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(i) Show that m* is injective.

(i) Show that, if ® € Im 7*, then i(£)® = 0 and 6(Z)® = 0 for
every vertical vector field. Show that if F is connected, then the converse
is true.

(iii) Show that if # admits a cross-section, then the map,
m*: H(M) <« H(B), is injective.
19. Let E and F be the Lie algebras of GL(n; R) and U(n).
(1) Construct an isomorphism of graded differential algebras
(ANE* R C, 8 ®) = (AF*® C, 8 ® ).
(ity Compute H,(GL(n; R)) and compare it with H(SO(n)).
(it1) Compute H,(O(p, q)) (cf. problem 12, Chap. II).

20. Outer automorphisms. Construct an automorphism of U(n)
which is not an inner automorphism. Determine its action on H(U(n)).
Do the same for SO(2n).



Chapter VI

Principal Connections and the Weil Homomorphism

In this chapter G denotes an r-dimensional Lie group with Lie
algebra E. # = (P, m, B, G) denotes a fixed principal bundle
(dim B = n). T: P x G — P denotes the principal action of G on P.
The fibre over x € B is denoted by G, ; note that this is not an isotropy
subgroup.

For every h € E, Z, denotes the fundamental vector field generated
by h. The operators i(Z,), 8(Z;) in A(P) are denoted by i(k) and 6(k)
(cf. sec. 3.13). The Lie algebra of invariant vector fields on P is denoted
by Z(P).

The vertical subbundle of 7, will be denoted by V, ; we use the
boldface notation to avoid confusion with the notation for a principal
connection (cf. sec. 6.8). A cross-section of V is called a vertical vector
field; thus a vector field, Z, on P is vertical if and only if Z ~ 0. The
module of vertical vector fields is denoted by Z',(P). !
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§1. Vector fields

6.1. The vertical subbundle. Recall that the vertical subbundle is
the subbundle V; of the tangent bundle 7, of P whose fibre at z is given
by

V.(P) = ker(dn),, =z€P,

(sec. 7.1, volume I).
Since G acts freely on P, we also have the fundamental bundle

Fp C Tp (cf. sec. 3.11).
Proposition I: The fundamental and vertical subbundles coincide.
Proof: Since dmodA, = 0, it follows that

FpoCVp.
On the other hand,

rank (Fp) = dim G = rank(V,).

Hence

Fp= Vp. Q
.E.D.

Corollary I: The map P X E — Tp given by (2, k) > Z,(2) defines
a strong bundle isomorphism

PXE=5V,.

Proof: Apply sec. 3.9 and sec. 3.11.
Q.E.D.

Corollary II: The map ¥(P) ® E — Z(P) given by
fR®h—f-2Z,, feP(P), hekE,

defines an isomorphism of #(P) ® E onto Zy(P). In particular, Z,(P)
is a free &(P)-module, generated by the fundamental vector fields.
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1. Vector fields 237

Proof: Apply Corollary I.
Q.E.D.

Corollary III: An isomorphism %(P; E) > Z,(P) is given by
f—Z,, where
Z4(2) = Zyu)(2)-

Proof: This is the isomorphism of Corollary II.
Q.E.D.

Example: Suppose B is a single point and P = G. Then
Ve=Tp=T;
and the isomorphism,

G x E-—> T,
is given by
(a, h) =~ X,(a),

where X, is the left invariant vector field generated by A.

6.2. Invariant vector fields. Recall from sec. 3.10 that the action
of G on P determines the action (Z, a) — Z - a of G on Z(P), where
Z-a=(Ty),Z2.IfZ-a = Z,ac G, then Z is called an invariant vector
field and the space of invariant vector fields is denoted by Z/(P).

Example: Recall from Example 3, sec. 3.10, that
Z,a'=127,,, fePP;E), acG,
where a - f is the E-valued function defined by
(a-f)z) = (Ada)f(z - a).

In particular, the vector field Z; is invariant if and only if the function f
is equivariant.

Proposition II: Let Z be an invariant vector field on P. Then there
is a unique vector field X on B such that Z ~ X. The correspondence
Z+— X is a surjective Lie algebra homomorphism

mu: ZI(P) — Z(B).
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Its kernel is given by
ker m, = FYP)N Z ,(P).
Proof: Since Z is invariant,
Z(z-a) = (dT,)Z(z), acG, z€eP.
It follows that
(dr) Z(z - a) = (dn) Z(z), acG, z€P.

This shows that, for each x € B, there is a unique tangent vector X(x)
at x satisfying

(dn) Z(z) = X(x), z€G,.

The correspondence x +> X(x) defines a set map X: B — T5. To
show that X is smooth, let 6: U — P be a cross-section over an open
set U. Then X = (dn) o Z o 0, and so X is smooth in U (and hence in
B). Hence it is a vector field on B. Clearly, Z ~ X. Since = is surjective,
X is uniquely determined by Z. !

To prove the second part, consider the map =,: Z/(P) —> Z(B)
defined by Z +— X. It follows directly from Proposition VIII, sec. 3.13,
volume I, that =, is a homomorphism of Lie algebras. Moreover,
my«Z = 0 if and only if (dn) Z(z) = 0, z € P; i.e., if and only if Z is
vertical. This shows that

ker my, = Z(P)N F y(P).

It remains to show that =, is surjective. Let X € Z(B) and choose a
principal coordinate representation {(U,, ,)} for 2. Let {p,} be a
partition of unity for B subordinate to the covering {U,}. Define vector
fields, X,, in U, X G by

X (x,a) = X(x), x€eU,, a€eG.

Then (¢,) X, € Z!(n~(U,)) and so an invariant vector field Z on P is
given by

Z= Z, "*Prx ' (ll’tx)* Xa .

Evidently, »,Z = X.
Q.E.D.
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Corollary: If Z e Z!(P) and Y € & y(P), then
[Z, Y]e %X (P).
Proof: Since Z ~m,Zand Y ~0, it follows that

[Z, Y] ~ [74Z, 0] = 0.
Q.E.D.
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6.3. The homomorphism n*. A differential form, @, on P is called
invariant if it is invariant under the right action of G. The algebra of
invariant forms is denoted by A4,(P).

A differential form @ on P is called horizontal if i(Y) P = 0, Y € Z'y(P).
Since the fundamental bundle coincides with the vertical bundle (Pro-
position I, sec. 6.1), @ is horizontal if and only if it is horizontal with
respect to the action of G (cf. sec. 3.13). The algebra of horizontal forms
is denoted by A(P);_, .

Now consider the homomorphism =*: 4(P) «— A(B).

Proposition III: The homomorphism 7* is injective. The image of
m* consists precisely of the differential forms which are both invariant
and horizontal.

Proof: Since the maps 7 and (dr), (2 € P) are surjective, 7* must be
injective. Moreover, the relations,

Tron* =% aeG,

and
(dr)Zy(z) =0,  heE, ze€P,

imply that the differential forms in Im 7* are invariant and horizontal.

Now assume ¥ € A(P) is invariant and horizontal. Choose a principal
coordinate representation {(U,, )} for #. Since ¢, is equivariant,
Y¥¥ e A(U, x G)is invariant and horizontal with respect to the action,
((x, a), b) — (x, ab), of G on U, x G. It follows that there is a unique
@, € A(U,) such that

D, x 1 = .

This uniqueness implies that @, and @, agree in U, N U, . Hence there
is a unique differential form, @ € A(B), such that

D(x) = D(x), xelU,.

Clearly, m*® = Y.
Q.E.D.
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2. Differential forms 241

Definition: The differential forms which are both invariant and
horizontal are called basic. They form the basic subalgebra, Ay(P), of A(P).

Remark: Proposition III shows that #* can be considered as an
isomorphism
m*: A(B) —> Ag(P).

Finally recall that 4(P),_, denotes the subalgebra of A(P) consisting
of differential forms, @, satisfying

9D =0, hek.

Set A(P);_q N A(P)y_g = A(P);—¢.0_o (cf. sec. 3.13). If G is connected,
Proposition VI, sec. 3.13, shows that A(P);_q4_, is the basic subalgebra.
Thus in this case we can write

m*: A(B) = A(P)ico,00 -

6.4. Homomorphisms. Let # = (P, #, B, G) be a second principal
bundle with the same group G and let ¢: P — P be a homomorphism of
principal bundles inducing ¢: B — B. Since ¢ is equivariant, the
fundamental vector fields on P and P generated by the same vector,
h € E, are p-related,

Z ~ 2,, heE
(cf. sec. 3.9). This yields the commutation relations (cf. sec. 3.14)
o* o O(h) = 8(h) o 9*,  @*ci(h) =i(h)og*,  heE,
where G(h) = 6(2,) and i(h) = i(Z,). Moreover,
e o TF =Trop*, aceG.

Hence the homomorphism ¢*: A(P) — A(P) restricts to homo-
morphisms 4,(P) — A,(P)and Ax(P) - As(P)and we have the commu-
tative diagram

As(P) <2 4y(P)

Ll =~ | f*

A(B) < AB) .
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6.5. Integration over the fibre. An orientation of E (the Lie algebra
of G) determines an orientation in the fibre bundle £ (cf. sec. 7.4,
volume I) as follows: Give the trivial vector bundle, P X E, the induced
orientation, and then use the bundle isomorphism,

PxE-=>V,,

(Corollary I to Proposition I, sec. 6.1) to orient V, . Finally, recall from
sec. 7.4, volume I, that an orientation of V, determines an orientation

of 2.

Example: If B is a point, P = G, then Vp, = Tp = T; and the
induced orientation of 2 is simply an orientation of G. It is the left
invariant orientation induced by that of E (cf. sec. 1.13) as follows from
the example of sec. 6.1.

More generally, if P = B X G, then Vp, = B X T; and the orien-
tation of V, is that obtained from the orientation of 7. Thus the
orientation of {x} X G induced from that of 2 is simply the orientation
of G just defined.

Now, let # = (P, #, B, G) be a second principal bundle, and suppose
@: P — P is a homomorphism of principal bundles inducing ¢: B — B.
Then (since ¢ is equivariant) the diagram,

Px E—%X

]

Ve

E

§

X P
20 Ve

commutes. It follows that ¢ preserves the induced bundle orientations.

In particular, if {(U,, ¢,)} is a principal coordinate representation
for 2, then

l/‘u,z: (G» » {x}) G) g (P, m, B: G)

can be considered as a homomorphism of principal bundles. It follows
that the maps ¢, ,: G — G, are orientation preserving, where G, is
given the orientation induced from the orientation of 2.

Next, assume that G is compact and connected. Since & is orientable,
the fibre integral (cf. sec. 7.12, volume I) is defined, depending of course,
on the orientation of 2.
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On the other hand let 4 € A"(G) be the unique invariant 7-form such
that [c 4 = 1 (cf. sec. 1.15). Let € € A"E be the element satisfying

d(e), e = 1.
Write € = h; A >+ A h, (h; € E). The operator,
i(e) = i(h,) o+ o i(hy),
in A(P) depends only on €. Moreover, since
i(h)o Tf-v = Ty10i((Ad a)h), aeG, hekE
(cf. diagram (3.1), sec. 3.9), it follows that
i()o TH1 = Trioi(det Ada-¢) = TXi10i(), acG.

Since h A € = 0 (h € E), we also have i(h) o i(¢) = 0. These relations
show that #(e) restricts to an operator

i(e): AJ(P) — Ax(P).

Proposition IV: The diagram,

inclusion

A (P) ———— A(P)
wOi(c)l lfa

o

Ag(P)——— A(B),

commutes, where w is the involution defined by
w(®) = (—1)”"®, & e AYP).

Proof: Itis clearly sufficient to consider the case that # is the product
bundle: P = B X G. We must show that

* fc b = w(i()®), Pe A(P).

Recall the bigradation of A(P) = A(B X G) (cf. sec. 3.20, volume I).
Evidently, 4,(P) is a bigraded subalgebra of A(P),

A4(P)= 3 3 AP(P).

p=0 ¢=0
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Moreover, the operators #(¢) and m* o f; are both homogeneous of
bidegree (0, —r). Hence it is sufficient to consider the case that
that @ € AY"(P).

In this case a simple computation shows that

® = (—1)"i(e) P A nid

(where mg: B x G — G is the projection). Since i(€)® € Im =¥, it
follows that (cf. Example 2, sec. 7.12, volume I)

n* facb = (1) i()® = w(i(e)P),

as desired.
Q.E.D.

