Chapter IV

Invariant Cohomology

In this chapter G denotes an n-dimensional Lie group with Lie
algebra E.

§1. Group actions

4.1. Invariant cohomology. Consider a right action, T: M X G — M,
of G on a manifold M. Recall that @ € A(M) is invariant if TFP = @,
ac€ G, (cf. sec. 3.12) and that the invariant forms constitute a graded
subalgebra, 4,(M). 4, (M) is stable under 8 and the corresponding co-
homology algebra is denoted by

H(M) = Y HY(M).

In particular, if M = G and T is the group multiplication, 4,(M) is
denoted by Ax(G), and the cohomology algebra is denoted by Hg(G).
The inclusion map 7: 4, (M) — A(M) induces a homomorphism

i,: H(M)— H(M)

of graded algebras.
If 7: N x G — N is a second right action and ¢: M — N is equiva-
riant, then ¢* restricts to a homomorphism

of't A(M) < A(N),
and so induces a homomorphism

o1 Hi(M) < H(N).
146
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Assume that ¥: M — N is a second equivariant map, and that
HRxM-—N
is a homotopy connecting ¢ and ¢ and satisfying
H(t,x - a) = H(t,x) - aq, teR, xeM, aeG

(H is called an equivariant homotopy). Then the associated homotopy
operator h: A(M) < A(N) (cf. sec. 0.14), satisfies

hoTF = T*oh.
Hence it restricts to a linear map
hy: A(M) < A(N).
Now we have (cf. sec. 0.14)
U —@f = hjo8+80h,
whence y§ = ¢f.
Next, assume that M = U U V where U and V are open sets, stable

under the action of G. Then so is U N V and, as in sec. 5.4, volume I,
we can form the sequence

0 — A(M) 2> 4(U) @ 4,(V) -2~ 4,U A V) — 0,
where
(@) =(Plv,Ply), BPY¥)=Plvav—¥lvar.
Lemma I: If G is compact, then the above sequence is short exact.
Proof: Let (f, 2) be a partition of unity for M with
carr fCU and carrgC V.
Let 4 be the unique left invariant #-form on G (n = dim G) such that,

with respect to some left orientation, [ 4 = 1.
Define new functions f; , g; € (M) by

fiw) = [ fx-a)da,  gilx) = [ = - a) da.
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According to Example 2, sec. 3.18, f; and g, are invariant. Moreover,
carrfyC(carrf) GCU  and  carrg,C(carrg) -GC V.

Finally,
fi®) o) = [ (f+eNeayda=[ da=1.

It follows that (f;,g,) is again a partition of unity for M subordinate
to the open cover U, V. Now mimic the proof of Lemma I, sec. 5.4,
volume 1, using f; and g, .

Q.E.D.

Corollary: There is an exact triangle

H(M) ~ H(U) @ H(V)

H(UN V).

4.2. Group projection. Consider again an action T: M X G- M
(with no additional hypothesis on G) and assume that M is connected.
Fix a point z € M and consider the map A4,: G - M given by
A,(a) = z - a. It induces a homomorphism

At HM)— H(G).

If we M is a second point then a path x(t) joining 2 to w provides a
homotopy,
H: (t, a) — Az(a),

joining A4, and 4,,. Hence A} = A% .
It follows that the homomorphism,

p: HM)— H(G),
defined by p = A¥ is independent of the choice of 2 € M; p is called the
group projection.

Since A4, is equivariant (with respect to the right action of G on G),
it induces a homomorphism

(A:)I: A (M) — Ax(G).



1. Group actions 149

Moreover, because the homotopy above is also equivariant, the homo-
morphism,
pr: H(M) — Hy(G),

defined by p; = (4,)f is independent of the choice of z; p, is called the
tnvariant group projection.

Example: Let M be a connected Lie group and let G be a subgroup.
Consider the right action of G on M given by restricting the group
multiplication. Then the map A,: G — M is given by

A, (a) = za, 2eM, aeG.

In particular, 4, = j; is the inclusion map of G into M. Hence

*3

p=A4=j;.

4.3. Compact groups. Assume that G is compact and that T:
M X G — G is an action. We shall construct a linear map

pi A(M) — A,(M)
homogeneous of degree zero, and satisfying (cf. sec. 4.1 for 7)
pot=u

Orient G and let 4 be the unique left invariant #-form (z = dim G)
on G such that (with respect to some left orientation)

j64=1.

Regard (M x G, my , M, G) as a trivial, oriented bundle, and let
mg: M x G — G denote the projection. Then a linear map, homogeneous
of degree zero,

Ly A(M x G) — A(M),

is defined by
10— f QAaxtd
G
(cf. sec. 0.15).
Thus we can consider the linear map I, o T*: A(M)— A(M); it is
given by
(so TH®) = fc T*® A =% 4.
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Lemma II: Fix x € M. Then (I, o T*)(®)(x) = [¢ (Ta®)(x) da.

Proof: The retrenchment of T*® A 734 to x X G is a AT (M)*-
valued #n-form on G:

(T*® A o 4), € AYG; AT (M)¥).
A short, straightforward computation shows that
(T*® A mf A), = f - 4,

where fe F(G; AT, (M)*) is given by f(a) = (TFP)(x).
It follows that

((Lso THP)(x) = f (IO nt ), = f _(T20)x) da.
Q.E.D.

Proposition I: (1) If @ € A(M), then (I, o T*)® € A,(M).
(2) Ifde A (M), then (I, T*)® =

Proof: (1) Fixae G, x€ M, and write
= (AAT)F : AT(M)* < AT, (M)*.

Set W = (I, T*)®. Then using Lemma II and the linearity of «,
we find

(T*P)(x) = o, (¥(x - ) = o, ( f (T3®)(x - ) db)
- f ao(TFD(x - a)) db

= [ (@50 d
Thus formula (1.2), sec. 1.15, yields
(THP)x) = [ (T30)x) db = ¥(o),
G

and so ¥ is invariant.
(2) If @ is invariant, Lemma II yields

[(Lse THPI) = 0(x) [ da = B(x).
Q.E.D.
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Proposition I shows that I, o T* may be regarded as a linear map
p: A(M) — A(M)
satisfying poi = 1.

Theorem I: Let M X G— M be a right action of a compact
Lie group. Then

ty: H(M)— H(M)
is injective. If G is connected, then 7, is an isomorphism.

Proof: Recall from sec. 0.15 that f; 08 = 8 f; . Hencep o § = § o p,
where p: A(M)— A,(M) is the operator constructed above. Thus it
induces p,, : H(M) — H{M). Since p o i = , clearly

Peoly =1
and so 7, is injective.

Next, assume that G is connected. In Theorem II, sec. 4.4 below,
we shall construct an operator,

ha: AM x G) — A(M),
homogeneous of degree —1, such that

Iy~ ¥ = Shpy + hp 8
(je: M— M x G is inclusion opposite e).

Since T oj, =, precomposing both sides of this relation with T*
yields

fop —t=1Is0 T* — (= 8hpT* + hpT* 8.

It follows that 7, o p, = 14, and hence 7, is an isomorphism.

Q.E.D.

Remark: Theorem I applies equally well to left actions.

4.4. The operator I,. Let M, N be manifolds with N connected,
oriented, and of dimension n. Each @ € AY(N) which satisfies

fNa>=1
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determines the operator I,: A(M x N)— A(M), given by
1o(Q) = f QA k.
N
I, is linear and homogeneous of degree zero. It follows from Proposi-
tions IX and X, sec. 7.13, volume I (or sec. 0.15), that
Ip08 =801, and Iponf =
Now fix b € N and let j,: M — M x N denote inclusion opposite b.

Theorem II: There exists a linear map &, : A(M X N)— A(M),
homogeneous of degree —1, and such that

Ip —jy = 8hpy + k8.

