x P by 

x(x, Y )  = (x, az(r)). 
Then x is a fibre preserving diffeomorphism of B x F onto an open 
subset of B x P.  Moreover 

rp = (t,h x 6) O x. 
255 
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Proof: Let p: B x P --f P be the projection. Then 

X(X, Y )  = (X, Pl(% YN 

and so x is smooth. Since each v, is injective'it follows that x is injective. 
I t  remains to check that each linear map, 

dx: T(z*w)(B x F )  + Tx(w)(B x PI, 

dX(L 7) = (5 ,  r(5) + dVz(7)) 

is an isomorphism. But, for 5 E T,(B), 7 E T,,(F), 

where y :  T,(B) --+ Tpi0(,,)(P) is a linear map. By hypothesis each (dtp,), 
is an isomorphism. Hence so is ( d ~ ) ( , , ~ )  . 

Q.E.D. 

Corollary: If each rp, is a diffeomorphism, then x is a diffeomorphism. 

Proof of the proposition: In view of Lemmas V and VI it is suffi- 
cient to consider the case E = B x F, I? = B x P,  and q~ = ($ x 6 )  o x; 
here X(X, y )  = (x, vz( y ) )  and x is a diffeomorphism of E onto an open 
subset of B x P. 

Let K C B be compact. Choose a compact subset L C P  so that 
carr !P n ($(K)  x P )  C $(K) x L. Then 

car,(($ x ')*Y) n ( K  x P) C K x L, 

as follows from a straightforward computation. Thus 

($ x 6)*Y E A@ x E). 
Set ($ x L)*Y = @. Apply ($ x &)-I to the relation of the proposition, 

to obtain 

P,ncarr@ c ImXz, X E B .  

It follows that carr @ C Im x. Since x is a diffeomorphism (onto an 
open subset of B x P) ,  x-'(C) is compact whenever C is a compact 
subset of carr@. Thus, since @ has fibre-compact support, so does 

Q.E.D. 
x*@ = y*Y. 

Corollary: If F = P,  and each rp, is a diffeomorphism, then pl* 

restricts to a homomorphism 

v;: A#) - -we). 
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In particular it induces a homomorphism 

Finally, assume that (E, T,  B, F) and (I?, 7j, 8, P )  are smooth bundles, 
and that rp: E + I? is a smooth, fibre preserving map which maps E 
diffeomorphically onto an open subset, U, of 8. (Thus rp satisfies the 
hypotheses of Proposition VI.) If @ E A,(E), we can form (rp-l)*@ E A( U) 
and then 

carr(p+)*@ = rp(carr 0) 

is closed in 8. Extend (q+)*@ to f? by making it zero outside U. 

obtain a homomorphism 
The resulting form has fibre-compact support; thus in this way we 

(w)*: M E )  - AP(E). 

(W)# : H F W  - &@). 

It induces 
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7.11. The general fibre integral. Let = ( E ,  n, B, F) be a smooth 
fibre bundle with dim B = n and d i m F  = r ;  V ,  is the vertical sub- 
bundle of the tangent bundle 7, of E. Let 6 = ( M ,  r M ,  B, H) be a 
vector bundle over the same base. 

Consider a bundle map 0: ArVE-+ 6 inducing n: E --+ B in the base 
manifolds: 

E - B  
7r 

The  carrier of @ is the closure in E of the set 

{. E E I @z # 01. 

We say @ hasjbre-compact carrier if, for all compact subsets A C B, 

+A n carr @ 

is compact. 
Now assume that the bundle 9? is oriented and @ has fibre-compact 

carrier. We shall define a cross-section u E Sec 6, which will be called 
the integral over the fibre of @. 

For each x E B, (9 determines an H,-valued r-form on F, , 
@, E A'(F,; H,), given by 

%(.; 71 , .**, 77) = @(?l A * . *  * d, z EF, 9 71 E Ts(FaJ = V*(E), 

(cf. Lemma I, sec. 7.1). 

If @ has fibre-compact carrier then each @% has compact carrier. 
Since a is oriented, an orientation is induced in each F, . Thus we can 
define a map a: B -P M by 

In  particular u(x) E 23, and so nM o u = L. We write u = lF@# 
298 
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If Y: ArVE -+ M is a second bundle map inducing T: E-t B, and 
with fibre-compact carrier, then Q, + Y has fibre-compact carrier, and 

j F ( @ + Y J ) = j  F @ + j  F YJ. 

Proposition VII. With the notation and hypotheses above, the map 

a: x H IF= @a 

is a cross-section in g. 

Proof: We need only show that u is smooth. Now smoothness is a 
local property. Since a, f are locally trivial, and Q, has fibre-compact 
carrier, it is sufficient to consider the case that 

(i) B = [w" 

(ii) E = B x F a n d M = B x H  

and 

(iii) 

Cover K by finitely many chart neighborhoods V, (i = 1, . . . , p )  and 

carr Q, C B x K where K C F is compact. 

write Q, = Q1 + + Q P ,  where 

carrDi C B x Ki C B x U, (Ki compact). 

In  view of condition (7.2), it is now sufficient to consider the case that, 
in addition to (i), (ii), and (iii) 

(iv) F is an oriented vector space. 

Using (i), (ii), and (iv), observe that 

A'VE =z B x A'TF = [w" x F x A'F. 

Let A ,  be a positive determinant function in F and define a smooth map 
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Then if y1 ,..., yr are coordinate functions on F corresponding to a 
suitable basis, we have 

In view of condition (iii) it follows from standard calculus that u is 
smooth. 

Q.E.D. 

Definition: The cross-section u = fF@ is called the integral over the 
fibre of @. 

7.12. Differential forms. Let = (E, T ,  B, F) be an oriented 
smooth fibre bundle with dim F = r, dim B = n. We shall define a 
linear map 

homogeneous of degree - I ,  to be called integration over the$bre. 
Let 52 E Ak+p(E) (p  2 0). For each x E B, 52 determines a compactly 

supported r-form, sd, , on F, with values in ApT,(B)*. 52, is defined as 
follows: Fix z E F, and fix tangent vectors 

71, , ..., v7 E V,(E) and 6 1  ...) 5, E T,(B). 

Let Ci E T,(E) satisfy dm& = & . Since V,(E) (= ker(d?r),) has dimension 
r, the number Q(z; cl, ..., t&, , r ] ,  , ..., qr) is independent of the choice 
of the . Define s2, by setting 

(Q&; 711% 71A 51 A . * *  A Ell> = Q(2; 51 * -.., 5, * 711 s * * * %  7,). 

52, is called the retrenchment of sd to F, . 
Now observe that ap-form, JF 52, on B is defined by 

Indeed, to see that .fF sd is smooth, define a bundle map @*: ArVE+ APT: 

by setting 

Then it is immediate from the definitions that JP 52 = JF @* and so 
.fF sd is smooth. (Compare Proposition VII, sec. 7.1 1.) 

Evidently JF is a linear map from Ak+*(E) to Ap(B). 

an(%; 711 A A Tr) = Qm(711 9 *..) ~ 7 ) .  



5. Integration over the fibre 301 

We extend JF to forms of degree < r by setting j F  52 = 0 (Q E A$(E), 
9 < r ) .  

Now consider a second oriented smooth bundle (8, 73, 8, PI. Assume . . - .  , 
I: E + 8 is a smooth fibre preserving map inducing $: B + 8. 
Suppose each tpx is an orientation preserving diffeomorphism of F, 
onto an open subset of fl*b) . 

Proposition VIII: With the notation and hypotheses above, assume 
Sa E Ap(E) satisfies 

carr Q n Petz) C Im vz . 

Then p*Q E AF(E) and 

j v*. = ** I,.. 
F 

Proof: According to Proposition VI, sec. 7.10, I*QEA,(E).  Now 
fix x E B and denote the linear map 

44%: TO)* + A ~ d @ *  

B*: 4 F z  ; ATz(B)*) - A(F, ; AT*tz)(@*) 

(v*Q)z = (S* O d)(Qe(z))*  

by 8. 8 induces (cf. sec. 4.14) a linear map 

and it is clear from the definitions that 

I t  follows that (cf. Equation (4.9)) sec. 4.14) 

Since rpX is an orientation preserving diffeomorphism onto an open subset 
of &(x) which contains carr Qe(x, ) we obtain 

Hence 
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Finally, note that for any @ E A(@, 

Corollary I: If each cpz is a diffeomorphism, then y* restricts to a 
homomorphism cp;: AF(E)  t Ap(2) and 

Corollary 11: If F is compact and each cpz is a diffeomorphism, then 
y ;  = cp* and 

Examples: 1. 
manifold, and JF is the linear map 

Suppose E = F, B = (point). Then F is an oriented 

1,: A+,(F) + [w 

extended to A,(F) by the rule JF52 = 0 if deg Q < r .  

2. Products: Suppose E = B x F. If Q E  AP+?(B x F) then 
52, E Ar(F; ApT,(B)*) is given by 

(Q,(y; 71 9 * * a ,  77)) el A * ' *  A t D )  = Q ( x , y ;  41 9 * * * 9  4 ,  8 71 9 ' a * ,  7r)  

X E B, ti E T,(% Y E l i :  T i  E T,(F). 

Recall from Example 2, sec. 3.20, the bigradation of A(B x F). T h e  
equation above shows that, if Q E A8**(B x F), then SZ, = 0 unless 
q = r .  

Now assume d, E A*(F) orients F. Then 1 x d, orients the bundle 
(cf. the example, sec. 7.4). Moreover, if YEA,(F) ,  @ EA(B) ,  then 
@ x Y E  A,(B x F) and 

In  fact, (@ x Y)% E A,(F; A T,(B)*) is given by 

(@ x Y)% = Y 0 @(x) ,  x E B, 
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(cf. sec. 4.7). It follows that (cf. sec. 4.14) 

whence (7.3). 

7.13. Properties of J F .  

smooth oriented bundle. 
In  this section ( E ,  7, B, F )  denotes a fixed 

Proposition IX: f F :  AF(E)  4 A(B) is a surjective linear map 
satisfying 

Proof: First we establish the equation. Fix x E B. Let u be the linear 
map in A Tx(B)* given by 

U(Z) = @(x) A Z, z E A T,(B)*. 

u induces a linear map u* in A(F,; A Tx(B)*), and 

(T*@ A Y), = u*(Y,) 

(cf. sec. 4.14). It follows via Equation (4.9), sec. 4.14, that 

I t  remains to show that f F  is surjective. Fix dj E A(B) and let {Ua} be a 
locally finite open cover of B such that the bundle is trivial over each U, . 
Denote the restriction of SP to U, by dj,. Combining Proposition VIII and 
Example 2 of sec. 7.12, we find Q, E AF(+( U,)) such that f F  Qa = SP, . 
Let {p,}  be a partition of unity for B subordinate to the open cover. If 

52 = c (x*pa) * 52, E AF(E), then ,f 52 = c p ,  * SZ, = @. 
a F U F 

Corollary: fF restricts to a surjective linear 

Q.E.D. 

map 
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Proof: Evidently, for SZ E AF(E),  

carrf Q c r(carrQ). 

Thus JF restricts to a linear map A,(E) + A,(B). T o  show that the 
restriction is surjective, fix @ E A,(B). Then (Proposition IX) choose 
SZ E AF(E) SO that 

F 

j F Q  = 0. 

Since @ has compact carrier, for some f E YC(B) ,  f * @ = @. Since 
SZ E AF(E), r*f SZ E A, (E) .  But 

r * f . Q = f .  Q = f . 0 = @ .  

Q.E.D. 
j F  5, 

Proposition X: Integration over the fibre satisfies the relations: 

(1) i(x) ' JF = JF i(z) 
(2) e(x) JF = JF ' e(z) 

and 

(3) JF = JF ' s, 
where 2 E %(I?), X E %(B) are n-related. 

Proof: (1) Fix X E B  and set 5 = X(x) .  The operator i(5) in 
A T,(B)* induces a linear map 

i ( t )*:  A(F, ; A T,(B)*) -+ A(F, ; AT,(B)*). 

Moreover, since 2 - X it follows that (cf. sec. 7.12) 

(i(z)Q), == i(t)*Q, 9 

Hence (using Equation (4.9), sec. 4.14), we find 
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(3) Fix 52 EA,(E) .  We wish to show that S . J F , S a  = JF852. First, 
apply Proposition VIII, sec. 7.12, to a suitable coordinate representation 
for the bundle, to reduce to the following case: 

(i) B = R" 
(ii) 

(iii) 

E = B x F 
and 

carr Sa C B x K (K compact, K C F). 

Next, choose finitely many charts (U,  , ui , R') (i = 1, ..., m) on F so 
that the U, cover K. Write 52 = 52, + + 52, , where 

Ki compact. carr sZi C B x Ki C B x Ui , 

Because j F  is linear it is sufficient to establish (3) for each 52,. But 
carr 8Q2, C B x Ki . Thus we can apply Proposition VIII to the maps 

i x u;': B x Rr + B x U, 

and reduce further to the case 

(iv) F = R". 

Finally, since 6 and .JF are linear (over R) and homogeneous we may 
also reduce to the case 

(v) 52 E A y ( B  x F). 

Now consider 52 E A%-q(B x F) and assume conditions (i)-(iv) hold. 
A simple computation using Example 2, sec. 7.12, and sec. 4.6 shows that 

(8FsZ)z = (-l)' 8(QS)* 

It  follows from Proposition XIV, sec. 4.13, that 

(because QZ has compact carrier). Since, in A(B x F), S = Ss + S F  
(cf. sec. 4.6), we are reduced to proving 

j 8& = 8 j Q. 
F F 

(7.4) 



306 VII. Integration over the Fibre 

But 6,sZ E Ap+l,*(B x F); hence, if q # r ,  both sides of (7.4) are zero 
(cf. Example 2, sec. 7.12). On the other hand, assume Q = r .  Let 
el , ..., e,  be a basis for B and let A ,  be a positive determinant function 
in F. Then 

SZ = C fil...i, . (e*il A A e*ip x A F ) ,  
i, < ... <i,, 

where each 
restrict ourselves to the case 

E Y ( B  x F) has carrier in B x K. Thus we may 

SZ = f .  (e*l A A e** x d F ) ,  f E Y ( B  x F )  

and carr f C B x K .  
Then (cf. the example of sec. 4.3) 

= 1 - af (e*a A e*1 A A e*p x A F ) .  
i=l aea 

Hence, for suitable coordinate functions yi in F: 

... 

A e*p 

A e*P 

= (&@)(x). 

Here Q, E &(B) is given by 

~ ( x )  = [ J f ( x ,  y )  dy, dy,] e*1 A A e*p 
F 

= (j ,R) (4, X E B .  

Thus JF 6,sZ = 6 JF 9. This finishes the proof of (7.4), and hence com- 
pletes the proof of (3). 

Immediate from (I), (3), and the formula 8 = i o 6 + 6 o i of 
Proposition 11, sec. 4.3. 

Q.E.D. 

(2) 

Proposition X and the corollary to Proposition IX show that IF induces 
linear maps 

j * :  H,(E) -+ H(B)  and j * :  H,(E) + H,(B). 
F F 
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These maps are homogeneous of degree -r. If F is compact, the first is 
a map H ( E )  + H(B). In this case 

7.14. The Fubini theorem. 
oriented fibre bundle over an 
Let E have the corresponding 
Then 

c = c  

Theorem I: Let (E, ?I, B,F) be an 
oriented n-manifold B, with dim F = r .  
local product orientation (cf. sec. 7.6). 

0 4 : A,"+'(E) + R. 
J E  J B  J F  

Proof: In view of Proposition VIII, sec. 7.12, a partition of unity 
argument reduces the problem to the case E = B x F. In this case the 
theorem becomes 

Lemma VII: Let B and F be oriented manifolds of dimensions n 
and Y. Let B x F have the product orientation. Then 

Proof: First, let @ E A12,(B), and let Y E  AE(F). Then according to 
Proposition XIII, sec. 4.13 

j @ x Y =  j B @ . j  Y. 
BXF F 

(7.5) 

In view of Example 2, sec. 7.12, we obtain from (7.5) that 

j B J F @ X Y =  j , ( J , Y ) @ = J  B X F  @ x Y .  

Now let S Z E  AE+'(B x F) .  The Kunneth theorem for forms with 
compact carrier (Theorem V, sec. 5.19) shows that, for some @ E AZ(B), 
Y E  A',(F), and Q, E A;+'-'(B x F ) ,  

a = 0 x Y + 652,. 
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Since SZ, E A,(B x F), it follows that jF  SZ, E A,(B); hence (cf. Propo- 
sition X, sec. 7.13) 

j j s q =  j s j  s a , = o = j  B X F  ssa, 
B F  B F  

Thus 

j B j F s a =  j B j F @ X Y =  j B X F  @ x Y =  I B X F  sa. 

Q.E.D. 

Corollary I: The maps 

jl: H,(E) + H,(B) and n#: H(B)  + H ( E )  

are dual with respect to the PoincarC scalar products (cf. sec. 5.11); i.e., 

PB (a  ? j *  p)  = t p), a H(B), p H C ( E ) .  
F 

Equivalently, 

( D B a  > j *  F p )  = 9 8). 

In particular j; is surjective (resp. injective, a linear isomorphism) 
if and only if T* is injective (resp. surjective, a linear isomorphism). 

Proof: It is sufficient to consider the case a E Hp(B), f l  E H;+'+(E). 
Let @ E Ap(B) and YE A;+'-"(E) be representing cocycles. Then 

Q.E.D. 

Corollary 11: Assume E is compact, and let oE E H"+'(E) and 
wB E H"(B) be the orientation classes (cf. sec. 5.13). Then 

j :  WE = W B .  

If F is compact, then A is proper; hence it induces a homomorphism 

(nc)#: Hc(B) + &(El. 

On the other hand, in this case j; is a linear map H ( E )  --f H(B) .  
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Corollary 111: If F is compact, then 

I:: H(E)  -+ H(B) and (w$:  Hc(B) + H,(E) 

are dual with respect to the PoincarC scalar products. Thus $ is 
injective (resp. surjective, a linear isomorphism) if and only if (r,J# is 
surjective (resp. injective, a linear isomorphism). 



Problems 

g = ( E ,  T, B, F )  denotes a smooth fibre bundle. 

1, Orientations. (i) Show that g is orientable if and only if there 
is an orientation of F and a coordinate representation {( U, , qW)} for g 
such that each q;: o v8,2 is orientation preserving. 

(ii) Suppose E is connected. Prove that 99 admits no orientations, or 
precisely two orientations. Prove that B admits no orientations, or 
precisely two orientations. 

(iii) Assume E connected and orientable. Prove that F is orientable. 
Establish a bijection between orientations in Zi? and orientations in H E  
( H E  is any horizontal bundle). Conclude that 99 is orientable if B is. 

(iv) Construct a nonorientable bundle with connected, orientable 
total space. 

(v) Suppose E connected and orientable, but that B is nonorientable. 
Let p B :  f) --+ B be the orientable double cover. Show that B is orientable 
if and only if there is a smooth bundle ( E ,  5, A, FJ such that T = p A  0 5. 
Prove that then F = F ,  x Z, . 

(vi) Suppose E connected and orientable, and that F has a finite, 'odd, 
number of components. Use (v) to establish a bijection between orienta- 
tions in and orientations in B.  

2. Fibre integration over products. Let 4 = ( E ,  6, B,  P) be a 
second smooth bundle and let 

x d = ( E  x B , n  x 73,B x B , F  x F ) .  

(i) Show that a homomorphism 

is defined by CJ @ Y b CJ x Y. Thus obtain a homomorphism 
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(ii) Show that orientations in g and & determine an orientation in 
L3 x 4. Prove that 

‘ P x P  ( Q x 6 ) = j  F Q x j  P 6. 

(iii) Assume that B = B.  Construct a unique bundle, B’ @ &, with 
base B and with fibre F, x pz at x E B such that the inclusion map 
i: L3 @ 4 -+ 9 x 4 (over the diagonal) is a smooth embedding. 

(iv) Suppose B’ and 4 oriented. Obtain an orientation in B’ @ & and 
prove that with respect to this orientation 

3. Composite bundles. Let g1 = ( E l ,  r1 , E, FJ be a smooth bundle 
over E such that i3 = r 0 rl is the projection of a third bundle d = 
(El , +, B, p )  (cf. problem 15, below). 

(i) Let V ,  , VEl , PEl be the vertical subbundles for g, B1 , and 4. 
Show that P,, e .rf( V E )  @ VE1 . Conclude that orientations in L3 
and g1 determine an orientation in 4. 

(ii) Prove that . fp = .fF 0 .fFl . 

4. Stokes’ theorem. Let M be a manifold and let ( N ,  aN) be a 
manifold-with-boundary . 

(i) Define (the notion of) a smooth bundle B = (P, p, M ,  N )  such 
that (P, aP) is a manifold-with-boundary and a 9  = (aP, p l a p ,  M ,  aN) 
is an ordinary smooth bundle. 

(ii) Define the notion of an orientation in B and show that an orienta- 
tion in B induces an orientation in aB. 

(iii) Show that if B is oriented and i: aP ---+ P is the inclusion, then 

j S@ - 6 j @ = (-1)”+‘+1 @ E Ai(P) ,  Y = dim N .  
N N 

5. Define a subalgebra, A(E)i,o,s,o, of A ( E )  by setting 

A ( E ) ~ , ~ . ~ , ~  = E A(E)  I i(xp = 0, qxp = 0, x E zV(zi)}. 

(i) Show that A(E)i,o,e,o is stable under 6 .  
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(ii) Assume E is connected. Show that F is of the formF, x A where 
F, is connected and A is discrete. Construct smooth bundles (E, 13, 8, F,) 
and (8, p, B, A) such that p 0 if = T.  

(iii) Show that 7? induces an isomorphism 

A@) 5 ~ ( E ) , , , , - ,  * 

6. Partial exterior derivatives. 

(i) Show that A,(M x N) is stable under 8, .  Set 

Let M and N be manifolds with 
dim M = m, dim N = n. Consider the trivial bundle (M x N, wM, M ,  N ) .  

and show that H(,)(M x N) is an A(M)-module. Show that SM induces 
an operator 8& in H(,) (M x N) and that this pair is a graded differential 
algebra. 

(ii) Construct an isomorphism 
c= 

A ( M )  0 &(N) 2 H(,)(M x N )  

of graded differential algebras. Show that this is an A(M)-isomorphism. 

(iii) Assume N oriented. Regard A N ( M  x N) as an Y(M)-module 
and define an Y(M)-bilinear map 

A(M x N )  x A,(M x N )  --+ A ( M )  

by 

Thus obtain a bilinear map 

H(A(M x N ) ,  6,) x H(,)(M x N )  + A(M).  

Interpret this via the isomorphism in (ii), 

(iv) Obtain isomorphisms 
c.= 

H"'(A(M x N ) ,  6,) J Hom,(H;",S'*"-P(M x N ) ;  A"(M)). 

(v) Let @EAP**(M x N). Show that 8,@ = 0 if and only if the 
retrenchment, QZ, of @ to each x x N is closed. Show that @ = 8,Y 
if and only if each GZ is exact. Obtain analogous results for A,(M x N). 
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7. Van Est's theorem. Let M and N be manifolds. Assume JV 
is the nerve of a simple finite covering of M and establish an isomorphism 

H(A(M x N ) ,  6,) H(M; A(N)). 

8. Vertical cohomology. (i) Mimic the constructions in Chap. IV 
to define operators i,(X), O,(X) and 8, in Sec AVZ (for X E  X,(E)). 
Show that they satisfy the identities of Chap. IV. 

The cohomology algebra, H(Sec AVZ, 8,) is denoted by H,(E) and 
is called the vertical cohomology of E. 

(ii) Show that the inclusion j,: F, -+ E induces a homomorphism 
Sec A V,* ---+ A(F,) of graded differential algebras. 

(iii) Assume that dimH(F) < co. Use a coordinate representation 
for to construct a vector bundle 5 over B with fibre H(F,) at x. Show 
that Sec 5 r H,(E).  

9. Integral cohomology. Suppose F is compact. Let a E H ( E )  be an 
integral class (cf. problem 13, Chap. V). Assume that 93 is oriented and 
show that J: a is again integral. 

10. Submersions. Let T: M --+ Q be a submersion. 

(i) Show that for x E Q, cp-'(x) is a closed submanifold of M with 

(ii) Extend the notion of vertical subbundle, bundle orientation, and 
vertical cohomology to submersions. 

(iii) Extend the notion of fibre-compact carrier to A(M) .  Show that 
the space of forms with fibre-compact carrier, A,,,(M), is a graded ideal in 
A(M) ,  stable under 6. 

(iv) Assume q is surjective. Define a linear map J:  A,(M) + A(Q) 
with the same properties as the fibre integral for bundles. In particular, 
prove a Fubini theorem. 

trivial normal bundle. 

11. Let 4 be an oriented involutive distribution over an n-manifold 
M. Assume that the maximal integral manifolds, F,, of 5 are closed 
r-submanifolds of M. Let j,: F, --t M denote the inclusion map. 

(i) Let @ E AF(M). Show thatj,*Q, E AE(F,) and definef,: M + R by 
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(ii) Show that if ( is the vertical subbundle of the total space of a 
fibre bundle, then fa is smooth. 

(iii) Let 6 = C - {O}. Define a vector field, X ,  on 6 x C by 
X ( z ,  5 )  = (p ix ,  i t ) .  Show that the orbits of X are all circles. Prove that 
C x C is not the total space of a smooth circle bundle whose fibres are 
the orbits of X. (Here p is an integer.) 