6.6. Vector-valued differential forms. We recall, for convenience,
some facts from volume I, and from Chap. III. Let W be a finite-
dimensional vector space. Then A(P; W), the space of W-valued
differential forms in P, is a graded left module over the graded algebra
A(P), and an isomorphism, A(P) ® W — A(P; W), is given by
D RQwi>D A w, we W. (Here w also denotes the constant function
P—w)

The operators i(Z), 6(Z), T¥, and & (where Z € Z(P) and a € G)
extend to operators {(Z) ® ¢, (Z) @ «, T ® ¢, and 8 ® « in A(P; W),
again denoted by #(Z), 8(Z), T¥ and 8. In particular, (k) and 6(h) (k € E)
are regarded as operators in A(P; W).

A W-valued differential form, £, is called horizontal if i(h)2 = 0,
heE (cf. sec. 6.3). The horizontal forms are a graded subspace of
A(P; W), denoted by A(P; W),_,. The isomorphism,

AP) @ W = A(P; W),
restricts to an isomorphism
AP)ing & W —> A(P; W)isy -

Now suppose that R is a representation of G in W, and let R’ be the
derived representation of E in W. The operators : Q R(a) and
1 @ R'(h) (ae G, heE)in A(P; W) are denoted simply by R(a) and
R'(h).

Thus (cf. sec. 3.15) a W-valued form @ is equivariant if

TY® = R(a)®, acG.
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According to Proposition VII, sec. 3.15, if G is connected this is
equivalent to

8(h)P = —R'(h)P, hek.

The space of equivariant forms is written A4,(P; W).

On the other hand, a W-valued form, @, is called invariant if
Ti® = @, ae G. Thus @ is invariant if and only if ® e 4,(P) Q W.
If the representation is trivial, then the definitions of equivariant and
invariant forms coincide.

Finally, the space A(P; W),_, N A,(P; W) is called the space of basic
W-valued differential forms and is denoted by Ax(P; W). If W = R and
R is the trivial representation, this reduces to the definition of sec. 6.3.
A generalization of Proposition III of that section to vector-valued forms
will be given in sec. 8.22.

6.7. Multilinear maps of vector-valued forms. Recall that if W,
and W are finite-dimensional vector spaces, then a linear map ¢: W, - W
induces the #(P)-linear map,

Pe =« @ gi A(P; W,) — A(P; W),
given by
0 P2y, Z,) = @(P(Zy, s Z,)), W ANP, Wy, Zy,..,Z,€Z(P).
More generally, let : W, X -+ X W, — W be a k-linear map of

finite-dimensional vector spaces. Then ¢ determines the k-linear map
(over L(P)),

oxt A(P; W) X -+ x A(P; W) — A(P; W),
given by

1
<P:k(qll )ty lpk)(zl PR Zm) = Z Gcv?’('yl(za(l) ’ "‘)) ooy 'Fk("'r Za(m)))a

J 2L Y
where
Woe AP, W) (=1, k), ZeZ(P) v=1,..,m),

k
Y pi=m.

i=1

If we identify A(P; W;) with A(P) @ W;, we can write

PP @y s ooy P @ wy) = (P A A D) @ @y .., W),
P, e A(P), weW;, 1=12, ..,k
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In particular, if R represents G in W, then a bilinear map,E x W — W,
is given by
(h, w) > R'(hyw.

The corresponding map of differential forms is written
(@, %)~ B(¥), DecAP;E), ¥YeAP;W)
Thus if & € E and 4 also denotes the constant function P — A, then
K(¥) = R(h)¥.

As a special case suppose W = E and R is the adjoint representation.
In this case the original bilinear map is given by (&, k) > [k, k] (h, k € E)
and the corresponding map of differential forms is written

(P, V)~ [, ¥]
The relation, R'([h, k]) = R'(h) - R'(k) — R'(k) > R'(h), leads to the

formula
[¢1 ) d’z](l‘u) = ¢l(¢2(‘}’)) _ (_l)pq ‘pz(‘pl(‘}'))’
®, € A»(P; E), ®,c A(P;E), ¥e A(P; W).

In particular, if @ € A(P; E) has odd degree, then
[0, 5)(¥) = 2(H(F)), Ve AP; W).
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6.8. Connections in a principal bundle. The right action of G on P
induces a right action, dT, of G in the tangent bundle T, . It is given by

AT, a) = (T, aecG, LeTs
(cf. Example 7, sec. 3.2). The equations 7o T, = 7 (a € G) yield
dm o dT, = dn.
Thus the vertical subbundle V; is stable under d7T.
Definition: A principal connection in & is a strong bundle map

V: Tp — T satisfying the conditions:
@y r=vr.
(i) ImV, = V,(P),z€P.
(iif) ¥V is equivariant; i.e..
dT,oV=VodT,, a€G.

Remark: We remind the reader of the following notation conven-
tions:

(1) V, is the vertical bundle with fibre V (P) at z € P.
(2) V is a principal connection restricting to linear projections

V,:T(P)—>V,(P), zeP.

Examples: 1. For the trivial bundle P = B X G, the vertical
subbundle is B X T, and a principal connection, V, is given by

V(§,m) = (0in), €€ To(B), neT(G).

2. Let{U,}be an open cover of B and let V, be a principal connection
in the bundle (=~1U, , =, U,, G). Let {U,} be a locally finite refinement
of the open cover {U,} and suppose that {p,} is a family of smooth
functions on B such that carrp, C U, and ¥, p, = 1. (Note that
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248 VI. Principal Connections and the Weil Homomorphism

{ p.} need not satisfy p,(x) > 0.) Then a principal connection, V,in £ is
given by
V=YY%, V,.

Remark: Examples 1 and 2 show that every principal bundle
admits a principal connection.

6.9. Horizontal subbundles. Let V be a principal connection
in 2. The subspaces ker V, C T(P) (2 € P) are the fibres of a subbundle,
H;, of 7p. Evidently

7p = Hp © Vp;

i.e., Hp is a horizontal bundle (cf. see 7.2, volume I). It is called the
horizontal bundle associated with the connection. Its fibres are called the
horizontal subspaces and are written H,(P).

The bundle H, is stable under the action of G. Moreover the map,
V > Hp, is a bijection between principal connections and G-stable
horizontal bundles.

Examples: 1. The horizontal subbundle corresponding to the
principal connection of Example 1, sec. 6.8, is given by Hp = T X G.

2. Suppose a Riemannian metric has been defined in P so that the
bundle maps dT,: Tp — T (a € G) are all isometries. Then Hp = V3 is
a G-stable horizontal subbundle. The corresponding principal connec-
tion is simply the orthogonal projection T,(P) — V,(P) at each point
zeP.

Now let I be a fixed principal connection in £ and let H, be the
corresponding horizontal subbundle. Then

H=.—V:Tp—H,

is the projection with kernel V, .
Since V' and H are strong bundle maps, they determine module
homomorphisms,

Vi Z(P)— Z(P) and  H,:Z(P)— Z(P),
given by
(ViZ)z) = V(Z(z)) and (H,Z)(2) = H(Z(2)), Ze%(P), z€P.
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The cross-sections in Hp are called horizontal vector fields, and the
module of horizontal vector fields is denoted by Z4(P). It is, in general,
not stable under the Lie bracket. The decomposition 7, = Hp @ V,
leads to the direct decomposition,

Z(P) = Zu(P) ® Zy(P),
which is given explicitly by
Z> (H,Z, V., 2).

Since the operator V is equivariant with respect to the action of G,
so is H. It follows that H, and V', commute with the isomorphisms,

(To)x : Z(P) —> Z(P), acG.

In particular, if Z is invariant then so are H,Z and V ,Z. Thus the direct
decomposition above restricts to a direct decomposition,

Z'(P) = Zu(P) ® Zv(P),
where
ZHP) = T(PYNZy(P) and  ZYP) = ZT(P)N Z y(P).
Now consider the surjective homomorphism,
7y ZU(P) — Z(B),

of & (B)-modules (cf. sec. 6.2). Since ker 7, = Z/(P), it follows that =
restricts to an isomorphism

™t TH(P) — Z(B).

The inverse isomorphism, A: Z(B) 5 Z}(P), is called the horizontal
lifting isomorphism for the principal connection V.

Proposition V: The lifting isomorphism satisfies
M[X,, Xo]) = Hu([AX,, AX,]), X,, X, e Z(B).
Proof: In fact,
mM[Xy ) Xo]) = [y, Xy] = [mAXy, mAX] = my([AX), AX,)),
whence 7,(A([X; , X,]) — [AX;,AX,]) = 0.
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Thus N[ X, , X,]) — [AX,, AX,] is vertical. It follows that

N[Xy, X)) = HMXN[X,, X,]) = H([AX,, AX,]).
Q.E.D.

6.10. The connection form. Let V: Tp — Tp be a principal con-
nection in Z. In sec. 6.1 we obtained a strong bundle isomorphism

PXE-=>V,.

Composing V' with the inverse of this isomorphism gives a strong bundle
map

o TP — P x E.
The isomorphism, P X E 5 V, , is given by
(2, h) > Zy(2) = (d4,), (k), =z€P, hekE.

It follows that, for { € T (P), o({) = (2, (d4,),*V ,{). Thus an E-valued
1-form, w, on P is given by

w(z; §) = (dAz)e—l (V:L).
Definition: w is called the connection form associated with V.

Recall from Corollary III to Proposition I, sec. 6.1, that every E-
valued function f on P determines a vertical vector field Z, . In particular,
suppose Y € Z(P) and consider the function w(Y). It follows from the
definition of w that

Zw(Y) = V*Y'
Thus, w(Y) = 0 if and only if Y is horizontal.

Proposition VI: The connection form has the following properties:

(1) i(h)w = h, h € E.
(2) T¥w = (Ada)w, acG.

Conversely, if o0 € AY(P; E) satisfies these conditions, there is a unique
principal connection in £ for which it is the connection form.

Remark: Note that (2) asserts that w is equivariant with respect to
the adjoint representation of G.
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Proof: Suppose first that w € AY(P; E) is derived from a principal
connection V as described above. Then

((hw)(z) = w(z; Zy(z)) = (dA,) (dA)h = h, zeP, hek,

whence (1).
Moreover, according to sec. 3.1, T, o 4, = A,., o 7,-1 . Hence

dT, o (d4,), = (dA,..),> Ada™!, aeG.
Since V is equivariant, it follows that for a € G, z € P, { € T(P),

w(z - a; (dT,) {) = (Ad a™!) w(z; {),
whence (2).
Conversely, assume that ¢ is an E-valued 1-form on P which satisfies
(1) and (2). Thus each o(z) is a linear map T,(P) — E. Define
V: Tp — T, by setting

V(2) = (dA,), o o(z), z€P.

Then V is the unique principal connection inducing o.

Q.E.D.

Corollary I: The connection form satisfies the relations
iMw=h and  O(h)w = —(ad h)w, heE.

Conversely, let o be an E-valued l-form on P which satisfies these
relations. Assume that G is connected. Then o is a connection form
on P.

Proof: This is an immediate consequence of the proposition and

Proposition VII, sec. 3.15.
Q.E.D.

Recall from Proposition V, sec. 3.10, that the Lie product of a funda-
mental field and an invariant field is zero. On the other hand, we have

Corollary II: The Lie product of a fundamental field and a
horizontal field is horizontal.

Proof: We must show that w([Z,, Y]) = 0, where Z, is a funda-
mental field and Y is horizontal. Since Y is horizontal,

i(Y)w = o(Y) =0.
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Thus, by Corollary I,
i(Y)6(h)w = —i(Y)(ad h)w = —(ad h)i(¥)w = O

and so
w([Zy, Y]) =i([Zy, Y])w = 6(h) i(Y)w — ¢(Y) O(h)w = 0.
Q.E.D.
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6.11. The operator H*. Fix a principal connection, ¥V, in & and set
H = « — V. Consider the space A(P; W), where W is a finite-dimen-
sional vector space. The operator, H*: A(P; W) — A(P; W), defined by

(H*Q)(=: Ly, s §) = Q23 HY, o ..., HL,), 2€ P, [ e T,(P), Qe A?P;W),

is called the horizontal projection associated with V.

Lemma I: The operator H* has the following properties:

(1) HX® A Q) = H*® A H*Q, @ e A(P), Qe A(P; W).
(2) H* is a projection on the subspace of horizontal forms:

(H*)? = H* and Im H* = A(P; W), -

(3) H*o T =TkoH* acG.
(4) H*o0(h) = 6(h) - H*, he E.
(5) H*» = 0 (w, the connection form).

