Chapter III

Transformation Groups

In this chapter G denotes a fixed Lie group with unit element e and
Lie algebra E. M and N denote smooth manifolds.

§1. Action of a Lie group

3.1. Definition: A right action of G on a manifold M (or a set V)
is a smooth map
T"MxG—->M

(or aset map V' x G — V), written (2, a) > z - a, and satisfying
z-(ab)=(2-a)-b and 2-e=ux2, a,beG, zeM.

The group G is said to act transitively on M if, for every two points
21, 23 € M, there is an element a € G such that 2, - a = 2,.
An action T determines the diffeomorphisms T, (a € G) of M given by

Ty(2) =2 a = T(z a).

(Note that T;' = T,.1.) T, is called right translation by a.
On the other hand, to each z e M, corresponds the smooth map

A,: G — M given by
A,(a) = 2 ' a, aeG.
It satisfies the relations
Tyod, = A,opy and A,y = A, 0, = Tpod,or,, beG, zeM

(7» denotes conjugation in G by b).
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110 III. Transformation Groups

Now assume 7T is a right action of G on N. Then a smooth map
@: M — N is called equivariant with respect to T and T if the diagram

MxG—TsMm

NxG——N
T

commutes. This is equivalent to each of the following three conditions
p(z-a)=¢(2) a, z2eM, acG,
goT,=T,009, aegG,
and -
poA, = Ay, zeM.
(ForyeN, A, G— Nis themapa>y - a.)
A left action of G on M is a smooth map
T:G x M— M,
written T'(a, 2) = a - 2, and such that

(ab) -2 =a - (b-2) and ez =2, a,beG, zeM.

The diffeomorphism T,: 2+>a - 2z of M is called left translation by a.
The smooth maps 4,: G — M (z € M) given by

A(a) =a- 2
satisfy
TboAz=Az°'\b and Ab-z=Az°pb=Tb°Az°TtTl'

Finally, if T is a left action of G on N, then ¢: M — N is called
equivariant if

Pla - 2) = a - @), aeG, zeM.

3.2. Examples: 1. The multiplication map u: G X G — G of a Lie
group G is both a left and right action of G on itself. The left and right
translations by a € G are simply A, and p,, .

2. The group G X G acts from the left on G by
T((a, b), 2) = azb™!, (a,0)eG x G, zeG.
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3. Aright action, T, of Gon M X G (M, any manifold) is given by
T((2, a), b) = (=, ab).
If T is any right action of G on M, then T is equivariant with respect to
Tand T
4. A left action of G on G is given by

a- 2 = azal

5. A representation, P, of G in a vector space I defines a left action
of Gon I

a v = P(a), aeG, vel.

6. Assume that a Lie group H acts from the left on a Lie group G.
H is said to act via homomorphisms, if each map T,: G— G (ae H) is a
homomorphism (and hence an automorphism) of G. Assuming that H
acts on G via homomorphisms, define a multiplication on the product
manifold H X G by

w(a, x), (b, y)) = (ab, Tb_l(x)y)’ a,beH, x,yeG.

It is easy to verify that this multiplication makes H X G into a Lie
group. It is called the semidirect product of H and G (with respect to the
action T) and is denoted by H X, G. If the action, T, is trivial,
(T, = v, a € H), the semidirect product is simply the direct product.
In any case, H X e is a closed subgroup of H x; G, whilee X G is a
closed normal subgroup.

7. ¥ T: M x G — M is an action of G on M, then
dT: TM X TG—P TM

is an action of the tangent group T (cf. Example 5, sec. 1.4) on T',.
In particular, identify G with the zero vectors in T; to obtain an action

TM X G - TM
of G on T, . Itis given explicitly by
£ - a = dT,(¢), tEeTy, acdG.

8. If M x G— M is an action of G on M, a subset N C M is called

stable if
z a€EN, zeN, aceG.
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If N is stable, the action restricts to a set map N X G — N. In particular,
if Nis a stable submanifold of M, this map is smooth (cf. Proposition
VI, sec. 3.10, volume I) and hence it is a smooth action of G on N.

As an example, suppose P: G — O(V) represents G by isometries in
a Euclidean space V. Then the unit sphere S of V is stable, and so the
linear action of G in V restricts to an action G X S — S.

9. A right action, T: M X G — M, determines an associated left
action, T, , given by

T((a, 2) = Tg(z, a™?), 2€M, acegG.

3.3, Action on a homogeneous space. Let K be a closed subgroup
of G and consider the homogeneous space G/K of left cosets. Then a left
action T of G on G/K is given by

T(a, %) =a- &, aeG, ¥xe€G/K

(cf. sec. 2.11). The projection m: G — G/K is equivariant with respect
to the left action of G on itself, and 7. The action of G on G/K is transi-
tive. In fact, let ¥, = mx, and X, = 7x, be arbitrary and set a = x,x7".
Thena-x =%, .

Similarly, a right action of G is defined on the space of right cosets.

Next consider the normalizer Ny of K (cf. Example 4, sec. 2.4). A
right action

S:G|K x Nx— G/K
is given by
S(x, a) = xa, x€G, aeNg.

(Since a € Ny, this map is well defined.)
To see that it is smooth, observe that the diagram

G x Ny —F G
mXt mw

G/K X NK—S—>G/K N

commutes and recall that 7 makes G/K into a quotient manifold of G.
The diagram also shows that the projection 7 is equivariant with respect
to the right actions of N, on G and on G/K.

Finally, since K is a closed normal subgroup of Ny, we can form the
factor group N,/K. The action S factors over the projection

p: Nx— Ng/K
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to give a smooth commutative diagram

G/K x N GIK

tXp /

GIK x Ng/K.
Thus S is a right action of Ny/K on G/K.



§2. Orbits of an action
In this article, T: M X G — M denotes a right action of G on M.

3.4. The isotropy subgroup. Every point ze€ M determines the
closed subgroup G, C G given by

G,={aecG|z a=2z}.

Since G, is closed, it is a Lie subgroup of G (cf. Theorem I, sec. 2.1).
It is called the isotropy subgroup at z. If G, = {e} (respectively, G, is
discrete), for each 2 € M, the action is called free (respectively, almost

free).

Proposition I: The Lie algebra E, of the isotropy group G, is given
by
E, = ker(d4,). .

Proof: Since the restriction of 4, to G, is constant, it follows that
E, Cker(dA4,),. Conversely, assume that k€ ker(d4,),. To show that
h e E, we must prove that expth e G, , t e R.

But the path in M given by B(t) = =z - exp th satisfies

B(t) = (d4, o Rexpn)(h) = (dTexpm o dA,)(h) = 0,  teR,

(cf. sec. 3.1). It follows that z - exp th = z and so exp the G, .
Q.E.D.

Corollary: The action is almost free if and only if each (d4,), is
injective.

3.5. Orbits. For ze€ M the set 2 - G (= Im 4,) is called the orbit
of G through z. M is the disjoint union of its orbits. Clearly, if G acts
transitively on M, then M consists of a single orbit.