(iv) Construct a compact manifold N and a vector field X on N 
such that the orbits of X are all circles, but such that N is not the total 
space of a smooth circle bundle whose fibres are the orbits of X. 

12. Ehresmann connections. Let V M  be the vertical bundle for a 
submersion v: M --+ Q, and suppose H M  is a subbundle of TM such that 
H M  @ V M  = T M  . Let t ct x ( t )  and t z(t) be smooth paths respec- 
tively on M and Q. Then z(t) is called a horizontd Zijt of x( t )  if 

pz(t) = x ( t )  and i ( t )  E Hz(t)(M),  t E R. 

If, for each path x ( t )  (to < t < t l )  and each zo E q1(x ( t , , ) ) ,  there is a 
horizontal lift z(t) (to < t < t l )  such that z(t,) = zo , then H M  is called 
an Ehresmann connection. 

(i) Assume that H ,  is an Ehresmann connection. Show that v is 

(ii) Show that every proper submersion is the projection of a smooth 

(iii) Show that every smooth bundle admits an Ehresmann connection. 
Hint: If U, V are open subsets of Q over which Ehresmann connections 
are defined, “piece them together” to obtain an Ehresmann connection 
in U U  V. 

(iv) Assume E = B x F. Let Hl , H ,  be horizontal subbundles of T~ 

and let p1 , pz E Hom(TE; T ~ )  be the corresponding projection operators 
with kernel VE and images H l ,  H , ,  Fix h E R. Show that 
Im(hpl + (1 - A) p,) is a horizontal bundle H. Show that even if Hl , 
H, are both Ehresmann connections, H need not be. 

the projection of a smooth bundle (M, v, Q, N), if Q is connected. 

bundle. 

13. Homotopy lifting theorem. Assume that H E  is an Ehresmann 

(i) Let v: IT! x M --f B, t,bo: M -+ E be smooth maps such that 
~(0, x) = m,ho(x), X E  M. Show that there is a unique smooth map 

connection in &?. 
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$: R x M + E extending $o and such that for fixed x E M, $(x, t) is 
a horizontal lift for ~ ( x ,  t). 

(ii) Extend the notions of pull-back from vector bundles to 
general smooth bundles. Let q$W, q$9 denote the pull-backs of 
under smooth maps v o ,  rpl: 8 -+ B. If qo and v1 are homotopic, define 
a fibre preserving diffeomorphism between the total spaces of ~$9 and 
y$W which induces the identity in 8. 

14. (Leray-Hirsch). Assume B connected, and that for some x E B 

j,# : H ( E )  + H(F,) 

is surjective. 

(i) Show that W is orientable, if F is. 
(ii) Show that A(E) H(B)  Q H ( F )  (as 

H ( F )  < 0. 

I(B)-modules), if 1 im 

15. Let 9Y1 =. (El, n l ,  E, Fl) be a smooth bundle over E. Show 
that the projection 73 = n o n l  is the projection of a third bundle 
4 = ( E l ,  73, B, p).  Show that (p,  n l ,  F, F,) is a smooth bundle. 



Chapter VIII 

Cohomology of Sphere Bundles 

§I. Euler class 

8.1. Let a = (E, r, B, S) be an oriented r-sphere bundle (r >, 1). 
Since S is compact, integration over the fibre is a linear surjection 

5,: 4 E )  -+ 

homogeneous of degree - Y  (cf. Proposition IX, sec. 7.13). Since r 2 1 
this proposition implies that 

f ? r * Q i = q  1 =o ,  @EA(B).  
S S 

Thus r* can be considered as a linear map 

j3: A(B) -+ ker . 

In  view of Proposition X, sec. 7.13, ker .Js is stable under S and so j3 
induces a map 

j3*: H(B) -+ H (ker j ) .  

S 

Proposition I: Let 
Then the induced map 

= (E,  r, B, S) be an oriented r-sphere bundle. 

j3*: H(B)  --+ H (ker j J  
is an isomorphism. 

Lemma I: The proposition is true if the bundle is trivial: E = B x S.  

Proof: Recall that @ @ Y w @ x Y defines a homomorphism of 
graded differential algebras 

K :  A(B) @ A(S) --+ A(B x S) 

316 



1. Euler clam 317 

(cf. sec. 5.17). It follows from Example 2, sec. 7.12, that 

Thus we obtain the row-exact commutative diagram 

h @ J s  

fs 

0 - A(B) @ ker - A(B) @ A(S) - A(B) - 0 
S 

lL 1.1 1. 
0- k e r j  - A(B x S )  - A ( B ) - 0 ,  

S 

where K~ denotes the restriction of K .  

This diagram yields a commutative diagram of long exact cohomology 
sequences. Since L ~ ( ~ )  and K# are isomorphisms (cf. Theorem VI, 
sec. 5.20), we can apply the five-lemma to obtain that ( K ~ ) #  is an iso- 
morphism, 

( K ~ ) # :  H(B) @ H (ker j,) 5 H (ker j ) .  
On the other hand, let 

y :  A(B) + A(B) 0 ker f 

be the linear map given by y(@) = @ @ 1. Since K~ is the restriction 
of K ,  the diagram 

S 

K1 

ker 5, 

A(*) 

commutes. Thus we have only to show that y# is an isomorphism. 
In view of Theorem 11, sec. 5.13, we have 

9.-1 

ker j, = zo WS) o v'--L(s)), 

whence 
?-1 

H (ker 5,) = 2 Hp(S)  = Ho(S) = 88, 
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and so 
H(B)  @ H (ker 1 ) = H(B) .  

It follows that y #  is an isomorphism. 
Q.E.D. 

Proof of the proposition: According to Proposition XI, sec. 1.13, 
we can find a finite cover U, ,..., Urn of B such that the sphere bundles 
(+U, ! T, U, , S) are trivial. We proceed by induction on m. The  case 
m = 1 is settled in the lemma. 

Suppose by induction that the proposition has been proved for 
decompositions with fewer than m elements. Let 

rn 

u =  u,, v =  (J u,. 
a=2 

Set 
E ,  = x-l(U), Ev = r-'(V), E U n v  = rr-'(Un V) .  

Then the sphere bundles 

( E ,  9 n, u, S), (Ev  9 =, v, S) 
and 

(Eunv 1 u n V,  S) 

satisfy the induction hypothesis. 
Consider the row-exact commutative diagram 

0 __* A(E)  - A(E,) 0 A(EY) - A(EUn Y) - 0 

0 - A(B) - A( U )  @ A( V )  - A( u n V )  __f 0 

(cf. sec. 5.4). Since the vertical maps in this diagram are surjective, it 
follows from the nine-lemma (cf. sec. 0.6) that the induced sequence 

If, 1fS . f .  1JS 

0 + KB + KU @ Kv + Kunv+ 0 

is short exact. Here 

KB = ker ( j  : A(E) + A@)), 

KU = ker (I : A(&) -+ A(U)) ,  

Kv = ker ( j  : A(&) --t A(V))  
S S 

K,,, = ker ( j  : A(E,,)+A(Un V)) .  
S S 
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Now consider the maps 

PR:  A(@ + KB I 

Bu: A ( U )  - K u ,  

Bv: 4 V )  - Kv 

Puny: A( u n v) + Kunv. 

We have the commutative row-exact diagram 

0 - A(B) - A( U )  0 A( V )  - A( U n V )  - 0 

b ~ P U O P V  1P""V (8.1) 

O-KB- K,y @ KV-KU,-,y-O. 

Since ( / I u ) ,  , (/Iv)#, and ( / Iunv),  are isomorphisms (by induction), the 
five-lemma can be applied to the diagram of long exact cohomology 
sequences induced by (8.1) to obtain that (PB)#  is an isomorphism. 

Q.E.D. 

8.2. The Gysin sequence. Let 9 = (E, T ,  B, S) be an oriented 
r-sphere bundle ( I  2 1). Consider the exact sequence of differential 
spaces 

0 - ker 2 A ( E )  A(B) - 0. 
S 

It yields an exact triangle 

H ( B )  

where the connecting homomorphism 8, is homogeneous of degree r + 1 
(cf. sec. 0.7). 

On the other hand, in view of Proposition I, sec. 8.1, we have an 
isomorphism 

&: H(B)  -% H ker ( f J  
which makes the triangle 
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commute. Combining these diagrams and setting D = (&)-1 o a, o W ,  

(where ~ ( a )  = (- l)P+’a, a E HP(B)) we obtain the exact triangle 

H ( B )  

H(B)  
The linear map 

D :  H(B)  + H(B) ,  

homogeneous of degree r + 1, is called the Gysin map. 

Definition: The long exact sequence 

D 7r* J* . . . - H”(B) - H’+r+l(B) + H’+‘+’(E) --.% H”’+’(B) - - - *  

corresponding to the triangle (8.2) is called the Gysin sequence for the 
sphere bundle. The element D( 1) E H‘+’(B) is called the Euler class 
of the oriented sphere bundle and is denoted by Xg . 

Proposition 11: The map D: H(B)  + H ( B )  can be written in the form 

 DO^ = a - X,,  OLE H”(B). 

Proof: This is an immediate consequence of 

Lemma 11: The map D satisfies the relation 

D(a * y )  = a * &, a E H”(B), y E H*(B). 

Proof: Let @ E A P ( B )  and Y E A ~ ( B )  be cocycles representing 01 

and y. Choose an r-form SZ on E such that 

j , R  = 1. 
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Then the element al(a * y )  E H(ker JS) is represented by the differential 
form 

0 = 6 ( ~ * @  A T*Y A 9) = (- l ) p ~ * @  A ~(T*Y  A G). 

Hence, we obtain 

and so 
* Y) = (-l)pP#a 4 Y  

D(a * y )  = (-1)"+""(8,)-' al(a * y) = a Lly. 

Q.E.D. 

Example: Assume an oriented r-sphere bundle (r 2 1) admits a 
cross-section (I. Then 

rJ# 0 T* = ($7 0 0)" = 1 

and so n* is injective. Thus Im D = ker T# = 0; i.e., D = 0. In this 
case the Gysin sequence becomes the short exact sequence 

r* J; 0 - H(B)  - H ( E )  - H(B) - 0. 

x, = D(1) = 0. 
I t  follows that 

In particular the trivial bundle B x S has zero Euler class. 

Proposition 111: Let (E, T, B, S) be an oriented r-sphere bundle 
with r even. Then the Euler class of the bundle is zero. 

Proof: Let @ E Ar+'(B) represent X, . Then there is an r-form Q 
on E such that 

6 G =  T*@ and 1," = -1. 

Since r is even, we have 
T*@ A Q = @(Q A 52) (8.3) 

Now Proposition IX, sec. 7.13, and Proposition X, sec. 7.13, yield 

whence X, = 0. 
Q.E.D. 
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8.3. Naturality of the Gysin sequence. 
= (I?, +,8, S) be oriented r-sphere bundles (r 

Let a = (E, n, B, S) and 
1) with the same 

fibre, and let cp: E 3 I? be a smooth fibre preserving map which restricts 
to orientation preserving diffeomorphisms in each fibre and induces 
$: B -+ 8. Then Proposition VIII, sec. 7.12 gives the commutative 
row-exact diagram 

ls 0 - ker j s  - A(E) - A(B) - 0 

t m  t v *  I** 
j s  0 - ker j - A(e)  - A(@ - 0 

(a is the restriction of y*). On the other hand, we have the commutative 
diagram 

S 

B A(B) - ker 

** t t m  

where p, 6 are the restrictions of n* and 7i* (cf. sec. 8.1). 
Passing to cohomology we obtain a commutative diagram between 

the Gysin sequences of the sphere bundles (E, n) B, S) and (I?, +, 8, S), 

D 7P ... __f H q B )  + H”+T+l(B) - H”+‘+l(E) HP+’(B) + *.- 

In particular, it follows that the Euler classes x9 ,  xk of these bundles 
are connected by 

x, = pxg .  

Let (E, n, B, S) be an oriented r-sphere 
bundle with r 2 1. Let di E Ar+l(B) be a closed form representing the 
Euler class. Then we can choose Q E Ar(E) so that 

8.4. The cohomology of E. 

j s Q =  -1 and 6P=a*@. 

Let AQ denote the exterior algebra over the one-dimensional graded 
space (homogeneous of degree r )  spanned by SZ (Note that, if r is even, 
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A Q  need not be a subalgebra of A(E)). Form the graded anticommutative 
algebra A(B)  @ ASZ. Define 

d :  A(B) @ ASZ --f A(B) @ ASZ 

by 
d(Y @ 1) = 8Y @ 1 

d(Y 0 S Z )  = 8Y @ Q + ( - 1 ) P Y  A 0 @ 1, Y E Ap(B). 

Then d is homogeneous of degree 1, and 

d2 = 0. 

Thus (A(B) @ ASZ, d) is a graded differential space. If r is odd, d is an 
antiderivation and (A(B) @ ASZ, d) is a graded differential algebra. 

Next, define a linear map, homogeneous of degree zero, 

p: A(B) @ AS2 --+ A(E)  

by 
p ( y  @ 1) = n*y, p('u @ Q) = n*y A S Z ,  E A(B). 

Then p o d = 6 0 p and so p induces a linear map 

p#: H(A(B) @ ASZ) --+ H ( E )  

homogeneous of degree zero. 

Proposition IV: With the notation and hypotheses above, 

p#: H(A(B) @ ASZ) --+ H ( E )  

is an isomorphism of graded spaces. 

Proof: Let i: A(B) + A(B) @ ASZ be the inclusion map given by 

i ( Y ) = Y @ l ,  Y E A ( B ) .  

p(Y1 @Q + Y, @ 1) = -Y1. 

Define p:  A(B) @ ASZ -+ A(B) by 

Then 

0 - A(B) 5 A(B) @ ASZ 2 A(B) - 0 

is a short exact sequence of graded differential spaces. Hence it induces 
a long exact sequence of cohomology spaces. 
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On the other hand, the diagram 

0 - A(B) 2- A(B)  @ AQ A(B) - 0 

commutes. Thus it induces a commutative diagram of long exact 
cohomology sequences. Since (cf. Proposition I, sec. 8.1) /3# is an iso- 
morphism, the five-lemma implies that p# is an isomorphism. 

Q.E.D. 

Corollary I: If Y is odd, then p".# is an isomorphism of graded 
algebras. 

Proof: Since r is odd, we have SZ A SZ = 0 (in A(E)) .  It follows that p 

Q.E.D. 

Next observe that if the Euler class is zero we may choose SZ so that 
SSZ = 0. With this choice the operator d in A(B) @ ASZ is given by 
d = S @ L and so p# becomes an isomorphism 

is a homomorphism of graded algebras. Hence so is p# . 

p#: H(B)  @ AQ 5 H ( E ) .  

Since (cf. Corollary I to Proposition 11, sec. 5.6) ASZ H(S), we obtain 

Corollary 11: If the Euler class is zero (in particular if Y is even), 
then there is an isomorphism 

N 

H(B)  @ H ( S )  _c H ( E )  

of graded spaces. If r is odd, this is an isomorphism of graded algebras. 
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8.5. Pull-back of a cross-section. Suppose that 9? = ( E ,  T ,  B, F )  and 
d = ( E ,  +, B, E )  are smooth bundles and that y :  E + E is a smooth 
fibre preserving map inducing 4: B + B and restricting to diffeomor- 
phisms yz: F, + p+(x) in each fibre. 

Given a cross-section 8: B ---f define a set map a: B -+ E by 

U ( X )  = cpy18#(~), x E B. 

Lemma 111: u is a cross-section in 9l. 

Proof: Evidently x 0 u = 1 .  I t  remains to be shown that u is smooth. 
Since smoothness is a local property we can restrict ourselves to the case 
E = B x F and E = B x F. In  this case (cf. Lemma VI, sec. 7.10) 
we can write 

rp = (# x 1 ) o x  

where x: B x F + B x F is a smooth fibre preserving diffeomorphism. 
Now define a smooth map 7: B + F by 

6 ( Y )  = ( Y !  d Y ) ) ?  Y E B. 

Then 

and so u is smooth. 
U(X) = x-'(X, T # ( X ) ) ,  X 6 B 

Q.E.D. 

The cross-section u defined above will be denoted by ~"(8) and is called 
the pull-buck of 8 under y .  Observe that in the case of vector bundles 
this definition agrees with that one given in sec. 2.15. If B = ( E ,  +?, B, P )  
is a third bundle and +: E -+ a smooth fibre preserving map inducing 
diffeomorphisms in the fibres, then 

(@ 0 rp)" = rp# o@*. 

8.6. Difference class. Let a = ( E ,  n-, B, S) be an oriented r-sphere 
bundle (Y 2 1) which admits a cross-section T. Then, according to the 
example of sec. 8.2, the sequence 

I," 0 - H ( B )  2 H ( E )  - H ( B )  - 0 
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is short exact. Since T* 0 n# = L ,  it follows that maps ker T# iso- 
morphically onto H(B) .  In particular there is a unique class w ,  E Hr(E) 
such that 

T*W, = 0 and y w, = 1. 
S 

If u is a second cross-section in 9, then 

j ;  (w, - W,) = 0. 

Hence, by exactness, there is a unique element [T, u] E Hr(B) such that 

T # ( [ T ,  U ] )  = W, - W ,  . 

I t  depends only on T #  and a#. 

Definition: The element [T, u] is called the difJerence class for T and u. 

Lemma IV: Let T and u be cross-sections in 9. Then 

Proof: y can be written (cf. sec. 8.4) 

y = +a+ (+B) . W ,  

= r#Ly. + (+B) . (w, + +[T, 4, 

where a, /3 E H ( B ) .  Then 

f l y  - U#y = Ly - Ly - B [T, U ]  = -P ' [T, U]. 

On the other hand, 
# # 

and the lemma follows. 
Q.E.D. 

Corollary I: T#  = u* if and only if [T, u] = 0, i.e., if and only if 
w ,  = w, . 

Corollary 11: If Hr(B) = 0, then [T, u] = 0 and T* = u* for every 
two cross-sections u and T.  
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Now suppose 4 = (8, 73,8, S) is a second oriented r-sphere bundle. 
Assume Q: E -+ 8 is a smooth fibre preserving map which restricts to 
diffeomorphisms between the fibres. Let t,h: B -+ I? be the induced map 
between the base manifolds. 

Proposition V: Let $, 6 be cross-sections in 4 and write r = Q#+, 

u = ~ # 8 .  Then 

and 
9)#w+ = w,, 9)#ws = w, 

**([.i, 61) = [T, 01. 

Proof: The equations Q 0 T = T o #, q~ o u = 8 0 t,h yield 

T* 0 9)* Z Z Z  t/J# 0 +* and o# o y* = +* 0 6*. 

Moreover, 

j 409 ) *  = p 0 j #  
S S 

(cf. Corollary I1 to Proposition VIII, sec. 7.12). The proposition follows. 
Q.E.D. 

8.7. The main theorem. Consider an oriented sphere bundle ki? = 

1. Suppose there are open sets U C B and V C B (E,  T, B, S), r 
such that 

U U V = B  

and cross-sections T ~ :  U + E,  uv: V -+ E. Let T and o denote the 
restrictions of rU and uv to U n V. 

On the other hand, consider the bundles 

Theorem I: With the notation and hypotheses above, let 

a: H(U n V )  + H(B) 
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denote the connecting homomorphism for the Mayer-Vietoris sequence 
of the triple (B, U, V ) .  Then the Euler class of is given by 

x, = m, 4. 
Proof: Let @EA'+'(B) represent the Euler class and choose 

LR E Ar(E) so that 

1 , R  = 1 and 652 = -T*@. 

Define LR, and LR, in Ar(EUnv) by 

52, = 52 - T*T*SZ and 

Then LR, and SZ, are closed forms and represent respectively w ,  and w, . 
Hence w, - w, is represented by 

Q, = 52 - w*a*52. 

(9 - T*T*Q) - (52 - T*U*Q) = T*(fJ*Q - T*Q).  

It follows that a*LR - T*LR is closed and represents the difference class 

On the other hand, @ is closed and represents X ,  . The restrictions of 
[T, 01. 
@ to U and V are given by 

= TGT*@ = - 6 ~ ~ 5 2  and OV = -6u;Q. 

Since afLR and ~ $ 2  restrict to a*Q and T*LR in U n V and since 
o*Q - T*LR represents [T, a], we obtain (cf. sec. 5.4), 

Q.E.D. 
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8.8. Definition. In  this article B = ( E ,  n, B, S )  denotes a sphere 
bundle with dim B = n, dim S = n - I and n 3 2 .  A local cross-section 
in B with an isolated singularity at a is a cross-section u: 0 -+ E where U 
is some neighbourhood of a and 0 = U - {a } .  Now assume that the 
manifold E is oriented. We shall define the index of a local cross-section, 
u) at an isolated singularity, a. 

Choose a neighbourhood V of a such that 

(i) V C U 
(ii) 
(iii) 
Let B ,  = ( E ,  , nv , V ,  S )  denote the restriction of B to V.  Choose 

orientations in and V so that the local product orientation in E ,  
coincides with the orientation induced from that of E.  Finally, choose a 
cross-section 7 in 99, and denote the restriction of r to &' = V - {u} 
by i. 

V is diffeomorphic to [w7L 

There is a trivializing map +: V x S + n-lV for g. 

Since B ,  is oriented we can form the difference class 

[+, uv] E H"-'( V ) ,  

where u, denotes the restriction of u to p. Since V is oriented, we have 
the canonical isomorphism 

5 

a y :  If"-'( 3) Iw 

(cf. sec. 6.8) and hence a real number 

ffV([+, uv1) 

is determined. 

Lemma V: With the notations and hypotheses above, a,([+, o,]) 
depends only on u and the choice of the orientation in E.  

Proof: It has to be shown that a,([+, cry] )  is independent of 

(i) 
(ii) the choice of r 

(iii) the choice of V .  

the orientations of V and g V  
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(i): Reversing the orientation of Vforces us to reverse the orientation 
of 8,. In this case a, is replaced by -ay and [i, uy] is replaced by 
-[+, u,]. Hence a,([+, uy] )  remains unchanged. 

Let T~ be a second cross-section in 8, . Since V r  Rn, it follows 
that Hn-l( V) = 0. Hence [T, T I ]  = 0 and so, by Proposition V, sec. 8.6, 

(ii): 

[+,+I = 0. 

Now Corollary I to Lemma IV, sec. 8.6 shows that i# = il*, whence 

(iii): Let W be a second neighbourhood of a satisfying the conditions 
imposed above on V and let T ~ :  W -+ E ,  be a cross-section. T o  show 
that 

4[+* %I) = %4+l 9 %I> 

clearly we may assume that W C V. 
In view of (i) we may assume that the inclusion maps 

i :  E i - f  E ;  and j :  w+ F' 

preserve bundle and base orientations. In view of (ii) we may assume 
that T~ is the restriction of T to W. Then 

uW = i#av and +, = i#+. 

Since i preserves the bundle orientations, Proposition V, sec. 8.6, 
implies that 

[+I 9 .wl = j*([+, uvl). 

Now, since j preserves orientations, Proposition V, sec. 6.7, gives 

ad[+ ,  , 4) = awj*([+, uvl) = 4+, 4). 
Q.E.D. 

Definition: The number a&+, uv]) is called the index of u at a and 
is denoted by ja(u). 

Remark: It follows immediately from the definition that the index 
changes sign if the orientation of E is reversed. 
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Next, consider a second (n - 1)-sphere bundle A? = (l?, 73,8, S) 
over an n-manifold B and assume that I? is oriented. Suppose that 
q ~ :  l? + E is a fibre preserving and orientation preserving diffeomorphism 
of I? onto an open subset of E. Assume v induces a diffeomorphism I,,5 
of B onto an open subset of B and restricts to diffeomorphisms 

N - - 
px :  s, - S*(X)  9 x E 8. 

If cr is a local cross-section in a with an isolated singularity at a = +(b), 
then v#u is a local cross-section in d with an isolated singularity at b. 
Combining Proposition V, sec. 6.7, with Proposition V, sec. 8.6, yields 
(as in the proof of Lemma V, iii above), 

Lemma VI: With the notation and hypotheses above 

ia(P)”U) = i a ( 4 .  

8.9. Index and degree. Suppose that E is oriented and that a: 0-t E 
is a local cross-section in 93 with an isolated singularity at a. Let F be a 
Euclidean n-space and let 

define a smooth fibre preserving diffeomorphism rp such that 

#(O) = a and V C  U. 

Choose orientations in F and S so that q~ is orientation preserving. 
Denote the unit sphere of F by S ,  and give it the induced orientation. 

The cross-section 

9% : F - F  x S,  F = F - (0) 

determines a smooth map 6: P -+ S by the equation 

cp#a(x) = (x, 6x1, x G F .  

Restricting 6 to S,  we finally obtain a smooth map 

6s: s, - s. 
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Proposition VI: The degree of 6, is equal to the index of o at a, 

j,(u) = deg (3, . 
In particular, the index at an isolated singularity is an integer. 

Proof: In view of Lemma VI, sec. 8.8, we lose no generality in 
assuming that 

E = F x S ,  B = F ,  p = ~ ,  # = L .  

In this case 6: 8' -+ S is given by 

.(x) = (x, (3(x)), x E F. 

Now fix a point e E S and let 7 :  F -+ F x S be the cross-section 
given by 

~ ( x )  = (x, e), x E F. 