Proof: Property (1) is obvious. Properties (2) and (3) follow from
the relations

H*=H, HoV=VoH=0, HodT,=dT,oH.

(4) is a consequence of (3) and Proposition X, sec. 4.11, volume I, and
(5) is obvious.
Q.E.D.

6.12. Covariant exterior derivative. The covariant exterior deriva-
tive associated with a principal connection, V, is the linear map,

V: A(P; W)— A(P; W), given by
V = H*o4.
Proposition VII: The covariant exterior derivative has the following
properties:

(1) V(@ A Q) = V& A H*XQ + (—1PH*® A VQ,
® € AP(P), € A(P; W).
253



254 VL. Principal Connections and the Weil Homomorphism

(2) i(h)oV =0, heE.

(B) VoTF=TF-V, acsG.
(4) Vobh)=6h)-V, hekE.
(5) Vorm* =8ox*

Proof: (1): Apply H* to the formula
§(P A Q) =D A Q + (—1)7D A 5L,

(2), (3), and (4) follow from Lemma I, and (5) is a consequence of the
relation H* o n* = 7%,

Q.E.D.
Corollary: V restricts to a map Vy: A(P; W),_q — A(P; W) -
Remark: In general, V2 # 0.

Proposition VIII: Let : W, X -+ X W, — W be a k-linear map
and let @; be a W;-valued differential form of degree p, (i = 1, ..., k).
Then

k
Vipa(®@, s oo D] = Y (= )P+ 20 o (H*D, , ..., VO, , ..., H*D,).

i=1

Proof: It is sufficient to consider the case @; = ¥; ® w; with
¥, e Ar(P) and w; € W;. Then

Px(Py, o0y ) = (W1 A AP, @) o1y .., wy)

and so the proposition follows from Proposition VII, (1).
Q.E.D.

Applying the covariant exterior derivative to functions on P we obtain
an operator

V: #(P)—~ AY(P)
which satisfies the relations

(1) V(f-&8=Vf-g+/f Vg fgeHP)

(2) i(h)oV =0, hekE.

B) TkoV=VoT¥ aceG.

(4) Vf =23, fe F(P).

Conversely, assume that an operator V: #(P) — AY(P) which satisfies
these equations is given. Then there is a unique principal connection
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on 2 such that V is the corresponding covariant exterior derivative.
In fact, with each vector field Z on P associate the map

Qz: S(P)— (P)
given by
0(f) = i 2)¥f — Vf).
In view of (1),Q;, is a derivation in the algebra &(P). Hence there is a
unique vector field, ¥,, on Psuch that Q,(f) = Y,(f). The operator

Z— Y, in Z(P) is #(P)-linear, and hence it determines a bundle map,
V: Tp — Tp, such that

VdZ)=Y,, ZeZ(P)
Condition (4) implies that each Y, is vertical and so I maps T into
V. On the other hand, if Z is vertical, condition (2) implies that
Y,=2, ZeZ P);
thus V' restricts to the identity on V, . Finally, (3) shows that
AT,V — VodT,, acG.

Hence the bundle map, V, is a principal connection in Z.
Now set H = — V. Then

H(Z)(f) = Z(f) — V(Z)([)
=i(Z)Vf, ZeX(P), feF(P).

Hence H*8f = Vf. It follows that V is the covariant exterior derivative
of f with respect to this connection.

Finally, if V, is any connection on & such that the corresponding
covariant exterior derivative coincides with V, then we have

Vi(z;{) = 6f(2; Hyl), zeP, LeT,P), feS(P).

This relation shows that the operator H, (and hence the connection) is
uniquely determined by V.

6.13. Basic forms. Let R be a representation of G in W. It follows
from Proposition VII, sec. 6.12, that the space A(P; W) of basic forms
(cf. sec. 6.6) is stable under the covariant exterior derivative of a prin-
cipal connection.
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Proposition IX: Let V and w be the covariant exterior derivative and
connection form of a principal connection. Then (cf. sec. 6.7)

VO = 8b + w(P), De Ag(P; W).

Proof: Since @ is horizontal,
i(h)sd = O(h)®  and  i(h) (w(®)) = (i(k)w)(P), hek.

Moreover, according to Proposition VI, sec. 6.10, i(h)w is the constant
function P+ h. Thus (cf. sec. 6.7)

(i(h) w) (D) = R'(h) P.

Since @ is equivariant, these relations yield (cf. Proposition VII,
sec. 3.15)

i(h)(3D + w(P)) = 8(h)P + R(W)D =0, hekE,
and so 8@ + w(P) is horizontal. It follows that
80 + w(P) = H*(D + w(P)) = VO + (H*w)(H*®) = VO,

(because H*w = 0).
Q.E.D.

Corollary: If W = E and R is the adjoint representation, then

VP = 50 + [w, @], @ e Ay(P;E).



§s5. Curvature

In this article V denotes a principal connection in the principal bundle
#. The corresponding connection form, horizontal projection, and
covariant exterior derivative are denoted by w, H*, and V, respectively.

6.14. Curvature. The curvature form of the connection V is the
E-valued 2-form, 2, on P given by
2 = V.

Proposition X: The curvature form has the following properties:

(1) £ is horizontal: i(h)2 =0, h e E.

(2) £ is equivariant: TfQ2 = (Ad a )2, ae G. In particular,
0(h)Q2 = —(ad k)2, h € E.

(3) Let Y,,Y,eZy(P) be horizontal vector fields. Then

Vi[Yy, Ye)) = —Zaw,.vy -

(Recall, from sec. 6.1, that Z, denotes the vertical vector field generated
by fe £L(P; E).)

Proof: (1) is obvious. (2) follows from the equivariance of w (cf.
Proposition VI, sec. 6.10). To prove (3) observe that, since Y, and Y,
are horizontal, w(Y,) = w(Y,) = 0. Thus

QAY,, Yy) = 8uw(Y,, Yy) = —w([Y;, Ya)).

According to sec. 6.10, V,Y = Z ), Y € Z(P). Now (3) follows.
Q.E.D.

Recall that A: Z(B) S Z%(P) denotes the horizontal lift (cf. sec. 6.9).

Corollary I: If X,, X, e Z(B), then the decomposition of
[AX;, AX,] into horizontal and vertical parts is given by

[)‘Xl ) '\Xz] = )‘([Xl ) Xz]) - Zn(»\x,.ax,) .
257
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Proof: Apply Proposition V, sec. 6.9, and part (3) of the proposition
above.

Q.E.D.

Corollary II: The curvature is zero if and only if the Lie product
of any two horizontal fields is horizontal.

Next, consider the real bilinear map,
[,1: A(P; E) x A(P; E)— A(P; E),

induced by the Lie multiplication in E (cf. sec. 6.7). The differential
form, [w, w] € A% P; E), is given by

[w, w)(z; &, &) = 2[w(z; &), w(z; L), &, G e To(P).

Proposition XI: The curvature form satisfies the structure equation
of Maurer—Cartan

(1) 2 =dw + 1o, »]
and the Bianchi identity
(2) Ve =0.
Proof: To verify (1) it is sufficient to check that
(MR = i(h)dw + 3w, w]), heE and H*Q = H*Gw + d[w, w]).

Proposition VI, sec. 6.10, implies that i(h)w is the constant function
P — h. Hence

i(h) bw = O(h)w = —ad(h)w, heE.
On the other hand,
i(h)[w, w] = 2[i(h)w, w] = 2[4, w] = 2 (ad h)w.

Thus i(h)(dw + 3w, w]) = 0 = i(h)Q.
Since, clearly, H*([w, w]) = [H*w, H*w] = 0, we have

H*Q = Q = H*w = H*(dw + }[w, w])
and so (1) is proved.
To verify (2) apply H* o & to the structure equation just established.
This gives
VQ = H*$}[w, w] = H¥[dw, w] = [H*bw, H*w].
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But H*w = 0 and so we obtain (2).
Q.E.D.

Proposition XII: If R is a representation of G in a vector space W
and @ € Ax(P; W), then

Vip = Q(P).
Proof: In view of Proposition IX, sec. 6.13,
Vo = 50 + w(P).
Since V@ is again basic, the proposition can be applied a second time to
yield
V2P = §(w(P)) + w(5P) + w(w(®))
— 8(®) + Hw, W)(P) — AP)

(cf. sec. 6.7).
Q.E.D.

Corollary: If fe S(P; W), then V¥ = Q(f).

6.15. Induced connection. Let # = (P, #, B, G) be a second prin-
cipal bundle with the same group G and let ¢: P—> P be a
homomorphism of principal bundles. Then a principal connection ¥ in
& induces a principal connection in 2.

In fact, if & is the connection form in £ corresponding to P, then
®*& is a connection form in 2. The principal connection V determined
by w is called the connection induced by ¢. It makes the diagram

T, N Ty
Vl lv
TPT Tp

commute. (These results follow easily from sec. 6.4 and sec. 6.10.)
The following relations are immediate:

H*oq,*:q,*of{*, Voq,*:q,*oﬁ, -Q:‘P*-Q-
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V continues to denote a principal connection in the principal bundle £.
Its connection and curvature forms are denoted by w and £, while H*
and V denote, respectively, the horizontal projection and covariant
derivative.

6.16. Multilinear functions. Recall that we may regard an element
I' € ®* E* as the real-valued k-linear function in E given by

F(hl)"'rhk) = <F’hl®'”®hk>) hl»'-'»thE'
Thus I' determines a map

I'y: A(P; E) x - x A(P; E)— A(P).

(kterms)
We shall denote I', simply by I', and write
', ..¥)=r,..¥), Y, .,¥.<cAP;E).

As an immediate consequence of the definitions of sec. 6.7, we have

Lemma II: Let I' e ®? E*, I, e ® E* and form
I'' ® I'noe @7 E*. Then

(Fl ® FZ)('{II y ety '{Iﬂ+q) = Pl('{Il LR ] '{Iﬂ) A Fz(l]lﬂ+1 ) *tty l‘{I!H'G)’
WeAP;E), i=1,..p+q

6.17. The homomorphism y. Recall that VE* is the symmetric
algebra over E*. The purpose of this section is to construct a
homomorphism

y: VE* — A(P).

Recall that the curvature form is a 2-form on P with values in E.
Define a linear map,
B: &) E* — A(P),
by
BIr)y=r(R,..,9), e ®®E*

(p arguments)

260
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Lemma III: (1) Bis a homomorphism of algebras.

(2) B(®® E*) C 4%*(P).

(3) Let mg: QE* — VE* be the canonical projection given by
my(hf ® - @hX) = hF v - v b,

Then B factors over ms to yield a homomorphism y: VE* — A(P)
making the diagram,

® E*
\
ms A(P)
/
Y
VE* ,

commute.

Proof: (1) follows from Lemma II (set ¥, = --- =¥, = Q).
(2) is a consequence of the fact that £ is a 2-form. To prove (3), simply
observe (via (2)) that

ImBC Y A*(P)
P

and that this is a commutative algebra.
Q.E.D.

The adjoint representation of G in E determines the representation,
Ad", of G in VE* given by

Ad(@)(h} v = v b*) = (Ada)* k% v - v (Ad @ )* k¥
aeG, h*eE* i=1,..,p,
cf. sec. 1.9. Since G acts via homomorphisms in the graded algebra

VE*, it follows that the invariant subspace ( VE*), is a graded subalgebra
of VE*; (VE*), = Yy (VEE¥), .

Proposition XIII: The homomorphism y defined in Lemma III has
the properties:

(1) TmyC A(P)y.
(2) Tfoy =1yoAd'(a),acC.
(3) Voy=0.
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Proof: (1) Since y is a homomorphism of algebras and since VE*
is generated by E*, it is sufficient to show that

y(h*) € A(P)i , h* e E*,

But for h € E, i(h) (y(h*)) = i(h) (h*(R2)) = h*(i(h)2) = O (cf. Proposi-
tion X, (1), sec. 6.14).

(2) Since both sides of (2) are algebra homomorphisms we need only
verify that

(Tyoy)h*) = (yo (Ad a)*)(h*), aeG, h*eE*.

But since £ is equivariant (cf. Proposition X, (2), sec. 6.14),
(T* o y)(h*) = KH(T*Q) = h*(Ad(a-)2)

= (Ad(a~)* H*)|(Q) = (v o Ad(a ) *)(h*).