Let 2, z-a be points in the same orbit. Then G,., = a7 'G,a. In
particular, if the action is transitive, any two isotropy groups are conju-
gate.

Next observe that the relation A, (ab) = A, (a)-b shows that 4,
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2. Orbits of an action 115

factors over the projection m: G — G,\G to yield a commutative
diagram

6—% . m
”l /
G.\G

Since G,\G is a quotient manifold of G under 7, the map 4, is smooth.

Moreover, A4, is equivariant with respect to the right actions of G on
G,\G and M.

Proposition II: A4, embeds the homogeneous space G,\G into M,
with image the orbit z - G.

Proof: A, is obviously injective, and has image 2 - G. Thus we need
only show that the linear maps

(d‘qz)ti: T&(Gz\G) - Tz~a(M)’ ae Gz\G’

are injective. In view of the equivariance of 4, , it is sufficient to consider
the case @ = ¢é. But it follows from Proposition I, sec. 3.4, and Corollary I
of sec. 2.11, that

ker(d4,), = E, = ker(dm), .

Hence (d4,), is injective.
Q.E.D.

Corollary: If G acts transitively on M, then 4, is a diffeomorphism
of G,\G onto M.

Proof: Apply Proposition IV, sec. 3.8, volume I.

3.6. Examples. 1. Consider the right action T of G on itself by
conjugation,

T(2, a) = aza, z,aeG.

The orbits of G under this action are called the conjugacy classes of G.
Two elements z, , 2, are in the same orbit if and only if for some a e G

alza = 2,.

In this case they are called conjugate.
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On the other hand, the isotropy subgroup at @ € G is the normalizer
N, . Thus Proposition II, sec. 3.5, gives an embedding of N,\Ginto G,
with image the conjugacy class of a.

2. Let V be an n-dimensional Euclidean space. A left action T of
SO(n) on V is defined by

T(o, 2) = o(2), o€ SO(n), =zeV.

The orbit of a point ae V (a 7 0) is the sphere {xe V| |x|=|a|},
while the orbit of O consists only of 0.

The action T restricts to a transitive action of SO(n) on the unit
sphere S"~1. The isotropy subgroup of a point x € S*~! is the subgroup
SO(x+), where x1 denotes the orthogonal complement of x. Hence T
induces an equivariant diffeomorphism (cf. the corollary to Proposi-
tion II, sec. 3.5):

SO(n)/SO(n — 1) —» S,  n>2.

3. Byreplacing the Euclidean space, IV, of Example 2 with a Hermitian
space, W, we obtain an action of U(n) with orbits the spheres of W.
In particular, this yields an equivariant diffeomorphism

Un)|Umn — 1) —> 8§21, n> 1.

The action of U(n) on W induces an action of the special unitary group
SU(n) which restricts to a transitive action on S%*~! for n > 2.

Finally, the use of a quaternionic space leads to equivariant diffeo-
morphisms

Om)O(n — 1) —=> S*1,  a>1.

Proposition III: The groups SO(n), U(n), SU(n), and Q(n) are
connected.

Proof: SO(1)(= .)is connected. Assume byinductionthatSO(n — 1)
is connected (n > 2). Then, in view of Example 2, SO(n)/SO(n — 1)
is also connected. Since (cf. sec. 2.13)

(SO(n), =, SO(n)|SO(n — 1), SO(n — 1))

is a fibre bundle, it follows that SO(#n) is connected and the induction is
closed.
The same argument, using Example 3 above shows that U(n), SU(n),
and Q(n) are connected.
Q.E.D.
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Corollary: O(n) has two components (cf. Example 2, sec. 2.5).

3.7. Embedding of orbits. Consider the injective map of sec. 3.5,
A,: G\G — M.

In general, the pair (G,\G, 4,) is not a submanifold of M as the following
example shows: Let R act on the 2-torus 72 by setting

Tym(x, y) = m(x + at, y + bt), t,x,y€R,
where m: R2 — T? denotes the projection and b/a is irrational. Then
each orbit is dense in 72 and so the orbits are not submanifolds of T2

Nonetheless we have

Theorem I: With the notation above, let

G.\G 2 M

NS

N

be a commutative diagram. Then o is smooth if and only if 7 is.

For the proof of this theorem we first establish four lemmas. In view
of Corollary II to Theorem II, sec. 2.11, we can find a submanifold
W, of G such that e € W, , and the projection 7: G — G,\G restricts to
a diffeomorphism of W, onto a neighbourhood of e.

Lemma I: There is a submanifold V' of M containing z and a
connected neighbourhood W of e in W, , and a neighbourhood U of 2
in M such that T restricts to a diffeomorphism

bV x W= U.
Proof: Choose a submanifold V; of M such that z€ V, and
T(M) = T,(V,) ®Im(d4,)., .
Write T, .(Vy, X W,) = T,(V,) @ T(W;) and note that

dT(¢,m) = § + (dA, o dn)(n), £ TA(V1), ne T (W)
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In view of Proposition II, sec. 3.5,

T(W) —2s 146)\6) 2 Imaa),.

It follows that dT maps T, ,(V, X W,) isomorphically onto T,(M).
The lemma follows (cf. Theorem I, sec. 3.8, volume I) for suitably small
neighbourhoods V' C V, and W C W,.

Q.E.D.

Lemma II: Suppose that, in the notation of Lemmal, §(y,b) =2-a
forsomeyeV,be W,aeG. Then

(@)a.(Ty(W)) = (d4.(To(G))-
Proof: Set ¢ = ab~l. Since )(y, b) = y - b, we have
y=2z-abl=2z2"c
Since the restriction of ¢ to {y} X Wis simply 4, (= 4,.), it follows that
(@) To(W)) = (@4, N T(W)) C (dA4,. N THC))
= (d4,(T«G)).
Moreover, combining Proposition II, sec. 3.5, with Lemma I, we obtain
dim(dif) (o) (TH(W)) = dim W = dim(G,\G) = dim dA,(T,(G)).

The lemma follows.
Q.E.D.

Lemma III: Let .S denote the subset of V' given by
S ={yeV |y, b)ez G for some be W}.

Then S is countable.

Proof: Consider the open subset O C G,\G given by (cf. Lemma I
for U)

0 = A;Y(U).
Let : O — V be the composite given by
4. 4

oL yxwn

We show that dp = 0.
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In fact, let @€ O and let £ € T,(O). Then we can write 2 - a = J(y, b)
forsome y € V, b€ W. By Lemma II there exists an 5 € T,(W)such that

(d‘zjz)(f) = (d'/’)(v.b)(’?)'
This yields

(dp)¢ = (dmy)(dp)(dA,)E = (dmy)n = O,

whence dp = 0.
Thus @ must be constant on each of the (countably many) components

of O. Since S = Im ¢, S is a countable set.
Q.E.D.

Lemma IV: Give (2 - G) N U the subspace topology induced from
U. Then

W) x W)=z W
is a component of (z - G) N U.

Proof: It is sufficient to show that {z} x W is a component of
Y Y((z - G) N U). But

bWz G)NU) =8 x W.

