Chapter V

Bundles with Structure Group

§1. Principal bundles

5.1. Definition. Let G be a Lie group. A (smooth) principal bundle
with structure group G is a pair (%, T), where

(1) & = (P, m, B, G) is a smooth fibre bundle.
(i) T:P x G — P is aright action of G on P.
(i) # admits a coordinate representation {(U, , ¢,)} such that

(%, ab) = ¢ (x, a) - b, xeU,, abeG.
(Note that we write T'(z, a) = 2 - a.)

The action T is called the principal action and a coordinate representation
satisfying condition (iii) is called a principal coordinate representation.
Condition (iii) implies that

m(z - a) = n(2), zeP, aeG.

Moreover, it follows that the action T is free and that the orbit of G
through a point z € P is the fibre containing 2. In particular, the orbits
are submanifolds of P. They will be denoted by G, = n~Y(x) (x € B),
(since the action is free there is no confusion with the notation for isotropy
subgroups). Note that G, > x defines a set bijection between the orbits
and B.

Let # = (P, #, B, G) be a second principal bundle with principal
action T. A smooth equivariant map g: P—»g is called a homomorphism
of principal bundles. Such a homomorphism is orbit preserving, and hence
fibre preserving. Thus it induces a smooth map ¢: B — B such that
fop = o m(cf. sec. 1.13, volume I).

Moreover, ¢ restricts to smooth maps ¢, : G, — Gy, (x € B). The
relations

o2 - a) = ¢ (2) - a, 2eG,, a€G,
193



194 V. Bundles with Structure Group

imply that each ¢, is a diffeomorphism. It follows that ¢ is a diffeomor-
phism if and only if ¢ is. In this case ¢! is also a homomorphism of
principal bundles and ¢ and ¢! are called zsomorphisms of principal
bundles. 1f B = B and y = «, then g is called a strong isomorphism of
principal bundles.

Examples: 1. The product bundle: The trivial bundle,
(B x G, =, B,G),
together with the right action
(x, a) - b = (x, ab), xeB, a,beGCG

is a principal bundle. It is called the trivial, or product bundle.

2. Homogeneous spaces: Let K be a closed subgroup of G. Then
the fibre bundle (G, m, G/K, K) (cf. sec. 2.13), together with the action of
K on G by right multiplication, is a principal bundle with structure
group K.

3. Frame bundles: Let ¢ = (E, p, B, F) be a vector bundle, and, for
x € B, let G, denote the set of linear isomorphisms from F to F,. We
shall construct a principal bundle, (P, n, B, GL(F)), where P = (), G,
and = is the projection which carries G, to «.

In fact let {(U,, ¢,)} be a coordinate representation for £. The iso-
morphisms ¥, , : F = F, determine set bijections

®uz:GLF)—~>G,, «xel,,
by
PaelP) = bazo®,  @€GLF).

Thus set bijections ¢, : U, X GL(F)— =~Y(U,) are given by
Pu(% @) =dooo@,  xel,, @eGL(F)
Evidently
(@a" o Pa)(x, @) = (%, Yz o Y. © @),
xeU,NU,, geGLF)

It follows that ¢ 'o ¢, is a diffeomorphism of (U, N U;) X GL(F).
Hence (cf. Proposition X, sec. 1.13, volume I), there is a unique smooth
structure on the set Psuch that (P, =, B, GL(F)) becomes a smooth bundle.
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Finally, define a right action of GL(F) on each set G, by setting

P =909, @,€GCG,, peGLF)

These actions define a right action of GL(F) on the set P. Moreover,

Pux, @)1 =@t poq), xelU,, @, ¢€GLF).

It follows that the action of GL(F) on P is smooth and that
P = (P, m, B, GL(F)) is a principal bundle.

Fix a basis e, ,..., e, of F. Then a bijection from G, to the set of bases
(or frames) of F, is given by

P> (pey, ..., pe;).

For this reason &£ is often called the frame bundle associated with £.
Frame bundles are discussed again in article S of this chapter, and then
extensively in article 7 of Chapter VIII.

5.2 Elementary properties. Let & = (P, m, B, G) be a principal
bundle admitting a cross-section o over an open set U C B. o determines
the homomorphism ¢: U X G — P of principal bundles, given by

o(x, a) = o(x) * a, xelU, aeG.

¢ may be regarded as a strong isomorphism from the trivial bundle to
the restriction of £ to U. In particular, if & admits a cross-section, it is
the trivial bundle.

If 7 is a second cross-section over a second open set V, then thereis a
unique smooth map

guv: UNnV->G
such that (%, gyv(x)) = 7(x). We have
7(x) = o(x) - guv(x), xeUNV,

and this equation determines gy .

Lemma I: Let & = (P, m, B, G) be a smooth bundle. Let T be a
smooth free right action of G on P, whose orbits coincide with the fibres
of the bundle. Then £ is a principal bundle with principal action T.
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Proof: Let {U,} be an open cover of B such that each U, admits a
cross-section o, : U, - P. Define i, : U, x G = =}(U,) by setting

Po(x, @) = o,(x) * a.

Then {(U,, .)} is a coordinate representation satisfying condition (iii).
Q.E.D.

Next, let # = (P, #, B, G) be a principal bundle, and let y: B — B
be a smooth map. We shall construct a principal bundle (P, =, B, G)
together with a homomorphism, ¢:P— P, of principal bundles
which induces .

In fact, let P be the disjoint union,

P = U ({x} X Gw(x));

x€B

and define = by setting m({x} X Gy(,)) = x. Define a right action, T, of
G on the set P and an equivariant set map ¢: P — P by
T((x, 2), a) = (x, 2 * a) and  ¢(x, 2) = 2,
2€Gyp, x€B, acG.
Give P a smooth structure, as follows. Choose an open cover {V,} of B

such that each V, admits a cross-section o, : ¥V, — P. Set U, = y~Y(V,)
and define bijections X, : U, X G — =~Y(U,) by

X(x, a) = (x, a,($(x)) - a).
Then forxe U, N U,

(x:l ° XV)(x9 a) = (x, guv(‘/’(x))a)r

where g,, : V, NV, — G is the smooth map satisfying

oy) = ou(y) &8y), yeEV.NOV,.

We can thus apply Proposition X, sec. 1.13, volume I, to obtain a
unique smooth structure on P such that & = (P, =, B, G) is a smooth
bundle with coordinate representation {(U,, X,)}. Since the maps X,
are equivariant, T is a smooth action and (2, T) is a principal bundle.
Moreover, ¢ is a homomorphism of principal bundles.

P is called the pull-back of 2 to B via i and it is often written J*&P.



1. Principal bundles 197

Let #, = (P,, m , B, G) be a second principal bundle over B which
admits a homomorphism ¢;: P, — P of principal bundles inducing
i B— B. Then a strong isomorphism @,: P 5> P, is defined by

Po2) = ((p1)s" o @a)(2), €T (x).

Note that ¢, o p, = ¢.



§2. Associated bundles

Notation convention: In this article # = (P, =, B, G) denotes a fixed
principal bundle with principal action 7. Moreover,

S:GxF—>F

will denote a fixed left action of G on a manifold F.

5.3. Associated bundles. Consider the right action, O, of G on the
product manifold P X F given by

Qu2,y) =(2,9)-a=(z-a,a'y), =z2eP, yeF, acG.

O will be called the joint action of G. The set of orbits for the joint
action will be denoted by P X F and

q:PXF—FP XGF

will denote the corresponding projection; i.e., (2, ¥) is the orbit through

(2 2)-
The map g determines a map p: P X, F — B via the commutative
diagram

PxF—2sP x,F

"pl lp (5.1

P B,

s
where 7, is the obvious projection. Denote p~}(x) by F, , x € B.
Proposition I: There is a unique smooth structure on P X ; F such
that

(1) €= (P xgF,p, B, F) is a smooth fibre bundle.

