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Indeed, h = ω − ψ
∫
R
ωdx is continuous compactly supported with

∫
R hdx = 0

and thus it has a unique compactly supported primitive.
Hence ∫

R

fφ′dx =

∫
R

f(ω − ψ
∫
R

ωdy)dx = 0

or ∫
R

(f −
∫
R

fψdy)ωdx = 0

for any ω ∈ C∞0 (R) and thus f = const almost everywhere.
Step 3. Next, if v(x) =

∫ x
x0
f(y)dy for f ∈ L1,loc(R), then v is continuous

and the generalized derivative of v, Dv, equals f . In the proof, we can put
x0 = 0. Then

∫
R

vφ′dx =

∞∫
0

(

x∫
0

f(y)φ′(x)dy)dx−
0∫

−∞

(

0∫
x

f(y)φ′(x)dy)dx

=

∞∫
0

f(y)(

∞∫
y

φ′(x)dx)dy −
0∫

−∞

f(y)(

0∫
−∞

φ′(x)dx)dy

= −
∫
R

f(y)φ(y)dy.

With these results, let u ∈ L1,loc(R) be the distributional derivative Du ∈

L1,loc(R) and set ū(x) =
x∫
0

Du(t)dt. Then Dū = Du almost everywhere and

hence ū + C = u almost everywhere. Defining ũ = ū + C, we see that ũ is
continuous and has integral representation and thus it is differentiable almost
everywhere.

1.2 Fundamental Theorems of Functional Analysis

The foundation of classical functional analysis are the four theorems which
we formulate and discuss below.

1.2.1 Hahn–Banach Theorem

Theorem 1.12. (Hahn–Banach) Let X be a normed space, X0 a linear sub-
space of X, and x∗1 a continuous linear functional defined on X0. Then there
exists a continuous linear functional x∗ defined on X such that x∗(x) = x∗1(x)
for x ∈ X0 and ‖x∗‖ = ‖x∗1‖.
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The Hahn–Banach theorem has a multitude of applications. For us, the
most important one is in the theory of the dual space to X. The space L(X,R)
(or L(X,C)) of all continuous functionals is denoted by X∗ and referred to as
the dual space. The Hahn–Banach theorem implies that X∗ is nonempty (as
one can easily construct a continuous linear functional on a one-dimensional
space) and, moreover, there are sufficiently many bounded functionals to sep-
arate points of x; that is, for any two points x1, x2 ∈ X there is x∗ ∈ X∗ such
that x∗(x1) = 0 and x∗(x2) = 1. The Banach space X∗∗ = (X∗)∗ is called the
second dual. Every element x ∈ X can be identified with an element of X∗∗

by the evaluation formula
x(x∗) = x∗(x); (1.21)

that is, X can be viewed as a subspace of X∗∗. To indicate that there is some
symmetry between X and its dual and second dual we shall often write

x∗(x) =<x∗, x>X∗×X ,

where the subscript X∗ ×X is suppressed if no ambiguity is possible.
In general X 6= X∗∗. Spaces for which X = X∗∗ are called reflexive. Exam-

ples of reflexive spaces are rendered by Hilbert and Lp spaces with 1 < p <∞.
However, the spaces L1 and L∞, as well as nontrivial spaces of continuous
functions, fail to be reflexive.

Example 1.13. If 1 < p < ∞, then the dual to Lp(Ω) can be identified with
Lq(Ω) where 1/p+ 1/q = 1, and the duality pairing is given by

<f, g>=

∫
Ω

f(x)g(x)dx, f ∈ Lp(Ω), g ∈ Lq(Ω). (1.22)

This shows, in particular, that L2(Ω) is a Hilbert space and the above duality
pairing gives the scalar product in the real case. If L2(Ω) is considered over
the complex field, then in order to get a scalar product, (1.22) should be
modified by taking the complex adjoint of g.

Moreover, as mentioned above, the spaces Lp(Ω) with 1 < p < ∞ are
reflexive. On the other hand, if p = 1, then (L1(Ω))∗ = L∞(Ω) with duality
pairing given again by (1.22). However, the dual to L∞ is much larger than
L1(Ω) and thus L1(Ω) is not a reflexive space.

Another important corollary of the Hahn–Banach theorem is that for each
0 6= x ∈ X there is an element x̄∗ ∈ X∗ that satisfies ‖x̄∗‖ = ‖x‖ and
<x̄∗, x>= ‖x‖. In general, the correspondence x→ x̄∗ is multi-valued: this is
the case in L1-spaces and spaces of continuous functions it becomes, however,
single-valued if the unit ball in X is strictly convex (e.g., in Hilbert spaces or
Lp-spaces with 1 < p <∞; see [82]).