(3) Every element I'e VP E* can be written in the form =g(I}),
where I't € @7 E*. Then

V(V(P)) = V(FI(Q’ ooy 'Q)) = ‘il Fl(Q,(ith’ X)ﬁ{lon; 'Q)

(cf. Proposition VIII, sec. 6.12).
The Bianchi identity (Proposition XI, sec. 6.14) states that VQ = 0.
Thus
V() =0, TeVrE%

ie, Voy =0.
Q.E.D.

Corollary: y restricts to a homomorphism,

vr: (VE*); — Ap(P),

and the differential forms in Im v, are closed:
oy =0.

Proof: Clearly y((VE*),) C A(P) N A(P);_o = As(P) (cf. sec. 6.3).
Moreover, Proposition VII, (5), sec. 6.12, shows that V reduces to § in
the basic subalgebra. Thus, § oy, = Voy, = 0.

Q.E.D.
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6.18. Explicit formulae for g and y. Identify ®? E* with the space
T?(E) of p-linear functions in E (cf. sec. 6.16). Then, if I"e T?(E) and
Z, e Z(P), we have

1
IB(F)(ZI y o0y sz) = 2_p Z ‘ar('Q(Za(l) ’ Zq(Z))’ eey 'Q(Zo(zp—l) ’ Zo(zp)))‘

0eS?P

Moreover, Lemma III, sec. 6.17, shows that B(I") depends only on the
symmetric part of I'.

Next, identify VPE* with the space SP(E) of p-linear symmetric
functions in E by writing

(v oo v B¥)hy, ..., b)) = perm(ChY, hD).
Then the projection ®P E* -S> V? E*  interpreted as a map
T?(E) — S?(E), is given by

(ﬂsr)(hl LI hn) = 2 F(ha(l) 3y ooy ho(n))'

oes?

On the other hand, the inclusion #5: SP(E) — T?(E), interpreted as a
map VPE* — ®P E*, is given by

ig(hfv v h:) = Z Ry @ - @ k%, -

oeS?

Hence, for I' € VPE*,
‘ﬂsisr - P! F.

It follows that, for I' € VPE*,
AD) = (57) HrsidT) = (o) BGsT)

_ (?"_) (isT) (@, Q).

Interpret I as a symmetric p-linear function; this equation then yields

1
Z eor'(‘Q(ch(l) ’ Zo(Z))l weey 'Q(Zo(z‘p—l) ) Za(2m)))’

yI'(Zy, .., Zzo) = Waesw
Z; e Z(P).

6.19. The Weil homomorphism. Recall from sec. 6.3 that
m*: A(B) — A(P) may be considered as an isomorphism

n*: A(B) —> Ag(P).
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Hence the corollary to Proposition XIII, sec. 6.17, shows that there is a

unique homomorphism,
ve: (VE*) — A(B),
such that 7* o y5 = y,. It satisfies § o y5 = 0.

Thus, composing y; with the projection Z(B) — H(B), (Z(B) = ker §),
we obtain an algebra homomorphism

hg: (VEX), — H(B).

Observe that hs(( VPE*),) C H?(B).
Note that we needed only the principal bundle, together with the
principal connection, V, in order to define 45 .

Theorem I: kg is independent of the choice of connection. Thus it is
an invariant of the bundle £.

Proof: Assume that two principal connections are defined in &
and let wy, w,; be the corresponding connection forms. Consider the
principal bundle Z x R= (P x R, 7 x , B X R, G). Let fe &(R)
be the function given by f(¢) = ¢t. Then the E-valued 1-form, w, on
P x R, given by

w=wy X (l —f)+w Xf
is a connection form (cf. Example 2, sec. 6.8, and Proposition VI, sec.

6.10).

Next consider the injections,
JjioP—>PXxXR and i,: BB xR (v=0,1),
given by
Jo(®) = (20) (@) =(1) =zePh

and
io(x) = (1, 0)  iy(x)=(x,1), «x€B.

Then j, and j, are homomorphisms of principal bundles. Evidently,
Jow =wy and  jiw =0,

whence (cf. sec. 6.15)
o = Q, and jfQ =0

(82, £, , £, denote the curvatures corresponding to w, w, , and w,).
Now let (yo);, (v1):, y: denote the homomorphisms defined via w,,
wy, and w. Clearly

(Yo)r = f: °Yr and )= fik °Yr-



6. The Weil homomorphism 265

It follows that (y,)s = i oys and (y,)s = if oys. Hence hy = ith
and h; = i} h. But 7; and #; are homotopic and so (cf. sec. 5.2, volume I
or sec. 0.14) i = if. It follows that Ay = &, .

Q.E.D.

Definition: Ay is called the Weil homomorphism for the principal
bundle 2. The subalgebra Im kg is called the characteristic subalgebra
of H(B) and its elements are called the characteristic classes for 2.

Remarks: 1. Imhp is a graded subalgebra of the commutative
algebra Y, H*®(B).

2. If the bundle £ admits a connection with curvature zero, then the
Weil homomorphism is trivial and the characteristic subalgebra is zero
in positive degrees. In particular, the Weil homomorphism of a product
bundle is trivial (cf. Corollary II to Proposition X, sec. 6.14).

3. If G is connected, we have (VE*), = (VE*),_,, where 6 is the
representation of E in VE* given by

P
B() (B v =+ v B¥) = — ;h;* v vadR) R Ve v RE B, kY€ EX,

(cf. Example 2, sec. 1.9). Hence, in this case, & is a homomorphism from
(VE*),_, into H(B).

4. Suppose G is compact and connected. Then the cohomology
algebra H(P) is determined by the graded differential algebra (A4(B), 8)
and the Weil homomorphism %5 . Moreover, given A(B) and kg it is
possible to determine H(P) explicitly. This will be done in volume III.

Theorem II: Let ¢: & —~ % be a homomorphism of principal
bundles with the same group G and let b: B — B be the induced map.
Then the diagram,

H(B)
%
(VE#), v
X
H(B),

commutes (k5 and kg denote the Weil homomorphisms for # and &).
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Proof: In fact, let & be a connection form for # and let w = ¢*d be
the induced connection form for 2 (cf. sec. 6.15). Then Q = *Q.
This relation implies that

x4

Yy =@V and ve = ¥*Vs,
whence

hy = *hy .
Q.E.D.

Corollary: Let k3 denote the restriction of ks to (V+E*),. Then
m* o by = 0. (VYE*), = ¥;.0 (VEX),.)

Proof: Regard the action T: P X G — P as a homomorphism from
the product bundle # = (P X G, n,, P, G) to 2, mducmg m: P— B
between the base manifolds. Since £ is trivial, we have hp = 0 (cf.
Remark 2, above), whence n*h} = hp = 0.

Q.E.D.

6.20. Change of connection. Let w, and w, be connection forms in
# and set § = w;, — w,. Then

(8 = wy(Z,) — wolZe) =h —h =0, heE,
T*0 — (Ad a )6, aeG,
and
8(h)0 = — (ad h)b, heE.
In particular, 6 is a basic E-valued 1-form on P (cf. sec. 6.6).

Now adopt the notation established in the proof of Theorem I, sec.
6.19, and observe that the connection form w in P X R can be written

w=wyX1+4+80Xf

Theorem 1 implies that, for each I'e (VP E*),, there exists a
& € A*Y(B) such that (y,),I" — (7o)l = 89P.

In this section we construct an explicit @. Use i;: VPE* — QPE* to
identify VPE* with the p-linear symmetric functions in E (cf, sec. 6.18).
We shall use the notation

(5 Wiy vy =T(¥, - ¥, W, ),

arguments) n.rguments)

e VPE* | W, , ..., ¥, € A(P; E), cf. sec. 6.16.
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Proposition XIV: With the notation and hypotheses above,

(n)sl” — (vo)sI" = 80,

where @ is the (2p — 1)-form on B determined by

o= Y !

1 o1 o1
o TTHTT (L, 6 v = (Vo) v i (L8, 61 v 77 (0)*) -

Proof: Since the homotopy connecting 7, and 7, is just the identity
map of B X R, we have iff — if = ko8 + 6 o k, where

1
(RE)(x; £, 1 £py) = f WY(x, t; djdt, £, ..., £,) dt,
0
Wed*B x R), &€ TAB),
(cf. sec. 0.14). It follows that

(v1)sI" — (vo)sI" = (iy° — ig)ysl" = 8P,

where

1
(D(x; gl 3 00y 620—1) = fo (‘)’Br)(x’ t; d/dt! §1 3 0y §2D——1) dt'
Hence (cf. sec. 6.16)
1
()25 Ly, oory Lapg) = j 0 D)z, t; djdt, &y ..., Lopy)

1]
= f 31 7@ s )5, 1.4t by Lope) .
o P!
On the other hand, the Maurer—Cartan formula (Proposition XI, sec.
6.14) applied to the relation above for w yields

=0, %1+ (80 +[wy,0]) x f+ 3[0,6] x f2— 6 x &f.

Since 0 is basic, we obtain from the corollary to Proposition IX, sec. 6.13,
that

Q=0,%x14+ V0 xf+306,0] xf2—06x5f
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This implies that

rQ,.., Q)= Y —P——, 2i(1", v (V9) v I8, 06) v Qry x fi+visf

1
i+j+k=p-1

p! 1 ) ) o
+ ¥ AT, (V 8y v [6, 6] v Q) x fivsi,
i+i+k=p J k' 2

It follows that

= Y L0V L) .(%[0 o v oy @)

i+itk=p-1

X f: (f+28f) (t; %) dt
But

1 1+a) ____.___1
f f+218f)( )dt f:+2dz T
The proposition follows.
Q.E.D.

Corollary: Suppose £ admits a connection form w, whose curvature
£, is zero. Let w, be any connection form in & and set § = w; — w, .
Then, for I'e (VPE*),, (y,)s]” = 3P, where

P = rov— (Vo)w_ 1[6,6]
L (o)
Example: Let # = (P, m, B, G) be a principal bundle. Let w be a

connection form in £ with curvature form . Consider the trivial

bundle 2 = (P x G, mp, P, G) and let w, denote the connection
form on 2 corresponding to the horizontal subbundle 7» X G. Then

‘”o(z’ a; §, "7) = L;I("))

and the corresponding curvature form is zero as follows from Corollary II
to Proposition X, sec. 6.14.

On the other hand, since T: P X G — P is a homomorphism of
principal bundles inducing =: P — B, it follows that w; = T*w is a
connection form in & with curvature 2, = T*Q.

A straightforward calculation shows that, in this case,

0(z, @) = (Ad a Yw X 1)(3, a), zeP, aegG,
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(0 = w, — wy). It follows that

Vob(z, a) = ((Ad aY)(dw) X 1)(z, a)
and
[6, 61(2, a) = ((Ad a=Y)[w, w] X 1)(z, a).

Now let I'e (VPE*), (p > 0). Then, since I is invariant, the corollary
to Proposition XIV reads

y,FXl=8

,_HZ,,__I » + -, wv = (Sw)i v ]L' (%[w, w])j) X lg;

1.e.,

m¥ygl =y, I' = 8

D5y ey e (i)

Substitution of the relation 2 = 8w + 1[w, w] yields the formula
m*(ysl) = yil’

((P 11)), 8 Z 1)p-1-t (ZP )(1‘, w v 2V [w, o]

(The calculation is long but elementary except for the observation that

G R e e T R

6.21. Formal power series and the Taylor homomorphism. Consider
the infinite sequences

=(T,,T,,..) with T,e VtE*,
Define addition and multiplication by

T +y=T+I, ad ([@-D= Y vl (k=01,..).
i+i=k
The associative algebra so obtained is called the algebra of formal power
sertes in E* and is denoted by V** E*,

Next, recall from sec. 1.9, volume I, that S (E) denotes the algebra
of smooth function germs at 0. That is, an element of S (E) is an
equivalence class of functions f € &(E) under the following equivalence
relation: f ~ g if f — g is zero in a neighbourhood of 0. If U is a neigh-
bourhood of 0 in E and ge &(U), then there is a unique germ,
[go € SH(E), such that any f e [g], agrees with g sufficiently close to 0.
We say g is a representative of [g], .
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Now let fe £(U) (U, a neighbourhood of 0 in E). Then the kth
derivative of f is the smooth map f *) € #(U; VFE*) defined inductively
b

y fo—=¢

and

f®(x; by ...y By) = ltin(}

fEWNx + thy; by ..., by) — [ V(x5 by ..., By)
: .