(2) ¢: P X F— P X F is asmooth fibre preserving map, restricting
to diffeomorphisms

q,:sziF,,(,), 3€eP,

on each fibre.
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2. Associated bundles 199

(3) (PXF,q,P x;F,G) is a smooth principal bundle with
principal action Q.
(4) mp is a homomorphism of principal bundles.

Definition: ¢ is called the fibre bundle with fibre F and structure group
G associated with 2 ; q is called the principal map.

Proof of Proposition I: If a smooth structure satisfies 3, it makes
P X F into a quotient manifold of P X F under ¢. Hence, by the
corollary to Proposition V, sec. 3.9, volume I, it is uniquely determined.

Proof of (1): We construct a smooth structure on P X ; F for which
£ is a smooth bundle. Let {U,} be an open cover of B and consider
cross-sections o,: U, — P. These are related by

0p(%) = 04(x) * £ag(x), xeU,NUs,
where g,5: U, N Uy — G are smooth maps. Define set maps,
Pyt Uy X F— p~}(U,),

by setting
‘Pm(x’ }’) = Q(UK(JC), y)a xelU,, yeF.

Then p(p,(x, ¥)) = x and so ¢, restricts to set maps
Pzt F — p~(x), xeU,.

Moreover, to each orbit in p~I(x) there corresponds a unique y € F such
that the orbit passes through (o.(x), y). Hence ¢, , is bijective, and so
@, 1s bijective.
Further, the relations ¢(z - a, y) = ¢(, a - y) imply that
9’;1°‘Pﬂ(x»y)=(x!gmﬂ(x)'y)’ xeU,NUs, yeF.

Thus Proposition X, sec. 1.13, volume I, yields a smooth structure on
P X F for which £ is a smooth bundle with coordinate representation

{( Un ’ (Pm)}'

Proof of (3): Toshowthat(P x F,q, P X, F, G), is asmooth princi-
pal bundle with principal action O consider the commutative diagrams,
U, x G x F 225 o) x F

Lxsl lq (5.2)

U, x F + o~ YU,),

-3
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where y,(x, a) = o,(x) - a. Set V, = p~}(U,); then
¢'(Va) = (momp) (U,) = n(U,) X F.
Thus diffeomorphisms X,: V, x G 5 g7(V,) are given by
X@al, ), @) = (Yol @), a7+ ).
They satisfy the relations
(@oX)(w, a) =w, and X(w, ab) = Q(X(w, a),b), weV,, a,beG
(cf. diagram 5.2). (3) follows.

Proof of (2): The commutative diagram (5.1) shows that ¢ is fibre
preserving, while the commutative diagrams (5.2) imply that the maps

g F — Fo)
are diffeomorphisms.

Proof of (4): This is obvious.
Q.E.D.

5.4. Equivariant maps. Assume £ = (P, #, B, G) is a second
principal bundle and that S is a left action of G on a manifold £. Suppose
further that

¢:P—P and aF—>F

are smooth equivariant maps.

Then the map ¢ X «: P x F— P x F is equivariant with respect
to the joint actions of G; i.e., it is a homomorphism of principal bundles.
Thus it induces a smooth map,

(4 XGG2PXGF‘—FPXGF)
which makes the diagram,

PxF 2% PxF

| Js

PXGF_—’PXGF ’
PXga

commute.
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Let : B — B be the smooth map induced by ¢. Then the diagram,

PxoFYCS% P x F

g y

B Y

’

commutes; i.e., ¢ X a is a fibre preserving map between the associated
bundles. The commutative diagrams

a

F F
qslé = | o)
" Fow, x=m(2), 2P,

(pxga):
show that, if « is a diffeomorphism, then so is each (¢ X a), .

The case that # = & and ¢ = , is of particular importance; in this
case we obtain a fibre preserving map,

(« Xga): P xgF— P xgF,
which induces the identity map in B.
5.5. Examples: 1. F = {point}. Then P x; F = B and the prin-
cipal bundle (P X F, g, P X F, G) coincides with Z.

2. Assume the action of G on F is trivial. Then { = (B X F, p, B, F)
is trivial. Also, if the principal bundle £ is trivial, then so is £.

3. Suppose y € F is fixed under the action of G:a-y =y, a€G.
Then the inclusion j:{y} — F is equivariant. It induces (sec. 5.4) a
smooth commutative diagram

P X{y} ———— P XGF

i Js

B;

thus o is a cross-section in §.

4. X-extension: Let A: G — K be a homomorphism of Lie groups.
Then G acts from the left on K by

a'y=A»ANa)y, acG, yek.
Thus we obtain a bundle 2, = (P x; K, p, B, K).
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On the other hand, the multiplication map of K determines a right
action

(Px K)x K—P x K.
This map factors over g to yield a free right action
T,:(PxgK)x K— P xgK.

The orbits of T, are precisely the fibres of P X ; K. Thus it follows
from Lemma I, sec. 5.2, that(#,, T,)is a principal K-bundle. Itis called
the A-extension of 2.

Next, define a smooth map ¢,: P — P X ; K by setting ¢,(2) = ¢(2, e).
The diagram,

PxG A P x K
Tl q
P #a PxcK (5.3)
B )

commutes (cf. diagram 5.1, sec. 5.3). This shows that ¢, is a fibre
preserving map from P to P X ; K, inducing the identity in B.

In particular, consider the case that G = K and A = «; thus G acts
on itself by left multiplication. In this case ¢, is a strong isomorphism of
principal bundles, and the diagram shows that (P X G, ¢, P X; G, G)
is the trivial principal bundle.

5. Reduction of structure group: Again, let :: G — K be a homo-
morphism of Lie groups. Assume that # = (P, #, B, K) is a principal
bundle. A reduction of the structure group of P from K to G via ) is a
principal bundle # = (P, =, B, G) and a smooth fibre preserving map
@: P— P, inducing the identity in the base, and satisfying

(2 - a) = @(2) - Ma), aeG.

Such a reduction induces an obvious isomorphism of principal bundles
from the A-extension of Z to & (cf. Example 4). Conversely, if
P =(P,m,B,G) is any principal bundle with A-extension
P, = (P x4 K, p, B, K), then the homomorphism ¢, of Example 4
is a reduction of the structure group of £ from K to G.
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5.6. Associated vector bundles. Assume now that F is a finite-
dimensional (real or complex) vector space and S is a representation of G
in F. In this case P X ; F is a vector bundle.

In fact, for each x€ B, z € n~\(x), the diffeomorphisms ¢,: F 5 F,
are connected by

Gz.a = q. 0 S(a), aeG.

Since each map S(a) is a linear isomorphism, there is a unique linear
structure in F, for which the maps ¢, are linear isomorphisms. The zero
vector of F is given by 0, = ¢(z, 0), 2 € 7 }(x).

Each ¢, of the coordinate representation {(U,, ¢,)} for ¢ defined
in sec. 5.3 is a linear isomorphism. Hence ¢ is a vector bundle with
vector bundle coordinate representation {(U,, ¢,)}. Since ¢ restricts
to isomorphisms in the fibres, the trivial bundle (P X F, n,, P, F) is
the pull-back of £ to P via 7 (cf. sec. 2.5, volume I).

To the trivial representation S corresponds the trivial vector bundle.

Next, consider a representation of G in a second vector space H and let
a: F — H be an equivariant linear map. Then the induced map (cf. sec.

5.4),
L XGG:PXGF—PP XGH,

is linear in each fibre, and so it is a (strong) bundle map.
Denote the vector bundles corresponding to F and A by ¢ and 7 and
consider the induced representations of G in the spaces

F®H, F®H, LFH), F* AF

The associated vector bundles corresponding to these representations
are given, respectively, by

£E@ Ul (@, L(f; "))1 £*, AE.

The various canonical maps between these vector spaces, such as

evaluation: LF,H)QF — H,
composition: L: QL — Le,
projection: F®H —- F,
trace: L, — R,

commute with the representations of G. Thus they induce maps between
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the corresponding vector bundles. For the four examples above we
have (cf. sec. 2.10, volume I).

evaluation: Ly ® E— M
composition: L. ®L, — L.,
projection: £§Dn - &
trace: L, —  H(B).