If 52 E A"-l(S) satisfies fs 52 = 1, then 1 x D E A@ x S) and 

i*(l x SZ) = 0 and (1 x SZ) = 1. 
S 

Hence 1 x sd represents w; in H"-'($ x S). It follows that 

w; = p # w s ,  

where ws E H"-'(S) is the orientation class, and p: 8' x S -+ S is the 
projection. 

Next, observe that 

[i, u] = o#w; = o#p#ws, 

whence 
jo(u) = aFo#p#ws = a,B#w,. 

Applying Proposition VI, sec. 6.8, yields 

* A# 
jo(u) = I,, usws = deg (3, . 

Q.E.D. 

8.10. Cross-sections with index zero. Proposition W: Assume E 
is oriented. Let u be a cross-section with a single singularity at a E B, 
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such thatja(o) = 0. Then there exists a cross-section r :  B -+ E (without 
singularities) such that r = (T outside a neighbourhood of a. 

Proof: It  is clearly sufficient (in view of Lemma VI, sec. 8.8) to 
consider the case E = Rn x S and a = 0. Define 6: &la 4 S by 

(x, 6(x)) = u(x), x E R". 

Let 6, denote the restriction of ii to the unit sphere in R" (with respect 
to some Euclidean metric). Then according to Proposition VI, sec. 8.9, 

deg8, = j&u) = 0. 

Hence, by Corollary 111 to Theorem 111, sec. 6.15 there is a smooth 
map (consider S as the unit sphere in Rn) 

?: R" --+ R" 

such that 
?(x) = 6(x), I x I 2 1. 

Set 

Q.E.D. 



$4. Index sum and Euler class 

8.11. In this section 99 = (E, 7r, B, S) will denote an oriented sphere 
bundle such that 

(1) 
(2) 
(3) 

B is a compact, oriented n-manifold (n >, 2) 
dim S = n - 1 
E is given the local product orientation. 

A cross-section, u, in 99 with finitely many singularities a, ,..., ak is a 
cross-section 

u : B - {a, , ..., ak} 4 E.  

The  purpose of this section is to prove 

Theorem 11: Let u be a cross-section in 9 with finitely many 
singularities a, ,..., ak . Then the Euler class xa , of the bundle is given by 

where wB denotes the orientation class of B (cf. sec. 5.13) and j,(u) is 
the index of u at a,. Equivalently, 

Proof: Choose, for each v, a neighborhood U, of a, diffeomorphic 
to to Rn such that the U ,  are disjoint and such that the restriction of 

U, is trivial. Set 
k 

U = u Uv V = B - {a, ..., ak}. 
V-1 

Then U v V = B. Next choose arbitrary cross-sections ?,: U ,  + E. 
These cross-sections determine a cross-section over U .  On the other 
hand, u is a cross-section over V. Let 

denote the restrictions of these cross-sections to U n V. 
334 
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According to Theorem I, sec. 8.7, we have 

x, = a([+, 61), 

where a is the connecting homomorphism for the Mayer-Vietoris 
sequence of the triple (B, U,  V) .  

Next, set ou = U ,  - {a,} and let T, and u, denote the restrictions o f t ,  
and u to ou respectively. Then 

[TU , .,I E Hn-’(OJ 
and, evidently, 

[ f ,  61 = of, [T, 1 ‘3,l. 
Finally denote the canonical isomorphism 

au,: H n - y U , )  ”_ R 

(cf. the corollary to Proposition VI, sec. 6.8) by a,. Applying Proposi- 
tion VII, sec. 6.9, we obtain 

u = l  

Q.E.D. 

k 
Corollary I: The index sum ~ u E l j u ( u )  is independent of u. 

k Corollary 11: If n is odd, then Cucl j,(u) = 0. 

In $5 the following theorem will be established: 

Theorem In: Every sphere bundle with fibre dimension n - 1 >, 1 
and connected base manifold of dimension n .admits a cross-section 
with a single singularity. Moreover, if the base manifold is not compact, 
then the bundle admits a cross-section without singularities. 

With the aid of this and Theorem I1 we shall now establish: 

Theorem IV: An oriented (n - 1)-sphere bundle, (E, r, B, S), 
2) over an oriented connected n-manifold B admits a cross-section (n 

T :  B --f E if and only if its Euler class is zero. 
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Proof of Theorem IV: If B is not compact, Theorem I11 implies 
that a cross-section exists. On the other hand, according to Proposition IX 
sec. 5.15, Hn(B) = 0. Hence X, E Hn(B) is zero. 

If B is compact, let 0: B - {u} + E be a cross-section with a single 
singularity at u (cf. Theorem 111). Then we have (by Theorem 11) that 

Thus, if X, = 0, then ja(u) = 0. Hence Proposition VII, sec. 8.10, 
implies that there is a cross-section r :  B --t E. 

On the other hand, assume r :  B -+ E is a cross-section. Then the 
example of sec. 8.2 shows that X, = 0. 

Q.E.D. 

Corollary: If n is odd, the bundle always admits a cross-section. 



S5. Existence of cross-sections in a sphere bundle 

8.12. I t  is the purpose of this article to prove the following theorem, 
which was used in sec. 8.1 1. 

Theorem 111: Every sphere bundle with fibre dimension n - 1 over 
a connected base manifold of dimension n 2 admits a cross-section 
with a single singularity. If the base is not compact, then the bundle 
admits a cross-section without singularities. 

In sec. 8.13 we construct a cross-section with discrete singularities. 
This is then modified to give a cross-section without singularities, if the 
base is not compact. The compact case follows easily. 

In this article a = (E, 7, B, S) denotes a fixed (n - 1)-sphere 
bundle over a connected n-manifold B, where n 2. 

8.13. Proposition VIII: Let K C A C 0 C B, where K is closed 
and discrete, A is closed and 0 is open. Let a: 0 - K + E be a cross- 
section. 

Then there is a closed discrete set L C B and a cross-section 
T :  B - L + E such that L n A = K, and r coincides with u in a neigh- 
bourhood of A. 

Lemma VII: The proposition is correct if E = B x S.  

Proof: Regard S as the unit sphere of an n-dimensional Euclidean 
space F. Write 

.(x) = (x, GI@)), x E 0 - K. 

Consider u1 as a smooth map ul: 0 - K + F. 
Letf be a smooth function on B such thatf = 1 in some neighbourhood 

W of A and such that carrf C 0. Then tp = f - u1 is a smooth map of 
B - K into F. By Sard’s theorem (cf. [lo, p. 47, Lemma 3.21, and 
sec. 6.3) there is a regular value b E F for tp with I b I < 1. 

Define a closed subset, C, of B by C = tp-I(b). Clearly C C B - W. 
Moreover, since 

dim B = dim@ - K )  = n = dimF, 

tp is a local diffeomorphism at each x E C. Hence C is discrete. 
337 
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Finally, by Theorem 111, sec. 1.12, there is a diffeomorphism 4: F 4 F  
such that 

$(b) = 0 and $(z) = z ( I  z I 2 1). 

Set T~ = + 0 cp; 

T ~ : B - ( K u C )  --* F - { 0 }  

and define T by 

This proves the lemma, with L = K LJ C. 
Q.E.D. 

Proof of the proposition: Let {(Ui, +,)} (i = 1,2,  ...) be a coordinate 
representation for ~8 such that { Ui} is a locally finite open cover for B, 
and each 0, is compact. Choose an open cover V ,  of B such that 

vi c ui . 

Let V be open in B and assume that A C V C V C 0. 
Set 

A i =  (J V j u V  
i < <  

We shall construct finite sets Ki C Ai and open sets 0, 3 A, together 
with cross-sections 

u<: Oi -(K u Ki)  + E,  i = 0, 1 ,  2, ... 

satisfying the conditions 

(i) K, n = KiP1 
(ii) ui(x) = uiWl(x), x E - (K u Ki-J, i = 2, 3, ... 
(iii) ui(x) = u(x), x E V - K .  

In fact, set KO = 0, 0, = 0 and uo = u. Now assume by induction 
that uo , ..., ai have been constructed. Restrict ui to a cross-section 

ui : (Oi -(K u K i ) )  n Ui+l -+ E.  

Note that Ai n Uiil is closed in Uiil and that 

( K  u Ki) n Ui+l C Ai n Ui+l C 0, n U,,l . 
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Now Lemma VII yields a closed discrete set C C Ui+l - Ai and 
a cross-section 

~ i + l  : [Ui+l - (C  U K U Ki)] -+ E 

which agrees with oi near Ai n Ui,l . Choose a neighbourhood, W, of 
Ai (in B )  so that 

W n C = 0 and T ~ + ~ ( x )  = ui(x), x E Ui+l n [W - ( K  u K i ) ] .  

is finite, because Vi+l is a compact 
in Ui+l so that 

Next, observe that X = C n 
subset of Ui+l. Choose a neighbourhood, m, of 
w n C = X .  Then set 

Ki+l = Ki  u X ,  Oiil = W u lV. 
Since ui and T ~ + ~  agree in W n I%, they define a cross-section 

uitl : (Oi+l - K u Ki+l) + E .  

This closes the induction. 
Finally observe that (Ji Ki has finite intersection with each vi.  Since 

the Vi are an open cover of B, Ui Ki is closed and discrete. Hence 
L = K u Ui Ki is closed and discrete. Now define 7: B - L -+ E by 

Q.E.D. 

Corollary: admits a cross-section 7: B - L -+ E, where L is 
closed and discrete. If B is compact, then r has only finitely many 
singularities. 

8.14. Lemma VIII: Let K be a compact subset of a connected 
manifold B. Then there exists a compact set L C B such that K C L 
and none of the components of the open set B - L has compact closure 
in B. 

Proof: Let (Oi}isN denote the components of B - K :  

B - K =  u O i .  
iehl 

Choose an open set U such that U 3 K and such that 0 is compact. 

Oi and U U  u Oj 
Now fix an index i. Then the open sets 

j # i  
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cover B. Since B is connected, they cannot be disjoint. But by construc- 
tion we have 

O,nO,= a, i # j ,  

whence 

O i n U #  0 ,  i E N .  

Next, since 
U O , U U = B  
icN 

and since 0 is compact, we can choose an integer m such that 
m 

B C ( j 0 , U U .  
i=l 

We shall show that U,  0, , ..., 0, is an open cover of B. 
In fact, since the 0, are disjoint we have, for j > m, that 

Oj = (Oj n D )  u (0, n ( B  - if)) = (0, n U )  u (0, n ( B  - 0)). 

Since the Oj are connected and Oi n U # 0 (as was proved above), 
it follows that 

0 ,C  U, j > m. 

Hence 
m 

B =  ~ O , U  U. 
j=1 

- 
Number the Oj so that 0, , ..., 0, are compact and Opfl, ..., Om 

are not compact. Set 
m 

L = B -  IJ 0,. 
S=-P+l 

Then L is closed. Since 

L C  U" (j 0,c tfu 0 o,, 
5-1 1-1 

it follows that L is compact. Clearly, L 3 K. Finally, 
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Hence the components of B - L are the open sets Oi ( j  = p + 1, ..., m) 
and these components do not have compact closures in B. 

Q.E.D. 

As an immediate consequence of Lemma VIII, we have 

Proposition M: Let B be a connected manifold. Then there is a 
sequence of compact subsets A, C B, and a sequence of open subsets 
0, C B such that 

(i) 
(ii) B = Ui Oi 

(iii) 

0, C A, C Oi+, 

none of the components of B - Ai has compact closure. 

8.15. Consider the (n - 1)-sphere bundle &? = (E, T, B, S) .  

Proposition X: Let 0 be a connected open subset of B and let 
a, b E 0. Then there is a fibre preserving diffeomorphism Q): E --f E 
inducing #: B -+ B and such that #(a) = b and Q)(z) = z (z I$ ~ ~ ( 0 ) ) .  

Proof: If the bundle is trivial, E = B x S, use Theorem 111, 
sec. 1.12, to find $: B + B with 

$(a) = b and $(x) = x, ~ $ 0 .  

Set 9 = # x L .  

of Theorem 111, sec. 1.12. 
In general, use the local triviality of the bundle, and mimic the proof 

Q.E.D. 

Corollary: 
that for each i , j  

Let U , ,  ..., U ,  be open connected subsets of B such 

ui = u, or ui n u, = 0 .  

Let x( E U, and yi E U, (i = 1, ..., m) be two sets of m distinct points. 
Then there is a fibre preserving diffeomorphism Q): E + E such that 

$(xi) = yi and q(a) = z, 2 4 n-'Ui . 
t 

8.16. Proof of Theorem 111: According to the corollary to Proposi- 
tion VIII, sec. 8.13 there is a closed discrete set K and a cross-section T :  

B - K K E .  
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Assume first that B is not compact. Let A, (i = 1, 2, ...) be a sequence 
of compact subsets of B and let 0, (i = 1,2,  ...) be a sequence of open 
subsets of B satisfying conditions (i), (ii), and (iii) of Proposition IX, 
sec. 8.14. We shall construct a family of closed discrete subsets Ki of B 
and a sequence of cross-sections u,: B - Ki -+ E such that 

(1) K i n  A, = 0 
(2) q(x) = Ui&) (x E 0,-1). 

In fact, set 0, = A, = 0 and (T, = T. Now suppose that K,, up 
have been constructed. Since Ap+, is compact, K, n A,,, is a finite set, 
say 

K,  n A,+, = { X l ,  ..*, ~,>. 
Let U, (i = 1, ..., rn) denote the component of B - A, which contains xi 
(possibly Ui = Uj) .  Since no Ui has compact closure, each U, meets 
B - A,,, . Now set 

C, = K,  - { X I ,  ..., x,}. 

Then C, is discrete and closed, and 

C,  C B - A,+,. 

Set 
vi = u, - c 9‘ 

Then Vi is connected (because dim Vi 2 2) and meets B 
Thus there are distinct points y1 , ..., ym such that 

Yi E Vi 3 Yi 4 A,+,* 

. A,,, * 

The corollary to Proposition X, sec. 8.15, now yields a fibre preserving 
diffeomorphism 9): E -5 E inducing t+h: B -5 B and such that 

# ( x i )  = yi and ~ ( z )  = z (z  4 &Vi). 

Set K,,, = $(K,). Then 

K9,l = {Yl  9 ...,Ym> ” c, f 

K,+l n A,+1 = 0 .  

whence 

Define a cross-section a,,,,: B - K,,, -+ E by 

U,+l = $0 0 (7, 0 I)-’. 
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Since 0, C A , ,  and A, n Vi = 0, for each i, we have 

v(z) = z, z E ?r-lop . 
It follows that 

%+1(X) = UD(X), x E 0, * 

This closes the induction. 
Now define u: B -+ E by 

u(x) = limu,(x). 
p+- 

Since B is not compact, the sequence {0,} is infinite. Hence for all x, 
choosing p so that x E 0, , we see that uj(x) is defined when j > p .  
Thus u is well defined. Obviously, u is a cross-section in W. This 
completes the proof of Theorem 111, in the case that B is not compact. 

Finally, assume that B is compact. Fix a point u E B. Then B - {u} is 
connected and not compact. Hence there is a cross-section a: B - {u} -+ E. 
Thus u is a cross-section in Lif with a single singularity at a. 

Q.E.D. 



Problems 

= (E,  n, B, S) is an oriented r-sphere bundle. 

1. Cohomology of the base. Let @[t]  denote the graded algebra of 
polynomials in an indeterminate, t ,  with t homogeneous of degree r + 1. 

(i) Define a linear operator d in R[ t ]  @ A(E)  by 

d(z @ Y) = z 0 SY + ( - 1 ) P z  * t 0 m* Y, p = deg+ 
S 

Show that d is homogeneous of degree + 1 and that d2 = 0. 
(ii) Show that m* induces a linear map A: A(B) + R[t] @ A(E).  

Prove that d 0 A = A 0 6 and that A,(X,) is represented by t @ 1. 
(iii) Prove that A,: H ( B )  + H(R[t]  @ A(E))  is an isomorphism and 

interpret the Gysin sequence in terms of H(R[t]  @ A(E)) .  Hint: Consider 
R[tI 0 A(B)  0 AQ. 

2. Cohomology of the total manifold. (i) With the notation of 
sec. 8.4 define V in H ( B )  @ AQ by 

V(. 0 Q + p 0 1)  = (- 1)”. . x, 0 1 ,  a E HP(B), /3 E H(B) .  

Show that V2 = 0 and that H ( E )  

Gysin sequence, obtain a short exact sequence 

H(H(B)  @ AQ, V). 

(ii) Let p B  denote the multiplication by X,  on the right. From the 

0 + coker pB + H ( E )  --* ker pB --* 0 

(coker p B  = H(B)/Im p B ) .  

(iii) If dim H(B)  < co, show that there are homogeneous classes 
a,, , a1 , ..., up in H ( B )  and nonnegative integers m, , ..., mp such that 

(a) a,, = 1, ul, ..., ap represent a basis of cokerp., . 
(b) X2, a1 X $ ,  ..., ap * X 2  is a basis of ker p B  . Conclude that the 

elements ai * X.& (0 < j < mi , i = 0, . . . , p )  form a basis of H(B).  
344 
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(iv) With the notation of (iii), show that H ( E )  has a basis of elements 
P o  9 *-., P p  Y Yo > -.., Y p  9 where 

(v) Show that the PoincarC polynomialsf, andf, are given by 

where qi = deg af and s = tr+l. 

3. Let f and q be oriented Riemannian vector bundles with associated 
sphere bundles fs and qs . Let ( E  @ q)s denote the sphere bundle asso- 
ciated with f @ 7. Give ( f  0 q)s the induced orientation. Prove that 

X ( P @ d S  = XPs * xtls * 

4, Hopf fibering. Let S2n+1 denote the unit sphere in Cn+l with 
respect to a Hermitian inner product. Let a = (S2"+l, p, CP", Sl) be the 
Hopf fibering (cf. problem 10, Chap I). 

(i) Define o E A1(Cn+l) by w(z;  5) = (1/2n) Im(z, 5). Let w also 
denote the restriction of w to S2n+l and prove that JSr  w = - 1. 

(ii) Show So = p * Y  for some Y E  A2(CPn). 

(iii) Prove that Jssn+l w A (6w)n = 1. Conclude that Xg is an orienta- 
tion class of CPn. Hint: Integrate (8w)n+l over the unit ball. 

(iv) Repeat (i)-(iii) for the fibering (S4n+3, p ,  WP", S3). 

5.  (i) Assume that the total space of the r-sphere bundle is an 
(n + r)-sphere. Show that r is odd, that n/(r  + 1) is an integer, q, and 
that H(B)  R[t]/t*+l, where deg t = I + 1 (cf. problem 2). 

(ii) Compute the algebras H(CPn) and H(WPn) (cf. problem 4). 

(iii) Show that the inclusions Ck+l + Cn+l and Wk+l -+ W n + l  induce 
smooth maps i: CPk -+ CP" and j :  WPk + WP". Compute i# and j # ;  
in particular show that these homomorphisms are surjective. 

(iv) Show that CP2n and WP2" are irreversible (cf. sec. 3.22). 
(v) Regard S2"+l as the unit sphere in P + l .  Let p: SZn+l ---t S2"+l 

satisfy p(e%) = eiep(z). Show that deg p = + 1. 
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(vi) Construct a commutative diagram 

S4n+9 

@pZn+l + HIP" 

and show that T is the projection of an S2-sphere bundle. Let XI and X, 
denote the Euler classes (with respect to p1 and p,). Show that an iso- 
morp hism 

7r 

H(WPn) 0 H(S2) 5 H(@P"+1) 

(a 0 1 + B 0 us*) - Tr*a + (+B) XI* 

is given by 

Prove that x: = +x2. (Hint: Use problem 4.) 

6. 

(i) Show that there are unique classes a E Hr(E) and 
that 

Assume that I is even. 

E Har(B) such 

a2 = r@ and ,;. = - 1 .  

Show that /I does not depend on the choice of the orientation. Conclude 
that H ( E )  

(ii) Suppose Q E Ar(E) satisfies Js Q = -1 and 652 = n*Y. Set 
SZ, = SZ + &r*(Js SZ A Q). Show that Q, is closed and that 

(52 + x * q l  = 52, , 

H ( B )  @ H ( S )  (as algebras) if and only if /? = 0. 

@ E A'(B). 

Conclude that Js SZ, A Q, = 0. 

class a of (i). 
(iii) Let Q be as in (ii). Show that SZ + &r*& Q A 9) represents the 

7, Orthonormal 2-frames. Let = (V,,,,, , T, S", S"-l) be the 
sphere bundle associated with the tangent bundle of S". 

vectors in W+l. 
(i) Identify V,,,,, with the set of ordered pairs of orthonormal 
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(ii) Fix e E Sn and define a: S" - {e, -e} -+ Vn+,,, by 

e - (x, e)x 
.(X) = 

I e - (x, e )  4 * 

Computej,(a) andj-,(o). Conclude that x9 = 2 ~ s n  (n  even) and x9 = 0 
(n odd). 

(iii) Compute the algebra H(Vn+,,,) and show that 

H(VTl+l,Z) zz H(SZTl-') (n even) 

H(Vn+l,2) H(S") 0 H(Sn-l) (n odd) 

(as algebras). 

(iv) Let & = (M, r, N ,  V,,,,,) be an oriented bundle, with n even, 
n = 2m. Show that T* induces an isomorphism H ( N )  5 H(ker Jyn+,.p) 

and obtain a long exact sequence - HP(N) - HP(M) ---+ Hp-Zn+l(N) ac HP+l(N) - . 
Interpret i3 as multiplication by an element xa of H2"(N). 

8. Let g1 = (El , r1 , E, 2P-l) be the sphere bundle associated with 
the vector bundle V,  . Assume Y is even, Y = 2m. 

(i) Orient gl . 
(ii) Show that d = ( E l ,  r 0 rl, B, Vr+,,,) is a smooth oriented 

(iii) Prove that Js, x91 = 2.  Conclude that the map 

bundle. 

H(B)  @ H ( P )  + H ( E )  

a 0 1  +BOWs'+++a+wB*X91 
given by 

is a linear isomorphism. 

9. Let 4 = { U,} be an open covering of B, and suppose rt: Ul -+ E 

(i) Construct 52 E &(E) and @ E Ar+l(B) so that @ represents x, , 

(ii) If 4 contains only K open sets, prove that ( x J k  = 0. 

are local cross-sections. 

and @ Iui = 6rf52. 
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(iii) Conclude that if CP" is covered by n open sets U, then the 
restriction of the Hopf fibering to one of the U, does not admit a cross- 
section (cf. problem 5) .  

10. Cochains of differential forms. Let {( U, , p),)} be a coordinate 
representation for a. Let C = zP,* CPlQ denote the algebra of cochains 
of differential forms defined with respect to the open cover {Ui}. Fix 
e E S and define I,&,: Ui n U, + S by $,,(x) = p)$p),,z(e). Let Ds E Ar(S) 
satisfy .fs D = 1. 

(i) Define fl E CrJ by fl(i, j) = $$Qs. Show that Sfl = 0. If 
a1 E H(C, 8) is the class represented by fl , show that D,al = 0. 

(ii) Show that there are cochains f, E Cr+I-P,p (p 2 2) such that 
(a) V(C,>, fi) = 0 and (b) the class represented by Cialh in H(C,  V) 
corresponds to x, under the isomorphism H ( B )  

(iii) Construct a homomorphism H ( N )  + H ( M )  (cf. problem 25, 
Chap. V). If a1 $ Im D, , show that x, is not in the image of this homo- 
morphism. 

H(C, V). 

11. Stiefel manifolds. (i) By considering the sphere bundle asso- 
ciated with the vertical bundle, obtain from a sphere bundle (El , 7rl, 

E, , Sr) a sequence of sphere bundles (Ed , vi , E,-l , (i = 1 ,2  ,... ). 
(ii) Show that an orientation in the first bundle induces orientations 

in the following bundles. 

(iii) If E,, = (point), identify Ei with the set of all ordered sequences 
(xl, ..., xi) of orthonormal vectors in Wfl. The manifold Ei is called 
the ith Stiefel manifold and is denoted by V,.,,,, . 

(iv) In the sequence of (i) construct bundles 

(E,  , vij , E j  , Vr+l-,,i-j), where mij = 7rj+l 0 * * -  0 7rf.  

(v) Compute the algebra H( Vr+l,,) and identify the homomorphisms 
induced by the inclusions Vk,* + Vl,$ and projections Vk,i + Vk,, 

(vi) Identify Vn,n with the set On of isometries of Rn. Thus make On 
into a manifold. Show that the maps On x On --f On and On --t On 
given by (p), $) b p) 0 and p) I--+ p)-l are smooth. 

( j  < i < K < I). 

12, Let 5 = (M, p, N, F) be a complex vector bundle with Hermitian 
metric. Let ts = (S ,  , p, N, S) denote the associated sphere bundle. 
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(i) Show that the vertical bundle V ,  is a complex bundle with 
Hermitian metric. Use this to construct a complex bundle r] over S ,  
such that qa @ 4 = Vs, . 

(ii) Modify the construction in problem 11 to obtain complex Stiefel 
manifolds and compute their cohomology. Identify the group of unitary 
maps of Cn as a manifold, and compute its cohomology. 

(iii) Repeat (i) and (ii) with C replaced by W. 

13. Cohomology with compact carrier. Let 93 = (E, T,  B, S )  be an 

(i) Establish a long exact sequence for cohomology with compact 

(ii) Show that the map D,: H,(B) - H,(B) is given by D,a = a * x, , 

oriented r-sphere bundle. 

carrier. 

where x, denotes the Euler class. 

