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Preface

This monograph developed out of the Abendseminar of 1958-1959
at the University of Ziirich. It was originally a joint enterprise of the
first author and H. H. Keller, who planned a brief treatise on connections
in smooth fibre bundles. Then, in 1960, the first author took a position
in the United States and geographic considerations forced the cancella-
tion of this arrangement.

The collaboration between the first and third authors began with
the former’s move to Toronto in 1962; they were joined by the second
author in 1965. During this time the purpose and scope of the book
grew to its present form: a three-volume study, ab initio, of the de Rham
cohomology of smooth bundles. In particular, the material in volume I
has been used at the University of Toronto as the syllabus for an
introductory graduate course on differentiable manifolds.

During the long history of this book we have had numerous valuable
suggestions from many mathematicians. We are especially grateful to
the faculty and graduate students of the institutions below. Our exposi-
tion of Poincaré duality is based on the master’s thesis of C. Auderset,
while particular thanks are due to D. Toledo for his frequent and
helpful contributions. Our thanks also go to E. Stamm and the Academic
Press reviewer for their criticisms of the manuscript, to which we paid
serious attention. A. E. Fekete, who prepared the subject index, has
our special gratitude.

We are indebted to the institutions whose facilities were used by one
or more of us during the writing. These include the Departments
of Mathematics of Cornell University, Flinders University, the
University of Fribourg, and the University of Toronto, as well as the
Institut fiir theoretische Kernphysik at Bonn and the Forschungs-
institut fiir Mathematik der Eidgenossischen Technischen Hochschule,
Zirich.

The entire manuscript was typed with unstinting devotion by Frances
Mitchell, to whom we express our deep gratitude.

A first class job of typesetting was done by the compositors.
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A. E. Fekete and H. Rummler assisted us with the proof reading;
however, any mistakes in the text are entirely our own responsibility.

Finally, we would like to thank the production and editorial staff at
Academic Press for their unfailing helpfulness and cooperation. Their
universal patience, while we rewrote the manuscript (ad infinitum),
oscillated amongst titles, and ruined production schedules, was in
large measure, responsible for the completion of this work.

Werner Greub

Stephen Halperin
Ray Vanstone

Toronto, Canada



Introduction

The purpose of this monograph is to develop the de Rham cohomology
theory, and to apply it to obtain topological invariants of smooth
manifolds and fibre bundles.

In the de Rham theory, the real cohomology algebra of a smooth
manifold is constructed by means of the calculus of differential forms,
which, in turn, is the natural global version of the usual differential
calculus in R”. Because of this approach, our principal technique is
the following one:

First, establish local analytic properties in R™.

Second, piece these together to prove global results about differential
forms on a manifold.

Finally, pass to cohomology to obtain topological properties.

This interplay between local and global phenomena is of fundamental
importance in the book, and leads to the major results of the later
chapters. The Euler—Poincaré-Hopf theorem is a prime instance; it
states that on a compact manifold the index sum of a vector field equals
the alternating sum of the Betti numbers.

Although the final results are largely taken from algebraic topology,
with only one exception, no formal algebraic topology (simplices,
homology and homotopy groups, etc.) is included in the text, nor is
any prior knowledge of the subject assumed. (In the proof of the
de Rham theorem in article 7, Chapter V, simplicial complexes are
introduced; the subsequent development, however, is independent of
this article.)

The contents are organized as follows: In the first four chapters we
introduce manifolds and vector bundles and develop both the differential
and integral calculus of differential forms. This is applied in Chapters V
and VI to yield the basic properties of de Rham cohomology. In
particular, Poincaré duality and the theory of mapping degree are
presented as applications of integration.

xiii
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In Chapter VII the partial integral, [f(x,y)dy, appears as an
intrinsic analytic operator associated with smooth fibre bundles. This
fibre integral of Chern and Spanier is the main tool in Chapters VIII-X,
which culminate in the Euler-Poincaré-Hopf formula and the Lefschetz
fixed point theorem. (A more detailed description of the contents
follows below.)

A plentiful supply of problems of varying difficulty accompanies the
text. They introduce a considerable amount of additional material;
however, they are never used in the proofs in the text.

All the material in this exposition is either in the literature or is
well-established folklore. Nevertheless we have not attempted to
associate with the theorems the names of their discoverers, except where
this is already common usage.

This monograph is intended for graduate students in mathematics,
especially those interested in global analysis or differential geometry.
In particular, it could be used as a text or reference for an introductory
course on manifolds. It presupposes a solid background in linear and
multilinear algebra, and in the calculus of several real variables. The
reader should also be familiar with elementary facts about rings and
modules, as well as the rudiments of point set topology.

Aside from these prerequisites, and two individual quotations, the
book is completely self-contained. One such quotation (Sard’s theorem)
is developed in the problems, while the other (existence of simple
covers) occurs in article 7, Chapter V.

Every chapter consists of a number of articles which are further
divided into sections. The sections, theorems, propositions, and lemmas
are individually and consecutively numbered within each chapter.

In general, the reader should follow the order of presentation.
However, sec. 1.2 contains only point set topology and could be
omitted; the reader would then take Theorem I of that section for
granted. Moreover, the detailed exposition of vector bundles in
Chapter II has been placed at the beginning so that it could be used as
needed. The reader might omit articles 2, 4, and 5 of this chapter,
and return to them only when necessary for reference.

This volume will be followed by volume II (Lie groups and the
Chern-Weil theory of characteristic classes) and volume III (cohomology
of principal bundles and homogeneous spaces).

Chapter 0. This is a summary of the algebra, analysis, and point
set topology which is used throughout the book. Notation and definitions
are fixed, and (with the exception of really basic material) all the results
to be quoted later are explicitly stated, with references.
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Chapter I. Basic Concepts. Manifolds and fibre bundles are
defined in this chapter. In article 1 the basic properties of topological
manifolds are established; the fundamental result is the “finite atlas”
theorem (Theorem I, sec. 1.2).

/Its proof is based on the following observation (Proposition II,
sec. 1.1): If a basis for the topology of a manifold is closed under ﬁmte
unions and countable disjoint unions, then it contains every open set.
The same technique is used later to establish the Poincaré isomorphism
(sec. 5.12), the Kiinneth isomorphism (sec. 5.19), and the Thom
isomorphism (sec. 9.1).

Smooth manifolds and smooth maps are introduced in article 2.
The examples (spheres, products, etc.) and concepts (homotopy, parti-
tions of unity) reappear throughout the book.

Finally, smooth fibre bundles, (E, =, B, F), are defined in article 3;
m, the projection, is a smooth map from the total space E to the base
space B; and for each x € B the fibre over x, n~}(x), may be identified
with the smooth manifold, F (typical fibre).

Chapter II. Vector Bundles. Vector bundles and bundle maps
are defined in article 1. Of particular importance is the construction
principle (sec. 2.5) and its application to pull-backs (sec. 2.6). Article 2
is devoted to extending the basic constructions of linear and multilinear
algebra to vector bundles.

In article 4 we discuss orientations, Riemannian metrics, and complex
structures in vector bundles.

In article 5 it is shown that the module of cross-sections in a vector
bundle is finitely generated and projective (theorem of Swan). The
corollaries of this result are quoted extensively in Chapter III. The
existence of a Riemannian metric is used to show that every vector
bundle is a direct summand of a trivial bundle.

Chapter III. Tangent Bundle and Differential Forms. In
article 1 the tangent bundle of a smooth manifold is defined; the deriva-
tive of a smooth map appears as a bundle map between the corresponding
tangent bundles. The inverse function theorem is translated into bundle
language in article 2; its applications to submanifolds are cited frequently
in the following chapters.

Vector fields on a manifold are introduced in article 3 as cross-
sections in the tangent bundle. It is shown that the module of vector
fields is canonically isomorphic to the module of derivations in the ring
of smooth functions. This article also contains the Picard theorem for
ordinary differential equations, restated in the terminology of vector fields.
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Differential forms (defined in article 4) are among the fundamental
analytic objects treated in the book. They are the cross-sections in the
exterior algebra bundle of the dual of the tangent bundle, and they
form a graded anticommutative algebra. In particular, differential forms
of degree n are used in article 5 to study orientations on z#-manifolds.

Chapter IV. Calculus of Differential Forms. Article 1 deals
with the differential calculus on manifolds. Three basic operators are
introduced: the substitution operator (sec. 4.1), the Lie derivative
(sec. 4.2), and the exterior derivative (sec. 4.3). The first maps p-forms
to (p — 1)-forms by evaluation on a given vector field. The second
differentiates a p-form in the direction of a vector field, while the third
generalizes the notion of gradient to differential forms of higher degree.

In article 2 we consider the derivative and integral of a 1-parameter
family of differential forms—with respect to the (real) parameter. This
is employed later to prove Stokes’ theorem (article 4) and to study
homotopy properties (sec. 5.2).

The integral is a canonical linear function in the space of compactly
supported n-forms on an oriented n-manifold. It is constructed in
article 3 by glueing together local Riemann integrals via a partition
of unity. It is shown that the basic properties of the Riemann integral
continue to hold.

In article 4 Stokes’ theorem is established for the annulus and the
n-ball. The general form of the theorem for manifolds-with-boundary
(as well as the definition of these manifolds) is left to the exercises.

Chapter V. De Rham Cohomology. The exterior derivative
converts the algebra of differential forms on a manifold into a graded
differential algebra. The corresponding cohomology is called the de Rham
cohomology algebra.

In article 1 it is shown that the de Rham cohomology satisfies the
dimension, homotopy, disjoint union, and Mayer—Vietoris axioms. In
article 2 various examples (retracts, Poincaré lemma, cohomology of S*,
and RP") are discussed. In article 3 everything is done again (with the
appropriate modifications) for differential forms with compact carrier.

In article 4 the integral is used to establish the Poincaré duality
theorem for a smooth orientable manifold. This theorem is applied in
article 5 (sec. 5.13 and 5.14) to determine the nth de Rham cohomology
space for any n-manifold (orientable or nonorientable). In sec. 5.15 the
duality theorem is used to show that a compact manifold has finite-
dimensional de Rham cohomology.

The de Rham cohomology of the product of two manifolds is computed
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in article 6 (Kiinneth theorems). In article 7 one version of the de Rham
theorem is established. The results of this article are not quoted
elsewhere in the book.

Chapter VI. Mapping Degree. The degree of a smooth map
between compact, connected, oriented z-manifolds is defined in article 1.
It is shown that it is always an integer (‘Theorem I, sec. 6.3).

In article 3 we define the local degree of a smooth map between
oriented n-manifolds at an isolated point. If both manifolds are compact
and connected, then the degree of the map is the sum of the local degrees
(Theorem II, sec. 6.13). The definitions and results of article 3 depend
on a canonical linear map introduced in article 2.

In article 4 the smooth version of the Hopf theorem is proved: Two
smooth maps ¢, ¢ : S* — S* which have the same degree are smoothly
homotopic. This result is applied in Chapter VIII, Proposition VII,
sec. 8.10.

Chapter VII. Integration over the Fibre. This chapter deals
with a general smooth bundle # = (E, n, B, F). The notion of an
orientation of & is defined in article 2. In article 3 it is shown that
in the case of a vector bundle this definition coincides with that given
in sec. 2.16.

The fibre integral in an oriented bundle, # = (E, =, B, F), is defined
in article 5; it is a surjective linear map from the forms with fibre
compact support on E to the forms on B. The derivation of its funda-
mental properties (commuting with the exterior derivative, naturality,
Fubini theorem) is the object of this article.

Chapter VIII. Cohomology of Sphere Bundles. In article ] the
fibre integral is applied to an oriented r-sphere bundle & = (E, =, B, S7)
to obtain the Gysin sequence and the Euler class, yy € H™(B). The
Euler class is a fundamental global invariant associated with the sphere
bundle; together with H(B), it determines the cohomology of E
(sec. 8.4).

In article 3 we consider r-sphere bundles, where dim B = r 4 1,
and E is oriented. Then, to every isolated singularity a of a cross-
section, o, an integer, j, (o), called the index of o at a4, is assigned.

If B is compact and oriented and dim B = r + 1, the Euler class,
X# , can be integrated over B to yield a real number. The main theorem
of this chapter (article 4) is a fundamental global-local result. It states
that

[ xa = Lido)
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where o is any cross-section with finitely many singularities. In article 5,
finally, it is shown that such cross-sections always exist.

Chapter IX. Cohomology of Vector Bundles. In this chapter
we consider vector bundles ¢ = (E, =, B, F). In article 1 it is shown
that in an oriented vector bundle the fibre integral induces an isomor-
phism from the fibre-compact cohomology of E to the cohomology of B.
The inverse of this isomorphism is the Thom isomorphism, Th.
The cohomology class Th(1) is a fundamental global invariant of the
vector bundle, which is intimately related to the Euler class of the
sphere bundle associated with ¢ via a Riemannian metric (article 2).

In article 3 the index of a cross-section at an isolated zero is defined
(for vector bundles whose fibre dimension is equal to the base dimension).
With the aid of the Thom class, Th(1), this index is expressed as an
integral over the base. Finally the theorems of Chapter VIII are applied
to show that the index sum of a cross-section with finitely many zeros
is the integral of the Euler class over the base.

Chapter X. The Lefschetz Class of a Manifold. In this chapter
the results of Chapters VIII and IX are applied to the tangent bundle
of a compact manifold. The goal of article 1 is to prove that the index
sum of a vector field with finitely many zeros equals the Euler—Poincaré
characteristic of the underlying manifold.

Articles 2 and 3 deal with coincidence theory. Two smooth maps
@:M-— N,y : M— Nhaveae M as a coincidence point if p(a) = ¢(a).
If M and N are oriented n-manifolds, we associate an integer L (g, )
with each isolated coincidence point a (article 3). On the other hand,
if M and N are compact n-manifolds, the Lefschetz number L(p, ¢)
is defined by

n

Upg) = X (—1pulee ),
where @? : H?(N) — HP(M) is the map induced by ¢ and §? is the
Poincaré dual of y»—? (article 2).
The chapter closes with the coincidence theorem in article 3 which
states that if two maps ¢, ¢ between compact oriented z-manifolds
have only finitely many coincidence points, then

;La(% $) = Ly, ¥)-

If N= M and ¢ =, this result reduces to the Lefschetz fixed
point theorem.



Contents of Volumes II and III (Tentative)

Volume II: Lie Groups, Principal Bundles, and Characteristic Classes

I Lie Groups
II Subgroups and Homogeneous Spaces
III ‘Transformation Groups
IV Invariant Cohomology
V Principal and Associated Bundles
VI Cohomology of Principal Bundles
VII Linear Connections
VIII JZ-Bundles
IX Pontrjagin, Pfaffian, and Chern Classes
X The Gauss—Bonnet Theorem

Volume III: Lie Algebras, Algebraic Connections, and Characteristic

Classes
Part 1
I Spectral Sequences
II Koszul Complexes (1)
III Koszul Complexes (2)
Part I1

IV Cohomology of Lie Algebras
V The Weil Algebra
VI Operation of a Lie Algebra in a Graded Differential Algebra
VII Algebraic Connections
VIII Cohomology of an Operation
IX Subalgebras
X Pairs of Lie Algebras
X1 Examples and Applications

xix



This Page Intentionally Left Blank



Chapter 0

Algebraic and Analytic Preliminaries

§1. Linear algebra

0.0. Notation. Throughout this book ¢, denotes the identity map
of a set X. When it is clear which set we mean, we write simply . If
U, (i =1,.,r)are subsets of X, then U.,s,--a, denotes their intersection.
The empty set is denoted by &.

The symbols N, Z, Q, R, and C denote the natural numbers, integers,
rationals, reals, and complexes.

0.1. We shall assume the fundamentals of linear and multilinear
algebra. We will consider only real vector spaces (except for the
occasional complex space).

A pair of dual vector spaces is denoted by E*, E and the scalar product
between E* and E is denoted by (, >. If F C E, then

F: = {y*e E* | (y*F> = 0}.

The dual of a linear map ¢: E — F is denoted by ¢*. A direct sum of
spaces EP is denoted

ZE” or @, E».
V4

The determinant and the trace of a linear transformation ¢: E — E
are denoted respectively by det ¢, tr ¢.

A determinant function in an n-dimensional vector space is a nonzero
skew-symmetric n-linear function. Every nonzero determinant function
Ag in a real vector space defines an orientation.

Given two vector spaces E and F, we shall denote by L(E; F) the
space of linear maps E — F. L(E; E) will also be denoted by L, . Finally
if E,,..,E,, and F are vector spaces, I(E,, ..., E, ; F) denotes the
space of p-linear maps E; X -+ X E, —F.

The group of linear automorphisms of a vector space E will be denoted
by GL(E).

1



2 0. Algebraic and Analytic Preliminaries

A Euclidean space is a finite-dimensional real space, together with a
positive definite inner product (also denoted by (, >). A Hermitian space
is a finite-dimensional complex space together with a positive definite
Hermitian inner product (also denoted by (, >).

If F is a real vector space, make F* = C ® F into a complex space by
setting

Bla ® x) = Ba ® x, B,aeC, xe€F.

Ft is called the complexification of F.
If ¢, > is a positive definite inner product in F, then

<a®x»,3®y>c:0‘/§<x,y>, OL,BEC, xnyF

defines a Hermitian metric in F€,

An indefinite inner product in a finite-dimensional real vector space E
is a2 non degenerate symmetric bilinear function ¢, >. If E, is a maximal
§ubspace in which (, > is positive definite, then E = E, @® E%. The
integer

aim £, — dim E

is independent of the choice of E, , and is called the signature of { , .
The symbol @ denotes tensor over R (unless otherwise stated);
for other rings R we write Xy .

0.2. Quaternions and quaternionic vector spaces. Let H be an orient-
ed four-dimensional Euclidean space. Choose a unit vector e € H, and
let K = el it is a three-dimensional Euclidean space. Orient K so that,
if e, , e, , e, is a positive basis of K, then ¢, ¢, , e, , €5 is a positive basis
of H.

Now define a bilinear map H x H — H by

pg= —<ppe+pxXgq pgek
pe = p = ep, peH,

where X denotes the cross product in the oriented Euclidean space K.
In this way H becomes an associative division algebra with unit element
e. It is called the algebra of quaternions and is denoted by H. The vectors
of H are called quaternions and the vectors of K are called pure quater-
nions.

Every quaternion can be uniquely written in the form

P=A€+q=)\+q, )‘ER) qEK'



1. Linear algebra 3

A and ¢ are called the real part and the pure quaternionic part of p. The
conjugate p of a quaternion p = Xe + ¢ is defined by p = de — ¢. The
map p — p defines an automorphism of the algebra H called conjugation.
The product of p and p is given by pp = | p |2e = | p |%

Multiplication and the inner product in H are connected by the
relation

<Prr ‘1"> = <P, q><ra >, » q,fEH-

In particular,

lpri=1plirl, preH.

A unit quaternion is a quaternion of norm one. A pure unit quaternion
g satisfies the relation ¢2 = —e. If (¢;, e, , ;) Is a positive orthonormal
basis in K, then

€16y = €3, €63 = €y, €361 = &y .

0.3. Algebras. An algebra A over R is a real vector space together
with a real bilinear map 4 X A — A4 (called product). A system of gener-
ators of an algebra A4 is a subset .S C A4 such that every element of 4 can
be written as a finite sum of products of the elements of S.

A homomorphism between two algebras 4 and B is a linear map
g: A — B such that

o(xy) = p(x) p(3), %, yeA.

A derivation in an algebra A4 is a linear map 6: 4 — A satisfying

6xy) = 0(x)y + x0(3).

A derivation which is zero on a system of generators is identically zero.
If 6, and 8, are derivations in 4, then so is 8,060, — 0,06, .

More generally, let ¢: 4 — B be a homomorphism of algebras. Then
a @-derivation is a linear map 6: 4 — B which satisfies

8(xy) = 8(x) @(¥) + @(x) &()-
A graded algebra A over R is a graded vector space A = 3,5, A%,
together with an algebra structure, such that
Ar - 41 C Av+a,
If
xy = (—1)" yx, xe A», ye A9,
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then A4 is called anticommutative. If A has an identity, and dim 4° = 1,
then A is called connected.

If A4 and B are graded algebras, then 4 ® B can be made into a
graded algebra in two ways:

(1) (% @ y)(x2 @ ¥3) = %1% @ N1Y2
(2) (% @ y)(xs @ y3) = (—1)1P2 212, ® y1 Y2

where x, , x, € 4,y,, ¥, € B, deg ¥, = ¢, , deg x, = p, . The first algebra
is called the canonical tensor product of A and B, while the second one is
called the anticommutative or skew tensor product of A and B. If 4 and B
are anticommutative, then so is the skew tensor product.

An antiderivation in a graded algebra A4 is a linear map o: 4 — A4,
homogeneous of odd degree, such that

o(xy) = o(x)y + (—1)? %x(y), x€A?, yeA.

If «; and «, are antiderivations, then ayo o + o4 o oy is a derivation.
If « i1s an antiderivation and # is a derivation, then o § — 8o« is an
antiderivation.

The direct product [], A, of algebras 4, is the set of infinite sequences
{(x,) | x, € A,}; multiplication and addition is defined component by
component. The direct sum 3, A, is the subalgebra of sequences with
finitely many nonzero terms,

0.4. Lie algebras. A Lie algebra E is a vector space (not necessarily
of finite dimension) together with a bilinear map E X E — E, denoted
by [, ], subject to the conditions

[*,x] =0
and

=, 1, 2] + 2, 2], ¥ + [, 21, ] = 0, x,y,2€ E  (Jacobi identity).
A homomorphism of Lie algebras is a linear map ¢: E — F such that

o([x, ¥]) = [p(x), ()], *yeE

0.5. Multilinear algebra. The tensor, exterior, and symmetric alge-
bras over a vector space E are denoted by

®E=Y ®, AE=Y ANE, VE=Y V*E

>0 P=0 =0

(If dim E = n, NE =Y, APE.)
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If F is a second space, a nondegenerate pairing between E* @ F*
and E ® F is given by

<x* ®y*’x®y> = <x*’x><y*) >» x* e E*, J’*EF*, xEEv yeF
y

If E or F has finite dimension, this yields an isomorphism
E* Q@ F* ~ (E @ F)*. In particular, in this case (Q?PE)* =~ QPE*.

Similarly, if dim E < oo, we may write ( APE)* = APE¥*, (VIE)* =
V4E* by setting

CHFLA oo A X*P 300 A oo0 A x> = det({a™, x;))
and

¥y v y*?, 9, v - vy = perm({y™, y),

where “perm” denotes the permanent of a matrix.
The algebras of multilinear (resp. skew multilinear, symmetric
multilinear) functions in a space E are denoted by

T(E)= § THE), AE)= T 4B)
and B i

S(E)= Y S%E).

=0

The multiplications are given respectively by

(¢ ® lII)(""I 3 xpﬂ) = di(xl 3t xp) 'p(xz&l y e xp+a)

1

(dj A 'P)(xl ) xp+a) = W Z+ eo¢(xo(l) 3 eeey xo(p)) q’(xo(p+1) 3 seny xa(17+ﬂ))
*1° gesPHe

and
1

(qj v 'P)(xl 3 sesy xo+a) = W Z+ (p(xo(l) y cees xo(p)) ,P(xa(p+1) y ey xa(z)+a))-
1Y gesPre

Here S? denotes the symmetric group on p objects, while ¢, = 41
according as the permutation ¢ is even or odd.

If dim E < oo, we identify the graded algebras T(E) and QE* (resp.
A(E) and AE*, S(E) and V E*) by setting

¢(xl y oeoy xp) ={D, %, Q ** ® xp), Pe ®pE*
Wy s ooy #p) = W, 2 A 200 A Xy, ¥ e APE*
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and
Xy, oy p) =X, 200 v 0 VXD, Xe VPE*,

A linear map ¢: E — F extends uniquely to homomorphisms
Re: QE— XF,  Ag: AE— AF,  Vg: VE — VF.

These are sometimes denoted by ¢, ¢, , and ¢, .
To each x € E we associate the substitution operator i(x): A(E) — A(E),
given by

(H(x)P)(xy 5 ooy Xp_q) = P2, Xy, oy Xp_yp), DecAXE), p =1,
i(x)@ =0, ® e AYE),
and the multiplication operator u(x): AE — AE given by
p(x)(a) = x A q, ac NE,

#(x) is an antiderivation in 4(E) and is dual to p(x).



§2. Homological algebra

0.6. Rings and modules. Let R be a commutative ring. If M, N are
R-modules, then the tensor product M &y N is again an R-module (cf.
[1, p. AII-56] or [2, §8, Chap. 3]). If O is a third R-module and if
@: M X N — QO is a map satisfying the conditions

(1) @(x + ¥, u) = @(x, u) + P(y, )

(2) ol u + 2) = oz, ) + @(x, v)
and

() (A, u) = @(x, Au)
for x,ye M, u,ve N, A€ R, then there is a unique additive map
Y: M ®r N — Q such that

o(x, u) = Y(x @ u), xeM, ueN

(cf. [1, Prop. I(b), p. AII-51] or [2, §8, Chap. 3]). If (iii) is replaced by
the stronger

o(Ax, u) = Ap(x, u) = @(x, Au), xeM, ueN, AeR,

then ¢ is R-linear.
The R-module of R-linear maps M — N is denoted by Homg(M; N).
Homg(M; R) is denoted by M*. A canonical R-linear map

a: M* Qg N — Homg(M; N)
is given by
of ®u)x) = fx)u, xeM, ueN, feM*

A module M is called free if it has a basis; M is called projective if
there exists another R-module N such that M @ N is free. If M is
projective and finitely generated, then NV can be chosen so that M @ N
has a finite basis.

If M is finitely generated and projective, then so is M*, and for all
R-modules NV, the homomorphism « given just above is an isomorphism.
In particular, the isomorphism

M* ®g M —=> Homg(M; M)
7
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specifies a unique tensor #,, € M* ®z M such that

otpg) = tar -

It is called the unit tensor for M.
A graded module is a module M in which submodules M? have been
distinguished such that

The elements of MP are called homogeneous of degree p. If x € MP, then
p is called the degree of x and we shall write deg x = p.

If M and N are graded modules, then a gradation in the module
M ®g N is given by

(M®g Ny = ) M?®gN

pq=r

An R-linear map between graded modules, ¢: M — N, is called
homogeneous of degree k, if

¢(MI))CNﬂ+k’ P > 0

An R-linear map which is homogeneous of degree zero is called a
homomorphism of graded modules.

A bigraded module is a module which is the direct sum of submodules
Me(p >0, g = 0).

An exact sequence of modules is a sequence

M, B, M, O M,y >t
where the ¢; are R-linear maps satisfying
kerp, = Ime,_,.
Suppose
My > My~ My~ My 45 M,

wlx wle @] aa e

N, —> N, —> Ny —> N, —> N
1 2 ¥ ¥
is a commutative row-exact diagram of R-linear maps. Assume that the
maps « , &g, a4, o5 are isomorphisms. Then the five-lemma states that
ag is also an isomorphism.
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On the other hand, if
0 0 0

Lol

0 > My, M,, My —0

l |

00— My, —> My —> My — 0

!
Lol
l

0 i Mal M32 Msa 0

l l

0 0

is a commutative diagram of R-linear maps with exact columns, and if
the middle and bottom rows are exact, then the nine-lemma states that
the top row is exact.

An algebra over R is an R-module A4 together with an R-linear map
A ®r A — A. In particular if M is any R-module, the tensor, exterior,
and symmetric algebras over M are written ®x M, Ax M and, VM.
If M is finitely generated and projective, there are isomorphisms,
(RF M)* =~ QF M*, (AR M)* ~ AR M*, (VR M)* =~ V& M*, defined
in exactly the same way as in sec. 0.5.

0.7. Differential spaces. A differential space is a vector space X
together with a linear map 8: X — X satisfying 62 = 0. 8 is called the
differential operator in X. The elements of the subspaces

Z(X)=kerd and B(X)=Imé.

are called, respectively, cocycles and coboundaries. The space H(X) =
Z(X)/B(X) is called the cohomology space of X.

A homomorphism of differential spaces ¢:(X,8;) = (Y,8y) is a
linear map for which ¢ o8y = 8, o @. It restricts to maps between the
cocycle and coboundary spaces, and so induces a linear map

@e : H(X)— H(Y).

A homotopy operator for two such homomorphisms, ¢, i, is a linear map
h: X — Y such that
p—d=hoS+80ch.

If £ exists then @, = 4, .
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Suppose

0— Xty 2.7 ,0

is an exact sequence of homomorphisms of differential spaces. Every
cocycle 2 € Z has a preimage y € Y. In particular,

28y)=8z=0

and so there is a cocycle x € X for which f(x) = &y. The class £ € H(X)
represented by x depends only on the class { € H(Z) represented by =.
The correspondence { +— £ defines a linear map

8: H(Z) —~ H(X)

called the connecting homomorphism for the exact sequence. The triangle

H(X) L H(Y)

S A

H(Z)

is exact,

If

0 X —Y VA 0

is a row-exact diagram of differential spaces, then
8 o xe = guod
(9, ¢’ the connecting homomorphisms).
0.8. Graded differential spaces and algebras. A graded space
X = ¥ ,5¢ XP together with a differential operator 86 homogeneous of

degree +-1 is called a graded differential space. In such a case the cocycle,
coboundary, and cohomology spaces are graded:

Zy(X) = Z(X)N X», BY(X)= B(X)N X»
and
HY(X) = Z¥(X)|BYX).
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A homomorphism of graded differential spaces is a homomorphism of
differential spaces, homogeneous of degree zero.

Now assume that X has finite dimension and let ¢: X — X be a
homomorphism of graded differential spaces. Let

@P: X? > X?  and  (@.)7: HY(X)—> HY(X)

be the restrictions of ¢ and ¢, to X? and HP(X). The algebraic Lefschetz
formula states that

T (—lprer= Y (<17t ()

p=0 p=0
In particular, if ¢ = ¢, we obtain the Euler-Poincaré formula

Y (1 dimX? = ¥ (—1)» dim H?(X).

p>=0 220

A graded differential algebra A is a graded algebra together with an
antiderivation, §, homogeneous of degree one such that 82 = 0. In this
case Z(A) is a graded subalgebra and B(A4) is a graded ideal in Z(A4).
Thus H(A) becomes a graded algebra. It is called the cohomology algebra
of A. If A is anticommutative, then so is H(4).

A homomorphism of graded differential algebras ¢: A — B is a map
which is a homomorphism of graded differential spaces and a homo-
morphism of algebras. It induces a homomorphism between the cohomo-
logy algebras,

s : H(A) > H(B).

Next let 4 and B be graded differential algebras and consider the
skew tensor product 4 & B. Then the antiderivation in 4 ® B, given by

Hx®y)=0Ry+ (—1)Px X 8y, xe A, yeB,

satisfies 82 = 0. Thus 4 ® B becomes a graded differential algebra.
The tensor multiplication between 4 and B induces an isomorphism

H(4) ® H(B) — H(A ® B)

of graded algebras. It is called the Kiinneth isomorphism.
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0.9. Smooth maps. Let E,F be real, finite dimensional vector spaces
with the standard topology. Let UCE be an open subset. A map
¢: U — F is called differentiable at a point a € U if for some ¢, € L(E; F)

lim M’t_ht)l@ = yu(k), heE.

In this case i, is called the derivative of ¢ at a and is denoted by ¢'(a).
We shall write

¢'(a; h) = ¢'(a)h = o(h), heE.

If ¢ is differentiable at every point a € U, it is called a differentiable map
and the map
¢t U—L(E; F)

given by a > ¢'(a) is called the derivative of ¢. Since L(E; F) is again a
finite dimensional vector space, it makes sense for ¢’ to be differentiable.
In this case the derivative of ¢’ is denoted by ¢”; it is a map

¢": U — L(E; L(E; F)) = L(E, E; F).
More generally, the kth derivative of @ (if it exists) is denoted by ¢'*),
o®: U—L(E, ..., E; F).

k terms

For each a e U, ¢'*)(a) is a symmetric k-linear map of E X - X E
into F. If all derivatives of ¢ exist, ¢ is called infinitely differentiable,
or smooth.

A smooth map ¢: U — V between open subsets UCE and VCF
is called a diffeomorphism if it has a smooth inverse.

Assume now that ¢: U — F is a map with a continuous derivative
such that for some point ae U

¢'(a): E-—=>F

is a linear isomorphism. Then the inverse function theorem states that
there are neighbourhoods U of a and V of p(a) such that ¢ restricts to a
diffeomorphism U — V.

12
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We shall also need the basic properties of the Riemannian integral of
a compactly supported function in R™ (linearity, transformation of
coordinates, differentiation with respect to a parameter). The theory
extends to vector-valued functions (integrate component by component).

Finally, we shall use the Picard existence and uniqueness theorem for
ordinary differential equations as given in [3, p. 22].

0.10. The exponential map. Let E be an n-dimensional real or com-
plex vector space and let o: E — E be a linear transformation. It follows
from the standard existence theorems of differential equations that there is
a unique smooth map r: R — L satisfying the linear differential equation

T+ =—=o¢CoT

and the initial condition 7(0) = ¢ The linear transformation (1) is
called the exponential of o and is denoted by exp o.

In this way we obtain a (nonlinear) map exp:L; — L. It has the
following properties:

(0) exp0=..

(1) If 6,00y, = 0y00,, then exp(o, + 0,) = expoyoexpo,.

(2) exp(ko) = (exp o)k, ke Z.

(3) detexpo =exptro.

(4) If a Euclidean (Hermitian) inner product is defined in the real
(complex) vector space E and if o* denotes the adjoint linear transforma-
tion, then

exp o* = (exp o)*.

(All these properties are easy consequences of the uniqueness theorem
for solutions of differential equations.)

Relations (0) and (1) imply that exp o is an automorphism with
(exp 0)~! = exp(—o). In particular, if ¢ is self-adjoint, then so'is exp o
and if o is skew (resp. Hermitian skew), then exp o is a proper rotation
(resp. unitary transformation) of E.

In terms of an infinite series we can write

€Xp o = i -l— o?
- h

0.11. General topology. We shall assume the basics of point set topo-
logy: manipulation with open sets and closed sets, compactness, Haus-
dorff spaces, locally compact spaces, second countable spaces, connected-
ness, paracompact spaces, normality, open coverings, shrinking of an
open covering, etc.
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The closure of a subset 4 of a topological space X will be denoted by
A.If A and B are any two subsets of X, we shall write

A—B={xecA|x¢B).

A neighbourhood of 4 in X will always mean an open subset U of X such
that U D A.

An open cover of X is a family @ of open sets whose union is X. It is
called locally finite if every point has a neighbourhood which meets only
finitely many elements of @. 0 is called a refinement of an open cover %
if each O € @ is a subset of some U € %. X is called paracompact if every
open cover of X has a locally finite refinement.

A basis for the topology of X is a family @ of open sets such that each
open subset of X is the union of elements of 0. If 0 is closed under finite
intersections, it is called an 7-basis. If X has a countable basis, it is called
second countable.



Chapter 1

Basic Concepts

§1. Topological manifolds

1.1. n-manifolds. An n-dimensional topological manifold (or simply
a topological n-manifold) is a Hausdorff space M with a countable basis
which satisfies the following condition:

Every point @ € M has a neighbourhood U, which is homeomorphic
to an open subset of an n-dimensional real vector space E.
In this case we write dim M = n.

A chart for a topological n-manifold M is a triple (U, u, V) where U
is an open subset of M, V is an open subset of an n-dimensional real
vector space E, and u: U — V is a homeomorphism. Because the chart
(U, u, V) is determined by the pair (U, u), we will usually denote a
chart by (U, u).

An atlas on an n-manifold M is a family of charts {(U,, u,) | a € £},
where .# is an arbitrary indexing set, such that the sets U, form a cover-
ing of M:

M=y U,.

aES

An atlas is called countable (or finite) if the index set is countable (or
finite).

Proposition I: Every topological n-manifold M admits a countable
atlas {(U, , u; , R?) | { € N}, where the closures U, are compact.

Corollary I: A compact n-manifold admits a finite atlas with each
member of the covering homeomorphic to R®.

Corollary II: Every topological #n-manifold M admits a countable
open cover {U; | i € N} such that

15
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(1) U, is a finite union of open sets each of which is homeomorphic
to R"

(2) U, is compact

(3) U;CU,,,ieN.

Next let @ be any basis for the topology of 3 and let &; be the collec-
tion of open subsets O C M of the form

0= 0, 0;€ 0, 1 <k < oo

Then 0, D 0 is a basis for the topology of M. Next let 0, be the collec-
tion of open subsets O C M of the form

0=

"

0,, 0,e0,

i=1

]

where the O, are disjoint. Then @, D O is a basis for the topology of M.

Proposition II: The basis ((&,),), contains every open subset of M.

Proof: Let U be an arbitrary open subset of M and write
U = U K" 3

i=1
where K; is compact and K; C K, , . Next construct an open cover
{U; | ie N} of U so that U;C U and
k
M Y UDK,
i=1
(2) U;e 0 and U, is compact
k k-1
® Yusdy U
$=1 i=1
and
4 U;nU;= Zunlessj=¢—1ori+ 1.
Condition (1) shows that the U, give a cover of U. Let

V1= U U2i+1n Vz= U U .

>0 izl



1. Topological manifolds 17

By conditions (2), (4), V, and ¥V, belong to (0;), . Hence

U=V, V,e({(Co)s)e .
Q.E.D.

Proposition III: A topological z-manifold, M, has the following
properties:

(1) An open subset of M (with the induced topology) is again an
n-manifold

(2) M is connected if and only if M is pathwise connected

(3) M is paracompact.

Corollary: For every open covering {U, | a € #} of M, there is a
shrinking {V,| a € F}; i.e., there is an open covering {V, | a € #} such

that V', C U,.

1.2. Dimension theory. In this section we develop some elementary
results of dimension theory to prove

Theorem I: Let ¢ be an open covering of a topological manifold M.
Then there exists a refinement {V/;;}, where j € N and ¢ runs through a
finite set, such that for each 7

Vijn Vzk:g, ]#k.

To prove this theorem we need the following definitions and results.
An open covering of a topological space X is said to have order < p if
the intersection of every p + 1 elements of the cover is empty. X is said
to have Lebesgue dimension < p if every open cover has a locally
finite refinement of order < p + 1. We write this as dim X < p. If
dmX < p,dimX £p— 1, wesay dim X = p.

Proposition IV: Every topological z-manifold M satisfies

dmM < 7"

Remark: It can, in fact, be shown that dim M = n (cf. [8]), but
we shall not need this.

Lemma I: If dim X << m (m > 1), then dim(X x R) < Tm.
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Proof: Let @ be any open cover of X x R. For each n €Z, choose
an open cover #,, of X with the following property: If We #,, and
te[n,n+ 2], thenforsomee > 0and O e, W X (t — ¢t + ¢) C O.
We may assume that each #7, is locally finite and of order <m + 1
(since dim X < m).

By considering open sets of the form W X (t — ¢, t + €) (We#)),
obtain a locally finite open covering of X X (n, n-+2) of order < 2(m+1).
These open coverings together provide an open covering of X x R of
order < 4m+ 1) < Tm+ 1.

Q.E.D.

Corollary: dim R* < 7"

Lemma II: Let X be a normal space with a countable basis. Suppose
Uand V are open setssuch thatdim U <{n,dim V < nand X =U L V.
Then dim X < n.

Proof: Choose disjoint open sets U’, V' C X such that

(X—V)CU'CU and (X—-U)CVCUV.

Let @ be an open covering of X. By refining @ if necessary we may
assume that 0 is of the form

0 =0,00,,
where
Oy = {0, | ke N}

is a locally finite open covering of U of order <<n + 1, and ¢+ is an
open covering of V",

Set 0, = {O, N V| keN}. Then 0, U 0y is an open covering of V.
Let #” be a locally finite refinement of this covering of order <{n 4 1.
Then #~ is the disjoint union of # V) and #?, where #" U consists of
those open sets contained in V" and #7® consists of the others.

We denote the elements of #" O (resp. #"¥) by W, (resp. Wy). Thus
each W; is contained in some O, . Hence #7® is the disjoint union of
the subcollections #°» given by

WO = (W, | WaC O, W@ O, 1 < kb



1. Topological manifolds 19

Now define open sets Y, by
Y, = O nUYU Y W,,

By
where the union is taken over those 8, such that W, € %~ . Set
Y = {Y,|keN}.

We show that 1) = & U # ' is a locally finite refinement and has
order < n + 1.

First note that since the O, cover U, the Y, cover U’. On the other
hand, the Y, contain all the W, , and so the W, together with the Y,
cover V (since #~ covers V). Since X = U’ U V, it follows that %V is
a cover of X.

Next observe that Y, C O, and so % refines ¢’. But #” (and hence #"'1)
also refines 0. Thus %V refines 0.

To show that %1 has order < n 4 1, let

xeY,nN-nNY, "W, Nn-OW,.
We distinguish two cases.

Casel: xeU'.Theng=0andxe Y, Nn---NY, CO, N--NO, .
Hencep <mn+ landsop + ¢ <n+ 1.

Case II: «x ¢ U'. Then for each k; there is an element W, C “//f}f"
such that x € W, . Moreover, the W, are necessarily distinct. Thus

xeWg N NWy "W, NN W

Le., xis in p -+ ¢ distinct elements of #. It follows that p 4 ¢ < n + 1.
Distinguishing between the same two cases and using the fact that ¢y,
and #~ are locally finite, we see that %V is locally finite.

Q.E.D.

Lemma III: If a manifold M has a basis O, such that for each aq,
dim O, < p, then for every open subset O of M

dim O < p.

Proof: Clearly, if a space X is the disjoint union of open subsets
with dim < p then dim X < p. On the other hand, Lemma II implies
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that if a manifold Q is a finite union with dim < p, then dimQ <
Now the lemma follows from Proposition II, sec. 1.1.

Q.E.D.
Corollary: If O is an open subset of R", then dim O < 7™

Proof of Proposition IV: Observe that M admits a basis consisting
of open subsets O, homeomorphic to open subsets of R*. Hence, by the
corollary above, dim O, < 7. Now Lemma III (applied with O = M)
yields the proposition.

Q.E.D.

Proof of Theorem I: Let @ be any open covering of M. According
to Proposition IV there exists a locally finite refinement of finite order.
Thus we may assume that ¢ is locally finite and of finite order p. More-
over, we may assume that ¢ is indexed by N, ¢ = {O; | je N}.

Now we proceed by induction on p. If p = 1, there is nothing to
prove. Assume that the theorem holds for coverings of order p — 1
and that ¢ has order p. For each distinct set v; << -+ < v, of (p + 1)
indices let

¥
-

»
Oy = () Oy -
1

=
I

Since € has order p these sets are disjoint. Denote them by Vy, (1 = 1, 2,...)
and set
Vl = U Vl,j .

Next choose open sets U; so that U; C O and |); U; = M. Let A
denote the union of all sets of the form U NN U (v1 < v < V)
Then A4 is closed because the O, are locally ﬁmte

Now the U, provide a locally ﬁmte covering of M — A of order p — 1.
Since M = (M — A) U V,, the theorem follows by induction.

Q.E.D.

Corollary: A topological manifold M admits a finite atlas.

Proof: Let {(U,, u,) | « € #} be any countable atlas for M such that
the sets u,(U,) are disjoint. Let {(Vi1i<dim M4 1,je N} be the
refinement of Theorem I.
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Choose of7, j) such that V;; C U, ;, - Now let

Wz' = U Vi:i

jeN
and define w;: W, — R" by
(%) = ot (%), xeVy.

Since the V; are disjoint for fixed 7, w; is a homeomorphism of W, onto

U #ate.(Vi;) CR™

jeN

and hence {(W;, w;)} is a finite atlas.
Q.E.D.



§2. Smooth manifolds

1.3. Smooth atlases. Let M be a topological manifold and let
{(U,,u)| ae F} be an atlas for M. Consider two neighbourhoods
U, , Ug such that U,y = U, N Uy # @. Then a homeomorphism

Uyg! uB( Umﬂ) g uu( Uan)

is defined by #,5 = u, o uz'. This map is called the identification map
for U, and Uy . By definition w0 #s, = th,, in 4,(U,,), and u,,(x) = x,
x € u,(U,). These relations imply that the inverse of u. is %, .
The atlas {(U, , u,)} is called smooth if all its identification maps are
smooth (as mappings between open subsets of real vector spaces).
Two smooth atlases are equivalent if their unmion is again a smooth
atlas; i.e., {(U, , )} and {(V;, v;)} are equivalent if all the maps

viouTiu (U, N V)~ v(U,N V)

and their inverses are smooth. A smooth structure on M is an equivalence
class of smooth atlases on M. A topological manifold endowed with a
smooth structure is called a smooth manifold. An argument similar to
that of the corollary to Theorem I shows that every smooth manifold
admits a finite smooth atlas.

Henceforth we shall use the word “manifold” in the sense of a smooth
manifold. An atlas for a manifold will mean a member of its smooth
structure and the term chart will refer to a member of an atlas.

1.4. Examples of manifolds. 1. Spheres: Let E be an n-dimen-
sional Euclidean space with inner product (, >. The unit sphere S"!
is {x € E | (x, x) = 1}. S is a Hausdorff space with a countable basis
in the relative topology. Let ae S*»! and U, = S*! —{a}, U_ =
S§7-t — {—a}. Define maps u,: U, - at,u_: U_— a' by

x — {x, a>a x — (x,a)a

1—<x:a> ’ 1+<x:a>.

Then {{U;,u;)|{ = +, —} is a smooth atlas for S*'. Moreover, the
atlas obtained, in this way, from a second point b e S"~! is equivalent
to this one. Thus the smooth manifold structure of S*~1 is independent
of the choice of a.

u,(x) = u_(x) =

22
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2. Projective Spaces: Consider the equivalence relation on S*
whose equivalence classes are the pairs {x¥, —x}, x € S*, and introduce
the quotient topology on the set of equivalence classes. We call the result
real projective n-space, RP™.

To construct a smooth atlas on RP™ consider the projection
m: S* — RP™ given by m(x) = {x, —x}. If O is an open set in S" such
that x € O implies that —x¢ O, then =(O) is open in RP™ and
m: O — 7(0) is a homeomorphism. Now let {(U, , %)} be an atlas for
S™ such that, if xe U,, —x ¢ U, . Then {(n(U,), 4, o #~1)} is a smooth
atlas for RP",

3. Tori: Denote the elements of R* by x = (&, ..., &*), &eR.
Define an equivalence relation in R® by &’ ~ x if and only if £’ — ¢t e Z,
{ =1, ..., n. Let the set of equivalence classes, with the quotient topo-
logy, be denoted by 7™ and let #: R* — T™ be the canonical projection.

Consider the smooth atlas for R* given by {(U,, #,)}, a € R?, where

U, ={xeR || - | <} i=1,..,n} u,(x) = x.

Then {(n(U,), u, o 1)} is a smooth atlas for 7™

4. One-point compactifications: Let E be a finite-dimensional
Euclidean space. Then its one-point compactification E, (cf. [4, p. 246])
can be given a smooth atlas (U, , u,), (U, , ) as follows. Let x,, denote
the point at co and set

UO = E, Uy = g
_x_

Upo = Ep — {O}s um(x) = {|x l2 ’
0,

(| %[> = <%, 2)

In the case when E is C, regarded as a two-manifold, we also obtain a
smooth atlas when u,, is replaced by @, , where

_ 27l = |22 B FE 2y
o(3) = 0, 2= 2,

5. Open subsets: Let O be an open subset of a manifold M. If
{(U., , u,)} is a smooth atlas for M, then {(O N U, , %, |5~y )} is a smooth
atlas for O. Equivalent atlases on M yield equivalent atlases on O. Thus
the smooth structure of M induces a smooth structure on 0. Any open
subset of a manifold, with the induced smooth structure, is called an
open submanifold.



24 1. Basic Concepts

1.5. Smooth maps. Let M, N be manifolds and assume that
@: M — N is a continuous map. Let {(U, , u,)} and {(V;, v,)} be atlases
for M and N, respectively. Then ¢ determines continuous maps

Piat 4(Uy 0 o7 H(V3)) — vd(V)

by @i = v;0pou.

We say that ¢: M — N is smooth if the maps ¢, (as mappings of open
subsets of vector spaces) are smooth. (This definition is independent of
the choice of atlases for M and N). Moreover, if ¢: M — N and
Y N — P are smooth maps, then ¢ o ¢: M — P is smooth. The set of
smooth maps M — N is denoted by &(M; N).

Proposition V: (1) If ¢: M — N is smooth and O C M is open,
then the restriction of ¢ to O is smooth.

(2) If ¢: M — N is a set map such that the restriction of ¢ to each
element of an open covering of M is smooth, then ¢ is smooth.

A smooth map ¢: M — N is called a diffeomorphism if it has a smooth
inverse ¢~': N — M. Every diffeomorphism is a homeomorphism. Two
manifolds M and N are diffeomorphic if there exists a diffecomorphism
@: M — N. The fundamental equivalence relation for smooth manifolds
is that of being diffeomorphic.

Examples: 1. Let M and N be manifolds and let b€ N. The
constant map ¢: M — N given by ¢(x) = b, x € M, is smooth.

2. Let E be a Euclidean space of finite dimension and let B be the
open ball of radius r (about 0). The map ¢: B— E given by
(x) = (r* — | x () x, where | x |2 = {x, x), is a diffecomorphism.

3. Let S"! be the unit sphere in a Euclidean space E. Then the
inclusion map 7: S*~! — E is smooth (use Proposition V).

4. The projection map 7: S* — RP™ is smooth.

5. Let O be any open submanifold of a manifold M. Then the
inclusion map i: O — M is smooth.

6. 'The canonical projection of Example 3, sec. 1.4 is smooth.

7. Let M be a topological manifold and suppose that {(U,, u,)}
and {(V;, v;)} are smooth atlases on M. Denote the corresponding
smooth manifolds by M) and M, . The identity map ¢: M) —> M(y)
is a diffeomorphism if and only if the two atlases are equivalent: i.e., if
and only if M) = My, .
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8. Given real numbers «, 8 with a < B, there exists a smooth non-
decreasing function g: R — [0, 1] such that

0, t < a
g0 = |} ' Sh

In fact define f : R — R by

0 t <0

f) = e;(p(—t‘z), t>0.

Then f is smooth and a suitable g is given by

)
=B FrE—a

9, The Cayley map: Let E be a real or complex vector space of
finite dimension. Then

O = {oeLg|det(s + o) = 0}

is an open submanifold of the vector space Ly containing 0 eL;. We
will show that the Cayley map f: O — Lg given by

fl)=(@—ofi+o) €0
is an involution of O. In fact,
f@ +ie=(—o)t+ o)+ (+ o)t +0)t =20+ o),
whence f: O — O. Next, observe that
o(f(0) + 1) = 20(c + o) = ¢ — f(0)

and so

o = (e —f()( + (o) = f(f(o))s

this shows that f2 = ¢, . Since f is clearly smooth, it is a diffeomorphism.

10. One-point compactifications of vector spaces: We shall show
that, if E is an n-dimensional Euclidean vector space, its one-point
compactification E, (cf. Example 4, sec. 1.4) is diffeomorphic to S*
(cf. Example I, sec. 1.4).

Let S” be defined as in sec. 1.4 with charts (U_, u_), (U, , u,), con-
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structed from a point a € S* and identify E with the orthogonal com-
plement of a. Consider the map ¢: E,, — S*, defined by

uM(x), x€E

9(x) = a, X = Xg.

To examine the smoothness properties of ¢, we use the atlas (U, u,),
(Uy , uy,) for E,, described in sec. 1.4. It follows immediately that

U o@ouyl =g,
while the relation

u_opouzl =i,

is obtained from a straightforward computation. These formulae show
that both ¢ and ¢~ are smooth. Hence ¢ is a diffeomorphism.

In the case when E = C, regarded as a two-dimensional Euclidean
vector space, the corresponding two-sphere is customarily referred to
as the Riemann sphere.

11. The exponential map: Let E be a real or complex vector space
of dimension n and assume that a positive definite symmetric (resp.
Hermitian) inner product is defined in E. Consider the space S(E) of
self-adjoint linear transformations of E. Then S(E) is a real vector space
of dimension }n(n + 1) (resp. 7n?). A self-adjoint map ¢: E— E is
called positive, if

{g(x), x) > 0, x #= 0.

The positive self-adjoint maps form an open subset of S(E) which will
be denoted by S*(E). It is easy to see that the exponential map restricts
to a map

exp: S(E) — SH(E).

It will be shown that the map so obtained is a diffeomorphism.
We consider first the complex case. Let

C+ = {AeC | Re(d) > 0}

and define a map log: C* — C by

logA = f zldz,

k4

where y is the line segment from 1 to A.
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Now suppose that o € S(E) so that the eigenvalues of o are real and
positive, and choose a circle C C C* such that each eigenvalue of ¢ lies
inside C. Regard A — (log A}(Ax — o) as a smooth S(E)-valued function
in C+ and put

ES _1 — o)1 4
log o = 5— fc log \i — o) Ld), o€ SHE).

(log o is independent of the choice of C, see below.) Since the same C
may be used in the construction of log o for all ¢ belonging to some
neighbourhood in S*(E), we conclude that log is smooth. To show that
exp is a diffeomorphism it is then sufficient to show that log inverts it.

But, if o € SH(E), then o has real eigenvalues A, > 0 corresponding to
eigenvectors x, which, for v =1, 2, ..., n, form a basis of E. Now the
relations o(x,) = A%, imply

M—o)ta, = (A —A)lx,, A%,
and hence
(log o) 5, = (5 | 3 Ba-dA) %, = (log ) x
g v 27Ti C A —_ Av v g V. V)

by Cauchy’s theorem. It follows that log o is independent of C and that
[(exp - log)(e)](x,) = exp(log &) x, = Ax, = o(x,),
forv =1, ..., n and o € ST(E). Hence
exp o log = 5+ -
A similar computation shows that
log o exp = 5(g)

and therefore completes the proof.

Now suppose that E is a real Euclidean space. Consider the Hermitian
space E° (cf. sec. 0.1). If ¢: E — E is a self-adjoint map, then so is the
map

1c ® ¢: EC — EF,

Hence we have an inclusion map j: S(E) — S(E®). It restricts to a map
j*t: SH(E) — SH(E®). It follows from the definitions that the diagram

S(E) —— S(E)
exp l . l expe
SHE) L s+(E®)
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commutes. Hence so does the diagram

S(E) -1 S(E®)
exp'(a)l lexpc’(j(a)) , a e S(E).
S(E) -1 S(E®)
It follows that the map
exp'(): S(E) — S(E)
is injective and hence a linear isomorphism. On the other hand, the
first diagram shows that the map
exp: S(E) — S*(E)
is injective. Finally, if ¢ € S*(E), we can choose an orthonormal basis
Xy .oy %, of E for which
px, = Ax, with A, > 0.
Define s € S(E) by
gx, = log Ax, .
Then ¢ = exp ¢ and so exp is surjective. Hence exp: S(E) - S*(E) is
a diffeomorphism.
12. The power maps P,: St(E) — S*(E), defined by

Pya) = o*  (kis a nonzero integer),

where E is a real or complex finite dimensional vector space, are diffeo-
morphisms. In fact, let p,: S(E) — S(E) be the diffeomorphism given
by (o) = ko. Then

Py = exp oy o exp™!

is a diffeomorphism.

1.6. Construction of smooth manifolds. Proposition I has the
following analogue:

Proposition VI: Let M be an n-manifold and {U.} be an arbitrary
open covering. There is a countable atlas {(V;, v;, R")} of M such that

(1) The covering {V;} refines {U.}.
(2) V,is compact, i€ N.
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Proposition VII: Let M be a set which is the union of a countable
collection {¥,} of subsets such that

(1) For each ie N, there is a bijection ¢;: W; — M,, where M, is
an n-manifold (n independent of 7).

(2) For every pair i, j, the subsets @ (W,;) C M, and ¢ (W,;) C M;
are open and the map

@5 = @0 @71t i W) ~ @i Wiy)

is a diffeomorphism.,

(3) For distinct points a; € W; and a; € W}, there are disjoint subsets
U;, U; such that a;e U;C W,;, a;€ U;CW; and ¢(U,), p{U;) are
open.

Then there is a unique smooth manifold structure on M such that
the W, are open and the ¢, are diffeomorphisms.

1.7. Products of manifolds. Let M and N be manifolds and
consider the topological product M x N. If {(U,,u,)|«€.#} and
{(Vy,v)|ie #} are atlases for M and N, respectively, then
{(U, X Vi, u, X v;)|a€F, i€ F}is an atlas for M X N. It is easy to
see that equivalent atlases on M and N induce equivalent atlases on
M x N.Hence a smooth structure on M x N is induced by the smooth

structures of M and V.
The smoothness of the following maps follows from the definitions:

1) the projection maps my: M X N—-M, wy:M X N— N,
P
given by
Ty, y) = , TN(%, ¥) = ¥;

(2) the diagonal map 4: M — M X M, defined by
Ax) = (v, %), xeM;
(3) the interchange map M X N — N X M given by
(%, ) > (3, %);
(4) the “product” map x: P— M X N, given by
x(2) = (p(2) ¥(2)),  =z€P,

where p: P — M, : P — N are smooth.
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1.8. Smooth functions and partitions of unity. A smooth function
on a manifold M is a smooth map f: M — R. If f and g are two such
functions, then smooth functions Af + ug and fg are defined by

(M + pe)(x) = M(x) + pg(x), ApeR
(fe)(x) = f(x) g(x), xe M.

These operations make the set of smooth functions on M into an algebra
over R, which we denote by (M). The unit element of L (M) is the
constant function M +— 1.
If A4 and A" are ¥ (M)-modules, we denote their tensor product
(over S (M)) by
M Ry N .

The module of & (M)-linear maps of .# into A" will be denoted by
Homy, (#; A).

Now suppose that ¢: M — N is a smooth map. ¢ determines an
algebra homomorphism

o*: F(M) — F(N)
given by
p*f =fop, feF(N)

If ¢ is surjective, ¢* is injective. If : N — O is a second smooth map,
then

(o) = @*oy*.

Definition: The carrier (or support) of a smooth function f on M is
the closure of the set {x € M | f(x) 5= 0}. We denote this set by carr f.

If O is an open subset of M and f is a smooth function on O whose
carrier is closed in M, then f extends to the smooth function g on M,
given by

_{f(x), xe0
g(x) = 0, xe M — carr f.

In particular, if fe (M) has carrier in O, and ke £(0), a smooth
function f - h e (M) is given by

(f - B)(x) = f(x) h(x), x€O and (f-h)(x) =0, x¢carrf.
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Next, suppose that {U.} is a locally finite family of open sets of M,
and let f, € S (M) satisfy carr f, C U, . Then for each a € M there is a
neighbourhood V(a) which meets only finitely many of the U, . Thus in
this neighbourhood 3, f, is a finite sum. It follows that a smooth function
fon M is defined by

f@) =Y flx), xeM.
We write f =3, f, .

Proposition VIII: Let K, O be subsets of M such that K is closed,
O is open and K C O. There exists a smooth function f such that

(1) carr f is contained in O
2 0<f(x) <, xeM
(3) f(x)=1, xeK.

Lemma IV: Let E be a Euclidean space and «, 8 € R be such that
0 < a < B. There exists a smooth function k: E — [0, 1] C R such that
Mx) =1, for | x |* < a, A(x) =0, for | x |2 = B.

Proof: Define 2 by A(x) =1 — g(| x|%), where g:R— R is the

function of Example 8, sec. 1.5).
Q.E.D.

Proof of the proposition: Choose open sets U, C M and compact
sets K, C U, , subject to the following conditions (cf. sec. 1.1)

(1) {U}, M — K is a locally finite open cover of M.

(2) Each U, is diffeomorphic to R* and U U, C O.

(3) VK,=K.

It follows at once (via Lemma IV) that there are smooth functions 4, in
U, such that carr A, is compact and

h(x)=1, x€kK,.

In particular carr A, is closed in M.
Next, extend the h, to smooth functions f, in M with carrf, =
carr b, C U, . Then we can form Y, f, € #(M). Evidently,

carry f,CYU,CO
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and

(gfa) x=1 =xek

Finally, choose a smooth map g: R — [0, 1] so that g(0) =0 and
g(t) =1, t > 1 (cf. Example 8, sec. 1.5). Then the function

f=g(L)

satisfies the desired conditions.
Q.E.D.

Definition: A partition of unity, subordinate to a locally finite open
covering {U.} of M is a family {f,} of smooth functions on M satisfying

(1) 0<flx) <1, xeM
(2) carrf,CU,
3 =1L

Theorem II: Every locally finite open covering of a manifold admits
a subordinate partition of unity, {f.}.

Proof: Let {U,} be such a covering of M and let {VV,} be a second
open covering such that ¥, C U,. In view of Proposition VIII, there are
nonnegative smooth functions g, on M which have carriers in U, and
take the value 1 at points of 7, . Thus g = ¥ g, is smooth and positive.

setfazga/g‘ QED

Corollary: If {U, |« € #} is any open covering of M, there is a
partition of unity {f; | 7€ #} and a map i +> aff) of £ into S such that
carrfi C Ua(i) y 1€ f

1.9. Function germs. Let a be a fixed point of M. Two members
/, g of L (M) will be called a-equivalent, f~5 g, if and only if there is a
neighbourhood U of a such that f(x) = g(x), x € U. The equivalence
classes so obtained are called function germs at a. We write [f], for the
germ represented by f e #(M) and (M) for the set of function germs
at a. By setting [f1, + (gl = [f + gl and [f]a [£le = [fglar We make
(M) an algebra.

The map (M) —> &(M) given by f+— [f], is a surjective
homomorphism.
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If : M — N is smooth, then the homomorphism ¢*: #(N) — L(M)
determines a unique homomorphism ¢F: &, ,(N) > (M) (each
a € M) such that the diagram

*

@
ya(M) D y@(a)(N)

F(M) 2 F(N)
commutes.

In particular, let U C M be open and consider the inclusion map
i: U-—~ M. The induced homomorphism f: (M) — &(U) is an
isomorphism. In fact, by Proposition VIII we can find & € (M) such
that carr £ C U and & takes the value 1 on some neighbourhood of a.
A linear map #(U) — S(M) is then given by

g—>h-g.

This induces a linear map S, (U) — %(M), which is inverse to ;.

In a similar manner we can define germs of maps. Suppose that
ae M and ¢, y: M — N are smooth. We say that ¢, ¢ are a-equivalent
if there is a neighbourhood U of a such that g(x) = y(x), for each
x € U. The equivalence classes so obtained are called the germs of maps
at a, and are denoted by [¢],.

1.10. Homotopic maps. Let M, N be smooth manifolds and ¢,
be smooth maps of M into N. We say that ¢ is homotopic to s, and write
@ ~ i, if there exists a smooth map

HRxM-—-N
such that

H(@©,x) = g(x) and  H(l, x) = §(x), xeM.

H is called a homotopy. Homotopy is an equivalence relation in the
set of smooth maps M — N, as will now be shown.

In fact, the relation is obviously reflexive and symmetric. To prove
transitivity assume that ¢ ~ 4 via H and § ~ y via K. Choose a smooth
nondecreasing function g: R— [0, 1] so that g(tf) =0,¢ <0, and
gty =1,t >4, (cf. Example 8, sec. 1.5). Then a smooth map
L: R X M — N is given by

_ (H(z() ®), <4
K(g(t - 2)! x)’ t> %

Evidently L(0, ) = ¢(x) and L(1, x) = x(x). Thus ¢ is homotopic to .

L(t, x)
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Lemma V: ¢, y: M — N are homotopic if and only if there is a
smooth map K: R X M — N such that

K(t, x) == ¢(x), t <O and K(t,x) = ¢(x), t = 1.

Proof: If K exists, then ¢ ~ . If ¢ ~ 4, let H be a homotopy.
Choose a smooth function g: R — R such that
gt =0, t<0 and  g()=1, t>=1,
(cf. Example 8, sec. 1.5). Then set
K1, x) = H(g(t), %).
Q.E.D.

Examples: 1. Let N be any convex open subset of a real vector
space E. Then any two smooth maps ¢, i: M — N are homotopic.
In fact, let g: R — [0, 1] be smooth with g(0) = 0, g(1) = 1. Put

H(t, x) = g(t) p(x) + (1 — (1)) ().

2. Let E = E — {0}, where E is a Euclidean space. Suppose that
@, Y1 M — E are smooth maps such that

lp(x) — d(x)| < |g(x)l, xeM.

Then ¢ and  are homotopic.
In fact, if g is chosen as in Example 1, then

H(t, x) = (1) p(x) + (1 — (1)) $()
provides a homotopy of ¢ into .

3. Let E be an (n 4 1)-dimensional Euclidean space. Consider the
sphere S» ={xe€ E| | x| =a}. Assume that ¢, : M — S* are
smooth and satisfy

| p(*) — $(x)| < 2a.

Then ¢ and ¢ are homotopic.
Indeed, choose g as above and define H: R x M — S” by

C a(elt) o) + (1~ (1) $(x))
H(b %) = Tty on) (1 —g(0) )]
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4. If p ~4: M — N via a homotopy H, and ¢, ~t;: N - Q via
a homotopy G, then

Prop~irogpt M—>Q
via the homotopy K given by
K(t, x) = G(z, H(2, x)).

1.11. Smooth paths. A smooth path on M is a smooth map
@: R — M. A manifold is called smoothly path-connected if, for every
two points a, b€ M, there exists a smooth path ¢ such that ¢(0) = a
and ¢(1) = b.

Proposition IX: If 4, b are points of a connected manifold M, there
is a smooth path ¢ on M such that

a, t<<0
?t) = | t;].

In particular, M is smoothly path-connected.

Proof: ¢ exists if and only if the inclusion maps
Jo: {point} —aeM  and  j,: {point} > be M

are homotopic (cf. Lemma V). Since homotopy is an equivalence
relation an equivalence relation is induced on the points of M:

a ~ b if and only if a can be joined to b by some ¢.

If M = R, the proposition is obviously true (use Example 1, sec. 1.10).
Thus in general, if (U, u, R?) is a chart in M, then all the points of U
are equivalent. Hence the equivalence classes are all open and M is their
disjoint union. Since M is connected, there is only one class; i.e., every
a, b € M are equivalent.

Q.E.D.

1.12. Diffeomorphisms of smooth manifolds. In this section we prove
Theorem III: Let C be a closed subset of a manifold M such that
M — Cis nonvoid and connected. Let a, b be arbitrary points of M — C.
Then there is a diffeomorphism ¢: M — M homotopic to ¢,, and such

that (@) = b and ¢(x) = x, xe C.

To this end we give the following lemma and its consequence.
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Lemma VI: There is a smooth function f on R such that

(1) carrfC[—3,3]
(2 0<f() <l teRandf0)=1,
3) If'®l <1, teRr.

Proof: Define f by

t2
fiy = | (- g=w)  te(=3
0, otherwise.

Q.E.D.

Corollary: There exists a diffecomorphism ¢ of R” such that

1y 0, ..., 0)=(1,0,..,0)
(2) @(x) = x, for every x = (£, ..., £*) such that max, | £ | > 3.

Proof: Define ¢ by
HE, o ) = (8 + TTFE), 8 27)
i=1

where f: R — R is the function of Lemma VI. Then the Jacobian of ¢
is given by

detg/(x) = 1 + f’(fl)i_ﬁf(f")-

Det ¢'(x) > 0, as follows from conditions (2), (3) on f. Thus ¢ is a
local diffeomorphism. To see that it is in fact a global diffeomorphism
it is only necessary to note that it induces a bijection on each of the lines

g=g, =§&, ., &£=4§.

That ¢ satisfies conditions (1) and (2) is immediate from the proper-
ties of f.
Q.E.D.

Proof of Theorem III: Let ~ be the equivalence relationon M — C
defined by

%, ~ %y if and only if there is a diffeomorphism ¢: M — M,

homotopic to 15, such that ¢(x;) = x, and ¢(x) = x, x € C.
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We shall show that the equivalence classes are open. In fact, if
ae M — C,let (U, u, R*) be a chart of M suchthatae UCM — C. If
be U is arbitrary, we can compose u with an affine transformation of
R®, if necessary, and assume that u(a) = 0, u(b) = (1, 0, ..., 0). Applying
the corollary to Lemma VI, we obtain a diffeomorphism ¢, U — U
such that pg(@) = b and ¢, is the identity outside a compact set K such
that be K C U. Then ¢: M — M defined by

— q’O(x)! xelU
<P(‘x') - x, X ¢ U
is a diffeomorphism which establishes the equivalence of @ and b; hence
all points of U are equivalent to a.

Since the equivalence classes are open and M — C is connected, all

points of M — C are equivalent, as required.
Q.E.D.

Corollary: Let M be a connected manifold of dimension » >> 2 and
{ay, ..., a3}, {by, ..., by} be two finite subsets of M. Then there is a
diffeomorphism ¢: M — M, homotopic to iy, such that ¢(a;) = b;

G=1,..,k).

Proof: If £ = 1, the result follows from the theorem with C = &,
Suppose that the result has been proved for kK — 1; i.e. a diffeomorphism
o of M, homotopic to :,,, has been found such that ¢y(a;) = b,
i=1,..,k— 1. Noting that M — {b,, ..., b,_,} is nonvoid and con-
nected we obtain, from Theorem III, a diffeomorphism ¢, of M,
homotopic to ¢, such that ¢,(psa;)) = b, and ¢,(b;) = b; for
i=1,2,..,k— 1. Set ¢ = ¢, o g, (cf. Example 4, sec. 1.10).

Q.E.D.
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1.13. Local product property. Let =: E— B be a smooth map
between manifolds. The map = will be said to have the local product
property with respect to a2 manifold F if there is an open covering {U,}
of B and a family {i,} of diffeomorphisms

b Uy X F— a7 Y(U,),
such that
m(x,y) =%  x€eU,, yeF.

The system {(U, , ¢,)} will be called a local decomposition of =.
Clearly any mapping with the local product property is surjective and
open.

Definition: A smooth fibre bundle is a four-tuple (E, =, B, F) where
m: E — B is a smooth map which has the local product property with
respect to F. A local decomposition for 7 is called a coordinate representa-
tion for the fibre bundle.

We call E the total or bundle space, B the base space, and F the typical
fibre. For each x € B, the set F, = n~(x) will be called the fibre over
x. Every fibre is a closed subset of E, and E is the disjoint union of the
fibres.

A smooth cross-section of a fibre bundle (E, =, B, F) is a smooth map
o: B— Esuchthat moo = 4.

If {(U,, ¢,)} is a coordinate representation for the bundle, we obtain
bijections i, ,: F — F, , x € U, , defined by

l/)u.x(y) = ()l'a(xr y), Yy eF.

In particular, if x € U,;, we obtain maps {3 o, ,: F — F. These are
diffeomorphisms. In fact, since i, and ¢, define diffeomorphisms of
U,s x F onto mY(U,,), they determine a diffeomorphism y,, = i7" © ¢,
of U,, X F onto itself. But

‘l’Ba(x! y) = (x’ ¢E}x¢a,r(y))$ X eUaﬁ I er

and hence yi37; o ¢, , is a diffeomorphism of F.
Suppose now that (E’, »', B’, F') is a second fibre bundle. Then a

38
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smooth map ¢: E — E’ is called fibre preserving if, whenever nz, = w2, ,
(2,, 2, € E), then w'p(z,) = n'¢p(2,). Any fibre preserving map ¢
determines a set map gz B — B’ by the requirement that the following
diagram commute:

E—% . F

4l

B .,p

We now show that g, is always smooth. In fact, if {(U,, ¢,)} is a local
decomposition for 7 and y € F is fixed, then

ep(x) = (7' o @ode)(x,y), xeU,.

Hence ¢ is smooth on each member U, of a covering of B.
Let(E", n”, B”, F") be a third fibre bundle and assume that ¢: E — E’,
@': E' — E" are fibre preserving. Then ¢’ o ¢: E — E” is fibre preserving

and (¢ o @) = ‘P;a' °Pp -

Proposition X: Let B, F be manifolds and let E be a set. Assume
that a surjective set map m: E — B is given with the following properties:

(1) There is an open covering {U,} of B and a family {§,} of bijections
.: U, X F—> 71U

a

(2) Foreveryxe U,, yeF, nf(x,y) = x.
(3) The maps g, Uy X F— Uy X F defined by (%, y) =
(5" © ,)(x, ) are diffeomorphisms.

Then there is exactly one manifold structure on E for which (E, =, B, F)
is a fibre bundle with coordinate representation {(U, , .)}.

Proof: We may assume that {a} is countable and thus apply Proposi-
tion VII, sec. 1.6, with W, = »1U,, ¢, = ¢7', and M, = U, X F
to obtain a unique manifold structure on E such that the ¢, are diffeo-
morphisms.

Hypothesis (2) then says that the restriction of m to n1U, is 7, o 5",
where m,: U, x F— U, denotes the projection onto the first factor.
Since (cf. sec. 1.7) =, is smooth, = is smooth on =—'U,. Hence
@ is smooth on E and then, by definition, {(U, , #,)} is a local decompo-
sition for 7. Hence (E, m, B, F) is a fibre bundle with coordinate repre-
sentation {(U, , ¥,)}.

Q.E.D.
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Proposition XI: Every smooth fibre bundle has a finite coordinate
representation.

Proof: Let{(U,,,)} be any coordinate representation for (E, =, B, F)
Choose a refinement {V; |i=1, .., p;j€ N} of {U} such that
Vi Vy = @ for j 5 k (cf. Theorem I, sec. 1.2). Let V; = {J;V;;and
define ¢i;: V; X F — =1V, by

Pulx, ¥) = dis(x, ¥) if xeV,, yeF,

where ¢; is the restriction of some ¢, .

Q.E.D.



Problems

1. The fact that a topological space is locally Euclidean (each
point has a neighbourhood homeomorphic to an open subset of R?)
implies neither that the manifold is second countable nor that it is
Hausdorff. Construct one-dimensional examples to prove this.

2. Let M and N be manifolds and ¢: M — N be a map such that
p*g € F(M) whenever g € (V). Show that ¢ is smooth.
4 4

3. Construct a smooth injection of the two-dimensional torus
T? = R?/Z? into R3.

4. Show that the n-torus 7™ is diffeomorphic to the product of
n circles S1.

5. Let M and N be smooth manifolds and suppose that p is a metric
on N.

(1) Prove that if ¢: M — N is a continuous map and ¢ > 0 is given,
then there is a smooth map ¢: M — N such that p(px, ¥x) < ¢, x € M.

(i) Two continuous maps ¢, : M — N are called continuously
homotopic, if there is a continuous map H:I X M — N such that
H(0, x) = px and H(1, x) = .

Prove that every continuous map is continuously homotopic to a smooth
map. Prove that two smooth maps are smoothly homotopic if and only
if they are continuously homotopic.

6. Let M and N be compact smooth manifolds. Assume that
a: P(M) «~— F(N) is a homomorphism. Show that there is a unique
smooth map ¢: M — N such that ¢* = a. Conclude that if « is an
isomorphism, then ¢ is a diffeomorphism.

7. Classify the one-dimensional topological manifolds.
8. Construct a nontrivial fibre bundle over S! with fibre
(i) R (Mobius strip).

(i) S' (Klein bottle).
41
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9. Let 7 be a diffeomorphism of a compact manifold, M, such that
(i) 7 =, for some k, and (ii) for each x € M, x, 7«, ..., 7*~1x are distinct.
Define an equivalence relation in M by setting x ~ y if 7%x = y for
some p. Show that the corresponding quotient space is a smooth manifold
N and that (M, m, N, F) is a smooth bundle, where F is the set {0, 1, ...,
k— 1}

10. Regard S**+! as the unit sphere of an (n + 1)-dimensional
Hermitian space E. Define an equivalence relation on S*+! by setting
x ~ yif y = e*x for some f € R.

(i) Show that the equivalence classes with the quotient topology form
a smooth 2n-manifold. It is called the complex projective space CP™.

(ii)) Show that the projection m: S2%+1 — CP" is the projection of a
smooth fibre bundle (S**+}, =, CP?, SY). It is called the Hopf fibering.

(iii) Show that CP? is the Riemann sphere S2 and that = is given by

-1
2123 s 2 #0

(31, 3) = 2 s 2, =0

2,2 €C.

Construct an explicit coordinate representation (U, ¢), (V, ) for this
Hopf fibering, where U = 52 — {0} and V' = S?% — {2}, so that

¢—1¢(z,t)=(z,%z) zeUNV, teSL.

11, Replace C by H in problem 10 and define the quaternionic
projective space HP™ Obtain the Hopf fiberings (S*"*3, =, HP", S3).
Discuss the case n = 1.

12. Imitate the definition of topological and smooth manifolds to
define real and complex analytic manifolds. Do they admit analytic
partitions of unity ?

13. Grassmann manifolds. Let R™ have a positive definite inner
product. For every k-dimensional subspace £ C R”, let p;: R* — FE and
pt: R® — EL be the orthogonal projections. Consider the set %p(n; k)
of all k-dimensional subspaces of R", For E € 9y(n; k) set

Ug ={Fe%gn; k) |FNE* ={0}}
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and define u; : Uy — L(E; EL1) by

ug(F) == PgL© (pre)?
(pre : F => E is the restriction of pg).

(1) Make %y(n; k) into a smooth manifold with atlas {(Uy , uz)}.

(ii) Show that dim %g(n; k) = k(n — k). Define a natural diffeo-
morphism between Fy(n; k) and G(n; n — k).

(iii) Show that @p(n + 1; 1) is diffeomorphic to RP™,

(iv) Do (i) and (iii) with R replaced by C. Find dim % (n; k).

14. Let E, F and H be real vector spaces of dimensions m, n and k
with & << m, n. Let S(E; H) (resp. I(H; F), GL(H)) denote the set of
linear surjections (resp. injections, bijections) and let L(E; F; k) denote
the set of linear maps E — F of rank k.

(i) Show that composition defines a set map
m: S(E; H) X I(H;F) — L(E; F; k).

(ii) Show that S(E; H), I(H; F), and GL(H) are open subsets of the
spaces L(E; H), L(H;F), and Ly . Conclude that they are smooth
manifolds.

(iti) Construct a unique smooth structure in L(E; F; k) so that
(S(E; H) x I(H; F), m, L(E; F; k), GL(H)) is a smooth bundle. Find
the dimension of L(E; F; k).



Chapter II

Vector Bundles

§1. Basic concepts

2.1. Definitions. A vector bundle is a quadruple ¢ = (E, m, B, F)
where

(1) (E, =, B, F) is a smooth fibre bundle (cf. sec. 1.13)
(2) F, and the fibres F, = n~(x), x € B, are real linear spaces
(3) there is a coordinate representation {(U,, ¥,)} such that the maps

Yo,00 F = Fy
are linear isomorphisms.

The dimension of F is called the rank of £. A coordinate representation
for the bundle which satisfies (3) is called a coordinate representation for
the vector bundle £. We shall often denote a bundle £ by its total space E.