§3. Bundles and homogeneous spaces

In this article K denotes a closed subgroup of a Lie group G. Their
Lie algebras are denoted by F and E (F C E). The corresponding principal
bundle (cf. Example 2, sec. 5.1) is denoted by Z, = (G, ny , G/K, K)
and we write € = m(e) (e, the unit element of G). The left action of G
on G/K is denoted by T.

5.7. Bundles with fibre a homogeneous space. LetZ? = (P, n, B, G)
be a principal bundle with principal action R. The left action of G on
G/K determines an associated bundle

¢ = (P x¢(G/K),p, B, GIK)
(cf. sec. 5.3). To simplify notation we shall write

P x5(G/K) = PIK.

Consider the commutative diagram,

P x GIK —% P|K

| |+

P———B
kg

and define p: P — P/K by p(z) = ¢q(2, &).

Proposition II: With the notation above, (P, p, P/K, K) is a princi-
pal bundle whose principal action is the restriction of R to K.

Proof: It is sufficient to show that each w € P/K has a neighbourhood
W such that (p~ (W), p, W, K) is a principal bundle.

Let {(U, , ¢.)} be the coordinate representation for ¢ defined in sec. 5.3.
Set W = p~(U,), where « is chosen so that w € W. Then

pHW) = = U,).
205
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Finally, let j: G— G X G/K be the inclusion opposite &. From
diagram (5.2) of sec. 5.3 we obtain the commutative diagram

exg

U, x G U, x G x GIK £ n1y, x GIK

oo ler s

U, x GIK —— U, x GIK —= p~Y(U).

@

It restricts to the commutative diagram,

U, x G —Y p(W) x {2}

<

U, x GIK w,

Pa

where ¢ = (i, X ¢)o (¢ X j).

Now 2y is a principal K-bundle, and ¢ is equivariant with respect to
the given actions of K. It follows that (p~}(W), p, W, K) is a principal
K-bundle.

Q.E.D.

Next, fix ze P and write m(2) = x. Then the fibre inclusion,
Jeix ¢ GIK — P[K, for the bundle £ is given by

jorx = gu: GIK —> p}).
Let jo: G — P and ji: K — P denote the fibre inclusions given by
Jo(0) =2-b and jx(a)=2-a, beG, ack,
and let i: K — G be the inclusion map. Then the diagram,

K = K

Lo b

G——— P —— (5.4)

| lp !

G/K —— P|K — B,
JGix P

commutes. Moreover j; is a homomorphism of principal K-bundles.
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5.8. Subgroup of a subgroup. Assume now that G is a closed sub-
group of a Lie group H, and apply the results of sec. 5.7 to the principal
bundle # = (H, n, H/G, G). We obtain an associated bundle,

¢ = (H xc G/K, p, H|G, G|K),
and a principal bundle
P = (H,p, H xcGIK, K).
The left action of H on H|K restricts to a smooth map,
H x G/K — HIK,
which factors to yield a diffeomorphism
H x5 G/K —=> H|K

(equivariant with respect to the left actions of H, cf. sec. 5.9). We
identify these manifolds via this diffeomorphism and write

¢ = (HIK,p, H|G,GIK), @ = (H,p, HK,K).
Then £ is the standard principal bundle, while p is given by
p(aK) = aG, aceH.

Moreover, diagram (5.4) reads
K = K
G —~ H "> HIG (5.5)
K lP I
G/K H|K —> HIG.

Now suppose that K is normal in G. Then a smooth free right action
of the factor group G/K on H/K is given by

X a=x-a, xe€H, aeG.

The orbits of G/K under this action coincide with the fibres in the bundle
¢ = (H|K, p, H|G, G/K). It follows from Lemma I, sec. 5.2, that £ is a
principal G/K-bundle.
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5.9. Bundles with base a homogeneous space. Let K act from the
left on a manifold N. There is a unique left action,

A:G x (G xxgN)Y—>G xxN,
of G that makes the diagram,

GxGxN-LL,GxN

ixg q
G X (G xx N)—— G xxN,

commute. Clearly 4, together with T, is an action of G on the bundle
¢ = (G Xy N, p, G|K, N) associated with Z,; i.e., G acts on the total
and base spaces and the projection is equivariant:

pod =To( X p)

Let N, = p7Y(é). Since a - ¢ = ¢ (a € K), it follows that A restricts
to a left action

K X N! — Nl .
The projection g restricts to a K-equivariant diffeomorphism,
g,: N—=> N,

(cf. Proposition I, (2), sec. 5.3).

Conversely, assume that n = (M, p,,, G/K, Q) is a smooth bundle
over G/K and that A (with T) is a left action of G on 7. Then we can
construct the bundle,

£ = (G XKQ!’P» G/Kv Q!)l

via the induced action of K on Q, .
A restricts to a smooth map G x Q, — M. This factors over ¢ to yield
an equivariant fibre preserving diffeomorphism,

¥: G xxQ,—> M,
which induces the identity map in G/K.

5.10. Vector bundles. In this section we apply the results of sec. 5.9
to vector bundles. Each representation of K in a vector space N yields
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a vector bundle over G/K associated with Zy (cf. sec. 5.6) in which G
acts by bundle maps. Conversely, if G acts by bundle maps in a vector
bundle n over G/K so as to induce the standard action in G/K, then the
action restricts to a representation of K in the fibre over é.

If these two constructions are applied consecutively, starting off with
a representation of K (respectively, a vector bundle over G/K acted on
by G), we obtain a representation (respectively, a vector bundle acted
on by G) which is equivariantly (respectively, equivariantly and strongly)
isomorphic to the original.

Examples: 1. If the representation of K in N is trivial, then

G xxN=G/KxN
and ¢ is trivial.

2. Assume that the representation of K in IV extends to a representa-
tion of G in N. Define a diffeomorphism ¢ of G X N by setting

ob,y) = (b, 571 y), beG, yeN.
Then (letting O denote the joint action of K in G X N)
Polpa X 1) =Qacp, a€k

(p, denotes the right translation of G by a). It follows that ¢ induces a
diffeomorphism

$: GIK x N—=> G x¢N.
Evidently ¢ is a strong vector bundle isomorphism. Moreover,
Jb-2b-y) =b-yY(zy), beG, zeG|K, yeN,

(where G acts on G X N as defined in sec. 5.9).

5.11. Tangent bundle of a homogeneous space. Recall that the Lie
algebras of K and G are denoted by F and E. The adjoint representation
of G restricts to a representation, Ad; x , of K in E. Since the Lie algebra
F is stable under the maps Ad; x(4), a € K, we obtain a representation,
Ad4, of K in E/F. The sequence

0—->F—->E—-EF—0

is short exact and K-equivariant with respect to the representations
Ad, Ad; x , and Ad* of K.
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Now form the vector bundles
¢ = (G xx(E[F),p;,GIK,E[F) and 7 = (G xxF,p,,GIK,F).

G acts on both ¢ and 7. On the other hand, the left action, T, of G
on G/K induces a left action, dT, of G on the tangent bundle 7/, (cf.
Example 7, sec. 3.2).

Proposition III: With the hypotheses and notation above

(1) ¢ is strongly and equivariantly isomorphic to 7¢x .
(2) The vector bundle ¢ @ 7 is trivial.

Proof: (1) According to sec. 2.11, (dmg), induces a linear isomorphism
E[F —=> T(G/K).
Since wg o A, = T, o mx and mg o p, = mx (@ € K), we have
(dmg). o Adg x(a) = dT, o (drg), , ae K.

Thus this isomorphism is equivariant with respect to Ad‘ and dT.
Now apply sec. 5.10.

(2) Since the sequence F — E — E|F is K-equivariant, it determines
a sequence of strong bundle maps

Ul —lr G xXxE —1-)> £
For each z € G/K, the restriction,

0—~F,—E, - (E[F),—0,
is short exact.
Hence, there is a strong bundle map o: § -G Xx E such that

poo =1 (cf. Lemma III, sec. 2.23, volume I). Thus a strong bundle
isomorphism,

g £@ 71— G x«E,
is defined by

o(u, v) = of(u) + i{(v), ue(E/F),, veF,, zeG/K.