14. Relative cohomology. Let 93 = (E, T,  B, S )  be an oriented 
r-sphere bundle. Let M be a closed submanifold of B and assume that 
there is a fixed trivialization v: U x S 5 T - ~ U  for 93, where U is a 
neighbourhood of M. 

(i) Let A(B, M) be the ideal in A(B) of forms with carrier in B - M .  
Denote its cohomology by H(B,  M). Establish an exact triangle 

' H ( W  
i+ 

H(B, M )  
(cf. problem 9, iii, Chap. V). 

SZ E Ar(E) and 0 E AT+'(B) such that 
(ii) Let 0 E Ar(S) satisfy .js 0 = -1. Show that there are elements 

and 
js52 = -1  , 652 = w * @  

carr(p*Q -1  x 0) c ( v -  M )  x S. 

Conclude that Q, E A(B, M ) .  Show that the class in H(B, M) repre- 
sented by @ depends only on 9? and p It is called the relative Euler class 
and is denoted by x , , ~ .  
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(iii) Show that X#Xd, rp  = X, . 
(iv) Construct an example to show that xa,p is not independent of v. 
(v) Let u be a cross-section of 9 defined in a neighbourhood of M. 

Construct D E Ar(E), @ E Ar+'(B) so that 

p = -1  , 652 =P*@ 

and in some neighbourhood V, of M, D is closed and represents - w u y .  

(crY denotes the restriction of u to V.)  
Conclude that Q, is closed and @ E A(B, M). Show that the class 

X,,a E H(B, M ) ,  represented by @, depends only on kV and u. Show 
that X,X,,, = X, . 

(vi) If T is another cross-section defined in a neighbourhood of M, 
let T ~ ,  oM be the restrictions of T ,  u to M. Then [ T ~ ,  uM] E H'(M). 
Show that 

a" 9 4) = xd.rr - xB.7 * 

15. Manifolds-with-boundary. (i) Define(the notion of) an oriented 
r-sphere bundle LiY = (E, x,  B,  S )  over a manifold-with-boundary 
(B, aB). In particular E is a manifold-with-boundary. Show that kV 
restricts to an oriented smooth bundle a 9  = (aE, x ,  aB, S) .  

(ii) Suppose (B, aB) is a compact, oriented n-manifold-with-boundary 
(and aB # 0). Let LiY = ( E ,  x,  B, S )  be an oriented (n - 1)-sphere 
bundle over B. Show that 9 admits a cross-section T :  B -+ E. 

(iii) With the notation of (ii) let u: aB --f aE be a cross-section in 2Ml. 
Show that X g , u  E H;(B). The number l: Xd,a  is denoted by L ( u )  and 
is called the index of u with respect to g. Show that the "index at an 
isolated singularity" is a special case of this index. 

(iv) If the cross-section, u, of (iii) extends to a cross-section in 9, 
show thatja(u) = 0. 

(v) Let T,  u be the cross-sections of (ii), (iii) and let + be the restriction 
of T to aB. With the notation of problem 14, show that 

a[+, 01 = x,,u 

and conclude that 



Problems 351 

(vi) Let a, , ..., a, E B - aB. Show that u extends to a cross-section 
us: B - { a , ,  ..., a,} .+ E. Prove that 

CI 

idu) = i a ~ ( ~ B ) -  
t=1 

Conclude that u extends to a global cross-section if and only if j,(u) = 0. 
(vii) Let LR E An-l(E) satisfy lS D = -1 and 6 9  = T*@. Show that 

16. Two manifolds-with-boundary. Let & = (e, fi, 8, S) be an 
oriented sphere bundle. Suppose 8 is obtained from two manifolds- 
with-boundary, (B,  aB) and (B, ,  aBl) by identifying aB and aB, via 
some diffeomorphism. 

Regard aB and aB, as equal to a manifold M which is a submanifold 
of 8. 

(i) Show that & restricts to smooth bundles &? = (E, T,  B, S),  
a, = ( E l ,  T,,  B,,  S) ,  and @IM = (EM, r M ,  M, S). Show that 8.93 = 
aM = a g l .  

(ii) Suppose u is a cross-section in 9 I M  . Then X9,u E H(B, M) and 
XSl,, E H(B, , M).  Construct a map 

+ : H(B, M )  x H(B,  , M )  - H(A)  

x9 ,u  + x91,u = x.a * 

and show that 

(iii) Assume dim S = dim 8 - 1, and that 8 is compact and oriented. 
Show that for suitable orientations 

+i9,(.> = J i X . 4  * 

(iv) Apply this to the case that 8 = Sn, M = Sn-l. 



Chapter IX 

Cohomology of Vector Bundles 

SI. The Thom isomorphism 

9.1. The main theorem. Let 4 = (E, rr, B, F) be an oriented fibre 
bundle. Recall from sec. 7.13 that integration over the fibre induces 
a linear map 

homogeneous of degree --I where Y is the dimension of F. The  purpose 
of this section is to prove: 

Theorem I: If the manifold F is contractible, then the map fi 
is a linear isomorphism. 

Remark: If B is compact, connected, and oriented, and 5 is a vector 
bundle, Theorem I follows immediately from Corollary I to Theorem I, 
sec. 7.14. In fact, in this case, A,(E) = A,(E) and so f," becomes a map 

I:: H,(E) -+ H(B). 

In  view of the corollary, this map is dual (with respect to the Poincart 
scalar products) to the isomorphism 

N 

Tr*: H(E)  _= H(B) 

of Example 3, sec. 5.5. Hence s," is an isomorphism. 

The proof of Theorem I is preceded by four lemmas. 

Lemma I: The theorem holds for the trivial bundle 4 = (F, T ,  p ,  F )  
where p is a single point. 
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Proof: In this case (because F is contractible) Ho(F) = R and 
H+(F) = 0. Hence it follows from Theorem I, sec. 5.12, that 

Hc(F) = H,'(F). 

Thus Theorem 11, sec. 5.13, implies that $ is an isomorphism, 

Q.E.D. 

Lemma 11: The theorem holds for the trivial bundle 

5 = (R" x F, n, R", F ) .  

Proof: Let i: (0) 4 Rn and p:  Rn + (0) be the inclusion and projec- 
tion maps. Clearly 

and 
i x L : { O }  x F - t R "  X F  

p x 1 :  R" xF- , {O}  x F  

are bundle maps restricting to diffeomorphisms in the fibres. Hence 
(cf. the corollary to Proposition VI, sec. 7.10) they induce linear maps 

(i x I): : H,(W x F )  4 H,({O} x F )  

( p  x I): : HF({O} x F )  -t H,(R" x F).  

and 

We show first that these maps are inverse isomorphisms. Clearly, 

(i x L)? 0 ( p  x L): = I .  

On the other hand, let H: R x Rn + Rn be a homotopy connecting 
i o p and L ~ , ,  . Then the map 

( H  x I ) *  : A(R x R" x F )  +-- A(R" x F )  

restricts to a map 

( H  x 1); : A,(R x R" x F )  + A,(R" x F) .  

It follows from the remark of sec. 5.2 that the homotopy operator 
associated with H x L restricts to a linear map 

h, : A,(R" x F )  + A,(R" x F). 
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Moreover, 
& ( p  x 6); (i x &)% = 8 h,  f h, 8 

and so 
(p  x &)$ 0 (i x ')#F = I .  

Now apply Corollary I of Proposition VIII, sec. 7.12, to obtain the 
commutative diagram (note that H,(F) = HF ((0)) x F)) 

Here i# is an isomorphism (cf. Example 1, sec. 5.5). J; is an isomorphism 
by Lemma I. Hence j z  is an isomorphism. 

Q.E.D. 

Lemma 111: Let U,  V be an open cover of B. Then the short exact 
sequence (cf. sec. 5.4) 

0 -, A(E) -+ A(+( U ) )  @ A(a-l( V ) )  -, A(&( U n V ) )  -+ 0 

restricts to a short exact sequence 

Moreover, the diagram 

0 --+ A,(E) __+ A F ( 4 (  U ) )  @ AF(&( V ) )  - AF(~- l (  U n V ) )  - 0 
0 --, A(B) - A ( U )  0 A(V)  - A ( U n  V )  - 0 

1 J P  1SPOSF I J F  

is commutative. 

Proof: The same argument is used as in the proof of Lemma I, 
sec. 5.4. (The commutativity follows from Corollary I to Proposition VIIL, 
sec. 7.12). 

Q.E.D. 

The following lemma is obvious: 
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Lemma IV: Suppose B is a disjoint union of open sets, 

B =  u B a .  
a 

Then the diagram 

N 

A(B) n’(Ba) 
01 

commutes, where ip and $I are the isomorphisms defined by 

(@)a = a, / n - l ( ~ a )  9 @ i A F ( E )  

and 
(9Wa = IB, 9 Y E  A(B).  

Proof of Theorem I: Consider first the case that 5 is the product 
bundle, E = B x F. Then the theorem follows from Lemmas 11,111, and 
IV in precisely the same way as Theorem I in sec. 5.12 and Theorem VI 
in sec. 5.20 are proved. 

In  the general case cover B by finitely many trivializing neighbourhoods 
U, , ..., Urn (cf. sec. 1.13). Then induction on m (via a Mayer-Vietoris 
argument using Lemma 111) completes the proof. 

Q.E.D. 

Definition: The isomorphism 
N 

Th: H(B)  HF(E) 

inverse to Jz is called the Thom isomorphism of 5. It is homogeneous of 
degree Y .  The cohomology class 0, E H i ( E )  given by 

e, = ~ h ( i )  

is called the Thom class of 5. 

Next recall that AF(E) is an ideal in A(E) .  Thus multiplication in A ( E )  
restricts to bilinear maps 

A(E) x - x A(E) - 
They induce bilinear maps 

H ( E )  x H F ( E )  -+ H F ( E ) ,  H F ( E )  x H ( E )  - HdE) 
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which make HF(E)  into a graded left and right H ( E )  module. These 
maps will be denoted by 

(a, f l )  b-+ 01 * f l ,  (p ,  f l  * a, a H(E) ,  fl  H F ( E )  

(cf. sec. 5.9). 

Proposition I: The Thom isomorphism satisfies 

Th(a f l )  = +a * Th(fl), 01, f l  E H(B) .  

Proof: Use Proposition IX, sec. 7.13, to obtain 

Now apply Th to both sides of this relation. 
Q.E.D. 

Corollary: The  Thom isomorphism is given by 

= T#LY * e, , E H(B) .  

Next, let [ = (e, 7j, B, P )  be a second oriented bundle with con- 
is a smooth fibre preserving map, 

and restricting to orientation preserving diffeo- 
tractible fibre. Suppose v: E -+ 
inducing 1,4: B + 
mor phisms 

- 
px: F, P,,,(x) , x E B. 

Then (cf. sec. 7.12) 

This yields 

Proposition 11: With the hypotheses above, the diagram 

Th, 5 cf  Thi 

4" 
H(B)  - H ( B )  
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commutes. In  particular 

v w o  = 6, 

9.2. Corollaries of Theorem I. Corollary I: Let 52 E A,(E) be a 
closed form such that 

for some Q, E A(B).  Then there exists a differential form 52, E A,(E) such 
that 52 = 652,. 

Corollary 11: Let @ E AL(E) be closed. Then the function JFQ, E 9 ( B )  
is constant on each component of B. Moreover, 

j @ = I  
F 

if and only if @ represents the Thom class. 

Proof: Observe that 

Q.E.D. 

Corollary 111: Let Q, E A i ( E )  be a closed r-form such that for 
every x E B 

jX@ E B(A;-l(F*)) 

( jz: F, -+ E denotes the inclusion map). Then there exists an (Y - 1)- 
form Y E  A;-'(E) such that 

@ = SY. 

Proof: I t  follows from the hypothesis that 

Thus Corollary I implies that 

0 = SY 

for some Y E  A;--'(E). 
Q.E.D. 
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Example: 
an orientation 
with compact 

Consider the trivial bundle 6 = ( B  x F ,  n, B, F) .  Define 
in the bundle by orienting F. Choose an r-form, Q, on F 
carrier and satisfying 

J,Q = 1. 

Then 1 x Q represents the Thorn class of 4. 
In fact, 1 x Q is closed, and satisfies 

( j  (1 x Q)(x) = ( j  9) (x) = 1, X E B .  
F F 

Hence, by Corollary 11, it represents the Thorn class. 



s2. The Thom class of a vector bundle 

The notation established in sec. 9.3 is fixed throughout this article. 

9.3. Notation. Let 5 = (E, T ,  B, F) be an oriented vector bundle 
of rank Y(Y 2 2). Since F is contractible, Theorem I implies that the map 

is an isomorphism. Hence the Thom isomorphism, Th = (I:)-' is 
defined (cf. sec. 9.1). In particular we have the Thom class 

e, = ~ q i ) .  

Now introduce a Riemannian metric g in f .  Recall from sec. 3.10 
(Examples 5 and 6) the definition of the deleted bundle and associated 
sphere bundle 

4 = (l?,+r, B , F )  and 6, = ( E , ,  T,, B,  S). 

We have the inclusion and projection: 

i :  E, -+ E and p: L? + E, . 

Finally, every E > 0 determines the open subset E, C E given by 

E, = {ZE E I 1 z I < c}. 

Let F, denote the open €-ball in F with respect to an inner product, and 
let T,  denote the restriction of T to E, . Then 

6, = (J% 9 Tf 1 B, F,) 

is a smooth oriented bundle with contractible fibre (prove this via a 
Riemannian coordinate representation for 5). 

The inclusion k: E, ---t E is a smooth fibre preserving map; hence 
(cf. the end of sec. 7.10) 

( k F f ) * :  AF, (Ec)  --f 

is defined. 
359 
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Lemma V: For each E > 0 there exists a representative @ of the 
Thom class Or such that carr @ C E, . Two such representatives @, 
Y satisfy 

@ - Y = SQ, 

where SZ E A;-'(E) and carr SZ C E, . 
Proof: Since K is orientation preserving, it follows from the defini- 

tions that the diagram 

44 
commutes. Pass to cohomology, and apply Theorem I, sec. 9.1, to both 
5 and ec to conclude that (kF,)# is an isomorphism. The lemma follows. 

Q.E.D. 

9.4. The canonical map at. In this section we define a canonical 
linear map 

%: H ( E S )  -+ H F ( E )  

homogeneous of degree 1. Choose a smooth function f on E such that 

carrfC E and f - 1 E 9F(E). 

Then Sf E Ai(&). Hence a linear map, homogeneous of degree 1, 

-+ 

is given by 
@ H (-l)p+r-l Sf A p*@, @ E AP(E,y). 

This map commutes with the exterior derivative and so it induces 
a linear map 

at: H(E,) --f HF(E). 

The map at is independent of the choice off.  In fact, assume that 
g E Y( E )  is another function satisfying the conditions above. Then 
f - g E YF(&). Thus for every closed form @ on E, 

Sf A p*@ - Sg A p*@ = S(( f  - g) A p*@) E S(AF(E)). 
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Example: Consider the bundle [ = (F, r, p ,  F) where p is a single 
point. Then Es = S, E = F and H J E )  = H,(F).  Moreover, the diagram 

Hr-l(S) 2 Hl(F)  

p*lr -1s; 
Hr-yP) 5 

“F 

commutes (cf. secs. 6.7 and 6.8). In particular, at is an isomorphism in 
this case. 

Proposition 111: The diagram 

commutes. 

Remark: If B is a single point, the proposition reduces to Proposi- 
tion VI, sec. 6.8. (Use the example above noting that i# = (p#)-l.) 

Lemma VI: Let h E Y ( R )  be a nondecreasing function such that 

and define f E Y ( E )  by 

Then, for CJ E Am(Es), 
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Proof: Use a Riemannian coordinate representation for the bundle 
to reduce to the case E = B x F (as Riemannian bundles). Then 

In particular, for every vector field X on B, 

i ( X )  Sf = 0. 

Now let @ E AP*Q(B x S )  ( p  + q = m). It is sufficient to show that 

x, , ..., x, E %(B). 

Consider the X ,  as vector fields on B x F and B x S. In view of (9.1) 
and Proposition X, sec. 7.13, the relation above is equivalent to 

(- 1 )cl+r-1 f 8f A p*(;(x,) * ' *  ;(XI)@) = j i(x,) * * *  ;(xi)@. 
F S 

Thus we may assume that p = 0. Moreover, we may assume that 
q = I - 1 because otherwise both sides are zero. Then, for x E B, 
@ and p*@ restrict to (Y - 1)-forms @, E Ar-l(S,) and (p*@), E Ar-l(P,). 
Clearly, 

P*,@), = ( P * @ L  9 

where pz: &', ---t S, denotes the projection. Finally, observe that f 
restricts to a function f, E Y(F, )  and that 

Now, as in the proof of Proposition VI, sec. 6.8, obtain 

Proof of the proposition: Apply Lemma VI, recalling that 

Th = (j:)-'. 
Q.E.D. 
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9.5, The naturalityof at . Let { = (E,  73, B, F) be a second Rieman- 
nian bundle with the same typical fibre and let 'p: E ---t e be a smooth 
bundle map which restricts to orientation preserving isomorphisms on 
the fibres. Then cp determines a fibre preserving map 

9s: Es - -@s 

given by 

Proposition IV: With the notation and hypotheses above, the 
diagram 

x 

W E , )  4%) 

commutes. 

Proof: ~ e t j ~  YO(@ satisfy 

carrfC I? and f - 1 E %(I?) 

and set f = 'p*f. Then f satisfies 

carr f C & and f - 1 E Y F ( E ) .  

Now let @ E A(&) be closed. Let p": l? -+ I?, be the projection. Then 

9 $ ( 8 f A  p"*@) = 8 f A  q*p"*Qi. 

Since 
9 s 0 P  = 8 0 9 9  

p* 0 p: = 9)* 0 p"* 

it follows that 

and so 
fp$(sfA p"*@) = 8f A p*p$@. 

Passing to cohomology we obtain the proposition. 
Q.E.D. 
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Corollary: The diagram 

commutes. ($: I3-B denotes the map induced by F.) 

IV, and Corollary I to Proposition VIII, sec. 7.12. 
Proof: Combine the commutative diagrams of Propositions I11 and 

Q.E.D. 

The Thom class 
6,, of 6 and the Euler class, x s ,  of fS are connected by the relation 

44 = +xs 9 

9.6. Euler class and Thom class. Proposition V: 

where A: A,(E) --+ A(E)  denotes the inclusion map. 

Proof: Let @ E A'(B) be a closed form representing xs . Then, 
for some $2 E Ar-l(ES), 

T*,@ = 89 and jSs2 = -1. 

Next, choose f~ 9 ( E )  as in Lemma VI, sec. 9.4. Consider the closed 
form YE A'(&') given by 

Y = T*@ - 8 ( j  * p*9 ) .  

We shall show that 

(9 ?P E 

and 
(ii) pJ = 1. 

In fact, since, in €2, 
p* 8s = p*Tp = T*@, 

we have 

'Y = T*@ - 8f A p*D - f * p* 8G = (1 - f) * T*@- 8f A p*Q. 

Butf(z) = 1 for 1 z I > 4 and so 

= 0, 1.2 I > a ; 
i.e., Y E  A,(E). 
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Next, using Lemma VI we obtain 

= - j s Q  = 1.  

Now Corollary I1 of Theorem I, sec. 9.2, implies that Y represents the 
Thom class d F  . Thus it follows at once from the definition of Y that A$, 
is represented by r*@; i.e. 

h,ef = +xs. 

Q.E.D. 

Corollary I: If u is a cross-section in 5, then 

xs = u*A#e,. 

In  particular, the Euler class of the associated sphere bundle is inde- 
pendent of the Riemannian metric. 

Corollary 11: Assume that B is a compact and oriented r-manifold. 
Let u be a cross-section in 5. Then 

Denote by D the connecting homomorphism of the Gysin sequence 
of the sphere bundle I s .  

Theorem 11: The diagram 

H,(E) h, H ( E )  

commutes. 
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Proof: Proposition 111, sec. 9.4, states that the left-hand triangle 
commutes. The commutativity of the right-hand triangle follows from 
the relation x 0 i = x s .  To show that the square commutes recall 
from Proposition 11, sec. 8.2, and the corollary to Proposition I, sec. 9.1, 
that 

DU = u * x ~ ,  

and 
Th(a) = x*a * O r ,  u E H(B) .  

Now Proposition V yields 

A, Th  u = T*U * m*xS = T* Da. 

Q.E.D. 
Corollary: The triangle 

is exact. 

Proof: In fact, this triangle corresponds to triangle (8.2) of sec. 8.2 

Q.E.D. 
under the isomorphisms of the theorem. 
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9.7. Index of a cross-section at an isolated zero. Let u: B + E be a 
cross-section in a vector bundle 6 = (E, r, B, F). A point a E B is called 
an isolated zero of u, if .(a) = 0 and, for some neighbourhood U of a, 

u(x) # 0, x E u, 0 = u - (a). 

Now assume that 

(1) 
(2) 

We shall define the index of a cross-section, u, at an isolated zero a. 
Let #: V x F 2 r-l( V) be a trivializing map for 6 such that 

The total manifold E is oriented and 
d i m F  = dim B = n 2 2. 

U E V C U  and V s R I w " .  

Let zi: V + F be the smooth map satisfying 

$(x, 6(x)) = u(x), x E v. 

Orient V and F so that # preserves orientations when V x F is given 
the product orientation. 

Now note that 6-l(0) = a and so the local degree 

deg, I? 

of I? at a is defined. 
On the other hand, introduce a Riemannian metric, g, in [, and let 

tS = (23, , .rr,, B, S) be the associated sphere bundle. Give Es the 
orientation induced from that of E (cf. Lemma IV, sec. 7.9). Define 
0,: 0 --t E, by 

Then us is a local cross-section in f S  with an isolated singularity at a. 
Thus (cf. sec. 8.8) the index ja(us) of us at a is defined. 

Lemma VII: With the notation above 

deg, zi = ja(us). 
367 
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In particular, 

(1) deg, 6 is independent of the trivializing map 
(2) ja(us) is independent of the Riemannian metric. 

Proof: Give the trivial bundle, U x F, the Riemannian metric 
which makes $ an isometry. Then ( $ X u ) ,  = (t,hS)# us , where $s denotes 
the restriction of $ to the unit sphere bundle of U x F. Hence by 
Lemma VI, sec. 8.8, ja(($#u),) = ja(us). Thus we may replace u by 
$#u; i.e., we may assume that 

(i) 
(ii) E = B x F, $ = L. 

V = U = B is an oriented Euclidean space with origin a. 

Then 6 restricts to a smooth map 6:  k + # and 

deg, 6 = aB o &# o ai'(1). 

On the other hand, let 52 E An-l(#) represent a;1( 1). Let S, C # be 
the unit sphere with respect to the inner product g(x) (x E B) and let 
i : E, ---f I? be the inclusion. Then according to Proposition VI, sec. 6.8, 

Hence 

Moreover, by Proposition VI, sec. 2.17, E, is diffeomorphic to 
B x S (S the unit sphere of F with respect to a fixed inner product). 
Hence 

Hn-'(E,) HW-'(S) R. 

I t  followsthat i*( 1 x l2)representsthe unique cohomology class inHn-'(Es) 
whose fibre integral is 1 .  In  particular, if T: B --+ E, is any cross-section, 
then i*(l x 52) represents wT (cf. sec. 8.6). 

Finally, it follows from the definition that 

Let 6,: k -P # be defined by 
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Then us#(o,) is represented by dZ(f2); i.e., 

us#(w,) = d:(aF1(1)). 

Since ds is homotopic to 5, we obtain 

deg, d = or, 0 6; o aF1(l) = j,(as). 
Q.E.D. 

Definition: The integer 

degad ja(u.4 

is called the index of u at a and is denoted byj,(u). 

denotes the index of u at a, ( v  = 1, ..., m) then the integer 
If a cross-section u has only finitely many zeros a, , ..., a, and if ju(u) 

is called the index sum of a. 

Remark: According to Example 4, sec. 3.22, the total manifold, 
T, , of the tangent bundle of a manifold M is always orientable. Thus 
the index of an isolated zero of a vector field on a manifold M is always 
defined, even if M is nonorientable. 

Finally let t = (8, *,I?, fl) be a second vector bundle of rank Y and 

(1) 
(2) 

assume that 8 is oriented. Let v: [ + 5 be a bundle map such that 

q~ restricts to a diffeomprphism on each fibre 
the induced map $: B --+ B is a local diffeomorphism. 

Then q~ is a local diffeomorphism. From Lemma VII we obtain: 

Proposition VI: Let u be a cross-section in 5 with an isolated zero 
at b and let 6 E B be a point such that $(6) = b. Then cp#u has an 
isolated zero at 6 and 

j6(+) = W), 

where E = &l,  depending on whether cp preserves or reverses the 
orientations. 
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9.8. Index sum and Thom class. In  this section 6 = ( E ,  7r, B, F )  
denotes an oriented Riemannian vector bundle over an oriented base B, 
and E is given the local product orientation. I t  will be assumed that 

dim B = d i m F  = n 2. 

Now suppose u E Sec 5: has only finitely many zeros a , ,  ..., a,. 
> 0 Assume further that for some compact set K C B and some 

Proposition VII: With the notation and hypotheses above let Q 
be a representative of the Thorn class such that carr SZ C EEo . Then 

Proof: We show first that the integral is independent of the choice 
of SZ. In  fact, if Q, is another representative of Or  satisfying carr Q, C E., , 
we can write 

52, - 52 = a@, @ E An-l(E), carr GJ C Es0 

(cf. Lemma V, sec. 9.3). I t  follows that carr u*@ C K. Thus 

u*Ql - u*SZ = 6u*@ and a*@ C A;-'(B). 