Moreover, in view of Lemma III,

sx W =) (3 x W),

i=0

with y, = 2. Since W is connected, the lemma follows.
Q.E.D.

3.8. Proof of Theorem I: If 7 is smooth, then so is ¢ = 4,0 7.
Conversely, assume that o is smooth. Translating by elements of G
allows us to restrict ourselves to proving that  is smooth near those points
g € N such that

{g) =€ and o(gq) = 2.

Choose U, V, W, and ¢ as in sec. 3.7. Let Q be a connected neigh-
bourhood of ¢ such that

0 C o-Y(U).
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Restrict o to a continuous map
aq:0—> (-GN U,

where (2 - G) N U is given the subspace topology. Since Q is connected,
s0 is 0,(Q). Moreover,

a(g) = zey({z} x W).
Thus Lemma IV yields
Im o, C y({z} x W).
In particular, the map ¢ o 0: O — V X W has the form
(7t o 0)(x) = (2, X(#)),

where X: O — W is a (necessarily) smooth map. Moreover, the smooth
map X: Q — G,\G given by X = = o X satisfies

(A, o X)(x) = (4, o X)(x) = 2 - X(x)
= (2, X(x)) = o(x) = (4, e 7)(x), x€Q.

Since 4, is injective, we obtain X = 7. It follows that 7 is smooth in Q.
Q.E.D.



§3. Vector fields
In this article 7: M x G — M denotes a right action of G on M.

3.9. Fundamental vector fields. The action T determines the strong
bundle map,

a: M X E— TM N
given by
o2, h) = (dT) .0, , h) = dA,(h).
Differentiating the relation 7,0 4, = A4,., o 75" (7, denotes conjugation
by a) yields the commutative diagram
M x E-25T),
T,xAd a"l ldTa 3.1
MXE—>Ty , acG. ’
Now fix A€ E. The constant map M — {h} corresponds, under a,
to the vector field Z, on M given by
Z(2) = dA(h), zeM.

It is called the fundamental vector field generated by h. The orbits of
Z, are the paths in M given by

t+— 2 - exp th.
More generally, « induces the homomorphism
ay: S(M; E) — Z(M),
given by
(xf)2) = (2, f(2)) = dA(f(2)), zeM.  feS(M;E)

We denote a, f by Z; and call it the vector field generated by the function f.
Thus
Z(2) = Zyo(s),  zeM.
121
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Now let T: N x G — N be a right action of G on Nand letg: M — N
be a smooth equivariant map. Then the diagram,

MxE—>5T,

wx:l ld¢

NxE—>Ty |,
[+ 4

commutes. In particular, the fundamental fields on M and on N, gene-
rated by a vector h € E, are p-related.

Example: Consider the action of G on itself by right translations.
The fundamental vector fields are precisely the left invariant vector
fields (cf. sec. 1.2).

To see this, observe that in this case 4, = A,, z € G. It follows that

dA(h) = L(h) = X»(2), =2€G, hek,

whence Z;, = X, .
More generally, if G acts on M X G (M, any manifold) by right
translations of G, then the fundamental fields are given by

Zy(y, x) = Xp(x), heE, yeM, x€G.

Proposition IV: The map E — Z(M) given by h+> Z, is a homo-
morphism of Lie algebras:

(Zv,Z] = Ziny, h keE
Proof: Consider first the right action T of G on M x G given by
T((z, @), b) = (2, ab).

In view of the example above, the fundamental vector fields for this
action are given by

Zy(y, %) = Xy(x).
It follows now from sec. 1.3, that
[Zn ’ Zk] = Z[h.k] . (3.2

Next recall that T: M x G — M is equivariant with respect to T'and T
(Example 3, sec. 3.2). It follows that

IhyZn, ZiyZe, oy Zom.
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Thus formula (3.2) and Proposition VIII, sec. 3.13, volume I, yield

Z[n,k] ’T‘ [Zh ’ Zk]

and so, since T is surjective,

Z[h.k] = [Zh ’ Zk]' QE.D

3.10. Invariant vector fields. We saw in Example 7 of sec. 3.2
that a right action of G in M induces an action in T,,. Define an action
of G in Z(M) by setting

X - a = (T)X, aecG, XeZ(M).
Then
[X,Y] a=[X-a,V-d, X YeZ(M), acG.

A vector field X on M is called invariant if X - a= X (a€ G); i.e., if
X~ X, acG.
Te

The subalgebra of Z'(M) that consists of invariant vector fields is
denoted by Z'/(M).

Examples: 1. If M = G and if G acts on itself by right translations,
then the algebra Z'/(M) consists of the right invariant vector fields
(sec. 1.2).

2. It follows from diagram (3.1), sec. 3.9, that the fundamental
fields satisfy

Z -a=12

h (Ada=YHhr?

heE, acG.

Thus Z, is invariant if (Ad a)h = h, ae G. If G is connected, this is
equivalent to

[h, k] =0, kekE;
i.e., Zj, is invariant if 4 is in the centre of E (cf. Example 4, sec. 2.4).
3. Letfe &#(M;E)and acG. Define a - fe S (M; E) by
(a- f)?) = (Ad a)(f(z - a)), =z2eM.
Then Z,., = Z; - a7. Thus Z, is invariant if
(Ad a)(f(2)) = f(z - @), z€M, a€cG.
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Proposition V: The Lie bracket of a fundamental field Z, and an
invariant vector field X is zero.

Proof: Let X be the vector field on M x G given by X(z, a) = X(3).
Then
dT(X(z, a)) = (X - a)(z - a)

and hence, since X is invariant, X ~ X.

On the other hand, as we saw in the proof of Proposition IV, sec. 3.9,
the left invariant vector field X, on G, regarded as a vector field Z, on
M x G, is T-related to Z, . Thus

0= (2, %] ~ (2, X].

Since T is surjective, it follows that [Z, , X] = 0.
Q.E.D.

3.11. Fundamental subbundle. Recall from sec. 3.4 that T is called
almost free if each isotropy subgroup G, is discrete. In view of the
corollary to Proposition I, sec. 3.4, this is equivalent to each of the
following conditions:

(1) The Lie algebras E, are zero.

(2) The fundamental vector fields Z, (2 # 0) have no zeros.

(3) The bundle map a: M X E— T,, of sec. 3.9 restricts to linear
injections in the fibres.

In this case Im « is a subbundle of T,,, called the fundamental sub-
bundle F\, . The rank of F,, is the dimension of G. Diagram (3.1), sec. 3.9,
shows that is F,, stable under the action dT of G in T,,. Moreover, a
is a strong isomorphism,

wM X E-—=>F,,,

and so F,, is trivial. Thus the correspondence f— Z; defines an iso-
morphism

F(M; E) —=> SecFy,.



§4. Differential forms
In this article T: M X G — M denotes a right action of G on M.

3.12. Invariant differential forms. The right translations T, of
M (a € G) induce automorphisms TF of the graded algebra A(M) of
differential forms on M. Evidently,

TH =TFeT¥ and TF¥=. abeG.
Since, for X € Z(M), a € G (cf. sec. 3.10),
(X - a)(z) = dT(X(z - a)),
it follows that (cf. sec. 0.13)
(X)oT* = T*oi(X -a) and O(X)oT* = T¥cO(X - a).