On the other hand, the representation Ad; , of Kin E is the restriction
of a representation of G. Hence, by Example 2 of sec. 5.10, G Xx E is a
trivial bundle over G/K. Thus &€ @ 7 is trivial.

Q.E.D.
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5.12. Tori. Suppose now that G is compact and connected, and that
K is a torus in G. Then the adjoint representation of K is trivial and
hence, so is the bundle

n = (G x«F, p,, G|K,F).

Thus, by Proposition III, sec. 5.11, the Whitney sum of 7 x with a trivial
bundle is trivial. This implies (as will be shown in sec. 7.19) that the
Whitney sum of 7 /¢ with the trivial bundle of rank one is trivial,

Tox @ €l = €t r = dim G/K. (5.6)

Now we distinguish two cases:

Case I: K is a maximal torus (cf. sec. 2.15). Then the Euler—
Poincaré characteristic of G/K is positive (cf. sec. 4.21). Hence
Theorem II, sec. 10.1, volume I, implies that every vector field on G/K
has at least one zero. In particular, the tangent bundle of G/K is non-
trivial.

Case II: K is not maximal. Then K is properly contained in a
maximal torus, 7. Since T is compact and connected, the factor group
T/K is again a torus (cf. Proposition XIII, sec. 1.12).

Thus according to sec. 5.8 we can form the principal 7/K-bundle

? = (G/K, =, G/T, TIK).

Write Tgx = Hgix @ Vg x, where Vi x is the vertical subbundle and
H/x is a horizontal bundle (cf. sec. 0.15).

Since 2 is a principal bundle, the vertical subbundle is trivial (as will be
shown in sec. 6.1),

VG/K = Em, m = dim T/K.

By hypothesis, K is properly contained in T and so we have m > 1. On
the other hand, H g is the pull-back of 75,7 under 7.

It follows that 7/ is the pull-back of 75/ @ €™ In view of relation
(5.6), with K replaced by T, the bundle 75,7 @ €! is trivial. Hence so
1S Tg/x -

Thus if K is a nonmaximal torus, then the homogeneous space G/K has
trivial tangent bundle.
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5.13. The Grassmann manifolds. Let I" be one of the fields R, C,
or H and consider the vector space I = I @ --- @ I'. Introduce a
positive definite inner product { , > in I'* which is Euclidean, Hermitian,
or quaternionic according as I' = R, C, or H. In the case I' = R also
choose an orientation in I™.

A k-plane in I'* is a I'-subspace of I'-dimension k. The set of all
k-planes in I is denoted by Gp(n; k). An oriented k-plane in R™ is a
k-plane F together with an orientation of F. The set of oriented k-planes
in R* will be denoted by G(n; k) if & < n. Finally, we define ff‘) n; n)
to be the set consisting of a single element, namely the oriented vector
space R™.

This article deals with each of the four cases listed below. In each
case, I', I(n), G(n; k) is to be interpreted as described below.

Case r I(n) G(n; k)

I R O(n) Gn(n; k)
I R SO(n) Gn; k)
111 C U(n) Ge(n; k)
v H Q(n) Gu(n; k)

Observe that in each case the Lie algebra of I(n) consists of the
I'-linear transformations of I™® that are skew with respect to the inner
product {, >. The Lie algebra of I(n) is denoted by E(n).

The set G(n; k) is made into a manifold in the following way: First
define a transitive left action of the Lie group I(n) on G(n; k) by setting

(¢, F)—> o(F), @el(n), FeGn;k).
This yields a surjection, «: I(n) — G(n; k), given by
op) = @(I™), @el(n)

(where I'* is regarded as the subspace of I'* consisting of those vectors
whose last # — k components are zero).

212



4. The Grassmannians 213

Denote (I*)+ by I'n*: ' = I'* @ I'**. This decomposition deter-
mines an inclusion, I(k) X I(n — k) — I(n), and clearly

oY) = I(k) x I(n — k).

Hence o« induces a commutative diagram,

1(n)

I(n)/(I(k) x I(n — k) —5—> G(n; k),

and B is an equivariant bijection. Give G(n; k) the unique manifold
structure such that 8 is a diffeomorphism. The manifold so obtained is
called the Grassmannian of k-planes in I'*. Since B is equivariant the action
of I(n) on G(n; k) defined above is smooth.

Observe that the canonical isomorphism

I(k) x I(n — k) == I(n — k) x I(k)
induces, via B, a diffeomorphism
Q: G(n; k) —> G(n; n — k).
If F € G(n; k), then $2(F) is the orthogonal complement of F in I'™.
5.14. Examples: 1. The Grassmannian of k-planes in R*: Assume
that 0 < k < z. Then an involution, w, of G(; k) is defined as follows: If

F is an oriented k-plane, then w(F) is the same k-plane with the opposite
orientation. On the other hand, a projection,

p: G(n; k) — Gg(n; k),

is defined by forgetting the orientations of the elements of G(n; k).
Evidently, p is a double covering and w is the involution that inter-

changes the two points in each p=1(F).
To see that p and w are smooth note that SO(n) acts transitively on
Gg(n; k), and that the isotropy subgroup at R* is the group

K = SO(n) N (O(k) X O(n — k)).
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This group consists of two components,

Ko ={(p, ¥) | detp = 1, detyp = 1} = SO(k) X SO(n — k),
and
Ky ={(@¢)|deto =—1, detyp =—1}.

The commutative diagram,
SO(n)/(SO(k) x SO(n — k)) —— G(n; k)

m p
SO(n)/K = Gg(n; k),

shows that p is smooth, a local diffeomorphism and a double covering.
Hence w is also smooth.
The dimension of Gg(n; k) is given by

dim Gg(n; k) = (;) — (’;) —(" 5 k) = k(n — ).

2. Real projective space: Assume that n > 2 and consider the mani-
fold G(n; 1). Its points are the oriented lines in R™ through the origin.
Identifying each such line with its positive unit vector, we obtain an
SO(n)-equivariant bijection between G(n; 1) and S»-1. Since SO(n)
acts smoothly on $”-1, the commutative diagram (cf. Example 2, sec. 3.6)

SO(n)/SO(n — 1)

o~ o~

G(n; 1) = Sn-1

shows that this identification is a diffeomorphism.

Moreover, the involution, w, in G’(n; 1) defined in Example 1 corre-
sponds under this diffeomorphism to the antipodal involution of S~
Thus we obtain a diffeomorphism

Gg(n; 1) —> RP™

(cf. Example 2, sec. 1.4, volume I). Hence Gg(n; 1) is diffeomorphic
to the real projective space of dimension 7 — 1.

3. Complex and quaternionic projective space: Let m > 2. The
manifolds G¢(n; 1) (respectively, Gy(n; 1)) of complex (respectively,
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quaternionic) lines in C™ (respectively, H") through the origin are called
complex (quaternionic) projective space and are denoted by CP*~! and
HP™-? respectively.

4. Complex and quaternionic projective lines: We shall construct
diffeomorphisms

CP!' =582 and HP'-Z S

Define a map C — CP? by sending 2 € C to the one-dimensional complex
subspace of C? generated by the pair (1, 2). This is a smooth embedding.
Since dim C = 2 = dim CP}, it is a diffeomorphism onto an open subset
of CP'. The only point which is not in the image is the one-dimensional
subspace of C2generated by (0, 1). Since CP! is compact, it is the one-
point compactification of C; i.e., CP! is diffeomorphic to S2.

Similarly, HP! is the one-point compactification of H and hence it is
diffeomorphic to S4.

5.15. Canonical vector bundles over G(n; k). Recall that in secs. 2.1
and 2.22, volume I, we defined real and complex vector bundles. Quatern-
ionic vector bundles are defined in a similar way, and the definition of
all three may be given simultaneously as follows: A I'vector bundle is a
smooth bundle ¢ = (M, =, B, F), in which F and F, (x € B) are I-vector
spaces, and which admits a coordinate representation {(U, , ¢,)} such that
each map,

$out F—>F,,

is a I'-linear isomorphism.