Proof: Let (U, u, R®) be a chart on N such that #~(0) = 5. Choose
¥ e AYU) so that
Y= =1
J.r=1,

Then (cf. Theorem II, sec. 5.13, volume I) there is an (n — 1)-form
X € AT Y(N) satisfying
d — ¥ = 58X

Fix one such X and define an operator, k,,: A(M x N)— A(M), by
ka(Q) = (-1)?} QamlX, QeA*M x N).
N

Then 8ky, + kpd =1 — Iy
Next letAd: M X U— M X N denote the inclusion. Since ¥ € A%(U)
it determines an operator,

Iy: AM x U)— A(M),
which we denote by I, to avoid confusion. Evidently Iy o A* = I,,; hence
Tp — Tpo X = Sk + Rpgd. 4.1)

Finally, fix a homotopy H: U x R — U which connects the identity
map with the constant map U — b. Then: x H is a homotopy connecting
the identity map of M x U with j,o#, (7y,: M x U— M is the
projection and j, : M — M X U is the inclusion opposite b).
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The induced homotopy operator £,, satisfies
xody — o= 8hp + hpd.
It follows as above that Iy o #} — ¢; hence
G =Ty = 8lyhp + Tohy 8.
Precompose both sides with A* to obtain
JF =Ty o X* = 8 IghpA* + Tohpd* 8. (4.2)

Thus, setting h,, = k,, — IyhyA*, we find, on subtracting (4.2) from
(4.1), that
Io —jF = hpy + hpgd.
Q.E.D.
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4.5. Left invariant differential forms. Consider the left action of G
on itself by left translations. The differential forms on G that are invariant
under this action will be called left invariant, and the graded subalgebra
of left invariant differential forms will be denoted by A,(G). Thus
d € 4,(G) if and only if

a-®=Nb=0, acG,
or equivalently (when deg @ = p) if
®(a;Lohy , ooy Lahy) = Des by s s hy), by, . hy€E, a€G.

Now let X, be a left invariant vector field (cf. sec. 1.2). Since, for
each a € G,
(A)xXn = X,
Proposition III, sec. 4.4, volume I, (or sec. 0.13) implies that the algebra
A.(G) is stable under the operators #(X,) and 8(X,). It is clearly stable

under 8. The corresponding cohomology algebra H(A,(G), 8) will be
denoted by H,(G).

Proposition II: The correspondence, @ +> P(¢), defines an iso-
morphism,
712 A(G) —— AE*,

of graded algebras. In particular, the left invariant functions are constant,

Proof: According to Proposition I, sec. 1.2, a strong bundle iso-
morphism,
G x E-—=> T,

is given by (a, h) — X, (a). It induces a strong bundle isomorphism,
@: G x NE¥ =5 ATE,
and so we obtain an isomorphism,

px: L(G; NE¥) —=> A(G).
154
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A simple computation (using the left invariance of the vector fields X,)
shows that the diagrams

S(G; NE*) —2> A(G)

*

A A

F(G; NEX) —2> A(G),  aeG,
commute (cf. sec. 0.13). It follows that the left invariant forms corre-
spond under g, to the constant functions G — AE*. The proposition
follows.

Q.E.D.

Corollary: A,(G) is the exterior algebra over the vector space
A45(G).

4.6. The differential algebra AE*. Since A4,;(G) is stable under the
operators #(X,), 6(X,) (k€ E), and 8, there are uniquely determined
operators 7g(k), 0(h), and 8; in AE*, such that

Troi(Xp) = ig(h) o7y, Lo 0(Xy) = O(h) o 7, heE,
and
TLO 8 = 85 °oTp.
ig(h) and 8 are antiderivations in AE*, homogeneous of degrees —1
and + 1, respectively, while 0;(h) is a derivation, homogeneous of degree
zZero.

From Proposition I, sec. 4.2, and Proposition II, sec. 4.3, both of
volume I (or sec. 0.13), we obtain the relations

ig([h, K]) = Og(h) ig(k) — ig(k) Op(h),  Og([h, k]) = Og(h) Os(k) — Op(k) O(h),
Oe(h) = ig(h) 8¢ + Sgie(h)
and
8 =0, h, keE.

The second formula shows that 0, is a representation of E in the vector
space AE*. Since 8 is an antiderivation in AE* whose square is zero,
(AE*, 8¢) is a graded differential algebra. The corresponding cohomology
algebra is called the cohomology algebra of the Lie algebra E and will be
denoted by H(E).
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It follows from the definitions that
2 A(G) —> AE*

is an isomorphism of differential algebras. Thus it induces an iso-
morphism

(r0)s: H(G) — H(E).
Now we shall determine the operators 7.(k), 8.(k), and &, explicitly.

Proposition III: The operators i.(k), 8,(k), and §; are given by

(1) [ie(R)P(hy s .oy hpy) = DAy by ...y hyy).

() [Beh)D)(hy s .y by) = —f D(hy , ooey [By B3]y oy ).
i=1

(3) [8:PY(ho s by s ey hy) = Y (=1 HD([hy , bj), by s ooy by oy By sy oy By,
1<j

@ e APE*, h; e E.
Proof: (1)is immediate. To obtain (2) observe that, for ¥ € A7(G),
[6(h) TL'II](hl y oo Bp) = [o(Xh)‘P](e; hy, .. hy)
P
= Xy(P( Xy s oo Xo))E) — 3 Ples By oy [y By, ooy ).
=1
Since ¥ is left invariant, so is the function ¥(X, , ..., X, ). Thus this

function is constant, and the first term in the above equation is zero.

This proves (2). (3) follows in the same way.
Q.E.D.

Example: Let 2* e E*. Then

COx(h) h*, ky = —Ch*, [hy k]) = —<h*, (ad h)k>
and

(ch* h A By = —Ch*, [ K>,  h keE.
Hence the restriction of 8¢(k) to E* is given by

0x(h) = —(ad h)*,  heE,
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while the restriction of §; to E* satisfies
S5 A k) = —[h, A].

4.7. Homomorphisms. Let ¢: G — K be a homomorphism of Lie
groups. Let F be the Lie algebra of K and recall that the derivative of

@ at e,
¢ E—F,

is a homomorphism of Lie algebras (sec. 1.3).

For every h e E, the vector fields X, € Z,(G), X, € Z(K) are
p-related. Thus Proposition III, sec. 4.4, volume I (or sec. 0.13) gives
the relations

i(Xh) o@* = @*o i(Xm'(h))»
6(X5) o * = @* o (X (),
and
do (p* — q)* °d.

On the other hand, the equation A} o p* = ¢* 0 A¥,,, a € G, shows
that ¢* restricts to a homomorphism

of: AYG) «— A(K).

It is immediate from the definitions that the diagram,

AG) ~F— 4,K)
TL | = >~ |71

NG M

commutes.
But this yields the relations

ig(h) o (A@)* = (Ag')* o ix(¢'(h)),
Op(h) o (A@')* = (Ag')* = Ox(¢'(H)),
and
dgo (Ag)* = (Ap')* 0 dp, hekE.

In particular, (A¢’)* is a homomorphism of graded differential algebras.
Thus it induces a homomorphism of cohomology algebras, which we

denote by
(¢')*: H(E) < H(F).



158 IV. Invariant Cohomology
It follows from the definitions that

H(G) <~ H/K)
(TL)u | = 2| (rL)s
H(E) <—— H(F)
(97
commutes.
4.8. The adjoint representation in AE*. Consider the adjoint
representation of G (cf. sec. 1.10). The contragredient representation,

Ad®, of G in E * extends to a representation, AAd* = Y, APAd", of G in
the graded algebra A E*; it will be denoted by Ad*. Thus

AdN(a)(h*) A - A B*P) = (Ad aY)*R*1 A - A (Ad @ 2)* h*P,
On the other hand, recall that in sec. 4.6 we defined a representation,
0c, of E in AE*.

Lemma III: 6, is the derivative of the representation Ad*.

Proof: Since §(X,) is a derivation in 4,(G), 0g(h) is a derivation in
AE*. On the other hand, if 8* denotes the derivative of Ad*, then

P
BN R)(A*L A -+ A B*P) = z R¥L A <o A ONR) B¥E A - A B¥P
i=1

(cf. Example 2, sec. 1.9). It follows that (k) is a derivation in AE*
as well. Hence we need only prove that

O*(h) h* = bg(h) h*,  heE, h*eE*.