Hence 

J U*Q, = j O*Q. 

B B 

Next choose trivializing maps ( U ,  , &) (v = 1, ..., m) so that 

(i) a" E U" 
(ii) U ,  IW" 

(iii) U,  n U p  = 0 (v # p). 

In  view of equation (9.2) there exists an E (0 < Q < E,,) such that 
I .(.)I 3 6 (x E B - Uy=] U,). Now choose a representative of the Thorn 
class satisfying carr SZ C E, . Then carr u*SZ C 

m 

U ,  and so 

vn j u*s2 = 1 j" ,U*Q.  

B v = l  
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Hence it is sufficient to show that 

In  other words in addition to the hypotheses above, we may assume 

(iv) 
(v) 

(vi) 
(vii) 

Let T :  B -+ F be the map given by 

that 

6 is a trivial bundle, E = B x F 
the Riemannian metric is given by a fixed inner product in F 
B is an oriented n-dimensional Euclidean space 
u has a single zero at the origin, a, of B. 

and let i: k + P denote the restriction of T to 8. Then 

Now let @ E An-’($’) represent the element a~’(1) and choosefE Y ( F )  
to be zero near the origin and to satisfy carr(1 -f) C F, . Then ~ * f  
is zero near a and 1 - ~ * f  has compact carrier. Hence, 

On the other hand, since @ represents a;’( l), we have 

Thus, according to Corollary 11, to Theorem I, sec. 9.2, 1 x ( S ~ A  @) 
represents the Thom class. Since it has carrier in B x F, = E,, the 
proposition follows. 

Q.E.D. 

Corollary: Assume in addition that B is compact and let u be an 
arbitrary cross-section with finitely many zeros. Then (cf. sec. 9.6) 
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M / 

Example: Let M, B be oriented n-manifolds and let F be an oriented 
Euclidean n-space (n 2 2). Assume 

B x F  

is a commutative diagram of smooth maps such that 

( P - ~ ( O )  = a E M and 1 cp(x)l > C, x E M - K 

(K a compact subset of M). Choose any representative, Q, of the Thom 
class of B x F, subject to the condition: carr D C B x F,. Then 
$*Q E &(M) and 

+*Sl = deg,p 
M 

I n  fact, use Lemma V, sec. 9.3, to show that the integral is independent 
of the choice of SZ (as in the first step of the proof of Proposition VII). 
Thus, if @EA!(F,) and satisfies JF@ = 1, we can put SZ = T$@ and 
then 

j #*52 = j #*?r%@ = j (P*@. 
M M M 

Let o: M + M x F be the cross-section given by u(x) = (x, ~ ( x ) ) .  
Then, using Proposition VII, we see that 

1 (P*@ = 1 a*(l x 0) = ja(u) = deg, (P. 
M M 

9.9. Index sum and Euler class. In  this section 5 = (E, T,  B, F )  

(1) B is a connected compact n-manifold, n > 2, but not necessarily 

(2) d i m F  = dim B 
(3) E is oriented. 

denotes a Riemannian vector bundle such that 

orientable 
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Let u be a cross-section with finitely many zeros a , ,  ..., a , .  We wish 
to show that the index sum of u, j(u), is independent of u. 

Consider first the case that B is orientable. Choose an orientation in B. 
Then it is easy to see that there is a unique orientation in 6 such that 
the given orientation in E coincides with the local product orientation. 
This orientation in 6 will be called the induced bundle orientation. 

Theorem 111: Assume that B is oriented and give 6 the induced 
bundle orientation. Then 

where xS denotes the Euler class of the associated sphere bundle. 

We give two proofs. 

Proof I: Consider the associated sphere bundle Ss and set 

us(x) = ~ 4 x 1  , X € B  - { a , ,  ..., a,}. 
I ++I 

Then us is a cross-section in ts with finitely many singularities and so 
Theorem 11, sec. 8.1 1 ,  yields 

But it follows from the definition ofj(u) that 

Proof 11: Combine Corollary I1 of Proposition V, sec. 9.6, and the 

Q.E.D. 
+ B 

be the double covering of B (cf. sec 2.20) and let [ = (I!?, +, 8, F) denote 
the pull-back of [ to B viap. Then we have a bundle map 

corollary to Proposition VII, sec. 9.8. 

Next assume that B (and hence 6) is nonorientable. Let p :  

E P E ' E  

4 1.I 
B - B  

P 
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restricting to isomorphisms in the fibres. In  particular, p, is a local 
diffeomorphism. Hence there is a unique orientation in E such that pE 
is orientation preserving. 

Now give [ the bundle orientation induced by those of B and E. 
Denote by f s  E H”(B) the Euler class of the sphere bundle associated 
with [. 

Theorem IV: With the notation and hypotheses above let a E Sec 6 
have finitely many zeros. Then 

In particular, j(a) is independent of a. 

Proof: Setp-l(a,) = (6 ,  , c,}. Then b, , ..., b, , c1 , ..., cm are the zeros 
of p$. Since p ,  is orientation preserving, Proposition VI, sec. 9.7, 
shows that 

j b , (p ;4  = j av (4  and ic , (p;4 = j&), 

i (p ,”4  = 2j(a). 

whence 

Now Theorem I11 yields 

Theorem V: A vector bundle of rank n over a connected n-manifold 
M, with oriented total space, admits a cross-section a with finitely many 
zeros. I t  admits a cross-section with no zeros if and only if 

(i) M is not compact, 

or 

(ii) M is compact andj(a) = 0. 

Proof: Apply Theorem 111, sec. 8.11, to obtain a. If M is not 
compact, Theorem 111, sec. 8.11 shows that there is a cross-section 
with no zeros; if M is compact the same theorem gives a cross- 
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section, 7,  with a single zero, a. Then Theorems I11 and IV, above show 
that 

A 4  = A T )  = LT(T)* 

Hence if j(u) = 0 Proposition VII, sec. 8.10, applied to 7,  gives a 

The “only if” part of the theorem is obvious. 
cross-section without zeros. 

Q.E.D. 

9.10. Examples: 1. Vector fields on Sn: Let E be a Euclidean 
space of dimension n + I (n 2 1). Fix a unit vector e E E and set 
F = e l .  Let Sn be the unit sphere of E. Define maps tp: F -+ Sn, 
$: F 3 S” by 

and 

Then tp and $ are diffeomorphisms, 
N - 

Q: F _t S” - {el, +: F 5 ~n - {--el. 

A straightforward computation shows that the corresponding diffeo- 
morphism x = +-l 0 tp of P = F - {0} onto itself is given by 

x ( x )  = x/I x 12, X € R  

Now define vector fields X and Y on F by 

X ( X )  = a, x E F  

and 
Y(x) = 1 x l 2  u - 2 ( ~ ,  X)X, x EF, 

where a is a fixed unit vector in F. Evidently, 

i.e., 

I t  follows that the vector fields tp*X on Sn - {e} and $*Y on Sn - {-e} 
agree in Sn - {e, -e} .  Thus they determine a vector field 2 on S”. 
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Clearly, this vector field has a single zero at $(O) = e. Moreover, the 
index of 2 at e is given by 

where Y is considered as a smooth map F + F. But according to sec. 6.12, 
Example 5 (with a replaced by -a), deg,, Y = 1 + (-1)". I t  follows 
that 

j m  = deg, y ,  

j(2) =j,(Z) = 1 + (-1)n. 

Now let T denote the tangent bundle of Sn and let T~ be the associated 
sphere bundle. Then Theorem I11 implies that 

2. Vector fields on RPn: Consider Sn as the unit sphere in an 
(n + 1)-dimensional Euclidean space E (n 2 1). Let q ~ :  E --+ E be 
a skew linear map; i.e., 

Then we have 
(x, v(x)) = 0, x E E. 

p)(X) E X I  = T,(S"), x E S", 

and so a vector field X on Sn is defined by 

X(x)  = rp(x), X E s n .  

Since q ~ ( - x )  = - q ( x ) ,  it follows that 

a,X = x 
where a: Sn --t Sn denotes the map given by u(x) = -x. Thus X 
determines a vector field Yon RPn. Clearly, 

X ?  y ,  

where n: Sn --t R P  denotes the canonical projection. 
Now we distinguish two cases: 

I. Then n + 1 is even and q~ can be chosen to be a linear 
isomorphism. The corresponding vector fields X and Y have then no 
zeros. 

If T denotes the tangent bundle of RPn and if T~ denote the associated 
sphere bundle, then the above result together with Theorem I11 implies 
that 

n odd. 

~ ( 7 ~ )  = 0 (n odd). 
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11. n eoen. Then n + 1 is odd and so every skew map has a nonzero 
kernel. Now fix a unit vector e E E and choose the skew map v so that 
its kernel is the one-dimensional subspace generated by e, Then q~ 

restricts to a linear automorphism of the orthogonal complement F of e. 

The corresponding vector field X on Sn has two zeros, at e and -e. 
Since the restriction vF of to F is a skew linear automorphism, we have 

det tpF > 0. 

Using this it is easy to show that 

j , ( X )  = 1 and j P e ( X )  = 1. 

It follows that the corresponding vector field Y on R P  has a single zero 
at the point 5 = T(e) and that 

j ( Y )  =jc(Y) = 1. 

3. The Hopf index formula: Let B be a compact connected 
oriented n-manifold (n even) and let #: B + Sn be a smooth map. 

Consider the pull-back, 5 = (E, T, B, Rn), of the tangent bundle 
Tsn of Sn via $. Let v: E + Tsn be the corresponding bundle map. 

Since q~ restricts to linear isomorphisms on the fibres, the standard 
metric on Sn induces a Riemannian metric in 5. If x and xsn denote 
the Euler class of the associated sphere bundles of [ and 7s' , we have, 
in view of Example I, that 

I 

i.e., 

jl xt = 2 deg $. 

Since, for each integer p, there is a smooth map B + Sn of degree p 
(cf. Example 4, sec. 6.12), we can obtain in this way an infinite number 
of nonisomorphic vector bundles of rank n over the n-manifold B. 

Finally, if o is a cross-section in 6 with finitely many zeros, Theorem I11 
yields 

j (u)  = 2 deg$. 

This relation is called the Hopf index formula. 
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1. Vector fields in @. Find the index of the following vector fields 
at zero: 

(i) Z(z) = z" 
(ii) Z(z) = %" 

(iii) Z(z) = f ( z )  ell0, 
(iv) Z(z) = sin z. 

( n ~  Z) 
(n E Z) 

where f ( z )  = exp(- I 2 [-"/I exp 2-l I, 

denote the Kunneth homomorphisms. Conclude that 

4 X t l  = ( K E ) # ( &  0 4). 
(ii) Assume that B, = B, . Show that the Thom class of e @ q is 

given by 
eO@v = j # ( K E ) # ( 8 t  0 

where j: E,,, + E, x E, is the inclusion map. 

with 5 x r ]  and 4 or] are, respectively, given by 
(iii) Conclude that the Euler classes of the sphere bundles associated 

Xtxv = (KS)#(X€ 8 xv) 
and 

X,@n = XE * X n  ' 

318 
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3. Let 6, 9 be vector bundles with oriented total spaces over mani- 

Suppose that u E Sec 6 and 7 E Sec r] have isolated zeros at u E B, , 
folds B, , B, . Assume that dim B, = rank .$ and dim B, = rank r] .  

b E B, . Show that u x 7 has an isolated zero at (a, b), and that 

4. Let X be a vector field on M. Recall from problem 9, Chap. 111, 

(i) Find necessary and sufficient conditions on X for Y to have an 

(ii) If Y has an isolated zero at h E TM , find all possible values for the 

that X determines a vector field Y = wM 0 dX on TM . 

isolated zero. 

index of Y at h. 

5,  LetfE Y ( M ) .  Suppose that a E Mis a point such that (6f)(a) = 0 
and the Hessian off at a is nondegenerate. Use a Riemannian metric to 
convert Sf into a vector field, X, with an isolated zero at a. Regard the 
Hessian off as an indefinite metric on T,(M). Show thatj,(X) = (-l)*, 
where q is the dimension of a maximal subspace of T,(M) on which the 
Hessian is negative definite. 

6. Let 6 = (E, n, B, F) be a vector bundle with rank 6 = dim B = n 
and let o denote the zero cross-section. Assume that u E Sec [ has an 
isolated zero at a. 

(i) Show that there is a unique linear map a: T,(B) + V0(,)(E) such 
that 

(du), h = (do)Q h + a(h), h E T,(B). 

(ii) Show that the following conditions are equivalent: 
(a) a is a linear isomorphism 

(c) with respect to an appropriate trivializing map, u(x) = (x, uI(x)) 
and .;(a) is an isomorphism. 

(iii) Assume that the conditions of (ii) hold. Assume further that 4 
is Riemannian and oriented. Identify a neighbourhood U of a with an 
oriented Euclidean space; let S(r) denote the sphere of radius r about a. 
Finally, consider the associated sphere bundle (Es  , rS, B, S) and set 

(b) Im(d.), 0 Im a = To(u)(E) 

s, = 7r;l(u). 
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Show that if B E An-'(E,) satisfies (&2)(u) = 1, then 

where T ( X )  = u(x)/l a(x)l, x E U - {u}. Hint: Use problem 7, below. 

7. Let F be an oriented Euclidean n-space. Denote its unit sphere 
(resp. sphere of radius Y) by S (resp. S(r)) .  

(i) Show that 
lim f - Y  = 0, 

where YE A"-'(F) and f E 9(#) satisfies If(.)[ < K I x I--P (K a con- 
stant, p < n - 1). 

(ii) Suppose vl , v2 : F + F are smooth maps. Assume that vr1(0) = 0 
and that cpi(0) is a linear isomorphism. Define #: #3 F x S by 

r+o L d  

Show that 

if @ E An-'(F x S) satisfies .f, @ = 0. Hint: Compare problem 6, v, 
Chap. VII. 

8. Thom isomorphism with compact supports. Let 5 = (E,.rr, B, F) 
be an oriented vector bundle of rank r .  Establish a Thom isomorphism 
Th,: H,(B) 5 H,(E) homogeneous of degree r .  
If 8, = Th(1) is represented by @ and Y E  A,(B) represents a 

class (Y E H,(B), show that (.r*Y) A @ represents Th,(a). 

9. Normal bundle. Let M be a closed connected oriented submani- 
fold of a connected, oriented n-manifold N and let dim M = m. Let 
5 = (E, 7, M, F) be the normal bundle of M and regard E as an open 
subset of N (cf. problem 20, Chap. 111). 

(i) Orient 5 so that the local product orientation in E is induced from 
the orientation in N. 

(ii) Show that A,(E) C A(N)  and A,(E) C A,(N) are ideals and let 
y,  p denote the corresponding inclusions. 
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(iii) Show that the inclusion map i : M + N is proper. Show that i# 
and yz o Th, (resp. y# 0 Th and iz) are dual with respect to the PoincarC 
scalar products. If M is compact, show that (i#)*(l) = y*(Oe). Conclude 
that the Euler class of (, (cf. sec. 9.3) is in Im i#. 

(iv) Assume M compact. Let j : Es --+ N - M be the inclusion. 
Show that, up to sign, .fi o j #  is dual to the connecting homomorphism 
of problem 14, Chap. VIII (with N = B). Conclude that the diagram 

H(N - M )  

is exact, where k: N - M + N denotes the inclusion map. 
(v) Establish an exact triangle 

k* @i* 
H(N) H(N - M )  @ H ( M )  

W S )  

Find its Poincart dual. 
(vi) Regard @Pk and WPk as submanifolds of C P  and W P ,  respec- 

and (j#)*(l) E H4(1E-k)(WPn) (cf. problems 4 and 5,  Chap. VIII). Com- 
pute H ( @ P  - @Pk) and H ( W P  - WPk). 

tively, with inclusions i, j .  Compute the classes (i*)*( 1) E Hz(n-k) (@*) 

10. Disc bundles. Let 5 = (E, T, B, F) be an oriented Riemannian 
bundle and let [ = (E, +, B, F )  be the bundle whose fibre at x is the 
subset of F, whose vectors have length < 1. 

(i) Show that ( is a bundle with boundary tS (notation as in sec. 9.3, 
cf. problem 4, Chap. VII). 

(ii) Let is : E, + E be the inclusion. Establish an exact triangle 

H(ker is*) - H ( E )  
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(iii) Construct isomorphisms 

and identify the triangle of (ii) with the Gysin triangle. 

(iv) Let (N, p,  B, S) be a sphere bundle associated with 6 B E  
( E  = B x R). Show that B is a submanifold of N with normal bundle 6. 
Identify N with the double of E. Prove that H ( N )  g H ( B )  @ H ( S )  
and that the sequence 

i' y'o Th 
0 - H(B)  - H ( N )  - H(B)  - 0 

is exact, where i : B + N ,  y : A,(E) + A ( N )  are the inclusion maps. 

11. Local degree. Let Pi C Mi be compact connected oriented pi- 
submanifolds of oriented connected n-manifolds Mi ( i  = 1,2). Let 
5, = (E, , T, , Pi , Fi) be the oriented normal bundles with E, considered 
as a neighbourhood of Pa in Mi . Write &I, = Mi - P, , L?, = Ei - P i .  
Assign 6, a Riemannian metric with sphere bundle 

Finally, suppose y : Ml M ,  is a smooth map which restricts to 
smooth maps y P  : P, + P, and 4 : Ul - Pl .+ U,  - P, (U,  some 
neighbourhood of Pi). Then Pl is called an isolated manifold for y .  

(i) Show that the identification of Ei as an open subset of Mi can be 
chosen so that q~ restricts to smooth maps 

(ii) Define $ : (ES)l --f (ES)2  by $(z) = @ E ( ~ ) / I  qE(z)I. Find a neigh- 
bourhood, V ,  of P, with the following property: If @ E A,(V), then 
y$@ E A,(El).  If (for this V )  @ E At( V), show that 

Conclude that the integer deg $ is independent of the various choices. 

(iii) Show that this definition coincides with the definition in the text 

It is called the local degree of y at Pl and is written degPl y .  

when Pl and P, are points. 
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(iv) Suppose M , ,  M ,  are compact, and that for an oriented con- 
nected closed submanifold Q C M ,  , p-l(Q) consists of finitely many 
oriented. connected submanifolds. Show that 

deg ? = degQi V* 
i 

(v) For some E > 0, show that (E& C V (cf. sec. 9.3). Hence, from 
'pE , obtain a homomorphism HFl(E1) H,B(E,). Show that the 
diagram 

I" 
HFl(El) - 
at1] 1 %2 

w % ) 2 )  7 f v s M  

commutes. 

12. 

(i) Let @ E A:--P2( V )  represent dC2 . Show that the class in Hpl+e(P,) 
represented by jFl p)z@ is independent of the choice of @. It is called 
the local fibre degree of 9) at  P ,  and written deg& 'p. 

(ii) Let w be the orientation class of Pz . Then the class 9)#Pw E Hp2(P,) 
is called the local base degree of cp at Pl and is written deg;, 9. Prove that 

We retain the notation and hypotheses of problem 11. 

deg.5 9, = deB1 P * ded ,  P. 

(iii) If p ,  < p ,  , conclude that degpl 9) = 0. 

(iv) If p ,  = p , ,  note that deg;lyE R. In  this case obtain 

(v) Suppose p ,  = p ,  . Fix a E P, and set b = qp a.  Choose a trivial- 
izing map X: U, x F,  -+ .rr-lU, for (, . (ub , a neighbourhood of b in 
P,  .) Find a neighbourhood 0, of 0 in (F,), such that ~ ~ ( 0 , )  C .rr-l( ub). 

Use qE to construct a smooth map y : 0, --+ F, such that y-'(O) = 0. 
Show that deg, y = deg:l 9 and conclude that the local fibre degree is 
an integer. Hence conclude that the local degree is an integer. 

d%P1 'p = deg 9)P - d d l  F* 

13, Let 9, = (Mi, p i ,  B, , N,) be smooth bundles with orientable, 
compact, connected r-dimensional fibres and n-dimensional bases. 
Suppose y : M ,  -+ M ,  is a smooth fibre preserving map inducing + : B, -+ B, . Let a be an isolated point for +. 
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(i) Show that (N, ) ,  is an isolated manifold for p 

(ii) Let va : (A',)? ---f (A'&(,) be the restriction of cp. Show that, for 
appropriate orientations, 

F 
deg(Nl), (P = dega 3 and deg?Nl)a = deg (Pa * 

Conclude that 
deg(N,), (P = dega 3 deg (Pa - 

(iii) Assume that L%$ and B, are oriented and that the B, are con- 
nected and compact. Prove that deg q2 (x E B,) is independent of x and 
that 

deg (P = deg I) * deg ( P ~  I 

Conclude that q ~ #  is an injective if and only if both y P  and tp,2" are 
injective. 

14. Let 5 = (E, n, B, F) be an oriented vector bundle over an 
oriented base, with dim B = rank 6 = n. Adopt the notation of sec. 9.3. 
A submanifold M C B is called an isolated zero manifold for  u E Sec 6 
if, for some neighbourhood, U,  of M, M = {x E U I u(x) = O,}. 

Let M be a compact isolated zero manifold for some u E Sec t. 
(i) Show that, if @ is a suitable representative of O r ,  then, for suffi- 

ciently "small" U, the restriction of u*@ to U has compact support. 
Prove that Jvu*@ is independent of the choice of @. I t  is called the 
index of u at M and is denoted by j,,.,(u). 

(ii) Choose a tubular neighbourhood, V ,  of M whose boundary is a 
sphere bundle, V ,  , over M. Show that u determines a cross-section, 
us, in the restriction of ts to V s  . Let ts denote the restriction of ts  
to V .  Prove that 

j M ( u )  = Jl*,xtS.,, 

(cf. problems 14 and 15, Chap. VIII). Conclude thatj,(u) is an integer. 

(iii) Suppose that the set of zeros of u consists of finitely many sub- 
manifolds MI, ..., M p  . Assume B compact and show that 

(Give two different proofs.) 
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(iv) Suppose the restriction of 5 to V is trivial, r-'(V) = V x F. 
Write u(x) = (x, T(x)), x E V. Show that M is an isolated submanifold 
for T ,  with image manifold (0). Show that j M ( u )  = deg,,, (T). 

15. Tangent bundle. Let B be an oriented manifold containing a 
compact connected oriented submanifold M with oriented normal bundle 
7 =, (V, p, M, F) and associated sphere bundle qs = ( Vs ,  p, M, S). 
Regard V as an open subset of B. Let X E % ( B )  and suppose that 

(i) Assume that X ( x )  is tangent to the submanifold Fp(x) for X E  V .  
By restricting X obtain on each F, ( y  E M) a vector field X ,  with an 
isolated zero at 0. Prove that j,,(X,) is constant as y varies through M. 
Denote this integer by j&(X) .  

(ii) With X as in (i), let x M  be the Euler class of the tangent bundle 
of M. Show that 

M = {x E v I X(x)  = O}. 

(iii) Evaluate j & ( X )  in the following three cases: 
(a) X restricts to a vector field tangent to V s  . 
(b) X is the radial vertical vector field for 7. 
(c) X is the negative of the radial vector field for 7. 

16, Local dashed degree. Let = (Ei , r, , B, , F )  ( i  = 1,2) be 
oriented vector bundles of rank n over n-manifolds Bi (n 2- 2). Let 

: 5, -+ [, be a bundle map inducing vB : B, -+ B, . A point a E B, is 
called an isolated singularity of q ~ ,  if for some neighbourhood, U, of a 

q)B(X)  # VB(a), X E  0 (0 = - {a>) 

and qX is a linear isomorphism for x E 0. Let a be a fixed isolated singu- 
larity of p 

(i) Show that in 0 the maps 'px are all orientation preserving or 
orientation reversing. Let ~ ~ ( 9 ) )  = I in the first case, and let e a ( ~ )  = -1 
in the second. (Assume U connected.) 

(ii) Let S be a small sphere in B, centred at a (use an atlas for B,). 
Let Q : V ,  x F -+ V,  x F be a bundle map obtained from y by trivial- 
izations in [, and [, ( a  E V ,  , qJB(a) E V,). Fix h E S ,  ( S ,  the unit sphere 
of F) and define 'ps : S -+ S ,  by vs(x) = Qx(h)/l Qx(h)J. Show that 
deg vs depends only on t,, 5, , and q~ (and not on the other choices). 
I t  will be called the local dashed degree of at a and is denoted by 
degb P 
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(iii) If 'pa # 0 show that degi cp = 0. 
(iv) Let t3 be a third oriented vector bundle of rank n over a third 

oriented n-manifold. Let +: t2 + t3 have an isolated singularity at 
b = vB(a) .  Show that a is an isolated singularity for # 0 'p and prove the 
formulae 

Ca($ O v) = . a ( d  * 4) 
and 

deg:($ P') = deg,' # dega Y E  f ' deg,'va 

Simplify this if #* or tpa is nonzero. 

isolated zero at a and that 
(v) Let T E Sec t2 have an isolated zero at b.  Show that 'pi% has an 

17. Globaldasheddegree. Let 5, and t2 be as inproblem 16and 
assume B, , B, compact. Suppose 'p : + (, induces 'pB : B, + B, . 
Suppose that {a, , a , ,  ..., a,} are isolated singularities for v. Assume 
that 'pz is an isomorphism for x # a,, ..., a, . Set deg' v = xi deg;, 'p. 