(Note that we identify V¥E* with S¥(E) via 75 as described in sec. 6.18.)
The Leibniz formula states that
(foo = ) fOvg?, fgeS(U);
i+i=k
i.e.,, the map,
= (£(0), £(0), £(0), -..),

is a homomorphism of #(U) into V**E*. Since the derivatives of f
at 0 depend only on the germ of f at 0, this homomorphism determines a
homomorphism

Tay: SH(E) - V*¥*E*

called the Taylor homomorphism.
Next recall that G acts on E by the automorphisms Ad a. Thus an
action of G on S(E) is defined by

a [flo=UAda™)*fly, [fe(E), acC.

The corresponding invariant subalgebra is denoted by S (E),. On the
other hand, we have an induced action of G on V**E*. Clearly, the
Taylor homomorphism is equivariant with respect to these actions and
hence it restricts to a homomorphism,

Tay;: S(E); — (V¥**E*),,

called the invariant Taylor homomorphism.

6.22. The homomorphisms A%* and s,. Let # =(P, =, B, G) be a
principal bundle over an n-manifold B and consider the Weil homo-
morphism

hg: (VE*), — H(B).

Since HP(B) = 0, p > n, hp extends to a homomorphism
hy*: (V**E*), - H(B).

Clearly the image of h3* coincides with the image of %5 .
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On the other hand, we have the invariant Taylor homomorphism
(Tay);: S(E) — (V*¥*E*),
Composing these homomorphisms we obtain a homomorphism
sp: So(E)r — H(B).

Explicitly, so[ flo = Zp=0 ha(f®(0)).
If o: P— P is a homomorphism of principal bundles inducing

Y: B— B, then * o h%* = h3* and y* o sp = sp as follows from
Theorem II, sec. 6.19, and the definitions.

Remark: The advantage of using h%* or sp rather than /g is the
following: Let [f]o € S(E);, I' € (V**E*),, o € H(B). These elements
are invertible in their respective algebras if and only if f(0) 7% O (respec-
tively I'y # 0, oy 7% 0, where o is the component of « in H(B)). More-
over, if f(0) % 0, then

so([f15Y) = (o[ fI)7"

On the other hand, an element I" € (VE*), is only invertible if Iy = 0
and I, = 0, 7 > 0, while A5(I") is invertible whenever I'y % 0. Hence,
if I'y # 0, and I'; # O for some i > 0, then (hg(I"))~! exists but it is
expressible in the hg(I';) only via a complicated polynomial. To obtain
simple expressions it is necessary to introduce (V**E*), .
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6.23. Principal bundles with abelian structure group. Let
P = (P, n, B, G) be a principal bundle whose structure group G is
abelian. Let w be a connection form in & with curvature form 2. Then

i(h)2 =0 and T = Q, acG. 6.1)

Moreover, the Maurer—Cartan equation (Proposition XI, sec. 6.14)
reduces to dw = £2. In particular, it follows that 82 = 0.

In view of Proposition III, sec. 6.3, relations (6.1) imply that there is a
(unique) E-valued 2-form 25 on B such that 2 = #*Q; . Since

7 80y = Sm*Qp = 8Q = 0,

it follows that 625 = 0.
Next observe that, since G is abelian, (VE*), = VE* and so y,; and
ys become homomorphisms

yit VE* > Ag(P)  and  yg: VE* — A(B).

Evidently (cf. sec. 6.18)

ya(l") = 1% I'(2,.,2), IeVeE*.

In particular,
ya(h*) = {h*, Q5),  h* e E*. (6.2)

Proposition XV: For every h* € E*, let X,. denote the l-form on
P given by
Xo(Z) = {h*, w(2)),  ZeX(P).
Then
8y = mya(h*).
Proof: In fact,

wryg(h*) = n*(h*, .QB) = (h*, .Q)

={h*, dw) = S(h*, w) = 8Xp..
Q.E.D.

272
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Remark: In volume III it will be shown that Proposition XV
generalizes to principal bundles with compact connected structure group.

Example: Assume that G = S. Let e* be the basis vector of E*
which generates the invariant 1-form whose integral over S! equals 1.
Then X, is a 1-form on P satisfying

fsl Xo=1 and  8X, = m*yg(e*).

Hence, —yp(e*) represents the Euler class, Xz, of the circle bundle 2

(cf. sec. 8.2, volume I).
This shows that Xp = —hg(e*) and that X, is represented by the

2-form
¢ = —(e*, Qﬂ)‘

6.24. The cohomology of CP". Recall from sec. 520 the Hopf
fibration & = (S*+1, =, CP™, S'). The principal action of S! is the
restriction to S?"+! of the representation R of S' in C"*! given by

R(e®) - 2 = €% 2, z e CntL,

Next we define a connection in £. Identify the Lie algebra of the
principal S'-bundle £ with R so that the invariant 1-form generated
by 1* has integral 1. Let Z (respectively, Z) denote the fundamental
fields generated by 1 on S2*+1 (respectively, C**1). Then

Z(z) = 2(z), z € St
and
2(2) = (z,2miz), zeCnrl,

Define a 1-form 6 on C*+! by
0a; ) = — o Tmdz, D,

where ( , > denotes the Hermitian inner product. Then 6 is S'-invariant
and
0(z; 2(2)) = <z, ), zeCrtl,

Thus, if w denotes the restriction of 6 to S2nt1

w(Z) = 1,
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and so w is a connection form in Z. Since S is abelian, the corresponding
curvature form is given by £ = 8w, and (cf. sec. 6.23) we have

dw = ¥y .

Proposition XVI: Let Xz denote the Euler class of the S'-bundle £.
Then (1) the classes 1, X5 ,..., (X5)" form a basis for H(CP™).

(2) (X)™ is an orientation class for CP™.

Proof: (1) Recall the Gysin sequence
Hy(Sm+1) =5, s H?-{(CP%) b, H»+{(CP?)

Hn+1(82n+1) >

from sec. 8.2, volume I, where D is given by
Do = o Xp, ae H(CP™).

Observe that, if « € HY(CP™), then aez, 1 Hi(CP™). It follows that
Tr*aez ") Hi(S>**1) and so =*a = 0. Hence the Gysin sequence
yields the exact sequences,

0— HY(CP")— 0
and

0 —» HY(CP") —> H?¥CP") — 0 (0 < p < 21— 2).

This shows that the elements 1, Xz ,..., X3 form a basis for H(CP").
(2) We must show that for a suitable orientation of CP?,

f Qn=1.

cpn

Orient the bundle # by w and give CP™ the orientation such that the
induced local product orientation in S2"+! (cf. sec. 7.6, volume I or
sec. 0.15) is the standard orientation. Then

fSIw =1,
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and so the Fubini theorem together with Stokes’ theorem (cf. sec. 4.17,
volume I, and sec. 7.14, volume I) imply that

f . = f - (7 Q)" A w
= | @ A (B = f @0,

where B is the unit ball in R2+2,
Next we show that

D!y

antl

(86)"+1 =

where 4 denotes the normed positive determinant function in R27+2,
In fact, fix an orthonormal basis ¢, (v = 1, ..., » + 1) in C**! and let
X,, Y, (v =1,..,n + 1) be the constant vector fields corresponding to
the vectors e, , te, . Then, if a vector z € C**! is written

2 =) &+ 7, &, eR,
we have

X)) = — 57w and V) = 5 £

These relations yield
(X, X) =0, (Y, ¥,)=0, and S(X, V) =13,
It follows that
(801 (Xy, Yy, oty Xy Yoiu) = (2 + 1Yt

whence (66)*+! = [(n + 1)!/="+1]4.
Finally, recall from Example 2, sec. 4.15, volume I, that

f i(T) 4 = 27n+1n),
s2n+l

where T is the vector field in C**! given by T(2) = (2, 2). Moreover,
8i(T)d =6(T)4 =2(n + 1) 4.

These relations yield

J

. R ) I R g .
o= fp(so) M=t A= T e Jsznﬂt(T)A =1
QE.D.

cpr
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Corollary I: The Euler class of the Hopf fibration (53, =, S?%, S?!)
is an orientation class of S2.

Corollary II: The inclusion maps, i: CP¥ — CP* (k < n), induce
linear isomorphisms

i*: H(CP*) «— H?(CP") (0 < p < 2k).

6.25. Reduction of structure group. Let # = (B, #, B, K) be a
second principal bundle over the same base. Assume thato: K — Gis a
homomorphism and that ¢: P — P is a smooth fibre preserving map
inducing the identity in B and satisfying

o(2 - a) = ¢(2) * o(a), zeP, aek;

thus, (P, ¢) is a reduction of structure group from G to K via o (cf.
Example 5, sec. 5.5).

Denote the Lie algebra of K by F. The derivative ¢’: F — E induces a
homomorphism

(o'): VF* «— VE*,
Since
Ado(@)oo’ =o' oAda, acKk,
(¢")" restricts to a homomorphism
or: (VF*), < (VE*), .
Theorem III: With the notation and hypotheses above, the diagram,

(VF*) «————— (VE*),

NS

H(B)

commutes.

Corollary: Let \: G — H be a homomorphism from G into a Lie
group H with Lie algebra L. Let 2, be the A-extension of £ (cf. Example
4, sec. 5.5). Then

hgol\, = hgh.

The proof of Theorem III is preceded by three lemmas.
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Lemma IV: There are principal coordinate representations
{(U,, §,)} and {(U,, 4,)} for 2 and for £ such that the diagrams,

tXo

U XxXK—> U, xG

J’ml e gl'ﬁa

a1 -1
#A-1U, 71U, ,

commute.

Proof: Let {(U,, {.)} be any principal coordinate representation for
2. Consider the cross-sections U, — P defined by

x> g(il(x, €))
and define maps ¢,: U, Xx G— P by

fa(%, ) = p(fulx,€)) - b, xeU,, beG.

Then {(U., ¢.)} is a principal coordinate representation for 2.
Moreover,

Pu(x, a) = p(fu(x, ) - a)
= p(u(x, €))  o(a) = Y,(x,0(a)), aeK, xeB,

as desired.

Q.E.D.

Lemma V: There are principal connections ¥ for # and V for &
such that.

dpoV =V odg.

In particular, if W is a vector space the operators H*, V in AP, W)
and H*, V in A(P; W) satisfy

H* o g% = @* o H* and 6°<p*=<p*ov.

Proof: If the principal bundles are trivial, P = B x K,P = B X G
and if ¢ is given by ¢ = ¢ X o, then the connections

V(£,m) = (0,m), EeT(B), ne T (K),
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and
V(£,0) =(0,0), £eTyB), leTyG),

satisfy the conditions above.

In the general case let {U,} be the covering of B used in Lemma IV.
Then, in view of that lemma, there are principal connections P.and V,
in the restrictions of £ and £ to U, which satisfy

dpoV, =V, odep.

Choose a partition of unity {p,} in B subordinate to the open covering
{U,} and set

17 = Z (ﬁ*pm) er ’ V= Z (”*Pu) Va .
Q.E.D.

Lemma VI: Let V, P be principal connections in 2 and & satisfying
the condition of Lemma V. Then the corresponding connection forms,
w and &, and curvature forms, 2 and £, are related by the equations

() ()4 = p*w
and

(2) (092 = p*02.

Proof: (1) It followsfrom Lemma V that both sides of (1) give zero
when applied to horizontal vectors. Thus it is sufficient to check that

(048)2n) = (¢*w)(Zs),  h€F.
The equations @(z - @) = ¢(z) - o(a) (2 € P, a € K) imply that
2, ~Zow -
Hence (for & € F)
(0, B)Zn) = o'(B) = w(Z,m) = (¢*w)(Zn).
(2) In fact,
() 2 = ()4 Vi = V(o) &

= fhp*w = ¢*Vuw = p*Q.
Q.E.D.
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6.26. Proof of Theorem III: Choose V, w, 2 and P, &, @ as in the
lemmas above. Let

B: ®E* — A(P), fB: ®F* — A(P)

be the corresponding homomorphisms as defined in sec. 6.17. Then
for I'e Q? E*

@*(BT) = p*(I'(R, ..., Q) = [(@*Q, ..., p*Q)
= I((0)5 2, ..., (04 2) = (®7 (¢')* T)(L, ..., Q).

It follows that 9* o B = 8 o ® (o')*.
Thus the homomorphisms y, y,, 7 and 3, (cf. sec. 6.17) are connected
by the relations

p*oy =ypo (o) and g¥oyr =Proo;.

Since #* = ¢* o m*, we have yp = $5 00, and the theorem follows.
Q.E.D.