But this follows from the example in sec. 4.6.
Q.E.D.

Next, fix a € G. Since Ad a is the derivative of the inner automorphism
7, , it follows that
Ad(@™) = A(m)*.
Hence Ad*(a') commutes with §; . In particular, the representation,
Ad*, of G in AE* induces a representation,

a > Ad*(a),
of G in H(E).
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Lemma IV: If G is connected, then the representation Ad# is trivial,

Ad*(a) =, aeG.

Proof: It follows from Lemma III and Example 4, sec. 1.9, that the
derivative of the representation Ad¥* is given by

hi> 6p(h)*, hek.
But by the relations of sec. 4.6

be(h) = ig(h) 8¢ + Sg ig(h).
Hence 8z(h)* = 0.
Since G is connected, the lemma follows now from Proposition IX,

sec. 1.8.
Q.E.D.

Proposition IV: If G is a connected Lie group, then
det(t — Ad a) =0, aeG.

Proof: Elementary considerations from linear algebra (cf.sec. A.2)
show that

detc —Ada) = ¥ (—1)?trA?Ada = ¥ (—1)?tr A? (Ad a)*.
p=0 p=0
We have seen above that
AdNaY) = Y A?(Ad a)*
p=0

is an automorphism of the graded differential algebra AE*. Hence the
algebraic Lefschetz formula (cf. sec. 0.8) yields

i (—1)7 tr A? (Ad a)* = f (—1)? tr AdP(a-Y),

p=0

where Ad®)(a~!) denotes the restriction of Ad*(a~!) to H?(E).
Now Lemma IV yields

Z": (—1)?tr A? (Ad a)* = Zﬂ (—=1) tr AdP)(e)*

p=0

= i (=1)? tr A? (Ad e)*;

=0
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i.e.,
det(c — Ad @) = det(c — Ad &) = det(0) = O.
Q.E.D.

Corollary: Let ae G. Then of the normalizer, N,, of a (Example
4, sec. 2.4) has at least dimension |.

Proof: It follows from the proposition that there exists a nonzero
vector h € E such that

(Ad a)h = h.

Hence 4 is in the Lie algebra of N, (cf. Example 4, sec. 2.4) and so
dim N, > 1.
Q.E.D.
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4.9. Invariant forms. A differential form @ € A(G) will be called
bi-invariant, or simply invariant, if

MNP = and prd = O, aeG.

The set of invariant differential forms is a graded subalgebra of A(G)
which we denote by A,(G). Clearly 4,(G) is stable under 8.

Proposition V: The invariant forms on G are closed.

Lemma V: Ifv: G— G is the inversion map of G, then
V@ = (1), P e A¥G).

Proof: We have (cf. sec. 1.1)
(@), = —R-.oL7, acG.

Thus, forae G, b, , ..., h, € E,
(*B)a; L by , oy Lih ) = B(al; —R ik, , ., —R,1h)
= (=D)p;P)es by, ... )
= (—1)*®(a; L h, , ..., L;h,).
Q.E.D.

Proof of the proposition: Since A,(G) is stable under 8, the lemma
yields
(—1)PH 86D = 1* 6 = d*d = (—1)» 80, e A%G),

whence 6@ = 0.
Q.E.D.

It follows from Proposition V that the inclusion A4,(G)— A4,(G)
induces a homomorphism of graded algebras

A[(G) — H(G).
161
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Next we determine the subalgebra of AE* corresponding to 4,G)
under 7, (cf. sec. 4.5).

Lemma VI: If @€ 4,(G), then pi® e 4,(G) and (cf. sec. 4.8)
rp¥®) = Ad\a)(r®), aeGC.

Proof: That A,(G)isstable under p}, a€ G, follows (cf. sec. 1.1) from
the relation

pXod¥ = A¥opk, a,bedG.

Moreover, if @ € 4,(G), then
7, (p3®P) = (P P)e) = (T;-1D)(e)

(741 is conjugation by a~1). Also 7,-1(¢) = e and
A7 L)* = AdY(a).
Thus
TP ®) = (A1,)*(P(e)) = Ad*(a)(7, D).
Q.E.D.

Now let (AE*), denote the subalgebra of AE* invariant with respect
to the representation Ad*. Lemma VI implies that the isomorphism 7,
restricts to an isomorphism 7, : 4,(G) 5> (AE*),. Thus the diagram

A(G) —— A,(G)
7| = =~ |7
(AE*), — AE*

commutes (the horizontal maps are inclusions).
In particular the elements of (AE*), are in the kernel of 8., and we
have the commutative diagram

A(G) — H(G)
™| = =1 (TL)s
(AE*); —— H(E).

Finally, if G is connected, then (AE*), = (AE*),_, (cf. Lemma III,
sec. 4.8, and Proposition IX, sec. 1.8).
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4.10. Compact connected groups. Suppose G is connected. The
inclusion A4,(G) — A(G) induces a homomorphism H,(G)— H(G).
Combining this with the diagram just above yields the commutative
diagram

A(G) —— H(G) — H(G)
| = =| (10

(AE¥)_g —> H(E).

Theorem III: If G is compact and connected, all the above maps
are isomorphisms (of algebras).

Proof: It is sufficient to show that the inclusions
A4(G) — A(G), AG)— A(G)
induce isomorphisms 4,(G) 5 H(G), H,(G) > H(G).

Since A4,(G) s the algebra of differential forms invariant under the left
action of G on itself, Theorem I, sec. 4.3. implies that H,(G) - H(G)
is an isomorphism.

On the other hand, consider the right action, T, of the compact
connected group G X G on G given by

Ta.n(x) = a™lxb, a,b xeG.

A,(G) is the algebra of differential forms on G which are invariant

under this action. Since the forms in A4,(G) are closed, Theorem I,

sec. 4.3, implies that 4,(G) — H(G) is an isomorphism.
Q.E.D.

Corollary: The Poincaré polynomial, f;(¢), of a compact connected
Lie group G is given by

fo(t) = f det(Ad a + t.) da.
G
Proof: By definition (cf. sec. 0.14)
fo(t) = ) byt?
p=0

(n = dim G and b, = dim H?(G)).
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It follows from Theorem III that
b, = dim(APE®),, p=0,1,..,n.

Hence Corollary III to Proposition XV, sec. 1.16 (applied with P = Ad)
yields

n
Y bt = j det(Ad a + t) da.
G

p=0

Q.E.D.

4.11. Noncompact groups. It can be shown that every connected
Lie group contains a compact subgroup as deformation retract (cf. [9,
p. 180]). Thus the computation of the cohomology of any Lie group is
reduced to the compact case. In particular, as is shown in the example
below, the group SO(n) is a deformation retract of GL*(n; R) (the
1-component of GL(n; R)) and hence the cohomology algebras of these
groups are isomorphic.

It will be shown in volume III, that the map,

4,(G) — H(G),

which is induced by the inclusion map is still an isomorphism if the Lie
algebra of G is reductive. On the other hand, the homomorphism,

H(G) — H(G),

is not in general an isomorphism if the group is not compact.
In fact, as will be shown in volume III, if the adjoint representation of
G is semisimple, then

dim H}(G) =1, n=dimG.

(This holds in particular for G = GL*(n; R).) On the other hand, if G
contains a compact subgroup K of lower dimension which is a deforma-
tion retract of G (for example G = GL*(n; R), K = SO(n)), we have

HG) =~ H™(K) = 0.
Thus H*(G) and H}(G) are not isomorphic.

Examples: 1. Let V be an n-dimensional Euclidean space, and
denote the space of self-adjoint transformations of ¥ by S(¥). Then the
map,

: SO(V) x S(V)— GLH(V),
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given by o(p, ) = ¢ exp ¢ is a diffeomorphism. In particular, SO(V)
is a deformation retract of GL+(V).