(i) Let xi E Hn(B,) (i = 1, 2) be the Euler classes of the associated 
sphere bundles. Prove the Riemann-Hurwitx relation 

(ii) Consider the case where ti = T~~ and 'p = d'pB. In  particular 
suppose f is a polynomial of degree k with complex coefficients. Regard 
f as a smooth map S2 + S2 and use the Riemann-Hurwitz relation to 
show that the sum of multiplicities of the roots off is k. 

18. Let t = ( E ,  T, B, F )  be a vector bundle over a compact con- 
nected base and let 'p : E + E be a proper smooth map. Define a map 

(i) If 5 is oriented show that yztlr = m('p) 8,, where m('p) E H. If v 
is a diffeomorphism show that m(y)  = f l .  

(ii) If B and [ are oriented and is a diffeomorphism show that 
deg tpB = f 1. Prove that 'p preserves the orientation of E if and only if 

' p E : B + B b y ' p , = r r o r p o o .  
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(iii) If B and 5 are oriented, if rank 5 = dim B, and if xB # 0, show 
that E is irreversible. 

19. Let 5 = (E, x,  B, F) be a bundle of rank 2m over a compact 

(i) Suppose .$ is orientable and contains a subbundle of odd rank. 
Prove that the Euler class (of 5,) is ' zero. 

(ii) Suppose E is orientable and n = 2m. If 5 contains a vector sub- 
bundle of odd rank, show that it admits a cross-section without zeros. 

(iii) Let 7 be any vector bundle of rank 1 over B. Show that 
A2"(5 @ 7) Azm 5. 

(iv) Assume E orientable and n = 2m. Let 7 be a rank 1 vector 
bundle over B, and let B be the total space of 4 0.1. Show that e is 
orientable. If a E Sec .$ and T E Set(.$ @ 7) have only finitely many 
zeros, prove that j(a) = j ( ~ ) .  In particular, if 5 admits a cross-section 
without zeros, conclude that every rank 1 vector bundle, 9, is a subbundle 

n-manifold. 

of 4. 

20. Mod 2 index sum. Let 4 = (E, x,  B, F) be a vector bundle 
2. Assume E is connected, but not neces- with dim B = dim F = n 

sarily orientable. 

(i) Let u E Sec 5 have an isolated zero at a. Choose an orientation of 
x-l( V) (V  some neighbourhood of a) and define ja(u) with respect to it. 
Let [ja(a)] denote the (mod 2)-reduction of ja(u) and show that it does 
not depend on the choice of orientation. 

(ii) Let (I ~ S e c  .$ and suppose u has only finitely many zeros, 
a, , ..., a, . Define [j(u)] E Z, by 

[j(O)l = c [ i a , ( 4 l  
i 

and call it the (mod 2)-index sum. Show that it is independent of a. 

(iii) Assume E is not orientable. Let a E Sec 5 have a single zero at a, 
and definej,(u) as in (i). Show that for each integer, m, there is a cross- 
section 7 in 5 such that a is the only zero of T ,  and ja(7) =ja(u) + 2m. 
In  particular, conclude that .$ admits a cross-section without zeros if and 
only if the (mod 2)-index sum is zero. 

21. Continuous local degree. (i) Extend the notion of local degree 
: [Wn -+ [Wn with an isolated zero at zero. If to continuous maps 
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t,bl , $E : Rn -+ R" are origin preserving homeomorphisms, compare 

(ii) Extend the notion of index at an isolated zero'to continuous 

(iii) Define a continuous vector field, X ,  on R2 by X(x,  y )  = (t, .I), 

dego($1 O cp O $2) with dego FJ* 

cross-sections. 

where 

Find the orbits and zeros of X ,  and compute the indices at isolated zeros. 

22+ Let u : Rn -+ Rn be a smooth map such that u(0) = 0 and 
det ~ ' (0 )  # 0. 

(i) Show that 0 is an isolated zero for u, and that 

deg, u = det(u'(O))/l det u'(0)I 

(ii) Define cp : Rn -+ Rn by ~ ( x )  = u'(x; x). Show that 0 is an isolated 
zero for cp, and that 

deg, q = deg, u. 

(iii) Define t,b : Rn -+ Rn by $(x) = o'(0; x). Show that deg,$ = deg, u. 

23. Affine simplices. Let u = (a,, ..., a,) be an ordered affine 
n-simplex in Rm (cf. problem 20, Chap. V). Let E,, be the affine niplane 
spanned by a; thus x E E, if and only if x = x; his, and xr Xi = I .  The  
symbols +, - denote addition and subtraction in R". 

(i) Given x E E,, , find a unique linear structure in E,, with the same 
underlying affine structure, and with origin at x. Identify this space with 
TZ(E0). 

(ii) Show that a vector field, X u ,  on E, is defined by 
n 

X,(X) = x + c cv,hvh%,, 
v.u=O 

where x = Cy Pa,, Cv X. = 1, and 

+ I ,  v < p  
Cvrr - 0, v = p  - I  -1 ,  v > p .  
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With respect to an appropriate trivialization of rE0 ,  show that 

X,(x) = (x, f eu ,h~h~u, ) .  
u,u=o 

(iii) Show that X,(x) = 0 if and only if x is of the form 
2r 

x = c (-l)uui", 
"=O 

where 0 < io < il < 
bourhood, U ,  of u the zeros of Xu are precisely the vertices of u. 

zeros ? 

< iZr < n. In  particular, show that in a neigh- 

(iv) Show thatjut(.) = (-1)i. What are the indices of Xu at the other 

(v) Assume m = n and regard Sn as Rn u {xm}. Define a vector field, 
2, on S" by 

Determine the index of 2 at x, . 
(vi) Find the orbits of Xu, when n = m = 2. 

24. Vector fields on an affine complex. Let I K I be a finite affine 
simplicia1 complex in Rm (with corresponding abstract simplicial com- 
plex, K )  (cf. problem 20, Chap. V). If u is a simplex of K ,  and x E u, 
recall that T,(u) is the affine space E, with x as origin (cf. problem 23). 
A continuous vector field on an open subset U C I K I is a continuous 
map X : U-+ Rm such that X ( x )  E TJu)  if x E a. If X ( x )  = x, then x 
is a zero of X .  Let X be a continuous vector field on I K 1. 

(i) Set ~ ( x )  = X ( x )  - x. Show that for some strictly positive contin- 
uous function f on I K 1, 

x +m 944 E I K I, x E I K I. 

(ii) Assume a is an isolated zero for X ,  and that I K 1 is a topological 
n-manifold. Use a chart ( U ,  zi, Rn) about a, and the linear structure of 
Rn to define the index of X at a. 

(iii) Show that each vertex of K is a zero of X .  Let a be a vertex of 
K and assume a is an isolated zero for X .  Assume further that if a E u, 
then the restriction of X to u extends to a smooth map Y ,  : E, -+ E, . 
Thus the derivative of Y,  at a is a linear map, Yi(a) : Tu(Eu) -+ T,(E,). 
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Assume YL(a) - L is a linear isomorphism for each u. Show that a 
on a neighbourhood of a in 1 K I is defined by continuous vector field 

X ( x )  = YJa; x), x E 0. 

Show that x has an isolated zero at a and thatj,(R) =j,(X). 

(iv) Suppose the vertices of K are given a partial order which converts 
each simplex, u, of K into an ordered simplex. Show that a continuous 
vector field, X, on [ K I is defined by X(x)  = X,(x), x E u, where Xu 
is the vector field of problem 23. Show that the zeros of X are precisely 
the vertices of K. 

(v) The barycentre of a simplex (a,, ..., a,) is the point 

Let b, be the barycentre of u (u E K) and write 6, < b, if u is a face 
of T.  Show that the ordered simplices of the form (buo ,  ..., bnD) (where 
boo < < bq) make up a simplicia1 complex K'. Identify I K' I with 
I K I. Use the ordering among the vertices of K' to obtain a continuous 
vector field, X, on I K' I whose zeros are the vertices of K'. 

(vi) Assume that 1 K I (and hence I K' I) is a topological manifold 
and that each simplex of K is a face of a n-simplex. Show that the index 
of X at b, is (- I)dim 0. 



Chapter X 

The Lefschetz Class of a Manifold 

§I. The Lefschetz isomorphism 

10.1. In this article, M will denote a connected compact oriented 
n-manifold, n 2 2. Recall that the Euler-PoincarC characteristic of M 
is defined by 

n n 

xM = (-1)pb9 = (-1)pdim Hp(M).  
p=o p=o 

The purpose of this article is to establish the following theorems. 

Theorem I: Let T M  be the tangent bundle of M. Then the Euler 
class, x,, of the associated sphere bundle and the Euler-PoincarC 
characteristic of M are related by 

Theorem 11: Let N be a compact n-manifold (n 2 2). Let X be 
a vector field on N with finitely many zeros, and index sumj(X). Then 

j ( x )  = XN ’ 

10.2. Notational conventions. rL: M x M + M and rTR: M x M + M 
will denote the projections given by 

r&,y) = x and “ R ( X , Y )  = Y ,  X , Y  E M ,  

while A: M -+ M x M will denote the diagonal map, A ( x )  = (x, x). 
We regard (M x M, rL , M, M) as an oriented bundle. Consequently, 

we have the linear maps 

j : A(M x M )  + A(M) ,  j * :  H(M x M )  + H(M) .  
M M 

391 
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F denotes an oriented Euclidean n-space, and T M  = ( T M  , T, M ,  F) 
is the tangent bundle of M. The orientation of M is an orientation of T M  . 
The corresponding Thom class is denoted by O M  E HF( TM). 

T M  is given a fixed Riemannian metric. For each E > 0 

and 

T, is the restriction of T to 0, , and (0, , T, , M, F,} is an oriented smooth 
fibre bundle (cf. sec. 9.3). The fibre of this bundle over x E M will be 
denoted by 

Tf,,(W = 0, n Tz(M). 

10.3. The Lefschetz isomorphism. Denote by L M  the space of 
linear transformations H ( M )  ---+ H ( M )  homogeneous of degree zero. 
Then we can write 

n 

LM = 1 L g ( M )  9 

p=0 

where Lz(M) denotes the space of linear transformations of H p ( M ) .  
Since H p ( M )  has finite dimension (cf. Theorem 111, sec. 5.15), we have, 
for each p, a canonical isomorphism 

N 

k,: H"(M) @ H"(M)* = L&) . 
Define an isomorphism 

n c% 
k: C HP(M) @ Hp(M)* L M  

p=o 

by 
n 

k = c ( - l ) n P k , .  
p=0 

Next observe that the PoincarC duality isomorphisms (cf. sec. 5.11) 

DL: H p ( M )  5 H"-p(M)* ( p  = 0, ..., n) 

determine an isomorphism 
n 

I @ 02: f HP(M) @ Hp(M)* -% Hp(M)  @ H"-P(M). 
W.0 p=0 



1 .  The Lefschetz isomorphism 393 

Finally, we have the Kunneth isomorphism 

(cf. Theorem VI, sec. 5.20). 
Combining these isomorphisms yields the linear isomorphism 

A, :L ,  -% H"(M x M )  

given by 

= KX 0 ( I  @ &?) 0 k-'. 

Definition: The  linear isomorphism A, is called the Lefschetz 
isomorphism for M and the class A ,  E Hn(M x M )  given by 

4 4  = M) 

is called the Lefschetz class of M .  

Proposition I: The  Lefschetz isomorphism satisfies the relation 

j *  (7r;a) * (A,U) = o(a), u E L M  , a E H ( M ) .  
M 

Proof: Since both sides are linear in u and in (Y it is sufficient to 
consider the case 

0 = k(B 0 B E  HP(M), y E H"-P(W, 

and (Y E H*(M).  Then (cf. Equation 7.3, sec. 7.12) 

Thus both sides are zero unless p = q;  and in this case 

.(a) = j *  (*;a) - (AMU). 
M 

Q.E.D. 
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Corollary I: The Lefschetz class is the unique element in 
H”(M x M )  satisfying 

Corollary 11: 
nit  

Proposition 11: Let Tr: L M  4 R be the linear map given by 

where u = & up , up EL&,,,, . Then 

Proof: Again it is sufficient to consider the case 

u = k(p @ D M y ) ,  p E HP(M), y E Hn-P(M)a 

Then, by ordinary linear algebra, 

TY U = (-l)””’”(D&#Y, 8)  = (-l)p(n-p)(D~Y, ,B)* 

Since 

it follows that 

TY u = s* p - y. 
M 

According to Example I, sec. 5.17, 

8 ‘ y = d*K#(p @ 7)  = d # ( X M U )  

and so 

Q.E.D. 
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Corollary: 

Proof: Apply the proposition with u = c. 

Q.E.D. 

Example: The n-sphere Sn: Since the Kunneth isomorphism yields 

H"(S" x S") = (H"(S") 0 1) 0 (1 0 H"(S")), 

it follows that the Lefschetz class for Sn must be of the form 

Ass = a(w 0 1) + b(1 0 w),  a, b E R, 

where w denotes the orientation class of Sn. Now a simple calculation, 
using Corollary I to Proposition I, shows that a = (- l)n, b = 1, and so 

Asn = ( - 1 ) " ~  @ 1 + 1 @ W. 

10.4. Lefschetz class and Thom class. In this section we shall use 
the Thom class 8, of T,+, to construct a representative of the Lefschetz 
class. 

In Appendix A we shall construct (for a sufficiently small positive 
number E )  a smooth map 

exp: 0, + M 

with the following properties (cf. Proposition 11, sec. A.3). 

(i) exp(0,) = x, x EM. 
(ii) The restriction, exp,: T, , , (M)- t  M, of exp is a diffeomorphism 

onto an open subset of M. It satisfies 

(d  exp&, = L : T, (M)  + T,(M). 

(iii) The map y :  0, ---t M x M given by 

is a diffeomorphism onto an open subset of M x M .  

Observe that y is a fibre preserving map between the bundles 
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(0, , r C ,  M, F,} and {M x M, nL , M, M}. The  restriction of cp to a 
fibre is the smooth map 

q, = exp, : T J M )  --* M. 

I t  follows from condition (ii) above and the connectivity of T,,,(M) 
that cp, is orientation preserving. Hence cp preserves the bundle orienta- 
tions. 

Finally, recall from sec. 5.9 that cp induces a homomorphism 

(pc)*: &(Of) + 4 M  x M ) .  

Proposition 111: Let @ be a representative of the Thom class 8, 
of T~ such that 

carr @ C 0, 

(cf. Lemma V, sec. 9.3). Then @ has compact support and (vc)*@ 
represents the Lefschetz class of M. 

Proof: Since M is compact, @ has compact support, Moreover, 

carr(g&@ C Im v. 

Thus, for all Y E  A ( M  x M ) ,  

carr(Y A (rpc)*@) C Im p. 

Since cp preserves the bundle orientations we can apply Proposition VIII, 
sec. 7.12, to obtain 

On the other hand, it follows from the definition of (cpc)* that 
cp* o (rpc)*: Ac(O,) + A(0,) is the inclusion map. Hence 

Cp*y A @ = A (vc)*@. 
j F #  M 

Thus if (cp,)*@ represents a E Hn(M x M) and @ represents y E H;(O,), 
we have 

%+ ( v % u ) * r = , j  W'OL, W € H ( M X M ) .  K, M 
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Finally, observe that 
T O O  = A ,  

where o denotes the zero cross-section in rM (cf. Property (i) above). 
In Example 3, sec. 5.5, it was shown that o 0 T is homotopic to the 
identity in T M  . The same argument shows that o 0 n, is homotopic to 
the identity map of 0,. Hence, 

I t  follows that for E H ( M )  

(since nR o d = L).  Now Corollary I to Proposition I, sec. 10.3, implies 
that 

a = / l M .  

Q.E.D. 

Corollary: For every neighbourhood V of d ( M )  in M x M, there 
exists a representative Y of the Lefschetz class such that carr Y C V. 

Proof: Combine the proposition with Lemma V, sec. 9.3. 
Q.E.D. 

Now let x, denote the Euler class of the sphere bundle associated 
with T M .  

Proposition IV: The Lefschetz class, A , ,  and x, are related by the 
equation 

xs = d*(AM)* 

Proof: Choose a representative @ of OM such that carr @ c 0,. 
Then it follows from Proposition I11 that d#(AM) is represented by 
A*(?,)*@. Since d = 9, o 0, 

d*(p,)*@ = 0*q*(po)*@ = o*@. 
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But Corollary I to Proposition V, sec. 9.6, implies that o’V represents 
xs * 

Q.E.D. 

Proof of Theorem I (sec. 10.1): Apply Proposition IV,  and the 
corollary to Proposition 11, sec. 10.3, to obtain 

Q.E.D. 

10.5. Index sum. Proof of Theorem I1 (sec. 10.1): We may assume 
that N is connected. If N is orientable, Theorem I1 is an immediate 
consequence of Theorem I and Theorem 111, sec. 9.9. If N is non- 
orientable, let fl be the oriented double cover (cf. Example 9, sec. 3.21). 
Then X pulls back to a vector field with finitely many zeros and, 
since m is oriented, 

on 

xR = i(R. 
On the other hand, by Theorem IV, sec. 9.9, 

Thus it remains to show that 
XR = 2XN * 

H ( N )  = H+(N) 0 H-(N)  

Recall from sec. 5.7 that 

and H+(m) 
mation and u p :  Hp( f l )  t Hp(m)  is the induced linear map, then 

H(N) .  Moreover, if o: m -+ N is the covering transfor- 

tr wv = dim HT(m) - dim H!(m). 

Since w(z )  # z (z  E m), it will follow from the corollary to Theorem 111, 
sec. 10.8, that 

( - 1 ) p  tr u p  = 0. 
v-0 

Thus 
n n 

(- l ) p  dim El:(”) = ( - l ) p  dim H?(m). 
v-0 P==O 
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Recalling that dim H!(R) = dim H p ( N )  (cf. sec. 5.7), we obtain 
n 

p=0 
xm = (-l)p(dim HT(&') + dim H?'(&')) = 2 x N .  

Q.E.D. 

Corollary I: 

Proof: 

If dim N is odd, then x, = 0. 

Apply Theorem IV(l), sec. 5.16. 
Q.E.D. 

Corollary 11: If IV is the double cover of N, then 

xm = 2xN ' 

Corollary 111: Let P be any connected n-manifold (n 2). Then 
P admits a vector field without zeros if and only if P is not compact, or 
P is compact and x, = 0. 

Proof: Apply Theorem V, sec. 9.9, and Theorem 11. 
Q.E.D. 

Corollary IV: Every odd dimensional manifold admits a vector field 
without zeros. 
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10.6, The Poincare adjoint, Let M and N be compact oriented 
connected manifolds of dimensions m and n, respectively, and let 
'p: M --+ N be a smooth map. Denote the restriction of p* to H p ( N )  
by ' p p .  Let 

p - a :  H m - q M )  + H n - q N )  

be the unique linear map such that 

sPN(qm--P~, 8) = S,(O~, ~"/3), a E Hm-'(M), p E H*(N)  

(9, , PM are the PoincarC scalar products-cf. sec. 5.1 1). 
The linear maps Qq define a linear map 

q: H ( M )  -+ H ( N ) ,  

homogeneous of degree n - m; it is called the Poincard adjoint of 'p#. 

If m = n, 
If $: N + Q is a map of N into a third compact connected oriented 

manifold Q, then 

is homogeneous of degree zero. 

N - 
l / o p = + o q .  

Lemma I: If m = n, then 

q o p *  = degv-I .  

In particular, if M = N and deg y # 0, then 'p# is a linear isomorphism 
and 

Q = deg p (p*)-l. 

Proof: Observe that, for LX E H p ( N )  and ,9 E Hm-p(N), 

SN(+?*a, p) = S M ( @ a ,  qi#8) 

= ' 8) = deg ' SN(a ,  
M 

The lemma follows from the nondegeneracy of 

400 

Q.E.D. 
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Proposition V Let M be a compact oriented n-manifold. Then the 
Lefschetz class of M is given by 

A M  = (-1PJ(l)* 

Proof: Let a E Hp(M),  E H"-*(M). Then by Corollary I to Theo- 
rem I, sec. 7.14, 

It  follows that 

,* ?T;a * (-l)"J(l) = a, C4€E(M). 
M 

Now Corollary I to Proposition I, sec. 10.3, implies that 

A ,  = (-1)%7(1). 

Q.E.D. 

10.7, Coincidence number and Lefschetz number. The coincidence 
number of two smooth maps v: M + N and 9: M --t N between com- 
pact, connected, oriented n-manifolds is defined by 

n 

p=o 
~ ( v ,  +) = C (-1)~ tr(vp o@). 

If N = M and I) is the identity map, this number is denoted by L(v) 
and called the Lefschetz number of v, 

n 

P-0 

L(p) = (-1)Ptrqp. 

In particular, L(c) = x, . 

Proposition VI: Let q, 4: M --f N be as above. Then 

(1) L(v, 9) = (-1)"JW, v). 
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(2) If x: Q + M is a map of a third connected oriented compact 
n-manifold into M ,  then 

Proof: (1) Since 

B,(a , *"@) = 9 M ( V * &  , 8), B E WM), 
it follows that 

tr($n-po+n-p) = t r ( v p o @ ) ,  o < p < t l ,  
whence 

n 

P=o 
~ ( v ,  +) = C ( -1)p  t r ( v p  0 @I = (-1InL($, v). 

(2) In  view of Lemma I, sec. 10.6, 

tr[(p) o X)P 0 ( + ~ X > P I  = tr(Xp 0 pp 0 $ p  0 2 ~ )  
o 2~ o x ~ )  = t r ( y p  o 

= deg x * t r ( p p  0 @') 
and so (2) follows. 

(3) Obvious. 
Q.E.D. 

Again, suppose y :  M 3 N and $: M 3 N are smooth maps between 
compact, connected, oriented n-manifolds. Recall the Lefschetz iso- 
morphisms (sec. 10.3) 

= N 

A,: LM A Hn(M x M ) ,  A N :  LN - Hn(N x N )  

and that 
A M  = A N  = A N ( 1 )  

denote the Lefschetz classes. On the other hand, 

Proposition VII: With the notations and hypotheses above 

Adv# O $1 = (v x #)"(AN). 
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In particular, if A,: M --f M x M denotes the diagonal map, then 

M 

Lemma 11: Let CY E LN . Then 

Proof: As in sec. 10.3 it is sufficient to consider the case 

Then, for y E H p ( M ) ,  

It follows that 

whence 

= ((f 
Q.E.D. 

Proof of Proposition VII: Applying Lemma I1 with u the identity 
map of H ( N ) ,  we obtain 

h.w O $1 = (9, x +)"(4&)) = (9' x 4 ) # ( 4 ) *  
Thus Proposition 11, sec. 10.3, yields 

10.8. The weak Lefschetz theorem. Theorem 111: Let y ,  I/I: M --t N 
be smooth maps between compact, connected, oriented n-manifolds 
such that IJJ(X) # #(x) (x E M ) .  Then L(y, $) = 0. 
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Proof: Define x :  M -+ N x N by 

x(4 = b(xh  +(x)) ,  x E M. 

Since M is compact so is x(M).  By hypothesis, 

X ( W  n d,(N) = a,  

where A,: N +  N x N is the diagonal map. Hence U = N x N - x ( M )  
is a neighbourhood of d(N). According to the corollary of PropositionIII, 
sec. 10.4, there is a representative, @, of the Lefschetz class A ,  such that 
carr @ C U .  Then x*@ = 0; i.e., 

A& 0 (p  x +)*(a) = 0. 

Passing to cohomology yields 

4f O (9' x W(4) = 0, 

whence, by Proposition VII, sec. 10.7, 

Jqv, #) = 0. 

Q.E.D. 

Corollary: If the Lefschetz number of a map y: M + M is different 
from zero, then 9) has at least one fixed point; i.e., for some a E M ,  

v(a) = Q. 

Remark: The rest of this chapter is devoted to proving a strength- 
ened version of Theorem 111, which appears in sec. 10.10. 
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10.9. Local coincidence number. Let tp, #: M --+ N be smooth maps 
between oriented n-manifolds (n 2 2). A point a E M  is called a coinci- 
dencepoint for 9 and # if ~ ( a )  = #(a). A coincidence point, a, is called 
isolated, if there is a neighbourhood 0 of a such that tp(x) f #(x), 
x E 0 - {a}. We shall define the local coincidence number of and # at 
an isolated coincidence point a. 

Let (F, o, Rn) be a chart on N such that tp(a) E F and o(tp(a)) = 0. Set 

F = F - {p(a)} and 

(where d is the diagonal map). Then we have the inclusion map 

F k F = F x F - d(F)  

j : p ( a )  x F - + F  k F. 

Lemma 111: The map j induces an isomorphism of cohomology. 

Proof: Use z, to give F a linear structure, and define the map 
p: F x F"-F x F by 

Since ~ ( a )  is the zero of F, the diagram 

F x F  

commutes, where k is the obvious inclusion. Since k induces an iso- 
morphism of cohomology, so does j .  

Q.E.D. 
405 
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Next, choose a neighbourhood U of a ,  diffeomorphic to Rn and satis- 
fying the conditions (i) 0 is compact, (ii) U C p-l(F) n $-l(F), and 
(iii) p(x) # $(x), X E  0 - {a} .  Define 7 :  U d F  x F by 

'(4 = (+), Yw). 
Then T restricts to a smooth map 

i :  0 - F  F. 