6.27. Example. Given a principal bundle, # = (P, =, B, G), let K
be a closed subgroup of G and consider the principal bundle
P, = (P, p, PIK, K) (cf. sec. 5.7) and its A-extension

P = (P xxG,#, PIK, G)

(cf. Example 4, sec. 5.5), where A: K — G is the inclusion. Then we
have the commutative diagram,

PxG

I\

P-?.Px,G-1>P

Pl lﬁ j'

P[K — P|K B,

where g, is inclusion opposite e and T is the principal action. Thus ¢ is a
reduction of structure group with respect to the inclusion map,
A: K — G, and ¢ is a homomorphism of principal bundles.

Let E and F be the Lie algebras of G and K and let

Az (VF*)p < (VE*),
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be the homomorphism induced by A. Then, Theorem III, sec. 6.25, and
Theorem II, sec. 6.19, yield the commutative diagrams

(VP9 —— 2 (VE®, (VE®),
ho, ko and k2 <
H(PIK) H(PIK) H(B).

Combining these we obtain the commutative diagram

(VF*), < (VE*,
ha, ha
H(P/K) N H(B)

Remark: Assume in addition that G is compact and connected and
that K is a maximal torus. Then the map p* is injective, as will be shown
in volume III. Moreover (cf. sec. 6.23) since in this case F is abelian,
the diagram above becomes

VF* <X (VE%),
hyx hap
H(PIK) «—— H(B)

Because of the simple structure of VF*, the following becomes an
important technique: first establish properties of /s ; then use the
injectivity of p# to draw conclusions about kg . This technique forms the
basis of the fundamental papers [1], [2] and [3] by Borel and Hirzebruch.

6.28. Connections invariant under a group action. Suppose that
# = (P, #,B,K) is a principal bundle with structure group a Lie
group K. Denote the corresponding principal action of K on P by
T: P x K — P. Assume that

S
GXP—»P
XA 7

GXBTB

is a smooth commutative diagram in which S and S are left actions
of G. Then (S, S) is called an action of G on the principal bundle 2 if the
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maps S, and 7, commute for each g € G, a € K. Assume (S, S) is such
an action.
A principal connection V in £ will be called G-invariant if

dS,oV =VodS,, geG.
This holds if and only if the connection form satisfies
S:w = w, gEe G.

If V is G-invariant then H = « — V also commutes with the operators
dsS, . It follows that

H*o Sy = SfoH* geG.
Hence the covariant derivative V satisfies
VoSF=S8V, geG.
In particular, the curvature form £2 is G-invariant:
S}Q =0, geG.

This, in turn, implies that the homomorphism yz: (VF*), — A(B)
(F, the Lie algebra of K) satisfies

S: °Ys = 78 -
Thus y5 can be considered as a homomorphism,
(ve)1 : (VF*); — A(B),

where 4,(B) denotes the subalgebra of A(B) invariant under the action
of G. Since 8 o y5 = 0, (y5); induces a homomorphism

(ho)r : (VF*); — H/(B).
The diagram,

H(B)
I
(VF*), iy
(hp);
H\(B),

commutes, where i: 4,(B) — A(B) is the inclusion.
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Proposition XVII: If G is compact and acts on the principal bundle,
#, then 2 admits a G-invariant principal connection.

Proof: Let V be any principal connection. Regard V as a cross-
section in the vector bundle L,, over P (whose fibre at z is the space
of linear transformations of T ,(P)). Using the actions (cf. sec. 3.2),

S:GXP—>P, dS:GXTp—*Tp,

we can integrate V over G (cf. sec. 3.18) to obtain a G-invariant cross-
section V!, We show that '/ is a (G-invariant) principal connection.
For z € P, V!is the endomorphism of T,(P) given by

2= f (@)1, 0 Vo, o (45,0, g
Since the vertical spaces V,(P) are dS,-stable (because # is equivariant),
and because each V, is a projection of T,(P) onto V,(P), it follows from

this relation that V! is also a projection of T,(P) onto V(P).
Finally, since (for a € K) dT,: T,(P) — T,.,(P) is linear, we have

dT, o Vi=| (dT,0dS,oV,1,0dS,)dg
G
= f (dS;g 0 Vy15.00dS;10 dTa) dg
G

=Vl 0dT,.

Hence V7' is a principal connection.

Q.E.D.
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In this article, K denotes a closed subgroup of G with Lie algebra F
and Z, = (G, =, G/K, K) is the principal bundle defined in Example 2,
sec. 5.1.

6.29. The cohomology of G/K. The principal action of K on G is
denoted by uy :

ux(g,a) =ga, geG, ack.
On the other hand, the maps

(&1, 82) — £182 and (&1, 782) > (£182)

define left actions of G on G and G/K, with respect to which = is equi-
variant. Thus 7* restricts to a homomorphism (cf. sec. 4.18)

mF A(GIK) — A,(G).

Moreover, since (G, m, G/K, K) is a principal bundle, Proposition III,
sec. 6.3, shows that
m*: A(G|K) —=— Ay(G)
is an isomorphism. (Recall that 45(G) consists of those forms which are

horizontal, and invariant under the right action of K on G). Thus =*
restricts to an isomorphism,

7 A{GIK) —— 4,(G) N A44(G).

Since the action, uy, of K on G is right multiplication, the corresponding
fundamental vector fields are the left invariant vector fields, X, (k € F),
on G. Thus the horizontal and invariant subalgebras of 4(G) are given by

() keri(X;) and () ker(p; — 1),

keF aek

respectively. We denote them by
A(G)ipmo and A(G)gar -

The basic subalgebra, A4(G), is their intersection.
283
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Now recall the isomorphism 7,: 4,(G) = AE* of sec. 4.5. It satisfies
roi(Xy) =ig(h)or, and 1 op} = Ad*(g)or,, heE, geG,
(cf. sec. 4.6 and sec. 4.8). Hence it restricts to isomorphisms
AYG) N AG)ipmg—> (NE")ipeg and Au(G) N AG)xes —> (NE*)gs

(Here (AE*)¢_, denotes the subalgebra invariant under the operators
Ad*(a), a€ K and (AE*);_o = (\er ker ig(k).) Thus

111 A(G) N Ap(G) —=> (NE*); e, k1 »

where (AE*); _o x_; denotes the intersection of (AE*); _, and (AE*),_, .
Composing the isomorphisms 7, and =¥, we obtain the commutative
diagram
AG) ——— A,(G) —=—— AE*

L& 17,* k

A(G|K) «—— A/G/K) —f—ﬂ? (AE*);pmp ket -
1

The right-hand square coincides with the diagram of Proposition XI,
sec. 4.18 and k is the inclusion.

Next, assume that K is connected. Then (cf. Proposition VI, sec.
3.13) the subalgebra, 4(G)«_,, is given by

A(G)ger = A(Ggpmg = () ker 6(Xy).

keF

Set (cf. sec. 4.6)

(AE*)gpmo = () ker 6g(k)  and  (AE*)yg0pm0 = (AE*)ipmo N (AE)gmg.

keF

Then we can rewrite the diagram above in the form

A(G) ———— A4,(G) — = AE*

o~

* k
i

A(GIK) +—— A(GIK) ———> (NE®)irm.0pm0
I

¥
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Theorem IV: Let K be a closed connected subgroup of a compact
connected Lie group G. Then, in the commutative diagram,

H(G)
m m k,

1

H(GIK) ——— HY(GIK) > H((AE*)ipm.07-0)
1 *

H(G) — 2, (k)

all the horizontal maps are algebra isomorphisms.

Proof: This is a restatement of Theorem V, sec. 4.19.
Q.E.D.

6.30. Connections in (G, ©, G/K, K). Recall that 7: G— G/K is equi-
variant with respect to the left actions of G. We shall find the G-invariant
principal connections for the principal bundle (G, n, G/K, K)
(cf. sec. 6.28).

Let V be a G-invariant principal connection. Since the vertical space
at e is given by

V(G) = ker(dn), = F

(cf. sec. 2.11), it follows that the restriction V, of I to E is a projection
V,.E—F.
Moreover, since V is a G-invariant principal connection,
AdaoV,=L,cR;*oV,=V,oAda, ac K.

In particular, ker V, is stable under the operators Ad a (a € K). Note
that ker V, is the horizontal subspace at e.

Proposition XVIII: The map a: ¥V > ker I, is a bijection from the
set of G-invariant principal connections to the set of K-stable subspaces
of E complementing F.

Proof: If W, V are two such connections with ker V, = ker W, then,
since

ImV,=F=ImW,,

we have ¥V, = W, . Now the G-invariance implies that V' = W and so «
is injective.
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On the other hand, assume F, C E is a subspace stable under
Ad a (a € K) and complementary to F:

E=F ®F.

Let V,: E — F be the projection with kernel F, and define a G-invariant
strong bundle map, V, in T; by

Vo=1LyoV,oL), gei.

V, is a projection onto L,(F). But since = is equivariant, L,(= dA;)
maps F isomorphically to the vertical space at g; i.e., V, is a projection
onto the vertical subspace. Moreover since F; is stable under
Ad a (a € K), it follows that

AdaoV,=V,0Ada, ae kK.
Since R, o L, = L, o R, (cf. sec. 1.1) this yields
R,oV,=V,,oR,, g€G, acKk.

Thus V is a G-invariant principal connection. By definition, ker V, = F, ,
and so a is surjective.

Q.E.D.

Corollary I: (G, m, G/K, K) admits a G-invariant connection if
and only if there is a K-stable subspace F;, C E such that E = F, @ F.

Corollary II: If K is connected, the G-invariant principal
connections are in one-to-one correspondence with the subspaces F;, C E
such that

(ad h)F,CF, (heF) and E=F, @F.

Corollary III: If K is compact, the bundle, 2, admits a G-inva-
riant principal connection.

Proof: Apply Proposition XVII, sec. 1.17.
Q.E.D.

6.31. Curvature and the Weil homomorphism. Assume that E
admits a decomposition E = F; @ F, where F, is stable under the
operators Ad a,ac K. Let p: E — Fand p,: E — F, be the projections.

Then p and p, are precisely the vertical and horizontal projections in
T,G) corresponding to the induced G-invariant principal connection V.
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It follows that the connection form w is the unique left invariant
1-form in AY(G; F) which satisfies

w(e; k) = p(h),  hek.

Next we compute the curvature 2 of V. Observe that if X, , X, are
left invariant vector fields on G, then

8w(Xy, X)) = — o([Xh, Xi]) = — w(e; [A, k])

(because the functions w(X,), w(X,) are left invariant, and so constant).
Similarly,
3w, w)(Xn, Xi) = [w(e; B), w(e; k).

It follows from Proposition XI, sec. 6.14 that £ is the unique left
invariant E-valued 2-form such that

es b, k) = [p(h), p(R)] — p([h, K]), A keE.
Thus if 4, k € F,, then
es b, k) = — p([h, k])-
Finally, consider the invariant Weil homomorphism
(ko) : (VF*); — H{(GK).

If I' e (V¥F*),, then (hgp,),(I') 1s represented by the unique left invariant
differential form @ e A?)(G/K) which satisfies (cf. sec. 6.18)

(= DF

a*P(e; hy ..., hy) = ok Rl

Z ‘ap(p([ha(l) ’ ho(?)])""! P([ha(2k—l) ) ho(zk)]))a

ce Sk

for h; € F, . Clearly this differential form also represents k5 (I') in H(G/K).

6.32. Symmetric spaces. Suppose that ¢ is an automorphism of G
such that

@ =1 and @ F

The elements a € G satisfying ¢(a) = a form a closed subgroup; let K
be its one-component. Then the Lie algebra, F, of K is the subspace of
vectors h € E satisfying ¢'(h) = h.

The homogeneous space G/K is called a symmetric space with connected
fibre. If G is compact, we say G/K has compact type.
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Since ¢ is an involution, so is ¢’. Hence, setting
E+ = ker(¢’ — 1) and  E- = ker(¢’ + 1),
we have £ = E+ @ E- and E* = F. Now we show that
[Et,E-JCE- and [E-,E-]JCE+

(where, for subspaces 4, B C E, [A4, B] is the space spanned by vectors of
the form [h, k], h € 4, k € B).
In fact, for he E+, ke E-,

¢'([h K]) = [¢'(h), ¢'(R)] = —[h, &],

whence [k, k] € E-. The second relation is proved in the same way.
It follows that E- is stable under the operators ad 4 (h € F) and so, by
Corollary II to Proposition XVIII, sec. 6.30, it determines a G-invariant
principal connection on (G, =, G/K, K). It is called the symmetric space
connection.