In fact, it was shown in Example 11, sec. 1.5, volume I, that exp maps
S(V) diffeomorphically onto the open subset S+(V)C S(V) of self-
adjoint transformations with strictly positive eigenvalues. In particular,
since exp 2¢p = (exp @)%, ¢ € S(V), it follows that the map

o> o?

is a diffeomorphism of S*(V). Denote its inverse by
o> ol/?

and write (¢71)!/2 = o71/%,
Then a smooth map 8: GL*(V)— SO(V) x S(V) is given by
Blp) = (¢ o (¢* o @)7'/2, exp~H(p™ o @)'/%)
and B is inverse to «. Thus « is a diffeomorphism.

2. Similarly, if W is an complex n-dimensional Hermitian space,
then the map

a: UMW) x S(W)— GL(W)
given by
ofp, ¢) = pexpy

is a diffeomorphism. (S(W) is the space of self-adjoint transformations
of W.)



§4. Cohomology of compact connected Lie groups
In this article G denotes a compact connected Lie group.

4.12. The primitive space and the main theorem. Since G is com-
pact, we have the Kiinneth isomorphism (cf. sec. 0.14)

ke: H(G) ® H(G) = H(G x G).

Henceforth we shall identify H(G X G) and H(G) ® H(G) under this
isomorphism. Thus, if u: G X G — G denotes the multiplication map,
p* becomes a homomorphism

p*: H(G) ® H(G) < H(G).

Letj;: G— G X G and j,: G — G X G be the inclusion maps given
by
@) = (a,e) and  jy(a) = (e, a).

In view of Example 2, sec. 5.17, volume I, if y e H¥(G x G), then
y=jiy @1+ B+ 15 4.3)
where 8 € H*(G) @ H*(G). Observing thatp o j; = p o j, = 1, we obtain
pra=a@1+B+1Qa acHHG), BecH*G)®HG). (4.4)
Definition: An element o € H*(G) is called primitive if
pra—a®1 +1®a

The primitive elements form a graded subspace, P;, of H(G) (i.e.,
Ps = Yp_o Pc N HP(G)) and Pc N H?(G) = 0, if p is even. To see
the latter, assume that « is primitive, and has even degree. Then the
elements o ® 1 and 1 ) « commute; whence

wem =@@1+1@gm =3 ()t @emt,  m>o0.

k=0
Now choose m to be the least integer such that a™ = 0. Then

i(:)a"(@am"‘:o.

k=0
166



4. Cohomology of compact connected Lie groups 167

It follows that
ok @ am-k =0, k=0,..m

In particular, « ® o1 = 0 and so « = 0.

Since every homogeneous element of P, has odd degree, it follows that
the square of a primitive element in H(G) is zero. Thus the inclusion
map P; — H(G) extends to a homomorphism

Xo: APg — H(G)
of graded algebras. The purpose of this article is to establish

Theorem IV: Let G be a compact connected Lie group. Then Ag
is an isomorphism. Moreover, if 7 is the dimension of a maximal torus,
then

dim P =r and  dim H(G) = 2".
Definition: The number 7 is called the rank of G.

Although the actual proof of Theorem IV does not come till sec. 4.17,
the key steps are established in the preceding section (Propositions VIII,
IX, and X). These in turn depend on the preliminary results on power
maps which are proved in sec. 4.14 and sec. 4.15.

However, before proceeding with the proof, we consider the case that
our group is a torus.

4.13. Cohomology of a torus. Let T be an r-dimensional torus with
Lie algebra F. Since T is abelian, the adjoint representation is trivial,
and hence (AF*), = AF*. Thus Theorem III, sec. 4.10, yields an

isomorphism
ar: AF* —=> H(T).

Moreover, if S is a second torus with Lie algebra L and ¢: S — T is
a homomorphism, then the diagram

H(S) <=~ AL*
@* T/\(qﬂ')*
H(T) +§_ AF*

commutes.
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Now, since T is abelian, the multiplication map u: T X T— T is a
homomorphism.

The derivative of u at e is the linear map, u': F @ F — F, given by
p'(h, k) = h + k. Hence (p')* (h*) = h* ® 1 + | ® h*, h* € F*. Thus
the diagram above reads

H(T) @ H(T)«T2"T_ AF* @ AF*
u'T T/\(# )>*

H(T) - AF*,

It follows at once that o restricts to a linear isomorphism from F*
onto the primitive subspace of H(T). (This proves Theorem IV for tori.)

4.14. The power maps. The kth power map P,: G — G is defined by
Py(x) = x*,  Py(x) = e, P_(x) = (x7 1)k, k=1
In particular, P, is the identity and P_, is the inversion map, v.

Example: The power maps, P, for an r-dimensional torus, 7,
are homomorphisms. Moreover P, is simply scalar multiplication by &.
Thus it follows from sec. 4.13 that Pf is given by

P}:a = kPa, a€ HXT).

In particular, the degree and Lefschetz number of P, are given by

deg P, = k" and L(P,) = 2(-1)11( )kn:(l—k)r

p=0

(cf. sec. 0.14, and note from sec. 4.13 that dim H?(T) = (3).)

In the next sections we generalize these results to arbitrary compact
connected Lie groups G.

Let u:G X G—G and 0: G X G— G X G denote, respectively,
the multiplication map and the interchange map o(x, y) = (¥, x).

Proposition VI: With the notation above

(1) v¥(a) = (—1)Pa, a € H?(G).
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(2) The diagram

H(G) 1® H(G)
u*
o* H(G)
'u'
H(G) ® H(G)
commutes.
(3) The diagrams
H(G)® H(G) £~ H(G)
PY®P{ P:

H(G) ® H(G) «—— H(G), keZ,
commute. g

Proof: (1) This follows from Lemma V, sec. 4.9, and Theorem III,
sec. 4.10.

(2) Since the inversion map v for the Lie group G X G is given by
vexe(a, b) = (a1, b7Y),

it follows that p o 0 o vG,c = v o u. Hence (1) yields, for « € H?(G),
(=1)s%a = p*vFa = (Voxg o 0" o p*a = (—1)%0"pte.

(3) Let
G X - x G—>G

(» tactors)

be the multiplication map and let o, be the diffeomorphism of
G X - X G that interchanges the ith and the (i 4 1)-th component:
G %y oy Xp) = (®) oy Xyyq s Xi s veey Xp)-

Then (2) implies that of o u% = ub. It follows that if 7 is any permutation
of the elements (1, ..., p) and if = also denotes the diffeomorphism

T (xl LIRS x’) — (x‘f(l) » et x"(D))’
then

£ % _ %
T OMp = Hp -«
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Now fix k£ > 1 and define maps
4,,4,:G x GG x - x G
(2k factors)
by
A%, y) = (% o0 %, 9, w00y ¥) and dy(x, ) = (%, ¥, o0y %, ).
Then
por o 4y = po (P X Py) and por© dy = Ppop.

Since, for a suitable permutation 7, 4, = 70 4,, and since
T o uf = pi, it follows that

p*o PY =47 opg, = A7 o pg = (P X Py)* o .

The case k << —1 can be treated in the same way and the case &k =0
is obvious.

Q.E.D.

4,15. The Lefschetz class. In this section we assume that G is
oriented. Denote its orientation class by wg; e HYG) (cf. sec. 0.14).
Define the quotient map

G xG—-G
by ¢(a, b) = a='b.
Proposition VII: The Lefschetz class, 4, for G is given by
Ag = q*ug

(cf. sec. 10.3, volume I).

Proof: Let w, , ng: G X G — G be the left and right projections.
It has to be shown (cf. Corollary I to Proposition I, sec. 10.3, volume I)
that

f# mhet - fwe = a,  a€ H(G).
G
Let ¢ be the diffeomorphism of G X G given by

o(a, b) = (a, ab).