If {(U,,4.)} is a coordinate representation for £, then the maps
8.8t Uug — GL(F) given by

£uo(*) = Yo Yo
are smooth. They are called the coordinate transformations for ¢ corre-
sponding to {(U, , %,)}. (GL(F) is an open submanifold of L(F; F).)
A neighbourhood U in B is called a trivializing neighbourhood for ¢
if there is a diffeomorphism

dp: U X F—> 71U
such that mp (x, y) = x (x € U, y € F) and such that the induced maps
vt F—>F,

are linear isomorphisms. i, is called a trivializing map for £.

A subbundle £ of a vector bundle £ is a vector bundle with the same
base such that each of its fibres F,’ is a linear subspace of F,, and for
which the induced inclusion map #: E' — E of total spaces is smooth.

44
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2.2, Bundle maps, If ¢ = (E,n, B,F) and ¢ = (E',n’, B, F') are
vector bundles, a bundle map (also called a homomorphism of vector
bundles) ¢: ¢ — ¢’ is a smooth fibre-preserving map ¢: E — E’ such
that the restrictions

@z Fo > Floy xeB,

are linear (y: B — B’ denotes the smooth map induced by ¢, cf. sec. 1.13).

If ¢': ¢ — ¢ is a second bundle map, then so is ¢’ o . Let i, ¢/,
and " denote the smooth maps of base manifolds induced by ¢, ¢’, and
¢’ o . Then

¢ = o

A bundle map ¢: £ — 7 is called an isomorphism if it is a diffeomor-
phism. The inverse of a bundle isomorphism is clearly again a bundle
isomorphism. Inverse bundle isomorphisms induce inverse diffeomor-
phisms between the base manifolds. Two vector bundles ¢ and £ are
called isomorphic, ¢ ~ ¢, if there is a bundle isomorphism @: £ 5 ¢'.

A strong bundle map between two vector bundles with the same base
is a bundle map which induces the identity in the base.

Now let ¢: £ — £’ be an arbitrary bundle map inducing y: B — B’ and
choose coordinate representations {(U, , )} and {(V;, x,)} for £ and ¢,
respectively. Then smooth maps

Pio : YTV N U, — L(F; FY)
are defined by
Pin(x) = X::rl' ° Py 0 Yoz, x = ¢(x)

They are called the mapping transformations for ¢ corresponding to the
given coordinate representations.

Proposition I: Let ¢: £ — ¢ be a homomorphism of vector bundles
inducing : B — B’ between the base manifolds. Then ¢ is an isomor-
phism if and only if

(1) ¢: B— B’ is a diffeomorphism,

(2) each ¢,: F, — F, (x € B) is a linear isomorphism.

Proof: If ¢ is an isomorphism, then (1) and (2) are obvious. Con-
versely, assume (1) and (2) hold. Then ¢ is bijective and ¢! restricts
to the linear isomorphisms ¢;': F, <= F,, . It remains to prove that
¢! is smooth.
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With the aid of trivializing neighbourhoods for ¢ and ¢ we can reduce
to the case (E, E’ are the total manifolds for £, ¢')

B =P, E=BXF, E' =B XxF
and ¢ is the identity map. Then x > ¢, defines a smooth map
$: B> L(F, F)
and ¢! is the smooth map given by

oM x, y) = (5, P(x)"Y(y)), «x€B, y eF.
Q.E.D.

2.3. Examples. 1. The trivial bundle of rank r over B
¢ = (B xF,m B,F),

where m(x,y) = x and F is an r-dimensional real vector space. This
bundle is often denoted by B X F or by €.
2. Restriction: Let ¢ = (E,n, B,F) be a vector bundle. The
restriction, ¢ |, , of £ to an open submanifold O C B is the bundle
f |O = ("—I(O)’ o O; F)y
. where =, is the restriction of = to the open set »~1(0).
3. Cartesian product: Let & = (E¢, #%, B, F?) be vector bundles
(i = 1, 2). Their Cartesian product is the vector bundle
£ X £ = (E' x E? ' x % B! X B} F1 @ F?)
whose fibre at (¥, , x,) is the vector space
Fl X F!, —F} ®F,.

If {(U,, )} and {(V,, ,)} are coordinate representations for £! and
£, then a coordinate representation {(U, X V,, x,)} for £' X £* is
given by

Xeol¥1 5 %3 5 Y1 @ ¥2) = (Pul1 5 Y1)y (%2, ¥2))-

The projections pl: E* X E? — E!, p?: E' X E? — E? are bundle maps
£1 % £ > ¢land € x £ — £

The Cartesian product £ X ¢€2 has the following factorization prop-
erty: If ¢ =(E,n, B,F) is a third vector bundle and p!': E— E1,
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p%: E — E? are bundle maps, then there exists a unique bundle map
p: E— E' x E? such that

prop=p' and  pPop =p*.

2.4. Multilinear maps. Let £, €2 ..., €7, £ be vector bundles over
the same base B. A p-linear bundle map

D: (& ... 69—~ ¢
is a collection of p-linear maps
&, Fl x - x F?—>F,,

indexed by B, which satisfies the following smoothness condition:

f{(U,, D}, ..., (U, ¥2)}, and {(U, , 4,)} are coordinate representa-
tions of £, ..., €2 and ¢ respectively (we may assume that the covering
{U,} of B is the same for all bundles), then the mapping transformations

®,: U, — L(FY, ..., F?; F)
defined by
Dx) = Yo Pro (e X 0 X P22),
are smooth.

This definition is independent of the choice of coordinate repre-
sentations and coincides with the definition of a strong bundle map when
p = 1. However, if p > 1, ® may not be regarded as a set map on
the Cartesian product of the total spaces of £, ..., £P.

When it is convenient to do so we shall use the notation &(x; 2, , ..., 2,)
for D (2, , ..., 2,)-

2.5. Construction of vector bundles. Proposition X in sec. 1.13
provides a useful tool for the construction of vector bundles over a given
manifold B. In fact, consider a manifold B and an r-dimensional vector
space F. Assume that to every point x € B there is assigned an r-dimen-
sional vector space F, .

Consider the disjoint union E = (J,.zF, and the natural projection
m: E — B. Assume given an open covering {U,} of B, together with
linear isomorphisms

$onF—>F,, xel,

subject to the following condition:
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Condition S: The maps g,,: U,; - GL(F) given by

gaB(x) = ‘/’u—lz ° l/’H,ac

are smooth.
Define bijections ¢,: U, X F— =~}(U,) by setting

Yo%, ) = da,o()-

Then Condition S implies that the bijections ¢, = 37 o b, of U,y X F
are smooth. Now, by Proposition X, sec. 1.13, there is a unique smooth
manifold structure on E which makes (E, =, B, F) into a bundle with
coordinate representation {(U, , 4,)}. It is clear from the construction
that the bundle so obtained is a vector bundle. The fibre at xe€ B is
the vector space F, .

Example. Pull-backs: Let § = (E, =, B, F) be a vector bundle and
let o: M — B be a smooth map. Assign to each x € M the vector space
F,, . Let {(V,,¢.)} be a coordinate representation for £ and set
U, = o7(V,). Define linear isomorphisms

‘rba,x: F— Fa(w) ’ X € Uu

bY $az = Psoz) - Then the map x>y % o , (x€ V, N V) can be
written

x > gop(a(x)),

where g, are the coordinate transformations for £. Hence it is smooth.
Thus there is a vector bundle o*¢ = (N, p, M, F), with N = U, cpFotn)
and with coordinate representation {(U, , #,)}. o*¢ is called the pull-back
of £ over o.
The identity maps F,(,) — F,(; define a bundle map

Tio%E > €

which induces o: M — B. 7 restricts to linear isomorphisms in each
fibre.

If » = (N, p’, M, H) is a second vector bundle over M and ¢: n — §
is a bundle map inducing o: M — B, then we may restrict ¢ to linear
maps

¢t Hy = Fog) xeM.
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These define a strong bundle map ¢: n — o*¢, and the diagram

¢
1
\ T
3
commutes. In particular, if each ¢, is a linear isomorphism, then ¢ is

a strong bundle isomorphism; i.e.,  is isomorphic to the pull-back of
£ over a.

—> o*¢




§2. Algebraic operations with vector bundles
In this article all vector bundles will have a fixed base B. Moreover,

£ ¢, n, { will denote fixed vector bundles with typical fibres F, F " H,
and K. In particular, we shall write { = (E, =, B, F).

2.6. The module of strong bundle maps. Let o, 1 £ — 5 be strong
bundle maps and let f e #(B). Then strong bundle maps

o+ foré—n

are given by
(@ + ¢)(2) = @) + ¢(2),
(fo)(z) = f(x) ¢(2),

ze E, n(2) ==x.

The operations (g, ¥) > @ + ¢ and (f, ¢) — fp make the set of strong
bundle maps into an #(B)-module, which we denote by Hom(¢; 7).

Let ¢ € Hom(¢; ), ¥ € Hom(n; {). Then the composite $op is a
strong bundle map,

pog: £~ 1L
The correspondence (g, ¢) > i o ¢ defines an #(B)-bilinear map

Hom(¢; 1) x Hom(»; {) - Hom(¢; {).

Example 1: If { = B X F, n» = B X H are trivial bundles, then to
each e Hom(§; 1) we can associate the mapping transformation
¢: B — L(F; H) defined by

o(x, v) = (x, $(x)), xeB, veF.
This defines an isomorphism of %(B)-modules:

Hom(¢; 7) — (B; L(F; H)).
50
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If &, ¥: (&, ..., £P) —> 7 are p-linear maps and if f € F(B), we define
® L+ W, fO: (&, ..., £2) 7 by
(). = f (%) P,

The operations (D, ¥)i—> @ + ¥, (f, D) — fP make the set of p-linear
maps (£, ..., ) > 7 into an %(B)-module, which we denote by
Hom(&, ..., £P; ). If 5 = B X R, the elements of the module
Hom(£, ..., €7; m) are called p-linear functions.

x € B.

Example 2: An %(B)-bilinear map
Hom(¢, ..., £7; 1) X Hom(y; £) — Hom(¢, ..., £%; £)
is given by (@, ¢) > @ o @, where
(o) =¢,°P,, «x€B.
An element @ € Hom (¢, ..., &; 1) is called skew-symmetric (symmetric)
if, for every x € B, the p-linear fibre maps
&.:.F, x - xF,—~H,

are skew-symmetric (symmetric). Skew-symmetric bundle maps will be
of particular importance in Chapter III. The skew-symmetric (sym-
metric) bundle maps are submodules of Hom(é, ..., £; n) which will be
denoted by AP(; 1) (SP(€; 1)), p = 1. We extend this definition to the
case p = 0 by setting

S%¢; ) = A%¢; ) = Hom(B X R; ).
Now set

A ) = @Dy, A7), S ) = @5, S¥E; ).
Since, evidently AP(£; ) = 0, p > rank £ (=r), we have
A6 1) = Dpmo 47(E5 1)

The module of skew-symmetric p-linear functions in ¢ is denoted by
Ar(€), and we write

A(§) = Dyey A7(6)-
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As in the case of Hom(¢; »), if £, ..., 7, 9 are trivial bundles, then

Hom(§, ..., £7; 9) =~ ¥(B; L(F", ..., F?; H)),
A(¢; ) = S(B; AF; H)),

and
A(€) = S(B; A(F)).

2.7. Dual bundles. Suppose that a bilinear function {, ) in (y, )
has been defined (cf. sec. 2.6). We say that {, ) is nondegenerate, or a
scalar product, if the R-bilinear functions

DOt Hy X Fy— R, x € B,

are all nondegenerate. In this case ¢ and 7 are called dual with respect
to {, ).

Now it will be shown that every vector bundle ¢ admits a dual bundle
£*. Let F} be dual to the vector space F, (x € B) with respect to a
scalar product (, >, . Let {(U,, ¢,)} be a coordinate representation for ¢
and define linear isomorphisms

oot F* = FF

by setting t,,, = ()™
Then the construction principle of sec. 2.5 yields a vector bundle
&% = (E*, n*, B, F*) where

E*x = | Fy

zeB

and 7*: E* — B is the obvious projection.

The scalar products < , >, define a scalar product between £* and §;
thus £é* and ¢ are dual bundles.

Evidently, rank £* = rank ¢.

Next, let ¢*, £ and n*, 7 be two pairs of dual vector bundles, with
fibres F¥, F, and H}, H, at x € B. Suppose ¢: £ — 7 is a strong bundle
map. Then a strong bundle map ¢*: £* «<— n* is given by

(‘P*)z = (‘Pm)*:F: - H:, x € B.

@* is called the dual of o.
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Proposition II: If £, n are dual with respect to (, >, then an &(B)-
module isomorphism

Hom({, & B x R) —=» Hom({; 1)

is defined by @ - ¢, where

p(w), 2>y = D(x; w, 2), wekK,, ze€F,, xeB.

Proof: The relation above defines unique linear maps ¢,: K, — H,,
for each x € B. The collection of all these maps determines a set map ¢
from the total space of { to that of 5. The smoothness of ¢ follows from
that of @; thus ¢ is a strong bundle map.

The correspondence @ +— ¢ is an ¥(B)-module homomorphism. On
the other hand, a module homomorphism

Hom(¢, é; B x R) «— Hom({; 7)

is defined by associating to each ¢ € Hom({; ) the bilinear function @
given by

¢(wi)z):<¢(w)’z>zv weKﬂcy zeFa:a x€B.

These homomorphisms are inverse to each other, and so they are iso-
morphisms.

Q.E.D.

Corollary I: Any two vector bundles which are dual to a given
vector bundle are strongly isomorphic.

Proof: Suppose ¢, % are dual to ¢ with respect to bilinear func-
tions {, >! and <, >2 Then the bilinear function ¢, >? determines a
@ € Hom(é2; £') such that

{pw), 2>L = (w, 202, weF?, zeF,, xeB.
It follows from standard linear algebra that ¢, is a linear isomorphism

and so @ is a strong bundle isomorphism.
Q.E.D.

Corollary II: If £*, £ and 7*, n are two pairs of dual bundles, then

Hom(n; £*) =~ Hom(y, ¢; B X R) =~ Hom(¢, »; B X R) =~ Hom(¢; n*).
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In particular, setting y = n* = B X R (with the standard scalar product
(%, A), (%, 1) = M) yields
Hom(B X R; £*) =~ Hom(¢; B x R).
2.8, Whitney sum. A vector bundle ¢ is called the Whitney sum
of the bundles &(v = 1, ..., p) if there are defined strong bundle maps
N 3 and pmé—> ¢

such that
PV oM = zo’ v # K
ty v=p
and
¥4
Y op =1

ve=l

In particular, the fibre F, in £ over a point x € B is then the direct sum
of the fibres F; . In this case £ is denoted by 1 @ --- @ ¢P.

Next, suppose that ¢*: £ — 7 are strong bundle maps. Then a strong
bundle map ¢: £ — 7 is given by

p=2¢cp.
The correspondence (¢!, ..., 9?) > ¢ defines a module isomorphism
@, Hom(¢"; ) —> Hom(£ @ -~ @ £7; ).

In particular, £ @ -+ @ £P is determined up to strong isomorphism.

Now we shall show that the Whitney sum of vector bundles always
exists. We shall restrict ourselves to the case p = 2, the generalization
being obvious. Assign to each x € B the vector space F; @®F:. Let
{(U,, ¢})} and {(U,, ¢%)} be coordinate representations for ¢!, £2 and
assign to x € U, the linear isomorphism

Yo5 = ‘Pz.m @‘P:.m:FIEBFz—’F:@F: .
Then the construction principle of sec. 2.5 yields a vector bundle
¢ = (E,m B,F* ®FY),

where

E=\) FloF}

xeB

and 7 is the obvious projection.
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The inclusions F,, , Fz — F. @ FZ define strong bundle maps
e g e
The projections Fy @ F2—F),FL @ F2—F? define strong bundle
maps
€8, phfg
These maps satisfy the required conditions (check this at each xe B

separately) and so £ is the Whitney sum of £ and ¢2. Clearly
rank(£' @ £?) = rank £ + rank £2

2.9. Tensor product. A vector bundle 7 is called a tensor product
of the bundles & (v = 1, ..., p) and is denoted by £ ® -+ ® &7 if there
is defined a p-linear bundle map

@7 (£ ...y €7) =1

subject to the following factorization property: For each vector bundle
{ over B, and to every p-linear bundle map @ e Hom(¢!, ..., £7; {)
corresponds a unique strong bundle map ¢: n — { such that

poR?=9.

A tensor product of vector bundles £ always exists. It is constructed
in exactly the same way as the Whitney sum, with F; ® F2 replacing
F3 @ F2 . In particular, rank(£! ® ¢2) = (rank £')(rank £2).

Let £ ® - ® £P be a tensor product for vector bundles . Then
the correspondence ¢ > ¢ o ®P defines a module isomorphism

Hom(£! ®  ® €% {) — Hom(g, ..., £%; {).

In particular, £ Q) -+ Q) £P is determined up to strong isomorphism.

If & = =¢ = ¢ we denote the tensor product by ®P¢. We
extend the definition by setting
X% = B X R.

Finally, let £, £* and %, n* be two pairs of dual vector bundles. Then
the bilinear function in (§* ® n*, £ ® %) given by

(=* R w*, 2 @ wy, = (2% 2 Llw*, w), , x € B,
is a scalar product. Hence we can write

Q0" =& ®@*
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2.10. The bundle L(£; ). Recall that £ =% denote vector bundles
over B with typical fibres F, H. Let {(U,, ¢.)} and {(U., #,)} denote
coordinate representations for these bundles. Now assign to each x € B
the vector space L(F,; H,). Further to each x € U, assign the linear
isomorphism

oot LAF; H) —— L(F; Hy)
given by
foil0) = Yoz 0Pl
Then the construction principle of sec. 2.5 yields a vector bundle
L(¢; 1) = (B, #, B,L(F; H)),

where

E=\)LF,; H)

xEB

Its fibre at x is the space L(F,; H,).
If ¢ = 7, we sometimes denote L(¢; £) by L, .
If ¢* is a vector bundle dual to £, then the canonical isomorphisms

F*Q H,—>L(F;H,), x€cB
define a strong bundle isomorphism

£ ® n — L(&; 7).

More generally, we may construct the vector bundle L(£, ..., £¥; )
whose fibre at x € B is the space of p-linear maps F; X - X F§ — H,,.
The canonical linear isomorphisms

L(F},..F3; H,) = LF; ® =+ @F; Hy) = (Fo)* ® - QF)* @ H,
define strong bundle isomorphisms
L&,y 5 2 L @ Q)= () Q- ®E)
The bilinear bundle map

e (L(&n), ) —>
given by

e(x; oy, 3,) = a,(2,), oy €L(F,; H,), 2,€F,, x€B,
is called the evaluation map. The bilinear bundle map

@: L(&; m) X L(n; §) = L(&; D),
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defined by
¢(x; Qg Bm) = Broay, Xy EL(Fa; H Hm)’ B eL(H,, Ka:)’ x€B

is called the composition map.

2.11. Exterior algebra. A pth exterior power of ¢ is a vector bundle
AP¢, together with a p-linear skew-symmetric bundle map

A?: (€, ..., ) — APE,

with the following factorization property: Every p-linear skew-symmetric
map P: (, ..., §) — n can be written uniquely in the form

(p_:(poAp’

where @: AP — 7 is a strong bundle map.
The map ¢ > ¢ o AP defines a module isomorphism

Hom(A?¢; n) — A%(£; ).

An argument similar to the one used in sec. 2.9 shows that the bundle
AP£ exists and is uniquely determined by £ up to a strong isomorphism.
AP¢ has fibre APF, at x € B and the map AP is given by

AP(x; 21,00y Bp) = 31 A " A2y, z,eF,, xeB.

In particular, AP¢ = B X {0}, p > rank £; and rank(A?£) = (3),
1 < p < r, where r is the rank of £.

Now suppose ¢ and £* are a pair of dual vector bundles. Then (for
each x € B) the scalar product (, >, between F, and F} induces a
scalar product, <, >, between APF, and APF}, given by

CRXLA v A 2¥P 20 A 0 A 20, = det({2*, 2,0,), ZeF¥, z,eF,.

These scalar products, in turn, define a scalar product between AP§
and AP£*, Thus these bundles are dual, and we can write

(APE)* = Apg*,

We now extend the definition of AP{ to the case p = O by setting
A% = B x R. We define the exterior algebra bundle A{ to be the
Whitney sum

AE = D), N, r = rank £,

A§ has fibre AF, at x € B, and its rank is 2.
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A strong bundle isomorphism A¢ & An =~ A(é @ ) is given by
IR w2 Aw, zeANF,, weAH,, xeB.
If p: £ — 7 is a strong bundle map, then the induced linear mappings

o F,— H,, x€eB,
extend to algebra homomorphisms
Ay AF, — ANH, .
These define a strong bundle map, written Ag: A — An.

2.12, Symmetric algebra. In precisely the same manner as in the
preceding sections we obtain for every p > 1 a unique vector bundle
VP¢ together with a p-linear symmetric bundle map

Voi (g, ..., €) = VPE,
with the following property: Every symmetric p-linear map
¥ (& ..., €)=

can be written uniquely in the form ¥ = ¢ o V?, where ¢: VP¢ — 9 is
a strong bundle map. VP¢ is called a pth symmetric power of £. The map
Yt g o VP defines a module isomorphism

Hom(V?¢; n) —— S(£; 7).

The bundle V?¢ has fibre VPF, at x € B and the map V?: (¢, ..., §) - VP¢
is given by

VP(x; 2y, ey Zp) = 2LV "V 2y, z,eF,, v=1,.,p, x€B.

Finally, assume that £ and £* is a pair of dual vector bundles. Then
(for each x € B) the scalar product ¢ , >, between F, and F} induces a
scalar product {, >, between VPF, and VPF} by

(FFLy - v 2*P 2 v - v 2> = perm({2*, 2,5,), ¥ eF}, z,eF,.

These scalar products define a scalar product between the bundles
VP¢ and VPE* Thus these bundles are dual, and we can write -

(Vﬂ&)* — \/pf*_



§3. Cross-sections
In this article § = (E, m, B, F) denotes a fixed vector bundle.

2.13. Definitions. A cross-section o in a vector bundle ¢ is a smooth
map o: B — E such that 7 o ¢ = 1. Every vector bundle ¢ admits the
zero cross-section o defined by

o(x) = 0,eF,, x € B.
The carrier (or support) of a cross-section o is the set

carr o = closure{x € B | a(x) 5 0,}.

Let o: U — E be a cross-section defined in an open subset U of B
(i.e. o is a cross-section in the bundle ¢],). Let fe S(B) satisfy
carr f C U. Then a cross-section f - o in £ is given by

_ (f(x) of), xelU
(f o)) = 0., x ¢ carr f.

More generally, let {U,} be a locally finite open cover of B, and for
each v let o, be a cross-section defined over U, . Let {f,} be a partition
of unity subordinate to the open cover {U,}. Then a cross-section

Y. f,+0o,,in £ is given by
(T4 0) @ = L@ a®.

If o is a cross-section in ¢ and o,: U, — E is the restriction of 6 to U, ,
then

a:va.av'

Examples: 1. Let a€ E and let b = m(a). Then there exists a
cross-section o such that o(b) = a.

In fact, choose a trivializing neighbourhood U of b. Then ¢ |, = U X F
and so there is a cross-section 7: U — E such that 7(b) = a. Choose
fe &F(B) with f(b) = 1 and carr fC U; thenseto = f - 7.

59



60 II. Vector Bundles

2. A vector bundle of rank 1 is trivial if and only if it admits a cross-
section ¢ such that

o(x) #0,, =xeB.

Indeed, if ¢ = B X R is trivial define o by o(x) = (x, 1). Conversely,
if o exists, define a strong isomorphism B X R — £ by

(», t) — to(x), xeB, teR.

2.14. The module of cross-sections. If o, 7 are cross-sections in §
and f € &#(B), cross-sections ¢ + 7, fo in £ are given by

(0 4+ 7)x) = o(x) +7(x),  (fo)x) =f(x)olx), =x€B.

The operations (o, 7) > o + v and (f, o) > fo make the set of cross-
sections in ¢ into an &(B)-module, which will be denoted by Sec .

Examples: 1. If £ = B x F is a trivial bundle, then every cross-
section o determines a smooth map ¢: B — F given by

o(x) = (x, p(x))-
This defines a canonical isomorphism
Sec ¢ —=» #(B; F)

of #(B)-modules. In particular, if e, , ..., e, is a basis of F, then the
cross-sections o; given by

o(x) = (x, &), i=1,.,r, x€B,

are a basis for Sec £: thus it is a free &(B)-module.
2. Sec (&' @ £2) >~ Sec & @ Sec £2. In fact, the homomorphisms

Sec(£ @ £2) — Sec €' @ Sec £, Sec £ @ Sec £ — Sec(é* @ £3),

given by

a > (ptoo, p?oo), (01, 05) >tloo; +1t2cay,

respectively, are easily seen to be inverse (cf. sec. 2.8).
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3. Let 9 be a second vector bundle over B, with typical fibre H.
We shall define a canonical isomorphism

w: Sec L(£; 1) — Hom(¢; 1)

of &(B)-modules.

Indeed, fix o e SecL(€é;m). Then, for xe B, o(x)eL(F,; H,). Let
@: £ — n be the fibre-preserving set map whose restriction to each F,
is the linear map o(x). @ is smooth, as follows directly from the smooth-
ness of o, with the aid of coordinate representations for ¢ and for 7.
Hence ¢ is a strong bundle map.

Now define w to be the correspondence

w: o,

just given. w is clearly an #(B)-module homomorphism. To show
that it is an isomorphism we construct the inverse. Let ¢ € Hom(¢; )
and define o € Sec L(¢; 1) by

o(x) = ¢, e L(F, ; H,), x € B.

Then the correspondence @ > o defines a module homomorphism
inverse to w.

4. A canonical isomorphism

w: Sec L(&Y, ..., €7; ) > Hom(&, ..., €%; )
is defined by

W(O)(Zy 5 ooy Bp) = (X5 215 ooy Zp), xeB, zeF,, v=1,..,p

(same argument as in Example 3).

5. A canonical isomorphism

w: Sec L(APE; n) —> AP(¢; 7)
is defined by

W(0)(2y 5 ooy Bp) = o(X)(2) A =0 A 3y), xeB, z€eF,, v=1,.,p.
6. A canonical isomorphism

w: Sec L(V?¢; 1) —— SP(&; 7)
is defined by

W(O)(2y 5 s Bp) = o(X)(ZL V 0 V Zp), xeB, zeF,, v=1,..,p.
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2.15. Mappings of cross-sections. In this section we describe three
types of mappings (induced by bundle maps) between modules of
cross-sections.

First, let n =(E',«n', B’, H) be a second vector bundle and let
@: ¢ — 7 be a bundle map inducing : B — B’. Let £*, n* be bundles
dual to £ and %. Then ¢ induces a map

@*: Sec £* «— Secn*

defined as follows:
Let
9. Ff <~ Hj,, «x€B

be the dual of the linear map ¢,: F, — H,) . Then, for 7€ Sec n*,
define a map o: B — E* (the total space of £*) by

ox) = gt (rly),  x€B.

Use the trivializing maps to show that o is smooth, and hence a cross-
section in £*,

We denote ¢ by ¢*(1). The map ¢*: Sec n* — Sec £*, so defined
satisfies

(1 + ) = ¢X(11) + ¢*(m),

e*(fr) = ¢*f - ¥(1), fe S(B), 7, 1,,7s68ecn*.
The second type of mapping occurs when we consider bundle maps

@: £ —n which restrict to linear isomorphisms ¢, in each fibre. In this
case a map

¢*: Sec £ « Secy
is given by
[e*("))(x) = ¢ (r(yx)), x€B, reSecn.
It satisfies the relations

@*(11 + 1) = ¢*(11) + ¢*(72)
and
e*(fr) = ¢*(f) ' ¢*(r), 7,71,72€Secw, fe SL(B).
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Thirdly consider the case that ¢ and 7 are bundles over the same
base B, and let ¢: £ — 7 be a strong bundle map. Define

@i Sec £ — Secy

by
(p«o)(x) = @(o(x)) = @u(o(x)), x€B, oeSecé.

Then ¢, is a homomorphism of & (B)-modules.
If : y —  is a second strong bundle map, then

(‘/’°‘P)* = ‘/’*“P*-
Moreover,

(te)* = tsece
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2.16. Orientable vector bundles. Let ¢ = (E, =, B,F) be a vector
bundle of rank r, with dual bundle £*. Then (cf. sec. 2.11) A7é* is a
vector bundle of rank 1. We say that ¢ is orientable if there exists a
4 € Sec AT¢* such that

A(x) <0, x€B.

Such a cross-section is called a determinant function in €. Clearly 4(x)
is a determinant function in the vector space F .

According to Example 2, sec. 2.13, a vector bundle ¢ of rank r is
orientable if and only if A7¢* is trivial.

If 4, , 4, are both determinant functions in £, then there is a unique
fe &(B) such that 4, = fd4,. Moreover, f(x) 0 (x e B). Thus an

equivalence relation on determinant functions is given by
4, ~d, = f(x) > 0, x € B.

Each class is called an orientation of £

If a given class containing 4 is chosen, the vector bundle is said to
be oriented, 4 is said to represent the orientation and is called positive.

Suppose then that £ is oriented and 4 represents the orientation. The
determinant functions 4(x) orient the fibres F, (x € B) in the sense of
linear algebra [cf. 5, p. 127]. This orientation is independent of the
choice of 4. A sequence z,, ..,2, of vectors in F, will be called
positive (with respect to the orientation) if

A(xy 21y ey 24) > 0.

Now assume B is connected, and £ is orientable. Then the functions
f, above, are either everywhere positive or everywhere negative; thus £
admits precisely two orientations.

Proposition III: A vector bundle ¢ = (E, =, B, F) is orientable if
and only if it admits a coordinate representation {(U,, ¢,)} whose
coordinate transformations g,s(x) = @ % ° ¢, , have positive determinant.

Proof: Assume that £ is orientable and let 4 be a determinant func-
64
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tion in €. Let {(U,, 4.)} be a coordinate representation for ¢ such that
the U, are connected. Choose a fixed determinant function 4, in F.
Since the U, are connected, for each «, the linear maps

oot F—Fy, xe U,

either all preserve, or all reverse the orientations. Let p be an orientation-
reversing isomorphism of F and define a coordinate representation

(U, , ¢.) for £ by

(%,y) = (%, ¥), if i, , preserves orientations
Pul®s ¥) = o, p(3)), if 4, , reverses orientations.

Then each g, , preserves orientations. Hence so does ¢;}° gz ,; i.e.
det(p:L © 95,) > O.

Conversely, assume that ¢ admits a coordinate representation {(U, , ¢,)}
such that

det((P;.la: °@gz) > 0, xelU,N Ug.

Let 4, be a determinant function in F and define 4, € A7(¢ |v.)
(r = rank £) by

Ay(x; 215 0y 2y) = AF(?’;}x(zl)’ ) ‘Pa_r,lz(zr))'
A simple computation shows that
A,(%; 21y e 7,) = det(@r 0 @p.2) do(%5 21, o0y 2,),  x€U,N Uz, 2€F,.

Now, assume that the cover {U,} of B is locally finite, and let {p,}
be a subordinate partition of unity. Define 4 € Sec AT¢* by

A5 2y, oo 2) = Y Pol%) Ao(%5 21, .00, 2,),  x€B, z€F,.

Since Y, p.(x) = 1, p.(x) = 0 and det(p} ° g5 ;) > 0, it follows that

d(x) # 0, x€ B,

and so ¢ is orientable.
Q.E.D.

Corollary: Let ¢ be an oriented vector bundle and choose a fixed
orientation in the typical fibre F. Then there exists a coordinate rep-
resentation {(U, , ¢,)} for £ such that the isomorphisms

Po,zt FiFm

preserve the orientations.



66 II. Vector Bundles

If : £ -7 is a bundle map inducing linear isomorphisms on the
fibres, then an orientation in v induces an orientation in £. In fact, let
4, be a cross-section in A™p* (r = rank ) such that 4,(y) # 0(y€ B,)
and set

4, = x4, .

Then 4,(x) + 0 (x € B;) and so 4, orients &.
Let & m be vector bundles over B oriented by 4, and 4, . Then
¢ @ 7 is oriented by the determinant function 4 given by

A(x) = di(x) A 4,(x), xeB

(cf. sec. 2.11). The orientation represented by 4 depends only on the
orientations represented by 4, and 4,, and is called the induced
orientation.

2.17. Riemannian and pseudo-Riemannian vector bundles. Let ¢ =
(E, =, B,F) be a vector bundle. A pseudo-Riemannian metric in £ is
an element g e S%(€) such that, for each x € B, the symmetric bilinear
form g(x) in F, is nondegenerate. The pair (§, g) is called a pseudo-
Riemannian vector bundle.

If the bilinear forms g(x) are positive definite for every x € B, then g
is called a Riemannian metric, and (¢, g) is called a Riemannian vector
bundle. A cross-section ¢ in a pseudo-Riemannian vector bundle is
called normed if

&(x; o(x), o(x)) = 1, x € B.
A pseudo-Riemannian metric g in ¢ defines a duality between £ and

itself. Hence (cf. sec. 2.7) if £* is any vector bundle dual to £, g deter-
mines a strong isomorphism

7:55—> f*

by the equation
{1(2), wy, = g(x; 2, w), xeB, zwelF,.
Examples: 1. Let ¢ % be vector bundles over B with typical

fibres F, H. Assume g, , g, are Riemannian metrics in ¢ and 5. Then a
Riemannian metric g in ¢ @ 7 is given by (x € B)

&(x; z,w), zwel,
(x; o, zeF,, weH,
£lx; %, w) = 0, zeH,, wePF,

&.(x; 2, w), z,weH, .
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2. Let & m,8.,8, be as above. Then a pseudo-Riemannian metric
gin £ @ 7 is given by replacing g, by —g, in the above definition.

3. Let & 1,8:,8, be as above. Then a Riemannian metric g in
£ ® m is given by

gx; 2 @ w, ¥ @ w') = gx; 2, 2') g,(x; w, w').
4. A Riemannian metric in A?¢ is given by
glas 3 A A2y, 2 A A zY) = det g(x; 2, ).
Proposition IV: Every vector bundle £ admits a Riemannian metric.

Proof: If £ = B X F is trivial and {, > is a Euclidean metric in F,
then

&x;y1,¥) = <¥1,Y2)» *¥€B, y,y,€F

defines a Riemannian metric in £.

Now, let ¢ be arbitrary, and let {(U, , ¢,)} be a coordinate representa-
tion for £ such that {U,} is a locally finite open cover of B. Let {p,}
be a subordinate partition of unity.

Since the restriction £, of £ to U, is trivial, there is a Riemannian
metric g, in §, . Define g by 3, p.g.. Then g(x) is a Euclidean metric
in F, ; hence g is a Riemannian metric in £.

Q.E.D.
Corollary: If £, £* are dual vector bundles, then £* ~ ¢,

Let ¢ =(E;,w;,B,F) and n = (E,,n,, B’, H) be Riemannian
bundles and let ¢: £ — 7 be a bundle map. ¢ is called isometric or an
isometry if the linear maps ¢, are isomorphisms which preserve the
inner product.

Proposition V: Let ¢ = (E, m, B, F) be a vector bundle with Rie-
mannian metric g. Let (, > be a fixed Euclidean inner product in F.
Then there is a coordinate representation {(U, , ¢,)} for £ such that the
maps ¢, , : F'— F, are isometries.

Proof: It is sufficient to consider the case that £ = B X F is trivial.
Denote g(x) by {, >, and let F, denote the vector space F endowed with
the inner product {, >, . Let ¢;, ..., ¢, be an orthonormal basis of F
(with respect to { , ).
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Now let 7y(x), ..., 7,(x) be the orthonormal basis of F, obtained from
€1 5.ry & Dy the Gram-Schmidt process:

Ti() = i), w(%))1* w(),

where
-1
wy(x) = ¢; — 21 ey, TH(%)D o Ti(%).
Ju=

It follows from this formula that the 7, : B — F are smooth.
Hence a coordinate representation for ¢ is given by (B, ) where
Y: B X F— E is defined by

W) = (% oo 35 mia)-

Moreover each ¢, : E — F, is an isometry.

Q.E.D.

Definition: A coordinate representation satisfying the condition of
Proposition V will be called a Riemannian coordinate representation.

Proposition VI: If (£, g), (5, h) are Riemannian vector bundles over
the same base B and ¢ € Hom(§; 7) is an isomorphism, then there exists
an isometric isomorphism

Y€

Proof: Since % induces a Riemannian metric 4 on ¢ with respect to
which g is an isometry we may assume that y = .

Define « € Hom(¢; €) by
h(x; o (2), w) = g(x; 2, w), x€eB, zwekF,.

Since A(x) and g(x) are inner products, each o, € S*(F,). In view of
Example 12, sec. 1.5, there is a unique i, € S*(F,) which satisfies
Y2 = a, and which depends smoothly on «, . The induced bundle map
Y: £ — £ is a strong isometric isomorphism.

Q.E.D.

2.18. Subbundles. Proposition VII: If % is a subbundle of £ (sec. 2.1),
there is a second subbundle { of ¢ such that § is the Whitney sum of 7
and {.
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Lemma I: Suppose that y = (E,, n,, B, H) is a subbundle of a
Riemannian vector bundle (¢ = (E, m, B, F), g) and that {,)> is an
inner product for F. Then there exists a Riemannian coordinate repre-
sentation {(U, , ¢,) | @ € B} for £ such that if i, is the restriction of ¢,
to U, X H (without loss of generality we may assume H CF), then
{(U, , ¥,)} is a coordinate representation of 7.

Proof: According to Example 1, sec. 2.14, we can find, for each
a€ B, a neighbourhood ¥V, and a basis o,,.., 0, (s =rankn) of
Sec(n |y,). In particular oy(a), ..., 0,(a) is a linearly independent set of
vectors in F, and so there are o, , ..., 6, € Sec £ such that o¢,(a), ..., 0,(a)
is a basis for F,, .

In view of the continuity of the map

x> oy(x) A - Ao (x)eEANF,, xeV,, r=rank§,

there exists a neighbourhood U, of a such that ¢,(x), ..., o,(x) forms a
basis of F,, x € U, . Apply the Gram—Schmidt process (proof of Propo-
sition V above) to obtain new cross-sections 7y, ..., 7, in Sec({ |y )
such that 7,(x), ..., 7{x) is an orthonormal basis of F, (with respect to
g(x)). Since oy(%), ..., o(x) is a basis of H, (x € U,), it follows from the
construction that 7y(x), ..., 7,(x) is a basis of H, .

Now choose an orthonormal basis e, , ..., ¢, of F such that ¢, ,..., ¢,
is a basis for H. Define maps ¢,: U, X F — #~1U, by

Pa (x, y /\,-e,.) =Y Ar(x), =xeU,.

Then {(U, , ®,) | a € B} is the required coordinate representation of ¢.
Q.E.D.

Proof of Proposition VII: Assign to ¢ a Riemannian metric g.
‘Choose an inner product {, > for F, and let {(U,, ¢,) | a€ B} be a
coordinate representation for ¢ satisfying the conditions of Lemma I.

To construct the subbundle { we use the construction principle of
sec. 2.5. Assign to x € B the vector space H,

Hy = {z€eF,|g(x; z,w) =0 when weH,}.

Since ¢, , : F —F, (x€ U,) is an isometry which carries H to H,, it
restricts to a linear isomorphism

oo H* =, HE.
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The induced maps U, N U, — L(H+; H') given by
X ‘/1;1::2 otz
satisfy Condition S, sec. 2.5. Thus we obtain a vector bundle
{ = (E¢,n, B, H)

where E, = U_Hj . Evidently { is a subbundle of ¢.
The inclusions i: p — £, j: { — £ extend to a strong bundle map

1@~ ¢

Since F, = H, @ Hz, this map restricts to isomorphisms in each
fibre; hence it is an isomorphism.

Q.E.D.

2.19. Oriented Riemannian bundles. Assume that g is a Riemannian
metric in an oriented vector bundle ¢ = (E, m, B, F) of rank r. Let £*
be any dual bundle. Then the induced isomorphism £ ~ £* induces a
Riemannian metric in ¢*, and hence in A7£*. There is a unique normed
cross-section 4 € Sec A7é* which is positive with respect to the orienta-
tion of £ It is called the positive normed determinant function in ¢£.
For each x € B, 4(x) is the positive normed determinant function in F, .

Proposition VIII: If (£, g,4) is an oriented Riemannian vector
bundle and (F, {, >, 4;) is an oriented Euclidean vector space, there
exists a coordinate representation {(U, , ¢,)} for £ such that the maps
@u . - F — F, are orientation preserving isometries.

Proof: Apply the proof of Proposition III to a Riemannian coordi-
nate representation, being careful to choose an isometric reflection, p,
in F.

Q.E.D.

2.20. The bundle 2. Let £ = (E, =, B, F) be a Riemannian vector
bundle of rank r and consider the rank 1 bundle A’¢. Let S, denote the
unit sphere of the one-dimensional Euclidean space A'F, (x € B). We
shall construct a smooth bundle # = (B, p, B, S° such that p(x) = S, .

Let B = U,,S, and let p: B — B denote the obvious projection.
Choose a Riemannian coordinate representation {(U, , 4,)} for £. Then
each linear map

Jog = Ay z: N'F — A'F,



4. Vector bundles with extra structure 71

is an isometry and so {(U, , )} is a Riemannian coordinate representa-
tion for A7¢. The corresponding coordinate transformations are given by

&Ba.z = det l/‘Bm.z U €gyp T by

where €, , = 41, and the function x > €, , is smooth.
Thus i, restricts to a bijection

go: Uy X 80— p(U,).
In particular, the map

Poa = (PB_IO(P&: UNUy x 8= U,NU; xS°
is given by
¢Bﬂ(x’ t) = (x) eBu.zt)) X € Ua N UB, te SO,

and hence it is smooth. Now apply Proposition X, sec. 1.13, to obtain
a smooth structure on B such that (B, p, B, S° is a smooth fibre bundle.
Since S° consists of two points, B is called the double cover of B induced
by ¢. The smooth involution w of B which interchanges the two points
in each S, is called the covering transformation of B.

Proposition IX: If B is connected, then B is connected if and only
if ¢ is not orientable.

Proof: p preserves open and closed sets; hence it maps each com-
ponent of B onto the connected manifold B. Since p~!(x) consists of two
points (x € B), there are two possibilities: either (i) B is connected or
(ii) B has two components B, , B,, and p restricts to diffeomorphisms

e B, =, B.

If B is not connected p;': B — B, may be interpreted as a cross-section
with no zeros in A7¢; hence € is orientable.

Conversely, suppose ¢ orientable. Choose orientations in ¢ and in F,
and choose , so that each ¢, , is orientation preserving (Proposition VIII,
sec. 2.19). Then (in the notation above)

q’a.zz‘pﬂ.mzso—)szv xEUanUB'
Thus the ¢, define a diffeomorphism
¢: B x §° =, B.

In particular, B is not connected.
' Q.E.D.
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Proposition X: Let £ = (E, #, B, F) be the pull-back of ¢ to B.Then
the bundle £ is orientable.

Proof: Set U, = p~1U, and let {(U,, {.)} be the coordinate repre-
sentation of £ induced by the coordinate representation {(U, , ,)} for
£. Choose a determinant function 4, in F. Then the cross-section

Q(x,t)y =1t A, xelU,, tedS°

orients the trivial vector bundle (U, X S% X F. Thus the bundle
isomorphism

' [

AU, x 8 x F—= 0, x F = 710,

Po Xt o

A3

induces an orientation in the restriction &, of £ to U, .
Now a simple computation shows that the maps

At e A [(U, N Ug) x 8% X F— [(U, 0 Ug) x 8% x F

are orientation preserving. It follows that the restrictions of £, and
& to U, N U, have the same orientation. Hence the orientations in the

£, define a global orientation of ¢.
Q.E.D.

2.21. The bundle Sk; . Let (¢ = (E, =, B,F),g) be a Riemannian
vector bundle. Consider, for every x € B, the subspace

Skg, C Ly,

whose elements are the skew transformations (with respect to the inner
product g(x)). Let
E =Sk, CL,
z€B

and let # denote the restriction of the bundle projection of L, to E.
Finally, let {, > be an inner product in F and let Sk, C L; be the
space of linear transformations of F which are skew with respectto ( , >.
We shall show that

Skf = (E, 'ﬁ', B, Skp)

is a vector bundle.

In fact, let {(U,, ¢,)} be a Riemannian coordinate representation
for £. The corresponding coordinate representation {(U,,y,)} for
L, is given by

Xool®) =@, .a9,%, a€lp, xelU,.
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Since the ¢, , are isometries, y, , restricts to a linear isomorphism

¥, . Skp — Sk,

Apply the construction principle of sec. 2.5 to obtain the desired bundle.
Evidently Sk, is a subbundle of L, .
A strong bundle isomorphism

B: A2¢ > Sk,
1s defined by

Bz A w) = ay, z,weF,, xeB,
where a, is the skew linear map in F, given by
%(y) = (g, y>ac w — {w, y>x 2, Yy EFz ’ <)>:c = g(”)

2.22, Complex vector bundles. A complex vector bundle is a qua-
druple ¢ = (E, m, B, F) where

(1) (E,n, B,F)is a smooth fibre bundle.

(2) F, and the fibres F, (x € B) are complex linear spaces.

(3) There is a coordinate representation {(U,, 4,)} for ¢ such that
the maps

‘/’a,x: F—F,

are complex linear isomorphisms.

The complex dimension of F is called the rank of the complex

bundle &.
Let ¢ = (E, =, B, F) be a complex vector bundle of rank 7. Let F be

the 27-dimensional real vector space underlving F, and let
i FR - FIR

be multiplication by ie C. Let {5 = (E, =, B, F) be the real vector
bundle obtained by forgetting the complex structure and let 7, € L({g; g)
be the strong bundle isomorphism which restricts to multiplication by ¢
in each (F,)g = (Fg), - Then, if {(U,, ¥,)} is a coordinate representation
for £, we have

‘)brx.z of = 1;(-”) ° I/J‘,_x , X € Uu .

i, is called the complex structure of €.
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Proposition XI: Let n = (E, =, B,Fy) be a real vector bundle of
rank 2r. Let yeL, be a strong bundle map such that y* = —..
Let F be a complex space with underlying real space Fy. Then 7 is
the underlying real vector bundle of a complex bundle { = (E, = B, F)
with complex structure y.

Proof: We must find a coordinate representation {(U, ¢,)} for g
such that

¢a.x°i:7m°¢u.z’ xeU,.

Let a€ B be arbitrary and choose a basis for (Fg), of the form
2y -es Bp s YaB1 s s Va2y - By Example 1, sec. 2.13, there are o, € Secy
such that o,(a) = 2, (v = 1, ..., r). By the continuity of the map

%> 0y(x) At A a(x) A (Y0)(®) A o A (v4on)(%),
there is a neighbourhood U of a such that
TVZGV‘U’ fv:(‘}’*%)h/, v = 1,...,7‘,

form a basis for Sec(y |y).
Lete,, ..., €, 1(e,), ..., i(e,) be a basis for F and define : U X Fg—="1U
by
o(x, e,) = 7,(x), o(x, i(e,)) = 7.(x), v=1,.,r

It is easily checked that (U, ¢) is a trivializing chart of ¢ and that
Prot =yzo @, xel.

Since U is a neighbourhood of an arbitrary point a € B, the proposition
is proved.

Q.E.D.

The results of §1, §2, and §3 are essentially unchanged if we replace
R by C and real vector bundles by complex vector bundles. In particular
we have the notion of complex bundle maps (the fibres being complex
linear), the module of complex p-linear mappings, the complex tensor
product, the complex exterior algebra bundle, and complex triviality.

Suppose ¢ = (E, m, B,F) is a complex vector bundle. A Hermitian
metric, g, in £ is an element

g€ Hom(&yg, é; B x C)

such that g(x) is a Hermitian inner product in the complex vector space
F, for each x € B.

In exactly the same way that the analogous theorems for Riemannian
bundles were proved we obtain
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Proposition XII: A Hermitian metric can be introduced in every
complex vector bundle. If (¢, g) is a Hermitian complex vector
bundle, there exists a coordinate representation {(U,, ¢,)} of ¢ such
that the mappings

(Pn(,m: F —’Fac

are Hermitian isometries (F being given a fixed Hermitian metric).
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2.23. The main theorem. This section is devoted to proving

Theorem I: For every vector bundle £ there exists a vector bundle
n, over the same base, such that ¢ @ 7 is trivial.

We write, as usual, ¢ = (E, =, B, F).
Lemma II: Sec £ is a finitely generated %(B)-module.

Proof: It follows from Theorem I, sec. 1.2 (as in Proposition XI,
sec. 1.13) that { admits a finite coordinate representation {(U,, 4,)},
=1, .., p. Since the restrictions §, of £ to U, are trivial, the
F(U,)-modules Sec £, are free on bases {o,;};-; ., (r = rank §),
(cf. Example 1, sec. 2.14).

Let f(u = 1, ..., p) denote a partition of unity for B subordinate to
the covering {U,}. Define cross-sections 7,; in ¢ by

.....

T = Ffu " 0uis =1,.,p t=1.,r

We shall show that the 7,; generate Sec ¢.

Since carr f, C U, , Proposition VIII, sec. 1.8, yields functions 4, on
B such that

carr b, C U, and h(x)y =1, x e carr f,.
Thus

hufu =t

Now let w € Sec £ and denote by w, the restriction of w to U, . Write

™M=

8uiOui » g€ L (U,).

w, —

i=1

Define p,; € £(B) by p,; = h,g.; . Then
w = quwu = Z hufuwu = Z (hugul'fu)aui = ZpuiTui .

u.

Q.E.D.
76
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Lemma III: Let{ = (E, 4, B, F) be a second vector bundle over the
same base and let ¢: { — £ be a strong bundle map such that each
g,: F, — F,_ is surjective. Then there is a strong bundle map ¢: £ — {
such that o p = .

Proof: Give ¢ and n Riemannian metrics. Then each ¢, determines
an adjoint map ) :F, —F,. Since ¢, is surjective, i, 04X is an
isomorphism of F, onto itself. Define ¢: E — E by

Pr = ¢:(¢r ° ‘/’:)_1’ xeB

and use Riemannian coordinate representations for ¢ and 7 to show
that ¢ is smooth. Thus ¢ is a strong bundle map and o p = .

Q.E.D.

Proof of the theorem: According to Lemma II there is a finite
system of generators oy, ..., o, for Sec {. Consider the trivial bundle
B x R™ and the strong bundle map : B X R™ — ¢ given by

v (x, Y /\ie,-) =Y Aoi(x), x€ B,
i-1 izl

where ¢, , ..., e, is a basis for R™. Then each linear map ¥,: R™ — F,
is surjective.
In fact, if 2 € F,, choose o € Sec ¢ so that o(x) = 2z (cf. Example [,

sec. 2.13). Since the o; generate Sec £, we can write

m

m

a:ZfiUi, fi€ #(B),
i=1
whence

z = ofx) = glfz(x) oi(x) = ¢, (gle(x) ei)'

Now Lemma III yields a strong bundle map ¢: £ — B X R™ satis-
fying ¢ o @ = . Since every map ¢,: F, — R™ is injective, ¢ makes ¢
into a subbundle of B x R™. Thus Proposition VII, sec. 2.18, gives a
second subbundle » of B X R™ such that

£@n=B x R
Q.E.D.
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Corollary: The #(B)-module Sec ¢ is finitely generated and
projective.

Proof: By the theorem, we can write

Sec(é @ 1) = Sec(B x R™),
whence
Sec ¢ @ Sec n = Sec(B x R™).

It follows that Sec ¢ is a direct summand of a finitely generated free
module.

Q.E.D.

2.24. Applications. In this section ¢, 7, & denote fixed vector
bundles over B. Let ¢: £ — % be a strong bundle map and consider the
map

@4 Sec § — Secy
(cf. sec. 2.15).

Proposition XIII: The map ¢+ ¢, defines an isomorphism
+: Hom(¢; 7) = Homp(Sec ¢; Sec 7)
of &(B)-modules, (cf. sec. 1.8 for the notation).

Proof: Clearly, * is a homomorphism of #(B)-modules. To show
that it is an isomorphism consider first the case of trivial bundles,
E=B XF,n=B x H. Let a,,...,a, and b, , ..., b, be bases respec-
tively for F and H. Then the constant cross-sections

c,-:B—»a,-, Tj:B—>bj

are, respectively, bases for Sec ¢ and Sec . Thus the elements
@y € Homg(Sec £; Sec 7) given by

Pin(07) = Oy

form a basis for Homg(Sec ¢; Sec 7).
On the other hand, a basis {w;} of L(F; H) is given by

wila;) = Byby .



5. Structure theorems 79

Hence the constant cross-sections ¢;,: B — w,;, form a basis for
S(B; L(F; H)) = Sec(B x L(F; H)) = Hom(B x F; B x H).

Since ()% = Pax » it follows that x is an isomorphism.
In the general case choose vector bundles £ and 4 such that £ @ &
and 7 @ 4 are trivial. Then

*: Hom(¢ @ & 1 @ %) — Homy(Sec(¢ ® €); Sec(n @ 7))

is an isomorphism. Distributing both sides over (@, we find that this
isomorphism is the direct sum of four maps, each of which must then
be an isomorphism. But one of these maps is

*: Hom(¢; ) — Homp(Sec ¢; Sec 7).
Q.E.D.

This result may be extended to the multilinear case by extending
the definition of *. In fact, if ¢ € Hom(£, ..., £7; £°), we define
@4 € Homy (Sec £, ..., Sec £7; Sec £°) by

[@x(01 5 <oy TR)J*) = P(04(%), ...y 0,()),
where 0, € Sec & (v = |, ..., p). Then
*: Hom(&, ..., £7; £°) — Homp(Sec £, ..., Sec £7; Sec £9)
is an #(B)-isomorphism. (The proof is similar to that given in the special
case above.)
Corollary It If £ = - = ¢P = £, £0 = 5 then x restricts to an
isomorphism

AP(&; m) —> AE(Sec £; Sec ).
Corollary II: (The localization isomorphism) The map
e: Sec L(&, ..., £€7; 7) — Homy(Sec £, ..., Sec £7; Sec 7),

given by
([(D)](o1 5 s 9:))(%) = Ba; 01(%), o5 T5(¥)),s

is an isomorphism of %(B)-modules.
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Proof: It follows from the definitions that the diagram

SecL(£Y, ..., £%;7) — Homg(Sec £, ..., Sec £7; Sec 7)

Hom(é&, ..., £7;m)

commutes. Here, w is the isomorphism of Example 4, sec. 2.14.
QED.

Remark: If £ £* are dual, the isomorphism

e: Sec ¥ —» Homyg(Sec ¢; &(B))
is given by
[e(a®)](e) = {o*, 0>

The following propositions are proved by the same argument as that
of Proposition VIII.

Proposition XIV: The map

0: Sec ¢ ®5 Secn — Sec(¢ ® 7),
defined by

[Oe @ 7)](x) = o(*) @ r(x),

is an isomorphism of S(B)-modules.

Corollary: An isomorphism

a: Sec £* X5 Sec n — Homp(Sec &; Sec )
is given by

ofo* & 1) o> (0¥, o)7.
Proof of the Corollary: Itfollows from the definitions that the diagram

Sec £* ®j Sec n —> Sec(¢* ® 1) — Sec L(£; 7)

N A

Homg(Sec £; Sec n)
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commutes. (Note that é* @ n ~ L(§; ), cf. sec. 2.10). Hence « is an
isomorphism.

Q.E.D.

Proposition XV: An isomorphism

&: AL Sec ¢ = . Sec A?¢
is defined by

Doy A Aoy x> ay(x) A 0 A ().

Applying the isomorphism « to the case y = £, we see that there is a
distinguished element # € Sec £* X Sec ¢ which satisfies

oft) =t

t is called the unit tensor for the pair £*, £. Since ¢ € Sec £* @, Sec €,
there are finitely many cross-sections o;* € Sec £* and o; € Sec ¢ such
that

t=20’i*®ﬂo,—.
i

Thus
c:Z(cri*,cr)az-, o€ Sec ¢,

The isomorphisms established above, together with those established
earlier give the following isomorphisms:

AP(&; n) 22 Sec L(AP€; n) ==~ Ap(Sec ¢; Sec )
=~ Hompg(A"Sec ¢; Sec ) = Sec(APE* (R 1) ~ APSec £* Xy Sec 7.

In particular, we have module isomorphisms

A(£)=2 Ag Sec £* >~ Sec A £*

(obtained by setting » = B X R). The algebra structure induced in
A(¢€) by this isomorphism and the algebra structurein Az Sec £*is given
explicitly by

1

(dj A ']/)(x, By y ooy zp+a) = P!q!

Z E¢r<p('x; RBo(1) s za(p)) lP(x’ Zolp+1) 1 o0 zo(p+o))
g

xeB, zeF,, ®edr (L), Wed(E),
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where o runs through the symmetric group of order p + ¢ and ¢, is
the sign of o.

2.25. Cross-sections and multilinear bundle maps. Leté,, ..., £, ,9
be vector bundles over B. Then, as was done above for p = 1, we can
construct isomorphisms

Hom(¢,, ..., &5 3 1) = Sec(§f ® @ &, ® 1)
= (Sec £,)* @5 '+ @p (Sec £,)* Qp Secn;

1.e., we can represent multilinear bundle maps as cross-sections. For
instance, giving a bilinear function in (£, ) is the same as constructing
a cross-section in the bundle {* ® n*.

In general, theorems about these modules proved using analytical or
geometrical techniques are most efficiently established using the form
Sec(éf @ ** @ &75 1) or Hom(¢, , ..., €, ; 1), while theorems which are
established using algebraic methods are best proved using the forms
Sec £ @p - ®pSec &f ®pSecn. In any case, we shall use these
forms interchangeably and without further reference from now on. We
shall, moreover, identify the various isomorphic modules above, also
without further reference.

2.26. Pull backs. Let £ = (£, #,,B,F) and ¢ = (E, = B,F) be
vector bundles and let

(P
F— S E

%l I
8-t .p

be a bundle map restricting to linear isomorphisms in the fibres. Make
&(B) into an #(B)-module by setting

fre=V¥-g feSB), geH B

and make F(B) ®, Sec ¢ into an #(B)-module by left multiplication.
Then an &(B)-homomorphism

a,: L (B) ®j Sec £ — Sec £
is given by

wLEg®o) =g 9%, geP(B), oeSect.
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Proposition XVI: «, is an isomorphism.

Proof: If £ is trivial, let gy, ..., 0, be a basis for the #(B)-module
Sec £. Then ¢*ay , ..., p*a, is a basis for Sec £ and 1 ® 0;, ..., | @ o,
is a basis for the &(B)-module #(B) ®,Sec ¢. Hence o, carries basis
to basis and so it is an isomorphism.

In general, choose a vector bundle 7 over B such that { @ 5 is trivial
(cf. Theorem I, sec. 2.23) and consider the pull-back % of % via ¢ (cf.
sec. 2.5)

P1

i —

Lo

B——t/}—»B

Then, since £ is the pull-back of ¢ via (cf. sec. 2.5), it follows that
£ @ 4 is the pull-back of ¢ @ 5. Hence, £ @ 4 is trivial. Hence, the map

%ot F(B) @ Sec(é @ 1) — Sec( @ 1)

is an isomorphism. On the other hand,

Xo@o, — Yo ® gy

and so o, is an isomorphism.

Q.E.D.
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All vector bundles are real unless otherwise stated. The symbol ~
denotes strong bundle isomorphism.

1. Quotient bundles. Suppose 7 is a subbundle of £ with typical
fibre HCF.

(1) Show that there is a unique bundle, £/n, whose fibre at x is F,/H
and such that the projection £ — £/7 is a bundle map. £/ is called the
quotient bundle of ¢ with respect to 7.

(ii) A sequence 0 — 7 — £ -—>p—0 is called short exact, if it
restricts to a short exact sequence on each fibre. Show that a short exact
sequence of strong bundle maps determines an isomorphism p —» £/.

(iii) If n is a subbundle of £, show that ¢ ~ n @ é/7.

2. Bundle maps. (i) Show that every bundle map is the composite
of a strong bundle map and a bundle map which restricts to isomorphisms
on the fibres.

(ii) A strong bundle map ¢: § — 7 is said to have constant rank, if the
rank of the linear maps ¢, is independent of x. Show that in this case
ker p = J, ker ¢, and Im ¢ = |, Im ¢, are subbundles of £ and 7,
and that Im ¢ o~ £/ker ¢.

(iii) Let d: £ — £ be a strong bundle map satisfying d*> = 0 and set
H, = kerd,/Imd, . If dim H, is independent of x, show that ker d,
Im d, and ker d/Im d are vector bundles.

(iv) Suppose @: £ — 7 is a strong bundle map. Construct a dual
bundle map ¢*: £* <« n*. If ¢ has constant rank, show that so has ¢*.
In this case prove that Im ¢* @ ker p o~ ¢ and Im ¢ @ ker ¢* =~ 7.

3. Given vector bundles £ and v over the same base show that ¢ @ ¢
is the pullback of ¢ X 7 via the diagonal map.

4. External tensor product. Let &, n be vector bundles over M,
N with typical fibres F, H.

(i) Construct a canonical bundle ¢ X] n over M X N whose fibre
at (x,y) is F, ® H, . It is called the external tensor product of £ and 7.

84
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(ii) Show that if M = N, then ¢ ® % is the pullback of ¢ [X] n under
the diagonal map.

5. Endomorphisms. Fix a strong bundle map ¢: £ — £, where
¢ = (E,n, B,F).

(i) Let ¢,(p,) denote the pth characteristic coefficient of ¢, . Show
that x — c,(,) is a smooth function on B. Is this true for the coefficients
of the minimum polynomial of ¢, ?

(ii) Are there always smooth functions A, .., A on B such that
Ay(x), ..., A(x) are the eigenvalues of ¢, ?

(iii) Assume that U and V are disjoint open subsets of C such that
for each x, the eigenvalues of ¢, are contained in U U V. Construct a
unique decomposition ¢ = { @ p such that ¢ = ¢y @ x and the eigen-
values of each i, (resp. y,) are contained in U (resp. V). Conclude that
the number of eigenvalues of ¢, in U (counted with their multiplicities)
is constant.

(iv) Each ¢, decomposes uniquely in the form ¢, = ¢35 @ ¢% , where
@3 is semisimple and ¢% is nilpotent and ¢S o ¢} = @f o @3 (cf. [5, p. 415]).
Do the ¢3 (resp. ) define strong bundle maps ?

6. Pseudo-Riemannian bundles. Let g be a pseudo-Riemannian
metric in ¢ = (E, =, B, F) and suppose B is connected.
(i) Show that the signature of g, is independent of x.
(ii) Construct a pseudo-Riemannian coordinate representation for £.

(iii) Show that ¢ = ¢+ @ -, where £+ | £ with respect to gand
the restriction of g to £+ (resp. £7) is positive (resp. negative) definite.

7. Symplectic bundles. A symplectic bundle is a vector bundle ¢

together with a skew-symmetric nondegenerate bilinear function g in ¢,
(i) Show that every symplectic bundle is of even rank and orientable.
(ii) If £ is a complex bundle, make £ into a symplectic bundle.

8. Projective spaces. Interpret RP™ as the space of straight lines
through the origin in R*+1,

(1) Construct a rank 1 vector bundle ¢ over RP" whose fibre at a
point [ is the one-dimensional subspace / C R**1,
(ii) Show that ¢ is nontrivial.
(i) Do (i) and (ii) with R replaced by C (cf. problem 10, Chap. I).
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9. Classifying maps. (i) Constructa vector bundle £, , over G y(n; k)
(cf. problem 13, Chap. I) whose fibre at E C R" is the vector space E.

(i1} Show that, if % is any vector bundle over a manifold B with rank
k, then, for sufficiently large n, there is a smooth map : B — % y(n; k)
such that y*£, | ~ v - ¢ is called the classifying map for 7.

(i) Repeat (i) and (ii) with R replaced by C (construct complex vector
bundles and complex maps).

10. Homotopic maps. (i) Let £ be a vector bundle over B x R.
Define : B x R -> B X R by y(x, t) = (x, 1). Prove that $*¢ ~ &,

(it) Let £ be a vector bundle over B and let i, , /;: B — B be homo-
topic maps. Show that ¢ ~ &

(iii) A connected manifold M is called contractible if ¢, 1s homotopic
to a constant map. Show that every vector bundle over a contractible
manifold is trivial.

11. Prove that every finitely generated projective module over ¥ (B)
is of the form Sec ¢, where £ is a vector bundle over B.

12, The ring V(B). The isomorphism class of a complex vector
bundle ¢ over B is the collection of all complex vector bundles which are
strongly isomorphic to £. It is written [£]. Denote the set of isomorphism
classes by Vect(B). Let F#(B) be the free abelian group with Vect(B)
as a basis. Consider the subgroup generated by the elements of the form
[£] + [7] — [€ @ 7] and denote the factor group by V(B).

(1) Show that the composition (¢, n) — ¢ @ 7 defines a commutative
ring structure in V(B). Is there an identity ? If B is compact, the ring
so obtained is denoted by K(B).

(it) Let £, 4 denote the images of £, 5 in V(B). Show that £ = 7 if and
only if £ @ e? =~ n @ €? for some p, where ¢? denotes the trivial
complex bundle of rank p.

(iii) Show that a smooth map ¢: B — B induces a homomorphism
¢*: V(B) « V(B) which depends only on the homotopy class of ¢.

(iv) Show that the external tensor product (cf. problem 4) determines a
homomorphism V(M) ® V(N)— V(M x N). If M = N, show that
this map, composed with 4%, is the ring multiplication.

13.  Consider the set of all isomorphism classes of real vector bundles
of rank | over B. Show that () makes this set into a commutative group
in which each element has order 2.



Chapter III

Tangent Bundle and Differential Forms

§1. Tangent bundle

3.1. Tangent space. Let M be a smooth manifold, and let (M) be
the ring of smooth functions on M.

Definition: A tangent vector of M at a point ae M is a linear
map ¢&: ¥ (M) — R such that

£fe) = &f)g@) +1(a) &g),  [rge S (M)

The tangent vectors form a real vector space, T,(M), under the linear
operations

A6 + pn)(f) = X(f) +en(f),  AwreR, &neT (M), feF (M)

T,(M) is called the tangent space of M at a. In sec. 3.3 it will be shown
that dim T (M) = dim M.

Lemma I: Let ¢ € T,(M), f€ #(M). Then the number £(f) depends
only on the germ of f at a.

Proof: It has to be shown that £(f) = 0 if f is zero in some neighbour-
hood U of a. Choose g € (M) so that g(a) = 0 and gf = f. Then

&(f) = &(&f) = &(8)f(a) +&(a) &(f) = O.
Q.E.D.

Corollary: If fis constant in a neighbourhood of 4, then £(f) = 0.

Proof: Set f(a) =X and let A also denote the constant function
M — A. Then

£(f) = €@) = A(1) = Aé(1 - 1) = 2x¢(1) = 0.
Q.E.D.

87



88 III. Tangent Bundle and Differential Forms

Example: Let t— x(2) (¢, <<t < t;) be a smooth path on M. For
each ¢ € (¢, , t;) we obtain £ € T (M) by setting

€)= lig 7ot + ) — SO = 5 (Fon)| . fes0m),

That £ does in fact belong to T, ,y(M) follows from elementary calculus.
It is called the tangent vector to the path at x(t) and we will denote it

by ().
3.2. The derivative of a smooth map. Let ¢: M — N be a smooth
map. Recall that ¢ induces a homomorphism
¢*: L(M) < F(N)
given by
(@ )x) = fle(*), feF(N), xeM.

Lemma II: Let ¢ € T,(M). Then {0 ¢* € T,(,(N), and the corre-
spondence ¢+ £ o @* defines a linear map from T, (M) to Ty (N).

Proof: ¢ o ¢*is a linear map from #(N) to R. Moreover,
(¢ o 9*)(f2) = €07 - 9%8) = £(@*f) - 8(9(a)) +f(9(a)) - £(9™)
(f,ge F(N)) and s0 £ o ¢* € Ty()(N). Clearly £+ £ o p* is linear.
Q.E.D.

Definition: Let ¢: M — N be a smooth map and let ae M. The
linear map T,(M) — T (V) defined by £ +—> £ o ¢* is called the deriva-
tive of ¢ at a. It will be denoted by (dy), ,

((dp)ab)( &) = £(9%e), 2 FN), £e TuM).
If : N — Q is a second smooth map, then
(o @) = (W)o@ © (dp)s, aeM.

Moreover, for the identity map «: M — M, we have

(dl.)a = T (M) > ae M

In particular, if p: M — N is a diffeomorphism, then
(d9)a: To(M) - To@(N)  and  (dp™)ota): Tow(N) = Tu(M)

are inverse linear isomorphisms.
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Examples: 1. Let t— x(t) (t, <t <t,) be a smooth path on a
manifold M. Let £, € T,(R) be the tangent vector given by

& =1@, feIR).
Then the tangent vector %(2) € T, (,)(M) (cf. example, sec. 3.1) is given by
:)Z’(t) = (dx)t fg .

2, Let O be an open subset of a manifold M and let j: O — M
denote the inclusion map. Then

(4)at To(0) — To(M)

is a linear isomorphism for each a € O.

We shall prove this by constructing an inverse map. Fix a € O and
choose p € S(M) so that p = 1 in a neighbourhood of @, and carr p C O.
Define B: T, (M) — T,(O) by

BEXS) = &2f),  feH(0), &eT(M)

That 8 is well defined, and inverse to (dj), follows easily from Lemma I,
sec. 3.1.
Using this example, we obtain
3. Lete: M — N be a smooth map which sends a neighbourhood U
of a point a € M diffeomorphically onto a neighbourhood ¥ of ¢(a) in
N. Then
(dq’)a: Ta(M) - Tw(a)(N)

is a linear isomorphism.

3.3. Open subsets of vector spaces. Let E be an n-dimensional real
vector space. Let O be an open subset of E and let € O. We shall
define a linear isomorphism

A: E = TL0).

First recall that if g: O — F is a smooth map of O into a second vector
space F, then the classical derivative of ¢ at a is the linear map
¢'(a): E — F given by

(p'(a;h)—_—l'i_l;gg(a—“"?___‘j&l’ hekE.
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Moreover, in the special case ' = R we have the product formula
(fe)(a; by = f'(a; k) g(a) + f(a)g'(a; h),  f,g€ FL(O).
This shows that the linear map ¢,: ¥(0) — R given by
Ef) =f'(a; h)

is a tangent vector of O at a.
Hence we have a canonical linear map A,: E — T,(O) given by

Agt h— &, heE,
If ¢: O — F is a smooth map into a second vector space, then the diagram

p__ @ o

A ot (3.1)
T(0) = Tow(F)

(d9)q

commutes, as follows easily from the ordinary chain rule.

Proposition I: The canonical linear map A, E— T,(O) is an
isomorphism.

Lemma III: Let efi = 1, ..., n) be a basis for E and let fe S#(E).
Then

f=1@+3 g
where

(1) the functions &, € #(E) are given by

x—a=) h(x)e;, «x¢€E,

i=1
(2) the functions g; € F(E) satisfy

gda) = f'(a; ¢;), i=1,..,n
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Proof:

By the fundamental theorem of calculus we have
1 d
f@) = f@) = [ Zif@+ te— a)di

= f:f’(a + Hx —a); x — a) dt

_ i h) [ : Fla + t(x — a); e;) dt.

Thus the lemma follows, with

2ix) = f:f’(a 1+ Hx —a)e)dt, xekE

Q.E.D.
Proof of Proposition I:

Consider first the case O = E. We show
first that A, is surjective. Let £ € T,(E) and let f € S#(E). Write
f=rf@+3 hg,
=1

where the &, , g, satisfy conditions (1) and (2) of Lemma III. By the
corollary to Lemma I, sec. 3.1, £ maps the constant function f(a) into
zero. Thus,

€)= 3 608 + 3. 1@ €z

- i Eh) f'(a; e) = (il (k) ge‘) (f).

Since the functions %; are independent of f, we can write

¢— zl &) £, = A, (zl (i) e)

Thus A, is surjective.

To show that A, is injective, let f be any linear function in E. Then
forhe E

AB)(S) = f(h).

91
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Now suppose A,(h) = 0. Then
f(h)=0, feE*

Hence & = 0, and so A, is injective.

Finally, let O be any open subset of E and let j: O — E be the inclusion
map. Then j'(a): E — E is the identity map and so formula (3.1) yields
the commutative diagram

7N

T(0) T(E).

According to Example 2, sec. 3.2, (dj), is a linear isomorphism. Hence
so is the map A,: E — T,(O).
Q.E.D.

Corollary: Let M be a smooth manifold and let a € M. Then
dim T,(M) = dim M.

Proof: Let (U, u, U) be a chart for M such that ae U. Using the
result of Example 2, sec. 3.2, and the Proposition we find

dim T,(M) = dim T,(U) = dim U = dim M.
Q.E.D.

Proposition II: The derivative of a constant map is zero. Conversely,
let : M — N be a smooth map such that (dp), = 0, a € M. Then, if M
is connected, @ is a constant map.

Proof: Assume that ¢ is the constant map M — be N. Then, for
g € &L(N), p*g is the constant function given by

(p*g)(x) = g(b), xeM.
Hence (Corollary to Lemma I, sec. 3.1), for £ € T(M), x € M,

(dp)o(£)(g) = €(p*g) = O.
It follows that each (dg), = 0.
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Conversely, assume that ¢: M — N is a smooth map satisfying
(dp)y =0, a€ M; and let M be connected. Then, given two points
Xy € M and x, € M, there exists a smooth curve f: R — M such that
f(0) = x4 and f(1) = x, (cf. Proposition IX, sec. 1.11).

Consider the map g = @ o f: R - N. We have

(dg)e = (do)yn © (df ) = O, teR.

Now using an atlas for N and applying formula (3.1) we see that ¢ must
be constant. In particular g(0) = g(1) and so

P(xo) = £(0) = g(1) = @(xy).
Q.E.D.

3.4. Example. Let S” be the unit sphere in an (n 4 1)-dimensional
Euclidean space E. We shall establish a canonical isomorphism between
T,(S™ and the subspace a', the orthogonal complement of a in E.

The injection 7: $* — E determines a linear map

(di)g: Ty (S™) — TE).

Combining this map with the linear isomorphism A;*: T,(E) — E, we
obtain a linear map

jat T(S™) — E.

We show first that Im j, C a*. Consider the function f e &(E) given
by
f(x) = (%, %), xek.

1*f is the constant function, 1, on S™. It follows that

%) =0,  Ee TS,
whence
f'(a; ju(£)) = €(*f) = 0.
An elementary computation shows that
f'(a; ) = 2%a, by, heE.
Thus we obtain

2<a’ja(§)> =0, (e Ta(Sn);

ie. Imj, Cal.
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Next we prove that j, is injective. Consider the smooth map
p: E — {0} — S™ given by

p(x) = ——, xeE— {0}

| x|
Clearly, p o 1 = ¢ and hence
(dp)q © (dl)a =t

It follows that (df), is injective. Hence so is j, .
Finally, to show that j, is a linear isomorphism onto a! observe that

dim T,(S") = n = dim E — 1 = dim a*.

3.5. Tangent bundle. Let M be an n-manifold. Consider the dis-
joint union

Ty = () TuM),

aeM
and let 7, T, — M be the projection,
m(€) — a,  £e T, (M),
In this section we shall define a manifold structure on T',, so that
v = (Tag» ™ » M, R7)

is a vector bundle over M, whose fibre at a point a € M is the tangent
space T (M). 7y, is called the tangent bundle of M.

Let (U, , u,, U,) be a chart for M and let jo: Uy — M be the inclusion
map. For each x € U, there are linear isomorphisms

Augta): R® = T, (U.)

(du)z": Ty 0,) —— To(U,)
and

(di)e: To(Us) — TM).
Composing them we obtain a linear isomorphism

‘l’cx.m: R" _E"" 1 ac(M)
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Finally, let {(U,, u,)} be an atlas for M. Define maps
ot U, X R? > Ty
by
Yulx, ) = thoa(h), xeU,, heR"
If U,N Ug # @ and ug, = ug o w7, the map

Yga = Yalody: U, N Ug x R* — U, N Uy X R"

is given by
‘/’Ba(x’ h) = (x’ uéa(ua(x); h))v

(cf. formula (3.1), sec. 3.3). Hence it is smooth.

Now it follows from sec. 2.5 that there is a unique vector bundle
7 = (Tpr» mae » M, R®) for which {(U,, ¢,)} is a coordinate representa-
tion. The fibre of this bundle at x € M is the tangent space T,(M).

Evidently this bundle structure is independent of the choice of atlas
for M.

Example 1: If O is an open subset of a vector space E, then the
tangent bundle 7,, is isomorphic to the product bundle O x E. In fact,
define a map A: O X E — T, by setting

Ma, h) = M(h), acO, hek,

where A, is the canonical linear map given in sec. 3.3. Then X is a strong
bundle isomorphism.

Next, suppose ¢: M — N is a smooth map. Then a set map
dp: Ty, — Ty is defined by

dp(§) = (de).§, £ T(M), xeM.

It is called the derivative of ¢.

Proposition III: The derivative of a smooth map ¢: M — N is a
bundle map dp: 7y — 7y .

Proof: It follows from the definition that dp is fibre preserving and
that the restriction of dp to each fibre is linear. To show that dp is smooth
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use atlases on M and N to reduce to the case M = R*», N = RP. In
this case formula (3.1), sec. 3.3, shows that

dp: R» X R* - R? x R?
is given by
de(x; k) = (p(*); ¢'(x; h))-

Hence it is smooth.
Q.E.D.

Now let : N — Q be a smooth map into a third manifold. Then

difo ) = di o dip
as follows from the definition. Moreover, the derivative of the identity
map «: M — M is the identity map of T}, ,

dl-M == LTM .

It follows that if @: M — N and §: M <« N are inverse diffecomorphisms,
then dp and di are inverse bundle isomorphisms.

Example 2: Let UC M be an open subset and let j: U — M be
the inclusion map. The derivative

dj: Tu—> TM

can be regarded as a strong bundle map from 7, to the restriction,
Ty lv, of 74 to U (cf. Example 2, sec. 2.3). According to Example 2,
sec. 3.2, the restriction of dj to each fibre is a linear isomorphism.

Thus (cf. Proposition I, sec. 2.2) dj defines a strong bundle isomor-
phism,

Ty — ™™ U -

We shall often identify these bundles under the above isomorphism. In
the process, we identify T,(U) and T,(M) for each point x € U.

3.6. Cotangent space and cotangent bundle. Let M be a manifold
and let @ € M. A cotangent vector of M at a is a linear map

wyt To(M)— R;
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i.e, it is an element of the dual space T,(M)*, which is called the
cotangent space of M at a. Observe that

dim T,(M)* = dim M.

In the same way as in sec. 3.5 we can construct a vector bundle 7
over M whose fibre at a is the cotangent space T (M)*. 75 is called the
cotangent bundle of M. Clearly the tangent bundle ,, and the cotangent
bundle 75; are dual.