Examples: 1. The Grassmann manifolds (cf. sec. 5.13)
SOm)(SOk) x SO — k),  Um)(U(k) x Uln — k)

and

Qm)(Q(k) x Q(n — k))

are symmetric spaces of compact type. In fact, consider the first case.
Choose a decomposition W = W, @ Wt of a Euclidean space, W, with
dim W = n, dim W, = k. Define a rotation 7: W —~> W by

w, we W,
W) =
(®) —w we Wi.

Then define an involution ¢: SO(n) — SO(n) by

@(6) =t100077L,

Evidently ¢(c) = o if and only if o stabilizes W, and W{. Thus the
one-component of the subgroup left fixed by ¢ is SO(k) x SO(n — k).
The other two cases are established in the same way.

2. Endow R™ with a Euclidean metric. Define an involution, ¢, of
GL+t(n; R) by setting

@(o) = (e*)71, o € GL*(n; R),
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where o* denotes the dual of ¢ with respect to the inner product. The
subgroup left fixed by ¢ is SO(n).
Since ¢’ is given by ¢'(a) = —a*, « € L(n), we have

L(n)* = Sk(n) and  L(n)- = S(n)

(S(n) is the space of symmetric transformations of R®).
In this case the invariant connection leads to a homomorphism

(V Sk(m)*), 22X, H(GL+(n; RYISO®)).

This homomorphism is in general nontrivial, as will be shown in
volume III.

On the other hand, according to Examplel of sec.4.11, GL*(n; R)/SO(n)
is diffeomorphic to the vector space S(n). Thus its cohomology is trivial,
as is the Weil homomorphism 4 .



Problems
G is a Lie group with Lie algebra E.

1. Trivial bundles. Let? = (B X G, m, B, G) be a trivial principal
bundle. With each connection form, w, associate the E-valued 1-form 8
on B defined by

w(x,e; &, h) = h + 0(x; £), xeB, £eT(B), hek.

(i) Show that this correspondence defines a bijection between
principal connections in & and elements of AY(B; E).

(i1) Fix a principal connection, V, in 2 with corresponding 1-form
0 € A(B; E). Show that the linear map H, at z = (x, y) is given by

H,(§,m) = (& —R,0(x; ),  £€TAB), neT/G).
(iii) Consider the E-valued 2-form @ on B given by @ = 66 + 1[0, 6].

Show that
(w*®) (x,y) = (Ad y((x,y)), =x€B, yeG,

where  is the curvature of V.

(iv) Let 2(¢) = (x(2), y(t)) (0 < t < 1) be a smooth pathin B x G.
Show that %(¢) is horizontal if and only if

M) = —Ryb(x(2); %(t)).

2. Local formulae for principal connections. Let {(U,, #,)} be a
principal coordinate representation for a principal bundle Z =
(P, m, B, G). Fix a principal connection in Z.

(i) Asin problem 1, use the connection form to define local 1-forms
0, € AU, ; E).
(ii) Find the relation between the restrictions 8, |y v, and 0 |y v, -

(1) Set @, = 86, + 1[6., 6.]. Find the relation between &, lvanug
and P |y v, -

3. Horizontal lifts. Let # = (P, m, B, G) be a principal bundle with
a fixed principal connection V. A horizontal lift of a path x(¢) (0 < ¢ < 1)

290
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in B is a smooth path 2(#) (0 < ¢ < 1) in P such that #2(¢) = x(¢) and
each tangent vector 2(¢) is horizontal.

(i) Let x(¢), 0 < t < I, be a smooth path in B. Given 2, € G,y ,
show that there is a unique horizontal lift 2(¢) of x(¢) such that 2(0) = z, .
(Hint: cf. problem 1, (iv)), and problem 21, Chap. I).

(11) Let ¢: R2 — B be a smooth map. Fix 2z, € Gq.q - Let 2(7)
(r € R) be the horizontal lift of y(r, 0) that satisfies 2(0) = z, . For fixed
7, let 2(7, t) be the horizontal lift of (7, #) that satisfies (7, 0) = 2(7).
Show that the map ¢: R? X G — P given by

o(r,t,a) = 2(7,t) " a

is a homomorphism of principal bundles.

(iii) Let 7and ¢ denote the first and second coordinate functions in R?,
with gradients 8= and 8¢. Let I” be the principal connection in R X G
induced via ¢ from V. Let 6 € A'(R?; E) be the corresponding 1-form
(cf. problem 1). Show that 6 = f-8r, where fe F(R? E) satisfies
f(7, 0) = 0. Conclude that, if £ is the curvature of V, then

(@*Q)(7, 1, ) — ‘g (, 1) 8 A 8r.

Conclude that 2 = 0 implies that § = 0.

4. Homotopic paths. Let 2, V be as in problem 3. Let o and B
be smooth paths in B such that

#(0) = B(0) =x, and  ofl) = B(1) = %,
Assume that @ is a homotopy connecting o and § such that
&0, t) = x, and D(1, 1) = x,, teR.

(i) Assume that the curvature of V is zero. Prove that if & and f are
horizontal lifts of a and B, both starting at the same point, then

a(1) = B(1).

(ii) Establish the converse.

5. Holonomy groups I. Let (2, V) be as in problem 3. Assume that
B is connected. Fix base points x € B and z € G, . Identify G with G,
via a > 2 a.
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A loop in B, based at x, is a smooth map y: t+—p(¢) (0 <t < 1)
such that y(0) = (1) = x. Two loops based at x are called homotopic
if they are homotopic in the sense of problem 4. A loop is called conctrac-
tible if it is homotopic to the constant loop. If every loop is contractible,
B is called simply connected.

(i) Lety be aloop based at x. Show that there is a unique element
a(y) € G such that for every horizontal lift, , of y

7(0) - aly) = #(1).

(i1) If y, is a homotopy of loops based at x, show that 7 +> a(y,) is a
smooth path in G. (Hint: Use problem 3, (ii).)

(iif) Let 2 denote the set of loops, based at x, and let %, denote the
subset of contractible loops. Show that I' = {a(y) | y € £} is a subgroup
of G and that Iy = {a(y) | y € £} is a normal subgroup of I". Show that
I'/T, is finite or countable.

(iv) Show that I', is a connected Lie subgroup of G (use problem 6,
Chap. II). Conclude that I' is a Lie subgroup of G with I'j as l-com-
ponent.

I is called the holonomy group of the connection with respect to z.

6. Holonomy groups II. Adopt the hypotheses and notation of
problem §.

(i) Reduce the structure group of £ to I; i.e., construct a principal
bundle, #, = (P,, m, B, I'), and a I'-equivariant inclusion map
@: P, — Psuch that mop = m, .

Interpret P, as a maximal connected integral submanifold of an involu-
tive distribution on P.

(i1) Let w be the connection form of V. Prove that p*w takes values
in the Lie algebra of I'y . Conclude that ¢p*w is a connection form in P, .

(i) Ambrose-Singer: Assume that I' = G and let 2 be the curvature
of V. Show that the vectors £(z; h, k), 2 € P, h, k € T(P), span the Lie
algebra E. (Hint: Use problem 3).

(iv) Suppose that two principal connections have the same curvature.
Show that their holonomy groups have the same |-component.

7. Zero curvature. Let (£, V) be as in problem 3, with B con-
nected.
(i) Show that the following conditions are equivalent: (a) the

curvature £2 is zero; (b) the holonomy group, T, is discrete; (c) the hori-
zontal subbundle is an involutive distribution on P.
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(i1) Assume 2 = 0. Let M be a maximal connected integral manifold
for the horizontal subbundle, and construct a principal covering projec-
tion (M, m, B, I') (cf. Problem 18, Chap. I).

(i) Assume £ = 0 and B is simply connected. Construct an iso-
morphism P = B X G of principal bundles, which carries V' to the
standard connection in B x G.

8. Principal bundles with abelian structure group. Assume that
# = (P, m, B, G) is a principal bundle with abelian structure group.
Let w be a connection form and let £ be the corresponding curvature
form in B. Let ¢: D — B be a smooth map of the two-dimensional
disk D into B. Denote by y the image of 9D (2D is the boundary of D)
under ¢ and let x, € dD be a fixed point.

(1) Show that, for some fixed a € G,
1) = 7(0) -4,
where § is any horizontal lift of y.
(i) Show that @ = expg(— [, p*Q25).

9. Let & = (P, m, B, G) be a principal bundle with principal
connection V.

(i) Show that every horizontal vector field X on P can be written as
a finite sum ¥, f; - X;, where the X, are horizontal and invariant and
fie #(P).

(i) Assume that G is connected. Show that a differential form @ is in
Ay(P) if and only if §(X)@ = O for every vertical vector field X.

10. Let # = (P, m, B, G) be a principal bundle and let G X F — F
be a left action of G on a manifold F. Let § = (M, p, B, F) be the
associated bundle (M = P X ; F).

(i) Let H, be the horizontal subbundle associated with a principal
connection in . Show that the vector spaces

Hq(z.u)(M) = (dq)(z.v)Hz(P)» zeP, yeF

(¢: P X F— M is the principal map) are the fibres of a subbundle
H,, of 7,,. Show that 7, = H,, @ V., . Hy is called the associated
horizontal subbundle for M.

(i) With the aid of H,,, define the notion of horizontal lifts in the
bundle ¢. Establish an analogue of problem 3, (i) for £.
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11. Let (P, m, B, G) be a principal bundle with a principal connec-
tion and corresponding homomorphism y,: (VE*), — A(B). Suppose
I" € (VPE*), is an element such that y4(I") = 0. Show that I" determines
a closed (2p — 1)-form on P; hence obtain an element of H}*~Y(P).

12. Let # = (P, m, B, G) be a principal bundle and let K be a
closed subgroup of G. Consider the bundles Z, = (G, mx, G/K, K) and
P, = (P, p, PIK, K).

(i) Show thata G-invariant principal connection in 2y and a principal
connection in & together determine the principal connection in 2,
given by

wy(2; §) = wile; w(z; L)),

where w, , wy , w are the connection forms.

(i) Describe the horizontal subbundle, the horizontal projection,
and the curvature.

13. Define connections in the principal bundles of article 5,
Chap. V. Obtain the corresponding curvatures.

14. Let G be a compact connected Lie group with maximal torus T.
Show that the principal bundle G — G/T admits a unique G-invariant
connection and determine its curvature.

15. Bundles with compact support. Let # = (P, n, B, G) be a
principal bundle. Let O C B be an open set so that B — O is compact
and let o: O — P be a cross-section over O. Then the pair (2, o) is called
a principal bundle with compact support. If U C O is any open set such that
B — U is compact, then U is called an open complement for (2, o).

A homomorphism between principal bundles (P, c) and (P, ) with
compact support is a homomorphism, ¢: # — 2, of principal bundles
such that

(a) The induced map : B — B is proper.
(b) For some open complement V of (2, 6)

plo(x)) = 6((x)),  xed (V).

A compact principal connection in (2, o) is a principal connection, V,
in & such that for some open complement U of (£, o)

Vow o (do), =0, xeU.
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(i) Let (£, o) be a principal bundle with compact support. Show
that a trivializing map «: O X G 5 #7(0) is given by (x, a) > o(x) - a.
Restate the definitions in terms of «.

(ii) Show that (£, ¢) admits a compact principal connection. Show
that the curvature of such a connection has support in 7~ K) for some
compact subset K of B. Conclude that the induced homomorphism
ys: (VE*), > A(B) can be regarded as a homomorphism into A (B).

(itt) Show that y, induces a homomorphism, AS: (V*E*), — H (B),
the Weil homomorphism with compact support. Show that A is independent
of the choice of compact connection. Show that

A# o }ls = hg y
where A: 4(B) — A(B) is the inclusion map.

(iv) Establish a naturality property for AJ .

(v) Show that a compactly supported principal bundle over R™
determines a principal bundle over S™ and that the diagram

HE(R™)
hy
(V+E*), =~
hy
Y
Hn(Sn)

commutes. Hence construct an example where AZ = 0 but hy = 0.
Conclude that A is not independent of o.

16. Odd characteristic homomorphism. Let B be a manifold and
let G be a Lie group with Lie algebra E. Let f: B — G be a smooth
map such that for some compact subset 4 C B, f(x) = ¢, x ¢ A.

(i) Set?Z=(BXRXxG,7,BXR,G)andO=B xR— A x1,
where I denotes the closed unit interval. Define 6: O — B X R X G by

(xt,f(x), t=3
o, 1) = 3(x, te), t < z

Show that (£, o) is a compactly supported principal bundle.
(i) Let p: R — [0, 1] be smooth and satisfy

1) =0, t<0, and pt)y=1, t>1.
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Define 6, € AY(B x R; E) by
af(xv t; &, n) = _P(t) L;(lz)(df)xgy fe T:c(B)’ UAS T(R).