@ is a fibre preserving and orientation preserving map of the trivial
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bundle (G x G, 7., G, G). Moreover, it induces the identity map in the
base. Hence Proposition VIII, sec. 7.12, volume I, yields

whence
* #Hs_ 3 # * # #*
:fc(p (TR - g wa)zfcrrka'qwc, a € H(G).
But g o ¢ = 7, and so this relation becomes
# #*
J: (p*ﬂza : w’;wa == :f n‘;a . q*wG s a€ H(G)
G G
It remains to prove that
#
a = f ¢ R - Thwg , a € H(G).
G

Recall that we identify H(G) @ H(G) with H(G X G) via the Kiinneth
isomorphism «, (cf. sec. 0.14). It follows from Example 2, sec. 5.17,
volume I, that if y € H(G X G), then

y —J¥y ® 1 € H(G) ® H*(G),

where j; : G — G X G is given by j,(a) = (a, €). Since w; - HH(G) = 0,
this yields

y - mhwe = j1y @ wg = mLjiy " mRwe -
Now set y = ¢*nha. Observing that mg o @ o j; =« we find that

#*

# #
f g - TRwg = f T Thog = a f we =«
G G G

(cf. Example 2, sec. 7.12, volume I).
Q.E.D.

Corollary I: Let M be a compact connected oriented manifold and
let ¢, y: M — G (dim M = dim G = #) be smooth maps. Then the
coincidence number (cf. sec. 0.14) for ¢ and ¢ is given by

L(g, ¢) = deg(g™! - ¢),
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where 71 - 1 M — G is given by
@7 P)x) = @(x)" - glx), xeM.
Proof: Apply Proposition VII, sec. 10.7, volume I, noting that

Pl g =go(p X ) ody,

where 4,,: M — M Xx M is the diagonal map.
Q.E.D.

Corollary II: Let ¢: G — G be a smooth map and denote by ¢®’
the restriction of ¢* to HP(G). Then the Lefschetz number of ¢ is given
by

Lig) =), (—1)Ptro'» = deg g,

=0

where ¢, = @71 - 0.

Corollary III: Let keZ. Then the Lefschetz number of the
power map P, is given by

L(Py) = deg P,_; .
In particular, the Euler—Poincaré characteristic of G is 0 (set & = 1).

4.16. The spaces H,(G). Let T be a maximal torus in G and let
r = dim 7. Recall that a smooth map ¢: G/T X T — G is given by

Y(ma, y) = aya™, aeG, yeT,

where m: G — G|T denotes the projection (cf. sec. 2.17).
Clearly, the diagrams

GITx T—~¢

.xpkl 1pk 4.5)

G|T x T—¢+G, keZ,

commute, where P, denotes the power map for 7.
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These yield the commutative diagrams

H(G/T) ® H(T)<Y— H(G)
@p:I IP: (4.6)
H(GIT) ® H(T) «<5— H(G),  kel.

Proposition VIII: Let H,(G) denote the eigenspace of the linear
map Pj : H(G) — H(G) corresponding to the eigenvalue 2P. Then

(1) H(G) = Tpuo Hy(G).
(2) For every k # 0, Hy(G) is an eigenspace of the linear map, P},
corresponding to the eigenvalue &P,

Proof: Recall from the example of sec. 4.14 that, for « € H?(T),
P,‘:(cx) = k? - a,

Thus H(G/T)® H(T) is the direct sum of the eigenspaces
H(G|T) @ H?(T) of : @ P} corresponding to the eigenvalues kP
(»p=0,..r).

In view of the diagram above, Im ¢* is stable under the map « @ P .
This implies that

Im y* = z Im * N [H(G|T) ® H*(T)).

p=0

Next observe that, according to Proposition IV, sec. 2.18, deg 4 % 0
and so * is injective (cf. Corollary I to Proposition III, sec. 6.5,
volume I). Hence the relation above shows that

H(G) = io (%) (H(GIT) ® HXT))

and that P§ restricts to kP - ¢ in (*)"{(H(G/T) ® H?(T)). In particular,
it follows that

H,(G) = ($*)(H(G|T) ® HX(T))

(consider the case k = 2), and so both parts of the proposition are
obvious.

Q.E.D.
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Corollary: p* restricts to linear maps

pt: Hy(G)—~ Y H(G)® H(G).

i+i=p

Proof: Apply Proposition VI (3), sec. 4.14.
Q.E.D.

Lemma VII: Each space H,(G) is graded,

H/G) = Y. HYG),

=0

where HI(G) = H,(G) N HYG). Moreover, if p # ¢ (mod 2), then
Hi(G) = 0.

Proof: The first part of the lemma is obvious. Now assume that
a € HY(G). Then Proposition VI, (1), sec. 4.14, yields

(=% = v*a = P*a = (—1)"

Thus, if p % ¢ (mod 2), « = 0.
Q.E.D.

Proposition IX: The dimension of H,(G) is given by

dim H,(G) = (; ) 0<r<y,
where r = dim 7.
Proof: First observe that, in view of the commutative diagram (4.5),
deg ¢ - deg( X P,) = deg P, - deg ¢
so that (cf. Proposition IV, sec. 2.18)
deg P, = deg P, = kr, kel

Thus in view of Corollary III to Proposition VII, sec. 4.15, we have
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On the other hand, Proposition VIII and Lemma VII give

L(P) = ¥ (—1)°k* dim HY(G)

»,q

= Y (=1)” & dim HY(G) — z (—k)? dim Hy(G), keZ.

D7 p=0
These relations yield

Zr:k”(dimH,,(G)—(;)) =0, k=12..

Since the Vandermonde matrix (k?) (k =1, ..,r + 1,p =0, ..., r) has
nonzero determinant, we obtain

dim H,(G) = (; )
Q.E.D.

Corollary: Hy(G) = HY(G) = R.
Proposition X: The spaces H,(G) and P; coincide.

Proof: Leta€ P;. Then,if 4: G— G X G is the diagonal map,
Pio) = d*p*a = 4*(2 ® 1 + 1 @ a) = 2,

whence o € H,(G).
On the other hand, if « € H,(G), the corollary to Proposition VIII
implies that

prae Hy(G) ® R + R ® Hy(G).

Hence, by formula (4.4), sec. 4.12, a € P, .
Q.E.D.

4.17. Proof and consequences of Theorem IV. Lemma VIII:
If o , ..., o € P are homogeneous and linearly independent, then

k
H oy # 0.
=1
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Proof: Suppose deg a; = p; with p;, < --- < p,. Then the com-
ponent of u*(a; * *++ * o) in HP(G) Q) HP2+"+Px(G) is given by

z (=D oy @ (o s ),

1

where the sum ranges over those indices 7 such that deg o; = p, . We
may assume by induction that oy * -+ &; -+ * o, % 0 (1 = 1, ..., k). Since
the «; are linearly independent, it follows that

Z (_1)1'—1 o ®(°‘1 o« e &i ceee "‘k) # 0,

whence u#(a; * -+ * o) # 0. In particular, o * -+ *+ o), 7% 0.
Q.E.D.

Proof of Theorem IV: Lemma VIII implies that A; is injective. On
the other hand, by Propositions IX and X, sec. 4.16,

dim P = dim H(G) =r  and dim H(G) = 2".

Thus dim AP; = dim H(G), and so A is an isomorphism.
Q.E.D.

Corollary I: The cohomology algebra of G is isomorphic to the
cohomology algebra of the product of r spheres (r = dim T) each of
which has odd dimension.

Proof: Choose a homogeneous basis of P; and denote by P; the
subspace generated by the jth basis vector. Then P; is a graded one-
dimensional vector space whose elements are homogeneous of degree g;

(g; odd). Hence (cf. sec. 5.6 and sec. 5.20, volume I)

H(G) = AP = AP, ® - @ AP, >~ H(S") ® "+ ® H(S")
o H(S™ x -~ x 8%).
Q.E.D.

Corollary II: 'The Poincaré polynomial of G is of the form

fo(®) = (1 4 £%) =+ (1 4 £%),  g;odd.
In particular

(—1)?dim H(G) =0, Y g,=n, and n=r(mod2) (7= dimG).

1 u=1

™M=

5
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Corollary III: The exponents g; are all equal to 1 if and only if
G is a torus.

Corollary IV: The isomorphism A; restricts to isomorphisms
A2: A*P; —> H,(G).
Proof: Since Pj is a homomorphism, it follows that
Hi(G) - Hy(G) C H,,4(G),

Thus Proposition X, sec. 4.16, implies that A;(APP;) C H,(G). But, in
view of Proposition IX, sec. 4.16,

dim H,(G) = (;) — dim A*P;.
Q.E.D.