3.7. Product manifolds. Let M and N be smooth manifolds and
consider the product manifold M X N. We shall construct a strong
bundle isomorphism between the tangent bundle 7, and the Cartesian
product 7,, X 5.

Define a strong bundle map

@ Taxew = T X Ty
by
?(0) = (dmu(0), drn(8)), L€ Truxw s
where 7y: M X N— M and my: M X N— N are the canonical
projections.

To show that ¢ is an isomorphism we need only prove that the linear
maps

Papt Tan(M X N)— To(M) ® Ti(N)

are isomorphisms. Let j,:N—>M X N, jyi: M— M X N be the
incluston maps opposite a € M and be N:

Jl¥) =(a3) and  j(*) =(xb), «xeM, yeN.

Then

M Ja = Ya» Ty ofa = iy

MO Jo = s TN o = Vb
where y,: N — a and y,: M — b are the constant maps. These relations
yield

dmyodi, =0, dmyodj, =1

dmyodj, =i  dmyodj, =0.
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Now define a linear map

Yap: To(M) D Ty(N) = Tiq(M X N)
by
bap(ésm) = (@)€ + (dia)n, €€ To(M), ne Ty(N).

The equations above show that ¢, ;o ¢, , = ¢. Since these maps are
linear maps between finite-dimensional vector spaces and since

dim T(e (M X N) = dim(M x N) = dim M + dim N
= dim(T(M) D ToN)),

it follows that ¢, , and i, , are inverse isomorphisms. In particular ¢ is
a strong bundle isomorphism.

Henceforth we shall identify the bundles 7,y and 7, X 75 via o.
In particular, we shall write

Tw(M X N) = T(M)D Ty(N).
Our remarks above show that we are identifying (£, ») with

(@p)€ + (dfo)n, €€ To(M), ne Ty(N).
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3.8. The main theorem. Let p: M — N be a smooth map. Then ¢
is called a local diffeomorphism (resp. an immersion, a submersion) at a point
a € M if the map

(d9)a: To(M) = To@(N)

is a linear isomorphism (resp. injective, surjective). If ¢ is a local diffeo-
morphism (resp. an immersion, a submersion) for all points a € M, it is
called a local diffeomorphism (resp. an immersion, a submersion) of M into N.

Theorem I: Let ¢: M — N be a smooth map where dim M =n
and dim N = r. Let a € M be a given point. Then

(1) If p is a local diffeomorphism at a, there are neighbourhoods U
of a and V of b such that ¢ maps U diffeomorphically onto V.

(2) 1If (dp), is injective, there are neighbourhoods U of a, V of b,
and W of 0 in R"™, and a diffeomorphism

b UX W=V
such that
¢(x) = Y(x, 0), xeU.
(3) If (dp), is surjective, there are neighbourhoods U of a, V of b,
and W of 0 in R* 7, and a diffeomorphism
b USV X W
such that
(p(x) = ”V‘/J(x): X € U:

where 7, : V' X W — V is the projection.

Proof: By using charts we may reduce to the case M = R*, N = R".
In part (1), then, we are assuming that ¢’(a): R® — R" is an isomorphism,
and the conclusion is the inverse function theorem (cf. sec. 0.9).

For part (2), we choose a subspace E of R" such that

Img¢'(a) DE =R,
99
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and consider the map ¢: R* X E — R” given by

(x,y) =¢(x) +y, «xeR", yek.
Then

W(a,0;h k) = g'(a;h) +k  heRn, kek.

It follows that (4, 0) is injective and thus an isomorphism
(r = dim Im ¢'(a) 4 dim E = n 4 dim E).

Thus part (1) implies the existence of neighbourhoods U of a, V of b,
and W of 0 in E such that : U X W — V is a diffeomorphism. Clearly,

(%, 0) = ¢(x).

Finally, for part (3), we choose a subspace E of R such that
ker ¢'(a) ® E = R™.
Let p: R* — E be the projection induced by this decomposition, and
define
YRR @E
by
P(x) = (p(*), p(x)), xeR™
Then
¥(a; B) = (¢'(a; ), p(k)), acR", heRm

It follows easily that ¢’(a) is a linear isomorphism. Hence there are
neighbourhoods U of 4, V of b, and Wof 0 € Esuchthaty: U—V X W

is a diffeomorphism,
Q.E.D.

Corollary: (1) If (dg), is a linear isomorphism there is a smooth
map x: ¥ — U such that

pox=1 and  yogy =y,

where ¢, denotes the restriction of ¢ to U.
(2) If (dp), is injective, there is a smooth map y: V — U such that

X°Pu = -
(3) If (dp), is surjective, there is a smooth map x: ¥ — U such that

Pox =1ty.
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Proposition IV: If ¢: M — N is a smooth bijective map and if the
maps
(d9)s: To(M) = To@(N)

are all injective, then ¢ is a diffeomorphism.

Proof: Let dim M = n, dim N = r. Since (dp), is injective, we
have r >> n. Now we show that 7 = n. In fact, according to Theorem I,
part (2), for every a € M there are neighbourhoods U(a) of a, V of ¢(a)
and W of 0 € R"* together with a diffeomorphism

Yo Ul@) x W=V
such that the diagram

Ua)yx W— v
\ /
U(a)

commutes (i denotes the inclusion map opposite 0).

Choose a countable open covering U; (i = 1,2, ...) of M such that
each U, is compact and contained in some U(a,). Since ¢ is surjective,
it follows that ; ¢(TU;) D N.

Now assume that 7 > n. Then the diagram implies that no ¢(U;)
contains an open set. Thus, by the category theorem [4, Theorem 10.1,
p. 249] N could not be Hausdorff. This contradiction shows that n = 7.

Since n = r, ¢ is a local diffeomorphism. On the other hand, ¢ is
bijective. Since it is a local diffeomorphism, Theorem I implies that its
inverse is smooth. Thus ¢ is a diffeomorphism.

Q.E.D.

3.9. Quotient manifolds. A quotient manifold of a manifold M
is a manifold N together with a smooth map =: M — N such that =
and each linear map (dm),: T,(M)— T,(N) is surjective (and thus
dim M > dim N).

Lemma IV: Let 7: M — N make N into a quotient manifold of M.
Then the map = is open.

Proof: It is sufficient to show that, for each a € M, there is a neigh-
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bourhood U of a such that the restriction of 7 to U is open. This follows
at once from Theorem I, part (3), sec. 3.8.
Q.E.D.

Proposition V: Let m: M — N make N into a quotient manifold of
M. Assume that : M — Q, ¢: N — O are maps into a third manifold O
such that the diagram

commutes. Then ¢ is smooth if and only if ¢ is smooth.

Proof: Use the corollary part (3) to Theorem I, sec. 3.8.
Q.E.D.

Corollary: Let 7n;: M — N;, m: M — N, be quotient manifolds.
Assume that mx = my (x, y € M) holds if and only if m;x = m,y holds.
Let ¢: N, — N, be the unique set bijection such that the diagram

commutes. Then ¢ is a diffeomorphism.

3.10. Submanifolds. Let M be a manifold. An embedded manifold
is a pair (N, ¢), where N is a second manifold and ¢: N — M is a smooth
map such that the derivative

dp: Ty — Ty

is injective. In particular, since the maps (dp),: T,(N) — Ty)(M) are
injective, it follows that dim N < dim M.

Given an embedded manifold (N, ¢), consider the subset M, = @(N).
¢ may be considered as a bijective map

o N> M, .
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This bijection defines a smooth structure on M, , such that ¢, becomes
a diffeomorphism,

A submanifold of a manifold M is an embedded manifold (N, ¢) such
that ¢;: N — ¢(N) is a homeomorphism, when ¢(N) is given the topology
induced by the topology of M. If N is a subset of M and ¢ is the
inclusion map, we say simply that N is a submanifold of M.

Not every embedded manifold is a submanifold, as the following
example shows:

Let M be the 2-torus T2 (cf. Example 3, sec. 1.4) and let N = R.
Define a map ¢: R — T2 by

(1) = =(t, At), teR,

where A is an irrational number and 7: R? — T2 denotes the projection.
Then dp: Ty — T;s is injective and so (R, ¢) is an embedded manifold.
Since A is irrational, ¢(R*) is dense in T2. In particular there are real
numbers a; > 0 such that ¢(a;) — ¢(—1). Thus T2 does not induce the
standard topology in ¢(R).

Proposition VI: Let (N, ) be a submanifold of M. Assume that O
is a smooth manifold and

0 N

th /

M

is a commutative diagram of maps. Then ¢ is smooth if and only if ¢ is.

Proof: If ¢ is smooth then clearly so is 4. Conversely, assume that
Y is smooth. Fix a point a € Q and set b = y(a). Since di is injective,
there are neighbourhoods U, V of b in N and M, respectively, and there
is a smooth map y: ¥ — U such that y o ¢y = « (cf. Corollary, TheoremI,
sec. 3.8).

Since N is a submanifold of M, the map ¢ is continuous. Hence there
is a neighbourhood W of a such that (W) C U. Then

iu"?’W: bw,

where ¢, , i, denote the restrictions of ¢, b to W.
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It follows that
Xxodw = xolyopp = oy

and so ¢ is smooth in W; thus ¢ is a smooth map.
Q.E.D.

Corollary: Suppose submanifolds N; and N, of M coincide as sets.
Then they coincide as submanifolds.

Examples: 1. An open subset of a manifold is a submanifold.

2. If(Q, ) is a submanifold of N, and (N, ¢) is a submanifold of M
then (O, ¢ o ¢) is a submanifold of M.

3. Retracts: A manifold N is called a retract of a manifold M if
there are smooth maps i: N — M, p: M — N so that

poi=y.

p is called the retraction; ¢ is called the inclusion. In this case (N, 1) is a
submanifold of M.

In particular (cf. sec. 3.4) the sphere S™ is a retract of the manifold
E — {0} (E an (n + 1)-dimensional Euclidean space). Hence it is a
submanifold of E.

4. Fibre bundles: Let (E,w, B,F) be a smooth fibre bundle and
fix be B. Let {(U,, ¢,)} be a coordinate representation for the bundle
and choose U, to contain b. Then the bijection

lﬁm.b: F_>Fb

defines a manifold structure on F, (independent of the choice of coordi-
nate representation).

Since the inclusion F— U, X F opposite b and the projection
U, X F — F make F into a retract of U, X F it follows via the diffeomor-
phism i, that F, is a retract of the open set #~1U, . In particular it is a
submanifold of #~1U, and hence a submanifold of E.

5. Let { = (E, m, B, F) be a vector bundle. Then the zero cross-
section 0: B — E makes B into a retract of E. Hence (B, 0) is a closed
submanifold of E.

On the other hand, set ¥ = F — {0} and ¥, = F, — {0} (x € B). Then

E=UF,

xeB
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is the complement of o(B) in E; hence, it is an open submanifold. If
{(U, , ¢,)} is a coordinate representation for £, the i, restrict to diffe-
omorphisms

U, x F =5 #4(U,

where 7: E — B is the restriction of 7. Hence £ = (E, #, B, F) is a
fibre bundle, called the deleted bundle for .

6. Assume the vector bundle ¢ above has been given a Riemannian
metric and let S, (resp. S) denote the unit sphere of the Euclidean space
F,, x e B (resp. of F). Set

and let ng: Eg — B be the restriction of #. Then &5 = (Eg, ng, B, S) is

a fibre bundle.
In fact, let {(U, , 4,)} be a Riemannian coordinate representation for

¢. Then the maps ¢, restrict to bijections
o Uy X S — ws}(U).

The bijections ¢; o g, in U, N U, X S are the restrictions of the
diffeomorphisms ¢, o ¢ . Since S is a submanifold of F, (U, N Up) X S
is a submanifold of U, N Uy X F; thus Proposition VI implies that
@' o g is smooth. Now it follows from Proposition X, sec. 1.13, that
& is a smooth bundle.

& is called the sphere bundle associated with £. The map p: E — Eg
given by
z
lz|’

p(2) = zeF,, xeB,
is smooth, and makes E into a retract of E. In particular, E is a

submanifold of E.
Finally, observe that an isometry ¢: { — £ between Riemannian
vector bundles restricts to a fibre preserving map

o5t Eg — Eg

which, by Proposition VI is smooth. In particular, since isomorphic
bundles are isometric (Proposition VI, sec. 2.17), the bundle & is
independent of the choice of metric in £.
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3.11. Vector fields. Definition: A vector field X on a manifold M is
a cross-section in the tangent bundle 7,,. Thus a vector field X assigns
to every point x € M a tangent vector X(x) such that the map M — T,
so obtained is smooth. The vector fields on M form a module over the
ring #(M), which will be denoted by Z'(M).

Proposition VII: There is a canonical isomorphism of Z(M) onto
the &(M)-module, Der (M), of derivations in the algebra S (M).

Proof: Let X be a vector field. For each f e #(M), define a function
X(f)on M by

X(f)x) = X(x)(f), xeM.

X(f) is smooth. To see this we may assume that M = R". But then
(cf. sec. 3.3)

X(f)x) = f'(x; X(x))
is smooth.

Hence every vector field X on M determines a map 8,: (M) — ¥ (M)
given by

0x(f) = X(f).

Obviously 8, is a derivation in the algebra &(M). The assignment
X > 0y defines a homomorphism

0: (M) — Der ¥ (M).

We show now that 6 is an isomorphism.
Suppose 8, = 0, for some X € Z(M). Then

X(x)f=0, =xeM, fe L M)

This implies that X(x) = 0; i.e. X = 0.
To prove that 8 is surjective, let @ be any derivation in &#(M). Then
@ determines, for every point x € M, the vector &, € T,(M), given by

&(f) = ()=, fe F(M).

106
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Define X: M — T,, by X(x) = ¢, . To show that this map is smooth,
fix a point a€ M. Using a chart, it is easy to construct vector fields
X;({ =1, ..,n) and smooth functions f; (: = 1, ..., n; n = dim M) on
M such that X (x) f; = 8;;, x€ V, (V some neighbourhood of @). Then
the vectors X, (x) ( = 1, ..., ) form a basis for T,(M) (x e V).

Hence, for each x e V, there is a unique system of numbers A}
(i =1, ..., n) such that

£ — ): XX ()

Applying £, to f; , we obtain
A:; = fx(fz) = ¢(fl)(x)v xel.

Hence
X(x) = -\é D(fi)x) Xi(x), «xel.

Since the @(f;) are smooth functions on M, this equation shows that X
is smooth in V; i.e. X is a vector field.
Finally, it follows from the definition that

by = .
Thus 8 1s surjective.

Q.E.D.

Corollary: The &(M)-module Der #(M) is finitely generated and
projective.

Proof: Apply the Proposition and the corollary of Theorem I,

sec. 2.23.
Q.E.D.

3.12. Lie product. The #(M)-module Der ¥(M) is a Lie algebra
over R, the Lie product being given by

[01’02]:01°02—02°01-

Note that the Lie product is not bilinear over S (M). In fact, we have

(01, /0:] = f[61,6,] + 6x(f) 6,  fe L (M), 6,,8,€Der (M)
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Identifying (M) with Der %#(M)under the isomorphism of Proposi-
tion VII we obtain a Lie algebra structure in Z(M). The Lie product of
two vector fields X and Y is given by

[X, YI(f) = X(Y(f) — V(X(f)), SfeF M)

It is bilinear over R, skew symmetric, and satisfies the Jacobi identity.
Moreover, for f e #(M) we have

[fX, Y]=f[X, Y] = Y(f)X and [X,fY]=f[X, Y]+ X(/)Y.

Examples: 1. Let M bean open subset of a vector space E. Accord-
ing to Example 1, sec. 3.5, we can write

Tw=MXxE.
A vector field X on M given by
X(x) = (x, h), xeM,

for some fixed h € E will be called the constant field corresponding to
heE.
If X is the constant field corresponding to 4 then

X(f)x) = f'(x; h), xeM, feF (M),
Thus if Y is a second constant vector field, corresponding to & € E, then

YX(f)(x) = f"(x; b, k) = f"(x; ky B) = XY(f)(x),
whence {X, Y] = 0.

2. Let M be an open subset of a real vector space E and consider
X, Y e Z(M) defined by X(x) = h and Y(x) = x, where h € E is fixed.
Then [X, Y] = X. In fact, let f be any linear function in E. Then

X(f)x) =f'(xs b) = f(h),  x€k,

while
Y(f)x) = f'(x; %) = f(x), x€kE;

i.e., X(f) is the constant function x> f(k), while Y(f) = f. It follows
that

(X, Y](f) = X(f), feE™
This shows that [X, Y] = X.
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3.13. ¢-related vector fields. Let ¢: M — N be a smooth map. We
say that two vector fields X € Z(M) and Y € Z'(N)are ¢-related, X ~ Y,
if

Vip(x)) = dp(X(x)), e M. (3.2)

Lemma V: Two vector fields X € Z (M) and Y € Z(N) are p-related

if and only if
e (Y(g) = X(o*g), g€ FWN) 3-3)

Proof: In fact for x € M, g € FS(N),

(Y (9)*) = Y(g)e(*) = Y(#(x))g
and
X(p*g)x) = X(») p*g = [do(X(x)))(2),
as follows from the definition of dgp.
Q.E.D.

Example: Let U be an open subset of M and let X € Z(M). Then
X induces a vector field X on U, given by Xy(x) = X(x), xe U. Xy
is called the restriction of X to U. If i: U — M is the inclusion map, then
clearly Xy ~ X.

Proposition VIII: Suppose that ¢: M — N is smooth and X ~ X,
Y~ Y,. Then
(1) AX +pY ~AX; +pY,y, ApeR
() ¢ X f X, fe &(N),
(G) X, Y]& [, 1)

Proof: An easy consequence of Lemma V.

Q.E.D.

Remark: If ¢: M — N is surjective, then for every X e Z(M),
there is at most one Y € Z(N) such that X ~ Y.

Now let p: M => N be a diffeomorphism. Then the map
o*: F(M) « F(N)
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is an isomorphism. Hence every vector field X on M determines a vector
field ¢, X on N, given by
(@+X)(8) = (@) X(*9), g€ FN)
Explicitly we have
(@« X)P(x) = dp(X(x)), xeM.

This formula shows that the vector fields X and ¢, X are ¢-related.
It follows at once from the definition and Proposition VIII that the
correspondence X > ¢, X defines an isomorphism of Lie algebras,

px: T(M) — Z(N);
in particular,
e[ Xy, Xp] = [pXy, @uXa], X1, Xy € Z(M).
If y: N — Q is a second diffeomorphism, then
(Bop)s = dxopx.

3.14. Product manifolds. Let M and N be manifolds and consider
the product manifold M x N. Recall (sec. 3.7) that T,y = Ta X Ty.
Now let X be a vector field on M. Then a vector field i, X on M X N
is given by

(EuX)(x, 3) = (X(2),0), (% y)eM X N.

Similarly, every vector field Y on N determines a vector field iyY on
M x N given by

nY)x ) =0,Y(1®), (*y)eMxN.
It follows from these definitions that
XX and Y o V.
Moreover, we have the relations
(i X)mf) = (X(f)),  (Y)mf) =0, feS (M)

) 3.4)
(inY)(hg) = 7Y(8),  (nX)Rg) =0,  ge F(N).

Lemma VI: Assume that Z is a vector field on M X N such that
Zmyf) =0 (feS(M)) and Z(myg) =0 (ge L (N)).
Then Z = 0.
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Proof: Let ae M, be N be arbitrary and set Z(q, b)) = {. Then we
can write

{=dj(6) +djisn), €€ T(M), neTyN)
(cf. sec. 3.7). It follows (via the relations of sec. 3.7) that

0 = {muf) = &f)  fe L (M),

whence ¢ = 0. Similarly, we obtain y =0 and so { = 0.
Q.E.D.

Proposition IX: The maps
i X(M)—>ZM x N)  and  iy: Z(N) > Z(M X N)
are homomorphisms of Lie algebras. Moreover,
(X, ixY] =0, Xe&M), YeZ(N)

Proof: Let X;, X,e Z(M). The relations (3.4) imply that the
vector fields [1,,X; , 13, X,] and 7,,[ X, X,] agree when applied to func-
tions of the form #nkf (f e #(M)) or whg (g € S(N)). Thus Lemma VI
shows that

[iMXl ’ iMXz] = iM[Xl ’ Xz]

and so 7,, is a homomorphism of Lie algebras. The rest of the proposition
is proved in the same way.

Q.E.D.

Next, consider an arbitrary vector field Z on M X N. Z determmes
vector fields ZM and Z¥ on M X N by the equations

Z(x,y) = ZM(x,y) + ZV(x,5),  (x,y)e M X N,
where

ZM(x,y)e T(M) and  ZM(x,y)e T,(N).

Definition: 'The M-product of two vector fields Z; and Z,on M X N,
denoted by (Z, , Z,),, , is the vector field on M x N given by

(Zl ’ Z2)M = [wa: Zz] + [Zl s Zéu - [Zl ’ Zz]M-
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The N-product of Z, and Z, is defined by
(Zy,2Zy)y = [Zﬁ Zy]1 + 4y, Zév] — [Z1, Z,)".

The following lemma states obvious properties:

Lemma VII: Let Z,, Z, be vector fields on M X N. Then

() (21, 2w = —(Zy, Z))um

) (21,2 =f(Z1, 2 — Z3'(f) - 21, feS(M X N)
(3) (@, 2 = (27, 2]

@ (2,2 =0

() (Z1,Zo)m + (21, Zo)y = (21, Z).

3.15. Differential equations. Let X be a vector field on a manifold
M. An orbit for X is a smooth map a: I — M (I C R some open interval)
such that

&t) = X(o(t)), tel.

Proposition X: Let X be a vector field on M. Fix ae M and t,€ R.
Then there is an interval > ¢, and an orbit a: I — M of X such that
ofty) = a.

Moreover, if a, B: | — M are orbits for X which agree atsomes, € J,
then o« = 8.

Proof: For the first statement of the proposition we may assume
M = R" In this case it is the standard Picard existence theorem
(cf. [3, Theorem 7.1, p. 22]).

To prove the second part we show that the set of s J for which
a(s) = B(s) is both closed and open, and hence all of J. Itis obviously
closed. To show that it is open we may assume M = R™ and then apply
the Picard uniqueness theorem (cf. [3, p. 22]).

Q.E.D.

Now consider the product manifold R x M. We call a subset
W CR x M radial if for each ae M

WNRxa)=1,xa or WNR xa)= o

where I, is an open interval on R containing the point 0. The union and
finite intersection of radial sets is again radial.
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Theorem II: Let X be a vector field on a manifold M. Then there
is a radial neighbourhood W, of 0 X M in R X M and a smooth map
¢: W — M such that

Polt) = X(po(1)), (Lx)eW, and @, 0) =%, xeM,

where ¢, is given by ¢,(¢) = ¢(¢, x). Moreover, ¢ is uniquely determined
by X.

Remark: ¢ is called the flow generated by X. Each ¢,: I, — M is
an orbit of X satisfying ¢,(0) = x.

Proof: Let{(U,, u,)} be an atlas for M. The Picard existence theorem
[3, p- 22] implies our theorem for each U,. Hence there are radial
neighbourhoods W, of 0 X U, in R X U, and there are smooth maps
@.: W, — U, such that

Pult, ¥) = X(pu(t, %)),  (Lx)e W,
and
.0, x) = x, xeU,.

Now set W = | J, W, . Then W is a radial neighbourhood of 0 x M
in R X M. Moreover, W,N W, is a radial neighbourhood of 0 x (U,N Uy);
if xe U, N U, then W, W, N (R X x) is an interval I containing 0.
Clearly ¢, , @s: 1 X x — M are orbits of X agreeing at 0, and so by
Proposition X they agree in [, It follows that they agree in W, N W,.
Thus the ¢, define a smooth map ¢: W — M which has the desired
properties.

The uniqueness of ¢ is immediate from Proposition X.

Q.E.D.
Corollary: If (z, x), (s, ¢(¢, x)), and (¢ + s, x) are ail in W, then

o5, @(t, x)) = @(t + s, x).

Proof: Since W is radial there is an open interval I 50, s and such
that

¢+ xxCW and I xg(tx)CW.
Thus orbits «, B: I — M of X are given by

ofu) = @(u, @(t, x)) and  B(u) = ¢(t + u, x), uel
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Since o(0) = ¢(¢, x) = B(0), Proposition X implies that « =8; in

particular, ofs) = B(s).
Q.E.D.

Remark: If we write ¢(2, x) = ¢/(x), then the corollary reads

(Ps ° @)(*) = Porel).

For this reason ¢ is often called the local one-parameter group generated
by X.
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3,16. One-forms. A one-form on a manifold M is a cross-section in
the cotangent bundle; i.e., a one-form assigns (smoothly) to every point
x € M a linear function w(x) € T,(M)*.

The one-forms on M are an & (M)-module, which will be denoted
by AYM). The duality between T,(M) and T, (M)* induces an & (M)-
bilinear map AY M) x Z(M) — ¥(M) given by

{w, X)(x) = {w(?), X(x)), wed M), XeZ(M)
It follows from the remark following Corollary II to Proposition XIII,
sec. 2.24, that the associated map
AX(M) — Homy(F(M); F(M))

is an isomorphism.
Now let ¢: M —- N be a smooth map. Then the bundle map
dyp: 7,, — Ty yields a dual map

(dp)*: Sec 7y < Sect¥

(cf. sec. 2.15). We shall denote this map by ¢*,
o*: AY(M) < AYN).
Explicitly, we have
(P*w)(x; £) = w(p(x); dp(£)), xeM, ¢{eT(M)
According to sec. 2.15
P*(fror + fowa) = ¢¥f1 - 9*wy + @Yy 9Fwy,  f1, o€ SN), @y, wpE AHN).
3.17. The gradient. Every smooth function f on a manifold M deter-
mines an &(M)-module homomorphism
¢ (M) — S (M)

given by ¢;: X > X(f) (X € Z(M)). In view of the isomorphism of the
last section, there exists a unique 8f € A(M) such that

X(f) =<8, X5, XeZM).

We call 8f the gradient of f.
115
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From the fact that vector fields act as (real linear) derivations in
& (M) we obtain that

S(Af + pg) = Aof + ude, A peR, fgeS(M),
and

f-g)=0%-g+f %

Next, consider a smooth map ¢: M — N. For the induced map
p*: AY(M) <« AYN) we have the relation

¢*f = ¥e*f),  fe L)

(3.5)
as follows from a simple computation.

In particular, if 7: U— M is the inclusion map of an open subset
U C M we have

i*8f == Si¥f.
But *8f is the restriction of the one-form §f to U. Thus it follows that

carr §f Ccarr f, fe S (M).

Examples: 1 A vector field djdt on R is given by fi>f,
feL(R). If we write Ta =R X R, then d/dt is the vector field

s> (s, 1). On the other hand, the identity map «: R — R is a smooth

function. Hence its gradient is a one-form; we denote it by 8¢. A simple
computation shows that

8t dldt)(s) =1, seR.

2 Letfe (M) Then f = .o f =f* and hence
of = f*ot.
On the other hand, the derivative of f is the bundle map

df: Ty — Ta = R x R.
Using Example 1 we obtain, for ¢ € T(M):

df(€) = (f(»), & (% &)

In particular it follows that 6f =0 if and only if df =0. Thus
Proposition II, sec. 3.3, yields the following
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Proposition XI: The gradient of a constant function is zero. Con-
versely if fe F(M) satisfies 8f = 0 and if M is connected, then f is
constant.

Corollary: If fe S(M) is constant in some open subset U C M,
then :
of(x) =0, «xel.

Example 3: Letfe #(U),ge S (M) (U an open subset of M). Assume
carr g C U. Then considering 8(fg), fog, and g8f as one-forms on U we
see they all have carrier contained in carr g. Hence they extend to M
(put them equal to 0 outside U). Denote their extensions again by
8(f2), f3g, and géf, and observe that

3(fg) = fog + gdf.

Proposition XII: The %(M)-module A*M) is generated by
gradients.

Proof: Consider first the case that M is an open subset of R”. Fix
a basis ¢; ({ = 1, ..., n) of R® and define vector fields X; € £(M), by

Xi(x) = (x, &), xeM, e;eR™

It is an immediate consequence of Example 1, sec. 3.5, that Z(M) is a
module with basis X; ( = 1, ..., n).

Now let e* (i = 1, ..., n) be the dual basis in (R*)*. Considering the
e*t as smooth functions on M we see that

<8€*i, Xj) = e*i(ej) = 8; .

It follows that the 8e** form a basis for the module A*M). In particular,
AYM) is generated by gradients.

Now let M be any manifold. According to sec. 1.3 and the corollary
to Theorem I, sec. 1.2, M admits a finite atlas {U,} (« = 1, ..., k). Let
ps (@ =1, ..., k) be a partition of unity subordinate to this covering.
Since, for w € AY M),

k
w =} puw,
a=1
and carr(p,w) C U,, it is sufficient to consider the case carrw C U,
where (U, u) 1s a chart on M.
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By the first part of the proof we can define smooth functions f; € £ (U)
such that the 8f; form a basis of 4(U) over #(U). Hence, if wy denotes
the restriction of w to U, we have

n
wy = Zhiafi’ hiey(U).
i=1

Since the &f; form a basis for AY(U), it follows that
carr h; C carr w C U, i=1,.,n

so that we can extend the A; to M by setting s (x) = 0, x ¢ carr w. With
this convention, we have

w =Y h8fi =Y 8(hifs) — 3 fi 8hy . (3.6)

Finally, since carr h; C U, it follows that h;f; € #(M). On the other
hand, choose ge (M) so that g(x) =1 (x € carr w) and carrg C U.
Then gf, € #(M) and

gfi - 8hy = f; - Oh; .

Thus (3.6) can be rewritten as
w = Z 8(hifs) — Z (8fs) oh; .

This completes the proof.
Q.E.D.

3.18. Tensor fields. Let M be a manifold and consider the cotangent
bundle 7%, . A covariant tensor field of degree p is a cross-section in the
vector bundle

(M) = 735 @ - @ T

» actors

Thus a covariant tensor field of degree p assigns to each point x € M
an element of the space T (M)* ® -+ ® T,(M)*. The covariant tensor
fields of degree p on M form an &(M)-module, which we denote by
Z?(M). (In particular, ZY (M) = A¥M).) We extend the definition by
putting ZY(M) = ¥ (M). By the corollary to Theorem I, sec. 2.23,
each Z'?(M) is finitely generated and projective.

The product of two covariant tensor fields ® € ZP(M), ¥ e ZYM)
is defined to be the covariant tensor field of degree p + ¢ given by

(P ¥)x) = D(x) ® ¥(x), xeM.



4. Differential forms 119

The assignment (D, P) > @ - ¥ defines an ¥ (M)-bilinear map
FM) x LA(M) — Zr(M).

In this way the direct sum Y., Z?(M) becomes an algebra over
&(M). Proposition XIV, sec. 2.24, implies that this is the &(M)-tensor
algebra over A (M) (= ZFY(M)).

Analogously, we define a contravariant tensor field of degree p on M
to be an element of Sec 7,(M), where 7,(M) = 7, @ - @ 75 (p factors).

The scalar product between T,(M)* and T,(M) induces a bilinear
map ZP(M) X Z(M)— #(M), given by

(D, PH(x) = (D(x), ¥(x)>, xeM.

The associated maps

ZP(M) — Homy (% ,(M); (M),  Z (M)~ Hompy(ZH(M); S(M))

are isomorphisms (cf. sec. 2.24).

Finally, a mixed tensor field of type (p,q) is an element of
Z2(M) = Sec 15(M), where 5(M) = *(M) @ 7,(M). We may iden-
tify %(M) with Hom y(Z%(M); L (M)).

Example: The unit tensor field t is the tensor field of type (1,1)
given by
tx n*, &) = (% £,  Ee Ty (M), n*e T M)*.

Since (cf. sec. 2.24)
.Qpi(M) = Sec(-r}, ® Ty) = Sec 'r;, Ru Sec 7y

we may write

t=Y & ®X,, wiecd(M), X,eZM).

i=1
3.19. Differential forms. Recall that the “exterior algebra bundle
A% over the cotangent bundle r3; is the Whitney sum of bundles
APr¥  p =0, ..,n with A7} =M X R (cf. sec. 2.11). The fibres
of APr% are the vector spaces APT,(M)*, which may be identified with
the spaces of skew-symmetric p-linear maps

TAM) x - x TAM)— R.
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Definition: A differential form of degree p on M (a p-form) is an
element of Sec(APr}). We denote the F(M)-module of p-forms by
AP(M) (cf. sec. 2.6). Thus if @ € A?(M), then @(x) may be regarded as
a skew-symmetric p-linear function in T (M), (x € M).

The exterior product of two differential forms @ e AP(M) and
¥Ye AY(M) is defined to be the differential form @ A ¥ e AP+9(M)
given by

(D A P)(x) = D(x) A P(x), xe M.

Explicitly, if ¢; € T,(M), then
(di A l}l)(x, fl y o0y §p+q)

1
= WZ Ea¢(x; 50(1) [ ] 0(11)) W(x; ga(ﬂ-}-l) 3 eeey Eo(pﬂ))! P? q > 1’

where o runs over the symmetric group SP*? and ¢, =1 (—1) if o is
an even (odd) permutation. The product map (D, ¥) > D A ¥ makes
the direct sum

AM) = ﬁ AYM), n=dimM

=0

into an anticommutative graded algebra over the ring & (M). It follows
from Proposition XV of sec. 2.24 that the algebra 4(M) is an exterior
algebra over the #(M)-module 4}(M).

A(M), considered as an algebra over R, is generated by gradients and
functions since, by Proposition XII, sec. 3.17, the real vector space
AYM) is generated by gradients and functions.

A p-form @ on M determines a p-linear (over S (M)) skew-symmetric
map Z(M) X - X (M) — ¥ (M) given by

(X1, ey Xp) > D35 Xo(x), ooy X (), xeM.
In this way we obtain an %(M)-homomorphism
AV M) — ANZ(M); L(M)).

Applying the isomorphisms of sec. 2.24 following Proposition XV we
see that this map is an isomorphism,

ANM) = ANEM)); S(M)).

Henceforth we shall identify these modules without further reference.
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Example: Suppose that O is an open subset of a vector space E.
Then (cf. sec. 3.5) we have 7, = O X E, whence

At = O x AE*.

Thus cross-sections in A7} may be interpreted as smooth maps
O — AE*; ie.

A(0) = #(0; AE¥) = &(0) ®g AE*.

Next, let ¢: M — N be a smooth map. Then every p-form ¥ on N
determines a p-form on M, denoted by ¢*¥ and given by

(@*FNx; &1y s €5) = Hlo(x); (d9) &1y s (d9) £5)-
To see that o*¥ is indeed a p-form observe that
P*¥ = (AP dp)* ¥,
where dp: 7, — 7 is the bundle map induced by .

Proposition XIII: (1) ¢* is a homomorphism of graded R-algebras.
In particular,

P O) = o*f -9*0,  feFN), BeAN).
(2) If $: N— Q is a smooth map into a third manifold, then
(op)* =@ oy*
(3) For the identity map v: M — M, we have

*
M= talm) -

3.20. Examples: 1. Let U be an open subset of a manifold M.
Writing 7y = 7 |y (cf. sec. 3.5) we obtain

Al = At 1y .

Thus if @ € A(M), its restriction to U is a differential form on U. If
i: U — M denotes the inclusion map we have, clearly,

D = |, .

2. Products: Let M and N be manifolds. Since Ty, ,)(M X N) =
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T, (M)@® T,N), the fibre of Ar},y at (x,y) is the vector space
A T, (M)* ® A T, (N)*. The direct decompositions

ATAM)* @ AT (N)* = ) A*T(M)* @ AT ,(N)*

p.a

define a decomposition of A 77, , as a Whitney sum of subbundles.
The corresponding decomposition of A(M X N) as a direct sum of
submodules is written

AM x Ny =Y A»9(M x N),

naq

Evidently this makes 4(M X N) into a bigraded algebra.
Next observe that the projections mpyy: M X N > M,ny: M X N— N
define homomorphisms

wh: AM)— A(M x N),  a%: AN)— A(M x N).
If & € A(M), ¥ € A(N), we establish the following notation convention:
DX W =ni®ArtWe AM x N).
If @ e A?(M), ¥ € AY(N), then @ x ¥ e A7 (M x N).

3. Quotient manifolds: Let m: M —~ N make N into a quotient
manifold of M. Then each (dr), is surjective; hence so is each A (dn), .
It follows that the dual maps

Ndm)z s AT (M)* < AT (N)*
are injective. Hence n*: A(M) <« A(N) is injective.

4. Involutions: Let w be an involution of N (w? = .y). Then w*
is an involution of A(N). Hence A(N) is the direct sum of the graded
subspaces A, (N) and A_(N), where

A(N)={® | w*® =&}, A(N)={D|w*d = —&}.

Since w* is a homomorphism, 4, (N) is a graded subalgebra of A(N).
Now assume that =: N — M is a surjective local diffeomorphism such
that, for x € M, n~!(x) is of the form

7 H(x) = {2, w(2)}.
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We shall show that 7* can be considered as an isomorphism
A(M) —=> 4,(N).

In fact by Example 3 above, #* is injective. Since 7 o w = 7, we have
w*on¥* = 7*; hence Im#*C A (N). Finally, let @€ 4 (N). Fix
x € M and suppose n(z) = x. Since (dn), is an isomorphism there is a
unique ¥, € A T,(M)* such that

Adm)(F,) = (). (3.7)

Since w*® = @ and 7(x) = {2, ()}, it follows that this relation holds
with 2 replaced by w(=2).

In particular let U, V be open sets in M, N so that the restriction
7y of w to V is a diffeomorphism onto U (Theorem I, sec. 3.8). Then
¥, = (7,')* O(x), xe U. Hence x+> ¥, is smooth in U; hence it is
smooth in M. Let ¥ € A(M) be the differential form defined in this way.
Then relation (3.7) implies that #*¥ = &; i.e. A (N)ClIm =*

Remark: The situation discussed in Example 4 arises in the case of
the double cover induced by a vector bundle (cf. sec. 2.20).
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3.21. Orientable manifolds. An n-manifold M is called orientable if
the tangent bundle 7,, is orientable (cf. sec. 2.16); in other words, M is
orientable if there exists an n-form 4 on M such that

A(x) # 0, xeM.

An orientation of M is an equivalence class of such n-forms under the
equivalence relation

4, ~4, ifandonlyif 4,=7f-4,,

where f is a smooth function on M such that f(x) > 0, xe M.

If M is an orientable manifold, the choice of an orientation, or
representing n-form, is said to orient M. An element of the representing
class is called a positive n-form on the oriented manifold M. A basis
£, . £, of a tangent space T,(M) of an oriented manifold is called
positive, if

A(x; €y 4 .oy &) >0,

where 4 represents the orientation. Because A M) = Sec A"rj; and
dim A*THM) = 1, if 4 orients M, then every @ € A%(M) is uniquely
of the form & = f- 4, fe S(M).

Examples: 1. Let 4 denote a determinant function in R®. Then
4 may be considered as an element of A*(R") which orients R*. Thus
the definition of orientation for R™ coincides with that given in [5, p. 127].

2. Let S™ denote the unit sphere of an (n + 1)-dimensional Eucli-
dean space E and recall that we may identify T,(S") with the subspace
x+ C E (x € S™) (cf. sec. 3.4). Let 4 denote a determinant function in E.
Then the n-form 2 € A%(S") given by

x; €1y vy &) = d(x, €14 00y €4), xe S, £, TS,

orients S*. Evidently, for A > 0, Ad induces the same orientation in
S». Thus the orientation of S* depends only on the orientation of .
It is called the orientation of S™ induced by the orientation of E.
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3. Let RP™ be the real n-dimensional projective space (i.e. the
n-sphere with antipodes identified). We shall show that

orientable if 7 is odd

RP*" is ) e .
nonorientable if 7 is even.

Consider S” as the unit sphere of R*+! (with respect to some inner
product) and let 4 be a determinant function in R**+!, Then

Q(x; 61 y reey fn) = A(x) fl y ee0y En)’ X € S‘n’ fc’ € Tm(Sn)’

orients S™. Let o: S® — S* be the diffecomorphism given by o(x) = —x.
Then we have

o*Q = (—1)1Q. (3.8)

Thus, if n is odd, o*2 = 2. It follows from Example 4, sec. 3.20,
that Q = #*Q, for some Qe AY(RP), where m: S™— RP" is the
projection. Since 7 is a local diffeomorphism, it follows that

Qx) #0, xeRP~

Hence Q2 orients RP™,
On the other hand, consider the case that # is even. Let & € A%(RP™).
Then

o*r*d = n*, (3.9)
Since Q orients S™, we can write

b =f-Q  feF(Sn.

Since 7 is even, we obtain from (3.8) and (3.9) that o*f = —f; ie.
f(—x) = —f(x), xe S*. Now the connectivity of S* implies that
f(x) = 0 for some x € S™. It follows that

S(mx) = 0.
Thus RP™ is not orientable.
4. Consider the equivalence relation in R? given by

(*,9) ~ (x + & (—1)*y + h), h kel, x,yeR.

It is easy to see that the quotient space under this relation is a connected
two-manifold K (Klein bottle). It will be shown that K is nonorientable.
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In fact, let 7: R? — K be the map which assigns to every pair (x, y) € R?
its equivalence class. Then the diagram

m

R2

|/
y

Rz

K

commutes, where o is the map given by

o(x,y) = (x + 1, —¥).

Now assume that @ is a two-form on K. Then #*® is a two-form on
R2 which satisfies

a*n*@ = n*P,
Choosing a fixed determinant function 4 in R? we can write
0 =f-4, feS (R

Since 0*4 = —4, it follows that o*f = —f;i.e. f(x + 1, —y) = —f (%, ¥).
Hence f must have a zero, (xy, ¥,). It follows that

B((*o, 39)) = 0.

5. Let U be an open subset of a manifold M which is oriented by
4 € A®(M). Then the restriction of 4 to U orients U. The orientation
of U so obtained depends only on the original orientation of M, and is
called the induced orientation.

6. Let {U,} be a locally finite open cover of a manifold M. Suppose
each U, is oriented, and that the orientations in U, and Uy induce the
same orientation in U, N U, for each pair U,, U;. Then there is a
unique orientation of M which induces the given orientations in the
U, . (A simple partition of unity argument.)

7. The real line R has a canonical orientation; namely, it is oriented
by the one-form &t (cf. Example 1, sec. 3.17).

8. If M and N are orientable manifolds, then so is M X N. In fact,
let 4,,€ A®(M) and 4, € A"(N) orient these manifolds. Then

Ay % Ay € A™7(M x N)
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(cf. Example 2, sec. 3.20) orients M X N. The orientation represented
by 4, x 4, depends only on the orientations represented by 4,, and
A4y ; it is called the product orientation.

If §,(i=1,..,n)and ; (j =1, ..., 7) are positive bases of T, (M),
T,(N), then the vectors {, , given by

{i = (§1 ’ 0), 1 = 1’ ey 15 Cj-}-n = (0) 77]')1 ] - 1, ey 7y

form a positive basis of T, ,,(M X N).

9, Let M be a connected nonorientable manifold and denote by
M the double cover of M obtained via the tangent bundle 7,
(cf. sec. 2.20). According to Proposition IX, sec. 2.20, M is connected.
We show that M is an orientable manifold.

In fact, the projection 7: M — M is a local diffeomorphism. Hence
the derivative

dm: 15 —> Ta

restricts to a linear isomorphism in each fibre. Thus (cf. the example of
sec. 2.5) 74 is strongly isomorphic to the pull-back of 7, ; and so by
Proposition X, sec. 2.20, it is orientable. Thus M is orientable.

3.22. Orientation preserving maps. Let p: M — N be a local dif-
feomorphism between oriented manifolds. Let 4,, and 4 be n-forms on
M and N, respectively, which represent the orientations. Then we have

e*dy =f-4du, [feFL (M),

where f(x) # 0, x € M. The mapping ¢ is called orientation preserving
if f(x) > 0(xe M), and orientation reversing if f(x) <0 (xe M). If
¢: N — Q is a local diffeomorphism into a third oriented manifold, then
o @ preserves the orientation if the maps ¢ and ¢ both preserve (or
both reverse) the orientation. If M is connected, ¢ either preserves or
reverses orientations.

Now let ¢ be a diffeomorphism of a connected orientable manifold M
onto itself. Then whether or not ¢ is orientation preserving with respect
to a single orientation of M is independent of the choice of orientation.
If every diffeomorphism of M is orientation preserving, M is called
irreversible (see sec. 5.16).

Examples: 1. Themap o: S® — S" given by o(x) = —xisorienta-
tion preserving if # is odd, and orientation reversing if n is even, as
follows from Example 3, sec. 3.21.
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2. Let £ = E — {0} where E is an n-dimensional Euclidean space.
Consider the diffeomorphism ¢: E — E given by

X
q)(x) :I—&_‘i’ xeE.

Then ¢ reverses the orientation.
In fact, it is easy to verify that the derivative of ¢ is given by

@(g):’x’zf';ﬁ(x'@”, xe B, teTLE)

In particular, if | x | = 1, we have

dgl(£) = £ — 2, Erx.

This linear map is the reflection of E in the space which is orthogonal
to x. This shows that

det((dg);) <O

and hence p reverses the orientation.

3. Let E be a Euclidean space of dimension #n -+ 1 (n > 1) and let
E = E — {0}. Let R* = {t e R | t > 0} and consider the diffeomorphism

w Rt X S* > E
given by

aft, x) = tx,

where S is the unit sphere of E.

Let S, E have the orientations induced from a given orientation of E
(cf. Examples 2, and 5, sec. 3.21) and let R* have the orientation defined
by the one-form 8t € A}R+) (Example 7, sec. 3.21). Finally, let R+ x S™
have the product orientation. Then « is orientation preserving.

In fact, since R+ X S” is connected, it is sufficient to prove that « is
orientation preserving at some point; i.e., it is sufficient to prove that if
€y s ..y &, 1s a positive basis for Rt x S at (1, x), then

da(£y), ..., do(£,)

is a positive basis for E.
But such a positive basis is given by the vectors

(d/dt: 0)1 (O: fl)D e (0» En)’
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where ¢, , ..., £, is a positive basis for T,(S"). A short computation shows
that

()3, »5(d/dt, 0) = x
and
(d)q,0(0, &) =&, i=1,.,n

Thus if 4 is a determinant function representing the orientation of E,
then

A(do(d/dt, 0), do(0, &), ..., d(0, £,)) = A(x, &, , ..., En) = Qx5 &, .0y €,) >0

and so
da(d/dt’ 0)) d‘x(oy fl)’ sy da(O, §n)

is a positive basis for E.

4, Let M be an n-manifold and consider the 2n-manifold T,,. It
is orientable. To see this, let w: T,y — M be the projection, and let
{(U,, u,)} be a locally finite atlas for M. Then each

du,: mU, — u,(U,) x R*

is a diffeomorphism. Hence {(z~(U,), du,)} is a locally finite atlas for 7}, .

Now assign a fixed orientation to R*, and let R® X R™ have the product
orientation. Then there is a unique orientation in #—1U, such that du,
is orientation preserving. In view of Example 6, sec. 3.21, we have only
to show that the orientations in #=(U, N Uy) induced from those given
in 771U, and 71U, coincide. In other words, we must prove that the
identification maps

Vou = dug o duZ': u (U, N\ Uy) X R — ug(U, N Up) x R

are orientation preserving. Hence it is sufficient to prove the following

Lemma VIII: Letg: U— V be a diffeomorphism between two open
subsets U, V of a vector space E, and let

¢'(a): E—~E
be the derivative of ¢ at a point a € U. Consider the map
S UXE—-VXE

given by
D(x, €) = (p(x), ¢'(x; £)), xeU, E€k.
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Then the derivative of @,
&%,y EQE—~E®E

has positive determinant for every x € U and y € E.

Proof: It follows from the definition of @ that

D'(x, )6 ) = @' (x; 6), 9" (%9, 6) + @' (1), Enek.

This relation implies that
det &'(x, y) = [det ¢/(x)]2 > O

and so the lemma is proved.
Q.E.D.

Example 5: Let M and NN be connected oriented n-manifolds.
Assume that ¢: M — N and : M — N are diffeomorphisms which are
connected by a homotopy H:R X M — N such that every map
H; M — N is a diffeomorphism. Then ¢ and ¢ both preserve or both
reverse the orientations.

In fact, let 4, represent the orientation of N. Let x € M be fixed and
define fe #(R x M) by

f@t, %) (9%dn)x) = (Hdy)x), xeM.

Then f is never zero and f (0, x) = 1; because M is connected, it follows
that f(¢, x) > O for all e R, x € M. Hence y*dy ~ ¢*dy (set 1 = 1).
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1. Local coordinates. A local coordinate system on a smooth manifold
M is a chart (U, u) together with a basis ¢, , ..., e, of R*. For such a
system the functions x* in U given by x(x) = <{e*!, u(x))> are called
coordinate functions.

W) If (U,,u,,e) and (Us, uy, f;) are two overlapping coordinate
systems and u,, is the identification map, relate the corresponding
coordinate functions in terms of u,, .

(ii) Let (U, u, ¢;) be a local coordinate system on M. Consider the
vector fields 0/9x* ({ = 1, ...,n) in U corresponding under % to the
constant vector fields e; in #(U). Show that, for a € U, (6/0x%)(a) and
(8x%)(a) is a pair of dual bases of T (M) and T (M)*.

(iii) Given overlapping coordinate systems (U, u,¢;) and (V, v, f;)
with corresponding bases d/dx? and 0/dy! of T, (U N V), use (u o v71)
to find the matrix which expresses one basis in terms of the other.

(iv) Let @ € A?(M) and let (U, u, e;) be a local coordinate system. The
functions @; ...; (x) = P(x; 9/dx™, ..., 9[0x™s) (i3 < -+ < 7,) are called
the components of @ with respect to the given local coordinate system.
If (V, v, f;) is a second system and x € U N V, express one set of com-
ponents at x in terms of the other.

2. Vector fields. (i) E is a Euclidean space, £ = E — {0}. Define
X, YeZ(E)by X(x) = aand Y(x) = x/| x | (a fixed). Compute [X, Y].

(ii) Show that the Lie product of two vector fields in R™ is given by
[X, Y](x) = X'(x; Y(x)) — Y'(x; X(x)).

Conclude that the Lie product of two constant vector fields is zero.

(iif) Let X € &(M) satisfy X(a) 7 0. Find a local coordinate system
(U, u, ¢;) about a such that, in U, X = 0J/ox'. Hence show that if
fe F£(M), there is a g e L(U) such that X(g) = fin U.

(iv) Suppose dim M = 2, X, Y e Z(M) and for each ae M, X(a)
and Y(a) are linearly independent. For each a € M find a neighbourhood
U(a) and functions f, g € #(U) such that f(x) and g(x) are never zero and
[fX,gY] = 0.

131
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(v) Assume M compact. Show that the flow of any X € Z(M) can be
defined in all of R x M.

(vi) Let X € (M), M arbitrary. Find fe #(M) with f(x) > 0 for
all x, such that the flow generated by fX can be defined in all of R x M.

3. Consider the map ¢: R* — R3 given by
o(t, ) = {(b + a cos t) cos 7, (b + a cos t) sin 7, a sin 1}, t,reR,

where b > a > 0 are real numbers.

(i) Show that each map (dp),, ,) is injective.

(ii) Show that Im ¢ is a smooth manifold and is diffeomorphic to the
2-torus.

4. Construct a quotient manifold #: M — N, where = is not the
projection of a fibre bundle.

5. Cayley numbers. Consider R® = H @ H with the induced inner
product. Define a multiplication in R® by
(2, P q) = (' — 79 9P +9P), P gceH,
where p denotes the conjugate of p.

(i) Show that, for x; , x,, ¥, , ¥, € RS,

Y1y ®aYe) + He¥1, %1 Ya) = 2%y, 2)<{¥1, Yo+

(ii) Use (i) to prove that the product defined above makes R® into
a (nonassociative) division algebra over R. It is called the algebra of
Cayley numbers.

(iii) Show that if 1 is the identity of H then e = (1, 0) is the identity
of the Cayley numbers. Regard S® as the unit sphere of ¢! and make 74
into a complex vector bundle.

(iv) Use the Cayley numbers to construct a smooth bundle
(S5, -, S8, S7).

6. Jet bundles for functions. M is an #-manifold. Let a€ M and
let £, (M) C (M) be the ideal of germs which vanish at a.

(i) Show that £ (M) is the unique maximal ideal in &,(M).
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(ii) Denote JF (M)« -+ F (M) (p factors) by S5(M). Let f € L(M).
Show that the following are equivalent: (a) The germ of f at 4 is in
SJUM). (b) For any X, ..., X, e (M), (¢ < p),

XX+ (Xof)Na@) = 0.

(c) If (U, u) is a chart containing a, then the first p derivatives of fou!
are zero at u(a).

(iii) Show that the spaces S, (M)/F%(M) (a € M) are the fibres of
a vector bundle #P(M) over M whose typical fibre is the space
Z?=o VI(R™)*, #P(M) is called the pth jet bundle over M. Show that
rank #7(M) = ('37).

(iv) Show that each fe (M) determines a cross-section jP(f) in
FP(M), its pth jet. Construct an isomorphism FY M) =~ (M X R) D
and show that j}(f)(x) = (f(#), (¥ )(x)).

(v) Let #,(M) be the bundle dual to #?(M). If o € Sec #,(M), define
D: (M) — F(M)by Df = {a,j?(f)>. D is called a pth order differential
operator. Suppose X, , ..., X, e Z(M) and show that there is a unique
o € Sec #,(M) such that Df = X,(--- (X,f)). Show that with respect
to a local coordinate system (U, u, e;) a pth order differential operator
has the form

2 0 a
D Y O Tar

g=0 jy<+e+<lg

with f;..;, € L(U).

(vi) Construct exact sequences
0— Vorjy— £7(M) — F* (M) — 0
and

0= Fpi(M) — Fy(M)— VPrp — 0.

If p: #,(M)— VPry is the projection and o € Sec #,(M), thenpo o is
a cross-section in the bundle V?7,,. It is called the symbol of the differen-
tial operator D.

(vii) Show that a smooth map ¢: M — N induces bundle maps
Fo(M) — #(N) which dualize to maps Sec #?(M) « Sec #?(N).
Interpret these via dp and ¢* when p = 1. Express (for general p) these
maps in terms of a coordinate system.
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7. Jet bundles of vector bundles. Fix a vector bundle § over M.

(i) Carry out the constructions of problem 6, replacing & (M) by Sec £,
to obtain a vector bundle #7(§) whose typical fibreis ZL, VI(RY)* @ F
(F, typical fibre of £). Show that each o€ Sec ¢ determines a cross-
section jP(o) in #P(§), its pth jet.

(ii) If 7 is a second vector bundle over M with typical fibre H, a pth
order differential operator from ¢ to n is a map D: Sec ¢ — Sec 7 of the

form D(c) = ¢(jPc) where ¢ € SecL(#?(£);n). Express D in local
coordinates.

(iii) Construct canonical exact sequences of bundles

0— Vi ® £ — £ — F7(9) >0

and

0 — L(#77X(&); ) — L(F(£); n) > VP ® L(£; 1) — 0.

If ¢ € Sec L(#P(£); ), its symbol is p o ¢; pp(x) is a p-linear map from
THM) to L(F,; H,). If for each xe M and nonzero h*e TH(M)
pp(x; h*, ..., h*) is an isomorphism, D is called elliptic.

(iv) Let D: Sec ¢ — Sec 7 be a pth order elliptic differential operator.
Let £, 7 denote the pullback of £, 7 to the deleted bundle 7. Show
that £ and 4 are strongly isomorphic.

8. Distributions. A distribution on M is a subbundle ¢ of 7, .
It is called imvolutive, if, whenever X, Y € Sec ¢, then [X, Y] € Sec ¢.

(i) Let ¢ be a distribution on M with fibre F, at x and let X € 2(M)
have orbits ¢ (x). Show that the conditions (a) [X, Y] € Sec ¢, if Y e Sec £
and (b) dp: F, — F,,) for all x and for sufficiently small ¢, are equivalent.

(ii) Show that ¢ is involutive if and only if for each point a € M there
is a submanifold N, of M containing a such that T (N,) = F, (local
Frobenius theorem).

(iii) Show that if ¢ is involutive, then M is the disjoint union of
maximal connected embedded manifolds N, with T(N,) = F, (global
Frobenius theorem). In particular, show that the IV, are second countable.

9. Second tangent bundle. Consider the tangent bundles

™™ — (TM,‘", M, Rn) and Til = (Ti{ s Ty TM? Rﬁn).
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(1) Show that wodmr = momy. If o: M — N is smooth, show that
d(dp) commutes with dr and 7 .

(i1) Let U be open in R*. Write
T: = T(U X R%) = Ty X Ty = (U x R%) X (R* x R").

Define an involution wy of U by

wylx; §,m, §) = (%, 7, £, §)-
Show that for ¢: U — V (V open in R?)

d(dp) o wy = wy o d(dy).

Thus obtain a canonical involution w,, of T2, such that for ¢: M — N,

d(df) o wp = wy o d(dp).

Show that 7 o w,, = dm. Is there an intrinsic definition of w,,?

(iii) Let X € Z(M). Show that wy o dX: Ty, — T2 is a vector field
on T,, . Relate its orbits to the orbits of X.

(iv) Let j,: T,(M)— T\ be the inclusion. Regard (dj,), as a linear
injection T, (M) — T(Ty) (x = w2). Show that Im(dj,), = ker(dn), .
Prove that these spaces are the fibres of a subbundle of 72, . Denote its
total space by V;, . If X € Z(M), show that X(z) = (dj,),X(x) (x = 73)
defines a vector field on T, . Show that for X, Y € (M)

2N
[X,Y]o YV =dY o X —wpodXoY.

Generalize as far as possible to the tangent bundle of the total manifold
of any vector bundle.

10. Sprays. A spray on M is a vector field Z on 7, such that
dr o Z = . A spray is called affine, if (u))Z = (1/t)Z (t = 0), where p,
is the diffeomorphism ¢ > t£€ of T, .

(i) Show that M admits affine sprays.

(i1) Let Z be an affine spray with flow . Show that for sufficiently
small ¢, 7 and for £ € Ty, ¥(2, 7€) = (i, £).

(iti) For ¢ sufficiently close to zero show that (1, £) is defined and set
exp & = mf(1, £). Show that exp is a smooth map from a neighbourhood
of o(M) (o, the zero vector field) in T, to M.
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(iv) Let (exp), denote the restriction of exp to T,(M). Show that its
derivative at zero is the identity map.

(v) If M is compact, show that exp can be defined in all of T, .
Hint: See Appendix A.

11. Measure zero. A subset A C R™ has Lebesgue measure zero if for
every € > 0 there is a countable covering of 4 by Euclidean n-balls B;
such that 3; volume(B;) < e.

(1) Show that a smooth map between open subsets of R™ preserves
sets of measure zero,

(ii) Show that a countable union of sets of measure zero has again
measure zero.

A subset A of a manifold M is said to have measure zero, if there is an
atlas {(U, , u,)} for M such that each set u,(U, N A) has zero measure.

(i) Show that this definition is independent of the choice of the atlas.

(iv) Show that the countable union of sets 4; C M of measure zero
has again measure zero.

(v) Show that a smooth map between n-manifolds preserves sets of
measure zero.

12. Critical points. Let : M — N be a smooth map with dim M =m,
dim N = n. We call a € M a regular point, if (dp), is surjective; otherwise
a is called critical. The set of critical points is written Crit . A point
be N is called a regular value, if all points of ¢~'(b) are regular or if
¢~ }(b) is empty; otherwise b is called a critical value. The set of critical
values is written CV(gp).

(i) If b is a regular value for ¢ show that ¢~1(b) is a closed submanifold
of M.

(i) Let Q C M be a submanifold of M and let ¢ denote the restriction
of ¢ to Q. Show that if a € Q is a critical point for ¢, it is a critical point
for 4.

13. Sard’s theorem. Sard’s theorem asserts that, for a smooth map
¢: M — N, the set of critical values has measure zero.

First, let : R™ — R® be a smooth map. Write x = (%, ..., ¥™) and
¢(x) = (DY(x), ..., DYx)). Assume that, for some p (0 < p < n),
Pi(x) = x* (1 = 1, ..., p).
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(i) Show that the conditions rank ¢’(x) = p and (99!/9x%)(x) = O
(1,7 = p + 1), on x € R, are equivalent.

(i) Set W = {x € R™ | rank ¢'(x) = p}. Write W = U U V, where U
consists of those points x € W such that

oP

T ® =0 (i 2 p )

and V consists of the other points. Let K C R™ be compact and
choose an integer 7 satisfying r(n — p) > m — p. Show that, for
xeKNnU yekK

[px — @y | < ogfsup | &f — 3| + sup |&f —y' |7},

TP iZzp+l

where ay is a constant depending only on K.

(iii) Show that V is contained in the union of countable many (m — 1)-
dimensional submanifolds of R™.

(iv) Given ¢ = 1/N, divide each unit box of R™ into boxes whose
first p diameters are €” and whose last (m — p) diameters are e. Conclude
that ¢(U) has measure zero.

(v) Prove Sard’s theorem by induction on .

14. Let ¢: E — F be a smooth map between vector spaces, where
dim E = m, dimF = n. If n > 2m, show that for some ¢ € L(E; F)
arbitrarily close to zero, ¢ + ¢ is an immersion. Hint: Apply Sard’s
theorem to the maps

L(E; F; m) X E — L(E; F),

given by (x, x) >y — ¢'(x), where L(E; F; m) is the manifold of linear
maps E — F of rank m (cf. problem 14, Chap. I).

15. Let¢: M — N be a smooth map, where dim M = m, dim N = n.

(i) If n = 2m, show that ¢ is homotopic to an immersion.

(i) If > 2m show that ¢ is homotopic to an embedding.

16. Prove Whitney’s embedding theorem: Every m-manifold can be
embedded into R?"+! as a closed submanifold.
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17. (i) Show that the map ¢: S2 — R* given by

2 2
Pxy, X9, x3) = (%] — X3) €1 + Xy3x9e, + X1 Xl + Xp¥gey

x = (%, Xy, %3) €S2

induces an embedding of RP2in R* (e, , €, , €5 , €, , a basis of R*).

(ii) Use the embedding in (i) to construct an immersion of RP? in R3,

18. Morse functions. Let fe £ (M). ac M is called a critical point
for f, if 8f(a) = O.

(i) Suppose a is a critical point for f. If X, Y e Z(M), show that
X(Yf)a) depends only on X(a) and Y(a) and defines a symmetric
bilinear function in T(M), the Hessian of f at a. Phrase this in jet bundle
terminology.

(i) A critical point is called nondegenerate, if the Hessian of f at a is
nondegenerate. Show that the nondegenerate critical points are isolated.

(iii) Given a nondegenerate critical point of f, construct a local
coordinate system such that near a

fe=Ysd— ¥

i=1 j=p+1
(Morse lemma).

(iv) A function all of whose critical points are nondegenerate is called
a Morse function. Given g € (M) and € > 0 construct a Morse function
f such that

| f(x) —g(x) <e¢ xeM.

19. Normal bundle. Let ¢: N — M be an immersion.

(i) Show that (dg) Ty is a subbundle of T,y . The corresponding
quotient bundle is called the normal bundle of N (with respect to ¢).

(i1) Find the normal bundle of S™ in R*+2,

20. Tubular neighbourhoods. Let N be a closed submanifold of M.
Construct a diffeomorphism ¢ from its normal bundle onto a neigh-
bourhood U of N such that ¢(o,) = x, x€ N. U is called a tubular
neighbourhood of N. Hint: Use the exponential map of problem 10 (iii).
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21. Orientations. (i) Show that the product of two manifolds is
orientable if and only if both manifolds are.

(i1) Let M be orientable. When is the diffeomorphism of M x M
given by (x, y) > ( ¥, x) orientation preserving ?

(iii) When is the diffeomorphism w,, of T%, defined in problem 9 (ii)
orientation preserving ?

(iv) Show that the equations

p(u, v) = (cos v + usin (;)) e + (sin U — u oS (;)) ey + uey,

— i <u<i, veR,

define a nonorientable submanifold of R3.

22. Manifolds-with-boundary. A Euclidean half space H is the closed
subset of a Euclidean space R™ given by {(x, a> > 0, where ac R™ is a
fixed nonzero vector. The (# — 1)-dimensional subspace of R™ given
by {x, a> = 0 is called the boundary of H. If O is an open subset of H
and ¢: O — H, is a map of O into another half space, then ¢ is called
smooth, if it extends to a smooth map U — H,;, where U is an open
subset of R” containing O.

A manifold-with-boundary is a second countable Hausdorff space M
which admits an open covering U, with the following properties: (a) For
each « there is a homeomorphism u, : U, — U, , where U, is an open
subset of a half space. (b) The identification maps

ugouy ' : u(Upg) — ug(Usg)

are diffeomorphisms. A map between manifolds-with-boundary is called
smooth if it is locally smooth.

(i) With the same definition of tangent space as given in sec. 3.1
construct the tangent bundle of a manifold-with-boundary. Generalize
the results of sec. 2, Chap. III, to this case.

(ii) Let ae M and let (U, , u,) be a chart such that ae U, . Show
that the property u,(a) e F (F, boundary of H) is independent of the
choice of (U, , u,). The points a for which u,(a) € F are called the bound-
ary points of M. Show that the set of boundary points of M (with the
induced topology) is an (z — 1)-dimensional submanifold of M. It is
called the boundary of M and is denoted by oM. The open subset
M — 0M is called the interior of M.
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(iii) Construct a cross-section o of 74 |5, which “points out of M.”
Show that o @ 744 = T lgar - If M is orientable, use o to orient M.

(iv) Show that M has a neighbourhood in M diffeomorphic to I x oM,
where ] = {te R |0 <t < 1} (see part i).

23. Let M and N be compact manifolds-with-boundary.

(i) Let A C oM, B C dN be unions of boundary components chosen
so that there is a diffeomorphism ¢: 4 => B. Consider the disjoint
union M U N and divide out by the equivalence relation x ~ ¢{x),
x € A. Show that the quotient space is a quotient manifold of M U N.

(it) Let M be a compact manifold-with-boundary. Set N = M,
A = B = 0M and carry out the procedure of (i) to obtain a compact
manifold (without boundary). Itis called the double of M. Show that the
diffeomorphism of M U M interchange induces an involution w of the
double of M. If the double is orientable, does w preserve or reverse
orientations ?

24. Suppose M and N are manifolds (without boundary). Delete open
balls from M and N to construct manifolds-with-boundary. Identify the
boundary spheres via a diffeomorphism to obtain a manifold (without
boundary). This manifold is called the connected sum of M and N and is
denoted by M # N. Modify the construction if M and N have boundaries.

25. Let (E, n, B, F) be a Riemannian vector bundle.

(i) Show that the vectors of length <C 1 form a manifold-with-
boundary.

(it) Show that the Hopf fibering (problem 10, Chap. I) is the unit
sphere bundle of the canonical vector bundle over CP™ (problem 8§,
Chap. II). Use this to find a manifold which is not diffeomorphic to the
ball and whose boundary is diffeomorphic to a sphere.

(iii) Let M be obtained from a 2z-manifold M by deleting a ball B(a)
and replacing it by the manifold constructed in (ii). Construct a smooth
map ¢: M — M such that

¢ Ya) = CP™? and @: M — CP' - M — {a}

is a diffeomorphism.



Chapter IV
Calculus of Differential Forms

§1. The operators i, 6, 6

4.1. The substitution operator. Given a p-form @ (p > 1) and a
vector field X on a manifold M, we define a (p — 1)-form i(X)P by

(X)PUXy s oy Xp) = B(X, Xy o Xpa)y Xy € Z(M),
or, equivalently,
(HX)D)x; &1, ooy €py) = P(x; X(%), &1, oy €py),  xEM, €€ Ty(M).

(Observe that we are regarding AP(M) as the module of skew p-linear
maps from Z(M) to &#(M).) The definition is extended to A%(M) by
putting

i(X)f=0, feP(M).

For a one-form w, we have
1(X)w = (w, XD.
Thus in particular, for a gradient 3f,

i(X) & = X(f)
(cf. sec. 3.17).
The map i(X): A(M) — A(M) defined in this way is called the
substitution operator induced by X. It is homogeneous of degree —1,
and satisfies

(XN P +g-¥)=fiX)P +g (X)¥
and
(XND AP)=iX)DAY + (—1)P D A i(X)¥,
fige S(M), ®eAM), ¥eAM).
Thus, for each X € (M), i(X) is an antiderivation in the algebra A(M).
141
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If Y is a second vector field on M, we have

(f-X+g Y)=FiX)+g iY)
and
(X)i(Y) = —i(Y)i(X) (f.geSL(M)).

Lemma I: If ®e A?(M) (p = 1) satisfies i{(X)P = 0 for every
X e Z(M), then & = 0.

4.2. The Lie derivative. Fix a vector field X e Z(M). Given a
p-form @ € AP(M) (p > 1) define a map

F(M) X - X Z(M)— L(M)

p factors

by
(Xps oo Xp) > X(D(Xy s oo, X)) — ’i B(Xy s oonr [ Xy Xy ey Xp)-

i=1

This map is obviously skew-symmetric and p-linear over R. Moreover,
the relations

X(f-8) = X(f) -5+ X(8)
and

(X, f-Y]=F X, Y]+ X(f)- Y, [fgeS (M),

(cf. sec. 3.12) imply that it is p-linear over S (M). Thus it defines a
p-form on M.

Definition: Let X € Z(M). Then the Lie derivative with respect to
X is the real linear map 6(X): A(M) — A(M), homogeneous of degree
zero, given by

OX)PYXy s oo X)) = X(P(Xy 5 oor X)) — i B(Xy, oo [X, X], or X),

Ped?(M), p =1, X,eZ(M),
and
0X)f = X(f), feSL(M)

Remark: If w € AY(M) we have
BX)w, Y + (o, [X, YD = X, YD), YeZ(M).
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Example: Let O be an open subset of a vector space E. As in the
example of sec. 3.19, write

A(0) = #(0; AE*).
Let @ e A?(O) be given by ®(x) = f(x) - a where ae APE* and

fe F(0). Let X be a constant vector field on O. Then from Example 1
of sec. 3.12 it is easy to see that

(B(X)P)(x) = (X(/))(#) - a.
In particular, if X is given by X(x) = (x, &) for some fixed k € E, then
(BX)P)x) = f'(x; ) - a.

Proposition I: The Lie derivative has the following properties:
(1) 8(X)ef = 86(X)f = 3X(f)

(2 i[X, Y]) = &(X)i(Y) — i(Y) 6(X) fe (M)
(3) UXNPAY)=0X)DAY+ D AbOX)¥ X, YeZ(M)
(4) 6(X, Y]) = 6(X)6(Y) — 8(Y) 6(X) D, ¥ e A(M).

(5) 6(f-X) = f-6(X) + p(¥)iX)
Here p denotes the multiplication operator in A(M),

WO = D AP

Remark: Property (3) states that for every vector field X on M
6(X) is a derivation in A(M). Property (4) shows that the map
Z' (M) — Der A(M) given by X — 6(X) is a homomorphism of Lie
algebras.

Proof: (1) We have,

B(X)8f, Y = X(Y(f)) — [X, YI(/)
= Y(X() = GX(N YD, YeZ(M),
whence the result.

(2) Clear.

(3) We may assume that @€ AP(M), ¥ € AY(M) and induct on
p +¢. If p + g = 0, then (3) reduces to the derivation property of X
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on functions. If (3) is true for p + ¢ < k, then, for p + ¢ =&,
X, Y e (M), (2) gives
i(Y) 6(X)D A ¥)
— YX)i(Y)(D A ¥) — i([X, Y])(D A ¥)
= YX)H(Y)D A ¥ + (—1)2D A {(Y)¥] — i([X, Y])P A ¥
—(—1)P® A i([X, Y))¥
= 0(X)i(Y)D A ¥ +i(Y)D A X)¥ + (—1)? 8(X)D A i(Y)¥
L(—1)7® A 6X)i(Y)F — i([X, Y])® A ¥ — (—1)%® A i([X, Y])¥,
the last equality following from the inductive hypothesis.

Now apply (2) and the antiderivation rule for #(Y) to this relation
and obtain

i(Y)0(X)D A ¥) = i(Y)OX)D A ¥ + & A X)), VYeZ(M).
Thus Lemma I implies that
HXNP A ¥) = 8X)P A Y + D A HX)P

and the induction is closed.

(4) Both sides of (4) are derivations in A(M). Since A(M) is generated
(as an algebra over R) by functions and gradients (cf. sec. 3.19) it is
sufficient to show that the effect of both sides of (4) on functions and
gradients is the same. But (4), applied to functions, is the definition
of the Lie product, while (1) yields

o[X, Y] &f = (X, Y1f) = X(Y(f)) — Y(X(/))
= [6(X) 8(Y) — 8(Y) 8(X)](¥f)-

(5) Both sides of (5) are derivations in A(M). But each side, applied
to g€ S (M) yields f - X(g); and applied to &g, yields

8(f - X(&)) = f - 8(X(8) + & A X(g)-
Q.E.D.

Definition: A differential form @ is called invariant with respect to
XeZ(M) if (X)® = 0. The set of forms invariant with respect to X
is a subalgebra of 4(M) because 6(X) is a derivation. (Recall that A(M)
is considered as an algebra over R.)
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4.3. The exterior derivative. Let & be a p-form (p > 1) on a
manifold M and consider the map

F(M) X -+ X F(M)—> F(M)

p+1 tactors

given by
»
(Xo s oo Xp) > Y, (—1) X(D(X,, ..., X, 0 X))
=0
T Y (= OX, X ey Biy s By e X)
0<i<i<p

(the notation X, means that the argument X; is deleted). The relations

X(f-o)=X(f)-g+f X(g figeSM), X,YeZ(M)
and
(X f-Y]=f[X, Y]+ X(f)'Y

imply that this map is (p + 1)-linear over S(M). Since it is obviously
skew-symmetric, it determines a (p + 1)-form on M.

Definition: The exterior derivative is the R-linear map &:
A(M)— A(M), homogeneous of degree 1, defined by

8D(X, , ..., X,) = i (—1) X[ DXy, o Xy o X,)

+ Y ()X, X e £y £y o X)

0<i<i<Pp
DeAYM), p =1, X,eZFM),

and (4.1)

FFNX) = X(f), [feL M), XeZ(M)

The differential form 8@ is called the exterior derivative of @. Observe
that 8f is the gradient of f (cf. sec. 3.17).

Combining the definition of the exterior derivative with that of the
Lie derivative (cf. sec. 4.2) we obtain a second expression for 89,

8D(X, , ..., X,) = f (= 1O )P Xy, eoer Xy weer X)

— ¥ (= B(Xe, X)L, Koy oo iy s By s oy X,
i<y 4.2)
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In particular, for a one-form these equations read

duw(X, Y) = X((w, Y}) — Y(w, XD) — <o, [X, YD, X, YeZ(M)
and
Sw(X, V) = i(¥) 6(X)w — i(X) 6(¥)w + (X, V])o.

Proposition II: The exterior derivative has the following properties:

(1) 8(X) = i(X)8 + 8i(X), XeZ(M)

() HDAW) =080 AW+ (—1)PD A 8¥, de AP(M), ¥ e A(M)
(3) & =

(4; 8 6(X) = 6(X) 8.

Remark: (2) states that & is an antiderivation in 4A(M).

Proof: (1) This is an immediate consequence of the definitions.

(2) This identity may be proved by induction in essentially the
same way that property (3) of Proposition I was proved. We omit the
details except to remark that property (1) plays the same role in this
proof as property (2) of Proposition I did in the earlier proof.

(3) Since 8 is an antiderivation, 8% is a derivation. Since A(M),
as an R-algebra, is generated by functions and gradients, it is sufficient
to show that

8 =0, 85f) =0, feLM).
But

GYUX, Y) = X[, YD) — Y(¥, XD) — <o, [X, YD)
= X(Y(f)) - Y(X(f) - [X, Y]f=0, X, YeZ(M)

i.e. 8% = 0. It follows that 8%(8f) = 0.
(4) Apply 8 to both sides of (1) and use (3).
Q.E.D.

Example: Let O be an open subset of a vector space E and recall
from sec. 3.19 that a p-form on O can be regarded as a smooth map
O — APE*. For any smooth function f € #(0), the gradient is given by

(Of(x), By =f'(x; h), x€0, hek.
More generally, for @ € A?(O), we have

8D(x), by A+ A By = i (—1Y (D' (25 R)), gy woe By y ey D,

j=0
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If e,,e* (v=1,..,n) is a pair of dual bases for E and E* and
@ € A7(0) is given by

D= Y Sfo.ufTAaety, £, € P(0),
i< <y

then

@D)x) =Y ¥ Sfii(xe) e At A e

=l iy <<y,

4.4. Smooth maps. Proposition III: Suppose that ¢: M — N is a
smooth map and that X e Z(M), Y € Z(N) are gp-related. Then

(1) g*ei(Y) = i(X) o p*

(2) ¢*e0(Y) = 6(X) o p*

(3) p*od = 5op*

Proof: Observe that all the operators in (1), (2), and (3) are ¢*-
derivations or g*-antiderivations. Hence it is sufficient to show that
both sides agree on functions and gradients. This is immediate from
Lemma V, sec. 3.13, and Equation (3.5) of sec. 3.17.

Q.E.D.

4.5. Carriers. Let @ € A(M) be a differential form on M. Recall
from sec. 2.13 that the carrier of @ is the closure of the set

{xe M| ®(x) = 0}.
It is denoted by carr @.

Definition: A differential form @ on M is said to have compact
carrier, if carr @ is compact. The set of differential forms on M with
compact carrier is denoted by 4 (M).

Proposition IV: Let X and Y be vector fields on M and let
D, ¥ e A(M). Then
(1) carr(® + ¥)Ccarr U carr ¥
(2) carr(® A P)Ccarr® N carr ¥
(3) carr[X,Y]Ccarr X Ncarr Y
(4) carri(X)® C carr X N carr @
carr 8(X)® C carr X N carr @
(5) carr 8@ C carr @.

Corollary: A (M) is a graded ideal in A(M) and is stable under
the operators {(X), 8(X) (X € Z(M)), and 8.
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4.6. Product manifolds. Let M, N be manifolds. For X € Z(M),
Y € Z(N) let the vector fields i, X, iyY € (M x N) (cf. sec. 3.14) be
denoted simply by X and Y. Then for ® e AP(M), ¥ e A(N) the
relations

(XND x ¥) = iX)P X ¥, iYX® x ¥)=(—1p® x i(Y)¥
XD x ¥) = 0X)D X ¥, OY)P x ¥)=S x fY)¥

and
(P X P)=38D x ¥ 4 (—1)PP x 8¥

(cf. Example 2, sec. 3.20) follow from the formulae of sec. 3.14, together
with the antiderivation or derivation properties of #(X), 6(X), d.