We shall construct canonical I'-vector bundles over G(z; k). It will be
important to distinguish between a k-plane, F, as a subspace of I'", and
as a point in G(n; k).

Consider the disjoint union

M= ) F
FeG(nik)
Thus a point of M is a pair (F, v) with v € F. Let p: M — G(n; k) be the
projection given by
p(F,v) = F.

Observe that a left action of I(n) on the set M is given by

(p(F, 7J) = (‘P(F)! q’(v))! ¢ €I(n), (Fr v)eM.
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We shall make ¢, = (M, p, G(n; k), I'*) into a I'-vector bundle so that
this action becomes a smooth action.
Consider the representation of I(k) x I(n — k) in I'* given by

@ 9)w) =), eel(k), yeln—k), uel*
It determines a I'-vector bundle (cf. sec. 5.10),
& = (I(n) X goxan_p T% B, Im)[(I(k) x I(n — k), I'¥),

which admits a canonical left action of I(n). Now define a surjective set
map,
®: I(n) x IT* — M,
by setting
P(p, v) = (p(I*), p(v)),  pel(m), vel™
Factoring through the joint action, we obtain the commutative diagram,

¥

I(n) X ryxrtn—ry T* M

I p
In)/(1(k) x 1(n — R) —5—> G(m; k),

where B is the equivariant diffeomorphism of sec. 5.13 and ¥ is an I (n)-
equivariant bijection restricting to linear isomorphisms on the fibres.

Give M the manifold structure for which ¥ is a diffeomorphism. Then
¢, becomes a vector bundle acted on by I(n) and

¥ éki &

is an equivariant isomorphism.
Similarly, we obtain a vector bundle ¢ = (M+, p, G(n; n — k), I'™F)
by setting
M= ) F-

FeG(nik)

It admits an action of I(z) and is equivariantly isomorphic to the bundle
(I(7) X 1gxrtn-ry T, B, I(m)/(I(k) X I(n — k)), I'"F).

(Replace I'k by I''~*% = (I'*)L in the discussion above.) ¢, and &f are
called the canonical k-plane and (n — k)-plane bundles over G(n; k).
The direct decomposition,

I @ Ik =, I
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determines a strong bundle isomorphism
£, @ & —=> G(n; k) x I'™.

Finally, the actions of I(n) on &, and £} defined above, together with
the standard actions of I(n) on G(n; k) and I'"™ define actions on the
bundles ¢, @ &% and G(n; k) x I'*. Moreover, the isomorphism defined
above is equivariant.

5.16. The tangent bundle of G(n; k). Given two [-vector bundles ¢
and 7 over the same base B, we can form the (real) vector bundle L (¢; 1)
whose fibre at x € B consists of the I’-linear maps between the fibres of ¢
and 7 at x.

Proposition IV: The tangent bundle of G(n; k) satisfies
76w = Lr(€i; ft)

Proof: Identify G(n; k) with I(n)/(I(k) X I(n — k)). According to
sec. 5.11 its tangent bundle is obtained from the representation Ad+t
of I(k) X I(n — k) in E(n)/(E(k) ® E(n — k)).

On the other hand, L(£,; é+) is obtained from the representation of
I(k) x I(n — k) in L(I'*; I'~*) given by

(o, 7)(p) =Topoal, eel(k), rel(n— k), el (I'* I'"¥),
Thus we must construct an (I(k) x I(n — k))-linear isomorphism
L(I'*; I¥) o< E(n)/(E(k) © E(n — k)).

Recall that E(n) is the real vector space of I'-linear skew transformations
of I'*, and that I'*~% = (I'*)1. The Lie algebras E(k) of I(k) and E(n — k)
of I(n — k) (considered as subalgebras of E(n)) are given by

E(k) = {a€ E(n)|{a(I™*) =0} and En — k) = {a € E(n)|«(I'*) = 0}.
Define a subspace L C E(n) by setting
L = {ae E(n) | (") C I'"* and o(I'"~¥)C I},
Then
E(n) = E(k) ® E(n — k) ©® L.
Moreover, since the adjoint representation of /(n) is given by

(Ad 6)a = ocoaool, ael(n), «ac€E(n),
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it follows that L is stable under I(k) x I(n — k). In particular, there is
an isomorphism of (I(k) x I(n — k))-spaces

L = E(m)(E(k) @ E(n — k).
Finally, define a linear isomorphism,
®: L(I*; %) =5 L,
by setting
Pa)x Dy) = o(x) —&(y), «el(I*I"F), xel* yel™H

where & denotes the adjoint of «. Since I(k) and I(n — k) consist of
isometries, it follows easily that @ is (I(k) x I(n — k))-equivariant. Hence

Lp(I*; I'*) = L == E(n)/(E(k) @ E(n — k),

which completes the proof.
Q.E.D.

Corollary: There are isomorphisms
TGRin:k) = € Or ft ’ TG == €k On &, and Teglnik) = fl,ck ®c &

(where £, is interpreted as a vector bundle over the appropriate manifold,
and £F is the complex dual of &).



§s5. The Stiefel manifolds

We continue the notational conventions of article 4.

5.17. Stiefel manifolds. An orthonormal k-frame in I’ is a sequence
of k vectors, (u, , ..., 4;), such that

uiy u) =8,

An n-frame in the oriented space, R”, is called positive, if it represents
the orientation of R™.

We extend the conventions of this article by letting V(n; k) denote
any one of the sets Vg(n; k), Vig(n; k), V(n; k), and Vy(n; k) defined by:

Case I Vr(n; k) Orthonormal k-frames in R".

Case I1 V(n; k) Orthonormal k-frames in R if & < n;
positive orthonormal n-frames in R if & = n.

Case 111 V(n; k) Orthonormal k-frames in Cn.
Case IV Vln; k) Orthonormal k-frames in H".

A transitive left action of I(n) on V(n; k) is given by

@ (U, s ) = (p(w), -, P(21)),
pel(n), (u,.., u)e Vin;k).

In particular, write I'* = I'* @ I'™* and let (e ,..., ¢) be a fixed
orthonormal basis of I'*. Then the subgroup of I(n) which fixes the
k-frame (e, ,..., ¢;) is exactly I(n — k) (cf. sec. 5.13). Thus the action
of I(n) on V(n; k) determines an equivariant bijection

I(m)/I(n — k) ——> V(n; k).

Assign V(n; k) the unique manifold structure such that this bijection
is a diffeomorphism. (Then the action above is smooth.) The manifold
V(n; k) is called the Stiefel manifold of orthonormal k-frames in n-space.

219
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5.18. The universal frame bundle over G(m; k). A canonical
principal bundle,

Pn; k) = (V(n; k), me , G(n; k), I(R)),

is defined as follows:

If (uy ..., w) € V(n; k), let m(u, ..., w;) be the (oriented) k-plane with
Uy y..., U as (positive) basis. Then m;: V(n; k) — G(n; k) is a well defined
map. Moreover, we have the smooth commutative diagram,

I(m)I(n — k) ———> V(n; k)
Pl T
I(m)|(I(k) x I(n — k)) —> G(n; k),

where the horizontal diffeomorphisms are defined in sec. 5.17 and
sec. 5.13 respectively, and p(o-I(n — k)) = o - (I(k) X I(n — k)),
o€ I(n).

We can apply sec. 5.8 to obtain a smooth principal bundle

(I(m)/I(n — k), p, I(m)[(1(k) X I(n — k)), I(K)).

Thus the diagram above shows that = is the projection of a smooth
principal bundle, P(n; k) = (V(n; k), ;. , G(n; k), I(k)). Note that, if
F € G(n; k) then m'(F) consists of the (positive) orthonormal k-frames
in F. For this reason P(n; k) is called the universal frame bundle over
G(n; k).