Corollary V: Let ¢: G— K be a smooth map between compact
connected Lie groups such that

(px)* = p(x?), x€G.

Then ¢* restricts to a linear map @, : P; < Py and the diagram

APG —» H(G)

S

APy —i—» H(K)

commutes. In particular, if K = G, then
Lig) = det(s — gs).

Proof: Observe that P, = H,(G) is the eigenspace of the map P§
corresponding to the eigenvalue 2, and conclude that ¢*(Py) C P; .
The commutativity of the diagram follows immediately. In view of
Lemma VII, sec. 4.16, this implies that

T

L) = ¥ (—1)tr Avgp = det(s — g).

Q.E.D.
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In this article K denotes a closed g-dimensional subgroup of G with
Lie algebra F. The left action of G on G/K is denoted by T: G x G/K —
GIK .

4.18. The representation Ad*. Since K is a subgroup of G, its
Lie algebra F is stable under the operators Ady (y € K). Thus the
orthogonal complement, Ft, of F in E* is stable under Ad*(y) (y € K).
The restrictions of these operators to F define a representation

Ad*: K — GL(FY).

It extends to a representation, AAd+, of K in the exterior algebra AF<L.
Now consider the projection, 7: G — G/K, and recall (Corollary I,
sec. 2.11) that (dn), induces a linear isomorphism

EJF =5 T G/K).
Hence the dual map can be regarded as a linear isomorphism
(dm)¥: T{G/K)* —=» F*
and A(dn)f is an isomorphism
ATAGJK)* —> AF-,
Since #(yxyt) = w(yx) =y - n(x), y e K, x € G, we have
(@), o Ad y = (dT,); © (dn), ,

whence
AAdH(y™1) o A(dm)F = A(dn)f o A(dT,)i, yeKk. 4.7)
Next denote by A,(G/K) the algebra of differential forms on G/K

invariant under the action of G. Since = is equivariant with respect to the
left action of G on itself, m* restricts to a homomorphism

m¥: A/(GIK) — A4G).
178
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On the other hand, let (AFL), denote the invariant subalgebra of the
representation AAd*. Relation (4.7) shows that if @ € 4,(G/K), then

Adm)(P(e)) € (AF); .
Thus a homomorphism, ¢: 4,(G/K) — (AF+),, is defined by
o(®) = A(dm)}(P(e)).
Recall the isomorphism, 7, , of sec. 4.5.

Proposition XI: o isanisomorphism of graded algebras which makes
the diagram,

A G) —E— AE*

o

] i

A(GIK) —— (AF*),
commute (where 7 is the inclusion).
Proof: Evidently,

o(®) = (7" P)e) = (rm/)P),  Pe A(G/K),

and so the diagram commutes. Since 7 is a submersion, 7* is injective;
it follows that o is injective. It remains to prove that ¢ is surjective.
Fix a € (AF1), and let B € AT(G/K)* be the unique element satisfying

A(dm);(B) = .
Since « is invariant we have, for y € K|
AT, )(B) = B.
Thus a set map, ¥: G/K — AT{ ,, is defined by
Y(n(x) = NdT,)}B),  x€G.

To check that ¥ is a differential form, let @ € 4,(G) be the unique
left invariant form such that @(e) = a. Then, for x € G,

B(x) = N(dm) ¥(m(x)).

Fix ¥ € G/K and let ¢: U — G be a local cross-section, where U is a
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neighbourhood of # (cf. Corollary II, sec. 2.11). The relation just obtained
implies that, in U, p*® = ¥. Hence ¥ is a differential form.

¥ is clearly invariant and satisfies o(¥) = a. It follows that o is
surjective.

Q.E.D.

Corollary: Assume that K is compact and connected. Then G/K
can be oriented by an invariant (n — g)-form.

Proof: Since K is compact and connected, det Adi(y) =1, for
y € K (cf. the example of sec. 1.13). It follows that

dim A}YG/K) = dim(A*"F4), = 1.

Every nonzero element of this space orients G/K.
Q.E.D.

4.19. Invariant cohomology. It is an immediate consequence of
Proposition XI, sec. 4.18, that (AFL), is stable under the operator 8
defined in sec. 4.6. Thus we have the commutative diagram

HY(G) —2*— H(E)
n iy

H/(G/K)

=

— H((AFY),, 8).

Ty

Applying Theorem I, sec. 4.3, we obtain

Theorem V: Suppose that G and K are compact and connected.
Then, in the commutative diagram,

H(G) «—— H(G) —"2*— H(E)
" 177 [

H(G|K) «—— H{(G|K) —— H((AF*)),

all horizontal maps are isomorphisms.

4.20. Invariant Euler-Poincaré characteristic. Suppose again that
K is an arbitrary closed subgroup of the Lie group G.
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Then the invariant Euler—Poincaré characteristic of G/K is defined by

X,(G/K) = nz_q(—l)z’ dim HX(G/K) = Eq (=1)? dim HP((AF*),).
p=0 =0

Now assume that K is compact. Then there exists an inner product
{, > in E, invariant under the transformations Ady, y € K (cf. Proposi-
tion XVI, sec. 1.17). If we identify E* with E under this inner product,
then F! becomes the orthogonal complement of F in E, and we have the
direct decomposition E = F+ @ F. Moreover, in this case Adi(y) is
simply the restriction of Ady to Ft.

Proposition XII: If K is compact, then
X(GIK) = [ det(s — Ad(y) dy.
K
Proof: It follows from Corollary III to Proposition XV, sec. 1.16,
that

f detle — Ad*(3)) dy = 2: (—1)? dim(A?F"), .

On the other hand, the algebraic Lefschetz formula (sec. 0.8) yields

n—qg n—q

Y (—1)? dim(APFY), = Y (—1)? dim HP(AF*);) = X,(G/K).
Q.E.D.

Corollary: If K is connected, then X,(G/K) > 0. Equality holds if
and only if, for every y € K|

F-n T,(N,) # 0,
where N, denotes the normalizer of y.

Proof: Since K is compact and connected, AdL(y) is a proper rota-
tion with respect to a suitable Euclidean inner product in FL. Hence,

det(t — Ad*(y)) =20, yek.

Now the proposition shows that X,(G/K) > 0 and X,(G/K) == 0 if and
only if

det(t — AdY(y)) =0, yeKk;
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i.e., if and only if, for every y € K, there exists a nonzero vector h € FL
satisfying Ad:(y)h = h. But these are precisely the vectors of
F+ N T(N,) (cf. Example 4, sec. 2.4).

Q.E.D.

4.21. Euler-Poincaré characteristic. Proposition XIII: Let K be a
closed connected subgroup of a compact connected Lie group G. Then
the Euler-Poincaré characteristic of G/K is given by

Xk = f | det(s — Ad*(x) .

In particular, X;,x > 0. Moreover, X;/x > 0 if and only if G and K
have the same rank, and in this case

XG/K = | WG |/| Wx|~

Proof: The first formula follows from Proposition XII and
Theorem V, and shows that X; ,x > 0.

Let S be a maximal torus in K, and let L, F, and E denote the Lie
algebras of S, K, and G. Write

E=F®F =L®(I*NF)@F-"

Let Adg, Ad*, and Ad} denote the representations of S in LL N F,
Ftand (Lt N F) @ F4, induced by the adjoint representation of G; thus

Adg(y) = Adi(y) @ Ad(y),  yeS.

The Weyl integration formula (cf. Theorem IV, sec. 2.19) yields
| dete — AdH @) dx = | We 1™ [ det(e — AdX(y)) - det(s — AdK()) dy.
K s

On the other hand, since Ad}(y) = Adi(y) @ AdL(y), it follows that
det(c — Ad*(y)) - det(c — Adg(y)) = det(t — Ads(y)), y€S.

Thus the first formula in the proposition applied to both G/S and G/K
gives

Xeix = | Wi | fs det(c — Adg(y)) dy = | Wi [t Xg;s.
Now assume that rank K < rank G. Then S is not a maximal torus in

G. Hence the corollary to Proposition XII implies that X;, = 0; it
follows that X;,x = 0.
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On the other hand, if rank K = rank G, then Sis a maximal torusin G.
Now the first formulain the proposition (applied when K = S) together
with the corollary to Theorem IV, sec. 2.20, yields X;/; = | W |.