Now consider a differential form Q2 € A"(M x N). Lemma VII, (1)
and (2), sec. 3.14, implies that the map

F(M x N) x - x (M x N)— F(M x N)

r+1 factors
given by
(Zos o Z) > Y (=1 ZHRAZ, , s 25, .y Z,))
§=0
+ Z (=1 QU(Zi, Z)m s Zo s ooer L s ooes 2, .2,
o<i<isr

is skew-symmetric and (r + 1)-linear over (M x N). Thus it defines
an (r + 1)-form on M x N.

Definition: The partial exterior derivative with respect to M is the
linear map, homogeneous of degree 1, &, : A(M x N)— A(M x N)
given by

ot Zy, s Z) = E’ (—1Y ZMAZy s oo0r 255 s Z,))

+ Y (=DM Zms Zos e Zis e 24,y Z).

oi<igr
The partial exterior derivative with respect to N is given by

ONNZy, .o Z,) = Z (—1Y ZNQZ, , s 25, s 2,))

=0
+ Z (_1)i+j 'Q((Zi ’ ZI)N ’ ZO 3 *ry Z{ 3 ey Zj 3 trey Zr)y
oI <
Qe A(M x N).
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As an immediate consequence of the definition we have the formulae

G Xy s oo Xy, Yy s oy V)

= ﬁ (1Y X, (A Xy, s Xy y o Xp, Y1y, V)

y=()
+ Y (X, X] Xy By n X X, Yy, 0, YY)
Oy<usp
4.3)

and

(BN(Xy s ooy X s Yo, o ¥V

= (=1) }qj (—=1) YKy s oo Xy Yoo ion Ty s ooy V)

v=0

F (=1 T (=X, e Xy, [Ye, V), Yoo oo By oo Ty o Yo,

Oy <u<e
(4.4)

where 2 € AP+(M x N), X; € Z(M), and Y, € Z(N).

Proposition V: The partial exterior derivatives have the following
properties:

(1) 8 =23, +08y,8%=0,8,=0,08,8y+88,,=0

(2) 8, and 8y are antiderivations in A(M x N), homogeneous of
bidegrees (1, 0) and (0, 1), respectively.

(3) i(X)Bu + Swi(X) = O(X), X e 2(M),
i(X)8y + Sni(X) = 0

(@) (Y)oy + 8ui(Y) = 6(Y), Y € Z(N),
i(Y )84 + 84i(Y) = 0

(5) 8uH(Z) = O(Z)5,, Z e Z(M) or Z(N),
Sx0(Z) = 0(Z)on

(6) 8u(® x W) = 50 x ¥, ® e AP(M), ¥ € A(N),

(P X ¥) = (—1)*D x &Y.

Proof: Use Lemma VII, sec. 3.14, and sec. 4.3 together with
elementary arguments on bidegrees.

Q.E.D.

4.7. Vector-valued differential forms. Differential forms generalize
as follows: Let M be a manifold and let E be a finite dimensional vector
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space. Consider the bundle L(APr, ; M X E) (cf. sec. 2.10) whose
fibre at x € M consists of the p-linear skew-symmetric maps

T (M) X - x To(M)— E.

Definition: A p-form on M with values in E is a cross-section in
the vector bundle L(A?r, ; M X E). In other words, an E-valued
p-form, 2, on M is a smooth assignment to the points of M of skew-
symmetric p-linear maps

O Ty(M) X - X T(M)— E.

The E-valued p-forms on M form a module over (M), which will
be denoted by A?(M; E). The direct sum of the modules A?(M; E) 1s
denoted by A(M; E)

A(M; Ey = ¥ A%(M; E).
»
In particular, we have

AP(M; R) = AP(M).

The following lemma is trivial:

Lemma II: An %(M)-module isomorphism
AMYR E— A(M; E)
is given by @ ® a — £, where

Qx; €1,y &) = D(x; &1, ..., &) " a, xeM, & eT, (M)

The operators i(X), §(X) (X e Z(M)) and & extend to operators
(X)) Q@ e, (X)) ® e and 8 @ v in A(M; E). We denote them also
by i(X), 8(X), and 8.

Proposition VI: In A(M; E) the following relations hold:

(1) ([X, Y]) = (X)i(Y) — #(Y) 6(X)

(2) (X, Y]) = 86(X) 6(Y) — 6(Y) 6(X)

(3) & satisfies formulae (4.1) and (4.2)

(4) 8(X) = i(X) 8 + 8 i(X)

(5) 2=0

(6) 86(X)=8X)S5, X, Y e Z(M).
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Proof: Apply Proposition I, sec. 4.2, and Proposition II, sec. 4.3.
Q.E.D.

Next constder the #(M)-bilinear map
A(M) x A(M; E) - A(M; E)
given by
(@, ¥Ra)~(PrA¥P)Qa, & ¥edM), ack.
We shall write
(2, —>DPAR DPcAM), Qe AM;E).

This map makes A(M; E) into a graded module over the graded algebra
A(M). The following relations are straightforward consequences of
Proposition 1, sec. 4.2, and Proposition II, sec. 4.3:

(X)P A Q) = i(X)D AL+ (—1)2D A i(X)Q
HX)P A Q) = 6(X)D A 2 + D A HX)Q
S(PAR) =8DAQ+ (—1)PD AR
XeZ(M), ®eA M), Qe AM;E).
A smooth map ¢: M — N induces an R-linear map
o*: A(M; E) — A(N; E)
given by
((P*Q)(x; él L AR ] Eﬂ) = Q(q’(x); dq’fl 3y dq’fﬂ)’

Qe AYN; E), xeM, & e T (M)
or, equivalently,

PP ®a)=*®®a, DeAN), ack.

Proposition III of sec. 4.4 generalizes in an obvious way.
Every linear map «: E — F induces a map

wy: A(M; E) — A(M; F)
given by
(sc82)(; &1y oony €p) = AQ(x; &1, .oy L)),
Qe AYM; E), xeM, & e T (M)
Evidently

ad(X) = i(X) g, 0y0(X) = 0(X)ay, and 8 = S, .
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Proposition IV, sec. 4.5, generalizes to vector-valued forms. The set
of E-valued forms with compact support is denoted by A (M; E); it
is a module over A(M).

Finally, assume that E is a (not necessarily associative or com-
mutative) algebra. Then the multiplication in E induces a multiplication
in the space 4(M; E), the product being given by

(¢D ¢ YI)(“‘\"'! 61 1 oy §p+q)
1
= 2l Y &P £5a) 5 s o)) F® botprn) 5 o0 Eopra)
®ec A’(M; E), Ye A(M; E), xeM, £, T(M).

The algebra A(M; E) so obtained is isomorphic to the algebra
A(M) ® E. The following special cases are of particular importance:

(1) if E is commutative,
O W= ()P D
(2) if E is skew-commutative,
DY = (—1)pe YD
(3) if E is a Lie algebra
(D@ )« X + (—1y%(X - @) - ¥ + (—1)J"(¥ - X) 0 = 0
®e A¥M; E), We AYM; E), Xe A"(M;E).
Relation (3), a consequence of the Jacobi identity, implies that

(@:®)-®=0, &ecA¥M;E).
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4.8. Smooth families of cross-sections. Let ¢ = (E, n, M,F) be a
vector bundle. Suppose that

o: R— Sec ¢

is a set map; i.e., o assigns to every real number z € R a cross-section
o, of £. Such a map will be called a smooth family of cross-sections, if
the map R X M — E (also denoted by o) given by o(2, x) = o/(x) is
smooth. The set of smooth families of cross-sections in £ will be denoted
by {Sec; &}en -

Each such family determines, for each fixed x € M, a smooth map
o, : R — F, given by o,(t) = o(t, x).

Definition: Let o be a smooth family of cross-sections in £. The
derivative of o is the smooth family ¢ given by

. . t+s,x)—oft,x d
0(t,x)=l}£{)la(+ Z o )=Zc'0’

gmt

The integral (from a € R) of o is the smooth family [, o given by

(f a) @, x) = f as) ds.

The definite integral IZ o is the cross-section in £ given by
(fb o) () = J.:aw(t)dt.
It is often written jz o, dt.
The fundamental theorem of calculus yields the relations

b
J‘d',dt=a,,—aa, a,beR
a

and (4.5)
(f a)'(z,x) =oft,x), teR, xeM,

for a smooth family o.
153
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4.9. Smooth families of differential forms. A smooth family of p-
forms on a manifold M is a smooth family of cross-sections in the vector
bundle APrj. The set of smooth families of p-forms on M will be
denoted by {A7(M)} g . Evidently, (cf. Example 2, sec. 3.20)

{A2(M)}lier = A**(R X M).

Thus a smooth family of p-forms on M is a differential form on R x M,
homogeneous of bidegree (0, p).

In particular, if X € Z(M) and if we consider X as a vector field
on R x M (cf. sec. 3.14 and 4.6) then for a smooth family @ of p-forms
on M,

(X)Pe A% (R X M) = {A"M)}ieq ,

HX)P e AR x M) = {A} (M)},
and
Sy® € AR X M) = {AP*(M)}seq

are again smooth families of differential forms on M.

Let j,: M ->R x M be the inclusion map: j(x) = (¢ x). If
® e A*P(R x M) is a smooth family of p-forms, then the p-forms @,
on M are given by

®, = jid, teR.
Thus the smooth family (X))@ (X € F(M)) is given by
(X)®), = jHi(X)® = i(X)j{® = i(X) P, .

Similarly,
(X)), = 6(X)®, and  (5,P), = 59,

Now consider a smooth map ¢: M -— N. Then
( x @)*: AR x M) < A(R x N)
restricts to linear maps
(¢ X @)*: A%P(R X M)« A*?(R x N).

Thus ¢ induces a map (+ X ¢)* of smooth families of p-forms. If
®e A%P(R X N) is a smooth family, then

((c X @)*®), = ji(t X @)*P = @*j; @ = ¢*®,.
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Proposition VII: Let ¢: M — N be a smooth map, and let @ be a
smooth family of p-forms on N. Then

(¢t X @)*®) = (+ x p)*d (4.6)
and

b b
f ¢*®, dt = p* f @, d. 4.7)

Proof: Let ®,: R — APT,(N)* be the smooth map given by
D) = D(t,y), teR, yeN.
Then
(0 X 9)*B), = A%(dg)lo @y : R— APTL(M)*, e M.

Since AP(dp)¥ is a linear map, it follows that

d d
. 7 [0 X @)*P), = A¥(dp); o - Poa;
ie.,
[ X @)*P), = AP(dp); o Doy = [(+ X 9¥)]D, .
This proves (4.6).

Formula (4.7) is proved in the same way.

Q.E.D.
Proposition VIII: Let @ be a smooth family of p-forms on M. Then
(1) i(X) fo @ dt = [oi(X)P, dt
Q) &X)[o®, dt = [.0(X)P,dt, XeZ(M),
(3) S[od,dt = [250,dt.
Proof: (1) is clear. Next we verify (3). Using an atlas on M, reduce
to the case M is a vector space E. In this case
A%(R x E) = L(R x E; APE*)
(cf. the example of sec. 3.19). Since both sides of (3) are linear we

may restrict to the case @(¢, x) = f(t, x)a where a € APE*, fe (R X E).
In this case (3) is equivalent to (cf. the example of sec. 4.3)

é[;;—vj:f(z,x)dt]e*ua :;[f:%(z,x)dt]e*ua,

where e*", ¢, is a pair of dual bases for E*, E and &/de, denotes the
partial derivative in the e, direction. But this is standard calculus.
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Finally, (2) follows from (1), (3), and the relation

H(X) = i(X)8 + 8i(X).
Q.E.D.

4.10. The operator I? . Let M be a manifold and let 2 € AP(R x M).
Then 2 can be uniquely decomposed in the form

Q=0+ ¥, Ged R x M), Ped»YR x M).
Now consider the smooth family of p-forms @. It satisfies
o, = j1o = jI0.
We shall abuse notation, and denote this smooth family by j*Q, (j*Q), =

jQ.
Integrating this family yields a differential form

b
e = f (jX9) at

on M. The assignment Q — I5Q defines a linear map
I: AR x M)— A(M)

homogeneous of degree zero.

Lemma III: Let T denote the vector field d/dt on R; consider it
as a vector field on R x M. Then

(75, = jFUT)Q, RQeAR x M).
Proof: We may assume that M is a vector space E, and that
Qe A°?(R x E) is of the form
(1, ) = f(t, x)a
for fe #(R x E) and a € APE*. Then
(7*D)x) = f'(5, x; djdt)a = (8(T)Q)s, x)

= (/3 0(T)2)(x).
Q.E.D.
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Proposition IX: The operator I? satisfies

(1) 188 =581
Q) j§ —jk = Ie8(T) = 8o 1% oi(T) + I8 oi(T) 5.

Proof: ‘(1) Apply Proposition VIII, sec. 4.9.
(2) Formula (4.5) and Lemma III yield

b
B2 —jre = [ (j*Q), ds = LTI

Now (2) follows from (1).
Q.E.D.

4.11. Orbits. Let X be a vector field on M which generates a
one-parameter group of diffeomorphisms

o RXM—->M

(cf. sec. 3.15). Then, for ® € A(M), ¢*P, p*)X)D e AR X M).
The corresponding smooth families of differential forms on M are
given by

(7¢*®) = @i® and  (jP"(X)®), = ¢ H(X)P,
where ¢, : M — M is the map, p,(x) = ¢(t, x).

Proposition X: Let ®e AP(M). Then the family ¢f® satisfies
the relation:

t
710 — 0 = [ (pIU(X)) ds.

In particular,
(97 ®); = 0(X)O.

Proof: Observe first that 7' ~ X. It follows that ¢*0(X) = 6(T)e*.
Hence ¢

t t
f PFO(X)P ds = f JE(T) g*® ds = II(T) p*®
0 0
= Jjip*® — jo¢*P = o/ — P.
Now (4.5) yields
P X)P = (p/P — D), = (#{P);
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whence
H(X)P = pr8(X)® = (pr®P); -

This completes the proof.
Q.E.D.

Corollary: A differential form & is invariant with respect to X
if and only if it satisfies

(pfd’ = @, teR
(cf. sec. 4.2).



§3. Integration of n-forms

4.12. Integration in a vector space. Let O be an open subset of an
oriented n-dimensional vector space E. We shall define a linear map

foz »E) — R

which depends only on the orientation of E.

First, let 4 be a positive determinant function in E and let ¢, , ..., ¢,
be a basis of E such that 4(e,, ...,e,) = 1. Each @ € AYE) can be
written @ = f - 4 some fe &(E). We define [, by

foqs - fof(x) dxt - dxm,

where «1, ..., x™ are the coordinate functions associated with the basis
€14 cey €y -

Then [, is a linear map; it has to be shown that it is independent
of the choice of 4 and of the basis. But if 4 is a second positive deter-
minant function, and 4(é,, ..., €,) = 1, we write ® = f- 4 and note
that

f(x) = D(x; 8y, ...,8,) = f(x) A(¢, , ..., &,), «x€kE.

Set & = Y, ode; and rewrite this relation as
F(x) = det(el) f(x), xeE.
Since 4, 4 are positive, so are the bases {e;}, {¢;}; hence
det(o]) > 0.

Now the transformation formula for Riemannian integrals yields
f Flx) dxt - dim = f f(x) det(o) it -+ dF
) o
= f J(x) dxt --- dxm.
o
Hence [, depends only on the orientation of E.

Remark: Anintrinsic definition of the integral is given in [9] and [12].
159
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Lemma IV: If carr @ C W (¥ an open set), then

fo¢= fOnW¢’ ® e AYE).

Lemma V: Let UCF, VCE be open subsets of oriented 7-di-
mensional vector spaces. Suppose ¢: U 5 V is a diffeomorphism, either

orientation preserving or reversing. Then, for @ e AYV)C AYE),
e*® e AYU), and

foq)*<p= [ o

«(0)

(O an open subset of U). Here e = +1 (resp. —1) if ¢ is orientation
preserving (resp. reversing).

Proof: This is a straight translation of the ‘transformation of
variables” law for Riemannian integrals.

Q.E.D.

4.13. Integration in manifolds. Let M be an oriented n-manifold
and let O be an open subset of M. We shall define a linear map

f A > R

Let @ € A% M) and suppose first that carr ® C U for some chart
(U, u, R*) on M. Give R" the orientation induced from M via u, and set

f o= f oI (4.8)

If (V, v, R®) is a second such chart (with R” given the orientation induced
from V), set W = U N V. Then Lemmas IV and V of sec. 4.12 give

——1*¢: —I*Q): o—l*—l*@
J.u(OnU)(u ) J‘u(Or\W)(u ) fv(onw)(u ¢ ) (u )

= e
ooV}

Thus the definition (4.8) is independent of the choice of (U, u, R™).
Finally, let @ € AY M) be arbitrary. Let (U;,%;,R") (i =1, ..., 1)
be a family of charts such that

,
carrdC | ) U;.
1
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Set Uy = M — carr @ and let {p;};_,,
ordinate to the open cover {U,}. Then

, be a partition of unity sub-

=) p,- @ and  p, - DPe 4AYU)).
i=1

We define
KRR

i=1

where [, p; * @ is given by (4.8) ({ = 1, ..., 7).

It has to be shown that this definition is independent of the choice
of the U;, u;, and p;. Let (V;, v;, R"),;,. .. be a second family of
charts on M such that carr @ C {J; V;. Set Vy = M — carr @ and let

]
{4;}j=0....» be a partition of unity subordinate to the open cover {V}.

We must prove that
T 8
" ¢ = i * ¢.
) | ? El fo g

Since g, - @ = 0, p, - @ = 0, we have

8
Pi.¢=ijp‘i.¢1 t=1.,7
j=1

whence

évfapi.(p: iszOQiPi‘dj:glJ'oqj.q;_

i=1 j=1

The elementary properties of the integral of an n-form are listed in
the following

Proposition XI: Let M be an oriented #-manifold and @ € AYM).
Then

(1) J; ¢ = 0.
(2 If xeU|P(x) 0} ={xeV|P(x)#0}, where U, V are
open subsets of M, then
f P = f .
U 4

In particular, if @ |, = 0, then [, ® = 0.
(3) If U, V are disjoint open subsets of M, then

L= fu<p+jy¢.
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(4) Let® = f- 4, where fe & (M) and 4 represents the orientation.
Assume f(x) > 0, x€ M, (D is called nonnegative), and @ 5 0. Then

qu>>0.

Proof: With the aid of a suitable partition of unity, it is easy to
reduce to the case M = R”. In this case these properties restate standard
properties of the Riemannian integral (of functions).

Q.E.D.

Proposition XII: Let M, N be oriented n-manifolds and let
¢: M — N be a diffeomorphism (either orientation preserving or
reversing). Then

f ot = ¢ f ®,  deAYN), Oopen, OCM,
o *(0)
where e = 1 (resp. —1), if ¢ is orientation preserving (resp. reversing).

Proof: Write & = Y;_, &, with carr &, C U; where U, is dif-
feomorphic to R™. It is clearly sufficient to prove the proposition for
each @, ; i.e.,, we may assume carr @ C U, U =~ R" Since ¢ is a dif-
feomorphism, the proposition follows from Lemma V, sec. 4.12.

Q.E.D.

Proposition XIII (Fubini): Let M, N be oriented m- and n-manifolds
and give M X N the product orientation. Then

f qsx'}':chp-thp, ® e AMM), e AYN).

MXN
Remark: carr(® X W) C carr @ X carr ¥ is compact.

Proof: Use partitions of unity to reduce to the case that M and N
are vector spaces. But in this case the proposition is a restatement of
the formula

foNf(x) g(y) dxt -+ dx™ dyt -+ dy"
— ([ syt dn)(]_) ),

for Riemannian integrals of functions f, g with compact support.
Q.E.D.
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Proposition XIV: Let M be an oriented #-manifold and assume
® € A¥(M). Then
f 80 = 0.
M

Proof: Choose finitely many charts (U;, u; , R*) ( = 1, ..., 7) so that
the U, cover carr @. Use a partition of unity to write ® = &; + -+ 4 D,
with @; € A»Y(M) having carrier in U, . It is sufficient to prove that

fMScb,. = fv_ 80, =0, i=1,..,7;

we are thus reduced to the case M = R™.
Choose a positive basis e, , ..., ¢, of R® with dual basis e*1, ..., e*".
Then @ € A }(R") is a sum of terms of the form

fir XA et netn fie PR,
Hence it is sufficient to consider the case
D=/f-e*A-ne*, feFL(R).
But then (cf. the example, sec. 4.3)
(8D)(x) = f'(x; e;) €¥1 A -+ A €*".

Since e*l A .- A e*" is a determinant function in R®, and
e*XL A »- A e*" e A ... Ae,> = |, we obtain
y *1 n )

f 8D = J. S(x; ey) dxt -+ dx™ = J. Uw ai{-dxl] dx? -+ dx"
R® R" Rjn-1 WY —o C€1
= 0.
Q.E.D.

4.14. Vector-valued forms. Let M be an oriented z-manifold and E
be a finite-dimensional vector space. Recall the definition of the E-valued
differential forms on M, A(M; E), and the relation

AM; E) = AM)® E

(cf. sec. 4.7). The space of E-valued forms with compact carrier is
denoted A (M; E). Evidently

AdM; E) = AdM) ® E.
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Now let 2 € AY(M; E) and write

Q——— Z¢i®ai
i=1

where a,, ..., a, is a basis of E, and @, € AYM). It is easy to see that
the vector in E, given by
;) a;
£,

(O an open subset of M), is independent of the choice of basis {a,}.
We define the integral of Q to be this vector,

f09= Z (fo«pi) 2.

i=1
Let a: E — F be a linear map of finite-dimensional vector spaces.
ay: A(M; E) — A(M; F) restricts to a linear map

ay: Ae(M; E) — A(M; F)
(cf. sec. 4.7). Evidently

f REEE ( f . qb), ® e AYM; E). (4.9)

Finally, observe that Propositions XII and XIV continue to hold for
vector-valued forms.

4.15. Forms with noncompact carrier. Let U be an open subset
of an oriented n-manifold M. Let @ € A®(M) satisfy carr @ N U = K is
compact. Choose fe (M) with f =1 in K. Then ¥ = f - @ € AYM)
and satisfies

Y(x) = Ox), xeU. (4.10)

Moreover, if X e AYM) also satisfies this equation, then it follows
from Proposition XI, part 2, applied to X — ¥, that

fUX=fU1P.

Thus we can define the integral of @ over U by

REIR

where ¥ € AYM) satisfies (4.10).
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In particular, if U is compact every n-form on M can be integrated
over U.

Examples: 1. Let S* be the unit circle in the complex plane C,

S'={zeC||z| =1}
A determinant function 4 in C is given by
d(2y, 2,) = Im(3; - 2,), z,eC.
Hence a one-form 2 € AY(S?) is given by
z; m) = Im(z - ) = Im(y/z), 3€SY, neT(S),

and Q orients S
Now consider the smooth map ¢: R — S?* given by ¢(2) = exp(2mit).
Then
@*Q(s; d/dt) = 2m Im(s e-2ristamin) = 2.

In particular, ¢ is orientation preserving.
Clearly ¢ restricts to a diffeomorphism

@: (0, 1) —> ' — {1}.
Moreover, if fe F(S?), then
Q= Q.
[Je=] 1

Ssi-{1}
Hence

Lﬂ9=waﬂw9=%ﬂ@wmm
i.e.,

[[erwa=q] rea

In particular, [ 2 = 2.

2. Let E be an oriented (n + 1)-dimensional Euclidean space and
let S denote the unit sphere in E. Denote by 4, the positive normed
determinant function in E. Orient S™ by the form £ € 4*(S") given by

QY515 coes Mn) = AE(Fs M1 s woes M)y ye S, e Ty(S™)
(cf. Example 2, sec. 3.21). We shall compute [ 2. Choose

O<a<bd< o
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Let # = (a, b) and let A C E be the annulus

Ad={x|a<|x|<b}
The orientation preserving diffeomorphism a: R+ x S* — E given by

(t, x) > tx
restricts to an orientation preserving diffeomorphism
S x S 4
(cf. Example 3, sec. 3.22). A simple computation shows that
a*dp = (1" - 3t) X Q

(¢: R — R is the identity map).
Next consider the (n + 1)-form @ in E given by

D(x) = == - A, xeE.
Then
(«*D)(2t, y) = (et - 3t) X ).

Since 4 and . are compact, any (# 4 1)-form defined in E (resp.
in R+ X S") can be integrated over A (resp. over .#). Thus Proposi-
tion XII and Proposition XIII, sec. 4.13, give

qu>= fjxsnmp: fje“at"St'fsﬂ.Q

b
= | e¥tndt-| K.
J, I,
On the other hand,

qus =f o=@ dxy - dxnyy
A

where x,, ..., ¥,,; are the coordinate functions corresponding to an
orthonormal basis. Taking limits as @ — 0, b — oo gives

o0
f etn dt - f 0 — f e-tert+ e twhin) dy o dity g
sn E

0
= ([T

It follows that
2m+l

™,
J- o 12.3...(2,,,__1)
Ry & emtl —
m!"+’ n=2m+1, m=0.

n=2m m>=1
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4.16. The annulus. Let M be an oriented z-manifold. A graded
8-stable ideal A,(R X M)C AR X M) is defined as follows:
P e Ay(R x M) if, for all closed, finite intervals K

carr N (K x M)

is compact. Next, let R be oriented by the one-form 8t (cf. Example 7,
sec. 3.21) and give R X M the product orientation. Let # denote a
finite open interval (a, b)) CR and let j,, j,: M — R X M be the
inclusions opposite @ and b.

Then, for 2¢€ A%N(R x M), carr 2 N (F x M) is compact. Thus
(cf. sec. 4.15) we can form the integral

Q.

FXM

In this section we prove

Theorem I (Stokes): Let M be an oriented n-manifold. Then, for
b e A3(R x M),

Lwaqi — fMj;,*cb - fMj:qb.
Remark: Since @ € A%(R x M), jF® and jF® e AYM).
Proof: First, consider the vector field T on R X M given by
T(s, x) = (d/d1,0), seR, xeM.
T determines an operator (cf. sec. 4.10)
I2oi(T) : AR x M)— A»Y(M),
which clearly restricts to an operator

I2oi(T) : A%(R x M)— AZY(M).
167
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Lemma VI:
f Q= j TR, Qe AR x M).
FXM M
Proof of Lemma VI: Use a finite partition of unity in M, to reduce

to the case M = R” and
carrQCR x L

where L is a compact subset of R”.
Let ¢,, ..., ¢, be a positive basis of R®. Then 8t A e¥1 A -+ A e*" is
a positive (n 4 1)-form in R X R". Write

Q=f8tAe*rn-nrne*,  feF (R, carr fCR X L.

Then {(T)Q2 = f-e* A -+ A ¥,
It follows that

(IAT))x) = ( f " £, %) de)e*t A oo p e¥n
and so
b
I(T)Q = t, x) dt dx! -+ dx™ = Q.
Jotme = ] e J e
Q.E.D.
We return to the proof of Theorem I. Lemma VI yields

Lms«p = f (12i(T) 50,

According to Proposition IX, sec. 4.10,

I%(T) 80 = j¥*® — j*d — SI%(T)®.
Since ® e A%(R x M), I%(T)P € A% (M). Thus Proposition XIV,
sec. 4.13, implies that

f SI%(T)® = O.
M

Hence

f I%(T) 8¢ = f o — f X,

M M M
Q.E.D.

4.17. Stokes’ theorem for the ball. Let B be the open unit ball in
an oriented Euclidean (n 4 1)-space E, and let S be the unit n-sphere
with the induced orientation (cf. Example 2, sec. 3.21). Let ©: S — E
be the inclusion.
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Theorem II: Let @ A®(U) where U is a neighbourhood of the
closed unit-ball B. Then

fﬁsqs = fsi*qs @.11)

Proof: Let p be a smooth function in E such that
p(x)=1, |z} <1 and carr p C U.

Then neither side of (4.11) is changed if we replace @ by p - &. But
p - @€ AY(E) and thus we may assume that @ € AYE).
Next let ¢ be a smooth function in E such that
gx) =1 lx<t qx=0 [x]=%
Then
(1 — )P = i*.

Moreover, since g -+ @ € A%(B), Proposition XIV, sec. 4.13 gives
[ 80— si(1—q)-01+ [ 8lg-01= [ 8[(1 —g)- ).
B B B B

Thus both sides of (4.11) are unchanged if we replace @ by (1 — q) - &;
in other words, it is sufficient to consider the case ¥(x) = 0, | x| < %.

Then we have
f scpzf 86, A={x|}<!x|<l}
B A
Next consider the diffeomorphism o: R* X S — E — {0} given by

oft, x) = tx (t€ R*, x€ S). Then « preserves orientations (cf. Exam-
ple 3, sec. 3.22). Hence, setting & = (%, 1), we find

f 80 = f 56 — LX o0 = [ 8(*®).
A Y

FXS

Applying Theorem I of the preceding section, we obtain
[,30=] itero — [ izero =] o,

because i = « ¢ j; and j{f0*@ = 0.
Q.E.D.



Problems

1. Fields of n-frames. A field of n-frames over an open set O C M
(M a manifold) is an n-tuple ¢, , ..., e, of vector fields in O such that for
each x € O the vectors e(x), ..., ¢,(x) form a basis of T,(M). Then
e*l ..., e*" is the n-tuple of dual 1-forms.

(i) Show that
8§ =Y u(e*) e, + %Zﬂu(t’*“ A e*®)i([e, , €5])

and use this to prove that 8 is an antiderivation.
ii) Define functions C? in O by [e,, e] = 3, C%e, . Verify the
/ ap y B, v ~ aff y
relations

Ble,) e* = — Y Coe*™® and  8e™ = — 1Y Clhe™ A e
8 «,8

2. Given manifolds M and N, regard #(M X N) as an Z(N)-
module and show that the S(M X N)-modules A°?(M X N) and
F(M x N) @y AP(N) are isomorphic.

3. Let Xe (M), ®e AM), where M is a compact oriented
n-manifold. Show that [,, 8(X)® = 0.

4. Let U be a domain in R”, star-shaped with respect to 0. Define
h: AXU) — AP U)  (p=1)
by
1
(B)(x; &y, ooy Epy) = f B(tx; x, €y, ooy tp_y) dt.
0
(i) Show that 8o h + ho 8 = ..

(i) If fe #(U) and 4 is a determinant function show that f- 4 =
8(g - D), where

O by ) = A by ba) and ) = [ Sl et

5. Define the integral of an n-form over an oriented manifold-with-
boundary. Establish Stokes’ theorem for compact oriented manifolds-
with-boundary.

170
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6. Solid angle. Define Qe A"YE) (E an oriented Euclidean
n-space, E = E — {0}) by
1
Q(x; 61 3 eevy En—l) = ——A(x! £1 3 ey fn-—l))

| % |"
where 4 is the positive normed determinant function.

(i) Show that 822 = 0.

(ii) Fix a unit vector g, and let U = E — {ta | t > 0}. Construct an
(n — 2)-form ¥in U such that Q = §¥in U.

(iii) Let M be a compact oriented (n — 2)-manifold and let «: M — U
be smooth. Show that [, «*¥ (¥ defined in (ii)) is independent of the
choice of ¥. (Hint: Compare problem 4.) [,, o*¥ is called the solid angle
enclosed by o(M). If 8: M — U is a second map such that B = f- q,
€ L (M), show that (M) and B(M) enclose the same angle.

(iv) Let N be a compact oriented (# — 1)-manifold with boundary N
and let : N — E be a smooth map. Then [y ¢*Q (R defined in (i)) is
called the solid angle subtended by o(N). If o(N) C U, show that this
coincides with the solid angle enclosed by ¢(dN). Assume y: N — U is
a second smooth map such that ¢(x) = A (x) for x € éN. Show that
@(N) and ¢(N) subtend the same angle.

7. Show that a p-form @ (p > 1) which satisfies §(X)P = 0 for
every vector field X must be zero.

8. Densities. A p-density on an n-manifold M is a cross-section
in the bundle A"r), ® APr, . The module of p-densities is denoted
by D,(M).

(1) Express densities in terms of components with respect to a local
coordinate system and find the transformation formula in an overlap of

two coordinate systems.
(ii) Let F be an n-dimensional vector space. Show that

DR (x, A Axy)>i(xy) ()P PeA"F*, x,eF

defines a canonical isomorphism A™F* ) APF — An—PF*_ Obtain the
Poincaré isomorphism (of ¥ (M)-modules)

D: A(M)—=>D, (M) (0 <p < n).
(1) Define the divergence operator o: Dy(M)— D, (M) by 0 =

(—1)?D o8 o D1, Show that 2 = ( and express du in terms of the
components of u with respect to a local coordinate system.
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(iv) Suppose M is compact and oriented. Set
(@, u) = f ®AaDW, ®eA M), ueD, (M)
M

Prove the formula

(P, u) = (D, 0u) De A M), ueDy(M).

9. Laplacian. Let M be an oriented z-manifold and let {, > be
a Riemannian metric in 7, .

(i) Use {, > and the orientation to identify Sec APr,, with AP(M) and
hence obtain & (M)-isomorphisms

ANM) —=> D, (M).

(i1) Use these isomorphisms to obtain, from the divergence, an
operator 8*: AP(M) — AP-Y(M). Express 6*® in terms of the com-
ponents of @ with respect to a local coordinate system.

(ii1) Assume M to be compact and let 4 be the positive normed
determinant function on M. Set

(@, %) = f (B, P4
M
Show that
(D, W) = (B, 8%) Pe AY(M), Ve A M).

(iv) The Laplace operator 4: AP(M)— AP(M) is defined by
4 = 808% - 6% 08, Establish Green’s formula

(5B, 8¥) + (5*@, 5+¥) = (4D, ¥), &, ¥ e A(M),

and conclude that 49 = 0 if and only if & = 0 and §*® = 0.

(v) Find a square root of 4.

(vi) Show that 8, 9, 6*, 4 are differential operators in the sense of
problem 7, Chap. III. Compute their symbols and decide which are
elliptic.

10. Let M be a compact oriented z-manifold. Let @ and ¥ represent
the orientation of M. Show that [, @ = [, ¥ if and only if there is an
orientation preserving diffeomorphism ¢ of M such that ¥ = ¢*@.
(Hint: If [, X = 0, then X = 8Q; cf. Theorem II, sec. 5.13.)

11. Symplectic manifolds. A symplectic manifold is a manifold
together with a closed 2-form w such that each w(x) is a nondegenerate
bilinear function in T, (M).
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(1) Show that a symplectic manifold is even dimensional and
orientable.

(i) Show that if M is compact and p < $dim M, then w A - A @
( p factors) is not of the form 8® (See hint of problem 10.)

(iif) Show that : X — {(X)w is an & (M)-isomorphism from Z'(M)
to AYM).

(iv) Set X, = v }(8f ) (fe S (M)) and define the Poisson bracket by

[f. 8] = o(X,, X)),  fge L (M).

Show that X, ;) = [X,, X] and conclude that the map (£, g) — [ f, £]
makes & (M) into a Lie algebra.

(v) Suppose X, generates the l-parameter group ¢,. Prove that
piw = w.

(vi) Assume dim M = 4k and the class represented by w generates
the algebra H(M). If M is compact prove that M is irreversible. Is this
true if M is not compact ? (H(M) is defined in sec. 5.1.)

12. Cotangent bundle. Let 7} = (T, m, M, R") be the cotangent
bundle of an n-manifold.

(i) Show that a 1-form 6 is defined on T} by
O(z; 0) = <z, (@m0, Le TAT3).

(i) Suppose U is open in R® and write TF = U X (R")*. A basis ¢,
of R* determines coordinate functions x* in U. Coordinate functions in
(R")* are given by p;: e* > (e*, ¢;> and the x together with the p; are
coordinate functions in T} . Show that, in T},

0 =Y piéxt, 80 = 8p; A 8ai.

(i) Show that (T, 80) is a symplectic manifold. Use 6 and @ to
obtain a canonical vector field Z on T}; and express it in local coordinates.
Show that if z € T,(M)*, then Z(2) is tangent to T,(M)*. Thus interpret
Z(2) as a vector in T,(M)* and show that Z(3) = z.

(iv) A diffeomorphism ¢: T}, — T} which preserves the symplectic
structures is called a canonical transformation. Prove that each diffeo-
morphism M — N induces a canonical transformation T3, — T5% .

(v) Let 7 denote the isomorphism of problem 11, iii, for the symplectic
manifold (T}, 86). Show that a vector field X on T} generates a local
1-parameter family @, of canonical transformations if and only if the
1-form 7X is closed.
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(vi) Suppose fe S(Ty) and let X, = r~Y(8f ). Show that f is constant
along the orbits of X,. Show that in local coordinates the differential
equation for an orbit X is the classical Hamilton-Jacobi equation

w_ o o

dt opt’ dt — oxt

(vii) If X e Z(T},) interpret the condition 6(X)§ = 0 geometrically.

13. Integration. Let M be an n-manifold oriented by 4. A continuous
n-form on M is a continuous map @: M — A*T¥ such that 7o @ = ..

(i) Define the integral of continuous compactly supported n-forms
and show that the basic properties continue to hold.

(if) Let @ be a positive continuous n-form (i.e., @(x) = A(x) 4(x),
/\(x) 0). Let U, be an open covermg of M such that U; C U,,, , and U,
is compact. Show that a; = [, @ is an increasing sequence and that
a = lim;_, a; < o© depends only on @. Show that a coincides with
the integral whenever it is defined as in (i). Set [, @ = a in any case.

(1) Let @ be any continuous n-form on M. Construct a continuous
positive n-form, @+, such that @+(x) = P(x) or DPH(x) = —DP(x).
Assuming that [, @+ < oo, define [, @. Show that [, & < [, O+

14. Parallelizable manifolds. Let { be the vector bundle over
M x M whose fibre at (x, y) is the space L(T(M); T,(M)). A parallelism
on M is a cross-section P in { such that

P(z,y) o P(x, 2) = P(x,y) and P(x, x) = ¢, x 9,26 M.
A vector field X is called parallel (with respect to P) if
P(x, y) X(x) = X(y), x,yeM.

A manifold which admits a parallelism is called parallelizable.

Let (M, P) and (M P) be manifolds with parallelisms. A diffeo-
morphism ¢: M — M is called parallelism preserving if dop o P(x, y) =
Plgx, gy) © (dp), . |

(i) Given a parallelism P, fix a point a € M. Show that (x, £) -~ P(a, x)¢
defines a strong bundle isomorphism M X T, (M) =» r,, . In this way
obtain a bijection between parallelisms on M and trivializations of 7, .
Show that the parallel vector fields correspond to the constant cross-
sections under this bijection.

(ii) Let P be a parallelism. Fix a point a and set T,(M) = F. Define
0, € AY(M; F) by 8,(x; £) = P(a, x)~'£. Show that the relation

S(x; &, m) = —P(a, %) 80,(x; £, 1)
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defines a tensor field, S, of type (2, 1) on M and that this tensor field is
independent of a. It is called the torsion of P. Regard S as a map
(M) X Z(M)— Z(M) and show that if X and Y are parallel, then
S(X,Y)=[X, Y]

(iii) Show that if ¢ is parallelism preserving, then

S(g(x); (d9)é, (dp)n) = (do) S(x; &, 1)

(iv) Assume that P is a parallelism such that S = 0. Show that for
every point a € M there exists a neighbourhood U and a parallelism
preserving diffeomorphism of U onto an open subset U of R*, where U
is given the parallelism induced by that of R".

(v) Use the Cayley numbers (problem 5, Chap. III) to define a paral-
lelism on S7. Compute its torsion.

(vi) Two parallelisms, P, P on M are called conjugate, if whenever X
is P-parallel and Y is P-parallel, then [X, Y] = 0. Show that if M is
connected then a parallelism has at most one conjugate parallelism.
ghow that the torsions of conjugate parallelisms are connected by

= —S.

(vii) Show that if P admits a conjugate parallelism, then S satisfies

P(x,y) S(x; € 1) = S(»; P(x, y)¢, P(x, y)n).

Conversely, if this relation holds, show that every point has a neigh-
bourhood in which a conjugate parallelism exists.

(viii) Show that the parallelism of S7 (partv) does not admit a con-
jugate parallelism.

15. Legendre transformation. Let L € #(T),) and let
Jo: To(M) — Ty
be the inclusion map. Regard (dj,), as a linear map from T,(M).

(i) Show that (L(£), 7> = SL(&; dj(n)), & ne T(M), defines a
strong bundle map &: 75, — 7} . It is called the Legendre transformation
induced by L. When is .# an isomorphism ?

(ii) Suppose <, > is a Riemannian metric on M and let fe S (M).
Define T, Ve F(Ty) by T(¢) = ¢, £, V = o*f. Show that the

function L = 7 — V induces an invertible Legendre transformation.
(iii) If & is an isomorphism define H € &(T%;) by

H(§¥) = (&%, L16%) — L(ZL1E%).
If L is defined as in (ii), show that #*H =T 4 V.



Chapter V

De Rham Cohomology

§1. The axioms

5.1. Cohomology algebra of a manifold. Given an n-manifold M
consider the graded algebra

AM) = ), AxM)
=0

of differential forms on M. It follows from Proposition II of sec. 4.3
that the exterior derivative makes A(M) into a graded differential
algebra. The cocycles in this differential algebra consist of the differential
forms @ which satisfy the condition 8@ = 0. Such a differential form
is called closed. Since & is an antiderivation, the closed forms are a
graded subalgebra Z(M) of A(M).

The subset B(M) = 8A4(M) is a graded ideal in Z(M). The differential
forms in B(M) are called exact, or coboundaries. The corresponding
(graded) cohomology algebra is given by

H(M) = Z(M)/B(M).

It is called the de Rham cohomology algebra of M.
Suppose ¢: M — N is a smooth map. Then

o*: A(M)«— A(N)

is a homomorphism of graded differential algebras (4(M) and A(N)
are considered as real algebras) as was shown in sec. 4.4 (Proposition III).
Thus ¢* induces a homomorphism of cohomology algebras, homo-
geneous of degree zero, denoted by

o*: H(M) < H(N).
If 4: N — Q is another smooth map, then ( o ¢)* = ¢* o * and so

(pop) =gt oy*.
176
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Moreover,
() = o -

In particular, if ¢ and ¢ are inverse diffeomorphisms, then ¢* and §*
are inverse isomorphisms.
The gradation of H(M) is given by

HQM) = 3 M)
where

H»(M) = Z»(M)|B*(M).
Since AP(M) = 0 for p > n it follows that

H¥M)=0, p>n
and
H™(M) = An(M)/B¥M).

On the other hand, BM) = 0, so that
HYM) = Z%(M).

Now Z%M) consists of the smooth functions f on M which satisfy
8f = 0, and hence Proposition XI of sec. 3.17 can be restated in the
form:

If M is connected, then HY(M) ~ R;

i.e.,, the cohomology algebra of a connected manifold is connected
(cf. sec. 0.3).

In any case the constant functions represent elements of HO(M).
In particular, the function 1: M — | represents the identity element, 1,
of the algebra H(M). If M is connected, the map A+ A -1 provides
a canonical isomorphism R = HY(M).

Example: If M consists of a single point, then

HYM)=0 (p>=>1) and HY(M)=R.

If the spaces HP(M) have finite dimension (it will be shown in
sec. 5.15 and, independently, in sec. 5.22 that this is the case for a
compact manifold), then the number

b, = dim H»(M)
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is called the pth Betti number of M, and the polynomial

ful) = 3 byv

=0

is called the Poincaré polynomial of M. The alternating sum

XM= Z (_l)p bm :fM(_l)
p=0
is called the Euler—Poincaré characteristic of M.
It is the purpose of this article to establish the following axioms for
de Rham cohomology.

Al: H(point) = R

A2: (homotopy axiom) If ¢ ~ ¢: M — N, then p* = Y+,

A3: (disjoint union) If M is the disjoint union of open submanifolds
M, , then

H(M) = [] H(M,).

A4: (Mayer—Vietoris) If M = UV V (U, V open) there is an exact
triangle

H(M) H(U) @ H(V)
HUAT)

5.2. Homotopy. Recall from sec. 1.10 that two smooth maps
@, : M — N are homotopic if there is a smooth map H: R x M — N
such that

H(O, %) = p(x) and  H(1, x) = ¥(x).
Given such a homotopy H, define a linear map
h: A(M) < A(N)
homogeneous of degree —1, by
h = I ei(T)o H*.

(T = (d/dt, 0), and I} is defined in sec. 4.10.) & is called the homotopy
operator induced from H.
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Remark: Let @ € A(N) and assume
(H-(carr ®)) N ([0, 1] x M) C ‘[0, 1]xcC
for some closed set C C M. Then
carr(i(T) H*®) N ([0, 1] x M) C [0,1] x C

and so
carr @ C C.

Proposition I: The homotopy operator £ satisfies
J* — @* = hS + Sh.

Proof: Let j: M — R x M denote inclusion opposite ¢. Apply
Proposition IX, sec. 4.10, to obtain

(JF —JHH* = 8h + hd.
Then observe that H o j;, = ¢ and H o j, = ¢.
Q.E.D.
Corollary: If ¢ ~ : M — N, then
o* = y#: H(M) < H(N).

5.3. Disjoint unions. Let M be a manifold which is the disjoint
union of open submanifolds M, ,

M=UM,.

The inclusion map 7,: M, — M induces a homomorphism
i*: A(M,) < A(M).

Denoting the direct product of the algebras A(M,) by I, A(M,) we
obtain a homomorphism

i*: A(M)— [ A(M,)

given by
(*®), = i*®, De AM).



180 V. De Rham Cohomology

Clearly, i* is an isomorphism of graded differential algebras if
I1. A(M,) is given the differential operator [],8, (8, denotes the
exterior derivative in A(M,)). Hence 7* induces an isomorphism

i#: HM) > [ H(M,)
given by ’
) =1 (),  yeHM).

5.4. Mayer-Vietoris sequence. Let M be a manifold and let U, , U,
be open subsets such that U, U U, = M. Consider the inclusion maps

JrhnlUy—U,, jpuUNnU,—U,
i: Uy —> M, 1y: Uy — M.
They induce a sequence of linear mappings
0 — AM) > A(U) @ AU) -2~ 4, nU)—0  (5.1)

given by
ad = (i}P, i}P), e AM)
and
B(Dy, Pp) = jiD, — 1Py, ®,e AU, i=1,2.

Denote the exterior derivatives in A(U,), A(U,), A(U, n U,), and
A(M) by 3,, 8,, 8,5, and 8 respectively. Then

xod = (8 Dd)oa and Bo (8, D8y =28,0°8
and so «, 8 induce linear maps

ay: HM)— H(Uy) @ H(Uy), By H(Uy) @ H(Up) — H(U; 1 Uy).

Lemma I: The sequence (5.1) is exact.

Proof: (1) B is surjective: Let p, , p, be a partition of unity for M
subordinate to the covering U;, U, . Then

carr i*p, , carr i3p, C U, N U,
Now let @ € A(U, N U,). Define

P, = ifp, - P e A(U), D, = iyp, - D e A(U,).
Then
P = B(P,, —Py).
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(2) ker 8 = Ima: Clearly Boa = 0 so that ker 8 D Im a. To prove
equality, let (®,, @) ekerB. Then, if xe U; N U,, D)(x) = Dy(x).
Thus a differential form @ € 4(M) is given by

_{Dy(x), xe U,
P*) = lpy), xeU,.

Clearly a® = (P, , D,); thus Im o D ker B.
(3) « is injective: If a® = 0 (some @ € A(M)), then P(x) = 0, for
xeUyvU, =M
Q.E.D.

The short exact sequence (5.1) induces an exact triangle

H(M) H(U,) @ H(U,)

N A

H(U, N Uy)

where 0 is homogeneous of degree +1 (cf. sec. 0.7). In other words,
we have a long exact sequence

— HA(M) 2> HAUy) @ HA(Up L2 HY(U, 2 Uy) = How(M) — .

This sequence is called the Mayer—Vietoris sequence of the triple
(M, Uy, Uy,). 8 is called the connecting homomorphism: However, it is
not an algebra homomorphism. If o € H(U; N U,) is represented by X
and ¥, € A(U,) satisfy ¥, |Uan, — ¥ lv,nu, = X, then Ou is repre-
sented by £, where Q2 |, = -

Now let N be a second manifold and let ¥;, ¥, C N be open sets
such that N = V,UV,. Let op: M — N be a smooth map which
restricts to maps

o Uy — ¥y and @y Uy — V.

Then ¢ restricts to a map g1, UyN Uy, — VNV,
The commutative diagram

0 —— A(M)—"M> AU ® A(Uy) % AU, A Uy) —> 0
fer feraet fos (5.2)
0 —> A(N) s A(V) @ AWV 2 AW, A V) —> 0
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induces the commutative diagram
= HY(M)— H»(Uy) @ HY(U,) — H (U, N Uy) S, H? (M) — -

Ttp’* T?f@aw;‘* Tq’j‘; Tw‘* 5.3)
> HN) — Ho(V}) @ HY(V,) — HY(V, O Vy) 2 HP(N) = -

between the Mayer—Vietoris sequences of (M, U, , U,) and (N, V;, V,).
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5.5. Retracts. Let N be a retract of M with inclusion 7 and retrac-
tion p (cf. Example 3, sec. 3.10). Since p o # = 1y it follows that

i* 0% = )
Thus p* is injective, #* is surjective, and
H(M) = Im p* @ ker i*.

If in addition 70 p: M — M is homotopic to the identity map of M,
then N is called a deformation retract of N. In this case

p¥ o ¥ = 1y

and so p* and ¢* are inverse isomorphisms.

Examples: 1. A manifold M is called contractible if it contains a
point a€ M as deformation retract (equivalently, the constant map
y: M — a is homotopic to the identity). 'The homotopy connecting i,
and y is called a contraction, or a contracting homotopy.

If M is contractible, then

H?(M) = H(point) = %’ g > g

As a special case we have the

Poincaré lemma: If M is a star-shaped domain of a vector space,

then H?(M) = 0 (p > 0) and H(M) = R.

2. Let M be a manifold, and let N be a manifold contractible

to a point b. Then
mi M x N—>M, j:M—MxN.

(1 the projection, j, the inclusion opposite b) make M into a deformation
retract of M X N.
In fact, 7y oj, = 15 . Moreover, if H is a contracting homotopy
for N, then
(1, x, ) = (%, H(t, v)), teR, xeM, yeN
183
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defines a homotopy connecting ¢, and jj o 7, . Hence
m: HM)—=> H(M x N).

3. Let ¢ = (E,n, B,F) be a vector bundle, and let 0: B — E be
the zero cross-section. Then wo0 =1, and so B is a retract of E.
Moreover, the homotopy H: R x E — E given by H(t, 2) = tz (teR,
z € E) connects x and oo w. Thus B is a deformation retract of E.
In particular

n*: HB)— H(E) and  o*: H(E)— H(B)
are inverse isomorphisms.

4. Assign a Riemannian metric to the bundle of Example 3. Let
¢ = (B, n, B, F)and ¢ = (Es, w5, B, S) be the deleted bundle and the
associated sphere bundle (cf. sec. 3.10, Examples 5, 6). Recall that
i: Eg— E, p: E — Eg (p(z) = z/| = |) make E; into a retract of E.

On the other hand, a homotopy H: R x E — E connecting i o p and
g is given by

H(t, z) — (t2 + (1 l'; lt)2 l b |)z .

Thus Es is a deformation retract of E; in particular
p*: H(Es) —~ H(E) and  i*: H(E) — H(Ey)
are inverse isomorphisms.
5. Consider the special case of Example 4 in which
E=F, B = (point).

In this case Example 4 states that the unit sphere, S, of F is a deformation
retract of F' = F — {0}, and so H(S) >~ H(F).

6. Letac S®(n > 1) be a fixed point. Then
S*t = {xe S"|<a, x> =0}

is the unit sphere of the Euclidean space F = a1 CE. Let U C S™ be
the open set given by

U={xelS"| —e <<a,x) < ¢}

for some fixed € with 0 < € << 1. Then S*» ! is a deformation retract
of U.
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In fact, let i: S*~! — U be the inclusion map, and define

p: U— Sn1
by
_ x—<Lxaa
= o= maar "¢

(observe that x — (x, aya # 0, for x € U). Clearly po7 = «.
Finally, define H: R X U — U by

x — Kx, a)a

B = =i el

xe U, teR.

Then H connects 7 ¢ p and the identity map of U.

7. Let o, y: M —>S* (n>1) be smooth maps such that
@(x) % —i(x), for x € M. Then ¢ ~ i (cf. Example 3, sec. 1.10). Thus

¢* = .

5.6. The cohomology of S*. As an application of the Mayer-
Vietoris sequence we shall determine the cohomology of S®.
Proposition II: H(S™) (n = 1) is given by
HO(S") o HYS™ ~ R

and
H/(S") =0 (1<p<n—]1)

Proof: Consider S™ as embedded in an (n + 1)-dimensional
Euclidean space E. Since S" is connected, H(S") = R. Now let a € S®
and fix € € (0, 1). Define open sets U, V' C S™ by

U={xeS"|<{x,a) > —¢}, V={xeS"| {x,a) <e}
Then S* = U U V, and so there is a long exact Mayer—Vietoris sequence
v = HY(S") —> HP(U) @ HY(V)— H?(U N V) —> HP(S7) — .o,

Next observe that U and V" are contractible, while U N V' contains
Sm-1 as a deformation retract (Example 6, sec. 5.5). Thus we may
rewrite the Mayer—Vietoris sequence as the exact sequence

-« — H?(S") - H?(point) @ H?(point) — H#(S"1) — HPH(§1) — ---



186 V. De Rham Cohomology

Hence it splits into the exact sequences
0 — HY(S") — HO(point) ® H(point) — HY(S-1) —> HY(S™) — 0
and
0 — > H(Sm1) = Hr(S") ——> 0, p> 1.
From the first of these we obtain
0 = dim HY(S") — dim H%(S"1) + 2 dim H(point) — dim HY(S").

Since S*! is connected if # > 2, while S° consists of two points,
this equation yields

R n=1

1 QnY ~o ’

HY(S™) = 0, n > L.

Finally, the second of the exact sequences shows that HP(S") ~
H'Y(S»?+1) (1 < p < n) and the proposition follows.
Q.E.D.

Corollary I: The algebra H(S") is the exterior algebra over the
one-dimensional graded space H"(S™).

Corollary II: The Poincaré polynomial of S™ is given by
f=14+t (@=1).
The Euler—Poincaré characteristic of S™ is given by

{0, nodd
Xs" = 12, neven.

Remark: Consider S™ as a submanifold of Euclidean space E. Orient
S™ by the n-form 2 given by Q(x; Ay, ..., h,) = A(x, hy, ..., h,), where
4 is a determinant function in E. Then

fsn9>o.

Hence Proposition XIV, sec. 4.13, shows that Q is not exact; i.e., it
represents a nontrivial element o € H*(S™).
Since HY(S") =~ R, « is a basis of H*S").

5.7. Free involutions. Let w be an involution of a manifold M
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(w? = ) without fixed points. Assume 7: M — N is a surjective local
diffeomorphism with

7 x) = {2, w(2)}, x€N.
Recall from Example 4, sec. 3.20, that
AM) = A, (M) D A (M),

where A (M) = {® | 0*® = ®}and A_(M) = {® | w*® = —P}. More-
over, 7* may be considered as an isomorphism A(N) = A4 (M).
Since w*d = Sw*, it follows from the definitions that A (M), A_(M)
are stable under 8. Hence
H(M) = H(4,.(M), 8) @ H(A(M), ) = H (M) D H_(M),
where
H(M)={a|w*(e) =} and H_(M)= {o|w*(a) = —a}.

Moreover, 7+ may be considered as an isomorphism H(N) = H (M).

Example: The cohomology of RP" (n > 1) is given by

HYRP") = R, H?RP") =0, I1<p<n
and
0, n even

HYRP™) =g 4 odd.

In fact, applying the discussion above to the projection 7: S* — RP™
and the involution w: 2 +— —z of 8", we find that

H(RP™) = H,(S").
1t follows that

HY(RP™) =R and HYRP™) =0 (1 <p<n.

Finally the positive n-form e A"(S™) of Example 3, sec. 3.21,
satisfies w*Q = (—1)»*1Q. By the remark at the end of sec. 5.6,
represents a basis of H*(S™). Thus

H*(S™), mneven

B = {gnsm,  nodd
and so
. 0, n even
HYRP?) = HY(S") = 3R n odd.



188 V. De Rham Cohomology

5.8. Germs of forms. Let M be a manifold and let b € M. Consider
the set 4, of differential forms @ which are zero in some neighbourhood
of b (possibly dependent on @). Then @ € ., if and only if b ¢ carr @.
Proposition IV, sec. 4.5, shows that 7, is a graded ideal in A(M) stable
under 8.

Denote the factor algebra A(M)/#, by A,(M). 8 induces an operator
8, in A, (M) which makes A4,(M) into a graded differential algebra.
A, (M) is called the algebra of germs of forms at b.

Proposition III: Let M be any manifold. Then
HYA(M),8,) =R and  H#A,(M),8) =0, p>0.

Proof: Let m: A(M)— A,(M) be the projection. Assume first that
Synf = 0, for some fe F(M) = AYM). Then ndf = 8ynf = 0 and
hence 8f is zero in some neighbourhood of &.

It follows (cf. Proposition XI, sec. 3.17) that f is constant in some

neighbourhood of b, whence, for some A e R, nf = =A.
Thus

HY(A(M)) = Z(4yM)) = n(R - 1) = R.

Now let 7@ € AY(M) (p > 1) satisfy §,7® = 0. Then the restriction
of @ to some neighbourhood U of b is closed. Choose a contractible
neighbourhood V of b such that ¥V C U. Then according to Example 1,
sec. 5.5, there is a (p — 1)-form ¥ € 4~}(V) such that (§¥)(x) = P(x)
(xe V).

Choose Q€ AP-}(M) so that Q equals ¥ in some neighbourhood
of b. Then

8,72 = 789 = n®

and hence H?(4,(M)) = 0,p > 1.
Q.E.D.

Corollary: Let a € H?(M) (p > 1). Then there is a representing
cocycle @ such that @ is zero in a neighbourhood of &.

Proof: Let @, be any cocycle representing «. Then
7d, = 8yn¥ = w8¥,

for some ¥ € AP-Y(M). Set & = @, — 5.
Q.E.D.
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5.9. Let M be a manifold. Recall (sec. 4.5) that 4 (M) C A(M) is
the graded ideal of forms with compact carrier. It is stable under i(X),
0(X) (X € Z(M)) and 8.

Definition: The graded algebra (possibly without unit) H(4 (M), 8)
is called the cohomology of M with compact supports, and is denoted by
H{(M),

H(M)= Y HZM), =n=dimM.
P=0

Since A (M) is an ideal, multiplication in A(M) restricts to a real
bilinear map A(M) x A (M) — A, (M) which makes 4 (M) into a left
graded A(M)-module. This map induces a bilinear map

H(M) x Ho(M)— Ho(M)
written
(0, B> o % B, a€ HM), BeHyM),

which makes H (M) into a left graded H(M)-module. Similarly, H (M)
is made into a right graded H(M)-module, and we write 8 * o, B € H (M),
o€ H(M).
The inclusion map y,,: A (M) — A(M) induces an algebra homomor-
phism
(vaede: He(M) — H(M),

which converts the module structures above to ordinary multiplication.

Example: Let M be a manifold with no compact component. Then
HYM) = 0. In particular HY(R") = 0.
In fact,
HYM) = {fe (M) | 8f = 0}.

But 8f = 0 if and only if f is constant on each component of M.
Moreover, if f has compact support, and is constant on each component,
it can be different from zero only on compact components. Thus, if M
has no compact components, f = 0; i.e., H(M) = 0.

189
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Remark: If M is compact, 4 (M) = A(M), H (M) = H(M).

A smooth map ¢: M — N is called proper if the inverse image under ¢
of every compact subset of N is compact. For any @ € A(N),

carr *® C g~ Ycarr D).

Thus if ¢ is proper, ¢* restricts to a homomorphism of graded differential
algebras ¢¥: A (N) - A (M) which in turn induces a homomorphism

ot s Ho(M) < Ho(N).
In particular, a diffeomorphism g: M => N induces isomorphisms,
ot
Pes Pe-

Next, let ¢: M — N be a diffeomorphism onto an open subset U
of N. If & e A, (M), we can form

(p™)e @ € A(V).
We extend this to a differential form (¢p.),®@ € 4(N) by setting
(Pc)x P(x) =0,  x¢carr(p )i P

(Since carr(p~1)¥®P is compact, it is closed in N).
In this way we obtain a homomorphism

(pe)x: Ac(M) — Ae(N)
which commutes with 8. Thus it induces a homomorphism

(et He(M) — H(N).

5.10. Axioms for H(M). In this section we establish axioms for
cohomology with compact supports, analogous to those given at the
end of sec. 5.1.

Proposition IV: The cohomology of R® with compact supports is
given by
0, p<n
D% :$
He(®") R, p=n
Proof: If n = 0, the proposition is trivial. For n > O consider S™
as the one-point compactification of R (cf. Example 10, sec. 1.5) and
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let 5 € S™ be the compactifying point; i.e. S* — {b} = R". Recall from
sec. 5.8 the short exact sequence

0— £, > A(S") — A4,(5") — 0,

where %, denotes the ideal of differential forms on S™ which are zero
in a neighbourhood of b. Clearly then, £, = A (R").

The short exact sequence above gives rise to a long exact sequence
in cchomology. Since (sec. 5.8) H(A4,(S")) = H(point), this sequence
splits into exact sequences

0 > HYR") — HY(S") — R — HYR") - H(S") — 0
and
0 — HZ(R") — H#(S") 0, p=2

Since HYR") = 0 (Example of sec. 5.9), while H%S") = R, the
first sequence gives the exact sequence

0 — HYR" —=> H(S") — 0.

In view of the second sequence the proposition follows from Proposi-
tion II, sec. 5.6.
Q.E.D.

Next a homotopy axiom is established. Let H: R X M — N be a
homotopy connecting smooth maps ¢, y: M — N. H will be called a
proper homotopy if, for all compact sets K C N, H"Y(K) N ([0, 1] x M)
is compact (equivalently, the restriction of H to [0, 1] X M is a proper
map). If H is a proper homotopy ¢ and ¢ are proper maps, because
they are the restrictions of H to 0 x M and 1 x M.

Proposition V: Assume ¢, §: M — N are connected by a proper
homotopy H: R X M — N. Then the induced homotopy operator £
restricts to a linear map

he: Ae(N) — Ao(M)
and

‘l‘t “‘P?:( = hed + She .
In particular ¥ = ¢%.

Proof: Apply the remark of sec. 5.2, together with Proposition I

of that section.
Q.E.D.
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Next suppose M = {J, M, is the disjoint union of open submanifolds
M, . The inclusion maps i*: M, — M induce homomorphisms

(i%): Ae(M,) — AoM).
Moreover, the linear map
i*: @a AC(ML!) - AC(M)

defined by

? 4
i* (Z ¢au) = Z (i:v)* (pav ’ ¢°‘v € Ac(Map)’
v=1 ve=1

is an isomorphism of graded differential algebras. Here @, 4,(M,) is
given the differential operator @, 8, (3, denotes the exterior derivative
in M,). Observe that this is the direct sum; in sec. 5.3 we used the
direct product.

It follows that 7, induces an isomorphism

ip: @D, Ho(M,) —> H{(M),
given by

k4 »
i\ (z n,) S (s ¥e € HM,).
sl

v=1
Finally, suppose M = U, U U, (U, open). Let
P Uy—U, #U—M v=12
denote the inclusion maps. Define a sequence
0 — AUyg) P AUy ® AUp) 22> Ad(M)—> 0
of linear maps by

Be® = ((jO)«®) —(j)®), P € A(Up)
and
ae(Py, By) = (i0)x Pr + (s Po, B, e A(U).

(This should be contrasted with the situation of sec. 5.4.)
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An argument similar to that of sec. 5.4 shows that this sequence is
short exact. The induced exact triangle of cohomology reads

Ho(Usy) — 29 H(U,) @ H(Uy)

x%

H(M)

where 9, is the connecting homomorphism, homogeneous of degree +1.
The corresponding long exact sequence

2o
v = HY(Uy) — HE(Uy) @ HE(Uy) — HY(M) —> HEN(Uyy) — -

is called the Mayer—Vietoris sequence for the triple (M, U,, U,) with
respect to compact carriers. If o€ H(M) is represented by & and
¥, e A(U,) satisfy ¥, + ¥, = D, then d,a is represented by 8¥, = —8Y,.
If N=V,UV, is a second manifold and ¢: M — N restricts to
proper maps ¢,: U, — V, (¢ is then proper), then the following diagrams
commute:
0 —— A(Uyp) — Ao(Uy) @ Ae(Uy) —> 4e(M)— 0
IR ((COEION S (54)
0 — Ae(Vig) — 4e(V1) @ Ae(Vy) —> 4e(N) —> 0
and
= HE(Ug) — HE(Uy) @ HE(Up) — HYM) — HZ(Uyp) — -
lut [ e (5.5)
= HE(Vig) — HE(Vy) @ HE(Vy) — H(N) — HEW(Vyg) — -
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5.11. Definition. Let M be an oriented n-manifold. Recall (Proposi-
tion XIV, sec. 4.13) that the surjective linear map

f . ANM) — R
M
satisfies fp o8 = 0. It follows that it induces a surjective linear map

| Z: HYM)— R.

Definition: The Poincaré scalar product
P« H¥(M) x HI (M) — R
is the bilinear map given by
Puop) = | axB  acHM), BeHI(M)

(cf. sec. 5.9).
Evidently,
##
2,8 = [ B BeHXM)
M
and
P o B) = Piifer, v ¢ B), (5.6
ae H (M), yeH(M), BeH»(M).
Finally, combine the &%, into a single bilinear map
Py HM) x H(M) — R
by setting
Pu(HYM), H(M)) =0, p+g+#n
Now denote by HE(M)* the space L(H%(M); R) of linear functions
in H¥(M). Then H (M)* = 3, H%(M)* is the space of linear functions
in H(M). The Poincaré scalar products determine linear maps
D% . Ho(M) —~ H2""(M)*
194
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by the equation
(Do, By = P, B),  a€ HA(M), BeHe (M)
Combining these maps yields a linear map
Dyt H(M)— Ho(M)*.

(It will be shown in sec. 5.12 that D,, is a linear isomorphism.)
Example: The linear function [y, € H¥M)* is given by

f: — Dy(l).

Now consider an orientation preserving diffeomorphism ¢: M — N
of M onto an open subset of an oriented n-manifold N. ¢ induces
homomorphisms

o  HM) < H(N)  and  (po)y: He(M)— Ho(N).

Let (p,)F denote the linear map dual to (p), -

Proposition VI: The diagram
HM)—— H(N)

o] b

H(M* <5 HoN)*

commutes.

Proof: Let a € HP(N), B H¥?(M) be represented by @ e A?(N),
¥ e A% P(M). Then (p,).B € H*P(N) is represented by (¢.):¥, and

FH(P A (90) o) = g*® A V.
Hence Proposition XII, sec. 4.13, can be applied to give

f: (p*o) + B = fM P*P AW = fN D A ()s¥ = f; o * (pe)uB-
Thus
Pi(e*e, B) = PR(, (pc)sB)

and the proposition follows.
Q.E.D.
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Next, suppose M = U U V (U, V open). Recall, from secs. 5.4 and
5.10, the Mayer—Vietoris sequences

o 2 HYM) — HYU) @® HYV) —> H U N V) =2 H#Y(M) —> -

and
et HI (M)« H2*(U)@ HE (V)< HE?(UN V) L HE T (M e

Dualizing the second sequence and replacing & by (—1)P+!0 we obtain
the row-exact diagram

(-1)?9

o 2 HYM)— HYU) @ H?(V)— HY(U N V)ﬂ_, H (M)~ -
o« © |p@pr @ |puw @ [Pk (57)

* %

e 2o HE (MY > HE(U) @ HE (V> HE UV )* B> (M5

Proposition VII: The diagram (5.7) commutes.

Proof: It is immediate from Proposition VI that squares (D and @
commute. To show that (§) commutes, let

«eH(UNV) and BeHr* M)

be cohomology classes, and let e AP(U N V), ¥e A2 (M) be
representing cocycles. We must prove that

PUH(—1)7+ 80, B) = P (e, Bep).
Choose @, € AP(U), @, € A?(V) so that
D, lynv — Do luny = P
Then o is represented by 2, where
Qly=286, and Ql,=250,.
Next, choose ¥, € A" ?"YU), ¥, € A" PY(V) so that
Yoy Y,
Then 8¥; = —8¥,e€ A ?(UN V) and 8,8 is represented by 8¥; .
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It follows that
P (—1)?+ oo, B)

= (=1)p jMQ AW = (—1)pH fusz AW, 4 (—1)p+ fVQ A Y,

= (=11 fu 80, AW, & (—1)PH fysqsz AY,.

But @, A ¥, € A" YU), @, A ¥, € A* (V). Thus by Proposition XIV,
sec. 4.13,

fUS(cplAWl):o: jVS(zpzAle).

Hence
PE(—1)* 2, B) — f &, A 8¥, + f ®, A 8%,
[ 74 v

=f (¢1—¢2)Asvf,=f ® A B,
unvy

unv
= 'ga?/'n V(a’ aCB)v

and so (3) commutes.
Q.E.D.

5.12. The main theorem. TheoremI: Let M be an oriented
‘ n-manifold. Then

Dy H(M) — Ho(M)*

is a linear isomorphism.

Definition: D,, will be called the Poincaré isomorphism.

~ Before proving the theorem we establish three lemmas. Let @ be an
i-basis for the topology of M. Denote by @, the open sets of M which
can be expressed as finite unions of elements in @. Denote by @, the
open subsets of M which can be expressed as (at most countable) disjoint
unions of elements of @. Then @, and 0, are {-bases for the topology of M
(cf. sec. 0.11 and sec. 1.1).

Lemma II: Let @ be an {-basis for the topology of M. Assume D,
is an isomorphism for every O € 0. Then D, is an isomorphism for
every O € 0.
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Proof: If O € 0,, we can write
0=0,uv-vu0,, O0ed.
Set U=0,,V=0,u--u0,,. Then
UNV =(0,Nn0y)u U (0,NO0,).

Since @ is an #-basis each O; N O, € 0. Thus we may assume by induc-
tion on m that Dy, D, , and D, are all isomorphisms.
Now apply the five-lemma to the commutative diagram of Proposi-
tion VII, sec. 5.11, to obtain that D, is an isomorphism.
Q.E.D.

Lemma III: Let O be a basis for the topology of M. Assume that
D, is an isomorphism for every O € @. Then D, is an isomorphism
for every O € 0), .

Proof: An element O € 0, can be written

O == U Oi 3y Oi € 0
i=1
where the O; are disjoint. Now recall (cf. secs. 5.3 and 5.10) the canonical
isomorphisms

H(0) =[] H(0)
=]
and

Ho(0) «— Hy(O)).

h-l
The latter dualizes to yield an isomorphism
Hy(0)* — ] H(0)*.
i=1
Denote the linear isomorphisms Dy by D; . An elementary computa-
tion shows that the diagram
Do

H(0) He(0)*

| |

HH(O) HHe(O)*

commutes. It follows that D, is an isomorphism.
Q.E.D.
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Lemma IV: Let @ be an i-basis for the topology of M. Assume D,
is an isomorphism for every O € @. Then D, is an isomorphism for
every open subset O C M.

Proof: According to Proposition II, sec. 1.1, the basis ((0p))s
contains all the open sets of M. Now apply Lemmas II and III.
Q.E.D.

Proof of Theorem I: We come to the actual proof of Theorem I,
and proceed in three stages:

Case I: M = R* Since (cf. Example 1, sec. 5.5, and Proposi-
tion IV, sec. 5.10)

R, p=0 R, p=
R =g ﬁ;-eo and  HeR") = |, f’#:

we need only show that
D: H(R™) — Hg(R")*
is a linear isomorphism. Moreover, since
dim HYR") = | = dim H{(R™)*,

it is sufficient to show that D £ 0.

Let 4 be a positive determinant function in R, and let fe & (R")
be a nonnegative function which is not identically zero. Then, for a
suitable basis of R",

fwf-A - fwf(x)dxl co dxn > 0.

Thus, in view of Proposition XIV, sec. 4.13, f - 4 represents an element
B # 0 in H'(R".
But it follows immediately from the definitions that

<D(1),B>=fm1 A(f-A)=fo-A # 0.

Hence D(1) # 0, and so D 5 0.
Case II: M is an open subset of R*. Lete,, ..., €, be a basis of R".
If x € R", write x = ¥;_; x%, . Then the open subsets of the form

O={xeR"|d <x<¥, i=1,.,n
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are an #-basis for the topology of R*. Each such O is diffeomorphic to R™.
Thus Proposition VI, sec. 5.11, together with Case I imply that D,
is an isomorphism for each such O. Now it follows from Lemma IV
above that D, is an isomorphism for every open set M C R".

Case III: M arbitrary. Let O be the collection of open subsets
of M which are diffeomorphic to open subsets of R*. Clearly @ is an
i-basis for the topology of M. In view of Proposition VI, sec. 5.11, and
Case II above, D, is an isomorphism for every Oe@. Thus
Lemma IV above implies that Dy is an isomorphism for every open
subset U C M. In particular, D, is an isomorphism,

Dyy: HM)—=> H(M)*.
QE.D.

Corollary I: The bilinear maps &£, , %% are nondegenerate
(i.e., scalar products in the sense of linear algebra).

Corollary II: Let M be an oriented manifold, and let j: U - M
be the inclusion of an open subset. Then

J#: HU) <~ H(M)
is an isomorphism if and only if

(Je)u: Ho(U) - He(M)
is an isomorphism,

Proof: Apply Proposition VI, sec. 5.11 and Theorem I.
Q.E.D.
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5.13. Orientation class. Theorem II: Let M be a connected
oriented n-manifold. Then

$
f : HY(M)— R
M
is a linear isomorphism. Moreover,

ker f = Az,

Proof: The second statement is an immediate consequence of the
first. To prove the first observe that Theorem 1, sec. 5.12, gives

dim HYM) = dim HY(M) = 1

(since M is connected). Since [}, is surjective (cf. sec. 5.11), it must be an

isomorphism.
Q.E.D.

Definition: The unique cohomology class w, e HXM) which
satisfies

f:wle

is called the orientation class for M.

Remark: If M is compact [}, is an isomorphism from H™(M), and
wy € HY(M).

5.14. Nonorientable manifolds. Let M be a connected non-
orientable #-manifold, and let #: M — M be the induced double cover
(cf. Example 9, sec. 3.21). Thus M is a connected orientable manifold.
Let 7: M — M be the covering transformation.

Lemma V: 7 is orientation reversing.
201
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Proof: Suppose 4 e A*(M) orients M. Then 7*4 = f-4 where
either f > 0 or f < 0 (because M is connected). If f > 0, the n-form

Q=Ad+*4=(1+f)4

would have no zeros.

On the other hand +*Q = Q; hence by Example 4, sec. 3.20,
Q = #*@P for some @ e AY(M). If 2 has no zeros, neither does @,
thus @ would orient M. It follows that f < 0; i.e. 7 reverses orientations.

Q.E.D.

Next, write (in analogy with Example 4, sec. 3.20)
Ac(M) = (Ac)+(M) @ (Ac)—(M)»
where @ € (4,),(M) (resp. (A;)_(M)) if 7*P = & (resp. T*® = —P).
This leads to the decomposition
HC(M) = (Hc)+(M) ® (Hc)—-(M)y

where o€ (H,) (M) (resp. (H)_(M)) if t¥o = a (resp. 78a = —a).
Thus
(Ho) (M) = H((Ac)(11),8),  (Ho)(M) = H((4c)-(), 5).

n¥, w¥ can be considered as isomorphisms

AfM) > (4e) (M),  Ho(M)—=> (He),(1).
Lemma VI: HYM) = (H?)_(M);  (H2).(M) = 0.

Proof: Since M is connected and orientable, dim H™(M) = 1 (by
Theorem II, sec. 5.13). Since

HY(M) = (H?),(M) @ (H?)-(M)
it is sufficient to prove that (H™)_(M) # 0.
Orient M and let 2 € A%(M) be positive. Since 7 reverses orientations,
D=0 — 0

is again positive. Hence [z ® > 0; i.e. @ represents a nontrivial
cohomology class « € HYM). But 7*¢ = —®; thus

a € (HE) (M)
and so

(He)-(M) # 0. QED.
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Corollary: HYM) = 0.

Proof: Recall HYM) ~ (H™) (M).
Q.E.D.

Proposition VIII: If M is a nonorientable connected n-manifold
with double cover M, then

(1) Pa(HAM), (HE®).(M)) =0
Pa(H2(T), (HZ).(MT) = 0
and

(2) Dy restricts to linear isomorphisms
H, (M) —> (Ho)(M)*,  H_(WM) —> (Ho),(M)*.
Proof: If a € H?(M), B € (H*?), (M), then
o+ Be (HD),() = 0

(cf. Lemma VI, above). Hence %%(x, B) = 0 and the first relation
of (1) is proved. The second equation in (1) follows in the same way.
Finally, (2) is an immediate consequence of (1) and some elementary

linear algebra.
Q.E.D.

Corollary I: Precomposing Dy, with ## yields a linear isomorphism

H(M) > (H)_(M)*.

Corollary II: Composing Dy, with (#¥)* yields a linear isomorphism
H (M) —=> H,(M)*.

5.15. Compact manifolds. Let M be a compact oriented z-manifold.
Then H (M) = H(M) and so the Poincaré scalar products are bilinear
maps,

PL . HY(M) x Hr-?(M)— R

while the Poincaré isomorphism is a linear map

Dy: HM) > H(M)*.
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In particular,
P B) = Dl o -B> = [ a-p,  acHNM), BeH" M)
and hence
Peo ) = (=1 Pi(B, o), e HYM), BeH"*(M). (58)
If n is even, this yields
P (0 B) = (—=1)” Par (B, @);
while if n is odd, we have
Pl B) = Py (B, ).
Formula (5.6), sec. 5.11, becomes
Py, B) = Pl v - B),
where
ac H¥M), yeHYM), BeH" " (M).
The duality theorem has the following further corollaries.

Corollary III: If o« € HP(M), o # 0 (M compact oriented), then for
some f € H*?(M),

a B = wy.

Proof: Choose 8 so that £%,(a, 8) = 1.
Q.E.D.

Corollary IV: Suppose ¢: Q — M is smooth (M compact oriented).
Assume g*w,, 7# 0. Then ¢* is injective.

Proof: ker ¢* is an ideal in H(M) not containing w,, . Corollary III
implies that every nonzero ideal in H(M) contains w,, . Hence ker p* = 0.
Q.E.D.

Theorem IIl: Let M be any compact manifold. Then

dim H(M) < co.
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Proof: Assume first that M is orientable. In view of the duality
theorem, formula (5.8) above shows that %%, induces fwo linear
isomorphisms; namely

HY(M)—=> H»(M)* and  H"»(M)—— H?(M)*,

It follows now from elementary linear algebra that each HP(M) has
finite dimension; hence the theorem, in this case.