Moreover, clearly
Trod =80T;.

A differential form @ on M is called invariant under the action of G
if it satisfies

Ti®¢ =b, acG.

The invariant differential forms are a graded subalgebra of A(M),
which will be denoted by A,(M). In particular, the invariant functions
form a subalgebra of & (M) which we denote by &(M). (The invariant
vector fields on M are a module over F(M).)

Since T} commutes with §, it follows that the subalgebra 4,(M)
is stable under 8. The other commutation relations above show that the
subalgebra A4 ,(M) is stable under #(X) and 6(X) provided that X is an
invariant vector field on M.

3.13. The operators i(h) and 6(h). Consider the fundamental vector
field Z, generated by h € E (cf. sec. 3.9). The operators i(Z,) and 8(Z,)
in A(M) will often be denoted simply by i(%) and 6(k). Proposition I,
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sec. 4.2, and Proposition II, sec. 4.3, both of volume I, together with
the relation Zy, 1 = [Z, , Z,] (h, k € E), imply that

i([h, K]) = O(k) o i(k) — i(k) o O(K),
0([h, K]) = O(k) o B(K) — 6(k) o O(h),

and
(k) = i(h)o & + 8oi(h), h keE.

A differential form @ e A(M) is called horizontal with respect to the
action of G if it satisfies

ih® =0, hek.

Since each i(4) is an antiderivation, the horizontal forms are a graded

subalgebra of A(M). This subalgebra will be denoted by A(M),_, .

The first identity above shows that the horizontal subalgebra is stable

under the operators 6(k). However, in general it is not stable under 3.
Similarly, the differential forms satisfying

od =0, ke,

form a graded subalgebra, denoted by A(M),_, . Since 8 commutes with
0(h), the subalgebra 4(M),_, is stable under 8.

The intersection of the subalgebras A(M),_, and A(M),_, will be
denoted by A(M);_q.—o- This subalgebra is stable under 8. In fact, if
6(h)® = 0 and i(h)® = O, h € E, it follows that

(k) 5P = 80(h)® =0  and  i(h) 8D = O(h)D — Si(h)d =0, hekE.
Proposition VI: A4 ,(M)C A(M)s_, . If G is connected, then
A(M) = A(M)p— -

Proof: Recall from sec. 3.9 that the orbits of a fundamental vector
field Z, are given by

BuAt) =z -expth, 2z2eM, teR.

It follows (cf. the corollary to Proposition X, sec. 4.11, volume I) that, if
® e A(M), the conditions

o® =0 and Thpa®P =0, teR,
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are equivalent. Thus 4,(M) C A(M)e-, . If Gis connected, exp E gener-

ates G, and so
A(M) = A(M)sey - QE.D.

3.14. Equivariant maps. Suppose T is a right action of G on N,
and let p: M — N be a smooth equivariant map. Then every pair of fun-
damental vector fields Z, e Z(M) and Z, € Z(N) are g-related (cf.
sec. 3.9). Hence (cf. Proposition III, sec. 4.4, volume I or sec. 0.13)

g% ciy(h) = iu(h)o@* and  g*oby(h) = Oy(R)og*,  hek,

where iy(h), Ox(h), i),(h), and 6,,(k) denote the obvious operators on
A(N) and A(M). In particular, ¢* restricts to homomorphisms

(Pi*=0: AM);_g +— A(N);—o
<P5k=o3 A(M)o_g < A(N)oy
and

'P:;o.a-o: A(M);—9,0-0 + A(N)ig,6-0 -

Finally, the relation

‘P°Ta: Tu"q’) aegG,
implies that
TYop* = @*o TF, acG,

and so o restricts to a homomorphism
oF: Ai(M) — AN).

3.15. Equivariant differential forms. Suppose P is a representation
of G in a vector space W. Then each a € G determines the operator P(a),
in the space A(M; W) of W-valued differential forms given by

(P(a)s2)(2; &y 5 - &) = P(a)&A(25 8y, 0 8p)), 2e M, L€ T(M).

We denote P(a), simply by P(a).
A left action of G in the set A(M; W) is given by

a-Q=(Pa)o THQ = (T* Q Pla)?, QeAM;W), acG,
where (as in sec. 0.13) we write A(M; W)= A(M) Q@ W. Evidently
8a-Q)=a-882.
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A W-valued form £ is called equivariant with respect to P if
a Q=20 aegG.
This is equivalent to the condition
T!Q = Pa)'Q, acG.

The space of equivariant forms is denoted by A4,(M; W). It is a module
over the algebra A ,(M), and is stable under 8.

Now consider the induced representation P’ of E in W. For each
h e E, P'(h) determines the operator P'(h), in A(M; W); it is denoted
simply by P’(k). The following relations are immediate from the defini-
tions:

P'([h, k]) = P'(h)o P'(k) — P'(k) o P'(h),  P'(h)o T = T¥o P'(h)
and
P'(h)ob =80P'(h), hkeE, acG.

Now recall that the operators i(4) and 6(k) in A(M) extend to operators
in A(M; W) (cf. sec. 0.13). The extensions will also be denoted by #(%)
and 6(h).

Proposition VII: An equivariant differential form £ satisfies the
relation

6(h)R2 = —P'(h)R2, hekE.
If G is connected, this condition is equivalent to equivariance.

Proof: Recall, from sec. 0.13, that the decomposition,

‘Twat =TM X Tw*,

leads to a bigradation of A(M x W*); AP9(M x W*) consists of those
forms which depend on p vectors tangent to M and q vectors tangent to
W*. Define a linear injection

A A(M; W) — APY(M x W*)

by setting

(’\Q)(z’ W*; CI 3 ce0y Cp) = <w*) Q(z; Cl 3 vy ;D)>)
zeM, w*eW*, {;eT,(M).



4. Differential forms 129

Let T be the right action of G on M x W* given by
Ty(2, w*) = (2 - a, P(a)*w*), acG, zeM, w*eW*

and let Z, denote the corresponding fundamental vector field generated
by & (k€ E). A simple computation shows that

AoP@)o T} = TFoX and Ao (P'(h) + B(h)) = 6(Z,) o A.

Since A is injective, the proposition follows from Proposition VI, sec. 3.13,
with M replaced by M x W*.
Q.E.D.

3.16. Examples: 1. Suppose W =R and P(a) =, a€ G. Then
the equivariant forms in A(M) are precisely the invariant forms (cf. sec.
3.12), and Proposition VII coincides in this case with Proposition VI.

2. Suppose W = E and P = Ad. An equivariant E-valued form
is a form satisfying

TYQ = (Adah)R, acG.
If G is connected, this is equivalent to (cf. Proposition VII, sec 3.15)
B(hQ = —(ad h)R?,  heE.