The inclusion maps,

'n s [+l 'n+2 5 ... ,
determine smooth commutative diagrams,

Viny k) — V(n + 1; k) — ==
e ™
Gn, k) — G(n 4 1; k) — ==,
which are, in fact, homomorphisms of principal I(k)-bundles.
The vector bundle, 7, , associated with &(n; k) via the action of I(k)

in I'*, is canonically isomorphic to the bundle ¢, = (M, p, G(n; k), I'*)
of sec. 5.15. Indeed, fix a (positive) orthonormal basis (e, ,..., &) of I'*.
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Define a map,
q: V(n; k) x I't— M,
as follows:

q((uy , ooy we), Y Ne) =Y Nug,  Nel, (u,..,u)e V(n k).
i 7

It is easy to check that ¢ induces an I(n)-equivariant, strong isomorphism

Vin; k) X1 =M.

5.19. The manifolds I(n; k). Let I(n; k) denote the set of isometric
inclusions I'* — I'* (except in case II when k = n; then I(n; n) will
denote the set of orientation preserving isometries of R™). Note that
I(n) and I(k) act, respectively, from the left and right on I(n; k) via

b =g
and :
y-o=4doo, pel(n), Yel(n; k), oecl(k).

Now fix a (positive) orthonormal basis, e, ,..., ¢, , of I'*. Then an
I(n)-equivariant bijection,
1(n; k) — V(n; k),
is given by ¢ (e, ,..., pe;). We use this bijection to make I(n; k)

into a smooth manifold, and to identify it with V(z; k).
In particular, we may write

P(n; k) = (I(n; k), m, , G(n; k), I(k)).

Then m(p) = o(I'%), ¢ € I(n; k). Moreover the principal action of I(R)
is the right action given above. _
Finally, observe that the isomorphism I(n; k) X,q) I'* > &, of
sec. 5.18 is induced by the map, ¢ : I(n; k) X I'* — M, given by
opv) = @(v), @el(n k), vel™

Proposition V: Let # = (P, m, B, I(k)) be a principal bundle. Then,
for some n > k, there is a homomorphism of principal bundles

P—* I(n; k)
kis Tk

B — G(n; h)
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Definition: i is called a classifying map for the principal bundle 2.

According to the proposition, £ is the pull-back of Z(n; k) to B via .
Before proving the proposition we establish

Lemma II: Let { = (P X ,»I'%, p¢, B, I'*) be the vector bundle
associated with & via the action of I(k) on I'*. Then, for some n > k,
there is a strong bundle map o: { > B X I'" restricting to I'-linear
injections on the fibres.

Proof: This lemma is proved in sec. 2.23, volume I, in case I and
case II. The same argument holds in cases III and IV, using Hermitian
and quaternionic inner products.

Q.E.D.

Proof of the proposition: Let o be the bundle map constructed in
Lemma II and let

@ P X T*— P xul*

be the principal map(cf. sec. 5.3). Then a smooth map ¢: P — I(n; k) is
defined by the relation

(7(2), p(2)u) = o(q(z,u)), =z€P, uel*
Clearly,

o(z - e = (2)(r(1)) = (¢(2) ° ), zeP, rel(k), uel*

Hence ¢(z - 7) = ¢(2) o 7 and so ¢ is equivariant; i.e., ¢ is a homo-
morphism of principal bundles.
Q.E.D.

5.20. Examples: 1. Hopf fiberings: A point of V(nm; 1) is just a
unit vector in I'*, Thus, if n > 1,

Va(n; 1) = 8%, Ve(n; 1) = 821, Vy(n; 1) = S,

Moreover, the left action (cf. sec. 5.17) of O(n), U(n), and Q(n) on these
spheres is the standard one.

Next observe that in cases I, III, and IV, I(1) can be identified with
the unit sphere of I' (I' = R, C, or H) as follows: For each unit vector
a € I', define p, € I(1) by

we(?) = 2a7l, zel.
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Then at+> p, is an isomorphism of Lie groups (cf. Example 2, sec. 2.6
and Example 3, sec. 2.7). Thus the universal 1-frame bundles become

(S"_l, m, RP"_I, SO)’ (SZn—l’ m, CPn—l, Sl), and (Sd”_l, m, lH]Pn-l’ Sa)

Notice that the first bundle is simply the double covering of Example 2,
sec. 5.14. Moreover CP! = §? and HP! = S§* (cf. Example 4, sec 5.14).
Thus the bundles Z¢(2; 1) and #y(2; 1) can be written

(83,7, 8% 8) and (87, S% .89

Consider the right action of S° (respectively, S!, S%) on R™ (respec-
tively, C*, H*) given by

(Bry oor 2) - 2 = (2712, ..., 2712,), z; el

This action restricts to an action of S° (respectively, S?, S%) on S»-1
(respectively, S2n—1, S4-1). We shall show that these actions are the
principal actions of S° S, and S? on the 1-frame bundles.

Infact, leto € I(n; 1) and write o(1) = (2, , ..., 2,). Theno(l) € V(n; 1)
and the principal action of I(1) is given by (cf. sec. 5.19)

ofl) -z = (0o m)(1) = o) = (5712 , ..., 5712,).

2. The Stiefel manifold Vg(n;2): Let I' =R and consider the
Stiefel manifold Vg(n; 2). Its points are the isometries o: R? — R™.
An embedding ¢: Vig(n; 2) > R* @ R™ is defined as follows: Choose
an orthonormal basis e;,e, in R? and set ¢(a) = («(e,), x(€;)). The
image of ¢ consists precisely of the pairs (x, y) satisfying

x| =1, |yl=1 (x> =0.

On the other hand, consider the bundle (M, =, S*~1, S*~2), of unit
tangent vectors of S®~1. Then the map,

P 2> (n(2), 2), zeM,

defines an embedding of M into R® @ R™ and the images of ¢ and ¢
coincide. Composing ¢ with the inverse of ¢ yields a diffeomorphism of

V(n; 2) onto M.



§6. The cohomology of the Stiefel manifolds and
the classical groups

The notation conventions of articles 4 and 5 are continued in this
article. We shall frequently make the identifications

Ven; k) = Un)|[U(n — k) and  Vg(n; k) = SO(n)/|SO(n — k).

The tensor product of graded algebras is always the anticommutative
tensor product.

5.21. Complex and quaternionic Stiefel manifolds. Theorem I:
The cohomology algebras of the manifolds V(n; k) and Vy(n; k) are
exterior algebras over oddly graded subspaces (i.e., subspaces whose
homogeneous elements all have odd degree). The Poincaré polynomials
are given by

k
fVc(n: k) = ]:[ (l —+ tz(n—k+i)—l)
i=1

and
k

fVH(n: k) = ]:[ (] + t‘“"'k*i)‘l)
i=1
Corollary: The Poincaré polynomials for U(n) and Q(n) are respec-
tively given by (since V(n;n) = U(n) and Vy(n; n) = Q(n))

n n

fow =[] (1 + 2 and  fom = [] (1 + t4-Y).

i=1 =1

Proof: We consider the complex case; the argument in the quatern-
ionic case is identical. The proof is by induction on k& (for fixed 7).

Since V¢(n, 1) = S?1, the theorem is clear for & = 1.

Suppose it holds for some k. From sec. 5.8, we obtain a bundle

¢ = (Um)/Un—k—1),p, Un)/U(n — k), Un — K)|U(n — k — 1))

Since U(n — k)/U(n — k — 1) = S¥»—*-1 £ is a sphere bundle.
224
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Moreover, since U(n — k) acts on the sphere by orientation preserving
diffeomorphisms, the bundle is orientable. Thus its Euler class,

Xe € HE»=B(U(n)|U(n — k),

is defined.
On the other hand, by our induction hypothesis, the theorem holds for
k, and so the formula in the theorem shows that

H2n=(U(n)[U(n — k)) = 0.

Thus X, = 0. Now it follows from Corollary II to Proposition IV of
sec. 8.4, volume I, that

H(U(n)/U(n — k — 1)) == H(U(n)|U(n — k)) ® H(S2"0-1)

(as graded algebras). This closes the induction.
Q.E.D.