If M is nonorientable the double cover M is orientable (and compact).
In this case we have (cf. sec. 5.7)

dim H(M) = dim H (M) < dim H(M) < .
Q.E.D.

Corollary: If M is compact then the Betti numbers b, = dim H?(M)
are defined. If, in addition, M is orientable, then

b,=1b,_,, 0<p<n

Proposition IX: Let M be a connected n-manifold. If M is compact
and orientable, then
H™ M) ~ R.

Otherwise,
Hr(M) = 0.

Proof: Suppose first that M is compact. If M is orientable,
Theorem II of sec. 5.13 implies H*(M) ~ R. If M is nonorientable,
the Corollary to Lemma VI, sec. 5.14, gives H*(M) = 0.

Next assume M is not compact. If M is orientable, the duality theorem
gives

H™"(M) >~ H(M)* = 0

(use the example of sec. 5.9). If M is nonorientable the double cover
M is connected, orientable, and noncompact. Hence

H™(M) =~ H™(M)C H*M) = 0.
Q.E.D.

5.16. Euler characteristic and signature. Let M be a compact z-
manifold. Recall from sec. 5.1 that the Euler characteristic x,, is defined

by
XM = z (_1)1’ bﬂ
p=0

where b, is the pth Betti number of M.
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Next, consider a compact oriented 2m-manifold M. According to
formula (5.8), sec. 5.15, the nondegenerate scalar product

P HY(M) x H™(M)— R

is skew-symmetric if m is odd and symmetric if m is even.
Recall (sec. 0.1) the definition of the signature of a symmetric scalar
product.

Definition: If M is a compact oriented manifold of dimension 4k
then the signature of the scalar product Z% is called the signature of M.
It will be denoted by Sig(M).

Theorem IV: Let M be a compact oriented n-manifold.

(1) If nis odd, then x,, = 0.

(2) If n = 2m, m odd, then yx,, = b,, = 0 (mod 2).

(3) If n = 2m = 4k, then Sig(M) = b,, = x,, (mod 2).
(4) If n = 4k and Sig(M) # 0, then M is irreversible.

Proof: The corollary to Theorem III, sec. 5.15, yields
Xpv = Z (_l)p bp = z (_1)1J bn—zz = (_l)n Z (_1)”—’, bn—p = (_l)n Xnm e
P P ¥4

This implies that x,, = 0 if # is odd and so (1) is proved.
Now assume that » = 2m. Then we have (again via the corollary
to Theorem III)

m—1

XM =2 Z (_1)p bﬁ + (_l)mbm ’

p=0

whence x,, = b, (mod2). Since &}, is skew and nondegenerate
if m is odd, b,, = 0 (mod 2), in this case.
Next, assume that n = 2m = 4k. It is evident that

b,, = Sig(M) (mod 2)

and (3) follows.

Finally, assume that n = 2m = 4k and let ¢: M — M be an orienta-
tion-reversing diffeomorphism. We must show that #%, has zero
signature. Proposition XII, sec. 4.13, shows that

qup*qs:—j ®,  De AM).
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Hence it follows from Theorem II, sec. 5.13, that
gry = —y, yeH"(M).

Now, for o, B € H™M( M), we have

Zieravh = [ o B == [ B —Piah).

Thus part (4) of the theorem follows from Lemma VII below:

Lemma VII: Let E be a finite-dimensional real vector space with
a symmetric scalar product {, >. Assume ¢: E — E is a linear map
such that

<(P(x)’ ‘P(y)> = _<x) y>) X, Y€ E.

Then ¢, > has zero signature.

Proof: Let F be a subspace of maximum dimension, s, such that
the restriction of {, > to F is positive definite. Then the relation

{p(x), p(x)) = —(x, )

shows that the restriction of {, > to ¢(F) is negative definite. Moreover,
¢(F) is a subspace of maximum dimension with this property. Finally,
our hypothesis implies that ¢ is injective. Hence

dim F = dim o(F)

and so the signature of (, ) is zero.
Q.E.D.
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5.17. Kiinneth homomorphisms. Recall that the tensor product of
two graded differential R-algebras (E, 6;) and (F, §;) is the graded
algebra E ® F (anticommutative tensor product) together with the
differential operator 8¢y given by

Seer(@ @ b) = 8:a) @b + (—1)Pa ® 8x(b), acE?, beF.

If a, b are cocycles representing o € H(E), B € H(F), then the cohomology
class y € H(E ® F) represented by a @ b depends only on « and 8.
Thus o ® B+ y defines a linear map H(E) @ H(F) — H(E Q F).
Moreover (cf. [6, pp. 54-60]) this linear map is an isomorphism of grad-
ed algebras. Henceforth we shall identify H(E) ® H(F) with H(E ® F)
under this isomorphism.
Now let M and N be manifolds. The linear map

ki AM)® A(N) — AM x N)
defined by
WPRY) =0 x ¥

(cf. Example 2, sec. 3.20) is a homomorphism of graded differential
algebras. Thus it induces a homomorphism

ky: H(M) ® H(N)— H(M x N)
called the Kiinneth homomorphism:

kula @ B) = (mp*a) * (wpa*B), a€ H(M), BeH(N).
Suppose ¢: M — M, and y: N — N, are smooth maps. Then the
diagram
H(M) ® H(N) —%> H(M x N)
Jor oy G20,
H(My) ® HN,) ——~ H(M, x N,)
commutes.
In sec. 5.20 it will be shown that «, is an isomorphism whenever
dim H(M) < o or dim H(N) < oo.
208
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Examples: 1. The multiplication map: If M is a manifold, the
multiplication map is the homomorphism of graded differential algebras
u: AQM) ® AM) —~ A(M)

given by
WP RP) =D A Y.

On the other hand, the diagonal map 4: M — M x M is the smooth
map defined by

A(x) = (x, x), xe M.

Letm : M X M — M be projection on the left factor. Since m 0o 4 = ¢, ,
we have

AP R =P =B = (PR 1), PeAM).

Similarly,
(1 Q¥) =¥ =l YY), YeAM)
Now 4*, «, and p are algebra homomorphisms, and A(M) ® I,

1 ® A(M) generate A(M) @ A(M). Thus these relations imply that
the diagram

X

A(M) ® A(M) A(M x M)

A(M)

commutes.
Passing to cohomology gives the commutative diagram

H(M) ® H(M) K H(M x M)

NI

H(M)

Thus
a'B:A$K#(a®B)) O"BEH(M)'

2. Fibre projection: Let M and N be manifolds such that M is
connected. Fix a € M. The inclusion map opposite a, j,: N — M X N,
induces a homomorphism

7% H(N) <= H(M x N).
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If be M is a second point, there is a smooth path f: R - M such
that £(0) = a and f(1) = b (cf. sec. 1.11). f is a homotopy between
Ja and j, ; thus

].f = ja#-
The homomorphism j§, which is independent of a, is called the fibre
projection.

On the other hand, since M is connected, we have (cf. sec. 5.1)
H(M) = R @ H+(M) (H*(M) = Y7 H?(M)). Hence a homomorphism
pn: HM) Q@ H(N) — H(N) is defined by

Pl ®B) =B, ey ®B) =0, BeH(N), xeH*M).
A trivial argument shows that the diagram

Kx

H(M) ® H(N) H(M x N)
N, A
¥
H(N)

commutes.

5.18. The homomorphism (x.),. Let M and N be manifolds. «
restricts to a homomorphism

ke: Ao(M) ® A(M) — A(M X N)
and «, induces a homomorphism
(ke)y: Ho(M) ® Ho(N) — Ho(M X N).
(xc)« is called the compact Kiinneth homomorphism.

The homomorphisms «, and (x.), are related as follows, via
Poincaré duality. Let e denote the linear isomorphism of H(M) ® H(N)
given by

(e @B) = (=) a @B, acHXM), BeH(N)

(m = dim M).
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Proposition X: Suppose M, N are oriented manifolds and give
M x N the product orientation. Then the diagram

H(M) ® H(N) e H(M x N)
(Dy®Dp)oe| = = [ Dpyxy
Ho(M)* ® He(N)* H(M x N)*

[Ho(M) @ He(N)]*
commutes, where 7 is the standard inclusion map.

Proof: Fix o€ HP(M), Be HYN), ye H7 (M), Ae H;%N)
(m = dim M, n = dim N). We must show that

(—1)"P% Dy ® DB,y @ A = {Dprxnres(a & B), (e)uly & A))-

Let @, € A?(M), ¥, € AYN), &, € AT ?(M), ¥, € A7 "YN) represent
a, B, v, A. Then @, x ¥, represents (o ® B); P, X ¥, represents
(xo)s(y & A). Thus we must show

(—1)tm—p)a fM b, A D, fN Y AW, = foN (@) X ) A (D, x P,

But this follows at once from Proposition XIII, sec. 4.13. ,
Q.E.D.

5.19. The Kiinneth theorem for (x.),. Theorem V: The compact
Kiinneth homomorphism is an isomorphism,

(x0)e: Ho(M) ® H(N) —> Ho(M x N).

Corollary: If M and N are compact, then the Kiinneth homomor-
phism is an isomorphism,

xy: HM) ® H(N)—> H(M X N).

In particular, the Poincaré polynomial of a product of two compact
manifolds is given by

Sruxn(®) = fu(2) - fu(2)-
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To prove Theorem V, we begin with preliminary results. Recall that
if 0 is an i-basis for the topology of M, then @, is the an {-basis con-
sisting of finite unions of open sets O, € @ while 0, is the i-basis consisting
of disjoint, at most countable, unions of open sets O, € 0 (cf. sec. 1.1).

Lemma VII: Suppose @ is an i-basis for the topology of M and that
(ke)s: He(O) @ H(N) — He(O X N) (5.9)

is an isomorphism for each O € @. Then (5.9) is an isomorphism for
every Oe 0.

Proof: Let O € 0, and write
o=U,v---vbl,, Use 0.
Set U=U,,V=U,v--vU,, W= UnNV. Then
W= (UnUy)u (U, nNnU)

and each U; N U; € 0. Thus by induction on p we mdy assume the
lemma holds for U, V, and W.
Now consider (cf. sec. 5.10) the exact sequences
0— A(W)— A(U) D Ae(V)— A(0) -0
and

0 — AW X N) = AU X N)@® AoV X N)—> A(O x N)— 0.

Tensoring the first with A (NN) yields the row-exact commutative
diagram

0 —>A(W)RAN)— [A(UV)QAN)]D[Ae(V)®AN)] = 4(O)R4(N)— 0

ch lkc ®Dxe ch

0——> A(W x N)——> AU X N)@® AoV X N)—> A0 x N)—>0.
(5.10)

By induction the maps
(et Ho(W) ® He(N) — He(W X N)

(xe)u: Ho(U) @ He(N) — He(U X N)
and
(ke)e: Ho(V) ® He(N) — Ho(V X N)
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are isomorphisms. Thus applying the five-lemma to the row-exact
commutative diagram of cohomology induced by (5.10) we find that

(xe)e: He(0) ® He(N) — He(O X N)

is an isomorphism,
Q.E.D.

Lemma IX: Let 0 be a basis for the topology of M and assume that
(ko)e: Ho(O) ® Ho(N) — Ho(O x N) (5.11)

is an isomorphism for every O € 0. Then (5.11) is an isomorphism for
every Oedl;.

Proof: If O e 0, we can write O as the disjoint union
0={0., O,co.

Using sec. 5.10 we can construct a commutative diagram

@ (H(0,) ® Ho(N)) — 2% @ H(0, x N)

- N

He(0) ® He(N) H(O X N),

(xe)w
where ¢ is the composite map
@ . (Ho(0s) ® Ho(V)) — (D, He(0s)) ® He(N) —> H(0) ® H(N).
By hypothesis the maps
(ke)s: He(O,) @ He(N) = He(O, x N)
are isomorphisms. The lemma follows.
Q.E.D.
Proposition XI: Suppose that for some i-basis @ of the topology of M
(ke)a: He(0) @ Ho(N) — He(O X N) (5.12)

is an isomorphism for every O € 0. Then (5.12) is an isomorphism for
every open subset of M.
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Proof: Lemma VIII shows that (5.12) is an isomorphism for every
Oec ;. Thus Lemma IX implies that (5.12) is an isomorphism for
every O € (0;),. Applying Lemma VIII again we see that (5.12) is an
isomorphism for every O e ((€,),); . But according to Proposition II,
sec. 1.1, every open subset of M is in ((0y),); .

QE.D.

Proof of Theorem V: Case I: M = R*, N = R": Let fe (M)
and ge % (N) be nonzero nonnegative functions. Let 4,, and 4, be
determinant functions in R™ and R". Then (using Proposition XIII,
sec. 4.13)

ff'AM>0; fg'AN>07 and j frdu X g-dy>0.
M N MXN

Thus according to Proposition XIV, sec. 4.13, f-4, ,g -4y and
[-dy x g -4y = k(f 4y @ g-4dy) represent nonzero classes in
HY(M), H(N) and H}*'(M x N).

Hence

(ke)s: HER™) @ He (R) — HEV(R™)

is nonzero. Now it follows immediately from Proposition 1V, sec. 5.10,
that

(ke)s: He(R™) @ He(R") — He(R"*7)

is an isomorphism.
Case 2: M is an open subset of R*, N = R™: Consider the i-basis
of the topology of R™ consisting of the sets

U={(x...,a") | & <x<b, i=1,..n}

Each of these sets is diffeomorphic to R™. Thus (in view of Case 1)
Proposition XI implies that

(xe)e: H(M) @ He(R") — Ho(M X R")

is an isomorphism for any open subset M of R™.

Case 3: M arbitrary, N = R": The fact that («x.), is an isomor-
phism in this case, follows from Proposition XI and Case 2, once we
observe that M has an ¢-basis of open sets each diffeomorphic to an open
subset of R”.
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Case 4: M arbitrary, N an open subset of R™: Evidently Proposi-
tion XI continues to hold if M and N are interchanged. Applying it
to an i-basis for the topology of R" consisting of open sets diffeomorphic
to R we see that («.), is an isomorphism if NV is an open subset of R".

Case 5: M and N arbitrary: Apply Proposition XI to an i-basis of
the topology of IV consisting of open sets diffeomorphic to open subsets
of R".

Q.E.D.

Examples: 1. Let
M= 8" x . xS

where S%i is a sphere of dimension k; . Since the Poincaré polynomial
of S* is given by

£ =1+
(cf. sec. 5.6), it follows that the Poincaré polynomial for M is given by
Ful) = (1 + 191+ £5) oo (1 ),

2. Let T be the n-torus. Since T is diffeomorphic to S* x -+ x St
(n factors) and the Poincaré polynomial of S is given by f(¢) =1 + ¢
it follows that

fTﬂ(t) = (1 + t)n'

5.20. The Kiinneth theorem for ¥, . Theorem VI: Let M and N
be manifolds such that either dim H(M) << oo or dim H(N) < 0. Then

kot HM)® H(N)— H(M x N)

is an isomorphism.

Proof: Assume first that M and N are orienfable, and consider the
diagram of Proposition X, sec. 5.18. Since («.), (Theorem V above)
is an isomorphism we need only show that the inclusion

it H(M)* @ He(N)* — [Ho(M) ® H(N)]*

is surjective. But this is the case since either H (M)* >~ H(M) or
H(N)* =~ H(N) has finite dimension (cf. Theorem I, sec. 5.12).
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Next, assume M nonorientable, N orientable. Let p: M — M be the
double cover, and consider M X N as a double cover of M x N.
M x N is orientable and the isomorphism «,, for M X N satisfies

Ky o(TF ® 1) = (1 X J* o iy,

where 7 is the covering transformation of M. Hence it restricts to an
isomorphism

xy: H (M) ® H(N)S H, (M x N).

Now the commutative diagram

H (M) @ H(N)—> H/(M x N)
p"®th ET(PX *
H(M) ® H(N) —> H(M x N)
establishes the theorem.

The remaining two cases (M orientable and N nonorientable; M, N
nonorientable) are proved in the same way.

Q.E.D.
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5.21. The nerve of an open cover. Let # be a set. An abstract
stmplicial complex is a collection, K, of finite subsets of # subject to the
following condition: if o € K, then every subset of o is also in K. An
element {1, , ..., i} of K is called a p-simplex, and the O-simplices are
called the vertices of K (cf. [11]).

Let = {U, | i € £} be an open cover of a manifold M. The nerve #°
of such a cover is the abstract simplicial complex whose vertices are the
indices 7 € £, and which is defined as follows: A set {z,, ..., #,} of distinct
elements of £ is a g-simplex of 4" if and only if

U,NnnU, # 2.

(If the covering is such that each U, meets only a finite number of
the U; we call it star-finite. Then the corresponding nerve A is a
locally finite simplicial complex.)

An ordered g-simplex of A" is an ordered set ¢ = (4, ..., ;) of
elements of .# (not necessarily distinct) such that the distinct elements
form a simplex of #7. If 7 = (4, ..., 1), We write 0 = (io, 7). Every ordered
g-simplex o determines a nonempty open subset U, = U; N - N Uy
of M. If o is an ordered q-s1mplex of #/ (¢ = 1), we define ;0 to be the

ordered (¢ — 1)-simplex given by

~

00 = (io 4y i)

(fj means the argument, ;, is deleted).
We call 9,0 the jth face of o and we note that

9,0; = 90,0511, j<i

Denote the set of ordered g-simplices of A" by A% Then the set
maps 4?7 — R form a real vector space, C%A"); the linear structure
being given by

(M + pg)o) =X f(o) + p-g(0), A pueR, fgeCYN), oet™

The graded space
CH) = L CYA)
q
217
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is made into a graded algebra by the following multiplication map:
(f - g)lw) =f(0)g(r),  feCHAN), geCAN), we NP,
where, if w = (i), ..., §,,4) € # P9, then o, 7 are defined by

g = (lgy o tp) T =(lps s Ipsq)
In C(A") we define a linear operator, d, homogeneous of degree 41, by

@)o) = 3 (—1yf(e),  feCPYUN), oeA™.

p=|

It is easy to verify that 4 is an antiderivation of square zero. Thus
(C(A"), d) is a graded differential algebra. The corresponding cohomology
algebra will be denoted by H(A4"), and called the cohomology algebra
of &

If % is finite then C(A") (and hence H(A")) are finite dimensional.

5.22. Simple covers. An open cover % = {U;|ie f} of a manifold
M is called simple if all the nonvoid intersections U; N - N U,
(U,, € %) are contractible. For a simple open cover % we have, then that

HY U, N nU)=0, U,e?.

It is easy to see that if, in the terminology of [7, p. 34] each U, e %
is simple and convex, then % is a simple cover. Hence Lemma 6.4
of [7, p. 35] implies that every manifold admits a simple cover.

It is the purpose of this article to establish the following fundamental
theorem.

Theorem VII (De Rham): The cohomology algebra of a manifold
is isomorphic to the cohomology algebra of the nerve of a simple covering
(as graded algebras).

Corollary: If M is compact, then H(M) has finite dimension.

The proof of Theorem VII is carried out in the next five sections.

5.23. Cochains of differential forms. Let U be an open subset of
M and let V be an open subset of U. The inclusion map j: V — U
induces a homomorphism, j*: A(V) < A(U), which, in this article, is
denoted pY¥

Pl : A(U)— A(V).
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Clearly, we have
pU=pbopld if WCVCU

and
Pf// = t4(v) -
Now let % be an open cover of M with nerve A4". If o is a face of
a simplex 7 € 4~ we shall denote the restriction

pus: A(U,) — A(U,)

T

by p7.

Definition: Let % be an open cover of a manifold M, with nerve 4.
A g-cochain of differential forms for the covering % is a function f
which assigns to each ordered g¢-simplex o a differential form f(o)

in U, .

In particular, a 0-cochain of differential forms assigns to each index ¢
a differential form on Uj . If for each ordered ¢-simplex o, f (o) € AP(U,),
we call f a g-cochains of p-forms.

If f and g are g-cochains of forms we define Af + pg by

O + p)@) = M(0) + pgle),  MpeR, aeAv

With this definition the set of g-cochains of p-forms becomes a vector
space, denoted by C?4. We put

Co=YCra and Cr =Y Cou

p q

Finally, we define the space of cochains of differential forms to be the
bigraded vector space

c=7Y Cra,

p.q

Next we introduce a multiplication in C as follows: Let fe C?4
and g € C™4. Given an ordered (g + s)-simplex w = (i, ..., 4,) of A,
write

0= (iy, iy and 7= (ig, e igss):
Then f A g, defined by
(f A 8)(w) = (=D)"p(f(9)) A pJ(&(7)),
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is a (¢ + s)-cochain of (p + r)-forms. It is easily seen that this multipli-
cation makes C into a bigraded associative algebra. The unit element
is the 0-cochain which assigns to every index 7 the constant function

x— 1, xeU;.

5.24. The operator 8. Every g-cochain, f, of p-forms determines the
g-cochain of (p 4+ 1)-forms, &8f, given by

5(0) = 8(f(@), oeHv.

The operator 8: f > 8f so obtained is homogeneous of bidegree (1, 0).
Clearly

d(frag =8 ng+ (1) fndg feCr geC,

and 82 = 0. Thus we can form the (bigraded) cohomology algebra of C
with respect to 3,

H(C,8) = ker§Im8;  H(C,8) = ¥ H?<(C, ).

Denote ker 8 by Z,,
Z,= Y Zre

5
2,¢2>0

Lemma X: If % is a simple cover, then the inclusion
zy —~C
induces an isomorphism

z0 =5 H(C, §).

Proof: Evidently
HO9(C,8) = 2%, ¢ >0.

Thus we have only to show that
H(C,8) =0, ¢=0.

Consider the map

v € ] A(U,)
oA"Y

given by
) = flo), feCa
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Evidently,

s (IL3)

o€ N7

where 8, is the exterior derivative in A(U,). Moreover, y, is an isomor-
phism. Thus it induces isomorphisms

¥#: Hv(C, 8) —= [] H™U,).
oeN?

By hypothesis each U, is contractible. Hence
HHU)=0, oet? g>0
and so
H+9(C,8) =0, ¢>0.
Q.E.D.

5.25. The operator D. Consider the operator D: C*2 — C*9+! given
by
a+1

Df(o) = (—1)» Y (—1)plf(20),  feCPs,

i=0

where o is an ordered (¢ + 1)-simplex. In particular, for ¢ = 0 and
g = 1 we have

(—1)? Df (5, j) = plsf (j) — pisf ()
and
(—1)? Df (i, j, B) = pifef (s B) — piiif s B) + pilaf (5, )-
The operator D is homogeneous of bidegree (0, 1). Moreover, it has
the following properties:
D(fng)=Dfng+(—D)*afaDg, feC»s, geC (5.13)
and

D2 =0, (5.14)

as follows directly from the relations 8,9; = 9;0;4, of sec. 5.21.
In view of relations (5.13) and (5.14), we can form the bigraded
cohomology algebra

H(C,D) = ker D/Im D;  H(C,D) = ¥ H?%(C, D).

P.q
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Denote ker D by Z,,
Zp= Y Zp°
9,420
Lemma XI: The inclusion
Zy—~C
induces an isomorphism
Z3*—=> H(C, D).
Proof: As in Lemma X, we have only to show that
H»+C,D)=0, p>0.

Choose a partition of unity {p,} subordinate to the covering {U;}.
Let = be a face of o and let ¢ be an index such that U; N U, # @.
Then, for ®e AU, N U)), p; - P A(U,), and

pUp: - P) = p; - (o3P

Now consider the operator
k:Cho— C¥l, g >
given by
Rf(iy, oy ig) = iezu; pi fU 1y s i),  feCl.
(Observe that p; - f(i, iy, ..., 3) = 0,if U;n U, = &, and so this
is a finite sum!) Then k is a homotopy operator for D in C*¥,
koD+Dok=1: C9—>C™, ¢q3>1.

In fact, let fe CP4, ¢ > 1. Then we have, for a g-simplex o = (4, ..., ;)

DhfGig s i) = 3 (=1 2 Ck(F )i » oy oo )

v=0

= Eq:( ) 3,0(2 pifli gy, i Av :’a))

v=0

But since

P2pif(ivig, -ty i =0 i U;nU,= o,
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the sum has only to be taken over the indices for which U, N\ U, # &.
Hence,

Df iy, i) = 3. (—1y 6 ( DRV CE AP SS)

v=0 iNUg# @

q
v (5,0,0) 05 » > .
= Y p (Z (=1 pf:'a) 1O za)).
UinUg# 5 \=d

On the other hand, we have

EDf(ig, i) = Y by Df(ivigs s t)

U,nUp# 2
= z b; P‘(,i,o)f(io y ey iq)
UnUy# 8

+ Z b (2 (—l)v+1 Pfiji?")f(i, Tg s e 1‘:' FIRLL) ia))'

Un\Ug# o v=0
Adding these equations we find

((D ok + ko D)(f))(io y erey ia) = Z b P?i,a)f(io EIAE ia) :f(il) y ey iq)'

UinUy# 2

This completes the proof.
Q.E.D.

5.26. The operator V. Define an operator V in C by
V=8+D

Grade C by setting C" =Y ,,,_. C»9 then V is an antiderivation.
A simple computation shows that D§ 4+ 8D = 0. It follows that V2 =
and so we can form the graded cohomology algebra

H(C, V) = ker V/Im V.

Next, observe that since Do 8§ = — 8 o D, Z,, is stable under & while
Z, is stable under D. In particular, we have the graded differential
algebras

(Z0,D) and  (Z,°,9).

Moreover, the inclusions

a: 2" — C, 23> C
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are homogeneous of degree zero, and satisfy
Vo = oD and Vr = 78,
Hence they induce homomorphisms
oy H(Z0", D) — H(C, V)
and
vt H(Z3®, 8) — H(C, V).
of graded algebras.

Lemma XII: If the cover % is simple, then ¢, and =, are
isomorphisms of graded algebras.

Proof: To show that o, is an isomorphism we recall first from
Lemma X, sec. 5.24, that H(C, 8) =~ Z3".
It follows that there is a linear map, homogeneous of bidegree (0, 0),

m: C— 2%
and a linear map, homogeneous of bidegree (—1, 0),
h:C—>C

such that 7o = ¢ and onr — « = h& + 8h.
Define a: C — C by
a=hV 4+ Vh 4
Evidently,
o = hD + Dh + on.

Since D is homogeneous of bidegree (0, 1), kD + Dh is homogeneous
of bidegree (—1, 1). It follows that

o(CP) C Cr-1+ 4 (o,
In particular, for every fe C there is an integer p such that
o®(f) € €O,

Moreover, note that a is homogeneous of total degree zero, so that if
£ has degree ¢, then

a?(f) e Coq,
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Now we show that o, is surjective. In fact, let e HYC, V) and let
fekerV be a representing cocycle of degree g. Choose an integer p
so that

g = o(f) e Co.

Since « = AV 4+ VA 4+, we have aV = Va and
o, = ¢: H(C,V)— H(C, V).

Thus g € ker V and represents 2.
But
8geCl? and  Dge COeH,

Since
0 = Vg =3¢ 4 Dpg,

it follows that 8 = 0 = Dg. Thus g € Z3? N ker D; i.e., it represents
an element w in H(Zy", D). Because g represents z in H(C, V) we have
o,w = z. Hence o, is surjective.

Next we show that o, is injective. In fact, suppose

feZy*nkerD and f= Vg

We must show that
f=Dg (5.15)

for some g, € ZJ**"1. We may assume g to be homogeneous of degree
g — 1. Choose p so that

& = o®(g) e C¥oL,

Now observe that since feker 8 N ker D, Vf = 0. Moreover, since
feC%, h(f) = 0. Hence

f) =GV +VBf+f=]
and so
f=a¥(f) = o?Vg = Var(g) = Vg, .
Sirce g, € C%¢'and 8g, = f — Dg,, we have
8g, € C1e-1 A (04 =
whence g, € Zp»?#!. Thus

f=V& = Dg
and (5.15) is proved.
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It has now been established that o, is an isomorphism. The identical
argument, using Lemma XI, sec. 5.25, shows that 7, is an isomorphism.
Q.E.D.

5.27. Proof of De Rham’s theorem. Define an inclusion map
ot C(N) — CO-

as follows: if fe CYA"), let o(f) be the g-cochain which assigns to
each o € 47 the constant function

U, — f(o).

Evidently ¢ is a homomorphism of graded algebras. Moreover, it is
clear that 8 o ¢ = 0. Thus ¢ can be considered as a homomorphism

o1 C(N) —~ 20
of graded algebras.

Lemma XIII: ¢ is an isomorphism of graded differential algebras,

Proof: It follows from the definitions that
pod=Dogp.

If (f) = 0, then f(o) =0 for all o€ .#"; whence f= 0. Thus
@ is injective. If @ € Z2'9, then to each ¢ € 49, @ assigns a function
D, e £(U,) such that

80, = 0.

Since U, is contractible, it is connected. It follows (cf. sec. 5.1) that
&, is constant. Hence an element f e CY.A") is defined by

flo) = ®,(x), x€U,, oceN?

and clearly ¢( f) = ®. Thus ¢ is surjective.
Q.E.D.

Now we define an inclusion map
g A(M)— C*9C C.
In fact, if @ € A?(M), we define (P) € C?° by
WD) = (@), e
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Evidently ¢ is a homomorphism of graded algebras. Moreover, for
® e A(M),
D(@))(i,j) = pi(HP)E) — pi(H(@)NJ)
= ¢ IU” nd @ |U“ == 0-

Thus i can be regarded as a homomorphism

Y A(M) — Z°
of graded algebras, and it is obvious that 06 = 80 .

Lemma XIV: ¢ is an isomorphism of graded differential algebras.

Proof: Evidently i is injective. Moreover, if fe Z%° then the
differential forms f(¢) € AP(U,) satisfy

FDloy —f@lo, = (=1 Df (i, ) = 0.
Hence a global p-form @ € A(M) is given by
p(®) =1G),  ienn
Clearly (®) = f, and so ¢ is surjective.
Q.E.D.

Proof of the theorem: Lemmas XIII and XIV yield isomorphisms of
graded algebras

@yt H(A') —> H(Z}", D)
and
et HM) — H(Z}", ).

On the other hand, Lemma XII provides an isomorphism
7o o, : H(Z, D) —> H(Z}",8)

of graded algebras. Combining these isomorphisms we obtain an
isomorphism
H(A") —=> H(M)

of graded algebras, as was desired.
Q.E.D.



Problems
M and N are smooth manifolds.

1. Mayer-Vietoris sequence. Suppose M = U U V (U, V open),
and d is the connecting homomorphism.

(1) Show that Im 0 is an ideal in H(M).If i,: U —> M, 4,: V — M are
the inclusions and if «, B € H(M) satisfy ifia = 0, #§8 = 0, show that
a - B = 0. Conclude that, if y, , y, € Im 9, then y, -y, = 0.

(i) Suppose M = U,V -+ U U,, where each U, is open and
H+(U;) =0.Show that, ifa, € H*(M)({ =1, ..., p),thenay * - - o, = 0.

(iii) Suppose M = U, U - U U, (U, open). Assume that, for each
sequence 1 <7 < - < i, < p, the intersection U; N =N U; has
finite dimensional cohomology and let x(i;,...,#,) denote its Euler
characteristic. Show that M has finite dimensional cohomology and that

XM= i (—1) Y Xty s ooes 2g)-

g=1 1<) < <P

2. Compute the cohomology of M 3 N in terms of H(M)and H(N).
Thus obtain the cohomology of the compact surfaces T2 4 -+ 3 T2
and 72 3f -+ 3 T2 3 RP? (T?is the 2-torus) (cf. problem 24, Chap. 3).

3. The Massey triple product. Let «, B, y € H(M) be of degrees p,
g,  and represented by @, ¥, X. Assumethat DA ¥ =8Q,, ¥ a X =
89, .

(i) Show that @ A Q, — (—1)P2; A X is closed and that the class it
represents depends only «, 8, and y. It is called the Massey triple product
and written [a, 8, v].

(ii) Define the Massey triple product in H(A") (A is the nerve of a
simple covering of M) and show that the de Rham isomorphism preserves
the Massey triple product.

4. Open subsets of compact manifolds. (i) Let O be an open
subset of a compact manifold. Show that the map (y,),: H,(O) — H(O)
has finite dimensional image.

(i1) Find a manifold which is not an open subset of a compact manifold.

228
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5. Wang sequence. Consider a smooth fibre bundle (E, =, S», F)
which is trivial over S® — {a} (a € S™).

Remark: It can be shown that every fibre bundle over a contractible
base is trivial.

Obtain a Mayer—Vietoris triangle

H(F) © H(F)

N\

H(E) H(F) @ H(S"™)

and derive the long exact Wang sequence

oo — HY(E) — H?(F) — H?="+Y(F) — H?\(E) — ---

6. (i) Suppose w € AY(M) (M compact) satisfies w(x) # 0, x € M.
Show that w is not exact.

(ii) Construct 1-forms w, , w, , wg on S3 such that for each x the w,(x)
form a basis of T,(S%)* and such that w; A w, is exact.

(iii) Let @ be a p-form on M such that for each x € M, @(x) is the
product of p independent covectors at x. Let F, = {he T (M) |i(h)
®(x) = 0}. Show that the spaces F, are the fibres of a subbundle of ,,.

If @ is exact and N is a compact p-submanifold of M, prove that for
some y € N, T,(N) N F, # 0. Does this hold if @ is only assumed to be
closed ?

7. Hopf invariant. Assume that M and N are compact and oriented,
dm M =m, dim N =n with m > n. Let ¢: M — N be smooth.
Write ker ¢* = K = ¥, K?. Suppose « € K?*1, 8 € K™ ? are represented
by @, ¥ and write p*® = 30.

(i) Show that [, 2 A ¢*¥ depends only on o, B, and ¢. Hence obtain
a bilinear map
< ’ >w:Kp+1 X Km"? — R.

(ii) Show that
(o, Bre = (—1)™PHCB, ap,, .
(iii) Prove that < , ), depends only on the homotopy class of ¢.
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(iv) Suppose @: S*1 — S" (n > 2). Show that p*w = 0, where w
is the orientation class of S™. The number A(p) = {w, w), is called the
Hopf invariant of o.

(v) Compute the Hopf invariant of the Hopf fiberings S® — $? and
S7 — S%(cf. problems 10, 11, Chap. I).

8. The n-torus. Recall from sec. 1.4 the projection =: R® — T™,
Let 0;: S — T™ be defined by

oexp 2mit) = (0, ..., 1, ..., 0).

(i) Construct classes a; € H(T™) such that [ ofa; = 8;; . Show that
they are uniquely determined by these conditions.

(ii) Show that oy « *+- - o, is an orientation class for 7™

(iii) Interpret the o, via the Kiinneth isomorphism (T ~ S* x +++ x S%).
Show that H(T") is isomorphic to the exterior algebra of an n-dimen-
sional vector space.

(iv) Consider T as a submanifold of T and compute the cohomology
algebra of the manifold 7" — T?. Does it contain a compact manifold as
retract ! as deformation retract ?

9. Let N be a closed submanifold of M. Let
I ={PecAM)|carr® N\ N = &}.

(i) Show that .# is an ideal in A(M) and that the factor algebra,
A(N; M), is a graded differential algebra.

(ii) Show that the inclusion map N — M induces a homomorphism
A(N; M) — A(N).

(iif) Show that the induced map H(A(N; M)) — H(N) is an isomor-
phism. Hint: Consider open subsets U C N such that U =~ R" and U
has trivial normal bundle in M — cf. problem 20, Chap. III.

(iv) If M is compact, establish an exact triangle

H(M) i H(N)

HyM — N)

where 0 is homogeneous of degree 1.
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10. Manifolds-with-boundary. Let M be a compact #-manifold-
with-boundary oM and interior M (cf. problem 24, Chap. III). Let
1: 0M — M denote the inclusion map.

(i) Show that the inclusion map M — M induces an isomorphism
H(M) <= H(M). Is this true for cohomology with compact supports ?
(ii) Show that the sequence

Ao(M) —> A(M) —> A(eM)

leads to an exact triangle in cohomology (cf. problem 9, above).
(iii) If M is oriented interpret Stokes’ theorem via the connecting
homomorphism of (ii) (cf. problem 5, Chap. IV).

11. Harmonic forms. Let M be compact, oriented, and have a
Riemannian metric. The space S#P(M) of harmonic forms consists of
those forms @ satisfying 4@ = O (cf. problem 9, Chap. IV). Show that
dim #?(M) < b(M). (In fact, the Hodge theorem asserts that
dim #?P(M) = b,(M).)

12. Smooth homology. Let E be a vector space with a fixed
countable basis a4, , a,,.... The p-dimensional standard simplex is the
set defined by

A =

V4

P
seE|x =Y Na;, ¥>0, T¥— g

i=0

A smooth p-simplex on a manifold M is a smooth map o:4, > M
(a smooth map from a closed subset 4 of R? into M is amap 4 - M
which extends to a smooth map from a neighbourhood of 4 into M).
The sth face of o is the smooth ( p — I)-simplex given by

p—1 i—1 -1
(3,-0) ( Z A’a,) =g (Z /\jaj ‘I— Z Ajaj+1).
0 0 z
Let R be any subring of R (eg. R = Z or Q or R). Denote by C,(M; R)
the free R-module with basis the smooth p-simplices on M. Define an
R-linear map 9: C,(M; R) — C,_;(M; R) (p > 1) by
P
6o =Y (—1) 8.
i=0

(i) Verify that ¢ = 0. The graded module H,(M; R) = ker 9/Im 0
is called the smooth homology of M with coefficients in R. An element in
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C,(M; R)(resp. Z,(M; R) = (ker 9), , B,(M; R) = (Im ), , H,(M; R))
is called a p-chain (resp. p-cycle, p-boundary, p-dimensional homology class).

(ii) Show that a smooth map ¢: M — N induces a module homo-
morphism ¢: C,(M; R) — C,(N; R) such that 0 o ¢, = @, o 0. Obtain
induced homomorphisms between the cycle, boundary, and homology
modules. The last is written ¢,: H,(M; R) — H,(N; R).

(iii) Let U be an open subset of a vector space, star-shaped with
respect to some x,. Define an R-linear map k: C,(U; R) — C,,,,(U; R) by

p+1 )‘i

; P ai—l)v

where f: R — Rsatisfies 0 < f(t) < L, f(0) =0, f(t) =1(¢ > 1 — ¢).
Show that ko & + 9o k = ¢in C(U; R) and conclude that H (U; R) = 0.

(iv) Establish a homotopy axiom, a disjoint union axiom, and a
Mayer—Vietoris axiom for H, (M; R). Hint: If M = UU V and o is
a smooth simplex in M, find smooth chains ain U, bin ¥V and ¢ in M
such that 0 = a + b + éc.

(v) If Hy(M; Z) is finitely generated, show that H,(M;Z) = F, D T, ,
where F,, is a free, finitely generated abelian group and T, consists of
the elements of finite order. F,, is called the pth Betti group and T, is
called the pth torsion group of M. A basis of F,, is called a homology basis
of H,(M; Z).

(vi) If M is compact show that each H,(M; Z) is finitely generated
and hence has a homology basis.

(vii) Construct canonical isomorphisms

(ko) (100 + z ) = F00) 50+ (1 =10

H (M;Z) ®; Q —> H,(M; Q) and H,(M;Z) ®; R — H,(M;R)

(universal coefficient theorem).

(viii) Suppose M has a finite simple cover {U;} such that each
U, N+ N U; = g (ris fixed). Prove by induction that H(M; R) = 0
for p > r.

(ix) Show that

H(S%2)=0 (<p<n—1I
Hy(S™Z)~1Z
H (8" 7) >~ 1.
13. Integration and homology. The vertices (a,, ..., a,) of the
standard p-simplex 4, span an affine p-plane in E. This is oriented so

that (e, — ay, ..., @, — a) is a positive basis. The interior of 4,,, Ap , is
an open subset of this plane. Hence, if o is a smooth p-simplex in M and
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& € AP(M), we can integrate the form o*® over 4, . This integral is
denoted by [, P and is called the integral of @ over the smooth p-simplex o.
Ifc =Y Aoy, A, € R, we set

[o=%rn] o

and call [, @ the integral of @ over c.

(i) Establish Stokes’ theorem for chains;

f Y = f Y We AYM), ce C,y(M;R).
¢ de

Conclude that (P, ¢) — [, @ defines an R-bilinear map

(> AYM) x Cy(M; R) —> R

and that (8%, ¢) = (¥, dc).
(i) Show that [, @ = 0if ¢ is a cycle and @ is exact, or if c is a boundary
and @ is closed. Thus obtain an R-bilinear map HP(M) x H,(M; R) — R.
(i) A cohomology class « € HP(M) is called integral, if (o, B)eZ
for every B € H,(M; Z). Show that a closed p-form represents an integral
class if and only if its integral over every integral cycle is an integer.

(iv) Define a map A: H?(M) — Homy(H (M, Z); R) by
ABNx) = By, BeHYM), aeHL(M;Z)

Use problem 12, iv, to conclude that A is an isomorphism of real vector
spaces.

(v) If M is compact and «a,, ..., a; is a homology basis for H,(M; Z)
(cf. problem 7, vi) show that there are unique classes 8; € H?(M) such
that (B; , a;> = &;; . Conclude that the §; are a basis of H?(M) consisting
of integral classes.

(vi) De Rham existence theorem: Let z; represent o; (; as in (v)). If @
is a closed p-form, the numbers [, @ are called the periods of @ with
respect to the homology basis a, , ..., o; . Given real numbers A, , ..., A, ,
show that there exists a closed p-form @ on M with the A; as periods.
Show that @ is uniquely determined up to an exact form.

14. Homology and densities. Assume M connected and oriented.
Let Dg(M) denote the space of p-densities on M with compact carrier
(cf. problem 8, Chap. IV). Let % be a simple covering of M with nerve A"
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Define a graded differential space (C.(A4"), 9) as follows: the ordered
p-simplices of A" are a basis for C,,(#") and 0 is given by

Bliy s vorip) = 3 (1) (ig ey » ooy B)-
v=0
H(A,0) is called the simplicial homology of A".Let C,, CDy(M) @ Cy(AN")
be the subspace generated by the elements of the form @ ® ¢ with
carr @ C %, . (Note: All vector spaces have coefficient field R).

(i) Use the divergence operator and boundary operator in C, to obtain
a differential operator in 3, , C, , (cf. problem 8, Chap. IV).

(i) Use integration to define a linear map C, , — Cy(A4"). Use the
linear map Cy(A4") — R which sends each simplex to 1 to define a
linear map C, , — Dgj(M).

(iii) Mimic the proof of the de Rham theorem to construct an iso-
morphism H,(D¢(M)) -= H,(A"). Derive from this another proof of
the Poincaré duality theorem.

(iv) Replace D°(M) by the group of integral smooth chains and
replace C,(A") by the free abelian group generated by the simplices of
A". Repeat the argument and show that (even if J/ is not orientable)
the integral smooth homology of M is isomorphic to the integral sim-
plicial homology of A

15. Line integrals. M is a connected z-manifold, and a: [0, 1] > M
is a smooth path. The lne integral along a of w € AY(M) is the number

f o= f : w(a(t); d(t)) dt.

(i) Suppose that w is closed and H,(M, Z) consists only of torsion
elements. Show that [, w depends only on the endpoints of a. Fix
%o € M and set f(x) = [, w, where a, is any smooth path joining x, to x.
Show that f is smooth, and that 8f = w. Conclude that H,(R? — {0}; Z)
is an infinite group.

(ii) Let he &L (M;C) satisfy h(x) #0, xe M. Show that o =
(1/2ni)(1}k) 8k is a closed C-valued 1-form, and that w differs from a
real form by a coboundary. Prove that [, w € Z for each integral cycle .

(ili) Let we A (M) be closed and integral. Construct ke #(M; C)
such that | A(x)] = 1, x e M, and (1/2m)(1/h) 6k = w.

(iv) Assume that H(M;Z) = 0. Let f and g be functions on M
satisfying f(x)? 4+ g(x)? = 1, x € M. Construct a function § on M
such that

coso b = f, sino § = g.
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Show that if 8, is another such function, then 8, — § = 27k, where &
is a fixed integer.

16. Assume that H(M) (M an n-manifold) is isomorphic to the
exterior algebra over an n-dimensional subspace of H(M). Find a
smooth map p: M — T™ such that ¢* is an isomorphism.

17. Assume M compact and connected. Let w be a closed 1-form
such that w(x) # 0, x € M. Construct a submersion =: M — S1. Show
that = is the projection of a smooth fibre bundle over S! with M as
total space.

18. Cauchy’s integral theorem. Let O be an open subset of C
and let 8z € AY(O; C) denote the gradient of the identity function.

(i) If fe #(O; C), show that (f82)x;h) =f(x)-h, x€O, heC.

(ii) Show that f - 8z is closed if and only if f is complex differentiable.

(iii) Let a: [0, 1] — O be a smooth path in O. Show that [, f- 6z =
/() d=.

(iv) Prove Cauchy’s integral theorem: 1f f is complex differentiable
in O, then [, f(2) d2 = 0, where ¢ is a 2-chain in O.

(v) Let f be a complex differentiable function in | 2| < 1 which
extends to a continuous function in | 2 | < 1. Show that [ f(2) d2 = 0.

19. Simply-connected manifolds. LetM be connected. T'wo smooth
paths a: [0, 1] — M and b: [0, 1] — M having the same initial point x,
and the same endpoint x,; are called homotopic, if there is a homotopy
connecting @ and b and leaving x, and x, fixed. A manifold is called
simply-connected, if every closed path is homotopic to the constant path.

(i) Show that if M is simply-connected, then H,(M; Z) = 0.

(ii) Let M be simply-connected. Let @ € AY(M; L) (F a vector space).
Assume that @ satisfies 8@ + @ o P = 0 (cf. sec. 4.7). Given points
aeM and beF, show that there exists precisely one smooth map
¢: M — F such that dp = ®(¢) and ¢(a) = b.

(iii) Assume that P is a parallelism on M (cf. problem 14, Chap. IV).
The torsion S of P is called parallel, if

P(x,y) S(x; & n) = S(y; P(x, 3)§, P(x,y)),  xyeM, §mne T(M).

Show that if P admits a conjugate parallelism, then the torsion is parallel.
If M is simply-connected show the converse.
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20. Simplicial complexes in R*, Let 4 = (4, a,, ..., a,), where
a; € R* and the vectors a;, — g, (1 = 1, ..., p) are linearly independent.
Then the set

P P
M|=§ZM@MQ>QZN
=0

i=0

i

is called an affine simplex with vertices a, . If in addition the a; are ordered,
then | 4| is called an ordered affine simplex. The interior of 4 is given by

P »
Y XNa, X >0, Y X =
=0 i=0
and its boundary is 4 — 4. Let 4 C R" be a closed set which is the
disjoint union of finitely many &, (o, is an affine p,-simplex). If the o, form
an abstract simplicial complex, K, then 4 is called a finite affine simplicial
complex and is written | K |. The maximum of the p; is called the
dimension of | K |. The union of the affine simplices of dimension < &
is called the k-skeleton of | K |.

Let | K| C R* be an affine simplicial complex of dimension r. Find
an open subset O C R" such that | K| C O and such that O admits a
simple covering with nerve K. Conclude that H?(0Q) =0, if p > r.

4=

21. Degenerate and invisible chains. A smooth p-simplex o on M
is called degenerate if, for each aed,, rank(ds), < p. A p-chain
¢ = 3,; X, (X' 3£ 0) is called degenerate, if all p-simplices o, are. A
p-chain ¢ is called invisible if, for every p-form @, [, @ = 0.

(1) Show that a degenerate chain is invisible and that the boundary of
an invisible chain is invisible.

(ii) Let ¢: 4, — F be smooth, where F denotes the plane through
ay, .- @, . Assume that Im ¢ C 4,, and that ¢ restricts to the identity
near the boundary of 4,, . For each smooth p-simplex o, find a degenerate
integral (p + 1)-chain ¢ such that ¢ — oo = dc. Conclude that
¢ — o o ¢ is invisible. Extend the result to smooth chains.

(iii) Let ¢ = ¥ Xlo; (A; 5 0) be a p-chain on M. A point xe M is
called a regular value for ¢, if, for each i, o7 (x) C A,, and x is a regular
value for a; . Otherwise x will be called a critical value for ¢. Denote by
Crit(c) the set of critical values. Let N C M be a p-dimensional
submanifold. Show that N N Crit(¢) has measure zero in N. Hint:
Compare problem 12, Chap. IIIL.

(iv) Let R be a subring of R. Given ¢ = 3 Xio; € C,(M; R) (A; # 0)
define Im ¢ = {J;Im o; and call it the image of ¢. Let xeImc¢ be a
regular value for ¢. Assume that there is a neighbourhood U of x
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and a p-submanifold NCM such that UNIm¢CN. Show that
¢ = a -+ Ao + 0b, where

(1) aeCy(M;R),beC,,,(M;R), AeR.

(2) o0:4, — M is a smooth embedding and x € o(d,,).
(3) x¢Ima.

(4) b is degenerate.

Conclude that ¢ is invisible if and only if A = 0 and a is invisible.

22, The invisibility theorem. Show that every invisible cycle, z,
in C,(M; R) is the boundary of some ce C,,,(M; R) (invisibility
theorem).

Hint: One method is as follows:

(i) Use a tubular neighbourhood of an embedding of M in RV to
reduce to the case when M is an open subset of RY (cf. problem 20,
Chap. III).

(ii) Construct an affine simplicial complex, | K | C R¥, such that
Im 2 C | K| (cf. problem 20).

(iii) Suppose Im z is contained in the r-skeleton of | K |. Ifr > p,
no r-simplex of | K | is contained in Im 2. Hence find a smooth map of
M — M, homotopic to ¢, which carries z into the (r — 1)-skeleton
| K| (cf. problem 13, Chap. III).

(iv) Suppose Im 2 is contained in the p-skeleton of | K |. Modify
problem 21, iv, to show that there is a b € C,,(M; R) such that

(1) Im &b is contained in the p-skeleton of | K | and

(2) No p-simplex of | K| is contained in Im(z + ¢b). Thus find
a smooth map of M, homotopic to ¢, , which carries z 4 9b into the
(p — 1)-skeleton of | K |.

(v) Use problem 20 and problem 12, viii, to complete the proof.

23. The fundamental cycle. Let M be connected. Use the invisi-
bility theorem, and problem 21, to establish the following results:

() H(M;Z) =0, p>n
(i) H,(M;Z) ~ Z, if M is compact and oriented and H,(M;Z) = 0
otherwise.
(iii) Let M be compact and oriented. Show that there is a unique
generator wj; € H,(M; Z) such that

f cpzfqb, ® e AMM),
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where z is a representing cycle. w}; is called the fundamental class of the
oriented manifold M. Conclude that {w,, , w}> = 1, where w,, is the
orientation class. In particular, show that the orientation class is integral.

(iv) Let (M, M) be a compact orientable manifold-with-boundary.
Let (¢M),, ..., (8M), be the components of dM with inclusion maps
i: (M), > M and induced fundamental classes o,. Show that
25 (s = 0.

(v) Let ¢: N — M be a smooth map (/N a compact oriented r-mani-
fold). Suppose @ € A7(M) is an integral closed form. Show that [yp*®@eZ.

24. Direct limits. Let # be a partially ordered set such that,
for all o, B .#, there is some y € .F with « <y and B < y. Let {4,}
be a family of vector spaces, indexed by #. Let {p5: 4, — Ag}.<p be a
family of linear maps such that if « <8 <y, p% = pSops. Then
{4, , p5} is called a directed system of vector spaces. Its direct limit, written
lim A,, is the space A/B, where A = @, 4, and B C 4 is the sub-
space generated by the vectors of the form x; — pg(x,).

(i) Define canonical linear maps 7,: 4, — lim 4, . If ¢,: 4, — C are
linear maps satisfying g0 p5 = @, , show that they induce a unique
linear map ¢: lim A, — C such that ¢ o 7, = ¢, for each a € 2.

(ii) Suppose the A, are algebras (resp. graded algebras, differential
algebras) and assume that the pj are homomorphisms. Make lim A4, into
an algebra (resp. a graded algebra, differential algebra) so that each i,
is a homomorphism. In the third case show that

H(lim 4,) = lim H(A4,).

25. Cech cohomology. Let % = {U, | a € #} be a star-finite open
covering of M and let ¥" = {V; | je #} be a refinement of %. Let A4
and A4, denote the corresponding nerves. Choose a map a: f — S
such that Vj C Ua(j) .

(i) Show that a map A%: C(A%) — C(A45) is defined by
(A iy s wers 1) = flalt), -, aliy)

and that AZ is a homomorphism of graded differential algebras.

(i) Show that (A%)* is independent of the choice of a. Show that the
algebras H(A4%) form a direct system of graded algebras. The direct
limit is called the Cech cohomology of M and is written

H(M) = lim H(A).
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(iii) Given a star-finite open covering % of M imitate the proof of
the de Rham theorem to obtain a homomorphism H(A4%) — H(M).
Hence obtain a homomorphism H(M) — H(M). Show that this is an
isomorphism, H(M) ~ H(M).

26. Dimension theory. Show that the Lebesgue dimension (cf.
sec. 1.2) of an n-manifold is #n. Hint: Proceed as follows:

(i) Show that, if O C M is open, then dim O < dim M.
(ii) Show that dim M = dim R™ = dim S™.
(i) By brutal force show that dim R® < n.
(iv) Use problem 25 to show that, if dim M < p, then H(M) = 0,
i > p. Conclude that dim §* > n.



Chapter VI

Mapping Degree

§1. Global degree

All manifolds in this article are connected, compact, and oriented,
unless otherwise stated.

6.1. Definition. Let ¢: M —> N be a smooth map between
n-manifolds. The linear isomorphisms

f:: HA (M) > R, f: H"(N)—=>R

(cf. sec. 5.13) determine a unique linear map

fooR—R
which makes the diagram
H(M) ¥ Hn(N)
M I

R+«————R

commute.
The (mapping) degree of ¢ is defined by

deg @ = f(1)-

It follows from the definition that

degg = qu»*<1>,

where @ € A™(N) satisfies J'N @ = 1. More generally, if @ is any n-form
on N we have

fM.p*cp - degqpr .

240
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Note that the sign of the mapping degree changes if either the orientation
of M, or that of N, is reversed. In particular, the degree of a map
@: M — M is independent of the orientation of M.

Proposition I: The mapping degree has the following properties:

(1) Letg: M — N and ¢: N — O be smooth maps between oriented
n-manifolds. Then

deg(i) o ) = deg @ - deg ¢f.
(2) The degree of the identity map is one,
deg 1ay = 1.
(3) If the maps ¢, : M — N are homotopic, then
deg o = deg .

(4) If deg o 5 0, then ¢ is surjective.

(5) Let ¢;: My — N, and ¢,: M, — N, be smooth maps, where
dim M, = dim N, and dim M, = dim N,. Then the degree of the
map ¢, X @a: My X My — N; X N, is given by

deg(p; X @) = deg o, - deg s .

(6) If o: M — N is a diffeomorphism, then degp = 41 when ¢
preserves orientations, and deg ¢ = —1 when ¢ reverses orientations.

Proof: Properties (1)~(3) are immediate consequences of the defini-
tion. Property (6) follows from Proposition XII, sec. 4.13.

(4) Assume that ¢ is not surjective. Then ¢(M) is a proper compact
subset of N (since M is compact). Let @ be a nonnegative nonzero
n-form on N with

carr ® C N — o(M).

Then p*® = 0. Hence
0= * = d -} D
[ @ =dero-|

Since [y @ > 0, degp = 0.
(5) Choose differential forms ¥, € A(N,) and ¥, € A(N,) such that

fN W, =1 and fN ¥, = 1.
, :
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Then according to Proposition XII, sec. 4.13,
f P, x ¥, = 1.
NixXNg
Hence

deg(p, X @o) = J‘M . P ¥V X 9 *Y,
1 2

= N A f P *¥p = deg g, - deg g, .
M My
Q.E.D.

Corollary I+ If o: M — N and ¢: M — N are inverse diffeomor-
phisms, then dege - degy = 1.

Corollary II: If a map ¢: M — N is homotopic to a constant map,
then deg ¢ = 0. If a map is homotopic to the identity, then deg ¢ = 1.

Remark: In sec. 6.3 it will be shown that the mapping degree
is always an integer.

6.2. Examples: 1. Let M = N = S™ be the unit sphere in a
Euclidean space E of dimension 7 4 1 and let 7: E — E be a Euclidean
rotation. Then deg r = det 7. (Recall that det+ = +1.)

In fact, let 4; be a determinant function in E. Then the n#-form

Qx; &1y ooy £0) = delx, &1y s €n)y 2€ 8, €€ Ty(S7),

orients S™ (cf. Example 2, sec. 3.21). Since + is linear, (d7)¢ = 7(£),
whence
Q2 = det 7 - 2.

It follows that fgn 72 = det 7 [ 2; i.e. deg 7 = det 7.
In particular, let » be the rotation given by «(x) = —x. Then
deg 7 = (—1)**! and so 7 is not homotopic to the identity if 7 is even.
2. Let ¢, ¢: S® — S™ be smooth maps such that

olx) = —y(x), we S

Then ¢ and ¢ are homotopic (cf. Example 7, sec. 5.5) and hence
Proposition I, part 3, sec. 6.1 implies that

deg ¢ = deg ¢.
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In particular, if p(x) = —x (x € S*) we have deg ¢ = 1, while if
o(x) # x (x€ S™), it follows that dege = (—1)**! (cf. Example 1).
Hence if n is even, no smooth map ¢: S* — S* satisfies {(¢(x), x> = 0
(x € S*) (for then both the conditions p(x) # %, p(x) 7% —x would be
satisfied).

3. Let C be the complex plane and consider the unit circle
S1={zeC||z|=1}. Definef: S' — S1byf(z) = 2P. Thendeg f = p.

In fact, a determinant function 4 is given in C = R? by

A(zy , 25) = Im(Z;2,).
Hence an orienting one-form £ on S is defined by

Qz; ) = Im(gl), =ze S, [eT SY,
and
(f*Q)(=; ) = L2(27; pzP71L) = pLA(=; 0).

It follows that deg f = p.

A similar argument shows that the map ¢: S' — S obtained by
restricting the map z > ZP has degree —p.

4. Let @, 4: St — S! be smooth. If we C — {0}, w=! denotes its
complex inverse. Define y: ST — S by

x(2) = 9(2) $(z)7"
Then
deg y = deg @ — deg 4.

In fact, for { € T(SY),
x(2)7 (@)L = o(2)7! (do)l — (=)~ (dh)L.

Now (in the notation of Example 3) a simple calculation shows that
x*Q = ¢*Q — Y*Q, whence

degx-fSl.Q= fs1<p*9—fS1 J*Q = (degtp—degxﬁ)-J.Sl.Q.

Proposition II: If two smooth maps ¢, : St — S* have the same
degree, they are homotopic.

Lemma I: Assume ¢: S* — S has zero degree. Let a: R — S* be
the map given by o(f) = exp(2nit) (¢t € R). Then there exists a smooth
map g: S* — R such that ¢ = aog.
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Proof: Since

q)*Q:degtp-f Q=0
Sl 51

Theorem II, sec. 5.13, implies that ¢*Q = 278g for some smooth
g: S — R. Choose g so that

«(g(1)) = ¢(1)-

Now let 8¢ € A(R) be the exterior derivative of the identity function—
cf. Example 1, sec. 3.17. Then g*8t = 8g. Moreover, a*Q = 2ndt.
These formulae yield

(x o g)*Q2 = g*(2ndt) = 2mdg = ¢*Q.

Define y: S* — S by x(2) = ¢(2)[«( g(z))]*. Then, as in Example 4
above,

x*¥R2 = p* Q2 — (a0 g)*¥2 = 0.
Hence dy = 0 and so y is constant;
x(®) = x(1) = 1.

It follows that ¢ = a o g.
Q.E.D.

DProof of the proposition: Define x: S* — S! by x(2) = ¢(2) $(2)7.
Then (Example 4)
degxy = degp —degyp =0
Hence for some smooth map g: S' >R, y = aog (Lemma I). It
follows that
?(3) = ¥(2) - o(g()), =S

Since R is contractible, « o g is homotopic to the constant map S — 1
via H: R x S — S Now

K(t, 2) = () - H(2, 3)

is a homotopy connecting ¢ and .
Q.E.D.

6.3. Regular values. Let ¢: M — N be a smooth map between
(not necessarily compact or oriented) n#-manifolds. A point be N is
called a regular value, if either b ¢ Im ¢ or (dp), is a linear isomorphism
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for every x € ¢~1(b). Otherwise b is called a critical value of ¢. Sard’s
theorem (cf. [10, Lemma 3.2, p. 47]) asserts that every smooth map
between n-manifolds has infinitely many regular values (if n > 1).

Suppose belme is a regular value for ¢. Let x € ¢'(d). Since
(dp),: T,(M) — Ty(N) is a linear isomorphism, there exist neighbour-
hoods U, of x and U, of & such that ¢ maps U, diffeomorphically
onto U, . In particular

U, N ¢=}b) = x.

It follows that ¢~%(b) is a closed, discrete subset of M. Thus, if M is
compact, ~!(b) must be finite.

Now assume that M and N are oriented. Then ¢ determines an
integer-valued function x — ¢(x) on M, given by

0 if (dg), is not a linear isomorphism
e(x) = {+1 if (dp), preserves the orientation
—1 if (dp), reverses the orientation.

Theorem I: Let M and N be compact connected oriented
n-manifolds and let ¢: M — N be a smooth map. Assume that b e N is
a regular value for ¢ and let {x, x,, ..., x,} be the preimage of b (if
b eIm ¢). Then

degop =0 if b¢lme
and
)

degp = z €(x;) if belme.

i=1

In particular the mapping degree is an integer.

Proof: If b¢ Im o, ¢ is not surjective and deg ¢ = 0 (Proposition I,
sec. 6.1). Assume b € Im ¢. Choose neighbourhoods U; of x; (1 = 1, ..., p)
so that U, N U; = @ (i # j) and so that the restriction of ¢ to U,
is a diffeomorphism onto ¢(U,). Then A = M — {J; U, is a closed, and
hence compact, subset of M. Thus ¢(4) is compact.

Now since b ¢ A, there is a neighbourhood ¥ of b in N such that
pA)NV = @; ie (V) CY, U, . Since each ¢(U,) is a neighbour-
hood of b, we can choose V so that

VC ﬁ o(U,).

i=1
Let W, = ¢ (V)N U;. Then ¢7(V) is the disjoint union of the W,,
and the restriction of ¢ to each W, is a diffeomorphism of W, onto V.
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Now let Ade AYN) satisfy carrdCV and [yd4 = 1. Since
carr p*4 C = Y(V) = U; W;, it follows that

P
d = *q = *A4.
gy fM ¢ z} f v, ?
But ¢: W, — V is a diffeomorphism. Thus by Proposition XII, sec. 4.13,

[ ea=cm)] a=cx)| 4=d)

and so
p

degp = Y <(x).

i=1

Q.E.D.

Corollary: Let @: M — N be alocal diffeomorphism. Then degp = 1
if and only if ¢ is an orientation preserving diffeomorphism.

Proof: If ¢ is an orientation preserving diffeomorphism, then
deg ¢ = 1 follows immediately from Proposition 1,6, sec. 6.1. Con-
versely, assume ¢ is a local diffeomorphism with deg ¢ = 1. Define
e(x) (x € M) as above and set

U, ={xeM|ex) =1} and U_={xeM|ex) = —1}.
Then U, and U_ are open. Since ¢ is a local diffeomorphism,
M=U,vU._.

Since M is connected, it follows that M = U, or M = U_ . Set

41 i M=U,
W=i_1 ¥ M=uU

Now let be N be arbitrary. Since ¢ is a local diffeomorphism and
M is compact, the set ¢~1(b) is finite,

e (0) = {ay, ..., ).

Moreover, in view of the theorem,

m

degp = ) e(a)) = elg) - m,

i=1
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whence

) =m=1.

Thus @ is injective and preserves orientations at each point. On the
other hand, since deg ¢ 5 0, ¢ is surjective. Thus ¢ is a diffeomorphism.
Q.E.D.

6.4. Examples: 1, Consider S? as the one point compactification
of the complex plane C (cf. Example 10, sec. 1.5). Every polynomial
with complex coefficients and leading coefficient 1 determines a smooth
map ¢: S2 — S? given by

olz) = 2" + nf a2, zeC
and -
P(20) = %o -
We show that ¢ is homotopic to the map y: S — S? given by
#(z) = 2", z€C
W2e) = %o -

Define a smooth map H: R x S% — S2 by
n—1
H(t,2) =2"+ Y aitz, =zeC
=0

H(t, 2y) = 2 .

Then H is a homotopy connecting ¢ and . In particular, deg ¢ = deg 4.

To compute deg iy observe that 1 is a regular value for ¢ and that
Y1) = {ay, ..., a,}, where a;, = exp(Rknifn) (k = 0,1, ..., n— 1). It
is easy to show that i is orientation preserving at each of these points
and so we have deg ¢ = deg 4 = n.

In particular it follows that ¢ must be surjective if » > 1 and so
there exists at least one zero of ¢ (“fundamental theorem of algebra”).

2. Consider S® as the unit sphere in the space of quaternions
(cf. sec. 0.2). Denote the unit quaternion by e. Let ¢: S — S be the
map given by ¢(x) = x3. To determine the degree of ¢, let a € S? be
a fixed vector such that {a, &> = 0. We shall construct the solutions
of the equation x® = a.

Write

x = Ae+y, le,y) =0, AeR.
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Then &% = A% + 322y + 3)Ay* + 5% But

V= —yye=—(1 —Me
and so

o= [ — 31 — W)]e + 322 — (1 — A%)]y.
Thus x* = a is equivalent to
A4 —3)=0, @A —-1y=a.

It follows that the solutions of x3 = a are given by
2 =13V3e+a), x=4-V3et+a), x=—a

Moreover, it is easy to see that a is a regular value for ¢, and that
ex;) = 1 (i = 1,2, 3). Hence
degp = 3.
3. Let T™ be the n-dimensional torus (cf. Example 3, sec. 1.4).

Recall that the points x € T are n-tuples of residue classes of R (mod 1).
Let p be a positive integer and define ¢: T — T™ by

e([£'], ..., [€7]) = ((p£"], --s [PE"D.

Then all points of 7™ are regular values and ¢ preserves orientations.
Since the equation ¢(x) = 0 has precisely the solutions

[El=1Dpl, v=0,.,p—1, i=1.,n

it follows that deg ¢ = p™.

4. Let M be any compact connected oriented n-manifold. We
shall construct a smooth map ¢: M — S™ which has degree 1. Let
(V, ¢, E) be a chart on M (E a Euclidean n-space). Denote by A4 the
closed subset of M which corresponds to {ze E||z| < 2} under
this map.

Consider S™ as the one-point compactification of E:

S* = E U {z.)

(Example 10, sec. 1.5) and construct a smooth map «: E — S” so that

() ofz) =2]2]<1
(i) o(0) =0

and

(ii)) af2) = 24, | 2| > 2.
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Define ¢: M — S* by
_ {ol(x), xeV
o) = Q.. xeM— A

¢ is well defined and smooth, as follows from (iii). Since ¢ is a
diffeomorphism, conditions (i) and (ii) imply that 0 € E C S™ is a regular
value for ¢, and that ¢7(0) = 4%0). Hence deg ¢ = +1. In view of

Example 1, sec. 6.2, there is a smooth map 8: §* — S withdeg 8 = —1.
Hence, if degep = —1, set ¢, = Bog@. Then Proposition I yields
deg @, = 1.

6.5. Poincaré duality. Let ¢: M — N be a smooth map between
compact oriented n-manifolds. Dualizing ¢#: H(M) <« H(N) we obtain
a linear map (¢*)*: H(M)* — H(N)*.

Proposition III: The diagram

HM) % H(N)
DMl = ldegqa ‘Dy
H(M)* H(N)*

(o%)*
commutes (cf. sec. 5.11 for D,,, D).
Proof: Let a € H(N) be arbitrary. Then we have, for 8 € H(N),
Up*)* Dygp*a, By = (Dug*a, 9*8)
i #
= [ oragB= [ o)
M M

= deg«p'f:a-ﬁ = deg ¢ * (Dya, B).
Q.E.D.

Corollary I: Let ¢: M — N be a smooth map between compact
oriented connected n-manifolds, with deg ¢ = 0. Then ¢*: H(M)<— H(N)
is injective.

Proof: Since deg ¢ 5 0, Proposition III implies that (¢*)* o Dy, o ¢*
is a linear isomorphism. Hence ¢* is injective.

Q.E.D.
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Corollary II: Let ¢: S* — M be a smooth map (M, a compact
connected oriented z-manifold) with degg 5 0. Then H?P(M) =0
I<p<n—1)

6.6. Mappings through products of spheres. Let S,,.S, denote
oriented n-spheres with base points a € S, , b € S, . Denote the projections
Sy X Sy, — 8; by p, and let the inclusions S; — S; x S, opposite
a, b be denoted by j, , j, -

Consider smooth maps

M-8, %82 N
(M, N compact oriented n-manifolds) and write
=@ Ya=4yoja
Pe=po@  Yp=9ogy.

Proposition IV: With the hypotheses and notation above,
deg(ys o @) = deg 4, - deg ¢y + degy), * deg .-

Lemma II: Let a € H*(S; x S,). Then
@ = PI#jb#a + P;’.#ja#a'
Proof: By the Kiinneth theorem (cf. sec. 5.20), an isomorphism

Kyt H(Sy) @ H(Sy) — H(S; X Sy)
is given by
el @ o) = pr¥oy * poto, .
Thus «,, restricts to the isomorphism
(H'(S) ® 1) @ (1 @ H'(Sy)) — H"(S; % $y)

given by

kelog @ 1 + 1 @ a) = py*oy + pyta,.

Now let o € H"(S; X S,) be arbitrary. Write a = p,*a; + py*ay and
apply the equations
ja# o pg* =1, ja# °op* = 0

In* e p® =0, I ep® =

Q.E.D.
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Proof of the proposition: Let wy be the orientation class, [y wy = 1.
Then

degy o) = [ gt

Apply Lemma IT with a = *wy: this gives
PHray = eyt oy + pfdFoy
Hence

deg (f o @) = deg (¢ © 1) + deg (Ya © p2)

= deg i, - deg g, + deg i, - deg o, .
Q.E.D.
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6.7. Definition: Let M be an oriented n-manifold and let ae M
be a point. We shall denote M — {a} by M. In this section we shall
construct a linear map

apgt HPY(M) — R.

First, choose a smooth function f on M so that f = 0 in a neighbour-
hood of a, and f = 1 outside a compact set. Then &f is closed and
has compact carrier contained in M; thus §f represents an element
a, € HY(M). If another such function g is chosen, then f — ge F(M)
and so 8¢ also represents «, . It follows that o, is independent of the
choice of f: «, is called the localizing class at a.

Now define ay, by setting (cf. sec. 5.9)

&3 .
() = [ oaxB  BeH™HM.
M
If @ € A (M) represents 8 and 8f represents a, , then

ap(B) = fM*o‘qu) - fMafA ®.

Next consider a2 smooth map between oriented #-manifolds, ¢: M — N.
Let M = M — {a} and N = N — {p(a)} and assume that ¢ restricts
to a map ¢: M — N.

Proposition V: Assume that (dp), is a linear isomorphism. Then
the diagram

Hv- (M) <2 (i)

] Jox

Re———R

€

commutes, where €(t) = t (¢ € R) if (dp), preserves the orientations and
e(t) = —t if (dp), reverses the orientations.

252
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Proof: Since (dgp), is a linear isomorphism there are connected
neighbourhoods U of a and V of ¢(a) such that ¢ restricts to a diff-
eomorphism of U onto I/ (cf. Theorem I, sec. 3.8). Choose g€ S(N)
so that g is zero in a neighbourhood of ¢(a) and so that carr(g — 1)
is compact and contained in V. Define f e (M) by

_ (&lpx)), xelU
S =1y, x¢ U

Then 8f and 8g represent o, and oy, .
Now consider a closed form ¥ € 4*»~Y(N). Then

g AP eANV)

and thus, by Proposition XII, sec. 4.13,
. S, VYV =c¢- 8 ¥ = *(§ ¥ = Sp* H¥,
[ on¥mc [ ma¥—[ ogat)= [ speng

On the other hand, since 8f(x) = (8p*g)(x) (x € U) and carr §f C U,

we have
fus¢*g AR = fvaf/\ T fM'afA PFP.
It follows that
fMSng'a*'I’: e (fNag A ),
whence

3 o g
[ aaxgB=c[ awxh BeH-IN).
M N
Q.E.D.

6.8. Euclidean spaces. Let S denote the unit sphere of an oriented
n-dimensional Euclidean space E (n > 2) and let E = E — {0}. The
inclusion map i: S — E induces an isomorphism

i#*: HY(S) «— H*Y(E)

(cf. Example 5, sec. 5.5). On the other hand, consider the isomorphism

[ :: HYS) = R,
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and the canonical linear map «z: H*(E) — R, where S is given the
orientation induced by the orientation of E.
Proposition VI:

# .
ap = f oit 1 H™Y(E)— R.
)
In particular, o is an isomorphism.

Proof: Let @ e A»Y(E) be a closed form and let fe S(E) satisfy

x| <
x| >

o

DO W

We must show that
f S A D = j i+,
E S

Let B be the open unit ball in E. Then f A @ has carrier in B. Moreover,
since @ is closed, 6f A @ = §( f - D). Now Stokes’ theorem (Theorem II,
sec. 4.17) yields

fEafAd&:fBa(f-qb):fsi*(f-:p):fsi*(p.
Q.E.D.

In view of Proposition V, sec. 6.7, Proposition VI has the obvious

Corollary: Let M be an oriented #-manifold (n > 2) diffeomorphic
toR" Let ae M, M = M — {a}. Then the map

ap H (M) — R

is alinear isomorphism.

6.9. Mayer-Vietoris sequences. Let M be a compact oriented
n-manifold. Suppose U; (i = 1, ..., r) are disjoint open subsets of M
and that g; e U, (1 = 1, ..., r). Set

U=UU, V=M—{a,.a}

=1
and
U‘i = Ui—{al-}, 1= 1,...,r.
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Then

T
UuV =M and Unv=U;.

=1

Thus according to sec. 5.4 we have the exact triangle

H(M) ~ H(U) ® H(V)

\ /
:=1 H( Ul)
On the other hand, consider the linear maps
ay,: HYU,) — R, i=1,..,r,

as defined above. We denote them simply by «; . These maps determine
the linear map

a: @ HW(U)—>R
given by

r

ofy @ @B) =Y aB), B HYU)).

1

Proposition VII: With the hypotheses and notation defined above,
the diagram

@i H YUY

7N

Hr(M) R

)

commutes.
Proof: It is sufficient to show that

[ o=w@, BeH™T).

Let ® € A»Y(U,) be a closed form representing 8. Extend @ to UN V
by setting

dx) =0, xel)U,.
i=2
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Choose a partition of unity {f, g} for M subordinate to the open
covering by U and V. Then

f-DedYY), g ®eAYU),
and the element 0B is represented by the form Qe A™(M) given by

_{ ¥ePx), welU
Q) = 3—8( fP)x), xel.

Hence
3
B = .
J#2=1,
On the other hand, carr 2 C U, . Thus
f Q= j Q=1 sgno.
M Uy Uy

Moreover, f and g can be chosen so that g = 0 in a neighbourhood
of a;,and g = 1 in U; — K for some compact set K C U, . With this
choice

f:aﬁ — fM.Q - fUISg AP = ay(f).
Q.E.D.

6.10. Products. Let M and N be oriented manifolds of dimensions m
and 7 respectively, and give M X N the product orientation. Choose
points a € M, b € N and set

M=M-—{ag, N=N-—{, MXN=MxN—/{ab).
Then we have linear maps

ap: HY(M)—> R,  ay: H*Y{N)— R
and
cngcy: H™ (M 5 N)—> R

Now consider the open covering U, ¥V of M X N given by

U=M x N, V=M x N.
Then

UnV=MxN.
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Hence we obtain the exact triangle

H(M % N) > H(U) ® H(V)

\ /
H(M x N)

(cf. sec. 5.4) and the exact triangle

Hc(M X N) > Ho(U) D Ho(V)

N
Ho(M % N)
(cf. sec. 5.10). Moreover, the Kiinneth homomorphisms

xy: HM) @ H(N) — H(M x N),  (xe)y: Ho(M) ® He(N) — Ho(M x N)

are defined (cf. sec. 5.17 and sec. 5.18).

Proposition VIII: With the hypotheses and notation above the
diagram
H™Y (M) ® HN) ——*—> Hm+%M x N)
(D)o @ecy | E
R Hmn-1(M % N)

AM N

commutes,

Lemma III: The localizing classes o, € HY(M), o, € HYN), and
a(ep € HY(M X N) are related by

Ocla,) = —(Kc)u{ota @ ).
Proof: Choose fe (M) so that f is zero near a and f— 1 has

compact carrier. Choose g € #(N) to be zero near b and so that g — 1
has compact carrier. Then 8f x &g represents (x.)u(o, @ o).
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Next observe that a closed form w € AY(M X N) is defined by
w=(f—1) x 8 + & x (g — ).
Moreover,
(f—1) x8gcAXM x N) and & x (g — 1) € AYM x N).

Thus, if w represents y € Hy(M X N), then 9,y is represented by
8f x 8g; i.e.
ey = (ke)u(ota & o).
Finally, define h € (M X N) by
h=fx14+1xg—fxg
and note that
w = —8h.

When f(x) =0, g(y) = 0, then h(x,y) = 0; thus % is zero in a
neighbourhood of (4, b). 1 — k can be written

l—h=(10-=f)x({1—-g

and so carr(l — A) C carr(l — f) X carr(l — g) is compact. It follows
that 8k represents ay, ) ; i.e.

Oct(g,p) = Oc(—y) = —(Ke)p(ata @ %). QE.D

Proof of the proposition: Let o e H™ (M), € H*(N). Then it
follows from Proposition VII, sec. 5.11, that

Sid
(aondego @) = [ sty xdes(o @ 7)
X
#
= J. . Ocq.p) * Ky ® 7).
MXN

Applying the lemma, and using Proposition XIII, sec. 4.13, yields
+#
(apaxie o @) = — [ (ke)u(ta @ ) % kulo @ 7)
MXN

= (—l)mj-:laa*af; ay * T
= (—1)"ap{c) an(7)-

= (—1y"(opr @ ay)(o @ 7).
Q.E.D.
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6.11, Definition. Let ¢: M — N be a smooth map between oriented
n-manifolds (n > 2). A point a € M will be called isolated for o, if
there exists a neighbourhood U of a such that

p(x) # pla), xelU—{a}

We shall define the local degree of ¢ at an isolated point a. Choose
charts (U, u, R*) on M and (V, v, R*) on N so that a € U, ¢(a) € V and
@ restricts to a smooth map

¢: U —{a} >V —{g(a)}-
Write U — {a} = U, V — {p(a)} = V.
The corollary to Proposition VI, sec. 6.8, gives linear isomorphisms
apt H™Y(U)—=> R,  ap: H*Y(V)—> R.