In particular, recall that each E-valued function f on M determines
the vector field Z; on M (cf. sec. 3.9). Moreover, Example 3 of sec. 3.10
states that if f is equivariant, then Z, is invariant. Finally, recall from
sec. 3.11 that if the action of G is almost free, then f+> Z, is injective.
Thus, in this case, Z, is invariant if and only if f is equivariant.

3. Scalar products: Define bilinear maps,
(. ): AX(M; W*) x AY(M; W) —~ Av+(M),
by
(¢’ l]’)(z; Zl y ety Cp-}-q)

1
= .1 Z Ea<q>(z; Ca(l) 3 ceey lo(ﬂ))’ ':P(Z; {u(n+l) y 00y zc(ﬂ+a))>)
P' q! e SP+e

Ge AWM, Wr), WeA(M, W), zeM, {eT{M)
Thus if @, , ¥, € A(M), we W, w* e W*, then

(P, @ w*, ¥, @w) = (w*, w) P, A ¥
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The contragredient representation, P®, of G in W* determines the left
action a > P(a)" o T} of G in A(M; W*), denoted by & +> a + D. Since
P(a)" = (P(a)*)7}, it follows that

THD, YY) ={a-D,a-¥P), acG, DecAM;W*), YeAM;W).

In particular, if @ and ¥ are equivariant, then {@, ¥') is an invariant
differential form.

4. Action of G on a bundle: Let # = (M, B,F) be a smooth
fibre bundle. Assume that right actions

T-Mx G— M, T:B x G— B,

are given such that = is equivariant. In this case, the diffeomorphisms T,
are all fibre preserving and G is said to act on the bundle.

Since 7 is equivariant the fundamental fields Z;, on M and Z, on B
are m-related. Thus (cf. sec. 3.14)

m*oi(h) = i(l)om* and %o 6(h) = O(h) o m*.

Moreover, if Z is oriented, then Proposition X, sec. 7.13, volume I, gives

froi(h)=i(h)ofF and fpoe(h)=e(h)oh

Now assume that G is connected. We shall show that each T, preserves
the bundle orientations, so that (cf. Proposition VIII, sec. 7.12, volumeI).

fFoT;“:T:o:J:F, acG.

To see that G preserves the bundle orientations observe first that the
components of M are stable under G (because G is connected). Thus we
may assume that M is connected. In this case each T, either preserves
or reverses the bundle orientations. Since

Texpn = (Texpmva)® heE,

it follows that Ty, preserves the orientation. But, because G is con-
nected, exp E generates G; hence each T, preserves the orientation.



§s. Invariant cross-sections
In this article ¢ = (N, =, B, F) denotes a fixed vector bundle.

3.17. Action of G on E. A right action of G on ¢ consists of right
actions

T:N xG— N, T"BxG—>B

subject to the conditions:

(1) = is equivariant
(2) The right translations T, are bundle maps (i.e., linear in each
fibre).

A left action of G on ¢ is defined analogously.
Assume that 7, T define a right action of G on £. Define a right
action of G on Sec ¢, (o, a) — o - a, by setting

(o - a)(x) = Ty(o(x - a 1)), ceSecé aeG,xeB.
A cross-section ¢ is called invariant if
o-a=—ao, aeG.

Thus o is invariant if and only if the map o: B — E is equivariant. The set
of invariant cross-sections forms a subspace of the vector space Sec ¢
which we denote by Sec/(£¢). Sec/(£) is a module over F(B) (cf. sec.
3.12).

Example: A right action T of G on M induces a right action of G
on the tangent bundle, T,,, with T: T,, x G — T,, given by

T(z, a) = (dT,)=z

(cf. Example 7, sec. 3.2). As usual, denote T(z, a) by 2 - a.

If X is a vector field on M, then X - a = (T,),X, and so the definition
above coincides with that of sec. 3.10. Thus the definitions of invariant
vector field and of Z/(M) given in sec. 3.10 agree with the definitions
above.

131
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3.18. Integration of cross-sections. Assume that G is compact. Give
G a left orientation, and let 4 € A}(G) (»n = dim G) be the unique left
invariant n-form such that [5 4 =1 (cf. sec. 1.15). We write (as in
sec. 1.15)

fcf(a)da=J'Gf-A,

if f 1s a vector-valued function on G.
Now suppose G acts on £ and fix o € Sec £ and x € B. Then a smooth
F,-valued function f, on G is given by

fo(@) = (o - a)(®).
Hence a map 7: B — N is defined by

(x) = f _fo{a) da = f (0" a)(x) da

It is denoted by [ o and is called the integral of o over G.
T is a cross-section in £. Indeed, this follows from Proposition VII, sec.
7.11, volume I, once we observe that + = f; @, where

®:B x AnTg— N
is the bundle map given by @(x, a; 7, , ..., 1,) = 4(a; 7y, ..., 9,)(0 - @)().
(Observe that B x T, is the vertical bundle of the trivial bundle
(B x G,m, B,G).)
Proposition VIII: (1) For any o € Sec £, [ o is invariant.

(2) If 7is invariant, then [ 7 = 7.
(3) The correspondence o +— [ o is linear (over R).

Proof: (1) Let o €Sec ¢, b € G. It is immediate from the definitions

that
[(fca) : b] x)=T, (jc(o Ca)x - b-l)da).

Since Ty: F,.4-1 — F, is linear, it commutes with [ . Thus, by formula
(1.2), sec. 1.15,

[(fco) -b] (x) = fc(a - ab)(x) da = jc(a - a)(x) da = (fco) ().
This proves (1).
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(2) follows from the relation,

(faf) (x) = fc(f - a)(x) da = (fcda) (%) = (x),

and (3) is obvious.
Q.E.D.

Examples: 1. If G is a compact Lie group that acts on a vector
bundle ¢ = (N, =, B,F) via T, T, then there exists a Riemannian
metric in ¢ with respect to which the translations T,: N — N (a € G)
are isometries.

In fact, the action T determines the (right) action of G in V2£* given by

(P a)u,v) =Pu-a'lv-a?) PeV¥F), xeB, acG, uveF,,.

Now let g be any Riemannian metric in £ and regard g as a cross-section
in the vector the bundle V2£*. Then

o = fog

is a metric with the desired properties.

Suppose now that % is a subbundle of ¢ which is stable under the
action of G on £. Then there is a G-stable subbundle, , of £ such that
7 @ { = £ (Whitney sum).

In fact, choose a Riemannian metric in ¢ such that the translations by
G are isometries, as above, and then let { be the bundle 7t whose fibres
are the orthogonal complements of those of 7 (cf. Proposition VII,
sec. 2.18, volume I).

2. Suppose G acts on B and consider the induced action,
T:(BxR)xG— B xR,

given by T((x, t), a) = (x - a, t). This is an action of G on the trivial
bundle § = (B X R, =, B, R).

The cross-sections of ¢ are simply the smooth functions on B. If
f € #(B), then the integral over G of f is the invariant function f, given by

fiw) = [ _1(x - @) da.