Thus we can form the real number (cf. sec. 6.7) 

Lemma IV: The number t is independent of the choice of U and of 
( F ,  v, R"). 

Proof: Suppose (F ,  , w, , Rn) and U,  satisfy the conditions above. 
I t  is sufficient to consider the case that Fl C F and U, C U. But then 
the diagram 

~ J ( U ) X F - - F A F L ~  i 

t t -  t 

commutes, and the lemma follows. 
Q.E.D. 

Definition: The  number (au 0 i# o ( j * ) - l  0 a;')( 1) is called the local 
coincidence number of y and 4 at a .  I t  is denoted by L,(y, $). 

Now (with the notation above), regard y and $ as maps of U into the 
linear space F. Define $ - y : U --f F by 

Then 
defined. 

- y has an isolated zero at a.  Thus the integer deg,($ - p) is 

Lemma V: deg,($ - y )  = L,(p, $). 
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Proof: Define u: U 4 F x F by 

44 = (v(x), (4 - v)(x)) 

l ? . U - F X F .  

and restrict u to 

The diagram 

F k F  

/ 
P 2 0 

J 
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F X F  

commutes, whence 

On the other hand, the projection p:  F x # + P satisfies p o k = I ,  
and hence 

But 
p* = ( k e y .  

p o u =  ( 4 L q ) .  0-F. 

I t  follows that (cf. sec. 6.1 1) 

Q.E.D. 

Corollary: La(?, i,h) is an integer. 

If N = M, then the coincidence number La(v, L )  at an isolated fixed 
point a of q~ is called the index of the$xed point and is denoted by L,(v). 
I t  is independent of the orientation of M. 

10.10. The main theorem. For the rest of this article, M and N 
denote fixed compact, connected, oriented n-manifolds (n 2); 
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'p, $: M + N are two smooth maps with only finitely many coincidence 
points a, ,..., a,. The local coincidence number L,('p, JI) will be denoted 
by L,(p, 4). The rest of this article is devoted to proving the following 
generalization of Theorem 111, sec. 10.8: 

Theorem IV: With the notation and hypotheses above, the coinci- 
dence number of 'p and $ is the sum of the local coincidence numbers, 

r 

L(v, 4) = c uip, 4)- 
f -1 

Corollary I: L(cp, JI) is an integer. 

Corollary 11: Let 'p: M + M be a smooth map of a compact, 
connected, oriented n-manifold, M, into itself with finitely many fixed 
points a, ,..., a,. Then 

n 

Corollary 111: If 'p: M + M has finitely many fixed points and 
'p N c, then 

Examples: 1. cp: Sn + Sn be a map with finitely many fixed 
points a, ,..., a,. Since HP(S") = 0 (1 9 p < n - l), we have 

tryp = 0, 1 < p  < n - 1.  
Moreover, 

trv" = degv and trvo = 1. 

Thus Corollary 11 yields 
r 

i-1 
1 +(--1)"degv= c L i ( ~ p ) .  

2. Let cp, JI: M + Sn be smooth maps (M a compact, oriented, 
n-manifold). Then 

99=0=@, l < p < n - l .  
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Moreover, 

and 
cpn O @  = degcp - I  

cp'Jo@ = deg$ - I .  

It follows that 
L(V, *) = deg * + (-1P deg I. 

Thus if y ,  t,b have finitely many coincidence points a, (i = 1, ..., Y), 

the theorem gives 
r 

deg # + (- 1 P deg P = UP, 4)- 
i-1 

3. Again consider y ,  $I: M --t S", but this time assume that - y  
and t,b have finitely many coincidence points b, ,..., b, , where 

Since deg(-y) = (-l)"-l deg y (cf. Example 1, sec. 6.2), we obtain 

8 

deg - deg 'p = C Li(-v, 4)- 

Let y ,  t,b: M --t N be smooth maps between compact, connected, 
i-1 

4. 
oriented n-manifolds such that 

9.l" = *". 
Then Proposition VI, (2), sec. 10.7, shows that 

L(v, $) = L(v, 'p) = deg p 'L(L, I )  = deg ' XM * 

Thus if tp, t,b have only finitely many coincidence points a, , ..., a,. , then 
r 

deg * XM = Ld% 4)' 
i-1 

In particular, if deg tp # 0, x, # 0, then tp and t,b have at least one 
coincidence point. 

We come now to the proof of Theorem IV. It is broken up into four 
steps, each occupying a section. (Note that all diagonal maps are denoted 
by 4. 
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10.11. Step I. Preliminaries. Let IW" have a fixed orientation and 
Euclidean metric, and choose charts (F, , vi , UP) for N ,  subject to the 
following conditions: 

(i) The F, are disjoint 
(ii) w, is orientation preserving 

(iii) tp(ai) E Fd and v,('p(a,)) = 0. Assign to each Fi that structure of 
an oriented Euclidean space for which v, is an orientation preserving 
isometry. 

Next, choose neighbourhoods V, of 'p(a,) (i = 1, ..., I) so that U, is 
compact and U4 C F, . Then there are open sets W, , U, C M satisfying 
the conditions 

(iv) a, E W, C F4 C U, 
(v) U, is diffeomorphic to Rn 

(vi) 0, is compact and 'p(x) # +(x) (x E Ud - {ai}) 
(vii) 'p( 0,) u +(go C V,  . 

In particular, if x E D, then 'p(x), +(x) E Fi , and so we can form the 
difference 

$64 - 944 E F f  * 

Since 0, - W, is compact, condition (vi) implies that for some E > 0 

1 $(x) - q(x)l > c, X E  Di - W, ; i = 1, ..., Y. 

(File = { X E F i  1 I x I < €1. 

(10.1) 

Fix such an E and set 

10.12. Step 11. Representation of the local coincidence numbers. Let 

'pi: u, + vi , ui + vi 

denote the restrictions of 'p and $I. Then, according to Lemma V, 
sec. 10.9, the local coincidence number Li('p, +) of 'p and t,b at at is given by 

(10.2) U P ,  $) = deg,,($, - 'pi),  

where $Ii - 'pi: U, -+ F, denotes the difference map. 
On the other hand, consider the oriented Riemannian vector bundles 

6, = ( V, x Fi , 7, , V, , F,) and let p,: V,  x Fd 4 F, denote the projec- 
tion. Define 

a#: Ui+ Vi x Fi 
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Fi 
commute. 

such that 
Now let 0, be the Thom class for & and let !Pi be a representative of 0, 

carr ?Pi C Vi x (Fi), . 
In view of formula (10.1) and condition (iv) we can apply the example 
of sec. 9.8 to obtain 

dega,($i - pi) = J u: ?Pi * 
u< 

Hence (cf. formula 10.2) 
(10.3) 

10.13. Step III. Define smooth maps 

pi: Fi x Fi -+ N x N 

by 
Pi(XY Y )  = (XY x + r), x, Y E F t .  

Each pd is a diffeomorphism onto an open subset of N x N. Now 
consider the open subset 0 C N x N given by 

0 is a neighbourhood of d ( N ) ,  and satisfies 
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Next, observe that the p, restrict to smooth maps pi: V, x F, -, N x N 
and that the diagrams 

B VI x F, 2 N x N 

i d  Vt - N 

commute ( j ,  denotes the inclusion map). In view of (10.4) we may use 
Proposition VIII, sec. 7.12, to conclude that if CP E A ( N  x N) and 
carr CP C 0, then 

carr ,$@ C V, x (F& (10.5) 
and 

I T L  1 T r  

In particular let @ be a closed n-form representing the Lefschetz class 
A ,  and such that carr 0 C 0 (cf. the corollary to Proposition 111, sec. 
10.4). Then (cf. Corollary I1 to Proposition I, sec. 10.3) 

p p  = j @ = 1. 
Fd N 

Hence (cf. Corollary I1 of sec. 9.2) /It@ represents the Thom class 0, . 
In view of (10.5) we can apply formula (10.3) at the end of Step I1 to 
obtain 

10.14. Step IV. Define T : M 4 N X N by T = (v X 4) 0 A .  Then 
Proposition VII, sec. 10.7, yields 

But, by hypothesis, 

7(W n = {(9J(%), +(~i)>>i-l....., - 
In particular, T(M - (Jc U,) is a compact set disjoint from d(N) .  Thus, if 
0 is the open set constructed in Step 111, then 

0 - 7 ( M  - (J Ui) 
t 

is a neighbourhood of d ( N ) .  
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According to the corollary to Proposition 111, sec. 10.4, we may choose 
a representative, @, of the Lefschetz class of N such that 

c a r r @ C O - r  M -  ( ud* 
Then 

and so 

carr r*@ C u Ui 
i 

Finally, observe that the diagrams 

/\ 
commute. Since carr @ C 0 it follows that (cf. Step 111) 

This completes the proof. 
Q.E.D. 



Problems 

1, Let 93 = (E, w ,  B, F) be a smooth fibre bundle with compact 
base and compact fibre. Show that the Euler-PoincarC characteristics of 
E, B, F are connected by 

X E  = XE ' XF * 

2. A manifold is said to have a homogeneous structure, if it is given 
an atlas {( U,  , u,)} subject to the following conditions: If x E urn( U,,), 
then, for some eZ > 0, 

u,,(tx) = tue,(x), I t - 1 I < %.  

(i) Show that every noncompact manifold admits a homogeneous 

(ii) Show that a compact manifold admits a homogeneous structure 
if and only if its Euler characteristic is nonnegative. 

(iii) Let {( U, , u,)} be a homogeneous structure for M. A point x E M 
is called an origin, if, for some a, x E U, and u,(x) = 0. Show that if x 
is an origin, then for any U, containing x, u8(x) = 0. Show that the 
origins form a discrete subset of M .  Show that the number of origins 
of a compact manifold M is x M  . 

structure. 

3. Let M be a connected compact orientable 4-manifold which admits 
a vector field, X ,  without zeros. Show that H1(M)  # 0 and that dim 
H2(M) = 2(dim H1(M)  - 1). 

4. Show that a compact 4-manifold admits a Lorentz metric if and 
only if its Euler characteristic is zero. (A Lorentz metric is an indefinite 
metric in T~ of signature 2.) 

5. Let 'p : M +  M be a smooth map and let a E M be a fixed point 
for 'p. Assume that the linear transformation (a+), : T,(M) -+ T,(M) 
satisfies det((d'p), - L )  # 0. Show that a is an isolated fixed point and 
that 

- 1, if det((d'p), - 6) > 0 
if det((dp)), - I )  < 0. 
414 

La('p) = I+ 1 ,  
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6. Let S,  be the Riemann sphere. Determine the fixed points and 
their indices of the map q : S2 -+ Sa given by QJ(Z) = 2% (n E Z). 

7, Projective spaces. (i) Show that every map 'p : R P  --+ RPE 

(ii) Construct a map CP2 4 CP2 without fixed points. 
(n even) has a fixed point. 

8. Let q : C P  + C P  be smooth. Show that the restriction of 'p# 

to Hz(CPE) is of the form A, * c (A, E R). 

(i) Obtain the relations 
n 

degcp = At and L(cp) = c A; 
v=o 

(cf. problem 5,  Chap. VIII). 
(ii) If t,h : C P  -P C P  is a second smooth map, show that 

n 

L(y, #) = c A $ y .  
p=0 

Conclude that L(q, I)) # 0 (and so q and t,h have a coincidence point) 
unless n is odd and deg t,h = - deg q. 

(iii) Repeat (i) and (ii) for W P .  

9, Consider two compact oriented n-manifolds-with-boundary 
( M i ,  aM,) (i = 1, 2) and let M be a compact (n - 1)-manifold. 
Suppose qt : aM, a M are given diffeomorphisms. Identify aM1 
with aM2 via qil  0 q2 to obtain a compact manifold, Ml # M ,  . Let 
Xi  E Sec(TMi l a w , )  (i = 1,2) denote the outward pointing normal vector 
fields. 

(i) Extend Xi  to a vector field x, on M4 with finitely many zeros. 
Show that j(x4) is independent of the extension xi (cf. problem 15, 
Chap.' VIII). 

(ii) Prove that H(M,)  and H ( M i ,  aMi) have finite dimension (cf. 
problem 14, Chap. VIII). Let x M M 1 ,  xw,,aM, be the corresponding Euler- 
PoincarC characteristics. 

N 

(iii) Establish the relations 

Axl) + (-lIni(Z2) = xMIMI+MI 

iK) = X M ~  + X M ~  
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and 

(iv) Conclude that 

10, Critical points (Morse). Let j~ Y ( M )  (M a compact n-mani- 
fold) have only nondegenerate critical points, a , ,  ..., uk . Suppose that 
the Hessian of f at a, has n - p ,  positive directions and p ,  negative 
directions. Show that 

k 

X M  = 1 (-1)'c. 
i=l 

Generalize this to compact manifolds-with-boundary (cf. problem 9). 

11. Let M be a compact manifold. Let X E 9 ( M )  and suppose the 
zero-set of X consists of finitely many disjoint connected submanifolds 
P d .  Assume that X is nowhere normal to the boundaries of tubular 
neighbourhoods of the P 4 .  Prove that 

XM = XP, a 

i 

12. Suppose M is compact and oriented. Assume that two maps 
?, 4 : M --t M have a single coincidence point, a. Show that 4 is homo- 
topic to a map lcll : M 3 M which has no coincidence points with ?, 
if and only if L(v,#)  = 0. 

13. Intersection theory. Let M be a compact submanifold of a 
manifold N. Suppose 'p : P + N is smooth. 'p is called trumerse regular 
to M, if whenever ~ ( x )  E M, then 

(i) If rp is transverse regular to M, prove that ?-l(M) is a closed sub- 

(ii) Use Sard's theorem (cf. problem 13, Chap. 111) to prove that any 
map 'p is homotopic to a smooth map 'pl which is transverse regular to 
M (Thorn's transversality theorem). 

(iii) Assume all manifolds oriented. Let i : M -+ N be the inclusion 
and let be as in (ii). Denote ?il(M) by M n P and let 4 : M n P --t N 

manifold of P. What is its dimension? 
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be the restriction of v1 . Orient M n P.  Define cohomology classes in 
H ( N )  by 

[MI = i ( l ) ,  [PI = +(I), [ M f l  P ]  = $(I). 
Show that 

[M n PI = [MI [PI 

and conclude that [ M  n PI and $# depend only on i and q ~ .  

(iv) Apply (iii) to the case N = M x M ,  i = A : M --f M x M and 
P = M .  Thus ~ ( x )  = (u(x) ,  T ( x ) ) ,  where u, 7 : M --f M .  Show that in 
this case [MI * [PI = L(a, 7 )  uWXM , where uMxM is the orientation class 
o f M x M .  
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The Exponential Map 

A.1. Sprays, Let M be an n-manifold with tangent bundle 
7~ = (TM , n, M, 08%). The tangent bundle of the manifold TM will be 
written & = (TL , .rra , TM , 088"). Consider the commutative diagram 

Ti- TM d?r 

-4 1- 
T M ~ M .  

A spray for M is a smooth map Y: TM --+ TL which satisfies d.rr o Y = L 

and v8 0 Y = I .  (In particular, a spray is a vector field on TM.) 
Next consider the map p: 08 x TM 4 TM given by 

P(t, 4) = t f ,  08, f TM * 

It determines, for each t # 0, the diffeomorphism pt : T M  + TM given 

Pt(5) = P(4 0. 
by 

A spray, Y, for M is called afine, if 

(Pt)*Y = (llt)Y, t # 0. 

Example: Assume that the tangent bundle of M is trivial, 

TM = M x R". 

Then TL = (M x 08") x (W" x 08%) and dn and T~ are given by 

~ T ( x ,  h; K, 1) = (x, A), x E M 
h, K, 1 E R". np(x, h; K, 1) = (x, h), 

In  this case, an affine spray is given by 

Y(x, h) = (x, h;  h, 0), x E M ,  h E 04" 
418 
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Lemma I: Every manifold M admits an affine spray. 

Proof: Cover M by open sets Ua with trivial tangent bundle (e.g., 
by chart neighborhoods). Let Y ,  be an affine spray in Ua (cf. the example 
above). Let { f a }  be a partition of unity in M with carrf, C Ua . Then 

Y = C ( r * j a ) Y a  
a 

is an affine spray in M. 
Q.E.D. 

A.2. The flow of a spray. Let Y be an affine spray for M. Recall 
from sec. 3.15 that there is a radial open set W C R x T M  and a smooth 
map $: W +  TM such that 

and 

($,(t) = $(t, [)). In  particular, 

$S(O) = W), 5 E T ( M ) .  

The map $ is called a ZocaZ$ow of the spray Y. 

Riemannian metric and set, for r > 0, 
From now on it will be assumed that M is compact. Give T M  a 

0, = TIM 1 I 5 I < r>. 

Since M is compact, we can choose 6 > 0 and p > 0 so thst 

l a  x 0,c w, 
where I8 = {t E R I I t I < S}. Then the flow restricts to a map 

I) : l a  x 0,- T M .  

Lemma 11: Let Y be an affine spray on a compact manifold M. 
Then the corresponding flow satisfies 

#(4 s t )  = s*(st, 0, t E I6 9 I s I < 1, 5 E 0, * 

In particular, 
*(t ,  0,) = 0, , x E M. 
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Proof: Fix x E M ,  s E Il and 4 E T,(M) n 0,. Define maps 

a : I d d  T M  and @ : I a +  TM 

a(t) = #(t, s l )  and B(t) = $#(st, 0. 

a(0) = B(0) = s5. 

S ( t )  = 4 4 s  * $&)) = Y(S * #&)) = Y(B(t))- 

by 

Then 

Moreover, &(t) = Y(a(t))  while, since Y is affine, 

Thus 01 and 
Proposition X, sec. 3.15, implies that 01 = p. 

are orbits for the vector field Y agreeing at t = 0. Now 

Q.E.D. 

A.3. The exponentialmap. Again let Y be an affine spray on a 
compact manifold M and let I): I, x 0, + T M  denote the corresponding 
flow. Set 

x = r r ~ $ : I , X o , , - + M .  

T o  each vector 4 E 0, associate the path x t :  Ib + M given by 

Xdt) = X(t, 5).  

Then t + xE(t)  (cf. sec. 3.1) defines a path kt in T M  and j iE  = (kc)* is 
a path in T L  . 

Proof: 
is a spray, 

i.e., 

(1) follows immediately from the definition of x. Since Y 

x&) = (W$&) = ( d 4  Y(4JXt)) = +At);  

kt = * f  - 
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It follows that 

and 
X X 4  = iClr(t) = Y(#,(t)) = Y(X&)* 

Thus (2) and (3) hold. 

observe that 
T o  obtain (4) apply 7~ to both sides of the equation in Lemma I1 and 

+#(st, 4 ) )  = r#(s t ,  0. 
Q.E.D. 

Next set E = +pS and consider the smooth map 

Definition: The map exp: 0, -+ M given by 

is called the exponential map generated by the affine spray Y .  

The restriction of the exponential map to T,,,(M) = 0, n T,(M) 
will be denoted by exp, . 

Proposition 11: 

(1) 
(2) 

The exponential map has the following properties, 
if E is sufficiently small: 

expo, = x ,  X E  M 
exp, is a diffeomorphism of T,,z(M) onto an open subset of M 

and satisfies 
(dexp,)oz = 

(3) The  map y :  0, -+ M x M given by 

is a diffeomorphism of 0, onto an open subset of M x M. 
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Proof: (1) Apply Lemma 11, sec. A.2. 
(2) Fix 5 E T,,,(M) and define a: (-1, 1) --+ M by 

.(t) = exp(t5) = x(B& (2/W). 

40) = (dexpA0J. 
Then 

Now apply Proposition I, (4) and (2), to obtain 

i.e., 

The rest of (2) is immediate if E is sufficiently small. 
In view of (2), 'p is injective. I t  remains to be shown that 'p is a 

local diffeomorphism. In fact, assume that for some [E T,,,(M) and 
(3) 

r )  T t ( T M )  

(ddr]  = 0. 
Then (d7r)r) = 0 and so 

r ]  v t ( T M )  = Tt (Tz (M))  

(cf. sec. 7.1). Thus 
0 = (dexp)r] = (dexp,)r]. 

Now (2) implies that r )  = 0. Hence d'p is injective. 

morphism. Thus 'p is a local diffeomorphism. 
Since dim TM = dim(M x M), each ( d ~ ) ~  must be a linear iso- 

Q.E.D. 
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A fibre. 38 

Abstract simplicia1 complex, 217 
Adjoint, Poincark, 400 
Affine simplex, 236, 388 
Affine spray, 135, 418 
Algebra 

anticommutative, 4 
cohomology, 1 1,  176 
connected, 4, 177 
exterior, 4, 57 
graded, 3, 4 
graded differential, 1 I 
Lie, 4, 107, 152, 173 
symmetric, 4, 58 
of smooth functions, 30 

Anticommutative algebra, 4 
Anticommutative tensor product of graded 

algebras, 4 
Antiderivation, 4, 141 
Associated sphere bundle, 105, 293 
Atlas, 15, 414 

equivalent, 22, 24 
finite, 20 
smooth, 22 

B 

Barycentre, 390 
Base space, 38 
Basis for topology, 14 
Betti numbers, 178, 205, 231 
Betti groups, 232 
Bigraded module, 8 
Borsuk-Ulam theorem, 275 
Boundary, 232 

Bundle 
manifold-with, 139, 231, 350, 415 

composite, 31 1 
cotangent, 97, 173 
deleted, 105 
disc, 381 
exterior algebra, 57 

along fibre, 281 
isomorphism, 45 
jet, 132 
map, 45, 47, 84, 291 
normal, 138, 380 
pseudo-Riemannian, 66, 85 
quotient, 84 
Riemannian, 66 
of skew transformations, 72 
space, 38 
sphere, 105 
subbundle of, 44, 68 
symmetric algebra, 58 
tangent, 94, 385 
vector, 44 
vertical subbundle of, 281 

C 

Canonical tensor product of graded 

Canonical transformation, 173 
Carrier 

compact, 147, 189, 295, 380 
of cross-section, 59 
of differential form, 147 
of smooth function, 30 

algebras, 4 

Cauchy’s integral theorem, 235 
Cayley map, 25 
Cayley numbers, 132, 175 
t e c h  cohomology, 238 
Chain, 232 

degenerate, 236 
invisible, 236 

Charts, 15 
identification map of, 22 

Classifying map, 86 
Closed differential form, 176 
Coboundary, 9, 176 
Cochain, 218, 348 
Cocycle, 9, 176 

435 



436 Index 

Cohomology, 
algebra, 11 

of compact manifolds, 218 
of manifolds, 176 
of nerve, 218 

axioms, 178, 190 
with compact supports, 189 
of Iw" with compact supports, 190 
of real projective spaces, 187 
space, 9 
of sphere bundles, 316ff., 344 
of spheres, 185 
of vector bundles, 352ff. 

numbers, 4ooff. 
point, 405, 409, 416 

Coincidence 

Compact Kilnneth homomorphism, 210 
Compact manifolds, 41, 203, 205, 218, 228 
Compact supports, 141, 189, 295, 380 
Complex functions, 274 
Complex projective space, 42, 415 
Complex structure, 73 
Complex vector bundle, 73, 86 
Complexification of vector space, 2, 27 
Composite bundle, 31 I 
Composition map, 57 
Conjugate parallelism, 175 
Connected algebra, 4, 177 
Connected manifold, 177 
Connected sum of manifolds, 140 
Connecting homomorphism, 10, 181, 193 
Constant map, 24 
Constant rank, 84 
Continuous homotopy, 41 
Continuous local degree, 387 
Continuous vector field, 389 
Contractible manifold, 86, 183 
Contracting homotopy, 183 
Contraction, 183 
Contravariant tensor field, 119 
Coordinate functions, 13 1 
Coordinate representation 

for fibre bundles, 38, 40 
Riemannian, 68 
for vector bundles, 44,45, 70 

Coordinate transformation, 44 
Cotangent bundle, 97, 173 
Cotangent space, 96 
Cotangent vector, 96 
Covariant tensor field, 11 8 

Cover(ing), open, 14 
Covering transformation, 71 
Critical point, 136, 416 

nondegenerate, 138 
Critical value, 136, 245 
Cross-section(s) 

of exterior power, 81 
of fibre bundle, 38 
index of, 330, 367 
Lie algebra of, 107 
mappings of, 62 
module of, 60, 78 
normed, 66 
pull-back of, 325 
smooth family of, 153 
of sphere bundle, 337 
of tangent bundle, 106 
of tensor product, 80 

fundamental, 237 
Cycle, 232 

D 

Dashed degree, 385, 386 
De Rham cohomology algebra, 176 
De Rham existence theorem, 233 
De Rham isomorphism, 218, 228 
De Rham theorem, 218ff. 
Definite integral of smooth family, 153 
Deformation retract, 184 
Degenerate chain, 236 
Degree 

global, 240, 264, 408, 414 
global dashed, 386 
local, 259, 260, 264, 382, 383, 387 
local dashed, 385 
mapping, 24oA. 
(mod 2), 274 

Deleted bundle, 105 
Density, 171, 233 
Derivations 

in algebra, 2 
Lie product of, 107 
as tangent vector fields, 106 

Derivative 
exterior, 145 
Lie, 142 
of map, 12, 88ff., 95 
of smooth family, 153 



Index 437 

Determinant function, 
in real vector space, 1, 124 
in vector bundle, 64, 70 

Diagonal map, 29 
Diffeomorphism, 12, 24, 35ff. 