This shows that
XG/K = | WG /1 WK I
Q.E.D.
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1. Left invariant p-vector fields. A p-vector field on an z-manifold
M 1is a cross-section in the vector bundle A?r,, . Denote the space of
p-vector fields on M by A,(M) (p = 0,..., n).

(i) Given a Lie group G, use left multiplication to define a left
action of G on 75, APr and on A,(G). A p-vector field @ is called left
invariant, if it is invariant under this action. The space of left invariant
p-vector fields on G is denoted by A%(G).

(i) Show that the map, %: A5(G) — APE, given by evaluation at e,
is an isomorphism.

(i) Consider the space D,(G) of p-densities on G (0 < p < n)
and let 0: D,(G) — D,_,(G) denote the divergence operator (cf. prob-
lem 8, Chap. IV, volume I). Show that an isomorphism,

u: A (G)—=>DyG) (p=0..,n),

is defined by u(®) = @ ® 4, where 4 is a fixed nonzero left invariant
n-form on G. Define an operator, & : 4,(G) — 4,_,(G), by

O = plodop.

Show that ¢; is independent of the choice of 4. Show that &; restricts
to an operator in the space of left invariant multivector fields.

2. Let G be a Lie group with Lie algebra E.
(1) Use 95 (cf. problem 1) to obtain an operator ¢ in AE.
(i) Show that g is explicitly given by

O(hy A - A hy) = Z (— 1Y+ [y By A By A - ﬁ;‘ };’, o h

1<i

D

(iit) Show that the operators Jz and —3&; are dual, where 3; is the
operator in AE* defined in sec. 4.6.

(iv) Establish the Koszul formula

1
8 = QZ u(e*) o Og(e,),

184
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where {¢}, {¢*"} is a pair of dual bases for E and E*. Hint: Show that
both sides are antiderivations in AE*,

(v) Find an analogous formula for d .

3. Define @ € AY(GL*(n; R)) by @(a; ¢) = tr(a! o ), « € GLH(n; R),
P E Lnn .

(i) Show that @ is biinvariant.
(i) Construct a scalar function f on GL*(n; R) such that §f = @.

4. LetT: M X G — M be aright action of a Lie group on a manifold
M. Denote by 6(M) the subspace of A(M) that is linearly generated
by the differential forms 8(h)®, k€ E, ® € A(M).

(i) Prove the formula
8(h) o T* — T¥ o O(h) = 8(h — Ad(a) h)o T, aeG, hek.

Conclude that (M) is stable under T, a e G.
(i1) If G is connected, show that

T*0 —Deb(M), e AM).

(iii) Assume that G is compact and connected and let p: A(M) —
A,(M) denote the projection defined by

(@) = | _TiPda

Prove that ker p = 6(M), so that
AM) = A(M) D (M) = A(M)s—o ® 6(M).

5. Let G,, G, be Lie groups with Lie algebras E, , E, .

(i) Establish a canonical isomorphism H(E; @ E,) =~ H(E,) ® H(E,).
(ii) If E, s unimodular, show that multiplication in H(E,) determines
nondegenerate scalar products, H?(E,) X H"P(E,) — R, where n =
dim E, (Poincaré duality).
(iii) Assume that G, and G, are connected and compact. Show that
the Kiinneth isomorphism and the Poincaré isomorphisms correspond
to the isomorphisms (i) and (ii) under the map of Theorem IIIL.



186 IV. Invariant Cohomology

6. Let HC K C G be a sequence of compact connected Lie groups.

(i) Construct a subgroup Wy ; of the Weyl group W, and a sur-
jective homomorphism Wy ; — Wy (cf. problem 25, Chap. II). If K has
the same rank as G, show that this is an isomorphism; i.e., that Wy is a
subgroup of W .

(i1) Show that X;/ is the index of Wy in W;. Conclude that
Xem = Xg/x " Xxyn -

(iii) IfL is a compact subgroup of G with 1-component L?, show that

XG/L : ]L/LO | = XG/L° .

7. (i) Usethe Weylintegration formula and residue calculus to show
that the Poincaré polynomial of U(n) is the coefficient of (2, * -*- * 2,)* !
in the polynomial, P, given by

n
n! P(zl y ey 2’,,) = n (tzv + zu) : 1_[ (zv - zu)
vyu=1 I1<v#u<n

(t, a parameter). Show that the Poincaré polynomials of U(2) and U(3)
are respectively given by

fO) =0 +8)1 4+ and  f@) = (1 + )1 + )1 + 85).

(it) Compute H,(SO(3)) and verify that it coincides with H(RP3).
(i) Compute H,(SL(2; R)), H/(SL(2; R)), and H(SL(2; R)).

8. Let E be the Lie algebra of a compact connected Lie group G.
(i) Show that HYE) = Z} and that H(E)>~ AZ} ® H(E') (cf.
problem 7, Chap. II). Interpret these statements in terms of H(G).
(i1) Show that H}G) = P; N H¥G), if E = E’.
(iii) Assume that G is not abelian and let X denote the Killing form
of E (cf. problem 7, Chap. II). Define a 3-linear function @ in E by

D(hy, by, hy) = K(hy, [hy, hy)), h;e E.

Show that @ is skew-symmetric and depends only on the vectors in E'.
Show that @ is invariant, and conclude that it represents nonzero classes

ag € H¥E') and o € H3(G).
(iv) Show that the only spheres which are Lie groups are S? and S3.

9. Conjugation. The set of elements in a Lie group G conjugate
to a given element a is called the conjugacy class of a. The set of elements
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in the Lie algebra E of G of the form (Ad x)h (fixed A, all x € G) is called
the conjugacy class of h.

(i) Show that each conjugacy class is an embedded homogeneous
space.

(i) Show that “exp’’ maps the conjugacy class of % onto the conjugacy
class of exp . Identify the sets of conjugacy classes in G (respectively,
in E) with an orbit space of an action of G. Denote the second orbit
space by E/G.

(iii) Assume G is compact and regard the elements of (VE*), as
functions in E. Show that, for such a function £, f (k) depends only on the
conjugacy class of A.

(iv) In volume III it will be shown that, if G is compact and con-
nected, then (VE¥*), is a polynomial algebra over a graded subspace Oy
with dim Q; = rank G. Use this fact to obtain an embedding of E/G
in R” (r = rank G).

Show that the image of the embedding contains an open set of R .

(v) Assume G compact and connected. Show that an automorphism,

7, of G determines a homeomorphism 7: E/G — E/G. Show that, for
fe(VE*®),, he E/G,

f@h) = (()F)()-

(vi) Let G, r be as in (v). In volume III we shall construct a linear
isomorphism A: P; 5 O such that Ao 7# = (7')" o A. Use this fact to
conclude that 7# is the identity map of H(G) if and only if 7 is the identity
map of E/G.

10. Automorphisms. Let 7 be an automorphism of a compact
connected Lie group G. 7 is called inner if, for some a € G, 7(x) = axa™!,
xeG.

(1) Show that 7*(ag) = ag, where o is the class defined in
problem 8, (ii1).

(i) Let Z(r) = {x € G| 7(x) = x}. Show that Z(7) is a compact Lie
subgroup of G. If G’ # e, show that Z(7) contains a nontrivial 1-param-
eter subgroup of G'. If § is a maximal torus of Z(7) conclude that its
centralizer Z; is a maximal torus of G.

(ii1) Suppose Z(7) contains a maximal torus of G. Prove that  is inner.

nt: se problems an , ap. .
Hi Use probl 28 and 29, Chap. II
(iv) Show that the following conditions are equivalent: (a) 7* = «.



188 IV. Invariant Cohomology

(b) 7 is inner. (c) for each x € G there is some a, € G such that
7(x) = ayxaz’. (Hint: Use problem 9, (vi).)