3.19. Remark. All of the results of this chapter have analogues
if right actions are replaced by left actions, T: G X M — M. Among the
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notational differences in formulae, recall that 4,(a) becomes a -z so
that
Age =Too0 A0 7;1

(cf. sec. 3.1). This in turn implies that the (left) fundamental vector
field Z, generated by h € E is T,-related to Z(,qq)5 (cf. sec. 3.9). A form
Qe A(M; W) will be called equivariant (cf. sec. 3.15) if

T*Q = P(a)?, acG.



Problems
G denotes a Lie group with Lie algebra E and M denotes a manifold.

1. Let T: M X G— M be a right action of G on M. Show that
i(h)o TF = T*oi(Ad(@)h), a€G, hek.

2. Suppose G is connected, and let G act on M. Show that a hori-
zontal form @ is invariant if and only if 8@ is horizontal.

3. Let G act on M and consider the induced action on T,,. Show
how the fundamental vector fields on M determine the fundamental
vector fields on T, .

4. Construct an almost free action of S on a 3-manifold such that
every finite subgroup of S! appears as the isotropy subgroup for some
point.

5. Proper actions, I. A left (right) action of G on M is called
proper, if for all compact subsets 4, B C M, the subset S of G given by
S={aeG|(a'A)N B # @} is compact.

(i) Show that the isotropy subgroups of a proper action are all
compact. Show that the orbits of a proper action are all closed sub-
manifolds of M.

(it) Construct an action of R on S! X R subject to the following
conditions: (a) S* X R is covered by stable open subsets, each of which is
equivariantly diffeomorphic to (0, 1) X R; (b) the action is not proper.
Show, nonetheless, that the action is free and that the orbits are all
closed submanifolds.

6. Orbit space. Let G act from the left on M. Let M/G denote
the set of orbits of G, endowed with the quotient topology via the
canonical projection m: M — M|G. It is called the orbit space of the
action.

(1) Show that 7 is an open map, and that M/G is second countable.

(ii) If the action is proper, show that M/G is Hausdorff and locally

135
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compact. Find examples of actions where M|/G is not Hausdorff
(cf. problem 5,(i1)).

(iii) Assume that the action is proper and free. Fix z€ M. Find a
submanifold N, of M and an open subset U, of M such that z€e N,
and the action restricts to an equivariant diffeomorphism G X N, = U, .

(iv) (Gleason) Show, if the action is proper and free, that M|/G
possesses a unique smooth structure for which = is a submersion.

Construct a smooth bundle (M, =, M|G, G).

7. Bundles over a homogeneous space, I. Let G act from the left
on a bundle 4 = (M, p, G/K, Q), where the action of G on G/K is
defined as in sec. 2.11. Identify Q with Q, (Q,, the fibre over é).

(i) Obtain an action of K on Q.
(if) Define a right action of K on G X O by setting

(a,y) - b = (ab,b7Yy), aeG, yeQ, bek.

Show that this action is free. Use the bundle (G, 7, G/K, K) (cf. sec. 2.13)
to make the orbit space (G x Q)/K into a manifold; denote this manifold
by G X, O.

(iii) Construct a smooth bundle §¢ = (G X0, p, G/K, Q) and an
action of G on £. Construct a G-equivariant fibre preserving diffeo-
morphism G X QO = M.

(iv) Show that every K-stable submanifold O, of O leads to a bundle
G X 0O, and a smooth fibre preserving map G X , Q, — M.

(v) Let K, denote the isotropy subgroup at y € Q for the action of K
on Q. Show that every isotropy subgroup G, for the action of G on M
is conjugate to one of the K, . Show that the inclusion Q — M induces a
homeomorphism Q/K = M|G of orbit spaces.

(vi) Show that G acts properly on M if and only if the action of K
on Q is proper. Conclude that if K is compact, then the action of G is
proper.

8. Bundles over a homogeneous space, II. Adopt the hypotheses
of problem 7.

(i) Show that the vertical subbundle V,, of 7, is stable under the
action of G. If K is compact, construct a G-stable horizontal subbundle.
(i) Assume that K is compact. Denote the Lie algebra of K
by F. Use the adjoint representation to obtain a representation of K
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in A(E[F)*. Denote by A, (M) the algebra of G-invariant differential
forms on M and by A,(Q; A(E/F)*) the algebra of K-equivariant
differential forms on Q with values in A(E/F)*. Obtain an isomorphism

A(M) > 4,(Q; NE[F)*).

(ii1) If K is compact, show that the inclusion map i: Q — M induces
an isomorphism

1% 0.1t Al(Q)imo ~— Af(M)icy

where A4 ,(0Q);_, (respectively, A,(M),_,) denotes the algebra of differ-
ential forms on Q that are K-horizontal and K-invariant (respectively,
the algebra of differential forms on M that are G-horizontal and G-in-
variant).

9. Vector bundles over a homogeneous space. Let ¢ = (M, p,
G/K, F) be a vector bundle acted on by G so as to induce the standard
action on G/K. Identify F with F, .

(i) Show that the induced action of K on F is a representation
(cf. problem 7, (i)). Show that G XxF — G/K is a vector bundle.
Construct a strong equivariant isomorphism G Xz F = ¢£.

(ii) Obtain a bijection between direct decompositions of F into
K-stable subspaces and decompositions of ¢ as a Whitney sum of
G-stable subbundles.

(iii) Construct a bijection between K-invariant Euclidean metrics in
F and G-invariant Riemannian metrics in £.

(iv) Assume K compact and fix a G-invariant Riemannian metricin £.
Show that the action of G restricts to actions on the unit sphere bundle
and on the open disc bundle of vectors of length < r. Identify these
bundles with G X S and G X F, , respectively, where S (respectively,
F,) denotes the unit sphere (respectively, the open disc of radius 7) in F.

(v) With the hypotheses and notation of (iv), let M, denote the open
disc bundle of radius r. Construct a G-equivariant, fibre preserving
diffeomorphism M => M, inducing the identity map in G/K.

(vi) With the hypotheses and notation of (iv), construct a smooth
G-invariant function f on M such that: (a) 0 <f(2) <1, z2eM;
(b) £(0,) = 1, x € G/K; (c) f has fibre compact carrier.

10. Affine sprays. Assume G is compact, and acts on M. Recall,
from the Appendix of volume I, the definition of an affine spray as a
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vector field on T, . It is called complete, if it generates a global 1-para-
meter group of transformations ¢, : T, — T, (¢ € R).

(i) Show that M admits a complete G-invariant affine spray. Show
that the corresponding map exp: T, — M is G-equivariant.

(i1) Show that the map exps: E — G is the restriction of the expo-
nential map of a certain affine spray.

11. Isotropy representation and stable tubular neighbourhoods.
Let G act from the left on M.

(i) Use the action to define a representation of the isotropy sub-
group G, in T (M) (x € M). This is called the isotropy representation.

(i1) Let Ad; denote the representation of G, in E[E, (E,, the Lie
algebra of G,). Construct a representation of G, in a space N, and a
G,-linear short exact sequence

0— E/E, - T,(M)—~> N, — 0.