1.2.2 Spanning theorem and its application

A workhorse of analysis is the spanning criterion.
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Theorem 1.14. Let X be a normed space and {yj} ⊂ X. Then z ∈ Y :=
Lin{yj} if and only if

∀x∗∈X∗ < x∗, yj >= 0 implies < x∗, z >= 0.

Proof. In one direction it follows easily from linearity and continuity.
Conversely, assume < x∗, z >= 0 for all x∗ annihilating Y and z 6= Y .

Thus, infy∈Y ‖z − y‖ = d > 0 (from closedness). Define Z = Lin{Y, z} and
define a functional y∗ on Z by < y∗, ξ >=< y∗, y + az >= a. We have

‖y + az‖ = |a|‖y
a

+ z‖ ≥ |a|d

hence

| < y∗, ξ >= |a| ≤ ‖y + az‖
d

= d−1‖ξ‖

and y∗ is bounded. By H.-B. theorem, we extend it to ỹ∗ on X with < ỹ∗, x >=
0 on Y and < ỹ∗, z >= 1 6= 0.

Next we consider the Müntz theorem.

Theorem 1.15. Let (λj)j∈N be a sequence of positive numbers tending to ∞.
The functions {tλj}j∈N span the space of all continuous functions on [0, 1]
that vanish at t = 0 if and only if

∞∑
j=1

1

λj
=∞.

Proof. We prove the ‘sufficient’ part. Let x∗ be a bounded linear functional
that vanishes on all tλj :

< x∗, tλj >= 0, j ∈ N.

For ζ ∈ C such that <ζ > 0, the functions ζ → tζ are analytic functions with
values in C([0, 1]) This can be proved by showing that

lim
C3h→0

tζ+h − tζ

h
= (ln t)tζ

uniformly in t ∈ [0, 1]. Then

f(ζ) =< x∗, tζ >

is a scalar analytic function of ζ with <ζ > 0. We can assume that ‖x∗‖ ≤ 1.
Then

|f(ζ)| ≤ 1

for <ζ > 0 and f(λj) = 0 for any j ∈ N.
Next, for a given N , we define a Blaschke product by
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BN (ζ) =

N∏
j=1

ζ − λj
ζ + λj

.

We see that BN (ζ) = 0 if and only if ζ = λj , |BN (ζ)| → 1 both as <ζ → 0
and |ζ| → ∞. Hence

gN (ζ) =
f(ζ)

BN (ζ)

is analytic in <ζ > 0. Moreover, for any ε′ there is δ0 > 0 such that for any
δ > δ0 we have |BN (ζ)| ≥ 1− ε′ on <ζ = δ and |ζ| = δ−1. Hence for any ε

|gN (ζ)| ≤ 1 + ε

there and by the maximum principle the inequality extends to the interior of
the domain. Taking ε→ 0 we obtain |gN (ζ)| ≤ 1 on <ζ > 0.

Assume now there is k > 0 for which f(k) 6= 0. Then we have

N∏
j=1

∣∣∣∣λj + k

λj − k

∣∣∣∣ ≤ 1

f(k)
.

Note, that this estimate is uniform in N . If we write

λj + k

λj − k
= 1 +

2k

λj − k

then, by λj → ∞ almost all terms bigger then 1. Remembering that bound-
edness of the product is equivalent to the boundedness of the sum

N∑
j=1

1

λj − k

we see that we arrived at contradiction with the assumption. Hence, we must
have f(k) = 0 for any k > 0. This means, however, that any functional that
vanishes on {tλj} vanishes also on tk for any k. But, by the Stone- Weierstrass
theorem, it must vanish on any continuous function (taking value 0 at zero).
Hence, by the spanning criterion, any such continuous function belongs to the
closed linear span of {tλj}.

Non-reflexiveness of C[−1, 1])

Consider the Banach space X = C([−1, 1]) normed with the sup norm. If X
was reflexive, then we could identify X∗∗ with X and thus, for every x∗ ∈ X∗
there would be x ∈ X such that

‖x‖ = 1, < x∗, x >= ‖x∗‖. (1.23)
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Let us define x∗ ∈ X∗ by

< x∗, x >=

1∫
−1

signtx(t)dt.