Thus a linear map f,: R — R is determined by the commutative diagram

H» Y U) L HrY( V)

nglg %lay

Re——R

fo
Lemma IV: The map f, is independent of the choice of U and V.

Proof: Let (U’,#',R") and (V’, v/, R®) be a second pair of charts
satisfying the conditions above. It is easy to reduce to the case U’ C U,
V' C V. Then Proposition V, sec. 6.7, implies that the diagram

HmY( U) H»Y V)
3 / \
H»Y(U) Hr 1(V')
commutes, and the lemma follows. Q.E.D.
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Definition: The number f (1) is called the local degree of ¢ at a
and will be denoted by deg, ¢.

The defining diagram shows that

dega P = aU‘i’#(‘)’)v

where y € H»(V) is the unique element satisfying ay(y) = 1.

Example: Maps between Euclidean spaces: Suppose ¢: E —F is a
smooth map between oriented Euclidean spaces of dimension n (n > 2)
such that ¢ %(0) = 0. Set E = E — {0}, F = F — {0} and denote the
unit spheres of E and F by Sy and S;, respectively, with inclusion maps

ig: Sg— E and ip: Sp— F.
Let py: F — S; be the projection y - y/| y |. Then
Y =propoig: Sg— S
is a smooth map.

Proposition IX: With the hypotheses and notation above

deg y = degy ¢.

Proof: Let ¢: E — F denote the restriction of ¢. Let

B = oz 1(1) € HY(F).

Then, using Proposition VI, sec. 6.8, we find
, * o,
degop = asg*(B) = [ ifyrB.
Sg

On the other hand, recall from Example 5, sec. 5.5, that p¥ = (1%)~1.
Thus

degoy = [ GtomeitN®) = [ wrid)®)

= deg - 7 iH(P) = deg - oa(f) = deg .
Q.E.D.
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Proposition X: Let ¢: M — N be a smooth map between oriented
n-manifolds (» > 2). Suppose a € M is isolated for ¢.

(1) If (de), is a linear isomorphism, then
deg, @ = ¢,

where € = +1 if (dp), preserves the orientations, and € = —1 if
(do), reverses the orientations.

(2) If y: N—>Q is a second smooth map between oriented
n-manifolds and ¢(q) is isolated for ¢, then a is an isolated point
for s o p and

degy( o p) = dego ¢ * deg, ¢-

(3) deg, ¢ is an integer.

(4) Let ¢: P— QO be a smooth map between oriented r-manifolds.
Suppose b€ P is an isolated point for . Then (g, b) is an isolated
point for ¢ X ¢ and

degan(p X 3) = deg, ¢ - degy .

Proof: (1) follows from Proposition V, sec. 6.7. (2) is obvious.
(3) follows from (1) and (2), together with Proposition IX and Theorem I,
sec. 6.3. (4) is a consequence of Proposition VIII, sec. 6.10, formula

5.3, sec. 5.4, and some elementary diagram chasing.
Q.E.D.

6.12. Examples: 1. Let £ and F be oriented n-dimensional vector
spaces (n > 2) and let ¢: E—F be a linear isomorphism. Then
deg, o = 1 if ¢ preserves the orientations, and degop = —1 if ¢
reverses the orientations, as follows from Proposition X, (1), sec. 6.11.

In particular, if o: E — E denotes the map x> —ux, then

degy o = (—1)™

2. Let ¢: E — F be a smooth map between oriented n-dimensional
vector spaces (n > 2) such that ¢=}(0) = 0. Define a map —¢: E — F by
(—o)x) = —¢(x), x€kE.

Then
degy(—g) = (—1)" deg, 9.
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In fact, write —¢p = o o @ where o: F — F is the linear isomorphism
given by y = —y. Then, Proposition X, (2), together with Example 1,
yields

degy(—¢) = deg, o - degop = (—1)” deg, .
3. Let ¢: C — C be defined by
op(2) = 27, p=12 ...

Then Proposition IX, sec. 6.11, shows that

dego ¢ =p

since the restriction of ¢ to the unit circle S* has degree p (cf. Example 3,
sec. 6.2).

4, Maps S™ — S™ with given degree: Let E be an oriented
(n + 1)-dimensional vector space, n > 1. Write E = C @ F, where F
is an (n — 1)-dimensional vector space. Introduce an orientation in F
so that the product orientation coincides with the given orientation of E.

Let ¢: C — C be the map given by

oz) =2, p=12..,

and consider the map ¢ X ¢: E— E. Combining Example 3 with
Proposition X, (4), we obtain

dego(p X ¢) = degyp = p.

Next, endow E with a Euclidean metric, and let S® be the unit
sphere. Then a smooth map ¢: S — S* is given by

— e X9 .
W= fexa@r T

It follows from Proposition IX, sec. 6.11, that
deg § = degy(p X 1) = p.

In a similar way a map : S — S” of degree —p can be constructed.

Remark: Let M be any compact connected oriented n-manifold.
According to Example 4, sec. 6.4, there exists a smooth map p: M — S
with deg ¢y = 1. Composing ¢ with the map  yields a map M — S=»
of degree p.
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Example 5: Let E be an oriented Euclidean n-space. Define
¢: E— E by

p(x) = —<x, x>a + 2{x, a)x, xeE,

where @ is a fixed unit vector. Then ¢ restricts to a map ¢: E — E.
We shall show that

degop =1 4+ (—1)™
Let S™~! denote the unit sphere of E and define ¢: S*! — S"-1 by

— QJ(x) n—1
WO = Toer TS

Proposition IX, sec. 6.11, shows that
deg § = deg, .

To compute deg s, we use Theorem I of sec. 6.3.
First it will be shown that y~'(a) = {a, —a}. Suppose #(x) = a. Then

—<x, x>a + 2{x, adx = Aa, AeR, A>0;

ie.,

(A 4+ <z, xp)a = 2(x, a)x.

Since A > 0, it follows that A 4 | x |2 > 0, whence <{x, a) % 0. Thus
we obtain

_ AL
T e ¢
Since |a| = 1, it follows that x = 4-a. On the other hand, clearly,

J(a) = Y(—a) = a and so y~Ya) = {—a, a}.
Next we compute (dy), and (df)_, . Observe that the linear maps
¢'(a) and ¢'(—a) are given by

p'(a) =2 and  ¢'(—a) = —2.
Now let ke T,(S"!). Evidently

(dh)oh == 2h.

Similarly,
(@P)_ah = —2h,  he T_(S™).
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These relations show that (di), is orientation preserving, and that
(d$)_, is orientation preserving if and only if #n is even. Thus a is a
regular value for ¢, and Theorem I yields

deg = 1 + (—1)™.

6.13. Local degree and global degree. In this section we shall prove:

Theorem II: Let : M — N be a smooth map between compact,
connected, oriented n-manifolds (n > 2). Let be N be a point for
which the set {p~%()} is finite,

e7(d) = {ay, vy a.}.
Then
degp = ) deg,,¢.

i=1
Remark: This generalizes Theorem I of sec. 6.3.

Proof: Choose charts (U,, u;, R®) on M and (W, w, R*) on N so
that the U, are disjoint and ¢, € U; (1 = 1, ..., 7) and b€ W. Set

,
U, = U; —{a;}, V=M-—{a,..al, U= U,.

i=1

Then

vuv=M UnV=U.

i=1

Assume the choices of U;,, W have been made so that ¢ restricts
to smooth maps ¢;: U, — W. Then ¢; restricts to ¢z U, — W
(W = W — {b}). By definition

deg,, ¢ = ay, ¢ (1).

The ¢; define a map ¢y,,,: U N V — W (simply the restriction of ¢).
On the other hand set o; = o, and write
a=@, o0 H(UNV)>R.
We have

,
Z dega‘ ¢ = (ao PEny° a;,l)(l).

i=1
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Finally, the triples (M, U, V) and (N, W, N — {b}) lead to exact
Mayer—Vietoris triangles. Denote the connecting homomorphisms by
Oy HU N V) — H(M), oy: HW) — H(N). Then (cf. sec. 5.4)

a1»191"{”\1/ = ‘P#azv .

Thus we can apply Proposition VII, sec. 6.9, twice to obtain
T 4
Y. dego, 9 = [ auabnvin(l)
i=1 M

#
= deg<pf~ Oy (1) = deg .

Q.E.D.
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Let M be a compact connected oriented n-manifold. Recall, from Prop-
osition I, sec. 6.1, that any two homotopic smooth maps ¢, : M — S
have the same degree. The converse is true as well: if ¢, y: M — S
have the same degree then ¢ and y: are homotopic. This is a theorem
of H. Hopf, cf. [8, p. 149]. It is the purpose of this article to establish
this result in the case M = S®. (The reader is invited to attempt the
proof of the general theorem.)

6.14. Suspension. Consider the unit sphere S™ (n = 1) of an
(n + 1)-dimensional Euclidean space E. Choose two fixed points
xn € S™ and x5 = —xy €.S", called the north pole and the south pole.
The (n — 1)-sphere given by

Sl = {x e 8" | {x, x> = 0}
will be called the equator sphere. The closed subsets of S™ given by
Hy = {xe 5" | {x o 2 0}

and
Hg ={xeS"|{x 2 <0}

will be called the north and the south hemisphere.
Now fix a smooth function w: R — R which satisfies the conditions:

(1) o(—f) = —ao(t)
(2) lw(t)] <72, teR, and w(t) =m/2,t>1—¢ >0,
(3) w(0) = 0.

Set @(f) = sin w(t) and P(¢) = cos w(?), t € R, and, for each smooth
map f: S*»~! — S7-1, define a smooth map o, S — S” as follows: let
y = {x, xn) and put

xN Y X = xN
X — yX
ofx) = {00 + ¥OV [ (T3 7) wF o
Xg X = Xg .

266
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o; will be called the suspension of f. It extends f and preserves the north
and south hemispheres of S™. Moreover o7'(8") = S»-1.

Lemma V: If f: S#1— S*1 and g: S*»! — S*1 are homotopic
maps, then so are the suspensions o; and g, .

Proof: Let i: R x S™ ! — S™! be a homotopy connecting f and g.
Define H: R x S$® — S" by

H(t, x) = oy,(x),
where h(y) = h(t, y). Then H is a homotopy connecting o; and o, .

Q.E.D.

Proposition XI: Let f: S»1 — S»1 (n > 2) be a smooth map and
let o; be the suspension of f. Then

deg o, = deg f.
Proof: Define open sets U, V on S™ by
U=Sr—{xg), V=5 {xuh

Similarly, set (for 0 < a < 1)
Uy = {xe 8" [ {x, ) > —a}
and
Vo ={xeS"|{x x> <a}.
Since o, preserves north and south hemispheres, for some a € (0, 1),

o{U)CU and oV, CV.

The triples (S*, U, V) and (S*, U,, V,) induce exact cohomology
triangles (cf. sec. 5.4). In view of formula 5.3, sec. 5.4, we obtain a
commutative diagram:

H™(U, " V,) — Hr(s")
a,*T Ta,* (6.1)
Hn—l( U la) V) Hn(Sn) ,

7
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where 6;: U, NV, — UN V is the restriction of o;. Since U,, V,,
U, and V are all contractible and # > 2, it follows from the exactness
of the cohomology triangles that the linear maps & and 0, are isomor-
phisms.

Since o; extends f, the inclusions

iz S1->U,nV,, Sl U0UNnV,
induce a commutative diagram
HoySm1) < Hv YU, A V)
7 las (6.2)

H"Y(§"Y) «—— H™ (U N V).

Moreover, according to Example 6, sec. 5.5, the horizontal arrows are
isomorphisms. Combining (6.1) and (6.2) gives the commutative
diagram

Hr-1(Sn-1) 6,,0(:'“,,’*)—1 Hn(Sm)
7 for (6.3)
n—1( Qn—1 = > n( gn

Hr§m1) — = HA(S").

Finally, the inclusion (S*, U, , V,) — (8™, U, V) induces an isomor-
phism of Mayer—Vietoris sequences: in particular we have the com-
mutative diagram

H~YU,nV,)

Hn—l( Sn—l) o Hn( Sn)

N

HYUN D)

It follows that 0,0 (i,¥)"! = @0 (#*)~*. The proposition is now an
obvious consequence of (6.3).
Q.E.D.
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6.15. Proof of the Hopf theorem. Lemma VI: Let ¢: S* — S»
be a smooth map such that ¢(Hy)C Hy and ¢(Hs) C Hs and let
f: 8*1 — S™1 be the restriction of ¢. Then ¢ is homotopic to o, .

Proof: Since
e(Hy)CHy, @(Hs)CHg

and
a{Hy) C Hy, a/(Hs) C Hg, af—l(S"—l) = Sn-1,

it follows that
P(x) # —oy(x), x € S”

Hence, according to Example 7, sec. 5.5, ¢ is homotopic to o, .
Q.E.D.

Lemma VII: Every map ¢: 8" — S® is homotopic to a map
Y: S* — S™ which satisfies

g Hy— 8" —{xs},  ¢: Hs— 5" — {xn}.
Proof: Choose regular values 4, b for ¢. Then the sets ¢~!(a) and
¢~ Y(b) are finite (possibly empty):
'P_l(a) = {al P ap}’ (P_l(b) = {by, . bq}'

In view of the corollary to Theorem IlI, sec. 1.12, there exists a dif-
feomorphism «: S — S™ homotopic to the identity and satisfying

a(ai)ES"—Hs, a(bj)ES"—HN, = l, ...,P; ]= l, veny .

Similarly, there is a diffeomorphism B: S* — S™, homotopic to the
identity, such that

Bl@) =wxy and  B() = xs.

The map ¢ = B o g o a™! satisfies the required conditions (cf. sec. 1.10).
Q.E.D.

Lemma VIII: Every smooth map ¢: S — S™ is homotopic to a
smooth map ¢: S® — S™ which satisfies $i(Hy) C Hy and (Hs) C Hy .

Proof: In view of Lemma VII we may assume that

p(Hy) C S™ — {xs}, @(Hs) C 8™ — {x\}.
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Since @(Hy) and ¢(Hs) are compact, there is an a € (0, 1) such that
p(Hy)C U, and e(Hg)CV,.

Here U, , V, are the sets in the proof of Proposition XI.

Let A: R — R be a smooth function satisfying the conditions

(1) 0<A) <1
Q) M)=0,t|>1—¢ (0<e<1—a)
3) =11t <a

Define a map y: S®™ — S™ by

_x — My(x) y(x) #n
X®) = T 0w 7@ ]

where y(x) = (x, x)>. Then x is homotopic to the identity and
x(U,) CHy, x(V,) C Hg.

Set y = y o p. Then ¢y ~ ¢ and

Y(HW)CHy,  §(Hs)C Hs.
Q.E.D.

Proposition XII: Let ¢: S* — S™ be smooth (n > 2). Then there
is a smooth map f: §S*~! — S~ such that ¢ is homotopic to o, .

Proof: Choose : S® — S™ to satisfy the conditions of Lemma VIII.
Let f be the restriction of ¢ to S*»1. Then Lemma VI gives

¢~yY~o;.

Q.E.D.

Theorem III (Hopf): Let ¢: S* — S® and ¢: S* — 8™ (n > 1) be
smooth maps such that
deg ¢ = deg ¢
Then ¢ and ¢ are homotopic.

Proof: The case n = | has been settled in Proposition II, sec. 6.2.
Now we proceed by induction on n. Assume the theorem holds for
some # — 1 > 1 and let ¢: S® — 8%, : S — S™ be maps such that

deg ¢ = deg ¢.
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According to Proposition XII, there are smooth maps f: S*~1 — S»—1,
g: S»1 — S 1such that

@ ~ oy and Y ~o,.
Now Proposition XI implies that
deg f = deg p = deg ¢y = degg.

Hence, by induction, the maps f and g are homotopic. Applying
Lemma V, sec. 6.14, we find

(P~af~oﬂ~¢')

whence ¢ ~ .

Q.E.D.

Corollary I: A map ¢: S® — S" of degree 1 is homotopic to the
identity map.

Corollary II: Let ¢: S® — S™ be a smooth map of degree zero.
Then ¢ can be extended to a smooth map

l/ll Rn+1 —> Sn

so that

W) =g () 1=

| x |

Proof: Fix ee S™. In view of Theorem III there is a smooth map
h: R x 8™ — S™ such that

hit,x) =e¢ (1t <0) and h(t, x) = @(x) (¢ = 1), xe S
Choose a smooth function A\: R — R such that

A(t):ly |t|>11
and
) =0, |t]<e

(some € € (0, 1)). Define ¢ by

M| %), | x| %), xeE—{0}
o) = i

Q.E.D.
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Next, let E,F be oriented Euclidean spaces of dimension n + 1
(n = 1). Let Sz and S; denote the unit spheres of E and F and let
E=E— {0}, F=F — {0}. Assume ¢: E —F is a smooth map and
define : S — Sr by

_ %  Les,.
| ()| £

Corollary III: With the notation defined above, assume
degy = 0.
Then there is a smooth map §: E — F so that

Fx) = plx),  jx| =1



Problems

1. Let B, B be closed oriented unit balls in Euclidean n-spaces. Let
@: B — B be a smooth map which restricts to a map : S*-1 — §n-1,

(i) Show that
f oW = deg ¢ f W, WeAn(B).
B B

(ii) Assume that b € B is a point such that ¢~Y(b) consists of finitely
many points {a;}, all in the interior of B. Show that

degp = Z degai P

(iii) Generalize these results to arbitrary oriented connected compact
manifolds-with-boundary.

2. Let (M, 2M) be a compact connected oriented (n 4 1)-manifold-
with-boundary. Let N be a compact connected oriented z-manifold and
assume that ¢: 9M — N extends to a smooth map ¢: M — N. Show
that deg ¢ = 0.

3. Proper maps. Let g: M — N be a proper smooth map between
connected, oriented n-manifolds. Define deg ¢ by the relation

(pe)*wy = deg @ - wyy,
where w,, and wy are the orientation classes.

(i) Show that the properties of the mappmg degree generalize appro-
priately. In particular, show that deg ¢ is an integer, invariant under
proper homotopies.

(i) Find examples of proper maps which are homotopic but not
properly homotopic.

(ii1) If ¢~1(d) consists of finitely many points, {a;}, show that

deg ¢ = Z degai P.

4. Suppose ¢: M — N is a smooth injective map between compact
oriented n-manifolds. Prove that degp = +1 and conclude that ¢ is

273
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bijective. Show that deg, ¢ = deg e, ac M. Is ¢ necessarily a diffeo-
morphism ?

5. Suppose a € M is an isolated point for a smooth map ¢: M — N
of m-manifolds. If deg, ¢ # 0, show that, if U C M is any open set
containing a, there is an open set V' in N such that ¢(a) e V C ¢(U).

6. Let (E, m, B, F) be a smooth bundle. Assume that F and B are
compact, oriented and connected, and that F consists of p points. Com-
pute the degree of .

7. Degree mod 2. Let ¢: M — N be a smooth map between compact
connected n-manifolds (not necessarily orientable).

(i) Let a € M be an isolated point for ¢. Choose local orientations in
charts about a and ¢(a) and define deg, ¢ with respect to these. Let
Deg, ¢ be the mod 2-reduction of the integer deg, ¢. Show that it is
independent of the choice of local orientations.

(i1) Let b€ N be such that ¢~(b) = {a,} is finite. Show that the sum
Y Deg, ¢ (addition in Z,) is independent of the choice of b. It is called
the mod 2-degree of ¢.

(iii) Show that, if the mod 2-degree of a map is nonzero, then the map
is surjective.

(iv) Let U C N be chosen so that U and ¢~1U are orientable and let
i be the restriction of ¢ to ¢~1U. Show that ¢ is proper. Show that
reduction mod 2 of deg 4 is independent of the choice of orientations
in U and ¢~'U and coincides with the mod 2-degree of ¢.

8. Complex functions. In this problem S? is the Riemann sphere.

(i) Let f and g be polynomials with complex coefficients. Interpret f/g
as a smooth map S% — S2 and compute its degree.

(i1) Let f be a complex differentiable function with an isolated zero or
pole (of order > 0) at @ and regard f as a map into S% Show that a is
an isolated point for f and that

@
degaf = | 57 [ iy

b

where ¢ is a sufficiently small positively oriented circle about a. How is
deg, f related to the order of the zero or pole a ?
(iii) Let f be a complex differentiable function defined for | 2| <7,
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r > 1, with no zeros or poles on S Define ¢: S — S! by ¢(2) =
f(2)/] f(2)]. Show that

_ 1 f®
degp = 3 o f(2) dz.

Interpret this in terms of the zeros and poles of finside S'(cf. problem1,ii).

9. Rouché’s theorem. Let ¢, : E — F (E,F oriented Euclidean
n-spaces) satisfy (for some a > 0)

lp(x) —¥(x)] <), |x|=a
Show that

deg, ¢ = deg,

10. Quaternions. Consider S?® as the unit sphere in the space of
quaternions and consider S* as the l-point compactification of H.

(i) Find the degree of the map 53 — S2% given by x — x? (p e Z).

(ii) Let fand g be polynomials with quaternionic coefficients. Interpret
£7Y and fg~! as smooth maps S* — S* and compute the degrees.

(i) Show that if g € H and f is as in (ii) then the equation f(x) = ¢
has a solution.

11. Smooth maps from S". (i) Let ¢:.S* — R**! be a smooth
map (n even). Show that p(@) = Aa for some a € S*, A € R; conclude that
every vector field on S™ has a zero. Is this true for #n odd ?

(i1) Let ¢: S® — S™ (any n) satisfy ¢(—x) # @(x), for x € S*. Show
that ¢ has odd degree and conclude that ¢ is surjective. (Hint: Reduce
to the case ¢(—x) = —g¢(x).)

(i) (Borsuk-Ulam theorem) Let ¢: S® — R® (any n). Show that
¢(a) = ¢(—a) for some a € S™. Conclude thatif f, € L(S") (i = 1, ..., n)
are odd functions, they have a common zero.

12. Consider a covering of S* by n + 2 closed sets 4,, ..., 4,,,
such that none of the A4; contains a pair of antipodal points. Show that

AN NA,,= O,

while for each j (1 <j < n+ 2)

AN A N Ay, #~ O

Express this property in terms of the nerve of the covering. Conclude
that, for every covering of S™ by n-}-1 closed sets, at least one of these sets
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contains a pair of antipodal points (theorem of Lusternik-Schnirelmann-
Borsuk). Hint: Use problem 11.

13. Linking number. Let M, N be compact, connected, oriented
manifolds, respectively of dimensions p and ¢. Let E be an oriented
Euclidean (n 4 1)-space, where n = p + q. If o: M - E, y: N> E
are smooth maps such that ¢(x) %= ¥(y) (x € M,y € N), their linking
number, l(p, ), is defined by (g, ) = deg y, where y: M X N — S~
is given by

_ ¥ — ¢lx)
K2 = 140y gl

(i) Show that I, §) = (—1)P+V@ (Y, ).
(i1) If ¢;, ¢, are homotopies such that ¢,(x) # ¥( y) (xe M, ye N,

t € R), show that I(p, , o) = I(py , ¥y)-
(iii) If (M) and §(N) can be separated by a hyperplane, show that

g, ¢) = 0.
(iv) Define x,: M x N — E by xi(x, y) = () — ¢(x). Let 4z be

the positive normed determinant function in E. Define 2 € A*(E) by
1
.Q(x; hl y seey hn) = W AE(DC, hl g sney h,”).
Show that
— l *
o, ¢) = . JMXN X192,

where k, = vol 8™ (cf. sec. 4.15, and problem 6, Chap. IV).
(v) If M = N = S, show that

L) — e, X ),
e R

14. Winding number. Let M be a compact oriented connected
n-manifold and let R**! be an oriented Euclidean (n + 1)-space. Let
@: M — R"*! be smooth and assume that a ¢ Im ¢. The integer

wy(p) = Ka, ¢)

(where a is regarded as the constant map {a} — R"*!) is called the
winding number of ¢ about a.

(i) Show that w,(¢p) is the degree of the map M — S™ given by
x> (p(*) — @)l @(x) — al. -
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(ii) Show that if ¢ and ¢: M — R**! — {a} are homotopic (as maps
into R**! — {a}), then w,(¢) = w, ().

(iit) Interpret w,(p) via an integral (problem 13, iv), and via solid
angles (problem 6, Chap. IV).

(iv) Show that the function @ — w,(p) is constant in each component
of R*t! — Im ¢.

(v) If ¢ is an embedding, show that for some a4 e R"?! — Im ¢,
wy(p) # 0. Conclude that R**1 — Im ¢ has at least two components.
Use a tubular neighbourhood of Im ¢ to show that R**! — Im ¢ consists
of exactly two components.

(vi) Show that every compact n-dimensional submanifold of R™+1
is orientable. (Hint: Use problem 7.)

15. Rotation number. Let R? be an oriented Euclidean plane.
Let 4 be the positive normed determinant function. Suppose ¢: S* — R?
is an immersion and define f: R — R? by f(¢) = p(exp 2mit). The
rotation number of ¢ is defined by

LA, F®)
o0 = 5 For

(i) Show that p(¢) is the winding number of ¢: S* — R? about the
origin. Conclude that p(p) € Z.

(ii) (Whitney—Graustein theorem) Two immersions ¢, and ¢, of S?
into R? are called i-homotopic, if there exists a connecting homotopy
@, (0 < 7 < 1) such that each map ¢,: S* — R? is an immersion. Show
that two immersions are -homotopic if and only if they have the same
rotation number. Hint: To show that the condition p(p,) = p(p,) is
sufficient consider first the case that the rotation number is different
from zero. Establish the following lemma: Let 2: R — R? be a non-
constant smooth map satisfying 2(¢ 4+ 1) = 2(¢) and | 2(¢)| = 1. Then,
| fo2() dt| < 1.

(iii) Consider the map f: R — R2 given by

f@ = (—71_2—\/1 -+ cos? 2wt cos 2mt, -Kl/—isin 4wt).

Show that f determines an immersion S* — R2 Show that this immersion
is not i-homotopic to the standard immersion S* — R2

(iv) Show that the rotation number of an embedding is +2#. Hint:
Use parts v and vi.
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(v) Letf: R — R?be a smooth map satisfying | f(t)] = 1 and f () =f ()
if and only if t — 7 € Z. Define F: R — S! by

) — 1)
Foy = OTf—j010 ¢
e(2) f(1), teZ,

where e(t) = 1,if 2k <<t <2k + land e(t) = —1,i1f 2k 4- 1 <t < 2k,
ke Z. Show that F is smooth. Find a function w e % (R) such that
F(t) = (cos w(2), sin w(t)) (cf. problem 15, Chap. V). Prove that
w(l) — w(0) = 4.

(vi) Let f, e be as in (v). Define @: R x R — R? by

fO~1e)
CEIi e TR
e(t — 1) Ht), t—rel.

D(t, 1) =

Show that @ is smooth. Find 2 € #(R?) such that
D(t) = (cos (1), sin (1)) and (0, 0) = w(0).
Conclude that £(1, 1) — £(0, 0) = 42=.

16. Parallelisms. Let M be a compact connected oriented manifold
with parallelism P (cf. problem 14, Chap. IV).

(i) Show that there is a unique parallel n-form, 4, on M such that
Jud = 1. 1f fe (M), set [y f(x)dx = [y f- 4.

(ii) Let ¢: M — M be smooth and fix a € M. Set P(a, x) = P(x) and
define F: M — L(T(M)) by

F(x) = P(p(x))™! « (dg), ° P(x).
Show that for f e S(M)

f | (@7f)(¥) det F(x) dx = deg g f f@w

17. Fundamental class. Let 2 = Y, kio; be a smooth integral cycle
on a compact oriented n-manifold representing the fundamental class.
Suppose b € M satisfies the following condition: For each , o7'(b) = {a;;}
is finite and contained in 4, (cf. problem 12, Chap. V). Show that

Z k deg,, o, = L.

i
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18, Show that two maps from a compact oriented connected n-
manifold into S” are homotopic if and only if they have the same degree.

19. Let : M — N be a smooth map between compact connected
oriented n-manifolds. Show that ¢ is homotopic to a map y: M — N
such that for some b € N, §Y(b) contains | deg ¢ | points. In particular,
show that if degp = 0 then ¢ is homotopic to a map which is not
surjective.

20. Denote by C, the Riemann sphere.
(i) Show that the 2-form @ in C given by

1 1
(1 +]2%)

extends to a 2-form, ¥, in C, such that ¥(z,) # 0.
(i) Use ¥ to show that the map ¢: C, — C,, given by

D(z; ¢,,8) = Im (Cl L)

P(2) = 27, pel,
has degree | p|.

(iii) Let S* denote the sphere of radius } in R® with north pole N
and south pole S and let o be the stereographic projection of S? from N
to Ts(S?). Identify Ts(S?) with C and show that o x ¥ is the restriction
of the positive normed determinant function in R® (with respect to an
appropriate orientation) to S*.



Chapter VII

Integration over the Fibre

§1. Tangent bundle of a fibre bundle

7.1. The vertical subbundle. Let (E,w, B, F) be a smooth fibre
bundle with dim B = n, dim F = r. The derivative of = is a bundle
map between the tangent bundles;

drn:1p — 1.

Definition: The space
VAE) = ker(dn),, =z€E,

is called the vertical subspace of T,(E). The vectors of V,(E) are called
vertical.

The linear maps (dr), are all surjective; hence

dim V,(E) = dim E — dim B = dim F.

Recall from Example 4, sec. 3.10, that for each a € B the fibre F, =
n~(a) is a submanifold of E. Denote the inclusion by

Jo: Fo— E.

Lemma I: For ae B, z€F,

VAE) = Im(dj,). .

Proof: Since = oj, is the constant map F, — a,

dnodj, = 0.
Hence
VAE) D Im(dj,). .
280
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On the other hand, since (dj,), is injective

dim Im(dj,), = dim F = dim V,(E).

The lemma follows.
Q.E.D.

Now consider the subset V'x C T given by
Ve = | VAE).

2€E

We shall make V' into a subbundle of the tangent bundle, 7; it will be
called the vertical subbundle. Let {(U, , y,)} be a coordinate representation
for (E, =, B, F). Then the commutative diagram

d
Ty, X T —2s Ty

! l

Uy X F —— mX(U,)

restricts to a commutative diagram

U, x Tf — Ve latwy

! !

U, x F —=— «X(U,)

fs 4

from which the subbundle structure of V is obvious.
Vg is a submanifold of Tz and

dim Vg = n 4 2r.

Lemma I states that the maps dj,: Ts, — Tr can be considered as
bundle maps dj,: T¢, — Vg inducing linear isomorphisms on the fibres.
For this reason V is often called the bundle along the fibres.

If (E, #, B, F) is a second fibre bundle and @: E — E is a fibre

preserving map, then dg restricts to a bundle map
(do)y: Ve — Vg

A vector field Z on E is called vertical, if for every = € E the vector Z(2)
is vertical, or equivalently, if

Z~0

m
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(cf. sec. 3.13). The Lie product of two vertical vector fields Z, and Z,
is again vertical. In fact, if Z; ~ 0 and Z, ~ 0 then, by Proposition VIII,
sec. 3.13, " "

(21,2, 0.

Thus the vertical vector fields form a subalgebra, Z(E), of the Lie
algebra Z(E).

On the other hand, since the vertical vector fields are the cross-
sections in V , Z(E) is a finitely generated module over the ring S (E)
(cf. the corollary to Theorem I, sec. 2.23).

7.2. Horizontal subbundles. If (E, =, B, F) is a smooth fibre bundle,
a subbundle Hy of 7 will be called korizontal if

TE:HE®VE'

Proposition VII, sec. 2.18, guarantees the existence of horizontal
subbundles. The fibres H(E) (2 € E) of a horizontal subbundle will be
called the horizontal subspaces (with respect to the choice of Hg).
Suppose now that a horizontal subbundle, Hg, has been fixed. Then
the derivative dn: 7 — 75 restricts to a bundle map Hy — 75; this map
induces linear isomorphisms in each fibre. Hence Hy is strongly isomor-
phic to the pull-back (via 7) of 75. The manifold Hy has dimension
2n 4 r (n = dim B, r = dim F). A vector field Z on E is called horizontal if

Z(2) e H(E), 2€E.

The horizontal vector fields on E form a finitely generated projective
module Z4(E) over #(E). However, they do not, in general, form a
subalgebra of the Lie algebra Z'(E).

Every vector field Z on E can be uniquely decomposed in the form

Z=2y+ Zy, ZyeZy(E), ZyeXy(E).

The vector fields Z, and Z, are called the vertical and horizontal com-
ponents of Z.

Examples: 1. Consider the product bundle E = B X F. Then
the vertical subbundle is given by Vg = B X Tr,and Hpyp = T X F
is a horizontal subbundle of 75, .

2. Let (E,n, B,F) be any fibre bundle and choose a Riemannian
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metric on E. Let H,(E) denote the orthogonal complement of V (E) in
T,(E) with respect to the inner product. Then

Hy = () H(E)

2€E
is a horizontal subbundle.

7.3. Differential forms. Let (E, m, B, F) be a smooth fibre bundle.
A differential form @ e A(E) is called horizontal if

i(X)0 =0, Xe&,(E)

Since each #(X) is a homogeneous antiderivation, the horizontal forms
are a graded subalgebra of A(E). This algebra is called the horizontal
subalgebra, and is denoted by A,(F).

Now assume that a horizontal subbundle H; of 7z has been chosen,
and let Z4(E) be the F(E)-module of horizontal vector fields on E.
Define a graded subalgebra 4,(E) C A(E) by

AYE) = {® e A(E) | i(X)P = 0, XeXy(E).

AV'(E) is called the wertical subalgebra of A(E), and depends on the
choice of Hg .

Now form the graded anticommutative algebra Au(E) ®g AW(E)
(anticommutative tensor product of algebras).

Proposition I: The multiplication map @ @ ¥+ @ A ¥ defines an

isomorphism
u: Au(E) ®c A(E) = A(E)

of graded algebras.

Proof: u is clearly a homomorphism of graded algebras. To show
that p is bijective, let

H,;:T(E)— H(E) and V,: T(E)— V/(E)

be the projections induced by the decomposition 7, = Hy @ V. Then
isomorphisms

fu: Sec AHY —=> Ay(E) and  fy: Sec AVE =5 Ay(E)
of &(E)-modules are given by

fu®(2; 815 s &) = D2 Hly o, HL,),  (eT,(E),
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and
fyl.P(B’; Cl g seny l,,) == qj(z; Vull y veey szp)» Ci € TZ(E)'

Moreover, the diagram

Ap(E) @ AW(E)—L— A(E)

va %

Sec AHY Qg Sec AVy

commutes, where f denotes the isomorphism induced by the bundle
isomorphism

AHER AVE—S5 Ar

(cf. Proposition XIV, sec. 2.24). Hence p is an isomorphism.
Q.E.D.

Next, observe that the inclusion AV — A7y induces a homomorphism
of F(E)-algebras

pv: Sec AVE < A(E);
prD(=; Ly s oo L) = P(25 Ly s ooy L)y zeE, [ eV,(E)

(independent of the choice of a horizontal subbundle). The map py is
surjective: in fact, let H; be a horizontal subbundle and let 4,(E) be
the corresponding vertical subalgebra. Then the restriction of p; to A,(E)
is inverse to the isomorphism f, defined in the proof of Proposition I
above.



§2. Orientation in fibre bundles

7.4. Orientable fibre bundles. Let % = (E, =, B,F) be a smooth
fibre bundle with dim B = n, dim F = r. Recall that the fibre F, at
x € B is a submanifold of E (Example 4, sec. 3.10) and denote the
inclusion by j: F, — E.

Consider those differential forms ¥ € A7(E) such that for each x € B
the differential form jX¥ € A"(F,) orients F, (there may be none). Two
such forms ¥, , ¥, are called equivalent, if j3¥, and jF¥, induce the
same orientation on F, for every x € B.

Definition: The bundle & is- called orientable if there exists an
r-form ¥ on E such that j}¥ orients F, for every x € B. An equivalence
class of such r-forms is called an orientation for the bundle and a member
of the equivalence class is said to represent the orientation.

Remark: It will be shown in sec. 7.8 that this definition coincides
with the definition of sec. 2.16 if & is a vector bundle.

An orientation in the bundle specifies an orientation in each fibre F .
In particular, the typical fibre of an orientable bundle is orientable.

If ¥ € A’(E) orients the bundle (E, m, B, F) and U is an open subset
of B, then the restriction of ¥ to #~1U orients the bundle (»~1U, =, U, F).

Example: The trivial bundle (B X F, w, B, F) is orientable if and
only if F is orientable.

In fact, we have seen above that if the bundle is orientable then so is F.
Conversely, assume that F is orientable and let 4, € A7(F) be an orienting
r-form. Then

(0 x 45) = 4, xeB.
It follows that 1 X 4y orients the bundle.

Recall the map py: A(E) — Sec AV} defined in sec. 7.3. For 2 € E,
we can regard A(dj,), (x = m2) as an isomorphism

0.t AT(F,) —> A(VAE)).
285
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Then for ¥ € A(E),

or(pv¥P(2)) = (2 ¥)2), 2€E, x=mz (7.1

Proposition II: (1) If ¥ e A"(E)orients the fibre bundle (E, =, B, F)
then p, ¥ €Sec A"V} orients the vector bundle V; in the sense of
sec. 2.16.

(2) @ and ¥ represent the same orientations of the bundle if and
only if p,® and p,¥ represent the same orientation of V.

(3) The map so obtained, from orientations of the fibre bundle to
orientations of ¥, is a bijection.

Proof: (1) Since ¥ orients the bundle we have

(j*¥)=) #0, =zeF,, x€B.

It follows from this and (7.1) that (p,¥)(2) # O, 2 € E. Thus p,¥ orients
Ve.

(2) If @ and ¥ orient the bundle, then there are unique nonzero
scalars A, (3 € E) such that

(Jz¥)2) = A, - (jz®)2), z€F,, xeB.
It follows from (7.1) that
(b ¥)z) = A, (p¥)Na),  se.
Hence both conditions of (2) are equivalent to
A, >0, ze k.

(3) We have already shown in (1) and (2) that ¥ > p,¥ defines an
injection from orientations of the bundle to orientations of V. Let
2 € Sec A"V} orient the vertical bundle. Choose a horizontal subbundle,
and let 4,(E) C A(E) be the corresponding vertical subalgebra (cf. sec.
7.3). Then p, maps A,(E) isomorphically onto Sec AV%, and so, for
a unique ¥ € 4}(E),

PVW = Q.

With the aid of formula (7.1), it is simple to verify that ¥ orients
the bundle.

Q.E.D.
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Proposition IIl: Let (%, =, B, F) be a smooth bundle over a con-
nected base B. Let @, ¥ € A"(E) orient the bundle, and assume that
for some a€ B, j5® and ji¥ represent the same orientation in F,.

Then @ and ¥ represent the same orientation in the bundle.

Proof: For any component O of E the restriction of 7 to O defines
a smooth bundle (O, n, , B, F,) where F,, is the union of components
of F. Moreover, since j*® and j}¥ represent the same orientation in F ,
they represent the same orientation in (Fy), . Thus we may reduce to
the case that E is connected.

Now assume that E is connected. Since p,®, p,¥ orient the vector
bundle Vg in the sense of sec. 2.16 (cf. Proposition II), it follows that

PV¢ = f . leII’

where fe S(E) has no zeros. Thus, because E is connected, either
f > 0 or f < 0. By hypothesis there are positive numbers A, such that

(a*PN2) = A - (ju*¥)(2),  =€F,.

In view of formula (7.1),
f)=4>0

and hence f > 0.
Thus p,® and p, /¥ represent the same orientation in V; the proposi-
tion follows now from Proposition II, (2).
Q.E.D.

Corollary: Let B be connected and assume ¥ € A7(B X F) orients
the trivial bundle # = (B X F, n, B,F). Fix a€ B and let 4, =
¥ e A"(F). Then 1 X A4y represents the same orientation in & as V.

7.5. Orientation preserving maps. Let # = (E,n, B,F) and # =
(E, #, B, F) be smooth bundles. Assume ¢: E — E is a smooth fibre-
preserving map (cf. sec. 1.13) which induces ¢: B — B. Suppose
further that ¢ restricts to local diffeomorphisms

‘P:c:Fa:_’Fw(z)) x e B.

If # and & are oriented, ¢ will be said to preserve (resp. reverse) the
bundle orientations if each ¢, is orientation preserving (resp. reversing).
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Suppose ¥ € A7(E) represents the orientation of #. Since for each
xeB

jz* oY = ﬁﬁuﬁ’,
it follows that @*¥ orients & and that ¢ preserves (resp. reverses) the

bundle orientations if and only if ¢*¥ (resp. —¢*¥) represents the
orientation of &Z.

Proposition IV: Let # = (E, n, B,F) and # = (E, # B, F) be
oriented bundles, with B connected. Assume that @: E — E is a fibre
preserving map which restricts to local diffeomorphisms

‘Px:Fw'_’Fw(z)’ x€B.

If ¢, is orientation preserving (resp. orientation reversing) for some
a € B, then ¢ preserves (resp. reverses) the bundle orientations.

Proof: Assume first that ¢, is orientation preserving. Let ¥
represent the orientation of 4 and let @ represent the orientation of &.
By hypothesis

ja®  and R o'V = oljln¥
represent the same orientation of F,, . Hence, by Proposition III, sec. 7.4,
@*¥ represents the orientation of 4, i.e., ¢ is orientation preserving.

The case that ¢, reverses orientations is treated in the same way.
Q.E.D.

7.6. Local product orientation. Let (E, #, B,F) be a fibre bundle,
oriented by an r-form ¥. Assume further that 4, € A*(B) orients B.

Lemma II: The (n 4 r)-form
AE _ TI'*AB A ‘II

orients the manifold E. The orientation of E represented by 4, depends
only on the orientation of the bundle and the orientation of B.

Proof: It is clearly sufficient to consider the case E = B X F where
B is connected. Fix a € B and set 4; = j}¥. Then 4 orients F. According
to the corollary to Proposition III, sec. 7.4, 1 X 4 represents the same
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orientation as ¥. Hence by Proposition II, sec. 7.4, p,¥ and p,(1 X 4;)
represent the same orientation in V!

pv¥ = fpp(l X 4p),

where fe (B x F) satisfies f > 0.
Using formula (7.1), sec. 7.4, we find

(J:‘P)(y) = f(xy) - de(3), xeB, yeF,
and it follows easily that
7*¥dg AW = fa*dy A mRdp .

On the other hand, according to Example 8, sec. 3.21, the form
w*dy A mfdp orients B X F. Moreover, the orientation so obtained
depends only on the orientations of B and F represented by 4, and 4.
Since f is strictly positive, the lemma follows.

Q.E.D.

Definition: Let (E, =, B, F) be an oriented bundle over an oriented
base B. Let ¥ e A"(E) represent the orientation of the bundle and let
Ap e A™B) represent the orientation of B. Then the orientation of E
represented by n*4, A W is called the local product orientation.

Next, consider oriented bundles (E, w, B, F) and (E, 4, B, F) over
oriented bases B and B. Let ¢: E — E be a fibre-preserving map which
restricts to local diffeomorphisms

qaaa:Fm—»F,,,(w) , x € B.

Assume further that the induced map : B— B is a local diffeomorphism.
Then ¢ is a local diffeomorphism.

Proposition V: With the hypotheses and notation above, assume
further that ¢ preserves the bundle orientations. Then ¢: E — £
preserves (resp. reverses) the local product orientations if ¥: B — B
preserves (resp. reverses) the orientations.

Proof: Let ¥e A7(E) represent the orientation of the bundle
(E, #, B, F). Then (cf. sec. 7.5) p*¥ represents the orientation of the
bundle (E, m, B, F). Next, let 4 € A"(B) represent the orientation of B.
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Then € - y*4 represents the orientation of B, where ¢ = 41 (resp.
e = —1) if Y is orientation preserving (resp. orientation reversing).
Thus the local product orientations of E and E are represented by

dg = 7*AAY
and
dp = e 7Y *A A *V = € - p*dp.
Thus ¢ preserves (resp. reverses) orientations if ¢ does.

Q.E.D.

Example: Let K be the Klein bottle (cf. Example 4, sec. 3.21).
Define a smooth map K — S* by the commutative diagram

R2—% LK

LY

S1

¥

where ¢ is the projection defined in sec. 3.21 and
(%, y) = exp(2mix),  (x,y)e R

It is easy to see that (K, =, S%, §') is a fibre bundle. Since K is non-
orientable and S! is orientable, it follows that the bundle is non-
orientable.



§3. Vector bundles and sphere bundles

7.1. The bundle maps @ and B. Let ¢ = (E,m, B,F) be a vector
bundle of rank r over an n-manifold and consider the tangent bundle
15 = (Te, 7, E, R**"). For x € B, € F, , we may identify the vector
spaces F, and T,(F,), and regard (dj,), as a linear isomorphism

wg oy — V().

Denote w;' by «,. The isomorphisms «, define a bundle map
a: Vg — E inducing = as map of base manifolds:

Vi —>E
ﬂyl lﬂ
E — B

(the smoothness of « is easily shown).
On the other hand, if ¢ is a cross-section in £, a bundle map

Bs

4l
B - E
is defined by

(Ba)ac = Wo(a) » xeB.

The bundle maps a and , restrict to isomorphisms in the fibres and
satisfy

ao B, =t

The bundle map induced from the zero cross-section will be denoted

simply by B.
Next, define a vertical vector field Z on E by setting

Z(2) = w,(?), zek
291
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(use a coordinate representation for £ to check that Z is smooth). Z is
called the radial vertical vector field. Evidently

«(Z(z) =z, z¢€k,

and Z is the unique vertical vector field which satisfies this relation.
Now fix t € R and define a strong bundle map p,, in £ by setting

w(2) = tz, zeE.

Then
Z~Z

By
or equivalently

du(Z(2)) = Z(tz), zeE.
In fact, this relation follows, after a simple computation, from
Z(2) = w,(2) = (dj)*), zeF,, xeB.

7.8. Orientations in vector bundles. Let £ = (E, =, B, F) be a vector
bundle of rank 7. In sec. 2.16 and in sec. 7.4 we gave different definitions
for orientations in £. Now it will be shown that these definitions coincide.

In fact, in Proposition II, sec. 7.4, there was established a canonical
bijection between orientations of the fibre bundle ¢ (in the sense of
sec. 7.4), and orientations of the vector bundle ¥ (in the sense of sec.
2.16).

It remains to construct a bijection between the orientations of the
vector bundles ¢ and V. Without loss of generality we may assume B
(and hence E) is connected. Thus the set @(£) of orientations in ¢
contains two elements, or is void. Similarly O(Vg) contains two
elements, or is void. Consider the bundle maps

o Vg — E and B:E— V.
Since a and B restrict to isomorphisms in each fibre they induce maps
GOV« 0 and B OE) — &(Vy).

(cf. sec. 2.16). Since o o B = 4, it follows that
Bod =1

Thus either (V) = O(¢) = o, or else both sets have two elements
and &, B are inverse bijections.
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7.9. Associated sphere bundle. Let £ = (E, w, B, F) be an oriented
Riemannian vector bundle of rank 7 (r > 1), withdim B = n. Let & =
(Es, ms, B, S) be the associated sphere bundle with inclusion map
i: Eg — E (cf. Example 6, sec. 3.10).

Lemma II: Suppose 2 € A"(E) orients £. Then
Qs = i*i(Z)R) € AY(Es)
orients £ (Z is the radial vertical vector field of sec. 7.7).

Proof: Z restricts to the vector field Z, on the vector space F, given
by Z,(z) = 2. Since £ orients £ 2 restricts to an orienting r-form
2, € A"(F,). Thus

where f > 0 and 4, is a positive determinant function in F, .
Hence the restriction of Qg to a fibre S, is the (r — 1)-form (),
given by

(Qs)m(y! oo 177—1) :f(y) : A:c(Za:(y)) Moy oo "71'—-1)
:f(y) ' Am(y; MLy oeos nr—l)» Ye S, 7 € Tv(Sa:)

Thus according to Example 2, sec. 3.21, (£;), orients S, . Hence £
orients £ .

Q.E.D.

Definition: The orientation of the associated sphere bundle defined
by the (r — 1)-form Qg is called the induced orientation.

Remark: If B consists of a point, then the definition of the induced
orientation coincides with that of sec. 3.21.

Next, assume that an orientation is defined in the bundle manifold E
of ¢. Let 4z € A™t"(E) represent the orientation and again let Z be the
radial vertical vector field on E.

Lemma IV: Let
As = (—1)¥(E(Z)dg).
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Then 4g orients Eg . Moreover, if B and ¢ are oriented and if 4, repre-
sents the local product orientation, then 4; represents the local product
orientation in Es determined by B and the induced orientation of £ .

Proof: It is sufficient to consider the case that £ is trivial and B
connected. In this case we may without loss of generality suppose that 4,
represents the local product orientation with respect to orientations in ¢
and B. Thus

dg = f-7*dy A ¥,
where ¥ € A"(E) orients £, 4 orients B, and f € #(E) is strictly positive.
It follows that
Ag = i - iX(m*dy) A IK((Z)P)
= i*f - w¥dy A IH((Z)P).
According to Lemma III, #*({(Z)¥) orients &5 . Hence Lemma II,

sec. 7.6, implies that 4; orients Eg. It obviously represents the local
product orientation.

Q.E.D.

Definition: The orientation of Es represented by the differential
form 4 is called the induced orientation of E; .
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7.10. Let (E, =, B, F) be a smooth fibre bundle. A differential form
Q€ A(E) will be said to have fibre-compact carrier (or support) if, for
every compact subset K C B, the intersection »~1(K) N carr £ is com-
pact. The set of forms with fibre-compact support is a graded ideal in
A(E), which will be denoted by Ag(E). It is stable under the operators
i(Z), (Z) (Z € Z(E)) and 8. The cohomology algebra H(A(E), 8) will
be denoted by H(E).

Evidently 4 (E) C A(E)C A(E). If B is compact, then A, (E) = A (E);
if F is compact then A(E) = A(E).

Lemma V: Let {(U,,,)} be a coordinate representation of E.
Then 2 € A((E) if and only if, for each «,

$xQe AU, x F).
Proof: Obvious.

Now let (E, #, B, F) be a second smooth bundle. Assume ¢: E — E
is a smooth fibre preserving map inducing ¢: B — B. Suppose further
that each @, maps F, diffeomorphically onto an open subset of F,(, .

Proposition VI: With the notation and hypotheses above assume
¥ e Ay(E) satisfies

Fypncarr ¥ C Ime,, x € B,

Then ¢*¥ € A((E).

Lemma VI: Suppose E = B X F and £ = B x F. Define
x: B x F— B x Fby

x(x, y) = (%, A¥))-

Then y is a fibre preserving diffeomorphism of B X F onto an open
subset of B x F. Moreover

p=(X)ox
265
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Proof: Let p: B x F — F be the projection. Then
x(x, ¥) = (%, pp(x, ¥))

and so y is smooth. Since each ¢, is injective it follows that y is injective.
It remains to check that each linear map,

dy: Tg)(B X F) = Tz (B X F)’
is an isomorphism. But, for ¢ € T(B), n € T,(F),

dx(§,m) = (€, ¥(€) + dpun))

where y: T (B) —» %(V)(F } is a linear map. By hypothesis each (dg,),
is an isomorphism. Hence so is (dy),,) -
Q.E.D.

Corollary: If each ¢, is a diffeomorphism, then y is a diffeomorphism.

Proof of the proposition: Inview of Lemmas V and VI it is suffi-
cient to consider the case E = B X F, E=B x F,and¢p = ( X 1) o x;
here x(x, y) = (x, ¢,(»)) and y is a diffeomorphism of E onto an open
subset of B x F.

Let K C B be compact. Choose a compact subset L CF so that
cart ¥ N (W(K) x F) C y(K) x L. Then

carr((y X J*P)N(K x F) C K XL,
as follows from a straightforward computation. Thus
(% X )*¥F e Ap(B x F).

Set (¢ x )*¥ = &. Apply (¢ X ) to the relation of the proposition,
to obtain

F.ncarrd C Imy,, x€eB.

It follows that carr @ C Im y. Since y is a diffeomorphism (onto an
open subset of B x F), y"(C) is compact whenever C is a compact
subset of carr @. Thus, since @ has fibre-compact support, so does
x*® = o*V.

Q.E.D.

Corollary: If F = F, and each ¢, is a diffeomorphism, then ¢*
restricts to a homomorphism

‘P:: Ap(E) « AF(E)'
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In particular it induces a homomorphism

‘P::? Hy(E) HF(E)'

Finally, assume that (E, =, B, F) and (E, #, B, F ) are smooth bundles,
and that ¢: E — E is a smooth, fibre preserving map which maps E
diffeomorphically onto an open subset, U, of E. (Thus ¢ satisfies the
hypotheses of Proposition VI.) If ® € A¢(E), we can form (¢~1)*® € A(U)
and then

carr(p1)*® = g(carr D)
is closed in E. Extend (¢~2)*® to £ by making it zero outside U.
The resulting form has fibre-compact support; thus in this way we
obtain a homomorphism
(#r)x: AR(E) — Ap(E).
It induces
(Pr)e: He(E) — Hp(E).
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7.11. The general fibre integral. Let # = (E, =, B, F) be a smooth
fibre bundle with dim B = # and dim F = r; V; is the vertical sub-
bundle of the tangent bundle 7. of E. Let { = (M, my, B, H) be a
vector bundle over the same base.

Consider a bundle map @: A"V;— ¢ inducing #: E — B in the base
manifolds:

AV -2 M

Lo

E—B
The carrier of @ is the closure in E of the set
{z€E|®, = 0}.
We say @ has fibre-compact carrier if, for all compact subsets 4 C B,

714 N carr ®

is compact.

" Now assume that the bundle & is oriented and @ has fibre-compact
carrier. We shall define a cross-section o € Sec ¢, which will be called
the integral over the fibre of ®.

For each xe¢ B, @ determines an H,-valued r-form on F,,
D, e A'(F,; H,), given by

D2 715 o0 Pp) = Py A -+ A7), zeF,, n,e T(F,) = V,(E),

(cf. Lemma I, sec. 7.1).

If @ has fibre-compact carrier then each @, has compact carrier.
Since & is oriented, an orientation is induced in each ¥, . Thus we can
define a map o: B — M by

o(x) = fF ®,, «xeB.

In particular o(x) € H, and so 7y, 0 0 = 1. We write 0 = f®.
298
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If ¥: A"V — M is a second bundle map inducing =»: E— B, and
with fibre-compact carrier, then @ + ¥ has fibre-compact carrier, and

fF(q>+W)= fr¢+fpsv. (7.2)

Proposition VII. With the notation and hypotheses above, the map

gl x> ?,
Fy

is a cross-section in §.

Proof: We need only show that ¢ is smooth. Now smoothness is a
local property. Since %, ¢ are locally trivial, and @ has fibre-compact
carrier, it is sufficient to consider the case that

(i) B =Rr
(i) E=BxFand M =BxH

and

(ili) carr @ C B X K where K C F is compact.

Cover K by finitely many chart neighborhoods U; (: = 1,..., p) and
write @ = &, 4 -+ 4 D, , where

carr®;, C Bx K; C Bx U, (K; compact).

In view of condition (7.2), it is now sufficient to consider the case that,
in addition to (i), (ii), and (iii)

(iv) F is an oriented vector space.
Using (i), (i), and (iv), observe that
AV = B x ATy = R* x F x A'F.
Let 4, be a positive determinant function in F and define a smooth map

[R*xF—H
by
[ 9) vy s oy ) = D, 3,0 A - A D), xeRr, yeF, v;eF.
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Then if y,,...,y, are coordinate functions on F corresponding to a
suitable basis, we have

o) = [ @=[ f53)dy ..

In view of condition (iii) it follows from standard calculus that o is
smooth.
Q.E.D.

Definition: The cross-section o = {7 is called the integral over the
fibre of ®.

7.12. Differential forms, Let % = (E,m, B,F) be an oriented
smooth fibre bundle with dim F = r, dim B = n. We shall define a
linear map

f - ArE)~ AB),

homogeneous of degree —r, to be called integration over the fibre.

Let 2 € AFP(E) (p = 0). For each x € B, 2 determines a compactly
supported r-form, 2, , on F, with values in APT,(B)*. 2, is defined as
follows: Fix z € F, and fix tangent vectors

N1 s oo Nr € VA E) and £, . E,eTy(B).

Let {; € T(E) satisfy dn{; = £, . Since V,(E) (= ker(dw),) has dimension
7, the number (2; {;, ..., {,, 1, -y 1) is independent of the choice
of the {; . Define £2, by setting

<‘Qm(z| ML eenn 7]1‘)! El At A £9> = 'Q(z; ;1 y eeey Cg 1M1y semy 7]7)-

R, is called the retrenchment of Q to F, .
Now observe that a p-form, f 2, on B is defined by

(JFQ)(x)=Lz.Q,, xeB.

Indeed, to see that ¢ 2 is smooth, define a bundle map P,: ATV — AP73
by setting

Po(z;my A o A ) = 2ra(ny s oo )
Then it is immediate from the definitions that f; 2 = f; @, and so

fr £ is smooth. (Compare Proposition VI, sec. 7.11.)
Evidently £ is a linear map from A;"(E) to 4A?(B).
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We extend §; to forms of degree < r by setting f, 2 = 0 (2 € AYE),
g <r).

Now consider a second oriented smooth bundle (£, #, B, F). Assume
¢: E— E is a smooth fibre preserving map inducing ¢: B — B.
Suppose each ¢, is an orientation preserving diffeomorphism of F,
onto an open subset of Fy, .

Proposition VIII: With the notation and hypotheses above, assume
Qe Ay(E) satisfies

carr QN Fyy Clmg, .

Then ¢*Q € A¢(E) and
*Q=y* ) 2.
frw P :fﬁ

Proof: According to Proposition VI, sec. 7.10, ¢*Q € A (E). Now
fix x € B and denote the linear map

N@p)s: AT(B)* < AT, (B)*
by B. B induces (cf. sec. 4.14) a linear map
Bu: A(Fy 5 AT(B)*) < A(F, ; ATyw(B)*)
and it is clear from the definitions that
@*Q): = (Bx ° 92)u)-

It follows that (cf. Equation (4.9), sec. 4.14)

(f, 92 0 = [ BeooD@ue) =B ([ o 0)

Since ¢, is an orientation preserving diffeomorphism onto an open subset
of £,y which contains carr 2,(, , we obtain

f (P:‘Q&(m) = f 'Qd:(z) .
Fy £,

b(z)

Hence

() =s(,

B(x)

2ua) = B(f,2) W]
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Finally, note that for any @ € A(B),

BlOW(*)] = ($*P)(=)-
Q.E.D.

Corollary I: If each ¢, is a diffeomorphism, then ¢* restricts to a
homomorphism ¢¥: A(E) « Ap(E) and

L"qfﬁ:«ﬁ*‘lfp-

Corollary II: If F is compact and each ¢, is a diffeomorphism, then
¥ — o¥% and
Pr = @7 an

Examples: 1. Suppose E = F, B = (point). Then F is an oriented
manifold, and f; is the linear map

f : AYF) —> R
F
extended to A (F) by therule {2 =0 ifdeg Q2 < r.

2. Products: Suppose E = B X F. If e A?*(B X F) then

2, € A"(F; APT,(B)*) is given by
AFsms b E1 A A = Qx, 73 €1y ees €p s My vees M)
x€B, £eTyB), yeF, n,eT,(F)

Recall from Example 2, sec. 3.20, the bigradation of A(B x F). The
equation above shows that, if 2¢e A%%B X F), then £, = 0 unless
g=r.

Now assume 4, € A"(F) orients F. Then 1 X 4 orients the bundle

(cf. the example, sec. 7.4). Moreover, if ¥ e A(F), @€ A(B), then
D X We A(B x F) and

fr(cpxqf): (Llp) . (1.3)
In fact, (? x V), e A[(F; AT,(B)*) is given by

(P x V), =¥ ® DB(x), xeB,
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(cf. sec. 4.7). It follows that (cf. sec. 4.14)

(f,@x )@= (] #)ow,
whence (7.3).

7.13. Properties of f.. In this section (E, =, B, F) denotes a fixed
smooth oriented bundle.

Proposition IX: f;: A(E) — A(B) is a surjective linear map
satisfying

waw AP =D A fF ¥, ®eAB), ¥edE)
Proof: First we establish the equation. Fix x € B. Let o be the linear
map in AT (B)* given by
o(z) = B(x) Az, 2 ATB)*
o induces a linear map o, in A(F,; AT, (B)*), and
(m*P A ¥)y = ox(¥)
(cf. sec. 4.14). It follows via Equation (4.9), sec. 4.14, that

(frﬂ*qb A ‘I’) (x) = fF PR A (L 'Pm)

= B(x) A (}F ¥) (x) = (@ fr ¥) ()

It remains to show that f; is surjective. Fix @ € A(B) and let {U,} be a
locally finite open cover of B such that the bundle is trivial over each U, .
Denote the restriction of @ to U, by @,. Combining Proposition VIII and
Example 2 of sec. 7.12, we find 2, € A(=~Y(U,)) such that f 2, = D, .
Let {p,} be a partition of unity for B subordinate to the open cover. If

Q=Y (7*p,) - Q. € A(E),  then f Q= Zpa-f Q, =0,
[ F o F

Q.E.D.
Corollary: f; restricts to a surjective linear map

ff: AE) — Ao(B).
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Proof: Evidently, for Q € Ax(E),
carr f 2 C #{carr Q).
F

Thus §; restricts to a linear map A (E) — AB). To show that the
restriction is surjective, fix ® € A(B). Then (Proposition IX) choose
Qe AK(E) so that

f Q=0
F

Since @ has compact carrier, for some fe &(B), f+® = ®. Since
Qe ALE), n*f- Q€ A, (E). But

:’:Fﬂ*f._Q:f.JCFg:f.q;:cp.
Q.E.D.

Proposition X: Integration over the fibre satisfies the relations:

(1) #X)o fr = fri(Z)
2) UX)ofr = fr o 6(2)

and
(3) 80f5=f,,-08,
where Z € Z(E), X € Z(B) are m-related.

Proof: (1) Fix xeB and set £ = X(x). The operator #({) in
AT, (B)* induces a linear map

i()x: A(Fy; ATB)*) — A(F, ; ATAB)).
Moreover, since Z ~ X it follows that (cf. sec. 7.12)

((2)Q): = i(£)482,, € A(E).

Hence (using Equation (4.9), sec. 4.14), we find
(},129) &0 = [ k0.2 = it0) [ 2.

=i (f 2@ = (0] 9)e.
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(3) Fix Qe A(E). We wish to show that & f, 2 = §,8Q. First,
apply Proposition VIII, sec. 7.12, to a suitable coordinate representation
for the bundle, to reduce to the following case:

(i) B=R"
(i) E=BXF
and
(iii) carrQC B X K (K compact, K CF).

Next, choose finitely many charts (U;, u;, R") ({ = 1,..., m) on F so
that the U, cover K. Write Q = £, + -+ + £, , where

carr 2, CB x K;CB x Uy, K; compact.

Because f; is linear it is sufficient to establish (3) for each ;. But
carr 82, C B x K, . Thus we can apply Proposition VIII to the maps

txu;l: BXR —Bx U,
and reduce further to the case
(iv) F =R

Finally, since & and § are linear (over R) and homogeneous we may
also reduce to the case

(v) Qe A2YB X F).

Now consider 2 € A2YB X F) and assume conditions (i)—(iv) hold.
A simple computation using Example 2, sec. 7.12, and sec. 4.6 shows that

(3582); = (—1)7 8(£2).
It follows from Proposition XIV, sec. 4.13, that
(f 8:9) @ = (=17 [ 8@) =0
F F

(because 2, has compact carrier). Since, in A(B X F), 8§ = 85 + &
(cf. sec. 4.6), we are reduced to proving

ffa,,g =3 fF Q. (1.4)
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But 8,02 € A*+19B X F); hence, if ¢ 5 r, both sides of (7.4) are zero
(cf. Example 2, sec. 7.12). On the other hand, assume ¢ = r. Let
1, ..., &, be a basis for B and let 4; be a positive determinant function
in F. Then

Q= Z fireeety * (€¥ A - A ¥ % 4)),

iy <<y

where each f; ..; € #(B X F) has carrier in B X K. Thus we may
restrict ourselves to the case

Q=1f-(e"r - nae*? X dp), fe F(B x F)

and carr fC B x K.
Then (cf. the example of sec. 4.3)

82 =% —:%(e*i Ae¥LA o A e¥P X A)),
i-1 %

Hence, for suitable coordinate functions y; in F:

(:fpagg) (x) = é‘i (fp%(x,y) dy, - dyr) eXi A e*L A coe A e*P

= i‘; ai,. Upf(x,y) dy + dy,

eX¥t A e¥L A +oo A e¥P

—
[~

P)(x).

Here @ € A?(B) is given by
D(x) = ” f(x,9) dy, - dyr] e*L A - A g*P
F
= (fr Q) (%), x€eB.

Thus §z 8,2 = 8 f Q. This finishes the proof of (7.4), and hence com-
pletes the proof of (3).
(2) Immediate from (1), (3), and the formula § =78 + 87 of
Proposition II, sec. 4.3.
Q.E.D.

Proposition X and the corollary to Proposition IX show that §; induces
linear maps

{  H(E) > H®B)  and §: Ho(E) > Hu(B).
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These maps are homogeneous of degree —r. If F is compact, the first is
amap H(E) — H(B). In this case

f:ﬂ#a*ﬁza*f:ﬁ, ac H(B), Be HyE).

If B is compact f% n¥a x B = o - f£B, a € H(B), Be H(E).

7.14, The Fubini theorem. Theorem I: Let (E,w, B,F) be an
oriented fibre bundle over an oriented n-manifold B, with dimF = r.

Let E have the corresponding local product orientation (cf. sec. 7.6).
Then

fE - fBofF : AP(E) > R.

Proof: In view of Proposition VIII, sec. 7.12, a partition of unity
argument reduces the problem to the case £ = B X F. In this case the
theorem becomes

Lemma VII: Let B and F be oriented manifolds of dimensions n
and 7. Let B X F have the product orientation. Then

S =14,

Proof: First, let @ € A%(B), and let ¥ € AYF). Then according to
Proposition XIII, sec. 4.13

fBXszxwszqb-fFW. (1.5)

In view of Example 2, sec. 7.12, we obtain from (7.5) that

foF«pxstf: fﬂ(ij)cp: fw ® x .

Now let Q€ A2*(B x F). The Kiinneth theorem for forms with
compact carrier (Theorem V, sec. 5.19) shows that, for some @ e AYB),
¥ e A%(F), and Q, € A™" 4B x F),

Q=0 x¥+52.
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Since 2, € A(B X F), it follows that f; 2, € A (B); hence (cf. Propo-
sition X, sec. 7.13)

Upagl - fbafF91=0= jﬂxpsgl.

foFg=jBfF¢xW=_[BXF¢x'P= 2

Thus

Q.E.D.

Corollary I: The maps
§ :H{E)—>H{B) and  mw*: H(B)— H(E)
F
are dual with respect to the Poincaré scalar products (cf. sec. 5.11); i.e.,
#*
Ps(x, § B) = Petre, B, wcH(B), BeHE)
Equivalently,
(s, " B) = Dgva, B.
F

In particular f; is surjective (resp. injective, a linear isomorphism)
if and only if #* is injective (resp. surjective, a linear isomorphism).

Proof: It is sufficient to consider the case o € H?(B), B € Hy"P(E).
Let @ € A°(B) and ¥ € A2*"P(E) be representing cocycles. Then

Pom¥a, B) = Lw*msv: f,, (mthP) = 5 (x, f:,s)
Q.E.D.

Corollary II: Assume E is compact, and let w;e H*"(E) and
wy € H™B) be the orientation classes (cf. sec. 5.13). Then

#
J: Wg = wpg .
F

If F is compact, then 7 is proper; hence it induces a homomorphism
(me)*: Ho(B) — H(E).
On the other hand, in this case f; is a linear map H(E) — H(B).
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Corollary III: If F is compact, then
J:::H(E)»H(B) and  (mo)*: Ho(B) — Ho(E)
are dual with respect to the Poincaré scalar products. Thus f; is

injective (resp. surjective, a linear isomorphism) if and only if (7 )* is
surjective (resp. injective, a linear isomorphism).



Problems
% = (E, m, B, F) denotes a smooth fibre bundle.

1. Orientations. (i) Show that # is orientable if and only if there
is an orientation of F and a coordinate representation {(U, , ¢,)} for #
such that each ¢ o g, , is orientation preserving.

(ii) Suppose E is connected. Prove that # admits no orientations, or
precisely two orientations. Prove that B admits no orientations, or
precisely two orientations.

(iii) Assume E connected and orientable. Prove that F is orientable.
Establish a bijection between orientations in # and orientations in Hg
(H g 1s any horizontal bundle). Conclude that & is orientable if B is.

(iv) Construct a nonorientable bundle with connected, orientable
total space.

(v) Suppose E connected and orientable, but that B is nonorientable.
Let pp: B — B be the orientable double cover. Show that 4 is orientable
if and only if there is a smooth bundle (E, #, B, F,) such that = = p, o #.
Prove that then F = F, x Z,.

(vi) Suppose E connected and orientable, and that F has a finite, odd,
number of components. Use (v) to establish a bijection between orienta-
tions in & and orientations in B.

2. Fibre integration over products. Let # = (E, 4, B F } be a
second smooth bundle and let

B xHB=(ExEnx#BxBFxF).
(i) Show that a homomorphism
AHE) @ Ap(E) > Apxp(E x E)
is defined by @ ® ¥+ @ x ¥. Thus obtain a homomorphism

He(E) ® Hp(E) — Hpxp(E X E).
310
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(ii) Show that orientations in & and 4 determine an orientation in
# x 4. Prove that

fw(g x 0) = fFQ % fFQ.

(iii) Assume that B = B. Construct a unique bundle, Z @ #, with
base B and with fibre F, x F, at x € B such that the inclusion map
B DB — B x # (over the diagonal) is a smooth embedding.

(iv) Suppose & and 4 oriented. Obtain an orientation in # @ % and
prove that with respect to this orientation

fwi*(«p X ) = (qus) A (fpsv).

3. Composite bundles. Let #, = (E,, m, E, F,) be a smooth bundle
over E such that # = = o, is the projection of a third bundle 4 =
(E,, #, B, F) (cf. problem 15, below).

(i) Let Vg, Ve, , VE; be the vertical subbundles for #, #,, and 4.
Show that VE, =~ 7f{(Ve) @ VE:' Conclude that orientations in %
and 4%, determine an orientation in #.

(ii) Prove that fp = fr o {5 .

4. Stokes’ theorem. Let M be a manifold and let (N, dN) bea
manifold-with-boundary.

(i) Define (the notion of) a smooth bundle & = (P, p, M, N) such
that (P, oP) is a manifold-with-boundary and 0% = (0P, p |sp , M, 0N)
is an ordinary smooth bundle.

(ii) Define the notion of an orientation in & and show that an orienta-
tion in £ induces an orientation in 0%,

(iii) Show that if £ is oriented and i: 9P — P is the inclusion, then
fav—sf o=(—1yp1f i*0,  Gedi(P), r=dimN.
N N N
5. Define a subalgebra, A(E);_-0, of A(E) by setting

A(E)img,0-0 = {P € A(E) | {(X)P = 0, 8(X)P = 0, X € Z',(E)}.
(i) Show that A(E);_y.e—, is stable under é.
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(ii) Assume E is connected. Show that F is of the form Fy x 4 where
F, is connected and A4 is discrete. Construct smooth bundles (E, #, B, Fy)
and (B, p, B, A) such that p o # = .

(iif) Show that # induces an isomorphism
A(B) = A(E)icg.om0 -
6. Partial exterior derivatives. Let M and N be manifolds with
dim M = m, dim N = n. Consider the trivial bundle (M x N, =\, M, N).
(i) Show that 4,(M x N) is stable under 8y . Set

Hy(M x N) = H(Ay(M x N), 3y)

and show that Hy)(M X N)is an A(M)-module. Show that §,, induces
an operator 6%, in H(y)(M X N) and that this pair is a graded differential
algebra.

(ii) Construct an isomorphism
A(M) ® Ho(N) — How(M x N)
of graded differential algebras. Show that this is an A(M)-isomorphism.

(iii) Assume N oriented. Regard Ay(M x N) as an & (M)-module
and define an #(M)-bilinear map

AM x N) x Ay(M x N)— A(M)
by
(@, ¥) > f @ A P).

Thus obtain a bilinear map
H(AM x N),8x) X Hp(M x NY— AM).
Interpret this via the isomorphism in (ii).
(iv) Obtain isomorphisms
HP(AM x N), 8y) —> Homp(HI5"" (M x N); A™(M)).

(v) Let @€ 4> M x N). Show that §y@ = 0 if and only if the
retrenchment, @, , of @ to each x X N is closed. Show that & = §,¥
if and only if each @, is exact. Obtain analogous results for Ay(M x N).
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7. Van Est’s theorem. Let M and N be manifolds. Assume A4~
is the nerve of a simple finite covering of M and establish an isomorphism

H(A(M X N),8,) = H(A"; A(N)).

8. Vertical cohomology. (i) Mimic the constructions in Chap. IV
to define operators i,(X), 6,(X) and 8, in Sec AVE (for X € &'(E)).
Show that they satisfy the identities of Chap. IV.

The cohomology algebra, H(Sec AV%, 8)) is denoted by H,(E) and
is called the vertical cohomology of E.

(it) Show that the inclusion j,:F, — E induces a homomorphism
Sec AV — A(F,) of graded differential algebras.

(iii} Assume that dim H(F) < 0. Use a coordinate representation
for # to construct a vector bundle ¢ over B with fibre H(F,) at x. Show
that Sec £ o~ H(E).

9. Integral cohomology. Suppose F is compact. Let « € H(E)be an
integral class (cf. problem 13, Chap. V). Assume that & is oriented and
show that f « is again integral.

10. Submersions. Let ¢: M — Q be a submersion.

(i) Show that for x€Q, ¢~'(x) is a closed submanifold of M with
trivial normal bundle.

(it) Extend the notion of vertical subbundle, bundle orientation, and
vertical cohomology to submersions.

(iii) Extend the notion of fibre-compact carrier to A(M). Show that
the space of forms with fibre-compact carrier, 4,(M), is a graded ideal in
A(M), stable under 8.

(iv) Assume ¢ is surjective. Define a linear map f: 4,(M) — A(Q)
with the same properties as the fibre integral for bundles. In particular,
prove a Fubini theorem.

11. Let £ be an oriented involutive distribution over an n#-manifold
M. Assume that the maximal integral manifolds, F,, of £ are closed
r-submanifolds of M. Let j,: F, — M denote the inclusion map.

(i) Let @ € Ay (M). Show that j*® € AL(F,) and define f,: M — R by

fol) = [ i@, xeF,.
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(if) Show that if £ is the vertical subbundle of the total space of a
fibre bundle, then f, is smooth.

(i) Let € = C — {0}. Define a vector field, X, on C x C by
X(z, {) = (piz, i). Show that the orbits of X are all circles. Prove that
C X C is not the total space of a smooth circle bundle whose fibres are
the orbits of X. (Here p is an integer.)

(iv) Construct a compact manifold N and a vector field X on N
such that the orbits of X are all circles, but such that IV is not the total
space of a smooth circle bundle whose fibres are the orbits of X.

12. Ehresmann connections. Let I, be the vertical bundle for a
submersion ¢: M — O, and suppose H,, is a subbundle of r,, such that
Hy ®Vy = 7). Let t—> x(t) and ¢ — 2(t) be smooth paths respec-
tively on M and Q. Then 2(2) is called a horizontal lift of x(t) if

p2(t) = x(t) and  2(t)e H,p(M), teR.

If, for each path x(t) (¢, <t < t,) and each 2z, € ¢~(x(t,)), there is a
horizontal lift 2(¢) (¢, < t < t;) such that 2(¢,) = z,, then H), is called
an Ehresmann connection.

(i) Assume that H), is an Ehresmann connection. Show that ¢ is
the projection of a smooth bundle (M, ¢, O, N), if Q is connected.

(if) Show that every proper submersion is the projection of a smooth
bundle.

(iif) Show that every smooth bundle admits an Ehresmann connection.
Hint: If U, V are open subsets of O over which Ehresmann connections
are defined, “piece them together” to obtain an Ehresmann connection
mUuV.

(iv) Assume E = B x F. Let H, , H, be horizontal subbundles of 7
and let p; , p, € Hom(7g; 7£) be the corresponding projection operators
with kernel Vy and images H,, H,. Fix A € R. Show that
Im(Ap; + (1 ~— A) p,) is a horizontal bundle H. Show that even if H,,
H, are both Ehresmann connections, H need not be.

13. Homotopy lifting theorem. Assume that H is an Ehresmann
connection in #.

(i) Let ¢: R X M — B, 4 M — E be smooth maps such that
(0, x) = mfy(x), x € M. Show that there is a unique smooth map



Problems 315

¥: R X M — E extending i, and such that for fixed x € M, (x, t) is
a horizontal lift for ¢(x, ).

(i) Extend the notions of pull-back from vector bundles to
general smooth bundles. Let of%, of%# denote the pull-backs of #
under smooth maps ¢, , p;: B — B. If ¢, and ¢, are homotopic, define
a fibre preserving diffeomorphism between the total spaces of ¢f% and
@& which induces the identity in B.

14. (Leray-Hirsch). Assume B connected, and that for some x € B
jz: H(E) — H(F,)
is surjective.
(i) Show that # is orientable, if F is.
(i) Show that H(E) ~ H(B) ® H(F) (as H(B)-modules), if dim
H(F) < co.

15. Let %4, = (E,,m,E, F;) be a smooth bundle over E. Show
that the projection # = mom; is the projection of a third bundle
# = (E,,#, B, F). Show that (F, =, F, F,) is a smooth bundle.



Chapter VIII

Cohomology of Sphere Bundles

§x. Euler class

8.1. Let # = (E, w, B, S) be an oriented r-sphere bundle (r > 1).
Since S is compact, integration over the fibre is a linear surjection

fs: A(E) > A(B)

homogeneous of degree —r (cf. Proposition IX, sec. 7.13). Since r > 1
this proposition implies that

f ™o =0rf 1=0, GecAB)
s N
Thus #* can be considered as a linear map
B: A(B) — kerf .
S

In view of Proposition X, sec. 7.13, ker fg is stable under 8 and so 8
induces a map

B.: HB)—> H (ker fs)

Proposition I: Let# = (E, m, B, S) be an oriented r-sphere bundle.
Then the induced map

By H(B) — H (ker fs)

is an isomorphism.

Lemma I: The proposition is true if the bundle is trivial: E = B x S.