(ii1) Let G act on a manifold P and let ¢: P— M be an equivariant
immersion. Obtain an action of G on the normal bundle of P in M. In
the case that ¢ is the inclusion map 4,: G/G, — M, show that the normal
bundle is the vector bundle G X ;_N, (cf. problem 9).

(iv) Suppose that G, is compact. Use a complete G,-invariant affine
spray (cf. problem 10) to construct a G -equivariant smooth map
¢: N, > M satisfying ¢(0,) = x. Show that the smooth map
G x N,— M given by (a,y)+> a-¢(y) factors to yield a smooth
G-equivariant map ¢: G X N, — M (cf. problem 7).

(v) Assume G, is compact and let O,(r) denote the open disc of
radius 7 in N, with respect to a G -invariant Euclidean inner product.
Show that, for sufficiently small r, ¢ restricts to an equivariant local
diffeomorphism G X g_0O,(r) 5 V,, where V, is a G-stable neighbour-
hood of the orbit G - x.

(vi) Assume that the action of G is proper. Construct a G-equi-
variant diffeomorphism o of the normal bundle of G - x onto a neighbour-
hood of G - x, such that o(0,) = x (cf. problem $§).

12. Proper actions, II. Assume that G acts properly from the left
on M. Use problems 5-11 to establish the following properties:

(i) Every covering of M by G-stable open sets admits a subordinate
G-invariant partition of unity.
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(i) M admits a complete G-invariant affine spray. If N is a closed
G-stable submanifold of M, then there is a G-equivariant diffeomorphism
from the normal bundle of N onto a neighbourhood of N.

(1) M admits a G-invariant Riemannian metric.

(iv) If G acts effectively on M (i.e., (\zcp G, = €), the isotropy repre-
sentations are all faithful.

13. Orbit types. Let G act on M. The conjugacy classes (G,) are
called orbit types for the action (cf. problem 24, Chap. II).

(i) If the action is proper and x € M, find a neighbourhood U, of G,
such that (G,) < (G,), forye U, .

(i) If the action is proper and M/G is compact, conclude that there
are only finitely many orbit types.

(iif) Assume that the action is proper. Show that there is a unique
orbit type (H) such that (H) < (G,) for every x € M. It is called the
principal orbit type. Show that the set {x € M |(G,) = (H)} is open,
connected, and dense in M.

(iv) Show that the principal orbit type for the action of G on T,,
is strictly contained in the principal orbit type for the action on M.
Show by example that the principal orbit type of T,, need not be (e).
Find the principal orbit type of the adjoint representation of a compact
Lie group.

(v) Show that (G,) is the principal orbit type if and only if the repre-
sentation of G in IV, (cf. problem 1) is trivial. In this case show that the
normal bundle is G/G, X N, .

(vi) Fix x, € M. Show that the union of the points x € M such that
(G:) < (G,,) is an open G-stable subset of M. Show that the union of
the points x € M such that (G,) = (G, ) is a closed submanifold of this
open set.

14. Fixed point sets. Let G act properly on M and let F be the set
of points x € M such that G, = G.

(i) Show that each component of F is a closed submanifold of M.

(i) LetF, be a component of F and suppose dim F, = p. Construct

a representation of G in R*? (n = dim M) and a G-equivariant

coordinate representation ,: U, X R*~? = p~}(U,) for the normal bundle
(NO s Py FO ’ Rn—p)‘

(iii) If G is a torus, give the normal bundle of a component, F,,



140 ITI. Transformation Groups

of F an invariant complex structure. Conclude that dim M — dim F, = 0
(mod 2), and that the normal bundle is orientable.

15. Actions on vector bundles. Suppose G acts on a vector bundle
¢ = (M, p, B, F). Assume the action on B is proper.

(i) Show that the action on M is proper.

(i) Construct a G-invariant Riemannian metric in £. Conclude
that the fundamental fields on M are tangent to the sphere bundles.

16. Actions of Lie algebras. Suppose G is connected, and that G is
its own universal covering group. Assume @: E — % (M) is a Lie algebra
homomorphism such that each vector field @(k) can be integrated to
produce a 1-parameter group of diffeomorphisms of M.

Prove that there is a unique smooth action of G on M such that @(k)
is the fundamental field generated by 4 (cf. problem 20, Chap. I).

17. Let X, (v = 1, ..., n) be vector fields on a connected #-manifold
M such that

(1) [X:, X)) = S X, (cheR).
(2) Foreachxe M, X,(x) (v =1, ..., n) is a basis of T, (M).

(3) Every real linear combination of the X, generates a global flow ¢,
(teR).

Show that M is the quotient of a Lie group by a closed discrete subgroup.
If the cf; are all zero, show that M is an abelian Lie group.

18. Let f,, ..., f, be smooth functions on a manifold M. Fix real
constants ¢, , ..., ¢, and set N = fi'(¢c;) N - N f;(c,). Assume that,
for each xe N, (8f, A === A 8f,)(x) # 0.

(i) Show that N is a closed submanifold of M. Let U be a tubular
neighbourhood of N; identify U with the normal bundle v and let
p: U — N be the projection. Show that, for suitable U,

x> (p(x), f1(%), .., f5(%)), xeU,

is a diffeomorphism from U to N x V (V, a neighbourhood of 0 in RP).

(if) Assume that the dimension of M is even and that M admits a
closed 2-form @ such that @ A .-+ A @ orients M. Show that vector
fields Y; on M are determined by the equations #(Y,)® = 3f; . Show that
the Y restrict to vector fields X; on N. Show that [Y; , Y;] = 0 and
conclude that, if IV is compact and connected, it is a torus



Problems 141

(iii) Let Y be defined by i(Y)® = &f, where fe (M) satisfies
Y(f)=0 (j=1,..,p). Show that Y restricts to an invariant vector
field on N.

19. Non-Euclidean geometry in the unitdisc. Define a Riemannian
metric in the open unit disc £ of the complex plane by

b = e sl < 1, GuGeC

(cf. problem 16, Chap. IL.) Define p: 2 x 2 — R by

1 +r

p(zl,z2):logl_r, where r=’ 22— %

1 — 22,

Let G be the subgroup of the Mébius group consisting of the fractional
linear transformations which map £ onto itself.

(i) Show that the angles with respect to g coincide with the Euclidean
angles.
(i1) Show that p(z, , 2,) = p(T21, T2,), T G.
(iii) A hyperbolic straight line in 2 is a circle orthogonal to the unit

circle. Show that, for any two distinct points 2; and z, of £, there is a
unique straight line joining 2, to 2, .

(iv) The hyperbolic length of asmooth curve in £2: c: t> 2(),
0 <t < 1is defined by

[# |

1
l(c)=f01_’z'2dt.

Show that p(z, , 2,) = I(s) < I(c), where s is the hyperbolic straight line
segment joining 2, to 2, and ¢ is any smooth curve in 2 from z; to 2, .

(v) Show that p makes £ into a metric space with the standard
topology.

(vi) Let 7, be the tangent bundle of £2 and let M be the total space
of the corresponding sphere bundle (with respect to g). Show that the
left action of G on 2 induces an action on 7, which restricts to an action
on M.