5.22. The Stiefel manifolds Vg(n; 2). Proposition VI: The co-
homology algebra of Vg(n; 2) (for n > 3) is given by

H(Vo(2m; 2)) >~ H(S*™ 1) @ H(S*™2?) and H(Ve(2m + 1;2)) =~ H(S™),

Proof: Recall from Example 2, sec. 5.20, that the sphere bundle
associated with the tangent bundle of S™~! is given by

¢ = (V(n; 2), m, S71, S7-2),
Moreover (cf. Example 1, sec. 9.10, volume I)

X—) n— 1 odd
¢ 2wpy, n—1even,

where w,,_, denotes the orientation class of S"~1.

Case A: n=2m,m>1. Then since X,= 0 there is a class
w € H2m2(Vg(2m; 2)) such that fsw =1 (cf. sec. 8.4, volume I).
Moreover, the map,

a®@1 4+ B® wyp_pg —> 7¥a + 7B - w, o, B € H(S*™1),
defines a linear isomorphism
H(S*1) ® H(S*™~%) — H(Va(2m; 2)).

In particular, H¥=4(Vg(2m; 2)) = 0, and so w? = 0. It follows that
this isomorphism is an isomorphism of graded algebras.
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Case B: n=2m+ 1, m>1. The Gysin sequence for ¢ reads

{ . .
Hi(S?m) AN Hi(Vg(2m + 1;2) is’ Hi-2m+1(S2m)

D
Hi1(S™m)
(cf. sec. 8.2, volume I). This shows that, for i 5 0, 2m— 1, 2m, 4m — 1,
Hi{(Vg(2m + 1;2)) = 0.

Since D(1) = X, = 2w,,,, D restricts to an isomorphism
HY(S2m) =) Hm(S2m),
Now the exactness of the Gysin sequence yields

Hm(Ve(2m + 1;2)) = 0 = H2YVg(2m + 1; 2)).
Q.E.D.

5.23. Bundles with fibre Vg(2m + 1;2). Let n = (E, =, B, F) be
an oriented bundle with F = Vg(2m + 1; 2). In view of sec. 5.22,

H(F) ~ H(S'™1),

Now the proofs of the results for sphere bundles established in article 1,
Chap. VIII, volume I, depend only on the cohomology and compactness
of the fibre; in particular, the identical results hold for 7.

This implies that there is a class X, € H%"(B), depending only on 7,
and determined by the following condition: Let @ € 4**(B) represent X, .
Then, for some Q2 € A*™Y(E),

o*® — 8Q,  and f.rz:—l.
F

Moreover there is a long exact sequence,

<« — Hi(B) . Hi(E) g, Hi-tm+1(B) L, H#*Y(B) — -

where Do = o - X, . If X, = 0, then there is an isomorphism of graded
algebras,

H(E) = H(B) ® H(S*Y).
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5.24. The real Stiefel manifolds Vy(n; k). Theorem II: The co-
homology algebra of Vg(n; k) (k < n)is an exterior algebra over a graded
vector space. The Poincaré polynomials are the polynomials given below.

.
n = 2m, k=2+1 1>0 (1 + t2m-1) 1"[(1 )
=1
!

n=2m+1, k=2, 1 >1 I_[(] + hm-4i+3)

i=1

1-1

n = 2m, k=2, m>1>1 (1 + g2m-24)(1 + g2m-1) 1_1(1 + pam—ti-1)

1=1

1-1
n=2m+1Lk=2+1,m>1>0] (I+em2)][] +em-u)

i=1

Theorem III: The Poincaré polynomials for the groups SO(#n)
are given by

m—1

Ssoum = (14673 TT (1 4 1470

i=1
and

fsoemny = H (1 + ¢471).
i=1

Proof of Theorem II: Since Vi(n, 1) = S™~1, the theorem is correct
for k = 1. If 2 =k < n the theorem is contained in Proposition VI,
sec. 5.22. Now we use induction on k. Assume the theorem holds for
V(n; i), i < k, and consider two cases separately.

Case A: n — kisodd. Write n — k = 2g — 1. Consider the bundle
(SO(n)/SO(n — ), p, SO(n)|SO(n — k + 2), Va(2q + 1;2)).

By induction the theorem holds for SO(n)/SO(n — k + 2). It follows
that

H%9(SO(n)|SO(n — k + 2)) = H*-%*+%(SO(n)/SO(n — k + 2)) = 0.
Hence it follows from sec. 5.23 that
H(SO(n)/SO(n — k)) = H(SO(n)[SO(n — k + 2)) @ H(S? -2+

and the induction is closed.
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Case B: n — k=2q and ¢ > 0. Since (always) 2 > 1, we have
2g < n. Now consider the sphere bundle

(SO(n)/SO(n — k), p, SO(n)|SO(n — k + 1), S**).

Since n — k is even, we have a linear isomorphism,
H(SO(n)/SO(n — k)) —> H(SO(n)|SO(n — k + 1)) ® H(S"*),

of graded vector spaces (cf. Corollary II to Proposition IV, sec. 8.4,
volume I).
It follows from our induction hypothesis that

H2n-H(SO(n)/SO(n — k + 1)) = 0.

This, as in the proof of Proposition VI, implies that the isomorphism is
an isomorphism of graded algebras.
Q.E.D.

Proof of Theorem III: Let (z,,..., v,_;) be an orthonormal (n — 1)-
frame in R". Then thereis a unique vector, v, € R?, such that (v,,...,,)
is a positive orthonormal n-frame. This provides a diffeomorphism,
Va(n;n — 1) 5 SO(n). Now apply Theorem II.

Q.E.D.



Problems

1. Free actions. (i) Let G be a Lie group that acts freely and
properly on a manifold M (cf. problem 5, Chap. III). Show that
(M, =, M|G, G) is a principal bundle (cf. problem 6, Chap. III).

(i) Apply this when G is discrete and the action is discontinuous
(problem 21, Chap. III). Show that the universal covering projection
for any connected manifold is the projection of a principal bundle
(problem 18, Chap. I).

2. (i) Show that the closed proper subgroups of S? are finite, and
are in 1 —1 correspondence with the groups 7, = Z/pZ,p = 1, 2, ... .

(if) Construct principal bundles (S', #, S§*, Z,), where Z, acts by
multiplication. Let (S! XZ’S‘, p, S1, S') be the associated bundle
(same action of Z,)). Identify it as a principal S'-bundle, and show that
it is the trivial bundle.

(ii)) Construct a principal bundle (R?, =, S' Xz S8, Z X Z), where
Z X Z acts on R? by

(%) (mn) = (x+pm+n,y + n), x,yeR, mnel.
(iv) Let Z, act on S! via ¢ > e7%. Show that S! Xz S is not diffeo-
morphic to S* x St
3. Let M(n, m; k) denote the set of linear maps from R” to R™ of
rank k.

(i) Make M(n, m; k) into a smooth manifold.
(i) Show that composition defines a smooth map

p: M(n, k; k) X M(k, m; k) — M(n, m; k).
(iii) Show that p is the projection of a principal bundle.

4. Let# = (P, m, B, G) be a principal bundle. Let G act on itself by
conjugation. Show that the resulting associated bundle is a bundle over B
with fibre G. Construct an example in which this bundle cannot be made
into a principal bundle.

229
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5. Let (P, =, B, G) be a principal bundle. Assume that G acts on an
r-manifold, Y, and let (M, p, B, ¥) be the associated bundle. Let
¢ = (Vy, p, M, R") be the vertical subbundle of the tangent bundle 7, .

(i) Show that (V) , p o p, B, T}) is a smooth bundle. Identify it with
the bundle P x, Ty — B.

(it) Assume that Y = G/K, where K is a closed subgroup of G.
Identify ¢ with the bundle (P x4 EJF, p,, P/K, E[F), where E and F
denote the Lie algebras of G and K.

6. (i) Let £ = (M,m B,F) be a Riemannian vector bundle.
Construct a principal O(n)-bundle whose fibre at x is the set of isometries
F — F, . Show that ¢ is the associated vector bundle.