Difference class, 325 
Differentiable map, 12 
Differential algebra, 9 
Differential equations, 13, 112ff. 
Differential forms, 115, 119ff., 283ff. 

local, 99 

closed, 176 
components of, 131 
cochain of, 218, 348 
exact, 176 
exterior derivative of, 145 
harmonic, 231 
horizontal, 283 
invariant, 144, 158 

smooth family of, 153 
vector valued, 149, 163 

Differential operator, 9 
of order p, 133, 134 

Differential space, 9 
Dimension theory, 17ff., 239 
Direct limit, 238 
Directed system of vector spaces, 238 
Disc bundles, 381 
Disjoint union axiom, 179, 232 
Distribution, 134 
Divergence, 171, 234 
Double cover, 71, 123, 399 
Double of manifold, 140 
Dual 

with noncompact carrier, 164 

of module, 7 
of strong bundle map, 52 

Dual vector bundles, 52, 67, 80 

E 

Ehresmann connection, 314 
Eigenvalue, eigenvector, 85 
Embedded manifold, 102 
Endomorphism of vector bundle, 85 
Euler class, 320, 328, 334, 391 

index sum and, 372 
relative, 349 
Thom class and, 364 
of Whitney sum, 345 

Euler-PoincarC characteristic, 178, 186, 

Euler-PoincarC formula, 11 
Euclidean half-space, 139 
Euclidean space, 2 

205ff., 228, 391, 408, 414, 416 

maps between, 260 
one-point compactification of, 23, 25 

Evaluation map, 56 
Exact differential form, 176 
Exact sequence, 8, 84 
Exact triangle, 10, 178 
Exponential of linear transformation, 13 
Exponential map, 13, 26, 28, 136, 395 

Exterior algebra, 5 ,  ‘57 
Exterior derivative, 145 

partial, 148, 312 
Exterior product, 120 
External tensor product, 84, 86 

generated by affine spray, 421 

F 

Face 
of simplex of nerve, 217 
of smooth simplex, 231 

of cross-sections, 153 
of differential forms, 154 

Family 

Fibre, typical, 38 
Fibre bundles, 38, 104 
Fibre degree, 383 
Fibre integral, 300 
Fibre integration, 289ff., 310 
Fibre preserving map, 39 
Fibre projection, 209 
Fibre-compact carrier, 295, 298 
Fibering of spheres, 42, 140, 345, 348 
Field of n-frames, 170 
Finite affine simplicia1 complex, 236, 389 
Five-lemma, 8 
Fixed points, 408 

index of, 407 
isolated, 414 

generated by vector field, 113 
of spray, 419 

Free module, 7 
Free involution, 187 
Frobenius’ theorem, 134 
Fubini’s theorem, 162, 307 

Flow 
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Function germs, 32ff. 
Functions, 30 

Fundamental class, 238, 278 
Fundamental cycle, 237 
Fundamental theorem of algebra, 247 

complex, 274 

G 

Germs 
of forms, 188 
of functions, 32ff. 
of maps, 33 

dashed, 386 
Global degree, 24off., 264 

Graded algebra, 3, 11 
Graded differential space, 10 
Graded module, 8 
Gradient, 1 15 
Gram-Schmidt process, 68 
Grassmann manifolds, 42, 86 
Green’s formula, 172 
Gysin sequcnce, 320ff., 382 

H 

Half-space, 139 
Harmonic forms, 231 
Hermitian metric, 2, 27, 74 
Hessian, 138, 379, 416 
Hodge theorem, 231 
Homogeneous linear map, 8 
Homogeneous structure, 414 
Homogeneous tensor, 8 
Homology 

simplicial, 234 
smooth, 23 1 

Homomorphisms 
of algebras, 2 
of differential spaces, 9 
of graded differential algebras and spaces, 

of graded modules, 8 
of Lie algebras, 4 
of vector bundles, 45, see also Bundle 

I I  

maps 

axiom, 178, 232 
continuous, 41 
contracting, 183 

Homotopy, 33ff., 41, 86 

i-, 277 
lifting theorem, 314 
operator, 9, 178 
orientation and, 130 
proper, 191 

Hopf fibering of spheres, 42, 140, 345, 348 
Hopf index formula, 377 
Hopf invariant, 229 
Hopf theorem, 266ff. 
Horizontal subbundle, 282ff. 

I 

i-basis for topology, 14 
Identification map for charts, 22 
Immersion, 99 
Inclusion map opposite point, 97 
Index, 330, 369, 377 

degree and, 332 
Euler class and, 372 
of fixed point, 407 
(mod 2), 387 
sum, 334, 369, 391, 415 

Induced orientation, 66, 373 
Infinitely differentiable, 12, see also Smooth 
Inner product, I ,  see also Metric, Scalar 

Integral 
product 

fibre, 300, 310 
over fibre, 300, 310 
line, 234 
of smooth family of cross-sections, 153 
over smooth p-simplex, 233 
of vector valued differential form, 163 

Integral cohomology, 233, 310 
Integration 

over fibre, 298ff., 310 
in manifolds, 160ff., 174 
in vector spaces, 159 
of n-forms, 161, 164 

Interchange map, 29 
Interior of manifold with boundary, 139 
Intersection theory, 41 6 
Invariant differential form, 144, 158 
Inverse function theorem, 12 
Invisible chain, 236 
Invisibility theorem, 237 
Involution, 71, 122 

canonical, 135 
free, 187 
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Involutive distribution, 134 
Irreversible manifold, 127, 173, 206, 345 
Isolated coincidence point, 405 
Isolated fixed point, 414 
Isolated point for map, 259 
Isolated singularity, 329, 385 
Isolated zero, 367 

manifold, 384 
Isometric vector bundles, 67, 68 
Isometries of R”, 348 
Isomorphism, 45, see also specific types 

J 
Jacobi identity, 4 
Jet bundles, 132, 134 
Jet, of cross-section, 134 

K 

Klein bottle, 41, 290 
Kiinneth homomorphism, 208, 210, 257 
Kiinneth isomorphism, 11, 21 1, 215 
Kiinneth theorem, 211, 215 

L 

Laplace operator, 172 
Lebesgue dimension, 17 
Lebesgue measure zero, 136 
Lefschetz class, 393, 397 
Lefschetz coincidence theorem, 405 
Lefschetz formula, 11 
Lefschetz isomorphism, 393 
Lefschetz number 401 
Lefschetz theorem, weak, 403 
Legendre transformation, 175 
Leray, 3 I5 
Lie algebra, 4, 107, 152, 173 
Lie derivative, 142 
Lie product, 108 
Limit, direct, 238 
Line integral, 234 
Linking number, 276 
Local coincidence number, 405 
Local decomposition of projection, 38 
Local diffeomorphism, 99 
Local flow of spray, 419 
Local one-parameter group, 114 

Local properties of smooth maps, 99 
Localization isomorphism, 79 
Localizing class, 252 
Locally Euclidean topological space, 41 
Locally finite open cover, 14, 31 
Locally finite simplicia1 complex, 21 7 
Lorentz metric, 414 
Lusternik-Schnirelmann-Borsuk theorem, 

276 

M 

Manifolds 
analytic, 42 
boundary of, 139, 231, 350, 415 
cohomology algebra of, 176 
compact, 41, 203, 218, 228 
connected sum of, 140 
contractible, 86, 183 
double of, 140 
embedded, 102 
Grassmann, 42, 86 
irreversible, 127, 206 
nonorientable, 71, 125, 201 
metric, 41 
open sub-, 23 
orientable, 124, 129, 139, 205, 277 
parallelizable, 174 
product of, 29, 110 
quotient, 101, 122 
retract of, 104 
simply connected, 235 
smooth, 22, 29, 41 
Stiefel, 348 
submanifolds of, 103 
symplectic, 172 
topological, 15 

orientation preserving/reversing, 127 
power, 28 
“product,” 29 
proper, 190, 273 
trivializing, 44 

degree, 240ff., 264 
transformations, 45, 47 

Massey triple product, 228 
Mayer-Vietoris axiom, 178, 232 
Mayer-Vietoris sequence, 180, 193, 229, 

Map 

Mapping 

254 
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Metric, see also Inner product, Scalar 
product 

Hermitian, 2, 27, 74 
Lorentz, 414 
manifold with, 41 
Riemannian, 66 

Mixed tensor field, 119 
Mod 2 

degree, 274 
index sum, 387 

bigraded, 8 
of cross-sections, 60, 78 
of derivations, 106 
finitely generated, 76 
finitely generated projective, 78 
free, 7 
graded, 8 
projective, 78 
of strong bundle maps, 50 

functions, 138 
lemma, 138 

Mobius ship, 41 
Multilinear bundle map, 47, 82 
Multilinear functions, 5 ,  51 
Multiplication operator, 6, 209 

Module, 7ff. 

Morse, 416 

N 

n-forms, integration of, 159ff. 
Nerve of open cover, 217 
Nine-lemma, 9 
Noncompact carrier, forms with, 164 
Nondegenerate bilinear function, 52 
Nonorientable manifolds, 71, 125, 201ff. 
Normal bundle, 138;380 
Normed cross-section, 66 

0 

One-form, 11 5 
One-parameter group, 114, 157, 173 
One-point compactification 

of complex plane, 247 
of Euclidean spaces, 23, 25 

nerve of, 217 
order of, 17 

Open cover(ing), 14 

Open subset, 14,.23, 89 

Open submanifold, 23, 126 
Operator 

differential, 9 

gradient, 11 5 
homotopy, 9, 178 
Laplace, 172 
multiplication, 6 209 
substitution, 6, 141 

of order p, 133, 134 

Orbit of vector field, 112, 157 
Ordered simplex, 217, 236 
Orientable fibre bundle, 285 
Orientable manifold, 72, 124ff., 129, 139, 

Orientable vector bundle, 64 
Orientation 

205, 277 

canonical of R, 126 
determinant function representing, 64 
of fibre bundle, 285, 310 
induced, 

of submanifold, 126 
of Whitney sum, 66 

of manifold, 124 
positive, 64, 70 
preservinglreversing map, 127, 287 
product, 127, 139 
of sphere, 124 
of sphere bundle, 293 
of vector bundle, 64, 292 
of vector space, 1 

Orientation class, 201 
Oriented Riemann bundle, 70 
Orthonormal basis, 68 
Orthonormal 2-frames, 346 
Orthonormal vectors, 348 

P 

Paracompact space, 14 
Parallelism, 174, 175, 235, 278 
Parallelizable manifold, 174 
Partial exterior derivative, 148, 312 
Partition of unity, 32 
Path, smooth, 35 
Period of p-form, 233 
Permanent, 5 
Picard theorem, 13, 112 
Poisson bracket, 173 
Poincad adjoint, 400 
PoincarC duality, 194ff., 201ff., 231, 249 
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Poincark isomorphism, 171, 197 
PoincarC lemma, 183 
PoincarC polynomial, 178, 186, 215, 345 
PoincarC scalar product, 194 
Positive basis, 124 
Positive n-form, 124 
Positive normed determinant function, 70 
Positive orientation, 64, 70 
Positive self-adjoint linear map, 26 
Power 

exterior, 57 
symmetric, 58 

Power map, 28 
Product 

exterior, 120 
Lie, 107 
M ,  of vector fields, 11 1 
manifold, 29ff., 97, 110, 

orientation, 127, 289 
of spheres, 215, 250 
tensor, 55 
of tensor fields, 118 

256 
21, 1 9, 148, 

of vector bundles, 46, 84, 378 
Projection map, 29 
Projective module, 7, 78, 86, 106 
Projective space 

real, 23, 85, 125, 138, 415 
complex, 42, 415 
quaternionic, 42 

Proper map, 190, 273 
Proper homotopy, 191 
Pseudo-Riemannian vector bundle, 66, 85 
Pull-back, 48, 72, 82, 84, 85, 315 

of cross-section, 325 

Q 
Quatemions, 2, 42, 275 
Quotient bundle, 84 
Quotient manifold, 101, 122 

R 

Radial neighbourhood, 112 
Radial vertical vector field, 292 
Rank of vector bundle, 44, 55 
Real projective plane embedded in R', 138 
Real projective space, 23, 85, 125, 187, 

376, 415 

Refinement of open cover, 14 
Regular point, 136 
Regular value, 136, 244 
Relative cohomology, 349 
Relative Euler class, 349 
Restriction 

of vector bundle, 46 
of vector field, 109 

Retract, 104, 183 
deformation, 184 

Retrenchment, 300 
Riemann coordinate representation, 68 
Riemann-Hunvitz relation, 386 
Riemann metric, 66 
Riemann vector bundle, 66, 70 
Rotation number, 277 
RouchC's theorem, 275 

S 

Sard's theorem, 136 
Scalar product, 2,52, see also Inner product, 

Metric 
Poincark, 194 

Second countable space, 14 
Second tangent bundle, 134 
Short exact sequence, 84 
Shrinking of open cover, 17 
Signature 

of manifold of dim 4k, 206 
of scalar product, 2 

Simple open cover, 218 
Simplex 

affine, 236, 388 
ordered, of nerve, 217 
smooth, 231 
standard, 231 

Simplicia1 complex, 21 7, 236 
Simplicia1 homology, 234, 236, 389 
Simply connected manifold, 235 
Skew symmetric p-linear functions, 5 ,  51, 

Skew tensor product of algebras, 4 
Skew transformations, 72 
Smooth atlas, 22 
Smooth family, 153 
Smooth fibre bundle, 38 
Smooth function, 30 
Smooth homology, 231 
Smooth manifold, 22, 28ff., 35ff. 

79, 61 
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Smooth map, 12, 24ff., 88, 99ff. 
Smooth path, 35 
Smooth structure, 22, 29 
Solid angle, 171 
Space 

base, 38 
bundle, 38 
cohomology, 9 
cotangent, 97 
differential, 9 
Euclidean, 2 
Hermitian, 2 
paracompact, 14 
second countable, 14 
tangent, 87 
topological, 14 
total, 38 

associated, 105, 293 
cohomology of, 316ff., 344 
cross-sections of, 338 
Euler class of, 320, 328 
induced orientation of, 293 
vector bundles and, 291 

Sphere bundle 

Spheres, 22, 24, 26, 34, 93, 104, 128, 166, 
175, 184, 262, 270, 408 

cohomology of, 185ff. 
Euler-PoincarC characteristic of, 186 
Hopf fibering of, 42 
Lefschetz class for, 395 
maps of, 262 
orientation of, 124 
PoincarC polynomial of, 186 
product of, 215, 250 
vector fields on, 375 

Sprays, 135, 418 
flow of, 419 

Standard simplex, 231 
Star-finite open cover, 217 
Star-shaped domain, 170, 183 
Stiefel manifolds, 348 
Stokes’ theorem, 167ff., 170 

for chains, 233 
for fibre integrals, 31 1 

Strong bundle maps, 45, 50 
dual of, 52 
module of, 50, 61 

complex, 73 
homogeneous, 4 14 

Structure 

manifold, 22, 39 
smooth, 22 
symplectic, 173 

Subbundle, 44, 68 
horizontal, 282 
vertical, 280 

Submanifold, 103 
Submersion, 99, 313 
Substitution operator, 6, 141 
Support, see Carrier 
Suspension, 266 
Symbol of differential operator, 133, 134 
Symmetric algebra, 5, 58 
Symmetric multilinear functions, 5, 51, 61 
Symplectic bundle, 85 
Symplectic manifold, 172 

T 

Tangent bundle, 94ff., 385 
cross-section of, 106 
of fibre bundle, 28W. 
of product manifold, 97 
second, 134 

Tangent space, 87 
Tangent vector, 87 
Tensor field, 118 
Tensor product, 4, 7, 55 

external, 84, 86 
Thom class of fibre bundle, 355 

Euler class and, 364 
Lefschetz class and, 397 
of vector bundle, 359, 370 

Thom isomorphism, 355, 380 
Topological manifold, 15ff., 41 
Topological space, 14 
Topology, 14 
Torsion, 175 

Torsion groups of manifold, 232 
Torus, 23, 41, 215, 228, 230, 248 
Total space, 38 
Transversality theorem of Thom, 416 
Transverse regular map, 416 
Trivial bundle, 46, 76 
Trivializing map, 44 
Trivializing neighbourhood, 44 
Tubular neighbourhood, 138 
Typical fibre, 38 

parallel, 235 
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U Lie product of, 108 
local one-parameter group generated by, 

M-product of, 11 1 
114 Unit tensor, 8, 81, 118 

Universal coefficient theorem, 232 

V 

Van Est’s theorem, 313 
Vector 

cotangent, 96 
differential forms with, values, 149, 
tangent, 87 

Bundles 
Vector bundles, 44ff., 291ff. see 

Cartesian product of, 46, 84, 378 
complex, 73, 86 
construction principle of, 47 
double cover induced by, 71 
dual of, 52 
endomorphism of, 85 
isometry of, 67, 68 
orientation in, 292 
pull-back of, 48, 84 
restriction of, 46 
symplectic, 85 
tensor product of, 55, 84, 86 
trivial, 46, 76 
Whitney sum of, 54 

Vector fields, 106ff., 131 
constant, 108 
flow generated by, 113 
prelated, 109 

163 

ah0 

Vector fields 
on C, 378 
orbit of, 1 12 
parallel, 174 
on real projective space, 
restriction of, 109 
on sphere, 375 

Vertical cohomology, 313 
Vertical component, 282 
Vertical subalgebra, 283 
Vertical subbundle, 281 
Vertical subspace, 280 
Vertical vector, 280, 281 

376 

W 

Wang sequence, 229 
Whitney sum, 54, 68, 76, 84 
Whitney-Graustein theorem, 277 
Whitney’s embedding theorem, 137 
Winding number, 276 

Z 

Zero index, 332 
Zero measure, 136 
Zero section, 59 



Pure and Applied Mathematics 
A Series of Monographs and Textbooks 

Editors Peul A. Smith end Samuel Ellanberg 

Columbia University, New York 

1 : ARNOLD SOMMERFELD. Partial Differential Equations in Physics. 1949 (Lectures 
on Theoretical Physics, Volume VI )  

2 :  REINHOLD BAER. Linear Algebra and Projective Geometry. 1952 
3 :  HERBERT BUSEMANN A N D  PAUL KELLY. Projective Geometry and Projective 

Metrics. 1953 
4 : STEFAN BERCMAN AND M. SCHIFFER. Kernel Functions and Elliptic Differential 

Equations in Mathematical Physics. 1953 
5 : RALPH PHILIP BOAS, JR. Entire Functions. 1954 
6 : HERBERT BUSEMANN. The Geometry of Geodesics. 1955 
7 : CLAUDE CHEVALLEY. Fundamental Concepts of Algebra. 1956 
8 :  SZE-TSEN Hu.  Homotopy Theory. 1959 
9 :  A. M. OSTROWSKI. Solution of Equations and Systems of Equations. Second 

Edition. 1966 
10 : J. DIEUDONN~. Treatise on Analysis. Volume I, Foundations of Modern Analy- 

sis, enlarged and corrected printing, 1969. Volume 11, 1970. 
11 : S. I. GOLDBERG. Curvature and Homology, 1962. 
12 : SICURDUR HELCASON. Differential Geometry and Symmetric Spaces. 1962 
13 : T. H. HILDEBRANDT. Introduction to the Theory of Integration. 1963. 
14 : SHREERAM ABHYANKAR. Local Analytic Geometry. 1964 
15 : RICHARD L. BISHOP AND RICHARD J. CRITTENDEN. Geometry of Manifolds. 1964 
16 : STEVEN A. GAAL. Point Set Topology. 1964 
17 : BARRY MITCHELL. Theory of Categories. 1965 
18 : ANTHONY P. MORSE. A Theory of Sets. 1965 
19 : GUSTAVE CHOQUET. Topology. 1966 
20 : Z. I. BOREVICH AND I. R. SHAFAREVICH. Number Theory. 1966 
21 : Josb LUIS MASSERA AND JUAN JORCE SCHAFFER. Linear Differential Equations 

and Function Spaces. 1966 
22 : RICHARD D. SCHAFER. An Introduction to  Nonassociative Alegbras. 1966 
23: MARTIN EICHLER. Introduction to the Theory of Algebraic Numbers and 

Functions. 1966 
24 : SHREERAM ABHYANKAR. Resolution of Singularities of Embedded Algebraic 

Surfaces. 1966 



25 : FRANCOIS TREVES. Topological Vector Spaces, Distributions, and Kernels. 1967 
26 : PETER D. LAX A N D  RALPH S. PHILLIPS. Scattering Theory. 1967. 
27 : OYSTEIN ORE. The Four Color Problem. 1967 
28 : MAURICE HEINS. Complex Function Theory. 1968 
29 : R. M. BLUMENTHAL AND R. K. GETOOR. Markov Processes and Potential Theory. 

1968 
30 : L. J. MORDELL. Diophantine Equations. 1969 
31 : J. BARKLEY ROSSER. Simplified Independence Proofs : Boolean Valued Models 

of Set Theory. 1969 
32 : WILLIAM F. DONOGHUE, JR. Distributions and Fourier Transforms. 1969 
33: MARSTON MORSE AND STEWART S. CAIRNS. Critical Point Theory in Global 

Analysis and Differential Topology. 1969 
34: EDWIN WEISS. Cohomology of Groups. 1969 
35 : HANS FREUDENTHAL AND H. DE VRIES. Linear Lie Groups. 1969 
36 : LASZLO FUCHS. Infinite Abelian Groups : Volume I. 1970 
37 : KEIO NAGAMI. Dimension Theory. 1970 
38: PETER L. DUREN. Theory of HP Spaces. 1970. 
39: Bow PAREIGIS. Categories and Functors. 1970 
40: PAUL L. BUTZER AND ROLF J. NESSEL. Fourier Analysis and Approximation : 

Volume 1, One-Dimensional Theory. 1971 
41 : EDUARD PRUGOVEEKI. Quantum Mechanics in Hilbert Space. 1971 
42 : D. V. WIDDER : An Introduction to Transform Theory. 1971 
43 : MAX D. LARSEN AND PAUL J. MCCARTHY. Multiplicative Theory of Ideals. 1971 
44 : ERNST-AUGUST BEHRENS. Ring Theory. 1972 
45 : MORRIS NEWMAN. Integral Matrices. 1972 
46 : GLEN E. BREDON. Introduction to Compact Transformation Groups. 1972 
47 : WERNER GREUB, STEPHEN HALPERIN, AND RAY VANSTONE. Connections, Curva- 

ture, and Cohomology: Volume I, De Rham Cohomology of Manifolds and 
Vector Bundles. 1972 

In preparation 
RONALD G. DOUGLAS. Banach Algebra Techniques in Operator Theory 
XIA DAO-XING. Measure and Integration Theory of Infinite-Dimensional 
Spaces : Abstract Harmonic Analysis 
E. R. KOLCHIN. Differential Algebra and Algebraic Groups 
T. BENNY RUSHING. Topological Embeddings 
WILLARD MILLER, JR. Symmetry Groups and Their Applications 



This Page Intentionally Left Blank


	Connections, Curvature, and Cohomology
	Copyright Page
	Contents
	Preface
	Introduction
	Contents of Volumes II and III
	Chapter 0. Algebraic and Analytic Preliminaries
	1. Linear algebra
	2. Homological algebra
	3. Analysis and topology

	Chapter I. Basic Concepts
	1. Topological manifolds
	2. Smooth manifolds
	3. Smooth fibre bundles
	Problems

	Chapter II. Vector Bundles
	1. Basic concepts
	2. Algebraic operations with vector bundles
	3. Cross-sections
	4. Vector bundles with extra structure
	5. Structure theorems
	Problems

	Chapter III. Tangent Bundle and Differential Forms
	1. Tangent bundle
	2. Local properties of smooth maps
	3. Vector fields
	4. Differential forms
	5. Orientation
	Problems

	Chapter IV. Calculus of Differential Forms
	1. The Opertors i,&#952;,&#948;
	2. Smooth families of differential forms
	3. Integration of n-forms
	4. Stokes’ theorem
	Problems

	Chapter V. De Rham Cohomology
	1. The axioms
	2. Examples
	3. Cohomology with compact supports
	4. Poincaré duality
	5. Applications of Poincaré duality
	6. Kiinneth theorems
	7. The De Rham theorem
	Problems

	Chapter VI. Mapping Degree
	1. Global degree
	2. The canonical map &#945;M
	3. Local degree
	4. The Hopf theorem
	Problems

	Chapter VII. Integration over the Fibre
	1. Tangent bundle of a fibre bundle
	2. Orientation in fibre bundles
	3. Vector bundles and sphere bundles
	4. Fibre-compact carrier
	5. Integration over the fibre
	Problems

	Chapter VIII. Cohomology of Sphere Bundles
	1. Euler class
	2. The difference class
	3. Index of a cross-section at an isolated singularity
	4. Index sum and Euler class
	5. Existence of cross-sections in a sphere bundle
	Problems

	Chapter IX. Cohomology of Vector Bundles
	1. The Thom isomorphism
	2. The Thom class of a vector bundle
	3. Index of a cross-section at an isolated zero
	Problems

	Chapter X. The Lefschetz Class of a Manifold
	I . The Lefschetz isomorphism
	2. Coincidence number
	3. The Lefschetz coincidence theorem
	Problems

	Appendix A. The Exponential Map
	References
	Bibliography
	Bibliography—Books
	Notation Index
	Index
	Pure and Applied Mathematics