(vii) Let xe M. Show that the map T+ T - x defines a diffeo-
morphism G =~ M. Conclude that G is diffeomorphic to £ x S
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Conclude also that, given any z,, 2, €8, {;, {; € S, there is a unique
T € G such that

T(z) = 2, and T' (253 L) = (22, L)

(vii) Show that, if 2, ,w,, 2, , w, € 2 are given such that p(z, , 2,) =
p(w, , wy), there isaunique T € G such that T'(2;) = w, and T(2,) = w, .

20. Convex polygons in Q. A subset ACQ is called hyperbolic
convex if, whenever 2z, € 4 and 2, € 4, then the hyperbolic straight line
segment between 2z, and 2, is contained in 4. A convex polygon is a closed
convex set 4 in 2 whose boundary consists of a finite number of hyper-
bolic straight line segments, called its sides. If the boundary of 4
consists of # sides, 4 will be called an n-polygon.

Let 4 be an n-polygon. Show that

Zﬂa,+}fd¢=(n—2)ﬁ,

val

where the o, denote the interior angles of 4 and @ is the 2-form given by

¢(z;£11§2)=(—11r:—1(lz_f—2'2?) ZEQ, C11Z2EC-

21. Discontinuous actions. An effective action (cf. problem 12) of
a group I" on a manifold M is called discontinuous, if every point x e M
has a neighbourhood U such that no two distinct points of U are in the
same orbit of I'. A fundamental domain is an open subset F of M such that

(1) any two distinct points of F are in different orbits,
and
(2) every point x € M is in the orbit of some point of the closure F.

(i) If I'acts discontinuously on M, show that I is finite or countable,
and that the action is free. Is the action necessarily proper ?

(i) Let M = £ and let I" be a group of fractional linear transforma-
tions of (2 that acts discontinuously on L. Set z, = T, (0), where the y,
are the elements of I". Show that the set given by

{ze|p(2,0) < p(2,2), v=12,..}

is a convex fundamental domain for the action.
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22. Poincaré polygons. We adopt the notation of problems 19-21.
A convex 4p-polygon 4 in £ with consecutive sides a, , b, aj, b], ...,
a,, b,,a,, by is called a Poincaré polygon if it satisfies the following
conditions:

(a) Ua;) = la;) and I(b,) = I(b)) (( =1, ..., p).
(b) The sum of interior angles is 27.
(i) Construct Poincaré polygons for each p > 2.

(ii) Show that if 4 is a Poincaré polygon, then the 2-form @ of
problem 20 satisfies

}ff4d>=4(p—l)1r.

Conclude that there is no Poincaré polygon for p = 1.

23. Fuchsian groups. Adopt the notation of problems 19-22.
Fix a Poincaré 4p-polygon, with consecutive vertices 2z, ..., 24,
(2o = 24p). Let d;, b;,d;, b; denote the sides as defined above,
directed from the lower to higher vertex (e.g. d; is the side from
Z,; t0 24:.,) and let @, b;, &, b; be the same sides with opposite

orientation.

(i) Show that there are unique elements o, B;, (1 = 1,...,p) In G
such that o7'(d;) = &; and By(b,) = b;. Denote the subgroup of G
generated by oy, ..., oy, By, ..., B, by I'. I' is called the Fuchsian group
associated with 4. (cf. problem 19 for the definition of G.)

(i) Show that 4 N a7’(4) = a,’ and AN B(4d) = b; (i = 1, ..., p)
(iii) Consider the sequence

a, By "‘;la B;la s Uy By s a;l’ B;l »

of elements in I". Denote the product (in the given order) of the first m
elements by 7, (m = 1, ..., 4p). Show that for a suitable permutation o

of (1, ..., 4p),
T.’i(za(j)) = %y, ] = ], veey 4p

(iv) Setr;(4) = 4, .Show that 4; N 4;,, is a common side having z,
as an endpoint. Show that

4,048, =z, if |k—j|>1, 1 <jk<4ap



144 III. Transformation Groups

(v) Show that 4,, = 4 and that the polygons 4, , ..., 4,, cover a
neighbourhood of z;, . Conclude that r,, = ¢; i.e., I" has the relation

"‘131"‘1_131—1 O‘pﬁva;lﬁ;l =t

24. Poincaré polygons as fundamental domains. Adopt the nota-
tion of problem 23.
(1) Set w; = 17(z) (i€, w; = 2,(),f = |, ..., 4p). Define a sym-
metric relation in I" X 4 as follows:
(a) If z is an interior point of 4, then (g, 2) ~ (g, 2') if and only if
g=gand 2 = 2".
(b) If = is an interior point of a; , then

(g' z) ~ (g: Z) and (gv Z) ~ (gai ’ ai‘lz)'

(c) If zis an interior point of b; , then

(ga 2) ~ (gv z) and (ga z) ~ (gﬁi-lv Biz)'

(d) If zis a vertex (2 = w,), then
(g’ w,;) ~ (g'ri_l'rj » W), j=1..,4p.

Show that this relation is an equivalence relation, and write down the
equivalence classes.

(i1) Give I' the discrete topology. Let X be the quotient space under
the equivalence relation above (quotient topology) andletg: I' X 4 — X
be the projection. Show that X is second countable, Hausdorff, and
pathwise connected.

(i) Define a map ¢: I' X 4 —> 2 by ¢(g, 2) = g2 Show that
@ factors over the projection g to yield a continuous map : X — Q.
Show that ¢ is a local homeomorphism.

(iv) Let t+ 2(t) be a continuous map from [0, 1] into 2. Let
%, € X be any point such that (x,) = 2(0). Show that there is a unique
continuous map ¢ > x(t) from [0, 1] into X such that

x2(0) = x, and P(x(t)) = 2(¢), 01 <.

(Hint: Cover the curve 2(2) by finitely many I'-translates of 4.) Conclude
that ¢ is a homeomorphism, onto £.

(v) Show that I' acts discontinuously and properly on £ and that
the interior of 4 is a fundamental domain for the action. Conclude that
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the orbit space (M = Q/I') is a smooth compact connected orientable
2-manifold, and that 7: 2 — M is the universal covering projection.

(vi) Compute the cohomology algebra and Euler—Poincaré char-
acteristic of M.

(vii) Generalize to nonconvex polygons.

25. The Mébius group. Consider the action of the Mébius group M
on S2? (cf. problem 14, Chap. II).

(i) Show that this action is transitive and determine the isotropy
subgroups.

(i) Consider the induced action on the tangent bundle 74. Deter-
mine the isotropy subgroups. Show that there are exactly two orbits,
namely the zero cross-section and the deleted bundle. Thus obtain a
smooth bundle (M, 7, 7, C) (cf. Example 5, sec. 3.10, volume I).

(iii) Show that M is diffeomorphic to T: X C. Conclude that M is
diffeomorphic to RP? x R?. Construct an inclusion SO(3) - M of Lie
groups that is a smooth strong deformation retract.

(iv) Find the fundamental fields for the action of M on S2and on Tk,