Show that the corresponding principal connection V, in P is compact (cf.
problem 1 and problem 15). Compute its curvature.

(iii) Define a map pg: (VPE*), — (A?-1E*), by

(pel) By e, ypy) = (;21}_)%;}{*_1)!1)!

X Zeop(ho(l) ’ [ha(z) ’ ha(s)]""’ [ha(29—2) ’ha(ZD—l)])‘
Regard pgI" as an element of A%~%(G). Establish the relation
fHoeD) = §_vaxal(D),
R

where ygya: (VYE*); > A (B X R) is constructed via the connec-
tion V, .
(iv) Obtain a map, p,: (V+E*), — H(G), from p, . Show that

§7 ohe (V) — Hi(B)
®
is a canonical map, independent of the connection. Show that
#
J oo =1 ope.
R
Conclude that fy o &S depends only on f*.

17. Covering by two open sets. Let# = (P, n, B, G) be a principal
bundle. Assume B = U U V is an open covering of B such that £ is
trivial over U and V.

(1) Let (U, ¢) and (V, 4,) be a principal coordinate representation
for 2. Construct a smooth map ¢: U N V' — G such that

Wy o dy)(x, a) = (x, p(x)a), xeUNV, acG.

(it) Letpg: (V*E*);, — H(G) be the linear map defined in problem 16,
(iv). Let 8: HU N V) — H(B) be the connecting homomorphism of
the Mayer—Vietoris sequence for (B, U, V). Prove that

hg = 0og*opp.
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18. If # = (P, m, B, G) is a principal bundle with finite structure
group, show that #* maps H(B) isomorphically onto H,(P).

19. The operator i(a). Let M be a manifold. Define an S (M)-
linear map

1:Sec Aty — Hom,y, (A(M); A(M))
such that

(a) (o A 1) = i(r) 0 i(0), o, T € Sec A7y,
(b) #(X) is the substitution operator, X € Z(M) and
() (1) =

(i) Show that 7 is uniquely determined by these conditions.

(i) Let (P, m, B, G) be a principal bundle. Obtain canonical operators
i(a) (a € AE)in A(P) such that

i(hy A v A by = i(hy) 0 -+ o i(hy).

Find expressions for the commutators i(a) o 6(h) — 6(h) o i(a) and
i(a) o 8 — & o i(a).
(ii}) Show that, for @ € (APE),_, and @ € A(P)s_y,

i(a) 80 = (— 1)78i(a)(P).
Hence obtain an operator, #(a)y , in H(A(P))sg -
(iv) Assume that G is compact and connected. Define
¢: H(A(P)s_0) = H(A(P)oo) @ (AE*)s—0

by p(a) =3, €, .2(a,) s & a**, where a,, a** is a pair of homogeneous
bases of (AE),_y and (AE*),_,, and

€, = deg a(deg a, + deg a).
Establish a commutative diagram,

H(A(P)s=g) —2— H(A(P)gop) ® (AE*)p_y

H(P)

HP)® HG)

T#

with vertical isomorphisms induced by inclusion maps.
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(v) Extend the result of (iv) to any (i.e., not necessarily principal)
action of a compact connected Lie group.

20. The operator D. Let w be a connection form with curvature
in a principal bundle Z = (P, =, B, G). With each representation of G
in a space W, associate an operator D in A(P; W) by setting

DO = 50 + w(P).
Prove the relations

(i) D = Vin 4y(P; E);

(i) D(¥(P)) = D¥(?D) + (—)P¥(DD), ¥ € A»(P, E), D A(P; W);

(i) Do =2 + Ho, o]

(iv) D*¥ = Q(¥), Y e AP; W);

(v) DR =0;

(vi) if {,) is a bilinear function in W, invariant under the represen-
tation, and {,): A(P; W) x A(P; W)— A(P) is the induced map, then
(D, ¥) = (DD, V) + (—1)(®, D¥), e A¥P; W), ¥eAP,W).

21. Algebraic connections. An algebraic connection in a principal
bundle, # = (P, m, B, G), is a linear map X: E* — A'(P) satisfying the
conditions:

(a) i(WX(h*) = Ch*, k), h € E, h* € E*.
(b) T;k o X =Xo Ad"(a), aeG.

(i) Let w be a connection form in £. Show that an algebraic
connection X is defined by

X(h*)(z; £) = <%, (23 0)),  z€ P, [eTy(P).

x is called the associated algebraic connection. Show that the corres-
pondence w > X defines a bijection between principal connections and
algebraic connections.

(ii) Show that an algebraic connection X extends to the homomor-
phism X,: AE* — A(P) given by

X2 D)=z Ly s oo L) = (D, (23 L)) A -+ A w235 L)),
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Show that X, satisfies
i(h) o X, = X, o ig(h),
T* o X, = X, 0 Ad* (a),
O(h) o Xs = X, o Og(h),
i(a) o X, = X, 0ig(a), ae AE.

(iii) Show that, for each z € P, the map @ > (X,P)(z) defines an
isomorphism AE* 5 AV, (P)*. Conclude that an isomorphism

f: A(P);i., ® AE* —=> A(P)

is given by f(¥ ® @) = ¥ A (X, D).
(iv) Consider the linear map X: E* — A% P),., given by

X(B*)(=; Ly s L) = A%, A=230y, L)), 2€ P, &, L e Ty(P),
where 2 is the curvature of the principal connection corresponding to the

algebraic connection X. Show that X extends to a homomorphism,
X,: VE* — A(P);., , and that

(XF) 25 8y s oo Lop) = (1/27) ; (A2 Lo » Lo@)s o 235 Loten-1) 5 Lotzn))-
Establish the relations (a € G, h € E)
X,0Ad" (@) = T¥oX, and X, o6gh) = 6(h)cX,.
(v) Prove that
X(h*) = 8Xh* — X, 8:h*,  h* e E*,
VX =X and VX = 0 (Bianchi identity).

(vi) Show that X, coincides with the homomorphism y of sec. 6.17.
Thus describe the Weil homomorphism in terms of X, .

22. Horizontal projection. Let & = (P, m, B, G) be a principal
bundle with principal connection V and associated algebraic connection
X. Let {e*7}, {e,} be a pair of dual bases of E* and E and let u(®P) denote
left multiplication by @ (@ € A(P)).
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(i) Define operators Y, in A(P) by
Y, =1
— Y ule™) o Yy yoi(e), k> 1.

(i1) Show that the horizontal projection H* is given by
=y Gy

(iii) Show that, for @ € A?(P),
HX® = (. — Y))(« — $Y) - (o« — (1/p) V1)@
(iv) Show that Y| is an antiderivation, and that
Yi®(Zy s Z) = Y. D2y oy ViZi sy Z,).
J=1
(v) Set 8y = Y, o 8. Show that, for @ € AP(P),_, and ¥ € A(P),,,
i(h) 8y® = O(h)D, 8,0 =Y (Xe**) A b(e,)D

and
Sy(PAT) =8y A Y 4 (— 12D A 8,¥.

23. The homomorphism g. Continue the hypotheses and nota-
tion of problem 22.

(1) Make A(P; AE*) into a bigraded algebra by regarding it as the
skew tensor product of the algebras A(P) and AE*. Interpret the elements
of AP(P; N7E*) as functions

ZP)X - X XF(P)X E X - Xx E>R.

(p factors) (q factors)

(ii) Define linear maps, g: AP(P; N9E*) — AP+9(P), by setting
1
g¢(2; Gyvees §D+a) = W za: Eo‘p("“’; Lota) »ees ;o(p) » w(2; Za(lH-l))""’ w(z; go(p-w)))'
Show that the resulting linear map g: A(P; AE*) — A(P) restricts to an

isomorphism A(P; AE*);_, — A(P).
(iii) Show that g restricts to an isomorphism Ay(P; AE¥) =~ A/(P).
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(iv) Show that the diagram

A(P; AE*);q

~ N 4P

4

commutes, where f is the isomorphism of problem 21, (iii).
(v) Let &€ A™(P). Show that g7'® = 3, ¥, where

A(P)i-g ® NE*

¥, € A»(P; A"-PE*),_,
is given by

W Zy s Zys by ooy Bny) = DHZy oy HoZy 2y ey 2y ).

24. The decomposition of 6. Let V' be a principal connection in a
principal bundle # = (P, =, B, G).

(i) Show that antiderivations D, , Dy, Dy, are defined in A(P) by
the following equations (P € A(P), X, € Z(P)):

DX, ... X,)
= Z (— 1)‘( V*Xz)(¢(X0 3 ey X:‘ 3y ey Xp))

+ Y (= )X, , X;] — [HaX:, Hi X5 Xos s Xiy s Xy s X).

i<j

Dy®(X,, ..., X,)
= Y (= 1DV [H Xy, HyX)y Koy ooy Ry oos By s oy X).

Dy®(X,, ..., X,)
=) (—D{(H X)X, , - Xis o X))

+ Y (1) HOH([H X;, Ho XS] Xy ooy Ry oy By s oy X).

i<j

(i) Show that 8 = D, + Dy + Dy.
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(iii) Let X be the associated algebraic connection. Show that, under
the isomorphism f: A(P),.y ® AE* = A(P), (cf. problem 21, (iii)),

D, , and D, correspond to the operators,

Y ule)o @ile) and V@,

where {e**}, {¢,} is a pair of dual bases in E* and E, V is the covariant
exterior derivative, and w is the degree involution in A(P).

(iv) Show that the covariant exterior derivative, V, satisfies

VIp = Y X(e*) A (B(e,) H*® — Vi(e)P), D e A(P).

(v) Establish the relations
D=0, D%¥=0,
D,oDy + DyoD, = —D%,
D,oDgy + DgoD, =0,
Dyo Dy + Dgo Dy = 0.

(vi) Let # = (M, p, B,F) be any smooth bundle. Show that a
decomposition 7, =H, @V, determines a bigradation of A(M).
Write 8, = ¥, 8, , where 3, is homogeneous of bidegree (p, 1 — p).
Find expressions for the operators &, . Interpret the operators §,,, when
% is a principal bundle and H, is the horizontal bundle of a principal
connection.

25. The operators D, and Dy. Adopt the notation of problem
24. Let 8¢ denote the operator w ® 8 in A(P; AE*) and let 8, be the
operator in A(P; AE*) given by 8, = Y, w(e,) & u(e*).

(1) Show that 8¢ and §, are antiderivations with respect to which
the algebra A(P; AE*),_, is stable.

(ii) Use the isomorphism, g, of problem 23 to identify 8¢ and §,
with operators D and D, in A(P).

(iii) Show that D, = Dy + D,.
(iv) Obtain a relation between D, and 8y (cf. problem 22).

26. Let # =(P,n, B X R, G) be a principal bundle. Fix teR,
and let Z, = (P,, n,, B X {t}, G) be the restriction of 2.
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(i) Construct an isomorphism from & to the principal bundle
(Py X R, my X ¢, B X R,G) (Hint: Use problem 3, (i).)
(i1) Conclude that Z; ~ 2,.
(ii1)) Let ¢, y: M — N be homotopic maps, where N is the base of
a principal bundle. Prove that the pull-backs of this bundle to M via ¢
and J are strongly isomorphic.

(iv) Conclude that every principal bundle over a contractible space
is trivial.

27. Principal bundles over S” Let # = (P,w, S",G) be a
principal bundle over S™.

(1) Show that & admits a coordinate representation consisting of
only two elements.

(i1) Obtain a smooth map ¢: S*~! — G such that Z is trivial if and
only if ¢ is homotopic to the constant map.

(iii) Show that every principal bundle over S® is trivial (Hint:
cf. problem 35, Chap. IL.)

(iv) Apply problem 17.

28. Construct a fibre bundle over S3 which is not the associated
bundle of a principal bundle.

Hint: Proceed as follows:
(1) Construct a nontrivial bundle over S* with fibre S3.
(i) Pull this bundle back to a bundle M — S3 x S' via a degree 1
map S3 x ST — S
(ii1) Show that the induced projection M — S3 is the projection of
the desired bundle.

29. Compact structure group. Suppose & = (P, m, B, G) is a
principal bundle with compact group G. Let p: A(P) — A,(P) denote the
projection given by

p(®) = f _Ti®da,  DeAP).

Show that 8p® = pV®P, @ e A(P);,, where V is the covariant
exterior derivative with respect to a principal connection.