Proof: Recall that ® @ ¥ > @ X ¥ defines a homomorphism of
graded differential algebras

x: A(B) ® A(S) — A(B x S)
316
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(cf. sec. 5.17). It follows from Example 2, sec. 7.12, that

(®f) =1,

Thus we obtain the row-exact commutative diagram

L®_fs
0 —> A(B) ® ker f —> A(B) ® A(S) > A(B)— 0

e |« |

0——»kerf A(B x S) s A(B) — 0,
S

where x; denotes the restriction of «.

This diagram yields a commutative diagram of long exact cohomology
sequences. Since ty(z and «, are isomorphisms (cf. Theorem VI,
sec. 5.20), we can apply the five-lemma to obtain that (x,), is an iso-
morphism,

(x)e: HBYy O H (ker fs) = H (ker fs)
On the other hand, let

y: A(B) — A(B) ® ker j .

be the linear map given by y(®) = @ ® 1. Since x, is the restriction

of «, the diagram

AB) ® ker ker

NV

A(B)

commutes. Thus we have only to show that y,, is an isomorphism.
In view of Theorem II, sec. 5.13, we have

ker f Z A%(S) @ 8(A™YS)),

p=0
whence

r—1

H (ker | s) = Y H¥(S)= HYS) =

=0
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and so

H(B) ® H (ker | ) = H(B).

It follows that v, is an isomorphism.

Q.E.D.

Proof of the proposition: According to Proposition XI, sec. 1.13,
we can find a finite cover U, ,..., U,, of B such that the sphere bundles
(7U,;, m, U;, S) are trivial. We proceed by induction on m. The case
m = 1 is settled in the lemma.

Suppose by induction that the proposition has been proved for
decompositions with fewer than m elements. Let

v=v,, Vv=QU.
a=2

Set
Ey, = «7YU), E, = =7 (V), Eyry =7(UNV).

Then the sphere bundles

(Ey,m U,S), (Ey,m V,S)
and
(Eyar,m UNT,S)

satisfy the induction hypothesis.
Consider the row-exact commutative diagram

0 —> A(E) — A(Ey) @ A(Ey) — A(Eyny) —> 0

s [#5@fs s
0 —> A(B)— A(U) @ A(V) —> AUNV)—> 0

(cf. sec. 5.4). Since the vertical maps in this diagram are surjective, it
follows from the nine-lemma (cf. sec. 0.6) that the induced sequence

0Ky > Ky DKy —> Kypy—0

is short exact. Here
Ky = ker (J;s: A(E) —~ A(B)), K, = ker (f : A(Ey) > A(V))

Ky = ker (fsz A(Ey) > A(U)),  Kuny = ker (f : A(Eyny)—> AUNV)).
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Now consider the maps
Bg: A(B) - Ky, By: A(V)— Ky
Bu: AU)—> Ky,  Buari AUNV)— Kynp.
We have the commutative row-exact diagram
0 —> A(B) —> A(U) ® A(V)—> AU A V) —> 0
85 |soesy | oo (8.1)
0 > Kp >» Ky @ Ky ——— Kyy—> 0.

Since (By)y » (Bv)s » and (By. ). are isomorphisms (by induction), the

five-lemma can be applied to the diagram of long exact cohomology

sequences induced by (8.1) to obtain that (B;), is an isomorphism.
Q.E.D.

8.2. The Gysin sequence. Let # = (E,n, B, S) be an oriented
r-sphere bundle (r > 1). Consider the exact sequence of differential
spaces

0—ker f — 4E) F55 4@ — 0.
S

It yields an exact triangle

H (ker fs) “ L H(E)
H(B)

where the connecting homomorphism 2, is homogeneous of degreer + 1
(cf. sec. 0.7).

On the other hand, in view of Proposition I, sec. 8.1, we have an
isomorphism

B, HB) —> H (ker fs)

which makes the triangle
H(B)

;ﬂ*/ AN

ia

H(E)

H (ker fs
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commute. Combining these diagrams and setting D = (8,)' ¢ &, ° w,
(where w(a) = (—1)?*'a, « € H?(B)) we obtain the exact triangle

H(B)
A \"‘
N
D H(E) (8.2)

s

H(B)
The linear map

D: H(B) - H(B),

homogeneous of degree r + 1, is called the Gysin map.
Definition: The long exact sequence

——y HD(B) _D_> Hp+r+1(B) _"*_, H”+'+1(E)—!—£> HWI(B) ey s
corresponding to the triangle (8.2) is called the Gysin sequence for the

sphere bundle. The element D(1) € H™Y(B) is called the Euler class
of the oriented sphere bundle and is denoted by X4 .

Proposition II: The map D: H(B) — H(B) can be written in the form

Do = o Xg, o € H?(B).

Proof: This is an immediate consequence of

Lemma II: 'The map D satisfies the relation
D(x - y) = o+ Dy, « € H?(B), ye HYB).

Proof: Let @€ A?(B) and ¥ e A%B) be cocycles representing o
and y. Choose an r-form 2 on E such that

fsfz: 1.
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Then the element 2,(« - y) € H(ker £;) is represented by the differential
form

Q = 8(m*® A T¥W A Q) = (—1)Pn*D A 3(=*¥ A Q).

Hence, we obtain

ACE y) = (—1)"Bya - Ogy
and so
D(a +y) = (—1)P*41(B,) " Oy(x - y) = o+ Dy.
Q.E.D.

Example: Assume an oriented 7-sphere bundle (r > 1) admits a
cross-section o. Then
oFon* = (moo)* =1

and so #* is injective. Thus Im D = ker n* = 0; i.e,, D = 0. In this
case the Gysin sequence becomes the short exact sequence

0 — H(B) -~ H(E) fs

H(B) —> 0.

It follows that
Xg = D(1) = 0.

In particular the trivial bundle B X S has zero Euler class.

Proposition III: Let (E, w, B, S) be an oriented r-sphere bundle
with r even. Then the Euler class of the bundle is zero.

Proof: Let ® € A™+Y(B) represent X4 . Then there is an r-form £
on E such that

30=m® and | Q=-1
S
Since r is even, we have
5P A Q = }(Q A Q) (8.3)
Now Proposition IX, sec. 7.13, and Proposition X, sec. 7.13, yield
o=—f or0=5(—1} Qnr0),
frona—s(-if 2ng)

whence Xz = 0.

Q.E.D.
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8.3. Naturality of the Gysin sequence. Let # = (E, =, B, S) and
# = (E, #, B, S) be oriented r-sphere bundles (r > 1) with the same
fibre, and let p: E — E be a smooth fibre preserving map which restricts
to orientation preserving diffeomorphisms in each fibre and induces
Y: B — B. Then Proposition VIII, sec. 7.12 gives the commutative
row-exact diagram

0 —> ker fs_> A(E) RN A(B) — 0
W e
0 — ker fs—» A(E) 25> A(B)—> 0
(o is the restriction of ¢*). On the other hand, we have the commutative
diagram
A(B) -2 ker fs
w1 I
A(B) - ker fs
where B, B are the restrictions of =* and #* (cf. sec. 8.1).

Passing to cohomology we obtain a commutative diagram between

the Gysin sequences of the sphere bundles (E, =, B, S) and (E, #, B, S),

-+ —> H¥(B) 2, H?+7+Y(B) -, Hv+r+Y(E) _f_;:_, H?{(B) —> -
] v v ]
-« — H¥(B) 2, Hr++Y B) , Hr+r+Y(E) _f_s_, H(B) —> -

In particular, it follows that the Euler classes x4 , x4 of these bundles
are connected by

Xg = ;’b#x‘é .

8.4. The cohomology of E. Let (E, m, B, S) be an oriented r-sphere
bundle with » > 1. Let ® € A"+}(B) be a closed form representing the
Euler class. Then we can choose 2 € A7(E) so that

fsz:—l and  8Q — n*®.
Y

Let AQ denote the exterior algebra over the one-dimensional graded
space (homogeneous of degree 7) spanned by £ (Note that, if r is even,
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A L2 need not be a subalgebra of A(E)). Form the graded anticommutative
algebra 4A(B) ® AL. Define

d: A(B) ® AR — A(B) @ AQ
by
AP R 1) =8¥®1
PR =PRL+ (—1)PPrd®1, ¥eA*B)
Then d is homogeneous of degree 1, and
d*=0.

Thus (A(B) ® AL, d) is a graded differential space. If 7 is odd, d is an
antiderivation and (4A(B) ® A$2, d) is a graded differential algebra.
Next, define a linear map, homogeneous of degree zero,

p: A(B) ® AR — A(E)
by
WP Q) ="V, PR =mPr0 YeAB)
Then g o d = 8 o u and so p induces a linear map

ot H(A(B) ® AQ) — H(E)

homogeneous of degree zero.

Proposition IV: With the notation and hypotheses above,
ny: H(A(B) © AQ) — H(E)

is an isomorphism of graded spaces.

Proof: Let i: A(B) — A(B) ® AL be the inclusion map given by
(P)=¥®1, WeAB).
Define p: A(B) ® A2 — A(B) by
(P, R2+ ¥V, ®1) = —%,.
Then
0 — A(B) —— A(B) ® A2 —"> A(B) —> 0

is a short exact sequence of graded differential spaces. Hence it induces
a long exact sequence of cohomology spaces.
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On the other hand, the diagram

0 —> A(B) —> A(B) ® A2 > A(B) — 0

Is b I

0—s ker:{; AE) —35, aBy— 0

commutes. Thus it induces a commutative diagram of long exact
cohomology sequences. Since (cf. Proposition I, sec. 8.1) B, is an iso-
morphism, the five-lemma implies that y,, is an isomorphism.

Q.E.D.

Corollary I: If r is odd, then p, is an isomorphism of graded
algebras.

Proof: Sincer is odd, we have 2 A = 0 (in 4(E)). It follows that u

is a homomorphism of graded algebras. Hence so is p,, .
Q.E.D.

Next observe that if the Euler class is zero we may choose £ so that
802 = 0. With this choice the operator d in A(B) ® AR is given by
= & ¢ and so u, becomes an isomorphism

et H(B) ® AQ —=> H(E).

Since (cf. Corollary I to Proposition II, sec. 5.6) AQ =~ H(S), we obtain

Corollary II: If the Euler class is zero (in particular if 7 is even),
then there is an isomorphism

H(B) ® H(S) —> H(E)

of graded spaces. If 7 is odd, this is an isomorphism of graded algebras.
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8.5. Pull-back of a cross-section. Suppose that # = (E, =, B, F) and
% = (E, #, B, F) are smooth bundles and that ¢: E — Eis a smooth
fibre preserving map inducing ¢s: B — B and restricting to diffeomor-
phisms ¢,: F, — F,,, in each fibre.

Given a cross-section 6: B — E define a set map o: B — E by

o{x) = @ 6¢(x), x € B.
Lemma III: o is a cross-section in &.

Proof: Evidently m o 0 = (. It remains to be shown that ¢ is smooth.
Since smoothness is a local property we can restrict ourselves to the case
E =B x Fand E = B x F. In this case (cf. Lemma VI, sec. 7.10)
we can write

= xJox
where y: B X F — B X F is a smooth fibre preserving diffeomorphism.
Now define a smooth map r: B — F by

&(y) = (3 7(») yeB
Then
a(x) = xHx, m(x)), xeB
and so o is smooth.

Q.E.D.

The cross-section ¢ defined above will be denoted by ¢#(6) and is called
the pull-back of 6 under p. Observe that in the case of vector bundles
this definition agrees with that one given in sec. 2.15. If B = (E, #, B, F)
is a third bundle and &: £ — E a smooth fibre preserving map inducing
diffeomorphisms in the fibres, then

(Foe) =@ g™
8.6. Difference class. Let # = (E, =, B, S) be an oriented r-sphere

bundle (» > 1) which admits a cross-section 7. Then, according to the
example of sec. 8.2, the sequence

0 — H(B) " H(E) 55 . @By — 0

325
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is short exact. Since 7# o 7* =, it follows that f‘; maps ker 7* iso-
morphically onto H(B). In particular there is a unique class w, € H(E)
such that

#
e, = 0 and :f w, =1
S
If o is a second cross-section in 4, then

#
f (w0, — w,) = 0.
S
Hence, by exactness, there is a unique element [r, o] € H"(B) such that
"#([‘r’ o]) = W, W, .

It depends only on 7* and o*.

Definition: The element [r, o] is called the difference class for r and o.

Lemma IV: Let 7 and o be cross-sections in #. Then

#*
THy — gy = — “[r, o, H(E).
y =%y (fsy) [r.o,  yeHE)
Proof: y can be written (cf. sec. 8.4)
y = %o + (1*6) - w,
= m¥a 4 (1*B) - (w, + [, 0]),

where o, 8 € H(B). Then

™y —o*y =a—a—f [r,o] = —B [l
On the other hand,

J:# B B . f# o, = B
s v s T

and the lemma follows.
Q.E.D.

Corollary I: 7% = o* if and only if [7, 0] = 0, i.e, if and only if

w, = w,.

Corollary II: If H"(B) = 0, then [r, 0] = 0 and 7* = o* for every
two cross-sections ¢ and 7.
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Now suppose 4 = (£, 4, B, S) is a second oriented r-sphere bundle.
Assume ¢: E — E is a smooth fibre preserving map which restricts to
diffeomorphisms between the fibres. Let 4: B — B be the induced map
between the base manifolds.

Proposition V: Let #, 6 be cross-sections in # and write 7 = @*#,
o = ¢*6. Then

P = w,, P¥ws = w,
and
$([#, 8]) = [r o].
Proof: 'The equations po7 = 7o, poo = &0 ¢ yield

ot =yt of*  and  o% o p* = ¥ o 6.

#* #
f o(p#:(/;#of
N N

(cf. Corollary II to Proposition VIII, sec. 7.12). The proposition follows.
Q.E.D.

Moreover,

8.7. The main theorem. Consider an oriented sphere bundle # =
(E, n, B, S), r = 1. Suppose there are open sets UC B and V' C B
such that

UuV =B

and cross-sections 7,;: U — E, op: V — E. Let 7 and o denote the
restrictions of 7y and o, to U N V.
On the other hand, consider the bundles

gU:(EU’TrU7U)S)’ sz(EV)”V»VyS)

and
‘@UHV = (EUf\V y TuAv » U('\ V, S).

Then 7 and o are cross-sections in #;; , v and so their difference class
[7, 0] € H(U N V) is defined.
Theorem I: With the notation and hypotheses above, let

: H{U N V) — H(B)
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denote the connecting homomorphism for the Mayer—Vietoris sequence
of the triple (B, U, V). Then the Euler class of & is given by

Xg = ([, o]).

Proof: Let @ e A"+Y(B) represent the Euler class and choose
£ € A'(E) so that

f9=1 and 80 = —n*®.
s

Define £, and 2, in A7(Ey,.,) by
Q=0 a**Q  and Q, =0 — n*e*Q.

Then £, and £, are closed forms and represent respectively w, and w, .
Hence w, — w, is represented by

(@ — m*r*Q) — (Q — 7*a*Q) = mH(c*2 — 7*Q).

It follows that o*2 — 7*2 is closed and represents the difference class

[7, o]
On the other hand, @ is closed and represents X4 . The restrictions of
@ to U and V are given by

¢U = T;’;’ﬂ*(p = —8‘1’?‘/9 and ¢y = —Saﬁ.Q.

Since o2 and +}8 restrict to o*Q2 and 7*Q in UN V and since
a*2 — 7*Q represents [r, o], we obtain (cf. sec. 5.4),

Xg = 8[1-, O‘]. Q E D



§3. Index of a cross-section at an isolated singularity

8.8. Definition. In this article # = (E, m, B, S) denotes a sphere
bundle with dim B = n,dim S = n — 1 and n > 2. A local cross-section
in # with an isolated singularity at a is a cross-section o: U — E where U
is some neighbourhood of @ and U = U — {a}. Now assume that the
manifold E is oriented. We shall define the index of a local cross-section,
o, at an isolated singularity, a.

Choose a neighbourhood V of a such that

iy vCcu

(ii) V is diffeomorphic to R*

(iit) There is a trivializing map #: V X S — =1V for 4.

Let #, = (Ey,my, V, S) denote the restriction of # to V. Choose
orientations in #, and V so that the local product orientation in E,
coincides with the orientation induced from that of E. Finally, choose a
cross-section 7 in %, and denote the restriction of 7 to V = V — {a}
by 7.

Since #, is oriented we can form the difference class
[+, o) € HY(V),
where o, denotes the restriction of o to V. Since V is oriented, we have
the canonical isomorphism
apr HY(V)—> R
(cf. sec. 6.8) and hence a real number

ay([7, op))

is determined.

Lemma V: With the notations and hypotheses above, a,([+, oy])
depends only on ¢ and the choice of the orientation in E.

Proof: It has to be shown that «,([#, 0,]) is independent of

(1) the orientations of V and 4,
(ii) the choice of 7
(iti) the choice of V.

329
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(i): Reversing the orientation of V forces us to reverse the orientation
of #,. In this case «, is replaced by —ay and [#, o] is replaced by
—[#, oy]. Hence ay([#, ,]) remains unchanged.

(ii): Let , be a second cross-section in & . Since V =~ R", it follows
that H*}(V) = 0. Hence [r, 7,] = 0 and so, by Proposition V, sec. 8.6,

[#,#] = 0.
Now Corollary I to Lemma IV, sec. 8.6 shows that +* = #;*, whence
[7, o] = [71, ov}.

(iii): Let W beasecond neighbourhood of a satisfying the conditions
imposed above on V and let r;: W — Ey, be a cross-section. To show
that

ap([#, ov]) = aw([71, owl)

clearly we may assume that W C V.
In view of (i) we may assume that the inclusion maps

itEy —-E, and WSV

preserve bundle and base orientations. In view of (ii) we may assume
that 7, is the restriction of 7 to W. Then

oy = t*oyp and T = 1*7.

Since i preserves the bundle orientations, Proposition V, sec. 8.6,
implies that

(71, ow] = 7*([*, ov])-
Now, since j preserves orientations, Proposition V, sec. 6.7, gives

aw([F1 s ow]) = awi*([F, ov]) = ap([7, ov])-

Q.E.D.

Definition: The number a,([#, 0,]) is called the index of o at a and
is denoted by j (o).

Remark: It follows immediately from the definition that the index
changes sign if the orientation of E is reversed.
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Next, consider a second (n — 1)-sphere bundle & = (£, 4, B, S)
over an n-manifold B and assume that £ is oriented. Suppose that
@: E— E isafibre preserving and orientation preserving diffeomorphism
of E onto an open subset of E. Assume ¢ induces a diffeomorphism
of B onto an open subset of B and restricts to diffeomorphisms

Pat So — Syt » xeB.

If o is a local cross-section in # with an isolated singularity at a = (b),
then g*o is a local cross-section in & with an isolated singularity at &.
Combining Proposition V, sec. 6.7, with Proposition V, sec. 8.6, yields
(as in the proof of Lemma V, iii above),

Lemma VI: With the notation and hypotheses above
Jo(#*a) = jol0)-

8.9. Index and degree. Suppose that E is oriented and that o: U—E
is a local cross-section in & with an isolated singularity at a. Let F be a
Euclidean n-space and let

FXS%»EV

I

F—=,vV, E,==1,

¥
define a smooth fibre preserving diffeomorphism ¢ such that
$0)=a  and VCU.

Choose orientations in F and S so that ¢ is orientation preserving.
Denote the unit sphere of F by S; and give it the induced orientation.
The cross-section

¢*a:F—>F xS, F=F—{0}
determines a smooth map é: F — S by the equation
g*o(x) = (x, 6x), xeF.
Restricting & to Sy we finally obtain a smooth map

&s: SF—> S.
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Proposition VI: The degree of 6, is equal to the index of o at q,
Jo(0) = deg &y .

In particular, the index at an isolated singularity is an integer.

Proof: In view of Lemma VI, sec. 8.8, we lose no generality in
assuming that

E=F xS, B=F, o=, ¢=u
In this case 6: F — S is given by
a(x) = (v, é(x)), =xekF.

Now fix a point e€ S and let : F —F X S be the cross-section
given by
7(x) = (x, e), xekF.

If Q e A"Y(S) satisfies f Q = 1, then 1 X Q¢ A(F x 8) and
#Ix2=0 ad f(IxQ=1
R

Hence 1 x £ represents w; in H*(F x S). It follows that
w; = pruwg,

where ws € H*Y(S) is the orientation class, and p: F x S — S is the
projection.
Next, observe that
[7, 0] = o*w; = o¥p*ws,
whence

Jo(0) = apotp*us = apf*ug .

Applying Proposition VI, sec. 6.8, yields

#*
o) = [ Sws = deg 6.
F

Q.E.D.

8.10. Cross-sections with index zero. Proposition VII: Assume E
is oriented. Let o be a cross-section with a single singularity at a € B,
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such that j,(¢) = 0. Then there exists a cross-section 7: B — E (without
singularities) such that + = o outside a neighbourhood of a.

Proof: It is clearly sufficient (in view of Lemma VI, sec. 8.8) to
consider the case £ = R* x S and a = 0. Define : R* — S by

(%, 6(x)) = ao(x), xe R

Let 65 denote the restriction of & to the unit sphere in R” (with respect
to some Euclidean metric). Then according to Proposition VI, sec. 8.9,

deg 65 = jo(o) = O.

Hence, by Corollary III to Theorem III, sec. 6.15 there is a smooth
map (consider .S as the unit sphere in R")

7 R — R
such that
F(x) = 6(x), Jx] = 1.
Set
7(x) = (x, Iiﬂ), x € Rn.

) |
Q.E.D.
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8.11. In this section # = (E, m, B, S) will denote an oriented sphere
bundle such that

(1) B is a compact, oriented #-manifold (n = 2)
(2) dmS=n—1
(3) E is given the local product orientation.
A cross-section, o, in & with finitely many singularities a, ,..., a; is a

cross-section
o:B—{a,..,a}—E.

The purpose of this section is to prove

Theorem II: Let o be a cross-section in % with finitely many
singularities a, ,..., a;, . Then the Euler class yg , of the bundle is given by

Yo — [gjv(o)] o

where wy denotes the orientation class of B (cf. sec. 5.13) and j(o) is
the index of o at a, . Equivalently,

[ xe= 2 ito)

Proof: Choose, for each », a neighborhood U, of a, diffeomorphic
to R™ such that the U, are disjoint and such that the restriction of & to
U, is trivial. Set

u=yu, V=B—{a,..,a}
Then UU V = B. Next choose arbitrary cross-sections #,: U, — E.

These cross-sections determine a cross-section over U. On the other
hand, o is a cross-section over V. Let

+#UNV—->E and 6 UNnV—>E

denote the restrictions of these cross-sections to U N V.
334
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According to Theorem I, sec. 8.7, we have

X.‘? = 6([%» &])’

where 0 is the connecting homomorphism for the Mayer—Vietoris
sequence of the triple (B, U, V).

Next, set U, = U, — {a,} and let 7, and o, denote the restrictions of 7,
and ¢ to U, respectively. Then

[7,,0,] € H Y U,)
and, evidently,

[# 61 = @, [r, ol
Finally denote the canonical isomorphism
ay,: HVY(U,) = R

(cf. the corollary to Proposition VI, sec. 6.8) by «, . Applying Proposi-
tion VII, sec. 6.9, we obtain

[jra=[ 2@k ol = Y o)

. v=1
= ;J}(f’)-
Q.E.D.

Corollary I: The index sum ZLI j(o) is independent of o.

Corollary II: If nis odd, then Zf=1 jfo) = 0.

In §5 the following theorem will be established:

Theorem III: Every sphere bundle with fibre dimensionn — 1 > 1
and connected base manifold of dimension # admits a cross-section
with a single singularity. Moreover, if the base manifold is not compact,
then the bundle admits a cross-section without singularities.

With the aid of this and Theorem II we shall now establish:

Theorem IV: An oriented (n — 1)-sphere bundle, (E,w, B, S),
(n > 2) over an oriented connected n-manifold B admits a cross-section
7: B — E if and only if its Euler class is zero.
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Proof of Theorem IV: If B is not compact, Theorem III implies
that a cross-section exists. On the other hand, according to Proposition IX
sec. 5.15, HYB) = 0. Hence X4 € H¥(B) is zero.

If B is compact, let : B — {a} — E be a cross-section with a single
singularity at a (cf. Theorem III). Then we have (by Theorem II) that

o) = [ Xa.

Thus, if X4 = 0, then j,(¢) = 0. Hence Proposition VII, sec. 8.10,
implies that there is a cross-section 7: B — E.
On the other hand, assume 7: B — E is a cross-section. Then the
example of sec. 8.2 shows that X5 = 0.
Q.E.D.

Corollary: If n is odd, the bundle always admits a cross-section.
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8.12. Itis the purpose of this article to prove the following theorem,
which was used in sec. 8.11.

Theorem III: Every sphere bundle with fibre dimension n — 1 over
a connected base manifold of dimension n > 2 admits a cross-section
with a single singularity. If the base is not compact, then the bundle
admits a cross-section without singularities.

In sec. 8.13 we construct a cross-section with discrete singularities.
This is then modified to give a cross-section without singularities, if the
base is not compact. The compact case follows easily.

In this article # = (E,n, B, S) denotes a fixed (n — 1)-sphere
bundle over a connected #n-manifold B, where n > 2.

8.13. Proposition VIII: Let K C 4 C O C B, where K is closed
and discrete, A is closed and O is open. Let : O — K — E be a cross-
section,

Then there is a closed discrete set L C B and a cross-section
7: B — L — E such that L " 4 = K, and 7 coincides with o in a neigh-
bourhood of A4.

Lemma VII: The proposition is correctif E = B X S.

Proof: Regard S as the unit sphere of an n-dimensional Euclidean
space F. Write
o(x) = (1, 0y(x)), x€0—K.

Consider g, as a smooth map ¢,: O — K — F.

Let f be a smooth function on B such that f =1 in some neighbourhood
W of A and such that carr f C O. Then ¢ = f- 0, is a smooth map of
B — K into F. By Sard’s theorem (cf. [10, p. 47, Lemma 3.2], and
sec. 6.3) there is a regular value b € F for ¢ with | 5| < 1.

Define a closed subset, C, of B by C = ¢71(d). Clearly CC B — W.
Moreover, since

dim B = dim(B — K) = n = dimF,

¢ is a local diffeomorphism at each x € C. Hence C is discrete.
337
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Finally, by Theorem III, sec. 1.12, there is a diffeomorphism ¢s: F —F
such that
$b)=0 and Y=z (z|=1)

Set 7y = i o ¢;

n:B—(KUC) - F—{0}
and define 7 by

_ (x, -T1*)_ _
(x) = (x I n(x)l)’ xeB — (KU C).

This proves the lemma, withL = KU C.
Q.E.D.

Proof of the proposition: Let{(U;,,)} (i = 1,2, ...) be a coordinate
representation for # such that {U}} is a locally finite open cover for B,
and each U; is compact. Choose an open cover V, of B such that

V,CU,.

Let V be open in B and assume that A C V' C V' C O.
Set

Al:—UVJUV

i<t

We shall construct finite sets K; C A4; and open sets O; O A4, together
with cross-sections

610, —(KUK)—E i=012, ..
satisfying the conditions

(1) Kind;, =K;,
(i) ofx) = oyy(¥)y  wed, —(KUKp)y i =23
(i) ofx) = o(x), xeV—K.

In fact, set K, = @, Oy = O and o, = 0. Now assume by induction
that oy, ..., o; have been constructed. Restrict o; to a cross-section

o; : (0; (KU K))n Uy, — E.
Note that 4; N U,,, is closed in U, and that

(KUK)NU 1, CANUH CO N Uy, .
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Now Lemma VII yields a closed discrete set C C U,,;, — A, and
a cross-section
Tiv1: [Uin —(CUKUK)]— E

which agrees with ¢; near 4; N U,,, . Choose a neighbourhood, W, of
A4; (in B) so that

WAC=g and r4,(x) =ofx), xeUsyn[W— (KUK,

Next, observe that X = C N V,,, is finite, because V,,, is a compact
subset of U,,, . Choose a neighbourhood, W, of V,,, in U,,, so that
W N C = X. Then set

Kinaz=K,uX, O.,=WuUW.
Since o; and 7, agree in W N W, they define a cross-section
;41 (Oin — KU Kyyy) —~ E.

This closes the induction.
Finally observe that {J; K; has finite intersection with each V. Since
the V, are an open cover of B, |J); K, is closed and discrete. Hence

L = Kvu |, K; 1s closed and discrete. Now define 7: B — L — E by

Hx) = o), xe ( Vu (<) Vj) L

Q.E.D.

Corollary: % admits a cross-section 7: B — L — E, where L is
closed and discrete. If B is compact, then 7 has only finitely many
singularities.

8.14. Lemma VIII: Let K be a compact subset of a connected
manifold B. Then there exists a compact set L C B such that X C L
and none of the components of the open set B — L has compact closure
in B.

Proof: Let {0}, denote the components of B — K:

B—K=o;.

ieN

Choose an open set U such that U D K and such that U is compact.
Now fix an index 7. Then the open sets

O; and vu | 0,
i*i
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cover B. Since B is connected, they cannot be disjoint. But by construc-
tion we have

0,n0; =g, i#J,
whence
0,nU # g, ieN.

Next, since

ieN

and since U is compact, we can choose an integer m such that

s

ucljo,ul.

o,
]
-

We shall show that U, O,, ..., O,, is an open cover of B.
In fact, since the O, are disjoint we have, for j > m, that

0, = (0, U)u (0, " (B — U)) = (0; n Uyu (0; N (B — T)).
Since the O; are connected and O; N U # & (as was proved above),

it follows that
o, CU, j>m

Hence

m
B == U Oj V) U.
i=1
Number the O; so that O, ..., O, are compact and O, , ...y 0,
are not compact. Set

m
L=B— U 05.

j=Dp+1

Then L is closed. Since
P P
Lcvvl|yo,ctvlyo,,

jm=1 Jr=l

it follows that L is compact. Clearly, L D K. Finally,

B—L= UOj.

jmp+1
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Hence the components of B — L are the opensets O, (j = p + 1, ..., m)

and these components do not have compact closures in B.
Q.E.D.

As an immediate consequence of Lemma VIII, we have

Proposition IX: Let B be a connected manifold. Then there is a
sequence of compact subsets 4; C B, and a sequence of open subsets
O, C B such that

() 0:C4,Co0,,
(i) B=U;0;

(iii) none of the components of B — A4, has compact closure.

8.15. Consider the (n — 1)-sphere bundle # = (FE, =, B, S).

Proposition X: Let O be a connected open subset of B and let
a,be O. Then there is a fibre preserving diffeomorphism ¢: E — E
inducing : B — B and such that J(a) = b and ¢(2) = z (3 ¢ 7"1(O)).

Proof: If the bundle is trivial, E = B X S, use Theorem III,
sec. 1.12, to find ¢: B — B with

dla)=5b and PHx)==%  x¢O0.

Set p = ¢ X u
In general, use the local triviality of the bundle, and mimic the proof

of Theorem 111, sec. 1.12.
Q.E.D.

Corollary: Let U,, ..., U, be open connected subsets of B such
that for each ¢, j
UizUj or Uanj=Q-

Let x,€ U, and y; € U; (i = 1, ..., m) be two sets of m distinct points.
Then there is a fibre preserving diffeomorphism ¢: E — E such that

Px) =y, and  @(2) =2  z¢ Lt) 7U;.

8.16. Proof of Theorem III: According to the corollary to Proposi-
tion VIII, sec. 8.13 there is a closed discrete set K and a cross-section r:

B—- K- E
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Assume first that B is not compact. Let 4, (i = 1, 2, ...) be a sequence
of compact subsets of B and let O; (i = 1, 2, ...) be a sequence of open
subsets of B satisfying conditions (i), (ii), and (iii) of Proposition IX,
sec. 8.14. We shall construct a family of closed discrete subsets K; of B
and a sequence of cross-sections o;: B — K; — E such that

(2) o) = 0ia(x) (x€0yy).

In fact, set O, = 4, = @ and o, = r. Now suppose that K, o,
have been constructed. Since 4,,,, is compact, K, N 4, is a finite set,
say

K,nA, ., ={x,. .. %}

Let U, (i = 1, ..., m) denote the component of B — A, which contains x;
(possibly U; = Uj). Since no U; has compact closure, each U; meets
B — 4,,,. Now set

C,=K, —{x1, .., X}
Then C, is discrete and closed, and

C,CB — A4,,,.
Set
Vi=U,—C,.

Then V, is connected (because dim V; > 2) and meets B — 4,,, .
Thus there are distinct points y, , ..., ,, such that

yieVi,  y:i¢dy,.
The corollary to Proposition X, sec. 8.15, now yields a fibre preserving

diffeomorphism ¢: E => E inducing ¢: B —=> B and such that

plx;) =y, and  @(z) = =z (z ¢ U 1 V,.).

Set K,,; = $(K,). Then

KIH—l = {yl y eeey ym} Y Cp ’

whence
KynN Ay, = 2.

Define a cross-section o,,,;: B — K, ., — E by

— —1
Opyy = @oayoyl
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Since O, C 4,, and A, N V; = &, for each i, we have

o(2) = 2, zen0,.
It follows that

Tp(%) = oy(x), x€0,.

This closes the induction.
Now define o: B — E by

o(x) = Ll_{g a,(x).

Since B is not compact, the sequence {O,} is infinite. Hence for all x,
choosing p so that x € O,,, we see that o,(x) is defined when j > p.
Thus o is well defined. Obviously, o is a cross-section in %. This
completes the proof of Theorem III, in the case that B is not compact.

Finally, assume that B is compact. Fix a point @ € B. Then B — {a} is
connected and not compact. Hence there is a cross-section o: B —{a} — E.
Thus o is a cross-section in & with a single singularity at a.

Q.E.D.



Problems
# = (E, n, B, S) is an oriented r-sphere bundle.

1. Cohomology of the base. Let R[¢] denote the graded algebra of
polynomials in an indeterminate, ¢, with ¢ homogeneous of degree r + 1.

(1) Define a linear operator d in R[f] ® A(E) by
dz ® ¥) =z®aw+(_1)pz-t®ﬂ*f W,  p=degy.
s

Show that d is homogeneous of degree 41 and that d*> = 0.

(ii) Show that =* induces a linear map A: A(B) — R[] ® A(E).
Prove that d o A = A o § and that A,(X4) is represented by ¢ @ 1.

(ii) Prove that A,: H(B) — H(R[t] ® A(E)) is an isomorphism and
interpret the Gysin sequence in terms of H(R[¢] ® A(E)). Hint: Consider
R[t] ® A(B) @ AL

2. Cohomology of the total manifold. (i) With the notation of
sec. 8.4 define V in H(B) ® AL2 by

Ve®Q2+B®@1) = (—1puXg®1, «cHYB), BeH(B).

Show that V2 = 0 and that H(E) >~ H(H(B) ® A2, V).
(ii) Let pp denote the multiplication by X4 on the right. From the
Gysin sequence, obtain a short exact sequence
0 — coker pg — H(E) — ker ug — 0
(coker py = H(B)/Im pjz).
(iii) If dim H(B) < oo, show that there are homogeneous classes
Mgy %y -y & in H(B) and nonnegative integers m,, ..., m, such that

(@) oy = 1, o, ..., o, represent a basis of coker pjp .
(b) Xg°, o - Xg, ..., o, - XG» is a basis of ker pz . Conclude that the
elements o; - X5 (0 < j < m;,i =0, ..., p) form a basis of H(B).
344
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(iv) With the notation of (iii), show that H(E) has a basis of elements
Bos s BpsYos e ¥p » Where

o=ma,  ad [ oy=oaB (=010
Y

(v) Show that the Poincaré polynomials f; and fz are given by

_ ] tq‘(l _sm(+1) _ P « 1 Smﬁ—l
i =SS = S (1455

where g; = deg a; and s = 2,

3. Let £ and , be oriented Riemannian vector bundles with associated
sphere bundles £ and 75 . Let (¢ @ 7)s denote the sphere bundle asso-
ciated with ¢ @ 7. Give (¢ @ 7)s the induced orientation. Prove that

= X+ X

X(f@'n)s ng *

4, Hopf fibering. Let S2»+! denote the unit sphere in C**! with
respect to a Hermitian inner product. Let # = (S%"+!, p, CP™, S?) be the
Hopf fibering (cf. problem 10, Chap I).

(i) Define we AYC"1) by w(z; {) = (1/27) Im(z, {>. Let w also
denote the restriction of w to S2»+1 and prove that fg w = —1.

(i) Show 8w = p*¥ for some ¥ € A¥CP™).

(iii) Prove that fgm w A (Sw)® = 1. Conclude that X% is an orienta-
tion class of CP™. Hint: Integrate (8w)"*! over the unit ball.

(iv) Repeat (i)—(iii) for the fibering (S*"+3, p, HP™, S3).
5. (i) Assume that the total space of the r-sphere bundle is an

(n + r)-sphere. Show that 7 is odd, that n/(r + 1) is an integer, ¢, and
that H(B) =~ R[¢]/ta*!, where degt = r + | (cf. problem 2).

(ii) Compute the algebras H(CP™) and H(HP?) (cf. problem 4).

(iii) Show that the inclusions C¥t! — C**! and H**! — H"+! induce
smooth maps i: CP* — CP™ and j: HP* — HP". Compute #* and j*;
in particular show that these homomorphisms are surjective.

(iv) Show that CP?® and HP?" are irreversible (cf. sec. 3.22).

(v) Regard S***1 as the unit sphere in C**1, Let @: S+l — §2n+1
satisfy ¢(e¥z) = e®p(z). Show that deg o = +1.
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(vi) Construct a commutative diagram

Sin+3
/ \
CP2"+1 . HPu

m

and show that = is the projection of an S2-sphere bundle. Let X; and X,
denote the Euler classes (with respect to p; and p,). Show that an iso-
morphism

H(HP") ® H(S?) — H(CP*+)
is given by

(@1 + B ® wgs) > n¥a + (7%B) xy .

Prove that y} = n*y, . (Hint: Use problem 4.)

6. Assume that 7 is even.

(i) Show that there are unique classes o € H"(E) and B8 € H*(B) such
that ‘

#
o = #*8  and f o= —1.
s
Show that 8 does not depend on the choice of the orientation. Conclude
that H(E) =~ H(B) ® H(S) (as algebras) if and only if 8 = 0.

(i) Suppose Qe A"(E) satisfies ;2 = —1 and 8Q = #*¥. Set
2, = Q + 3n*(fs 2 A ). Show that 2, is closed and that

(@ + =), = Q,, ®eA(B).
Conclude that £s 2, A 2, = 0.

(i) Let Q2 be as in (ii). Show that 2 - 37*(fs 2 A Q) represents the
class o of (i).

7. Orthonormal 2-frames. Let Z = (V, 1.2, m S S™1) be the
sphere bundle associated with the tangent bundle of S™.

(i) Identify V,,,, with the set of ordered pairs of orthonormal
vectors in R+,
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(ii) Fix e € 8™ and define o: S* — {¢, —e} — V,,,, , by

e — {x, e>x

S PR

Compute j, (o) and j_,(o). Conclude that x4 = 2wen (n even) and x5 =0
(n odd).
(iii) Compute the algebra H(V,,,,) and show that
H(Vyi1,0) = H(S*™ ) (n even)
H(V 1.0 = H(S™) @ H(S"™ 1) (nodd)
(as algebras).

(iv) Let # = (M, m, N, V,,,.,) be an oriented bundle, with n even,
n = 2m. Show that #* induces an isomorphism H(N) => H(ker f, )
and obtain a long exact sequence '

— H?(N) — H?*(M) —> H#-2+{(N) 2> H#(N) —
Interpret 0 as multiplication by an element x 5 of H*(N).

8. Let #, = (E,, m , E, S71) be the sphere bundle associated with
the vector bundle V. Assume 7 is even, r = 2m.

(i) Orient %, .

ii) Show that # = (E,,mom , B, V,,,,) is a smooth oriented
bundl ’
undle.

(iii) Prove that {5 x4 = 2. Conclude that the map
H(B) ® H(S") - H(E)
given by
a®1+B® wgt>mta + % - xg,
is a linear isomorphism.
9. Let % = {U;} be an open covering of B, and suppose 7;: U; — E
are local cross-sections.

(i) Construct Qe A7(E) and @ € A™+(B) so that @ represents y_,
and & |, = 570

(ii) If % contains only % open sets, prove that (y,)¥ = 0.



348 VIII. Cohomology of Sphere Bundles

(iii) Conclude that if CP" is covered by n open sets U, then the
restriction of the Hopf fibering to one of the U, does not admit a cross-
section (cf. problem 5).

10. Cochains of differential forms. Let {(U,, ¢,)} be a coordinate
representation for #. Let C = Y, , C?:? denote the algebra of cochains
of differential forms defined with respect to the open cover {U,}. Fix
e € S and define y,;: U; N U; — S by iiy(x) = g7 2p;..(e). Let 5 € A7(S)
satisfy fs 2 = 1.

(i) Define f;eC™' by fi(5,j) = $#2s. Show that 8f, = 0. If
oy € H(C, 8) is the class represented by f; , show that D,a; = 0.

(ii) Show that there are cochains f, € Cr#1=»:» (p > 2) such that
(a) V(T;>1f;) = 0 and (b) the class represented by 3';,, f; in H(C, V)
corresponds to x _ under the isomorphism H(B) =~ H(C, V).

(iii) Construct a homomorphism H(A") — H(M) (cf. problem 25,
Chap. V). If o; ¢ Im D, , show that x_ is not in the image of this homo-
morphism,

11. Stiefel manifolds. (i) By considering the sphere bundle asso-
ciated with the vertical bundle, obtain from a sphere bundle (E,, m ,
E,, S7) asequence of sphere bundles (E;, =, , E;,_, , S™) (i = 1, 2,...).

(i1) Show that an orientation in the first bundle induces orientations
in the following bundles,

(iii) If E, = (point), identify E; with the set of all ordered sequences
(%5 ..., ¥;) of orthonormal vectors in R™t!, The manifold E; is called
the ith Stiefel manifold and is denoted by V, ;.

iv) In the sequence of (i) construct bundles
q
(Bevmiss By s Vg ogim9)s where @y =m0 omy.

(v) Compute the algebra H(V,,, ;) and identify the homomorphisms
induced by the inclusions V; , — V,,; and projections V, ; — V, ;
J<i<g<k<).

(vi) Identify V', ,, with the set O" of isometries of R”. Thus make O™
into a manifold. Show that the maps O® x O® — O™ and O* — O*
given by (p, ¢) > @ o ¢ and ¢ > ¢! are smooth.

12, Let ¢ = (M, p, N, F) be a complex vector bundle with Hermitian
metric. Let £ = (Sy, p, N, S) denote the associated sphere bundle.
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(i) Show that the vertical bundle V, is a complex bundle with
Hermitian metric. Use this to construct a complex bundle 7 over S,
Such that MR (‘D € = VSM .

(ii) Modify the construction in problem 11 to obtain complex Stiefel
manifolds and compute their cohomology. Identify the group of unitary
maps of C* as a manifold, and compute its cohomology.

(iii) Repeat (i) and (ii) with C replaced by H.

13. Cohomology with compact carrier. Let#=(E, =, B, S) be an
oriented r-sphere bundle.

(i) Establish a long exact sequence for cohomology with compact
carrier.

(ii) Show that the map D: H(B) — H(B)is givenby Doa = a xy_,
where x denotes the Euler class.

14. Relative cohomology. Let # = (E,w, B, S) be an oriented
r-sphere bundle. Let M be a closed submanifold of B and assume that
there is a fixed trivialization ¢: U X S =» #»~1U for #, where U is a
neighbourhood of M.

(i) Let A(B, M) be the ideal in A(B) of forms with carrier in B — M.
Denote its cohomology by H(B, M). Establish an exact triangle

H(B)

NV

H(B, M)

H(M)

(cf. problem 9, iii, Chap. V).
(i) Let Q € A7(S) satisfy fs 2 = —1. Show that there are elements
Qe A7(E) and @ € A7+Y(B) such that
fa=-1, s0=mo
s

and
carr(p*Q? —1 X Q) C(U — M) x S.
Conclude that @ € A(B, M). Show that the class in H(B, M) repre-
sented by @ depends only on & and ¢. It is called the relative Euler class
and is denoted by x,, o
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(iii) Show that A X4 , = X4 .
(iv) Construct an example to show that x @0 is not independent of ¢.

(v) Let o be a cross-section of # defined in a neighbourhood of M.
Construct 2 € A(E), @ € A™+(B) so that

fsg ——1, 8 =u*P

and in some neighbourhood V, of M, Q is closed and represents —aw,, .
(7 denotes the restriction of ¢ to V)

Conclude that @ is closed and @ € A(B, M). Show that the class
Xg.,€ H(B, M), represented by @, depends only on # and o. Show
that A, Xz, = Xg .

(vi) If 7 is another cross-section defined in a neighbourhood of M,
let 75, o be the restrictions of 7, ¢ to M. Then [, o)) € H'(M).
Show that

a([’}q y UM]) = X#o  Xa@.:r*

15. Manifolds-with-boundary. (i) Define(the notion of) an oriented
r-sphere bundle # = (E,w, B, S) over a manifold-with-boundary
(B, éB). In particular E is a manifold-with-boundary. Show that #
restricts to an oriented smooth bundle 6% = (9F, =, 0B, S).

(ii) Suppose (B, 9B) is a compact, oriented #-manifold-with-boundary
(and 8B # @). Let # = (E, », B, S) be an oriented (n — 1)-sphere
bundle over B. Show that # admits a cross-section 7: B — E.

(iil) With the notation of (ii) let o: 9B — 0F be a cross-section in 04.
Show that Xg , € H¥B). The number f; X4, is denoted by jg(o) and
is called the index of o with respect to #. Show that the “index at an
isolated singularity” is a special case of this index.

(iv) If the cross-section, o, of (iii) extends to a cross-section in %,
show that jg(s) = 0.

(v) Let 7, o be the cross-sections of (ii), (iii) and let # be the restriction
of 7 to 0B. With the notation of problem 14, show that

6[111 0'] = xﬂ.a
and conclude that

[ o) = [ 0] = jalo)
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(vi) Let a,, ..., a,€ B — 0B. Show that o extends to a cross-section
op: B — {a,, ..., a;} — E. Prove that

jalo) = ; o).

Conclude that o extends to a global cross-section if and only if jg(c) = 0.
(vii) Let 2 6 A*Y(E) satisfy f; 2 = —1 and 82 = »*®. Show that

jalo) = qu— faaa*.Q.

16. Two manifolds-with-boundary. Let # = (£, #, B, S) be an
oriented sphere bundle. Suppose B is obtained from two manifolds-
with-boundary, (B, éB) and (B,, 2B,) by identifying 0B and ¢B,; via
some diffeomorphism.

Regard 6B and 0B, as equal to a manifold M which is a submanifold

of B.

(i) Show that # restricts to smooth bundles # = (E, =, B, S),
#,=(E,,m,B,,S), and 4, = (Ey,7p, M, S). Show that 0%& =
'@M == agl .

(i) Suppose o is a cross-section in %, . Then Xg , € H(B, M) and
Xa,.. € H(B,, M). Construct a map

+ : H(B, M) x H(B,, M)— H(B)
and show that

Xﬂ,c + Xgl.o = X@ .

(iii) Assume dim S = dim B — 1, and that B is compact and oriented.
Show that for suitable orientations

jalo) +ja0) = [ xa-

(iv) Apply this to the case that B = S*, M = S,



Chapter IX

Cohomology of Vector Bundles

§1. The Thom isomorphism
9.1. The main theorem. Let ¢ = (E, n, B,F) be an oriented fibre

bundle. Recall from sec. 7.13 that integration over the fibre induces
a linear map

f;: H,(E)— H(B)

homogeneous of degree —r where r is the dimension of F. The purpose
of this section is to prove:

Theorem I: If the manifold F is contractible, then the map f:
is a linear isomorphism.

Remark: If B is compact, connected, and oriented, and ¢ is a vector

bundle, Theorem I follows immediately from Corollary I to Theorem I,
sec. 7.14. In fact, in this case, A(E) = A (E) and so :f: becomes a map

f’:: H(E)— H(B).

In view of the corollary, this map is dual (with respect to the Poincaré
scalar products) to the isomorphism

w*: H(E) «<— H(B)
of Example 3, sec. 5.5. Hence f: is an isomorphism.

The proof of Theorem I is preceded by four lemmas.

Lemma I: The theorem holds for the trivial bundle ¢ = (F, =, p, F)
where p is a single point.
352



1. The Thom isomorphism 353

Proof: In this case (because F is contractible) HF) = R and
H*(F) = 0. Hence it follows from Theorem I, sec. 5.12, that

Ho(F) = H(F).
Thus Theorem II, sec. 5.13, implies that f:: is an isomorphism,
* * ~
fF= [HF) =R
r Q.E.D.
Lemma II: The theorem holds for the trivial bundle
¢ = (R" x F, =, R", F).

Proof: Leti: {0} — R™ and p: R* — {0} be the inclusion and projec-
tion maps. Clearly
iX1:{0}) X F>R* X F
and
pXxit:R*xF—>{0} xF

are bundle maps restricting to diffeomorphisms in the fibres. Hence
(cf. the corollary to Proposition VI, sec. 7.10) they induce linear maps

(t X % : Hi(R® X F) —> H ({0} x F)
and
(p X Ot + Hi({0} X F) - Hy(R* X F).

We show first that these maps are inverse isomorphisms. Clearly,
(i X JFelp X JF =

On the other hand, let H: R X R® — R" be a homotopy connecting
o p and tge . Then the map

(H x )*: A(R X R* X F) < A(R" X F)
restricts to a map
(H X )% : Ap(R x R X F) «— Ag(R" X F).

It follows from the remark of sec. 5.2 that the homotopy operator
associated with H X . restricts to a linear map

h’: : AF(R" X F)—> AF(R" X F)-
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Moreover,
t—(p X5 X )k =80hs+ hpod
and so
(pX¥o(f X )=

Now apply Corollary I of Proposition VIII, sec. 7.12, to obtain the
commutative diagram (note that H(F) = Hy ({0}) x F))

H(F) M"_ Hy(R" x F)

2l L

R = H({0}) «—;— H(R").

Here i* is an 1somorph1sm (cf. Example 1, sec. 5.5). j' is an isomorphism
by Lemma I. Hence f is an isomorphism.

Q.E.D.

Lemma III: Let U, V be an open cover of B. Then the short exact
sequence (cf. sec. 5.4)

0— A(E) > AHU) @ A= (V) > A= (UN V)~ 0
restricts to a short exact sequence
0 — AKE) > Ap(#Y(V)) @ 4= (V) > A= (U N V)) - 0.
Moreover, the diagram
0 —> A(E) —> Axn{(U)) @ Ag(m (V) —> A (U N V))—>0

2 | $rofs 2
0 —> A(B) AU) ® A(V) AUNV)——0

is commutative.

Proof: The same argument is used as in the proof of Lemma I,
sec. 5.4. (The commutativity follows from Corollary I to Proposition VIII,
sec. 7.12).

Q.E.D.

The following lemma is obvious:
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Lemma IV: Suppose B is a disjoint union of open sets,

B=JB..

Then the diagram
Ap(E) —> [1 4x(=Y(B,)

T |my
AB) —— T1 4B

commutes, where ¢ and ¢ are the isomorphisms defined by

(¢9) = @ | P e A(E)

= 1(8,) *
and
W¥)s =¥ ls,, ¥ e A(B).

Proof of Theorem I: Consider first the case that £ is the product
bundle, E = B x F. Then the theorem follows from Lemmas II, III, and
IV in precisely the same way as Theorem I in sec. 5.12 and Theorem VI
in sec. 5.20 are proved.

In the general case cover B by finitely many trivializing neighbourhoods
U,,.., U, (cf. sec. 1.13). Then induction on m (via a Mayer—Vietoris

argument using Lemma III) completes the proof.
Q.E.D.

Definition: The isomorphism
Th: H(B) —> H(E)

inverse to f is called the Thom isomorphism of £. It is homogeneous of
degree 7. The cohomology class 8, € Hi(E) given by

8, = Th(1)
is called the Thom class of ¢.

Next recall that A¢(E) is an ideal in A(E). Thus multiplication in A(E)
restricts to bilinear maps

A(E) X A{E) —~ A{E),  ApE) X A(E) — Ap(E).
They induce bilinear maps

H(E) X Hi(E)— Hi(E),  Hg(E) x H(E)— Hy(E)
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which make Hg(E) into a graded left and right H(E) module. These
maps will be denoted by

(e, B) > o % B, B, x) > B *xa a € H(E), Be H(E)
(cf. sec. 5.9).

Proposition I: The Thom isomorphism satisfies

Thia - B) = m*o  Th(B),  ,B€ H(B).

Proof: Use Proposition IX, sec. 7.13, to obtain

f:(w#a*Th,s):a-ﬁ ThE = o p.

Now apply Tk to both sides of this relation.
Q.E.D.

Corollary: The Thom isomorphism is given by
Th(a) = w*a x 8, e H(B).
Next, let £ = (£, 4, B, F ) be a second oriented bundle with con-
tractible fibre. Suppose ¢: E — E is a smooth fibre preserving map,

inducing ¢: B — B and restricting to orientation preserving diffeo-
morphisms

‘Pw:FwiFw(m)v x € B.
Then (cf. sec. 7.12)

¢*°fp= fFNP?-
This yields

Proposition II: With the hypotheses above, the diagram

Hy(E) <2 Hy(E)

The]= =] Th
H(B) «— H(B)
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commutes. In particular
Pr(0s) = B¢ .

9.2. Corollaries of Theorem I. Corollary I: Let Qe A (E) be a
closed form such that

fgz&p
F

for some @ € A(B). Then there exists a differential form 2, € Ax(E) such
that 2 =88, .

Corollary II: Let @ € AL(E)be closed. Then the function {,® € &(B)
is constant on each component of B. Moreover,

fqb:]
F

if and only if @ represents the Thom class.

Proof: Observe that

aqub - fpacp = 0.
Q.E.D.

Corollary III: Let @€ AL(E) be a closed r-form such that for
every x€ B
J2® € 8(ATH(FL)

(jz: F; — E denotes the inclusion map). Then there exists an (r — 1)-
form ¥ € A57Y(E) such that
D = Y.

Proof: It follows from the hypothesis that

(f cb)(x):f j*® =0, «xeB.

Thus Corollary I implies that

for some ¥ € A;\(E).
Q.E.D.
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Example: Consider the trivial bundle § = (B X F, =, B, F). Define

an orientation in the bundle by orienting F. Choose an r-form, 2, on F
with compact carrier and satisfying

LQ:I.

Then 1 X R represents the Thom class of &.
In fact, 1 x 2 is closed, and satisfies

(L(l x Q)(@®) = (fFQ) ) =1, xeB.

Hence, by Corollary II, it represents the Thom class.



§2. The Thom class of a vector bundle
The notation established in sec. 9.3 is fixed throughout this article.

9.3. Notation. Let ¢ = (E, m, B, F) be an oriented vector bundle
of rank 7(r > 2). Since F is contractible, Theorem I implies that the map

#*
§ : He(B) > H(B)
is an isomorphism. Hence the Thom isomorphism, Th = (f5) is
defined (cf. sec. 9.1). In particular we have the Thom class
8, = Th(1).

Now introduce a Riemannian metric g in £. Recall from sec. 3.10
(Examples 5 and 6) the definition of the deleted bundle and associated
sphere bundle

£ = (E,# BF) and ¢ = (Es,ns,B,S)
We have the inclusion and projection:
i:Ec—~E and p:E—E.
Finally, every € > 0 determines the open subset E, C E given by
E ={zcE||s| <ée.

Let F, denote the open e-ball in F with respect to an inner product, and
let 7. denote the restriction of 7 to E. . Then

fs = (Et' ’ 77.( b B’ FG)

is a smooth oriented bundle with contractible fibre (prove this via a
Riemannian coordinate representation for §).

The inclusion k: E, — E is a smooth fibre preserving map; hence
(cf. the end of sec. 7.10)

(kr)x: Ar(E) — AE)
is defined.
359
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Lemma V: For each € > O there exists a representative P of the
Thom class 6, such that carr @ C E,. Two such representatives @,
¥ satisfy

R Vo)

where 2 € A;Y(E) and carr Q CE, .

Proof: Since k is orientation preserving, it follows from the defini-
tions that the diagram

(kre)x

f& /

A(B)

Ar(E) AHE)

commutes. Pass to cohomology, and apply Theorem I, sec. 9.1, to both
€ and ¢, to conclude that (k; ), is an isomorphism. The lemma follows.

Q.E.D.

9.4, The canonical map «; . In this section we define a canonical
linear map
ag: H(Eg) — H(E)

homogeneous of degree 1. Choose a smooth function f on E such that
car fCE and  f— 1€ F(E).
Then 8f € A;(E). Hence a linear map, homogeneous of degree 1,

A(Es) — Ax(E)
18 given by
@ (—1)P+rL8f A p*, B e AY(Ey).
This map commutes with the exterior derivative and so it induces

a linear map
og: H(E5) — H(E).

The map «, is independent of the choice of f. In fact, assume that
g€ #(E) is another function satisfying the conditions above. Then
f — g € FHE). Thus for every closed form & on Ej

8 A p*® — 8 A p*® = §(f — g) A p*®) € (AF(E)).
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Example: Consider the bundle ¢ = (F, m, p, F) where p is a single
point. Then Eg = S, E = F and H(E) = H(F). Moreover, the diagram

H™Y(S) > H(F)

ool

HY(F) ——— R
aF

commutes (cf. secs. 6.7 and 6.8). In particular, «, is an isomorphism in
this case.

Proposition III: The diagram

He(E)
yd
H(Es) =~|Th

fs
H(B)

commutes.

Remark: If B is a single point, the proposition reduces to Proposi-
tion VI, sec. 6.8. (Use the example above noting that i* = (p*)~1)

Lemma VI: Let ke #(R) be a nondecreasing function such that

o=l i3]

and define f € S(E) by
f(2) = k(| z1), zeL.
Then, for ¢ € A™(Ej),

(—1ym+rt :fFSfA p*d = fs .
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Proof: Use a Riemannian coordinate representation for the bundle
to reduce to the case E = B X F (as Riemannian bundles). Then

f(x,»)=h(ly1), «xe€B, yeF.
In particular, for every vector field X on B,
{X) 8 = 0. 9.1)

Now let @ € AP4B x S) (p + ¢ = m). It is sufficient to show that

i(X,) XD [(— 17 f 8 8] = i) i(X) f O,
Xy, ., X, € Z(B).

Consider the X as vector fields on B X F and B X S. In view of (9.1)
and Proposition X, sec. 7.13, the relation above is equivalent to

(=1 | of A p(X,) X)) = f i(X,) (X)),

Thus we may assume that p = 0. Moreover, we may assume that
g = r — 1 because otherwise both sides are zero. Then, for x e B,
@ and p*® restrict to (r — 1)-forms @, € A*Y(S,) and (p*®), € A YF,).
Clearly,

Ptz¢z = (P*¢)m ’

where p,:F, — S, denotes the projection. Finally, observe that f
restricts to a function f, € #(F,) and that

(Of A p*®), = 8f, A P,::q)x .
Now, as in the proof of Proposition VI, sec. 6.8, obtain
SAp*d)x)= [ of,npd, = [ &,=(f &)
(f o np o)) = [ 8fnpit=[ .= (f o)
Q.E.D.

Proof of the proposition: Apply Lemma VI, recalling that

me ()"

Q.E.D.
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9.5. The naturalityof a, . Let £ = (B, #, B, F) be a second Rieman-
nian bundle with the same typical fibre and let ¢: E — E be a smooth
bundle map which restricts to orientation preserving isomorphisms on
the fibres. Then ¢ determines a fibre preserving map

¢s: Es — By
given by
_ _olz)
<PS('z’) - I ‘P(z)l ’ 2 EES'

Proposition IV: With the notation and hypotheses above, the
diagram

H(Eg) <7 H(Ey)

S

Hy(E) ‘T;‘ HF(E)

commutes.

Proof: Let fe &(F) satisfy
carr fCE  and  f—1e S(E)
and set f = ¢*f. Then f satisfies
carr fCE  and  f— 1 e SH(E).

Now let @ e A(E) be closed. Let p: E— E; be the projection. Then

PHf A B*P) = 8f A @*p*D.
Since
Psep=pop
it follows that
p* o @y = ¥ o p*
and so
PG A 57P) = 5f A prglo.

Passing to cohomology we obtain the proposition.
Q.E.D.
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Corollary: The diagram
¢*
H(Eg) «——H (Es)
k| s
H(B) «— H(B)
commutes. ($: B— B denotes the map induced by ¢.)

Proof: Combine the commutative diagrams of Propositions III and
IV, and Corollary I to Proposition VIII, sec. 7.12.
QE.D.

9.6. Euler class and Thom class. Proposition V: The Thom class
0, of ¢ and the Euler class, x5, of £ are connected by the relation

’\#05 = m¥xs,

where A: A(E) — A(E) denotes the inclusion map.

Proof: Let @ € A"(B) be a closed form representing ys. Then,
for some Q2 € A™Y(Ey),

0 =80  and f Q=—1
s
Next, choose fe F(E) as in Lemma VI, sec. 9.4. Consider the closed
form ¥ € A7(E) given by
¥ =m*® — §(f - p*Q).
We shall show that

(i) Ye ApE)
and
(i) f =1

In fact, since, in E,
p* 80 = p*nid = w*QP,
we have
Wt S A p*Q — - p* 80 = (1 —f) - %D — 8f A p*Q2.
Butf(2) = 1for| 2| > 4 and so
Y2)=0, [z]>4%;
i.e., ¥ e ALE).
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Next, using Lemma VI we obtain

frwqu/\fp(l —f)—fFSfA p*Q

- —fS!z: 1.

Now Corollary IT of Theorem I, sec. 9.2, implies that ¥ represents the
Thom class 8, . Thus it follows at once from the definition of ¥ that A0,
is represented by #*®; i.e.

/\#05 = TT#XS .
Q.E.D.

Corollary I: If o is a cross-section in £, then

Xs = *A0; .

In particular, the Euler class of the associated sphere bundle is inde-
pendent of the Riemannian metric.

Corollary II: Assume that B is a compact and oriented r-manifold.
Let o be a cross-section in . Then

J‘: 0*2, 0, = f: Xs -

Denote by D the connecting homomorphism of the Gysin sequence
of the sphere bundle &5 .

Theorem II: The diagram
Ay

H(E) H(E)
H(Es) =~|Th EAE H(Eg)
fs K3
H(B) —5— H(B)

commutes.
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Proof: Proposition III, sec. 9.4, states that the left-hand triangle
commutes. The commutativity of the right-hand triangle follows from
the relation 7 o7 = 7. To show that the square commutes recall
from Proposition II, sec. 8.2, and the corollary to Proposition I, sec. 9.1,
that

Do = o - ys,
and
Th(a) = 7*a * 8, , a € H(B).

Now Proposition V yields

ATha = m%a - n¥yg = n* Da.

Q.E.D.
Corollary: The triangle
As ,
H(E) H(E)
H(E;)

is exact.

Proof: In fact, this triangle corresponds to triangle (8.2) of sec. 8.2
under the isomorphisms of the theorem.

Q.E.D.
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9.7. Index of a cross-section at an isolated zero. Leta: B —> Ebea
cross-section in a vector bundle ¢ = (E, =, B, F). A point a € B is called
an isolated zero of o, if o(a) = 0 and, for some neighbourhood U of a,

o(x) 20, =xeU, U=U~—{a).

Now assume that

(1) The total manifold E is oriented and
(2) dimF =dimB =n > 2.

We shall define the index of a cross-section, o, at an isolated zero a.
Let : V X F 5> a~Y(V) be a trivializing map for £ such that

acVCU and V ~ R~
Let 6: V — F be the smooth map satisfying
h(x, G(x)) = ofx), xel.

Orient V and F so that ¢ preserves orientations when V' X F is given
the product orientation.
Now note that 6-3(0) = a and so the local degree

deg, &
of & at a is defined.

On the other hand, introduce a Riemannian metric, g, in £, and let
¢ = (Es, ws, B, S) be the associated sphere bundle. Give Es the
orientation induced from that of E (cf. Lemma IV, sec. 7.9). Define
Og: U —> Es by

_ _alx) ,
O's(x)— |q(x)!z’ xeU.
Then o is a local cross-section in £ with an isolated singularity at a.
Thus (cf. sec. 8.8) the index j,(o5) of o5 at @ is defined.

Lemma VII: With the notation above

dega g = fa("s)'
367
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In particular,

(1) deg, é is independent of the trivializing map
(2) Jju(os) is independent of the Riemannian metric.

Proof: Give the trivial bundle, U x F, the Riemannian metric
which makes ¢ an isometry. Then (Y*0)s = (h3)* o5, where ¢ denotes
the restriction of  to the unit sphere bundle of U X F. Hence by
Lemma VI, sec. 8.8, j,(($*0)s) =j.(0os). Thus we may replace ¢ by
Y*o; i.e., we may assume that

(i) V = U = B is an oriented Euclidean space with origin a.
(i) E=BXF, ¢y=u

Then & restricts to a smooth map 6: B — F and
deg, 6 = ago G o aFi(1).

On the other hand, let 2 € A"Y(F) represent a;'(1). Let S, CF be
the unit sphere with respect to the inner product g(x) (x € B) and let
i: E¢ — E be the inclusion. Then according to Proposition VI, sec. 6.8,

fs i*Q=1, =xeB.

=

Hence
firaxo =1
Ny

Moreover, by Proposition VI, sec. 2.17, Eg is diffeomorphic to
B x S (S the unit sphere of F with respect to a fixed inner product).
Hence

H*Y(Eg) >~ H*(S) =~ R.
It followsthat 7*%(1 x £2) representsthe unique cohomology class in H*-1(Ey)
whose fibre integral is 1. In particular, if 7: B — Ej is any cross-section,

then *(1 X £2) represents w, (cf. sec. 8.6).
Finally, it follows from the definition that

Ja(os) = ap © o5(w,).

Let 65: B — F be defined by

(%, G5(%)) = os(*)-
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Then of(w,) is represented by &%(€2); i.e.,
os(w,) = &5 (1))
Since &, is homotopic to &, we obtain

deg, & = a0 65 0 ap’(1) = (o).

Q.E.D.

Definition: The integer
deg, G = jo(os)

is called the index of o at a and is denoted by j (o).
If a cross-section ¢ has only finitely many zeros a,, ..., a,, and if j(o)
denotes the index of o at @, (v = 1,..., m) then the integer

j(e) = i ko)

is called the index sum of o.

Remark: According to Example 4, sec. 3.22, the total manifold,
T , of the tangent bundle of a manifold M is always orientable. Thus
the index of an isolated zero of a vector field on a manifold M is always
defined, even if M is nonorientable.

Finally let §=(E #B,F ) be a second vector bundle of rank r and
assume that £ is oriented. Let ¢: £ — £ be a bundle map such that

(1) ¢ restricts to a diffeomorphism on each fibre
(2) the induced map : B — B is a local diffeomorphism.

Then g is a local diffeomorphism. From Lemma VII we obtain:

Proposition VI: Let ¢ be a cross-section in £ with an isolated zero
at b and let be B be a point such that §(b) = b. Then ¢*c has an
isolated zero at b and

Jalg*a) = €jy(0),

where ¢ = 41, depending on whether ¢ preserves or reverses the
orientations.
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9.8. Index sum and Thom class. In this section ¢ = (E, m, B, F)
denotes an oriented Riemannian vector bundle over an oriented base B,
and E is given the local product orientation. It will be assumed that

dimB =dimF =n > 2.

Now suppose o€ Sec ¢ has only finitely many zeros aq,, ..., a,.
Assume further that for some compact set K C B and some ¢, > 0

lo(%) > ¢, x€B—K. (9.2)

Proposition VII: With the notation and hypotheses above let
be a representative of the Thom class such that carr @ C E, . Then

f ot = (o).

Proof: We show first that the integral is independent of the choice
of Q. In fact, if 2, is another representative of 6, satisfying carr Q, CE, ,
we can write

2, — 2 =59, e A" YE), carr®CE,
(cf. Lemma V, sec. 9.3). It follows that carr o*® C K. Thus

o*Q) — o*Q = So*®  and  o*® C AY(B).

Hence
fﬂ o*Q, = L o*Q.

Next choose trivializing maps (U, , ,) (v = 1, ..., m) so that

(i) aeU,
() U, =~ Rr
(i) U,NU, =2 v+ p)

In view of equation (9.2) there exists an € (0 << e < ¢) such that
| o(x)| = e(xe B — -, U,). Now choose a representative of the Thom
class satisfying carr Q C E, . Then carr ¢*Q C (J-, U, and so

f a* (2.
Uy

m

JB o*Q = Z

v=1
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Hence it is sufficient to show that

f o*Q =jo), v=1,..,m
Uy

In other words in addition to the hypotheses above, we may assume
that

(iv) &isatrivial bundle, E = B X F

(v) the Riemannian metric is given by a fixed inner product in ¥
(vi) B is an oriented n-dimensional Euclidean space
(vii) o has a single zero at the origin, a, of B.

Let 7: B — F be the map given by
o(x) = (v, 7(x)), x€B
and let #: B — F denote the restriction of  to B. Then
J(@) = ag o 7¥ o aF(1).
Now let @ € A»~1(F) represent the element az'(1) and choose f € F(F)

to be zero near the origin and to satisfy carr(l — f) CF,. Then 7*f
is zero near @ and 1 — 7*f has compact carrier. Hence,

i(0) = | 8(+* F*p = *Of A P) = *1 8f A D)).
j@) = [ defynird = [ s@fad) = [ (1 x @)
On the other hand, since @ represents az'(1), we have

J (1 x@rao) = fFSfup: 1.

Thus, according to Corollary II, to Theorem I, sec. 9.2, 1 X (8f A P)
represents the Thom class. Since it has carrier in B X F, = E,, the
proposition follows.

Q.E.D.

Corollary: Assume in addition that B is compact and let ¢ be an
arbitrary cross-section with finitely many zeros. Then (cf. sec. 9.6)

H#
[ oMb = o)
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Example: Let M, B be oriented n-manifolds and let F be an oriented
Euclidean n-space (n > 2). Assume

B X F

M mF

is a commutative diagram of smooth maps such that
o }0) =aeM  and [@(x)] > e, xeM—K

(K a compact subset of M). Choose any representative, 2, of the Thom
class of B x F, subject to the condition: carr QC B X F,. Then
$*02 e AYM) and

[ 42 = deg. .
M

In fact, use Lemma V, sec. 9.3, to show that the integral is independent
of the choice of £2 (as in the first step of the proof of Proposition VII).
Thus, if @ € AYF,) and satisfies [ @ =1, we can put 2 = 7} and
then

fM¢*Q - fMl/,*w’;qD = qup*qs.

Let o: M — M X F be the cross-section given by o(x) = (x, (x)).
Then, using Proposition VII, we see that

[ o®=] o¥l x )=o) = degas.

9.9. Index sum and Euler class. In this section ¢ = (E,m, B, F)
denotes a Riemannian vector bundle such that

(1) B is a connected compact n-manifold, n > 2, but not necessarily
orientable

(2) dimF = dim B

(3) E is oriented.
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Let o be a cross-section with finitely many zeros a,, ..., a,, . We wish
to show that the index sum of o, j{o), is independent of o.

Consider first the case that B is orientable. Choose an orientation in B.
Then it is easy to see that there is a unique orientation in ¢ such that
the given orientation in E coincides with the local product orientation.
This orientation in £ will be called the induced bundle orientation.

Theorem III: Assume that B is oriented and give ¢ the induced
bundle orientation. Then

# .
f xs = j(o)
B
where x5 denotes the Euler class of the associated sphere bundle.

We give two proofs.

Proof I: Consider the associated sphere bundle £ and set

o(x)

os() = oG

xeB —{a,, .., a,}

Then o5 is a cross-section in £ with finitely many singularities and so
Theorem II, sec. 8.11, yields

* .
.f Xs = Z]v(“s)-
B v
But it follows from the definition of j(o) that
Lilas) = Y jfo) = j(o).
Q.E.D.

Proof II: Combine Corollary II of Proposition V, sec. 9.6, and the

corollary to Proposition VII, sec. 9.8.
Q.E.D.

Next assume that B (and hence £) is nonorientable. Let p: B — B
be the double covering of B (cf. sec 2.20) and let § = (E, #, B, F) denote
the pull-back of £ to B via p. Then we have a bundle map

E-PE E

7| |

B—B
?
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restricting to isomorphisms in the fibres. In particular, p; is a local
diffeomorphism. Hence there is a unique orientation in E such that p,
is orientation preserving.

Now give ¢ the bundle orientation induced by those of B and E.
Denote by s € H*(B) the Euler class of the sphere bundle associated
with £

Theorem IV: With the notation and hypotheses above let o € Sec ¢
have finitely many zeros. Then

[ % =2i0)
, = ag).
pXs J

In particular, j(o) is independent of o.

Proof: SetpYa,) = {b,,c}. Thenb,, ..., b, ,¢,, .., c,arethezeros
of p%e. Since pp is orientation preserving, Proposition VI, sec. 9.7,
shows that

Jn(PE9) = jaf0)  and o (pFo) = julo),
whence
J(#z0) = 2j(0)-
Now Theorem III yields

[ s = itpze) = 24(c).
Q.E.D.

Theorem V: A vector bundle of rank n over a connected z-manifold
M, with oriented total space, admits a cross-section o with finitely many
zeros. It admits a cross-section with no zeros if and only if

(i) M is not compact,
or
(ii) M is compact and j(o) = 0.
Proof: Apply Theorem III, sec. 8.11, to obtain ¢. If M is not

compact, Theorem III, sec. 8.11 shows that there is a cross-section
with no zeros; if M is compact the same theorem gives a cross-
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section, 7, with a single zero, a. Then Theorems III and IV, above show
that

H(e) = j(r) = jol)-

Hence if j(¢) = O Proposition VII, sec. 8.10, applied to =, gives a
cross-section without zeros.
The “only if”’ part of the theorem is obvious.
Q.E.D.

9.10. Examples: 1. Vector fields on S*: Let E be a Euclidean
space of dimension n 4+ 1 (r > 1). Fix a unit vector ec E and set
F = et. Let S™ be the unit sphere of E. Define maps ¢: F — S*,
y: F — S" by

o x—(1—|x%e
(P(x)_ lx—(l—[x(*)e” xeF
and
o x+ (0 —|xPe
ll'(x)_ |x+(1_|x|2)e|, xeF.

Then @ and ¢ are diffeomorphisms,
e F—=> 8" —{e}, F-—>8"—{—¢).

A straightforward computation shows that the corresponding diffeo-
morphism y = 1 o ¢ of F = F — {0} onto itself is given by

x(® = x/|x %,  xeF.
Now define vector fields X and ¥ on F by
X(x) = a, xeF

and
Y(x) = | x |2a — 2{a, xDx, x€PF,

where a is a fixed unit vector in F. Evidently,

Y(x(%)) = x'(x; X(x)), «xek;
i.e.,
xx(X) =Y.

It follows that the vector fields ¢, X on .S* — {e} and , Y on S* — {—e}
agree in S® — {e, —e}. Thus they determine a vector field Z on S™.
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Clearly, this vector field has a single zero at Y(0) = e. Moreover, the
index of Z at e is given by
J(Z) = deg, Y,

where Y is considered as a smooth map F — F. But according to sec. 6.12,
Example 5 (with a replaced by —a), deg, ¥ = 1 4 (—1)" It follows
that

JZ) = jelZ) = 1 + (=1)".

Now let 7 denote the tangent bundle of S” and let 7¢ be the associated
sphere bundle. Then Theorem III implies that

["xm) = 1+ (=1
s

2. Vector fields on RP*: Consider S™ as the unit sphere in an
(n + 1)-dimensional Euclidean space E (n > 1). Let ¢: E—~ E be
a skew linear map; i.e.,

x, (x> =0, xek.

Then we have
(x) € - = T, (S™), xe S,

and so a vector field X on S™ is defined by

X(x) = ¢(x), xeS™

Since ¢p(—x) = —¢(x), it follows that
o X =X
where o: S* — S™ denotes the map given by o(x) = —x. Thus X
determines a vector field Y on RP”. Clearly,
X~Y,

where 7: §* — RP" denotes the canonical projection.
Now we distinguish two cases:

I. nodd. Then n 4 1 is even and ¢ can be chosen to be a linear
isomorphism. The corresponding vector fields X and Y have then no
Zeros.

If + denotes the tangent bundle of RP* and if 7; denote the associated
sphere bundle, then the above result together with Theorem III implies
that

x(rs) =0  (n odd).
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II. neven. Thenn + 1isodd and so every skew map has a nonzero
kernel. Now fix a unit vector e € E and choose the skew map ¢ so that
its kernel is the one-dimensional subspace generated by e. Then ¢
restricts to a linear automorphism of the orthogonal complement F of e.

The corresponding vector field X on S™ has two zeros, at e and —e.
Since the restriction ¢y of ¢ to F is a skew linear automorphism, we have

det Pr > 0.
Using this it is easy to show that
MX)=1 and j (X)=L

It follows that the corresponding vector field ¥ on RP™ has a single zero
at the point € = n(e) and that

J(¥)=j(Y) =1

3. The Hopf index formula: Let B be a compact connected
oriented n-manifold (n even) and let ¢: B — S™ be a smooth map.

Consider the pull-back, ¢ = (E, =, B, R®), of the tangent bundle
Tsn of S™ via . Let g: E — T'gn be the corresponding bundle map.

Since ¢ restricts to linear isomorphisms on the fibres, the standard
metric on S* induces a Riemannian metric in £. If X, and x . denote
the Euler class of the associated sphere bundles of £ and 75+, we have,
in view of Example I, that

J‘: Xe = f: Yrxen = deg ¢ I:ﬁXSﬂ — 2 deg i;
Le.,

#
f,,xf = 2 deg ¢.

Since, for each integer p, there is a smooth map B — S™ of degree p
(cf. Example 4, sec. 6.12), we can obtain in this way an infinite number
of nonisomorphic vector bundles of rank n over the #n-manifold B.

Finally, if o is a cross-section in ¢ with finitely many zeros, Theorem III
yields

f(o) = 2 deg ¢

This relation is called the Hopf index formula.
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1. Vector fields in C. Find the index of the following vector fields
at zero:

(i) Z(z) = = (neZ)

(ii) Z(z) =z~ (nez)
(iii) Z(z) =f(s) s,  where f(z) = exp(— | % [%)f| exp -1,
(iv) Z(z) = sin 2.

2. Cartesian products. Let
§=(E;,m, B, Fp) and n=(E,m, B, F)

be oriented vector bundles.

(i) Show that
(¢E)s © (The @ Thy) = Thexy, © (kp)s »
where
(%e)e : HHE;) ® HH(E,) —~ Hp(E; x E,)
and
(xp)y : H(Be) ® H(B,)—~ H(B; x B,)

denote the Kiinneth homomorphisms. Conclude that

Oexn = (ke)y(fe ® 6,).
(ii) Assume that B, = B, . Show that the Thom class of ¢ P is
given by
Ocgn = j*(kg)u(0e @ 0,),
where j: E;q, — E, X E, is the inclusion map.
(i) Conclude that the Euler classes of the sphere bundles associated
with ¢ X 5 and ¢ @ 5 are, respectively, given by
Xexn = (KB)#(XE ® X'n)
and

Xegn = Xée " Xn
378
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3. Let £ » be vector bundles with oriented total spaces over mani-
folds B, B, . Assume that dim B, = rank £ and dim B, = rank 7.