(i) Make similar constructions for real vector bundles, oriented
real bundles, oriented Riemannian bundles, complex bundles, Hermitian
bundles, and quaternionic vector bundles.

(i11) Apply (i) and (ii) to the tangent bundle of a manifold. Show that
the resulting principal bundle has trivial tangent bundle.

7. Flag manifolds. A flag in R™ (respectively, C*, H™) is a sequence
of subspaces,
0CF,CF,C--CF, =R,
such that dim F; = j (1 <j < n).
Make the flags into a compact manifold (in each case) and identify
it with a homogeneous space.

8. Grassmann manifolds. (i) Define an action of GL(n; R) on
Gg(n; k). Determine the orbits and isotropy subgroups.

(it) Make a similar construction in the other three cases.

9. Projective vector bundles. Let { = (E, =, B, F) be a real vector
bundle.

(1) Define a2 manifold M whose points are the one-dimensional
subspaces of the fibres F, .

(i) Show that M is the total space of a fibre bundle over B with the
real projective space as typical fibre. Represent this bundle as an
associated bundle.

(ii1) Show that the pull-back of £ to M can be written in the form
7 @ {, where { is a vector bundle of rank 1. Is { necessarily trivial ?

(iv) Establish analogous results in the complex and quaternionic
cases.
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10. Actions on principal bundles. A Lie group K acts on a principal
bundle # = (P, =, B, G) if it acts from the left on P and B so that the
projection 7 and the right translations 7T, (a € G) are K-equivariant.

(1) Show that an action of K on £ induces an action of K X G
on P.
(i1) Show that an action of K on & induces an action of K on all the
associated bundles.
(ni) If K acts on 2, show that it acts on associated vector bundles
by bundle maps. Obtain a geometric description of its action on the
corresponding associated bundles with fibre a Grassmannian.

11. Parallelizable homogeneous spaces. Recall that a mani-
fold M is parallelizable (respectively, stably parallelizable) if the
tangent bundle 7, is trivial (respectively, if 7,, @ €! is trivial).

(i) Suppose HC KCG is a sequence of closed Lie groups. If
G/H is stably parallelizable, show that so is K/H.

(i1) Let G be a Lie group with Lie algebra E. Then Ad: G — GL(E).
Show that GL(E)/Im Ad is stably parallelizable.

(i) Let K be a closed subgroup of a Lie group G. Assume the Lie
algebra F of K satisfies

F=I1,00,D2I, =0,

where [1,,1,]C1,,, . Show that G/K is stably parallelizable.

(iv) Show that the real and complex Stiefel manifolds V(n; k) are
parallelizable if 2 > 2. (Notice that Vy(n; 2) requires special attention.)
Discuss the quaternionic case.

12. Vector fields on homogeneous spaces. Let K be a closed sub-
group of a Lie group G. Let F C E be the corresponding Lie algebras.

(i) Establish an isomorphism f+> Y, between the space of K-equi-
variant functions f: G — E/F and vector fields on G/K. Given f, and f, ,
describe the function f, satisfying ¥V, = [V, , ¥, ].

(i) Show that the zero sets f~(0) and Y;(0) are related by f~(0) =
71Y;70) (7: G — G/K).

(i) Show that the isomorphism of (i) determines an isomorphism
from (E/F), to the space of G-invariant vector fields on G/K. Describe
the corresponding Lie product in (E/F), .

(iv) Let S be a g-dimensional torus in U(n). Construct a family of
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(n — q)? U(n)-invariant, vector fields on U(n)/S, linearly independent at
each point.

13. Division algebras. Let E be an n-dimensional Euclidean space
and let e € E be a fixed unit vector. Assume that a bilinear map (x, y) — xy
is defined, subject to the following conditions: (a) xe = ex = x. (b)
The maps, y > xy and y > yx, are isomorphisms if x £ 0. Then E is
called a real division algebra. Assume E is a real division algebra, and
let §2»-1 be the unit sphere in E @ E (with respect to the induced inner
product) and let S™ be the one-point compactification of E with z, as
compactifying point. If y 5 0 define y~! by yy~! = e.

(i) Show that the map =: S2*~! — S” given by

A
is a smooth submersion.

(i1) Construct a smooth bundle (S**-!, 7, 8%, S*-1). (Hint: cf.
problem 12, Chap. VII, volume I).

(1)) Show that in the cases E = C, H this is a principal bundle.

(iv) Use the Cayley numbers to show that such a multiplication
exists for » = 8 and construct a fibre bundle (S, 7, S8, S7). Show
that this is not a principal bundle (cf. problem 5, Chap. III, volume I).

14. Consider the principal bundles (SO(n), 7, S*1, SO(n — 1)),
where 7 is given by #(r) = 7(e) (e, a fixed unit vector in R®). In the case
n = 4 and n = 8 show that this principal bundle admits a cross-section
and conclude that it is trivial. Conclude that S? and S7 are parallelizable.

15. Coordinate representations. Let# = (M, p, B, F) be a smooth
bundle, and assume that G is a Lie group acting on F from the left.

(i) Suppose #Z is the associated bundle of a principal G-bundle.
Show that there is a coordinate representation (U;, ¢;) for # such that

‘lz‘i_l o Pi(x, y) = (%, yi(x) - ¥),
where y;; : U; N U; — G are smooth maps satisfying
Yir(®) vie(x) = yalx), xeU;nU;N Uy

(i1) Conversely, assume % has such a coordinate representation.
Construct a principal bundle for which £ is the associated bundle (via
the given action of G on F).
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(i) If theactionis effective show that the first equation of (i) implies
the second.

(iv) Show that the constructions in problem 6 are special cases of the
construction in (ii).

16. Let H, and H, be closed subgroups of a Lie group G such that
H, C H, . Consider the fibre bundle

# = (G/H, , =, G|H,, H,/H,).
Define H, by
Hy = () sHx .
z€Hy

(i) Show that Hj is the largest subgroup of H; which is normal in
H, . Conclude that H, is a closed Lie subgroup of H, .

(ii) Show that (G/H,, m,, G/H,, H,/H,) is a principal bundle,
and that # is an associated bundle.

(iii) Show that # = (Vg(n; j), m, Va(n; k), V(n — k;j — k)) is asso-
ciated with the principal bundle (SO(n), m, Vig(n; k), SO(n — k)) and
use problem 14 to conclude that # is trivial if j > | and n = 4 or 8.

17. Vector fields on fibre bundles. Let # = (M, n, B, F)be afibre
bundle. A vector field, Y, on M is called basic, if there is a vector field,
X, on B such that

Y ~X.

kg

A vector field, Z, on M is called vertical, if
(dm),2(z) =0, zeM.

(i) Show that the Lie product of vertical vector fields is vertical.
(i) Show that the Lie product of a vertical and a basic vector field
is vertical.
(iii) Show that the Lie product of two basic vector fields is basic.
(iv) Show that the #(M)-module Z(M)is generated by the basic
and vertical vector fields

(v) If # is a principal bundle, show that Y is basic if and only if
Y — (T,)« Y is vertical for each a in the structure group.

18. Differential forms on fibre bundles. Consider the homo-
morphism 7*: 4(M) < A(B) (# = (M, =, B, F), a bundle).
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(i) Show that m* is injective.

(i) Show that, if ® € Im 7*, then i(£)® = 0 and 6(Z)® = 0 for
every vertical vector field. Show that if F is connected, then the converse
is true.

(iii) Show that if # admits a cross-section, then the map,
m*: H(M) <« H(B), is injective.
19. Let E and F be the Lie algebras of GL(n; R) and U(n).
(1) Construct an isomorphism of graded differential algebras
(ANE* R C, 8 ®) = (AF*® C, 8 ® ).
(ity Compute H,(GL(n; R)) and compare it with H(SO(n)).
(it1) Compute H,(O(p, q)) (cf. problem 12, Chap. II).

20. Outer automorphisms. Construct an automorphism of U(n)
which is not an inner automorphism. Determine its action on H(U(n)).
Do the same for SO(2n).