11. Toral actions. Let a torus, T, with Lie algebra E act on a mani-
fold M so that the isotropy subgroups are all different from 7. Choose
h € E so that the 1-parameter subgroup generated by 4 is dense in 7.

(i) Show that the fundamental vector field Z, has no zeros.

(i) Give M a T-invariant Riemannian metric. Define a 1-form w
on M by
o(X) =2y, Zp)"HZy, XD, X e Z(M).

Show that i{(h)w = 1 and, forae T, ke E,
T*ow = w,  O(k)w = 0.
(i) Set
A(M)i0y—0 = keri(h),  A(M)ym=o = ker (h)

and
AM);y~0,6(m=0 = AM)iy=o N A(M)gn)=p -

Show that the multiplication induces an isomorphism,
AM)ip—o.001-0 @ Aw — A{(M),

where Aw denotes the exterior algebra over the one-dimensional space
spanned by w.

(iv) Show that A(M);m)—.s(n)—o is stable under § and that
8w € AXM )in=0.0(m-0 -

Show that the differential operator d in the tensor product, induced by &
under the isomorphism of (iii), is given by (p = deg ¥)

PRI +¥PRw) =0 R +8¥ ®w + (—1)Psw A ¥ ® 1.
(v) Obtain a short exact sequence of differential spaces

A i(h)
0 —— A(M)i(n)=0.6(=0 — A1(M) 22 A(M);(y=0,600=0 —> 0,
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where A is the inclusion map. Derive an exact triangle

H(AM),09—0.00=0) e H(M)

D i(h)y
H(A(M);3-0.001=0)-
If 7, € HAA(M);(n)=0.0(n)0) 18 the class represented by 8w, show that
D) =1, "« o € H(A(M )iy =0.8()=0)-

(vi) Show that H(M) has finite dimension if and only if
H(A(M)i(h)=0,0(h)=0) has finite dimension.

(vil) Assume that H(M) has finite dimension. Show that X,, = 0
(even if M is not compact). Show that the Lefschetz number of an equi-
variant map is zero.

(viii) If M is compact and dim M = 4k, prove that M has signature
zero.

(ix) Show that any toral action on R™ has a fixed point.

12. Action on homogeneous spaces. Let G be a compact connected
Lie group and let K be a closed connected subgroup. Let T be the action
of G on G/K.

(i) Show that the isotropy subgroups are all conjugate to K. Hence
show that each T, has a fixed point if and only if

() aKa™ = G.
aEG
(i1) Let a be agenerator of a maximal torus in G.Show that the fixed
point set of T, is finite (possibly empty). Show that the set of elements
a € G such that T, has only finitely many fixed points, is dense in G.
(iii) Obtain the results of the text and problem 6 on X,/ by con-
sidering the Lefschetz number of T, , where a is a generator of a maximal
torus.
(iv) If rank G = r, rank K = s, show that a subtorus of rank r — s
can act almost freely on G/K. Show that this is the maximum dimension
for such an action.

13. Symmetric spaces. Let = be an automorphism of a compact
connected Lie group G such that 2 = «. Let K be the 1-component of the
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subgroup of G left pointwise fixed by . Then G/K is called a symmetric
space of compact type with connected fibre. We refer to it simply as a
symmetric space. Denote the Lie algebras of G and K by E and F.

(i) Show that a compact connected Lie group is diffeomorphic to a
symmetric space.

(i) Let G/K be a symmetric space. Show that the restriction of 8.
to (AFYL), is zero and conclude that

H(GIK) = (AF*), .

(ii1) Assume G is compact and connected. Show that there are
elements a € G such that 7, # ¢, 72 = «, where 1, is conjugation by a.
Let K be the l-component of the centralizer of a. Show that ae K
and that -, = —. in F+. Conclude that (AFL), and H(G/K) are evenly
graded (i.e., (APFL), = 0 = H?(G[K) if p is even).

14. The representation of W;. G isa compact connected Lie group
with maximal torus T.

(i) By considering the projection G/T — G/Ny , construct a smooth
bundle (G/T, =, G/N;, W,).

(1) Show that G/N; is the orbit space (cf. problem 6, Chap. 3)
for a suitable free action of W, on G|T.

(11i) From the action of W, on G|T obtain a representation of W
in H(G|T) @ C. In volume III it will be shown that H?(G|T) = 0, p
odd. Use this fact to determine the character of this representation (cf.
problem 12, Chap. I). Conclude that it is equivalent to the left regular
representation of W, (cf. problem 14, Chap. I).

(iv) Let W{ be the subgroup of W that acts in G/T by orientation
preserving diffeomorphisms. Show that W¢ is a normal subgroup of
index 2 in W . Is it the only normal subgroup of index 2?

(v) Show that H*(G/N;) = 0.

15. LetG, T beasinproblem14,and considerthemap ¢: G/T X T—G
of sec. 2.17.

(1) Construct an action of W; on T (by conjugation). Hence
obtain an action of W, on G/T x T and construct a smooth bundle
(G|T x W T, p, G|Ny, T) (cf. problem 7, Chap. III).

(i) Show that ¢ factors to yield the following smooth map:
$: G/T x4, T — G. Show that deg J = 1.
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(i) Show that H(G/T X _T) is isomorphic to the subalgebra of
H(G|T) ® H(T) whose elements are invariant under the action of W, .
Conclude that J*: H(G) — H(G|T x wg T') is an isomorphism of graded
algebras.

(iv) Show that the cohomology algebra of the total space of the bundle
in (i) is isomorphic to the tensor product of the cohomology of fibre and
base as algebras, but not as graded vector spaces.

16. Use the map ¢ of problem 15 to obtain a smooth map
G/IT X SF g SE

(Srand S; are the unit spheres in the Lie algebras of T'and G). Compute
the degree of this map.

17. Let G be a connected Lie group with Lie algebra E.

(1) Assume that G acts on M and N and that ¢, y: M — N are
equivariant smooth maps connected by an equivariant homotopy H.
Conclude that the homomorphisms ¢} ¢4_0 and ¢ ,_0 (respectively,
(p¥o); and (¥r,),) are homotopic.

(i1) Let U be a suitable tubular neighbourhood of an orbit G/K of G
under a proper action (cf. problem 11, Chap. III). Show that the orbit
space U/G is homeomorphic to the cone over an orbit space S/K, where
K acts on a sphere S by orthogonal transformations. (The cone over a
space X is obtained from X X [0, ] by identifying the points (x, 1),
xe X))

(i) Let U be as in (ii). Construct an equivariant retraction p of U
onto the orbit and show that 70 p is equivariantly homotopic to the
identity map of U. Hence find isomorphisms

H,(U) = H(G/K) =~ H((AF*))
and
H((A(U);-0)1) = H(point)

(F denotes the Lie algebra of K).

(iv) Establish a Mayer—Vietoris axiom and a disjoint union axiom for
H /(M) and H(A(M);_.6—o) (with respect to proper actions of a fixed
Lie group).

(v) Assume that G acts properly on M and that, for all isotropy
subgroups K, H(G/K) = H,(G|K). Conclude that H(M) = H,(M).
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18. Cech cohomology. Let G act on M. Establish a bijection
between open coverings of M/G and G-stable open coverings of M.
If the action is proper, define an isomorphism

HM|G) = H(4/(M).,),

where H(M|G) denotes the Cech cohomology of M/G (cf. problem 25,
Chap. V, volume I).

19. Equivariant cohomology of sphere and vector bundles.
Generalize as far as possible the results of Chaps. VIII and IX, volume I,
to the equivariant case (i.e., invariant cohomology and proper actions).
In particular, define equivariant Gysin and Thom classes.

20. Give an elementary example where the orbit space of an action
of a compact connected Lie group on a compact connected manifold
does not satisfy Poincaré duality.

21. Represent S!in C" by

€% (21, ..., 2,) = ("%, ..., €52, 2,eC, 0eR,

where the k, are integers with greatest common divisor 1. Obtain an
action of S on S?»-1, Find the fundamental vector field and determine
H(A(S%1);_9.0-0).- Show that any equivariant smooth map ¢: S*~! —

S§27-1 has degree 1.