Suppose that ¢ € Sec £ and 7 € Sec 5 have isolated zeros at ae B, ,
b e B, . Show that o X 7 has an isolated zero at (a, 4), and that

Janlo X 1) = jo(0) * ju(7).

4. Let X be a vector field on M. Recall from problem 9, Chap. III,
that X determines a vector field Y = w,0dXon T, .

(i) Find necessary and sufficient conditions on X for Y to have an
isolated zero.

(ii) If Y has an isolated zero at h e T, , find all possible values for the
index of Y at A.

5. Letfe &(M). Suppose that a € M is a point such that (6f)(a) =0
and the Hessian of f at @ is nondegenerate. Use a Riemannian metric to
convert 8f into a vector field, X, with an isolated zero at a. Regard the
Hessian of f as an indefinite metric on T,(M). Show that j (X) = (—1)g,
where ¢ is the dimension of a maximal subspace of T,(M) on which the
Hessian is negative definite.

6. Let¢ = (E, m, B, F)be avector bundle withrank § =dim B =n
and let o denote the zero cross-section. Assume that o € Sec £ has an
isolated zero at a.

(i) Show that there is a unique linear map a: T,(B) — V,(,)(E) such
that

(do), h = (do), h + o(h),  he T,B).

(ii) Show that the following conditions are equivalent:

(a) o is a linear isomorphism

(b) Im(do), ® Im & = Tiy(E)

(c) with respect to an appropriate trivializing map, o(x) = (x, 0,(x))
and o)(a) is an isomorphism.

(iii) Assume that the conditions of (ii) hold. Assume further that ¢
is Riemannian and oriented. Identify a neighbourhood U of a with an
oriented Euclidean space; let S(r) denote the sphere of radius r about a.
Finally, consider the associated sphere bundle (Eg, =g, B, S) and set
S, = n5'(a).
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Show that if 2 € A"Y(Ej) satisfies ({s2)(a) = 1, then

det
y = =1 *
]a(d) | det o | l,_l_l}’l fs(r) T Q)

where 7(x) = o(x)/| o(x)|, x€ U — {a}. Hint: Use problem 7, below.

7. Let F be an oriented Euclidean n-space. Denote its unit sphere
(resp. sphere of radius r) by S (resp. S(r)).
(i) Show that
lim f-¥=0,

0 J s(s)

where ¥ € A*Y(F) and fe F(F) satisfies | f(x)] < K| x|~? (K a con-
stant, p <2 — 1).

(ii) Suppose ¢, , @, : F— F are smooth maps. Assume that ¢3%(0) =0
and that ¢4(0) is a linear isomorphism. Define : F—F x S by

4 = (mir 2), e

Show that
lim [ ¢*0 =0,

r-0 S(r)

if ®e A Y(F X S) satisfies f; @ = 0. Hint: Compare problem 6, v,
Chap. VII.

8. Thom isomorphism with compact supports. Let ¢ =(E,n, B,F)
be an oriented vector bundle of rank r. Establish a Thom isomorphism
Th,: H(B) —=> H(E) homogeneous of degree 7.

If 8, = Th(1) is represented by ® and ¥ e A(B) represents a
class a € H (B), show that (#*¥) A @ represents Th(a).

9. Normal bundle. Let M bea closed connected oriented submani-
fold of a connected, oriented n-manifold N and let dim M = m. Let
¢ = (E, m, M, F) be the normal bundle of M and regard E as an open
subset of N (cf. problem 20, Chap. III).

(i) Orient £ so that the local product orientation in E is induced from
the orientation in N.

(ii) Show that AL(E) C A(N) and A (E)C A(N) are ideals and let
y, ¥° denote the corresponding inclusions.



Problems 381

(iif) Show that the inclusion map i: M — N is proper. Show that i#
and y§ o Th, (resp. y, o Th and ¢¥) are dual with respect to the Poincaré
scalar products. If M is compact, show that (:¥)*(1) = y,(8,). Conclude
that the Euler class of £ (cf. sec. 9.3) is in Im #*,

(iv) Assume M compact. Let j: Ec— N — M be the inclusion.
Show that, up to sign, f¢ o j* is dual to the connecting homomorphism
of problem 14, Chap. VIII (with N = B). Conclude that the diagram

ye o Th
H(N) H(M)

N,

H(N — M)
is exact, where k: N — M — N denotes the inclusion map.

(v) Establish an exact triangle

k* ®*

H(N) HN — M)® H(M)

=
x G* -9

H(E5s)

Find its Poincaré dual.

(vi) Regard CP* and HP* as submanifolds of CP™ and HP", respec-
tively, with inclusions £, . Compute the classes (*)*(1) € H¥»—*¥(CPm)
and (j*#)*(1) € H*™*(HP") (cf. problems 4 and 5, Chap. VIII). Com-
pute H(CP» — CP¥) and H(HP™ — HP¥).

10. Disc bundles. Let { = (E, =, B, F) be an oriented Riemannian
bundle and let £ = (E, #, B, F) be the bundle whose fibre at x is the
subset of F, whose vectors have length < 1.

(i) Show that £ is a bundle with boundary £ (notation as in sec. 9.3,
cf. problem 4, Chap. VII).

(ii) Let i5 : Eg — E be the inclusion. Establish an exact triangle

H(ker i3) H(E)

H(Es)
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(itf) Construct isomorphisms
H(E)~ H(B),  Hkeri§) = HAE) =~ H(B)

and identify the triangle of (ii) with the Gysin triangle.

(iv) Let (N, p, B, S) be a sphere bundle associated with £ De
(e = B X R). Show that B is a submanifold of N with normal bundle ¢.
Identify N with the double of E. Prove that H(N) =~ H(B) ® H(S)
and that the sequence

D y*Th

0 0

H(B) H(N) H(B)

is exact, where i : B— N, y : A(E) —> A(N) are the inclusion maps.

11. Local degree. Let P, C M, be compact connected oriented p,-
submanifolds of oriented connected n-manifolds M; (i =1, 2). Let
& = (E;, m;, P;, F;) be the oriented normal bundles with E; considered
as a neighbourhood of P;in M, . Write M; = M, — P, ,E; = E; — P;.
Assign £; a Riemannian metric with sphere bundle

(£S)i = ((ES)1 » T Pi ’ S:)

Finally, suppose ¢ : M, — M, is a smooth map which restricts to
smooth maps ¢p: P,— P, and ¢: U, — P, > U, — P, (U; some
neighbourhood of P;). Then P, is called an isolated manifold for ¢.

(1) Show that the identification of E; as an open subset of M, can be
chosen so that ¢ restricts to smooth maps

et By~ Ey, ¢EIE1‘*E2~

(ii) Define  : (Es)y — (E)s by ¥(2) = ¢(2)/| ¢x(3)l. Find a neigh-
bourhood, V, of P, with the following property: If @ € A (V), then
pr® € A(E,). If (for this V) @ € AYV), show that

fEl¢§¢ = deg ¢ - J'Eacb.

Conclude that the integer deg ¢ is independent of the various choices.
It is called the local degree of ¢ at P, and is written deg, ¢.

(iif) Show that this definition coincides with the definition in the text
when P, and P, are points.
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(iv) Suppose M, , M, are compact, and that for an oriented con-
nected closed submanifold Q C M,, ¢=Y(0) consists of finitely many
oriented, connected submanifolds. Show that

degp =} dego, .

(v) For some e > 0, show that (E,;), C V (cf. sec. 9.3). Hence, from
¢g, obtain a homomorphism Hp( 1)<——H (Ez). Show that the
diagram

Hy(E) Hi(E)
o] o
H((E5),) H((Es),)

commutes.

[2.  We retain the notation and hypotheses of problem 11.

(i) Let @ € AT (V) represent 0. . Show that the class in H”l"’*(Pl)
represented by fr ¢f P is 1ndependent of the choice of @. It is called
the local fibre degree of ¢ at Py and written degj, ¢.

(i1) Let w be the orientation class of P, . Then the class ¢fw € HP:(P;)
is called the local base degree of ¢ at P, and is written deg} ¢. Prove that

H
degp, p = f,, degp, @ - degp, 9.
1

(ii) If p, < p, , conclude that degp, ¢ = 0.

(iv) If p, =p,, note that degi peR. In this case obtain
degp ¢ = deg pp degp P.

(v) Suppose p, = p,. Fix ae P, and set b = ¢, a. Choose a trivial-
izing map x: U, X Fy — 71U, for &, . (U,, a neighbourhood of 5 in
P, .) Find a neighbourhood O, of 0 in (F,), such that ¢g(O,) C m=Y(U,).

Use @ to construct a smooth map y : O, — F, such that y~1(0) = 0.
Show that deg, y = deg}, ¢ and conclude that the local fibre degree is
an integer. Hence conclude that the local degree is an integer.

13. Let #, = (M,, p;, B;, N,) be smooth bundles with orientable,
compact, connected r-dimensional fibres and n-dimensional bases.
Suppose ¢ : M, — M, is a smooth fibre preserving map inducing
Y : B, — B, . Let a be an isolated point for .
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(1) Show that (N,), is an isolated manifold for ¢,
(ii) Let @, : (N}), = (Np)y) be the restriction of ¢. Show that, for
appropriate orientations,

degly,), @ = deg,»  and  deg(y) ¢ = degp, .
Conclude that
degy,), p = deg, ¥ - deg @, .

(iii) Assume that %, and B, are oriented and that the B, are con-
nected and compact. Prove that deg ¢, (x € B,) is independent of x and
that

degp = deg s - deg g, .

Conclude that ¢* is an injective if and only if both * and ¢z are
injective.

14, Let £ = (E, m, B,F) be an oriented vector bundle over an
oriented base, with dim B = rank £ = n. Adopt the notation of sec. 9.3.
A submanifold M C B is called an isolated zero manifold for o € Sec ¢
if, for some neighbourhood, U, of M, M = {xe U | o(x) = 0,}.

Let M be a compact isolated zero manifold for some o € Sec €.

(1) Show that, if @ is a suitable representative of 8, , then, for suffi-
ciently “small” U, the restriction of ¢*® to U has compact support.
Prove that [, ¢*® is independent of the choice of ®. It is called the
index of ¢ at M and is denoted by j,(0).

(ii) Choose a tubular neighbourhood, V, of M whose boundary is a
sphere bundle, Vs, over M. Show that o determines a cross-section,
os, in the restriction of ¢ to V. Let £ denote the restriction of ¢
to V. Prove that

. ¥
in0) = [ Xtgoq

(cf. problems 14 and 15, Chap. VIII). Conclude that j,(c) is an integer.

(iii) Suppose that the set of zeros of o consists of finitely many sub-
manifolds M, ..., M, . Assume B compact and show that

" a
[ Xeg =3 ufo)
B i=1

(Give two different proofs.)
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(iv) Suppose the restriction of ¢ to V is trivial, #={(V) =V X F.
Write o(x) = (x, 7(x)), x € V. Show that M is an isolated submanifold
for 7, with image manifold {0}. Show that j, (o) = degy, (7).

15. Tangent bundle. Let B be an oriented manifold containing a
compact connected oriented submanifold M with oriented normal bundle
n=(V,p, M,F) and associated sphere bundle 7; = (Vs, p, M, S).
Regard V as an open subset of B. Let X € Z(B) and suppose that
M={xel|X(x)=0}

(i) Assume that X(x) is tangent to the submanifold F,q) for xe V.
By restricting X obtain on each F, (y € M) a vector field X, with an
isolated zero at 0. Prove that ji(X,) is constant as y varies through M.
Denote this integer by j5(X).

(ii) With X as in (i), let y, be the Euler class of the tangent bundle
of M. Show that

iX) = )~ [ o

(iii) Evaluate j5,(X) in the following three cases:

(a) X restricts to a vector field tangent to V.
(b) X is the radial vertical vector field for 7.
(c) X is the negative of the radial vector field for 7.

16. Local dashed degree. Let ¢, =(E;,m;, B;,F)(i=1,2) be
oriented vector bundles of rank n over m-manifolds B; (n > 2). Let
@ : & — & be a bundle map inducing ¢, : B, > B, . A point a€ B, is
called an ésolated singularity of ¢, if for some neighbourhood, U, of a

pa(x) # @a(a), xeU (U=U—{a}

and ¢, is a linear isomorphism for x € U. Let a be a fixed isolated singu-
larity of ¢.

(i) Show that in U the maps ¢, are all orientation preserving or
orientation reversing. Let ¢,(¢) = 1 in the first case, and let ¢,(¢) = —1
in the second. (Assume U connected.)

(ii) Let S be a small sphere in B, centred at a (use an atlas for B,).
Let $: V; X F— V, X F be a bundle map obtained from ¢ by trivial-
izations in §,and &, (a € V,, gg(a) € V,). Fix h € S (Sp the unit sphere
of F) and define ¢g: S — Sy by os(x) = ¢(h)/| $.(h)|. Show that
deg ps depends only on ¢, , £, and ¢ (and not on the other choices).
It will be called the local dashed degree of ¢ at a and is denoted by

deg, .
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(iit) If @, 7~ O show that deg, ¢ = 0.

(iv) Let £ be a third oriented vector bundle of rank n over a third
oriented z-manifold. Let : §, — §; have an isolated singularity at
b = pg(a). Show that a is an isolated singularity for i o ¢ and prove the
formulae

€ © @) = e) * ()
and
deg,( o p) = degs ¢ - deg, g -+ &(¥) - deg, ¢

Simplify this if ¢, or ¢, is nonzero.

{v) Let 7€ Sec £, have an isolated zero at b. Show that p#r has an
isolated zero at ¢ and that

ja(‘P#T) = dega (7] 'jb('r) - dcg:z P.

17. Global dashed degree. Let &, and £, be as in problem 16 and
assume B, , B, compact. Suppose ¢ : &, — £, induces ¢p: B, > B,.
Suppose that {a,, a5, ..., a,} are isolated singularities for . Assume
that @, is an isomorphism for x # 4, , ..., a,, . Set deg’ ¢ = 3, deg,, .

(i) Let x,e HYB,;) ( = 1, 2) be the Euler classes of the associated
sphere bundles. Prove the Riemann—Hurwitz relation

# !
f X1 = deg%'f Xe — deg’ @.
B By

(ii) Consider the case where §; =75 and ¢ = dpy. In particular
suppose f is a polynomial of degree k with complex coefficients. Regard
f as a smooth map S% — S§2 and use the Riemann-Hurwitz relation to
show that the sum of multiplicities of the roots of f is k.

18. Let ¢ = (E, m, B, F) be a vector bundle over a compact con-
nected base and let ¢ : E— E be a proper smooth map. Define a map
¢p: B—>Bbygg=mogpoo.

(i) If £ is oriented show that ¢§0, = m(p) 8, , where m(p) e Z. If ¢
is a diffeomorphism show that m(p) = 1.

(ii) If B and ¢ are oriented and ¢ is a diffeomorphism show that
deg ¢y = +1. Prove that ¢ preserves the orientation of E if and only if

deg g5 - m(p) = 1.
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(iii) If B and ¢ are oriented, if rank § = dim B, and if x5 # 0, show
that E is irreversible.

19. Let ¢ = (E, =, B, F) be a bundle of rank 2m over a compact
n-manifold.

(i) Suppose ¢ is orientable and contains a subbundle of odd rank.
Prove that the Euler class (of &) is zero.

(ii) Suppose E is orientable and # = 2m. If £ contains a vector sub-
bundle of odd rank, show that it admits a cross-section without zeros.

(iii) Let n be any vector bundle of rank 1 over B. Show that
AP(E @ m) == AP €.

(iv) Assume E orientable and n = 2m. Let n be a rank 1 vector
bundle over B, and let £ be the total space of ¢ ® . Show that E is
orientable. If o€ Sec ¢ and 7€ Sec(§é ®n) have only finitely many
zeros, prove that j(o) = j(7). In particular, if ¢ admits a cross-section
without zeros, conclude that every rank 1 vector bundle, 7, is a subbundle

of &.

20. Mod 2 index sum. Let ¢ = (E, m, B, F) be a vector bundle
with dim B = dim F = n > 2. Assume E is connected, but not neces-
sarily orientable.

(1) Let o € Sec ¢ have an isolated zero at a. Choose an orientation of
#~Y(V) (V some neighbourhood of @) and define j (o) with respect to it.
Let [j,(0)] denote the (mod 2)-reduction of j, (o) and show that it does
not depend on the choice of orientation.

(i) Let oeSec ¢ and suppose o has only finitely rhany zeros,
a,, ..., a, . Define [j(o)] € Z, by

[i(o)] = X [a ()]

and call it the (mod 2)-index sum. Show that it is independent of o.

(i) Assume E is not orientable. Let o € Sec £ have a single zero at g,
and define j, (o) as in (i). Show that for each integer, m, there is a cross-
section 7 in £ such that a is the only zero of 7, and j (7) = j, (o) + 2m.
In particular, conclude that ¢ admits a cross-section without zeros if and
only if the (mod 2)-index sum is zero.

21. Continuous local degree. (i) Extend the notion of local degree
to continuous maps ¢ : R* — R® with an isolated zero at zero. If
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1, R® > R" are origin preserving homeomorphisms, compare
dego(ihy o p © hy) with deg, .

(1) Extend the notion of index at an isolated zero’to continuous
cross-sections.

(iii) Define a continuous vector field, X, on R? by X(x, y) = (£, 1),
where

x lo , # 0 lo , # 0

Find the orbits and zeros of X, and compute the indices at isolated zeros.

22. Let o:R*—>R" be a smooth map such that o(0) =0 and
det o’(0) # 0.

(i) Show that 0 is an isolated zero for o, and that
deg, o = det(o’(0))/| det o’'(0)]

(if) Define ¢ : R* — R™ by ¢(x) = o'(x; #). Show that O is an isolated
zero for ¢, and that
deg, ¢ = deg, a.

(1) Define ¢ : R® — R™ by (x) = ¢’(0; x). Show that deg, ¢ = deg, o.

23. Affine simplices. Let ¢ = (4, ..., a,) be an ordered affine
n-simplex in R™ (cf. problem 20, Chap. V). Let E, be the affine n-plane
spanned by o; thus x € E, if and only if x = 35 Ala; and 35 X = 1. The
symbols +, — denote addition and subtraction in R™.

(i) Given x € E, , find a unique linear structure in E, with the same
underlying affine structure, and with origin at x. Identify this space with
TAE,).

(ii) Show that a vector field, X, , on E, is defined by

X,(x)=x4+ Y e,NNa,,

V=0
where x =Y, Ma,, 3, ¥ = 1, and
+1, v<pu

€, = 0, v=uyp
—1, v>ap
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With respect to an appropriate trivialization of z_, show that

n

X = (% ¥ e,,“)\“/\“au).

v, u=0

(iii) Show that X (x) = 0 if and only if x is of the form

2r
X = Z (_l)u aiy,
v=0
where 0 < iy < 4; < *** < iy, < n. In particular, show that in a neigh-
bourhood, U, of ¢ the zeros of X, are precisely the vertices of o.

(iv) Show that j, (o) = (—1)%. What are the indices of X, at the other
zeros ?

(v) Assume m = n and regard S™ as R® U {x.}. Define a vector field,
Z, on S* by
e PP X (x), xeR»

2(*) = 0, X = Xy .

Determine the index of Z at x, .

(vi) Find the orbits of X,, whenn = m = 2.

24. Vector fields on an affine complex. Let | K| be a finite affine
simplicial complex in R™ (with corresponding abstract simplicial com-
plex, K) (cf. problem 20, Chap. V). If ¢ is a simplex of K, and x € o,
recall that T,(o) is the affine space E, with x as origin (cf. problem 23).
A continuous vector field on an open subset UC | K| is a continuous
map X : U — R™ such that X(x) e T, (o) if x€o. If X(x) = x, then x
is a zero of X. Let X be a continuous vector field on | K |.

(i) Set ¢(x) = X(x) — x. Show that for some strictly positive contin-
uous function fon | K |,

x+fx)ex) el K|, xelK|.

(ii) Assume a is an isolated zero for X, and that | K | is a topological
n-manifold. Use a chart (U, u, R*) about &, and the linear structure of
R~ to define the index of X at a.

(ili) Show that each vertex of K is a zero of X. Let a be a vertex of
K and assume a is an isolated zero for X. Assume further that if a € o,
then the restriction of X to ¢ extends to a smooth map Y, : E, > E, .
Thus the derivative of Y, at a is a linear map, Y (a) : To(E,) — T,(E.).
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Assume Y,(a) — . is a linear isomorphism for each o. Show that a
continuous vector field X on a neighbourhood of @ in | K | is defined by

X(x) = Y)(a;x), =xeo.
Show that X has an isolated zero at @ and that j,(X) = j,(X).

(iv) Suppose the vertices of K are given a partial order which converts
each simplex, o, of K into an ordered simplex. Show that a continuous
vector field, X, on | K| is defined by X(x) = X,(x), x € 0, where X,
is the vector field of problem 23. Show that the zeros of X are precisely
the vertices of K.

(v) The barycentre of a simplex (a,, ..., @,) is the point

5 + > @+ +a)
Let b, be the barycentre of o (¢ € K) and write b, < b, if o is a face
of . Show that the ordered simplices of the form (b, , ..., b,)) (where
b,, << :*» < b, ) make up a simplicial complex K". Identlfy | K’ | with
| kK [ Use the ordermg among the vertices of K’ to obtain a continuous
vector field, X, on | K'| whose zeros are the vertices of K'.

(vi) Assume that | K| (and hence | K’ |) is a topological manifold
and that each simplex of K is a face of a n-simplex. Show that the index
of X at b, is (—1)dim o,



Chapter X

The Lefschetz Class of a Manifold

§1. The Lefschetz isomorphism

10.1. In this article, M will denote a connected compact oriented
n-manifold, n > 2. Recall that the Euler-Poincaré characteristic of M
is defined by

X = f (—1)%b, = i (—1)? dim H?(M).

p=0 p=0
The purpose of this article is to establish the following theorems.
Theorem I: Let 7, be the tangent bundle of M. Then the Euler

class, Xg > of the associated sphere bundle and the Euler-Poincaré
characteristic of M are related by

#
XM:.[ Xs *
M

Theorem II: Let N be a compact n-manifold (n > 2). Let X be
a vector field on N with finitely many zeros, and index sum j(.X). Then

JX) = xy -

10.2. Notational conventions.7;: M X M — Mandag M X M—- M
will denote the projections given by

m(x,y) =% and wr(%, ¥) = ¥, x,yeM,

while 4: M —~ M x M will denote the diagonal map, 4(x) = (¥, x).
We regard (M x M, w,, M, M) as an oriented bundle. Consequently,
we have the linear maps

f : A(M x M)— A(M), F s H(M x M)— H(M).
M M

391
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F denotes an oriented Euclidean n-space, and vy = (Ty, 7, M, F)
is the tangent bundle of M. The orientation of M is an orientation of 7, .
The corresponding Thom class is denoted by 8, € HR(Ty,).

7 18 given a fixed Riemannian metric. For each e > 0

O, ={teTyl|lél<é¢
and
F.={yeF||y| <e.

. is the restriction of = to O, , and {O, , 7., M, F .} is an oriented smooth
fibre bundle (cf. sec. 9.3). The fibre of this bundle over x € M will be
denoted by

T (M) = O, N To(M).

10.3. The Lefschetz isomorphism. Denote by L, the space of
linear transformations H(M) — H(M) homogeneous of degree zero.
Then we can write

n
LM = 2 L;,I(M) ’

p=0

where L% ,, denotes the space of linear transformations of H?(M).
Since H?(M) has finite dimension (cf. Theorem III, sec. 5.15), we have,
for each p, a canonical isomorphism

ky: HY(M) ® H*(M)* —=> L -

Define an isomorphism

k: f H*(M) ® HY(M)* —=> L,,

by

k= f (—1)k, .

=0
Next observe that the Poincaré duality isomorphisms (cf. sec. 5.11)

D% Ho(M)—= Hr—(M)*  (p =0, ..., n)

determine an isomorphism

v ® D f HY (M) ® HY(M)* — f H»(M) ® H?(M).

p=0 =0
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Finally, we have the Kiinneth isomorphism

Ky f HY (M) ® H™%(M) —> H"(M x M)

=0

(cf. Theorem VI, sec. 5.20).
Combining these isomorphisms yields the linear isomorphism

Ay Ly — HYM x M)
given by
Ay = K 0t @Dy o k7L

Definition: The linear isomorphism A, is called the Lefschetz
tsomorphism for M and the class A,, € HY(M x M) given by

Ay = Ma(t)

is called the Lefschetz class of M.
Proposition I: The Lefschetz isomorphism satisfies the relation
§ (mhe) - Qo) = o@), oLy, acHM).
M

Proof: Since both sides are linear in ¢ and in « it is sufficient to
consider the case

o = kB ® Dyy), BeHX M), yeH" M)
and o € HYM). Then (cf. Equation 7.3, sec. 7.12)

#*
o(x) = (=1)P(Dyy, B = (=" ([ v ) B
M
= (=1 | wif - why  when
M
Thus both sides are zero unless p = ¢; and in this case

o(o) = f:; (7r) * (Apg0)-
Q.E.D.
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Corollary I: The Lefschetz class is the unique element in
H™(M X M) satisfying

f: (mho) Ay = @ ac H(M).

Corollary II:

#
f AM = 1-
M
Proposition II: Let 7Tr:L,, — R be the linear map given by

Tro=) (—1)?tra,,

P=0

where 0 = Y, 0,, 0,€LE . Then
3
Tro= f 4#(Ay0).
M

Proof: Again it is sufficient to consider the case
o =kB @ Dyy), BeHYM), yeH" M)
Then, by ordinary linear algebra,

Tro = (—=1)"""?Dyy, B> = (—1)*'"""P(Dyy, ).
Since

¥ 4
Dar B = [ y-B= (=1 [ gy,
M M
it follows that
T £
ro = J.MB 7
According to Example I, sec. 5.17,

By = d*ku(B ® y) = 4*(Ay0)
and so

#
Tro = f  4"(0u0).
Q.E.D.
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Corollary:

J.: A¥(Apg) = xu1 -

Proof: Apply the proposition with ¢ = «.
Q.E.D.

Example: The n-sphere S*: Since the Kiinneth isomorphism yields
Hn(S" x S = (HY(S™) ® 1) ® (1 ® H(S™),
it follows that the Lefschetz class for S” must be of the form

A =alw @ 1)+ b1 Qw), abeR,

where w denotes the orientation class of S®. Now a simple calculation,
using Corollary I to Proposition I, shows thata = (—1)*,b = 1, and so

dop=(—1lo®] +1Qew.

10.4. Lefschetz class and Thom class. In this section we shall use
the Thom class 8,, of 7, to construct a representative of the Lefschetz
class.

In Appendix A we shall construct (for a sufficiently small positive
number €) a smooth map

exp: 0, > M

with the following properties (cf. Proposition II, sec. A.3).
(i) exp(0,) =x, xe M.
(i) 'The restriction, exp,: T (M)— M, of exp is a diffeomorphism
onto an open subset of M. It satisfies
(d expy)y, = ¢ 1 To(M) — To(M).
(iii) The map ¢: O, —~ M x M given by
P(§) = (n€, exp §),

is a diffeomorphism onto an open subset of M X M.

Observe that ¢ is a fibre preserving map between the bundles
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{O,,n.,M,F} and {M x M, n,, M, M}. The restriction of ¢ to a
fibre is the smooth map

@r = expg: T (M) - M.

It follows from condition (ii) above and the connectivity of T (M)
that ¢, is orientation preserving. Hence ¢ preserves the bundle orienta-
tions.

Finally, recall from sec. 5.9 that ¢ induces a homomorphism

(pe)x: Ae(O) — AM x M).

Proposition III: Let @ be a representative of the Thom class 6,
of 7,, such that

carr pC O,

(cf. Lemma V, sec. 9.3). Then @ has compact support and (p.)+«P
represents the Lefschetz class of M.

Proof: Since M is compact, @ has compact support. Moreover,

carr(pc) @ C Im ¢.

Thus, for all ¥ € A(M x M),

carr(¥ A (pe)«P) CIm o,

Since ¢ preserves the bundle orientations we can apply Proposition VIII,
sec. 7.12, to obtain

| oA Gen®) =f ¥ Alp)o.

Fe

On the other hand, it follows from the definition of (¢.), that
@* o (po)x: A(O0) — A(O,) is the inclusion map. Hence

fr PP AD = fM W A (o) 5P

Thus if (p,)«P represents o € H(M X M) and P represents y € H(O,),
we have

# #*
f (o) sy =} w-a weHM x M)
Fe M
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Finally, observe that
poo =4,
where o denotes the zero cross-section in 7, (cf. Property (i) above).
In Example 3, sec. 5.5, it was shown that o o 7 is homotopic to the

identity in T,,. The same argument shows that o o =, is homotopic to
the identity map of O, . Hence,

¢~(p00071'£=40‘n'£.

It follows that for 8 € H(M)
[ i) a=f iy ey = f nfaemi)
~8-f y=p-f o=5p

(since 7z o 4 = ). Now Corollary I to Proposition I, sec. 10.3, implies
that
«=Ay.

Q.E.D.

Corollary: For every neighbourhood V of 4(M) in M X M, there
exists a representative ¥ of the Lefschetz class such that carr ¥ C V.

Proof: Combine the proposition with Lemma V, sec. 9.3.
Q.E.D.

Now let x_ denote the Euler class of the sphere bundle associated
With T™M

Proposition IV: The Lefschetz class, 4, and y_ are related by the
equation
Xs — 4%(Ay).
Proof: Choose a representative @ of 8, such that carr @ C O,.
Then it follows from Proposition III that 4%(A,,) is represented by
A* (@) P. Since 4 = g o 0,

A¥(@,) P = 0*p* ()P = 0*®.
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But Corollary I to Proposition V, sec. 9.6, implies that 0*® represents

Xs «
Q.E.D.

Proof of Theorem I (sec. 10.1): Apply Proposition IV, and the
corollary to Proposition I, sec. 10.3, to obtain

= [ 4@ =[x
Q.E.D.

10.5. Index sum. Proof of Theorem II (sec. 10.1): We may assume
that N is connected. If N is orientable, Theorem II is an immediate
consequence of Theorem I and Theorem III, sec. 9.9. If N is non-
orientable, let N be the oriented double cover (cf. Example 9, sec. 3.21).
Then X pulls back to a vector field X on N with finitely many zeros and,
since N is oriented,

Xy = ]'(X)‘
On the other hand, by Theorem IV, sec. 9.9,
HX) = 2i(X).
Thus it remains to show that

Xy = 2XN'
Recall from sec. 5.7 that

H(N) = H.(N)® H(N)

and H (N) =~ H(N). Moreover, if w: N — N is the covering transfor-
mation and w?: H?(N) « H?(N) is the induced linear map, then

tr w? = dim H?(N) — dim H*N).

Since w(z) # z (2 € N), it will follow from the corollary to Theorem III,
sec. 10.8, that

z”: (—1)?trw? = 0.

P=0

Thus

S (—1)7 dim H2(W) = 3 (—1)» dim H*().

p=0 p=0
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Recalling that dim H?(N) = dim H?(N) (cf. sec. 5.7), we obtain

Xy = Zn‘. (—1)?(dim HY(N) + dim H*(N)) = 2x,, .
p=0

Q.E.D.
Corollary I: If dim N is odd, then X, =0.

Proof: Apply Theorem IV(1), sec. 5.16.
Q.E.D.

Corollary II: If N is the double cover of N, then

XN = 2XN .

Corollary III: Let P be any connected n-manifold (n > 2). Then
P admits a vector field without zeros if and only if P is not compact, or
P is compact and x, = 0.

Proof: Apply Theorem V, sec. 9.9, and Theorem II.
Q.E.D.

Corollary IV: Every odd dimensional manifold admits a vector field
without zeros.
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10.6. The Poincaré adjoint. Let M and N be compact oriented
connected manifolds of dimensions m and n, respectively, and let
¢: M — N be a smooth map. Denote the restriction of ¢* to H?(N)
by ¢?. Let

¢m-r: H™?»(M)— H"?(N)

be the unique linear map such that
PGP, B) = Pplo, "8), o€ H™ (M), Be HY(N)

(Zy , P, are the Poincaré scalar products—cf. sec. 5.11).
The linear maps ¢ define a linear map

¢: H(M)— H(N),

homogeneous of degree n — m; it is called the Poincaré adjoint of ¢*.
If m = n, ¢ is homogeneous of degree zero.

If y: N — O is a map of N into a third compact connected oriented
manifold O, then

o =des.
Lemma I: If m = n, then
Poo* = dego .

In particular, if M = N and deg ¢ 3 0, then ¢* is a linear isomorphism
and

¢ = dego - (#%)7"
Proof: Observe that, for « € H?(N) and B € H™?(N),
Pu(Fo*a, f) = Pl9*a, 9*f)

= f :, ¢¥(a - f) = degp - Py(o, B).

The lemma follows from the nondegeneracy of & .

Q.E.D.
400
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Proposition V: Let M be a compact oriented n-manifold. Then the
Lefschetz class of M is given by

Ay = (=1 4(1).

Proof: Let o € H?(M), B € H*?(M). Then by Corollary I to Theo-
rem I, sec. 7.14,

Pu(p. § o A00)

= PoaxulmiB, mhe - A(1)
= (—1)" Proxl (1), 71 - The)
= (=1)" Pu(B, »).

It follows that

F dha (=1 A1) = o, ae H(M).
M
Now Corollary I to Proposition I, sec. 10.3, implies that

Ay = (=1 A(1).
Q.E.D.
10.7. Coincidence number and Lefschetz number. The coincidence

number of two smooth maps ¢: M — N and ¢: M — N between com-
pact, connected, oriented #-manifolds is defined by

Lp.#) = 3. (<1 ey ).

If N = M and ¢ is the identity map, this number is denoted by L(¢)
and called the Lefschetz number of ¢,

Lg) = ¥ (—1)pPtrg.

p=0

In particular, L(i) = Xy °

Proposition VI: Let ¢, %: M — N be as above. Then
(1) Lg, ) = (=1)"L(, 9)-



402 X. The Lefschetz Class of a Manifold

(2) If x: O — M is a map of a third connected oriented compact
n-manifold into M, then

Ligoy,$ox) = degy Lip ¢).
(3) Ifp ~ ¢ andy ~ 4, then L(p, ) = L(gy , $1)-
Proof: (1) Since
Pl Y*3B) = Pl , B), o B HM),
it follows that

tr(gn 7o g 7) = t(g”o?),  O<p<m
whence

Lig.d) = 3. (—=1)? tr(g? o §7) = (—1)"L(th 9)-

p=0
(2) Inview of Lemmal, sec. 10.6,
ti(p o x)? o (42 )7 = tr(x? o 7 o7 o 77)
— tr(g? o 7 0 37 0 x?)

= deg x * tr(p” o ?)
and so (2) follows.

(3) Obvious.
Q.E.D.

Again, suppose : M — N and ¢: M — N are smooth maps between
compact, connected, oriented n-manifolds. Recall the Lefschetz iso-
morphisms (sec. 10.3)

Ay Ly —> HYM x M),  Ay:Ly —— H*N x N)
and that
Ay = M), Ay = Ay()

denote the Lefschetz classes. On the other hand,

g o =Y gt o €Ly
¥4

Proposition VII: With the notations and hypotheses above

Malg* o) = (@ X $)*(Ay).
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In particular, if 4,: M — M X M denotes the diagonal map, then

Lip ) = [ 4@ x ().

Lemma II: Let oeL,. Then
(® X $)*(Ay0) = Auel@* o o o f).
Proof: As in sec. 10.3 it is sufficient to consider the case
o = Ka® Dyf), aecH¥N), BeH»N).
Then, for y € H?(M),

(@* oo f)(y) = (— 1" Dy, iy - g*a
= (*_l)np'@M(!ll#B’ 7) ) <P#a
= [k(p*a @ Datp*B)(»).

It follows that
(P# oQgo (/7 = k((P#a ® DM‘/'#B)!
whence
AM((P# oo Olp) = ((p X i/’)* o K#(a ®B)
= (¢ X $)*(wo).
Q.E.D.

Proof of Proposition VII: Applying Lemma II with o the identity
map of H(N), we obtain

Ael@* o) = (@ X P*OW()) = ( X $)*(Ay).

Thus Proposition II, sec. 10.3, yields

Lip ) = Trig* o) = [~ aiuer o 8) = [ Ao x 9.
Q.E.D.

10.8. The weak Lefschetz theorem. Theorem III: Letg,y: M — N
be smooth maps between compact, connected, oriented z-manifolds

such that ¢(x) = (x) (x € M). Then L(e, ) == 0.



404 X. The Lefschetz Class of a Manifold

Proof: Define x: M -+ N X N by
X(#) = (p() $(x)), xe M.
Since M is compact so is x(M). By hypothesis,
x(M)N 4y(N) = 2,

where 4,: N— N X N is the diagonal map. Hence U = N X N — x(M)
is a neighbourhood of 4(N). According to the corollary of Proposition 111,
sec. 10.4, there is a representative, @, of the Lefschetz class A, such that
carr @ C U. Then x*® = 0; i.e.,

Ao (@ X P)X(P) = 0.
Passing to cohomology yields
430 (p X () =0,
whence, by Proposition VII, sec. 10.7,
L(g, §) = 0.
Q.E.D.

Corollary: If the Lefschetz number of a map ¢: M — M is different
from zero, then ¢ has at least one fixed point; i.e., for some a € M,

¢(a) = a.

Remark: The rest of this chapter is devoted to proving a strength-
ened version of Theorem III, which appears in sec. 10.10.
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10.9. Local coincidence number. Let ¢, y: M — N be smooth maps
between oriented #-manifolds (n >> 2). A point a € M is called a coinci-
dence point for ¢ and s if p(a) = Y(a). A coincidence point, a, is called
tsolated, if there is a neighbourhood O of a such that @(x) % y(x),
x € O — {a}. We shall define the local coincidence number of @ and ¢ at
an isolated coincidence point a.

Let (F, v, R™) be a chart on NV such that ¢(a) € F and v(p(a)) = 0. Set

F=F—{pla)) and F XF=F xF — A(F)
(where 4 is the diagonal map). Then we have the inclusion map
jigp(a) x F—~F X F.
Lemma III: The map j induces an isomorphism of cohomology.

Proof: Use v to give F a linear structure, and define the map
p FX F 5> F x Fby

mlx, y) = (%, x + ).

Since ¢(a) is the zero of F, the diagram

commutes, where k is the obvious inclusion. Since & induces an iso-

morphism of cohomology, so does j. QED

405
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Next, choose a neighbourhood U of g, diffeomorphic to R* and satis-
fying the conditions (i) U is compact, (ii) U C ¢~%(F) N ¢~(F), and
(iii) @(x) # Y(x), x € U — {a}. Define 7: U —F X F by

7(x) = (@(x), 9(x)).
Then 7 restricts to a smooth map
#:U—F x F.
Thus we can form the real number (cf. sec. 6.7)

t = (ay o7 o (7)o oz )(1).

Lemma IV: The number ¢ is independent of the choice of U and of
(F, v, R™).

Proof: Suppose (F,, v,, R®) and U, satisfy the conditions above.
It is sufficient to consider the case that F; C F and U, C U. But then
the diagram

o@) xF > FXF < U

I [

‘P(Q)XFl_h” 1>2F1‘:1—Ux

commutes, and the lemma follows.

Q.E.D.

Definition: The number (g o 7# o (j#)1 o az')(1) is called the local
coincidence number of ¢ and i at a. It is denoted by L (g, ).

Now (with the notation above), regard ¢ and ¢ as maps of U into the
linear space F. Define y — ¢ : U — F by

(¢ — o)x) = (x) —p(x), xel.

Then ¢ — ¢ has an isolated zero at a. Thus the integer deg, (¢ — ¢) is
defined.

Lemma V: dega(‘/’ - (P) = La(‘P, l/’)
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Proof: Define 6: U —F X F by
a(x) = ((*), (¥ — #)x))

and restrict ¢ to
¢:U—>F xF.
The diagram
FxF

commutes, whence
L@, ) = ay o 6* o (K)o az'(1).

On the other hand, the projection p: F X F — F satisfies p o k =,

and hence
P# — (k#)—l'

But
pod = (@) : UnF.
It follows that (cf. sec. 6.11)

L, ¥) = ay o ($ — )" o oz'(1)

= degu(‘/’ — @)
Q.E.D.

Corollary: L (g, ) is an integer.

If N = M, then the coincidence number L, (¢, ) at an isolated fixed
point a of ¢ is called the index of the fixed point and is denoted by L,(¢).
It is independent of the orientation of M.

10.10. The main theorem. For the rest of this article, M and N
denote fixed compact, connected, oriented z-manifolds (n > 2);
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@, 2 M — N are two smooth maps with only finitely many coincidence
points a, ..., @, . The local coincidence number L, (¢, #) will be denoted
by L, ). The rest of this article is devoted to proving the following
generalization of Theorem III, sec. 10.8:

Theorem IV: With the notation and hypotheses above, the coinci-
dence number of ¢ and ¢ is the sum of the local coincidence numbers,

Lo d) = 3 Lip, ).

=1

Corollary I: L(p, ¢) is an integer.

Corollary II: Let ¢: M — M be a smooth map of a compact,
connected, oriented n-manifold, M, into itself with finitely many fixed
points &, ,..., a,. Then

L) =3 (—1)Pue? = ¥ Lo

Pp=0 i=1

Corollary III: If ¢: M — M has finitely many fixed points and
¢ ~ 1, then

X = i Li(‘P)'

i=l

Examples: 1. ¢: S® — S* be a map with finitely many fixed
points a, ,..., a,. Since H?(S") =0 (1 < p < n — 1), we have

tre? =0, I<p<n—1
Moreover,
tro" = deg o and trg® = 1.

Thus Corollary II yields

I+ (=1)degg = 3 Lio)

i=1

2. Let ¢,y: M — S™ be smooth maps (M a compact, oriented,
n-manifold). Then

P=0=497, I1<p<n—1
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Moreover,
"o = degp -
and
@ o0 = degy -
It follows that
L(p, §) = deg § + (—1)" deg .

Thus if ¢, ¢ have finitely many coincidence points a; ( = 1,...,7),
the theorem gives

deg p + (—1)r deg g = 3 Li(gr §)

i=1

3. Again consider ¢, : M — S*, but this time assume that —¢
and ¢ have finitely many coincidence points b, ,..., b, , where

(—)x) = —(#(x))-
Since deg(—¢) = (—1)*! deg ¢ (cf. Example 1, sec. 6.2), we obtain

degy — degp = Zs:Le(—% ).

i=1

4. Let ¢, : M — N be smooth maps between compact, connected,
oriented n-manifolds such that

p* = ¢*.
Then Proposition VI, (2), sec. 10.7, shows that
L(g, $) = L(p, p) = degp  L(1,1) = deg @ * xp -

Thus if ¢, 4 have only finitely many coincidence points g, , ..., a,, then
deg @ - xp = 3. Lilo, ¥).
i=1

In particular, if degp # 0, x, # 0, then ¢ and ¢ have at least one
coincidence point.

We come now to the proof of Theorem IV. Itis broken up into four
steps, each occupying a section. (Note that all diagonal maps are denoted
by 4).
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10.11. Step I. Preliminaries. Let R™ have a fixed orientation and
Euclidean metric, and choose charts (F;, v, , R") for N, subject to the
following conditions:

(i) The F; are disjoint

(ii) v, is orientation preserving

(iii) @(a;) € F; and v(p(a;)) = 0. Assign to each F; that structure of
an oriented Euclidean space for which v; is an orientation preserving
isometry.

Next, choose neighbourhoods ¥V, of ¢(a;) (i = 1, ...,7) so that V, is
compact and V; C F;. Then there are open sets W;, U; C M satisfying
the conditions

(iv) a,e W,CW,CU,

(v) U, is diffeomorphic to R

(vi) U, is compact and p(x) 7 ¥(x) (x € U; — {a)

(vii) Uy v Uy CV;.

In particular, if x € U; then ¢(x), ¥(x) € F;, and so we can form the
difference

$(x) — p(x) e Fy.
Since U; — W, is compact, condition (vi) implies that for some ¢ > 0
((x) —px) > ¢, xeU—Wi; i=1 ., (10.1)

Fix such an € and set
(F)e = {xeF;|| x| <eh

10.12. Step II. Representation of the local coincidence numbers. Let

e U;—V,, b U=V,

denote the restrictions of ¢ and . Then, according to Lemma V,
sec. 10.9, the local coincidence number L(p, ¢) of ¢ and i at 4, is given by

Lp, §) = dega (i — 1) (10.2)

where i, — @;: U; — F; denotes the difference map.

On the other hand, consider the oriented Riemannian vector bundles
& =V, xFy,m, V;,F;) and let p;: V;, X F; — F,; denote the projec-
tion. Define

(PN U,' il Vi X Fi
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by
olx) = (pix), ;s —@)(x)), xeU;.

Then the diagrams

commute.
Now let §; be the Thom class for £; and let ¥; be a representative of 6;
such that
carr ¥; C V; x (Fy). .

In view of formula (10.1) and condition (iv) we can apply the example
of sec. 9.8 to obtain

dega (b —9) = [ oT V.

1

Hence (cf. formula 10.2)
Lipy) = [ o, (10.3)

U;

10.13. Step III.  Define smooth maps

[.L,':F,' XF,—*NX N
by
pilx, 3) = (%, x + y), x,yeF;.

Each p,; is a diffeomorphism onto an open subset of N x N. Now
consider the open subset O C N X N given by

0= [(N — U Vi) x N] U L=)1 piFs X (F)o).

i=1
O is a neighbourhood of 4(N), and satisfies
ONn({x} X N) = p{x} x (F).), =xeV;. (10.4)
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Next, observe that the p, restrict to smooth maps 8;: V; X F;—N X N
and that the diagrams

V‘xF,LNxN

oo

v,—I* N

commute (j; denotes the inclusion map). In view of (10.4) we may use
Proposition VIII, sec. 7.12, to conclude that if &€ A(N X N) and
carr @ C O, then

carr B¥ D C V; x (F)). (10.5)

#(,9) -,

In particular let @ be a closed n-form representing the Lefschetz class
Ay and such that carr @ C O (cf. the corollary to Proposition III, sec.
10.4). Then (cf. Corollary II to Proposition I, sec. 10.3)

fF B = qub =1

Hence (cf. Corollary II of sec. 9.2) B® represents the Thom class 6, .
In view of (10.5) we can apply formula (10.3) at the end of Step II to
obtain

and

Lip#)= [ olfi0.

t

10.14. Step IV. Definer: M -+ N X Nbyr = (p X ) o 4. Then
Proposition VII, sec. 10.7, yields

H#
Lig,$) = [ (dx).
But, by hypothesis,

(M) N A(N) = {(p(a), $(a))}im1,....r -

In particular, 7(M — |, U,) is a compact set disjoint from 4(N). Thus, if
O is the open set constructed in Step III, then

0—r(M-YU)

is a neighbourhood of 4(N).
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According to the corollary to Proposition III, sec. 10.4, we may choose
a representative, @, of the Lefschetz class of IV such that

carrtDCO——r(M—UU,).
‘

Then
carr 7@ C | ) U;
i

and so

L(p, §) = fMT*ds - i fv‘f*«p.

t=1

Finally, observe that the diagrams

,
w F.
Vix F, .

>N x N

commute. Since carr @ C O it follows that (cf. Step III)
Loy =Y [ oiBi® =Y Lip, .
i=1" Uy i=1

This completes the proof.
Q.E.D.
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1. Let # = (E, n, B, F) be a smooth fibre bundle with compact
base and compact fibre. Show that the Euler—Poincaré characteristics of
E, B, F are connected by

XE = XB " XF:

2. A manifold is said to have a homogeneous structure, if it is given
an atlas {(U,, u,)} subject to the following conditions: If x € 4,(U,),
then, for some ¢; > 0,

ugy(1x) = tugy(x), [t—1]<e,.

(i) Show that every noncompact manifold admits a homogeneous
structure.

(i) Show that a compact manifold admits a homogeneous structure
if and only if its Euler characteristic is nonnegative.

(ii1) Let {(U,, u,)} be a homogeneous structure for M. A point x e M
is called an origin, if, for some «, x € U, and u,(x) = 0. Show that if x
is an origin, then for any U, containing x, ug(x) = 0. Show that the
origins form a discrete subset of M. Show that the number of origins
of a compact manifold M is y,, .

3. Let M bea connected compact orientable 4-manifold which admits
a vector field, X, without zeros. Show that HY(M) 5 0 and that dim
HYM) = 2(dim H{(M) — 1).

4. Show that a compact 4-manifold admits a Lorentz metric if and
only if its Euler characteristic is zero. (A Lorentz metric is an indefinite
metric in 7,, of signature 2.)

5. Let ¢ : M — M be a smooth map and let a € M be a fixed point
for . Assume that the linear transformation (dp), : To(M) — T, (M)
satisfies det((dp), — ) # 0. Show that a is an isolated fixed point and
that

=1, if det((dp), — 1) >0
Lo(e) = +1, if det((dp), —¢) <O.
414
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6. Let S2 be the Riemann sphere. Determine the fixed points and
their indices of the map ¢ : §%2 — 52 given by ¢(2) = 2* (n € Z).

7. Projective spaces. (i) Show that every map ¢ : RP* — RP"
(n even) has a fixed point.

(ii) Construct a map CP? — CP? without fixed points.

8. Let ¢ : CP*» — CP" be smooth. Show that the restriction of ¢*
to H¥CP") is of the form A, - ¢ (A, € R).

(i) Obtain the relations

degp =N and L =Y X,

(cf. problem 5, Chap. VIII). -

(i) If s : CP* — CP™ is a second smooth map, show that

Lig, ¥) = ¥ 20,

=0

Conclude that L(p, $) = 0 (and so ¢ and ¢ have a coincidence point)
unless 7 is odd and deg = — deg ¢.

(iii) Repeat (i) and (ii) for HP".

9, Consider two compact oriented n-manifolds-with-boundary
(M;, oM;) (1 =1,2) and let M be a compact (n— 1)-manifold.
Suppose ¢;: ﬁMi——»M are given diffeomorphisms. Identify oM,
with M, via ¢7! o ¢, to obtain a compact manifold, M, 3 M, . Let

X, € Sec(ry, lam,) (¢ = 1, 2) denote the outward pointing normal vector
fields.

(i) Extend X; to a vector field X, on M, with finitely many zeros.
Show that j(X; ) is independent of the extension X; (cf. problem 15,
Chap." VIII).

(ii) Prove that H(M,) and H(M;, 8M,) have finite dimension (cf.
problem 14, Chap. VIII). Let x, , Xu, 2nm, be the corresponding Euler—
Poincaré characteristics.

(iii) Establish the relations
j(Xl) + (—1)”].(1?2) = XMy My >
j(Xl) +j(X2) = xm, T XMy
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and
XMyaM, = XM, + XMy — XM = XMy, oM, + XMy.0M, T XM«

(iv) Conclude that

j&) = XM, = Xm,. oM, + XM -

10. Critical points (Morse). Let fe &#(M) (M a compact n-mani-
fold) have only nondegenerate critical points, a4, ..., @, . Suppose that
the Hessian of f at a, has n — p, positive directions and p; negative
directions. Show that

k
xm= Y (=1)
i=1
Generalize this to compact manifolds-with-boundary (cf. problem 9).

11. Let M be a compact manifold. Let X € Z(M) and suppose the
zero-set of X consists of finitely many disjoint connected submanifolds
P,. Assume that X is nowhere normal to the boundaries of tubular
neighbourhoods of the P, . Prove that

XM=Y, Xp, -
i

12. Suppose M is compact and oriented. Assume that two maps
@, ¥ : M — M have a single coincidence point, a. Show that ¢ is homo-
topic to a map ¢, : M — M which has no coincidence points with ¢,
if and only if L(p, ) = 0.

13. Intersection theory. Let M be a compact submanifold of a
manifold N. Suppose ¢ : P — N is smooth. ¢ is called transverse regular
to M, if whenever ¢(x) € M, then

To(M) + Im(dp), = To(N).

(i) If ¢ is transverse regular to M, prove that ¢~(M) is a closed sub-
manifold of P. What is its dimension ?

(ii) Use Sard’s theorem (cf. problem 13, Chap. III) to prove that any
map ¢ is homotopic to a smooth map ¢, which is transverse regular to
M (Thom’s transversality theorem).

(iii) Assume all manifolds oriented. Let i : M — N be the inclusion
and let ¢, be as in (ii). Denote 7 (M)by M N Pandlety : MNP — N
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be the restriction of ¢, . Orient M N P. Define cohomology classes in
H(N) by
[M]=#1), [PI=@1), [MnP]l=dQ)
Show that
[M N P = [M][P]

and conclude that [M N P] and ¢* depend only on 7 and ¢.

(iv) Apply (iii) to the case N =M X M,i=4: M—> M X M and
P = M. Thus ¢(x) = (o(x), 7(x)), where o, 7: M — M. Show that in
this case [M] * [P] = L(o, 7) wrxum » Where w . is the orientation class
of M x M.
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The Exponential Map

A.l. Sprays. Let M be an m-manifold with tangent bundle
7 = (Ty , 7, M, R"). The tangent bundle of the manifold T, will be
written 73, = (T3, , w3, Ty, R?"). Consider the commutative diagram

Tfl_dl, Ty

o e

Ty——M .
m

A spray for M is a smooth map Y: T, — T, which satisfies dm o ¥ =«
and 7y o Y = «. (In particular, a spray is a vector field on T',.)
Next consider the map u: R X T — T, given by

u(t, &) = t€, teR, ¢é€Ty.
It determines, for each ¢ 5 0, the diffeomorphism p,: T), — T, given
by wl8) = ult, 6.
A spray, Y, for M is called affine, if

()Y = (1Y, t#0.

Example: Assume that the tangent bundle of M is trivial,
Ty =M xX R~
Then T% = (M x R*) x (R* x R") and dr and , are given by
dn(x, by k1) = (v, k), xeM
mox, by R D) = (x,B),  h & IeR"
In this case, an affine spray is given by

Y(x,h) = (%, h; ,0), xeM, heR"
418
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Lemma I: Every manifold M admits an affine spray.

Proof: Cover M by open sets U, with trivial tangent bundle (e.g.,
by chart neighborhoods). Let Y, be an affine spray in U, (cf. the example
above). Let {f,} be a partition of unity in M with carr f, C U, . Then

Y =3 ()Y,

is an affine spray in M.
Q.E.D.

A.2. The flow of a spray. Let Y be an affine spray for M. Recall
from sec. 3.15 that there is a radial open set W C R X T, and a smooth
map ¢: W — T,, such that

delt) = Y(elt), (1, 6)eW,

and

Pe(0) = ¢
(Pe(t) = Y(t, £)). In particular,
$e(0) = Y(§), e T(M).

The map ¢ is called a local flow of the spray Y.
From now on it will be assumed that M is compact. Give 7, a
Riemannian metric and set, forr > 0,

0, = {£e Tyl £ <7).
Since M is compact, we can choose 8 > 0 and p > 0 so that
I, x 0,C W,
where I, = {te R| | #| < 8}. Then the flow restricts to a map
bl x 0,— Ty .
Lemma II: Let Y be an affine spray on a compact manifold M.

Then the corresponding flow satisfies

Wt s) = silst, ), tely, Is|<1, £€O,.

In particular,
#(t,0,) =0, xeM.
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Proof: Fixxe M,sel, and £ € T(M)N O,. Define maps
arly— Ty and Bl Ty,
by
oft) = (¢, sf) and  B(t) = sy(st, £).
Then

o0) = B(0) = s¢.
Moreover, &(t) = Y(a(t)) while, since Y is affine,
Bt = dils - elst)) = Y(s - elst)) = Y(B(1).

Thus « and 8 are orbits for the vector field Y agreeing at ¢ = 0. Now
Proposition X, sec. 3.15, implies that o = 8.

Q.E.D.

A.3. The exponential map. Again let Y be an affine spray on a
compact manifold M and let i: I; X O, — Ty denote the corresponding
flow. Set

x=mo: Iy x O,— M.

To each vector £ € O, associate the path x,: I, — M given by

Xf(t) = X(t’ f)
Then t — y(t) (cf. sec. 3.1) defines a path x, in T, and x, = (x¢)" 18
a path in T2, .

Proposition I: With the notation and hypotheses above the map x
satisfies

(1) x(0, & = =(&)

(2) %0)=¢
(3) Xdt) = Y(xe?)), £€0,,tel,
and

(4) x( &) = x(st, £), |s| < 1.

Proof: (1) follows immediately from the definition of x. Since Y
is a spray,
. Xe(t) = (dm) e(t) = (dm) Y(e(t)) = $¢(0);
ie.,
Xe = e -
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It follows that
xe(0) = $(0) = £

and

xe(t) = () = Y($elt) = Y(xe(1))-

Thus (2) and (3) hold.
To obtain (4) apply 7 to both sides of the equation in Lemma II and
observe that

m(s(st, £)) = mf(st, £).
Q.E.D.

Next set e = $pd and consider the smooth map

aly, x O, - M
given by
o(t, §) = x(3d¢, (2/3)¢)-

Definition: The map exp: O, -~ M given by
exp(€) = o(l, &), £ 0,

is called the exponential map generated by the affine spray Y.

The restriction of the exponential map to T, (M) = O, N T, (M)
will be denoted by exp, .

Proposition II: The exponential map has the following properties,
if € is sufficiently small:

(1) exp0, =x xeM
(2) exp, is a diffeomorphism of T, (M) onto an open subset of M
and satisfies

(d expy)y, = ¢

(3) The map ¢: O, —~ M X M given by

@(§) = (n(€), exp §)

is a diffeomorphism of O, onto an open subset of M x M.
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Proof: (1) Apply Lemma II, sec. A.2.
(2) Fix £€ T, (M) and define a: (—1,1) - M by

oft) = exp(t) = x(39, (2/5)t£).
Then

&(0) = (d expg)o,¢-
Now apply Proposition I, (4) and (2), to obtain
50) = %d0) = &
ie.,
(d expa)o,§ = &
The rest of (2) is immediate if ¢ is sufficiently small.

(3) In view of (2), ¢ is injective. It remains to be shown that ¢ isa
local diffeomorphism. In fact, assume that for some £ € T, ,(M) and

1€ T{(Th)
(dp)n = 0.
Then (dn)n = 0 and so
1€ V(Ty) = T{TAM))

(cf. sec. 7.1). Thus
0 = (dexply = (d expin.
Now (2) implies that n = 0. Hence dgp is injective.

Since dim T), = dim(M X M), each (dp), must be a linear iso-
morphism. Thus ¢ is a local diffeomorphism.

Q.E.D.
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Abstract simplicial complex, 217
Adjoint, Poincaré, 400
Affine simplex, 236, 388
Afhne spray, 135, 418
Algebra

anticommutative, 4

cohomology, 11, 176

connected, 4, 177

exterior, 4, 57

graded, 3, 4

graded differential, 11

Lie, 4, 107, 152, 173

symmetric, 4, 58

of smooth functions, 30
Anticommutative algebra, 4

Index

Anticommutative tensor product of graded

algebras, 4
Antiderivation, 4, 141
Associated sphere bundle, 105, 293
Atlas, 15, 414
equivalent, 22, 24
finite, 20
smooth, 22

Barycentre, 390
Base space, 38
Basis for topology, 14
Betti numbers, 178, 205, 231
Betti groups, 232
Bigraded module, 8
Borsuk-Ulam theorem, 275
Boundary, 232
manifold-with, 139, 231, 350, 415
Bundle
composite, 311
cotangent, 97, 173
deleted, 105
disc, 381
exterior algebra, §7

Canonical

Canonical transformation, 173

fibre, 38

along fibre, 281
isomorphism, 45
jet, 132

map, 45, 47, 84, 291
normal, 138, 380

pseudo-Riemannian, 66, 85

quotient, 84
Riemannian, 66

of skew transformations, 72

space, 38

sphere, 105
subbundle of, 44, 68
symmetric algebra, 58
tangent, 94, 385
vector, 44

vertical subbundle of, 281

C

tensor
algebras, 4

Carrier

compact, 147, 189, 295, 380

of cross-section, 59
of differential form, 147
of smooth function, 30

product

of graded

Cauchy’s integral theorem, 235
Cayley map, 25

Cayley numbers, 132, 175
Cech cohomology, 238
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degenerate, 236
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identification map of, 22

Classifying map, 86

Closed differential form, 176
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Cohomology,
algebra, 11
of compact manifolds, 218
of manifolds, 176
of nerve, 218
axioms, 178, 190
with compact supports, 189
of R" with compact supports, 190
of real projective spaces, 187
space, 9
of sphere bundles, 316ff., 344
of spheres, 185
of vector bundles, 352ff.
Coincidence
numbers, 400ff.
point, 405, 409, 416
Compact Kiinneth homomorphism, 210
Compact manifolds, 41, 203, 205, 218, 228
Compact supports, 141, 189, 295, 380
Complex functions, 274
Complex projective space, 42, 415
Complex structure, 73
Complex vector bundle, 73, 86
Complexification of vector space, 2, 27
Composite bundle, 311
Composition map, 57
Conjugate parallelism, 175
Connected algebra, 4, 177
Connected manifold, 177
Connected sum of manifolds, 140
Connecting homomorphism, 10, 181, 193
Constant map, 24
Constant rank, 84
Continuous homotopy, 41
Continuous local degree, 387
Continuous vector field, 389
Contractible manifold, 86, 183
Contracting homotopy, 183
Contraction, 183
Contravariant tensor field, 119
Coordinate functions, 131
Coordinate representation
for fibre bundles, 38, 40
Riemannian, 68
for vector bundles, 44, 45, 70
Coordinate transformation, 44
Cotangent bundle, 97, 173
Cotangent space, 96
Cotangent vector, 96
Covariant tensor field, 118

Cover(ing), open, 14
Covering transformation, 71
Critical point, 136, 416
nondegenerate, 138
Critical value, 136, 245
Cross-section(s)
of exterior power, 81
of fibre bundle, 38
index of, 330, 367
Lie algebra of, 107
mappings of, 62
module of, 60, 78
normed, 66
pull-back of, 325
smooth family of, 153
of sphere bundle, 337
of tangent bundle, 106
of tensor product, 80
Cycle, 232
fundamental, 237

D

Dashed degree, 385, 386
De Rham cohomology algebra, 176
De Rham existence theorem, 233
De Rham isomorphism, 218, 228
De Rham theorem, 218fF.
Definite integral of smooth family, 153
Deformation retract, 184
Degenerate chain, 236
Degree

global, 240, 264, 408, 414

global dashed, 386

local, 259, 260, 264, 382, 383, 387

local dashed, 385

mapping, 240ff.
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Density, 171, 233
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Lie product of, 107
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of map, 12, 88ff., 95
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Determinant function,

in real vector space, 1, 124

in vector bundle, 64, 70
Diagonal map, 29
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local, 99
Difference class, 325
Differentiable map, 12
Differential algebra, 9
Differential equations, 13, 112
Differential forms, 115, 119ff., 283fF.

closed, 176

components of, 131

cochain of, 218, 348

exact, 176

exterior derivative of, 145

harmonic, 231

horizontal, 283

invariant, 144, 158

with noncompact carrier, 164

smooth family of, 153

vector valued, 149, 163
Differential operator, 9

of order p, 133, 134
Differential space, 9
Dimension theory, 17ff., 239
Direct limit, 238
Directed system of vector spaces, 238
Disc bundles, 381
Disjoint union axiom, 179, 232
Distribution, 134
Divergence, 171, 234
Double cover, 71, 123, 399
Double of manifold, 140
Dual

of module, 7

of strong bundle map, 52
Dual vector bundles, 52, 67, 80

E

Ehresmann connection, 314
Eigenvalue, eigenvector, 85
Embedded manifold, 102
Endomorphism of vector bundle, 85
Euler class, 320, 328, 334, 391

index sum and, 372

relative, 349

Thom class and, 364

of Whitney sum, 345
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Euler-Poincaré characteristic, 178, 186,
20511, 228, 391, 408, 414, 416
Euler-Poincaré formula, 11
Euclidean half-space, 139
Euclidean space, 2
maps between, 260
one-point compactification of, 23, 25
Evaluation map, 56
Exact differential form, 176
Exact sequence, 8, 84
Exact triangle, 10, 178
Exponential of linear transformation, 13
Exponential map, 13, 26, 28, 136, 395
generated by affine spray, 421
Exterior algebra, 5,57
Exterior derivative, 145
partial, 148, 312
Exterior product, 120
External tensor product, 84, 86

F

Face
of simplex of nerve, 217
of smooth simplex, 231
Family
of cross-sections, 153
of differential forms, 154
Fibre, typical, 38
Fibre bundles, 38, 104
Fibre degree, 383
Fibre integral, 300
Fibre integration, 289ff., 310
Fibre preserving map, 39
Fibre projection, 209
Fibre-compact carrier, 295, 298
Fibering of spheres, 42, 140, 345, 348
Field of n-frames, 170
Finite affine simplicial complex, 236, 389
Five-lemma, 8
Fixed points, 408
index of, 407
isolated, 414
Flow
generated by vector field, 113
of spray, 419
Free module, 7
Free involution, 187
Frobenius’ theorem, 134
Fubini’s theorem, 162, 307
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Function germs, 32ff.
Functions, 30

complex, 274
Fundamental class, 238, 278
Fundamental cycle, 237
Fundamental theorem of algebra, 247

G

Germs

of forms, 188

of functions, 32f1.

of maps, 33
Global degree, 240ff., 264

dashed, 386
Graded algebra, 3, 11
Graded differential space, 10
Graded module, 8
Gradient, 115
Gram-Schmidt process, 68
Grassmann manifolds, 42, 86
Green’s formula, 172
Gysin sequunce, 320ff., 382

H

Half-space, 139
Harmonic forms, 231
Hermitian metric, 2, 27, 74
Hessian, 138, 379, 416
Hodge theorem, 231
Homogeneous linear map, 8
Homogeneous structure, 414
Homogeneous tensor, 8
Homology

simplicial, 234

smooth, 231
Homomorphisms

of algebras, 2

of differential spaces, 9

of graded differential algebras and spaces,

11

of graded modules, 8

of Lie algebras, 4

of vector bundles, 45, see also Bundle

maps

Homotopy, 33ff., 41, 86

axiom, 178, 232

continuous, 41

contracting, 183

Index

-, 277
lifting theorem, 314
operator, 9, 178
orientation and, 130
proper, 191
Hopf fibering of spheres, 42, 140, 345, 348
Hopf index formula, 377
Hopf invariant, 229
Hopf theorem, 266fF.
Horizontal subbundle, 282ff.

I

i-basis for topology, 14
Identification map for charts, 22
Immersion, 99
Inclusion map opposite point, 97
Index, 330, 369, 377
degree and, 332
Euler class and, 372
of fixed point, 407
(mod 2), 387
sum, 334, 369, 391, 415
Induced orientation, 66, 373
Infinitely differentiable, 12, see also Smooth
Inner product, 1, see also Metric, Scalar
product
Integral
fibre, 300, 310
over fibre, 300, 310
line, 234
of smooth family of cross-sections, 153
over smooth p-simplex, 233
of vector valued differential form, 163
Integral cochomology, 233, 310
Integration
over fibre, 298fF., 310
in manifolds, 160ff., 174
in vector spaces, 159
of n-forms, 161, 164
Interchange map, 29
Interior of manifold with boundary, 139
Intersection theory, 416
Invariant differential form, 144, 158
Inverse function theorem, 12
Invisible chain, 236
Invisibility theorem, 237
Involution, 71, 122
canonical, 135
free, 187



Involutive distribution, 134
Irreversible manifold, 127, 173, 206, 345
Isolated coincidence point, 405
Isolated fixed point, 414
Isolated point for map, 259
Isolated singularity, 329, 385
Isolated zero, 367

manifold, 384
Isometric vector bundles, 67, 68
Isometries of R", 348
Isomorphism, 45, see also specific types

Jacobi identity, 4
Jet bundles, 132, 134
Jet, of cross-section, 134

K

Klein bottle, 41, 290

Kiinneth homomorphism, 208, 210, 257
Kiinneth isomorphism, 11, 211, 21§
Kiinneth theorem, 211, 215

L

Laplace operator, 172

Lebesgue dimension, 17
Lebesgue measure zero, 136
Lefschetz class, 393, 397
Lefschetz coincidence theorem, 405
Lefschetz formula, 11

Lefschetz isomorphism, 393
Lefschetz number 401

Lefschetz theorem, weak, 403
Legendre transformation, 175
Leray, 315

Lie algebra, 4, 107, 152, 173
Lie derivative, 142

Lie product, 108

Limit, direct, 238

Line integral, 234

Linking number, 276

Local coincidence number, 405
Local decomposition of projection, 38
Local diffeomorphism, 99

Local flow of spray, 419

Local one-parameter group, 114

Index 439

Local properties of smaoth maps, 99

Localization isomorphism, 79

Localizing class, 252

Locally Euclidean topological space, 41

Locally finite open cover, 14, 31

Locally finite simplicial complex, 217

Lorentz metric, 414

Lusternik—Schnirelmann—Borsuk theorem,
276

Manifolds
analytic, 42
boundary of, 139, 231, 350, 415
cohomology algebra of, 176
compact, 41, 203, 218, 228
connected sum of, 140
contractible, 86, 183
double of, 140
embedded, 102
Grassmann, 42, 86
irreversible, 127, 206
nonorientable, 71, 125, 201
metric, 41
open sub-, 23
orientable, 124, 129, 139, 205, 277
parallelizable, 174
product of, 29, 110
quotient, 101, 122
retract of, 104
simply connected, 235
smooth, 22, 29, 41
Stiefel, 348
submanifolds of, 103
symplectic, 172
topological, 15
Map
orientation preserving/reversing, 127
power, 28
“product,” 29
proper, 190, 273
trivializing, 44
Mapping
degree, 240f1., 264
transformations, 45, 47
Massey triple product, 228
Mayer-Vietoris axiom, 178, 232
Mayer-Vietoris sequence, 180, 193, 229,
254
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Metric, see also Inner product, Scalar

product
Hermitian, 2, 27, 74
Lorentz, 414
manifold with, 41
Riemannian, 66
Mixed tensor field, 119
Mod 2
degree, 274
index sum, 387
Module, 711.
bigraded, 8
of cross-sections, 60, 78
of derivations, 106
finitely generated, 76
finitely generated projective, 78
free, 7
graded, 8
projective, 78
of strong bundle maps, 50
Morse, 416
functions, 138
lemma, 138
Mébius ship, 41
Multilinear bundle map, 47, 82
Multilinear functions, §, 51
Muiltiplication operator, 6, 209

N

n-forms, integration of, 159fF,

Nerve of open cover, 217

Nine-lemma, 9

Noncompact carrier, forms with, 164
Nondegenerate bilinear function, 52
Nonorientable manifolds, 71, 125, 201ff.
Normal bundle, 138,380

Normed cross-section, 66

o

One-form, 115
One-parameter group, 114, 157, 173
One-point compactification
of complex plane, 247
of Euclidean spaces, 23, 25
Open cover(ing), 14
nerve of, 217
order of, 17
Open subset, 14,.23, 89

Index

Open submanifold, 23, 126
Operator
differential, 9
of order p, 133, 134
gradient, 115
homotopy, 9, 178
Laplace, 172
multiplication, 6 209
substitution, 6, 141
Orbit of vector field, 112, 157
Ordered simplex, 217, 236
Orientable fibre bundle, 285
Orientable manifold, 72, 124ff., 129, 139,
205, 277
Orientable vector bundle, 64
Orientation
canonical of R, 126
determinant function representing, 64
of fibre bundle, 285, 310
induced,
of submanifold, 126
of Whitney sum, 66
of manifold, 124
positive, 64, 70
preserving/reversing map, 127, 287
product, 127, 139
of sphere, 124
of sphere bundle, 293
of vector bundle, 64, 292
of vector space, 1
Orientation class, 201
Oriented Riemann bundle, 70
Orthonormal basis, 68
Orthonormal 2-frames, 346
Orthonormal vectors, 348

P

Paracompact space, 14

Parallelism, 174, 175, 235, 278
Parallelizable manifold, 174

Partial exterior derivative, 148, 312
Partition of unity, 32

Path, smooth, 35

Period of p-form, 233

Permanent, §

Picard theorem, 13, 112

Poisson bracket, 173

Poincaré adjoint, 400

Poincaré duality, 194ff., 2011, 231, 249
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Poincaré isomorphism, 171, 197
Poincaré lemma, 183
Poincaré polynomial, 178, 186, 215, 345
Poincaré scalar product, 194
Positive basis, 124
Positive n-form, 124
Positive normed determinant function, 70
Positive orientation, 64, 70
Positive self-adjoint linear map, 26
Power

exterior, 57

symmetric, 58
Power map, 28
Product

exterior, 120

Lie, 107

M, of vector fields, 111

manifold, 29f., 97, 110, 121, 139, 148,

256

orientation, 127, 289

of spheres, 215, 250

tensor, 55

of tensor fields, 118

of vector bundles, 46, 84, 378
Projection map, 29
Projective module, 7, 78, 86, 106
Projective space

real, 23, 85, 125, 138, 415

complex, 42, 415

quaternionic, 42
Proper map, 190, 273
Proper homotopy, 191
Pseudo-Riemannian vector bundle, 66, 85
Pull-back, 48, 72, 82, 84, 85, 315

of cross-section, 325

Q

Quaternions, 2, 42, 275
Quotient bundle, 84
Quotient manifold, 101, 122

R

Radial neighbourhood, 112

Radial vertical vector field, 292

Rank of vector bundle, 44, 55

Real projective plane embedded in R4, 138

Real projective space, 23, 85, 125, 187,
376, 415

441

Refinement of open cover, 14
Regular point, 136
Regular value, 136, 244
Relative cohomology, 349
Relative Euler class, 349
Restriction

of vector bundle, 46

of vector field, 109
Retract, 104, 183

deformation, 184
Retrenchment, 300
Riemann coordinate representation, 68
Riemann-Hurwitz relation, 386
Riemann metric, 66
Riemann vector bundle, 66, 70
Rotation number, 277
Rouché’s theorem, 275

S

Sard’s theorem, 136
Scalar product, 2, 52, see also Inner product,
Metric

Poincaré, 194
Second countable space, 14
Second tangent bundle, 134
Short exact sequence, 84
Shrinking of open cover, 17
Signature

of manifold of dim 4k, 206

of scalar product, 2
Simple open cover, 218
Simplex

affine, 236, 388

ordered, of nerve, 217

smooth, 231

standard, 231
Simplicial complex, 217, 236
Simplicial homology, 234, 236, 389
Simply connected manifold, 235
Skew symmetric p-linear functions, §, 51,

79, 61

Skew tensor product of algebras, 4
Skew transformations, 72
Smooth atlas, 22
Smooth family, 153
Smooth fibre bundle, 38
Smooth function, 30
Smooth homology, 231
Smooth manifold, 22, 28ff., 35
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Smooth map, 12, 24ff., 88, 99

Smooth path, 3§

Smooth structure, 22, 29

Solid angle, 171

Space
base, 38
bundle, 38
cohomology, 9
cotangent, 97
differential, 9
Euclidean, 2
Hermitian, 2
paracompact, 14
second countable, 14
tangent, 87
topological, 14
total, 38

Sphere bundle
associated, 105, 293
cohomology of, 316ff., 344
cross-sections of, 338
Euler class of, 320, 328
induced orientation of, 293
vector bundles and, 291

Spheres, 22, 24, 26, 34, 93, 104, 128, 166,

175, 184, 262, 270, 408
cohomology of, 185ff.

Euler-Poincaré characteristic of, 186

Hopf fibering of, 42

Lefschetz class for, 395

maps of, 262

orientation of, 124

Poincaré polynomial of, 186

product of, 215, 250

vector fields on, 375
Sprays, 135, 418

flow of, 419
Standard simplex, 231
Star-finite open cover, 217
Star-shaped domain, 170, 183
Stiefel manifolds, 348
Stokes’ theorem, 167ff., 170

for chains, 233

for fibre integrals, 311
Strong bundle maps, 45, 50

dual of, 52

module of, 50, 61
Structure

complex, 73

homogeneous, 414

Index

manifold, 22, 39
smooth, 22
symplectic, 173
Subbundle, 44, 68
horizontal, 282
vertical, 280
Submanifold, 103
Submersion, 99, 313
Substitution operator, 6, 141
Support, see Carrier
Suspension, 266

Symbol of differential operator, 133, 134

Symmetric algebra, 5, 58

Symmetric multilinear functions, 5, 51, 61

Symplectic bundle, 85
Symplectic manifold, 172

T

Tangent bundle, 94ff., 385
cross-section of, 106
of fibre bundle, 280f1.
of product manifold, 97
second, 134

Tangent space, 87

Tangent vector, 87

Tensor field, 118

Tensor product, 4, 7, 55
external, 84, 86

Thom class of fibre bundle, 355
Euler class and, 364
Lefschetz class and, 397
of vector bundle, 359, 370

Thom isomorphism, 355, 380

Topological manifold, 15ff., 41

Topological space, 14

Topology, 14
Torsion, 175
parallel, 235

Torsion groups of manifold, 232
Torus, 23, 41, 215, 228, 230, 248
Total space, 38

Transversality theorem of Thom, 416

Transverse regular map, 416
Trivial bundle, 46, 76
Trivializing map, 44
Trivializing neighbourhood, 44
Tubular neighbourhood, 138
Typical fibre, 38
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U

Unit tensor, 8, 81, 118
Universal coefficient theorem, 232

A

Van Est’s theorem, 313
Vector
cotangent, 96
differential forms with, values, 149, 163
tangent, 87
Vector bundles,
Bundles
Cartesian product of, 46, 84, 378
complex, 73, 86
construction principle of, 47
double cover induced by, 71
dual of, 52
endomorphism of, 85
isometry of, 67, 68
orientation in, 292
pull-back of, 48, 84
restriction of, 46
symplectic, 85
tensor product of, 55, 84, 86
trivial, 46, 76
Whitney sum of, 54
Vector fields, 106ff., 131
constant, 108
flow generated by, 113
¢-related, 109

44f1., 291ff. see also

443

Lie product of, 108
local one-parameter group generated by,
114

M-product of, 111
Vector fields

on C, 378

orbit of, 112

parallel, 174

on real projective space, 376

restriction of, 109

on sphere, 375
Vertical cohomology, 313
Vertical component, 282
Vertical subalgebra, 283
Vertical subbundle, 281
Vertical subspace, 280
Vertical vector, 280, 281

A\

Wang sequence, 229

Whitney sum, 54, 68, 76, 84
Whitney—Graustein theorem, 277
Whitney’s embedding theorem, 137
Winding number, 276

Z

Zero index, 332
Zero measure, 136
Zero section, 59
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