Then
| < x∗, x > | < 2‖x‖. (1.24)

Indeed, restrict our attention to ‖x‖ = 1. We see then that | < x∗, x > | < 2.
Clearly, for the integral to attain maximum possible values, the integral should
be of opposite values. We can focus on the case when the integral over (−1, 0)
is negative and over (0, 1) is positive and then for the best values, x(t) must
negative on (−1, 0) and positive on (0, 1). Then, each term is at most 1 and
for this x(t) = 1 for t ∈ (0, 1) and x(t) = −1 for t ∈ (−1, 0). But this is
impossible as g is continuous at 0. On the other hand, by choosing x(t) to be
−1 for −1 < t < −ε, 1 for ε < t < 1 and linear between −ε and ε we see that

< x∗, x >= 2− ε

with ‖x‖ = 1. Hence, ‖x∗‖ = 2. However, this is impossible by (1.24).

Norms of functionals

Example 1.16. The existence of an element x̄∗ satisfying <x̄∗, x>= ‖x‖ has an
important consequence for the relation between X and X∗∗ in a nonreflexive
case. Let B,B∗, B∗∗ denote the unit balls in X,X∗, X∗∗, respectively. Because
x∗ ∈ X∗ is an operator over X, the definition of the operator norm gives

‖x∗‖X∗ = sup
x∈B
| <x∗, x> | = sup

x∈B
<x∗, x>, (1.25)

and similarly, for x ∈ X considered as an element of X∗∗ according to (1.21),
we have

‖x‖X∗∗ = sup
x∗∈B∗

| <x∗, x> | = sup
x∗∈B∗

<x∗, x> . (1.26)

Thus, ‖x‖X∗∗ ≤ ‖x‖X . On the other hand,

‖x‖X =<x̄∗, x>≤ sup
x∗∈B∗

<x∗, x>= ‖x‖X∗∗

and
‖x‖X∗∗ = ‖x‖X . (1.27)

Hence, in particular, the identification given by (1.21) is an isometry and X
is a closed subspace of X∗∗.
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First comments on weak convergence

The existence of a large number of functionals over X allows us to intro-
duce new types of convergence. Apart from the standard norm (or strong)
convergence where (xn)n∈N ⊂ X converges to x if

lim
n→∞

‖xn − x‖ = 0,

we define weak convergence by saying that (xn)n∈N weakly converges to x, if
for any x∗ ∈ X∗,

lim
n→∞

<x∗, xn>=<x∗, x> .

In a similar manner, we say that (x∗n)n∈N ⊂ X∗ converges ∗-weakly to x∗ if,
for any x ∈ X,

lim
n→∞

<x∗n, x>=<x∗, x> .

Remark 1.17. It is worthwhile to note that we have a concept of a weakly
convergent or weakly Cauchy sequence if the finite limit limn→∞ <x∗, xn>
exists for any x∗ ∈ X∗. In general, in this case we do not have a limit element.
If every weakly convergent sequence converges weakly to an element of X, the
Banach space is said to be weakly sequentially complete. It can be proved that
reflexive spaces and L1 spaces are weakly sequentially complete. On the other
hand, no space containing a subspace isomorphic to the space c0 (of sequences
that converge to 0) is weakly sequentially complete (see, e.g., [6]).

Remark 1.18. In finite dimensional spaces weak and strong convergence is
equivalent which can be seen by taking x∗ being the coordinate vectors. Then
weak convergence reduces to coordinate-wise convergence.

However, the weak convergence is indeed weaker than the convergence in
norm. For example, consider any orthonormal basis {en}n≥1 of a separable
Hilbert space X. Then ‖en‖ = 1 but for any f ∈ X we know that the series

∞∑
n=1

< f, en > en

converges in X and, equivalently,

∞∑
n=1

| < f, en > |2 <∞.

Thus
lim
n→∞

< f, en >= 0

for any f ∈ X(= X∗) and so (en)n≥0 weakly converges to zero.
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1.2.3 Banach–Steinhaus Theorem

Another fundamental theorem of functional analysis is the Banach–Steinhaus
theorem, or the Uniform Boundedness Principle. It is based on a fundamental
topological results known as the Baire Category Theorem.

Theorem 1.19. Let X be a complete metric space and let {Xn}n≥1 be a
sequence of closed subsets in X. If IntXn = ∅ for any n ≥ 1, then

Int
∞⋃
n=1

Xn = ∅. Equivalently, taking complements, we can state that a count-

able intersection of open dense sets is dense.

Remark 1.20. Baire’s theorem is often used in the following equivalent form:
if X is a complete metric space and {Xn}n≥1 is a countable family of closed

sets such that
∞⋃
n=1

Xn = X, then IntXn 6= ∅ at least for one n.

Chaotic dynamical systems

We assume that X is a complete metric space, called the state space. In gen-
eral, a dynamical system on X is just a family of states (x(t))t∈T parametrized
by some parameter t (time). Two main types of dynamical systems occur in
applications: those for which the time variable is discrete (like the observation
times) and those for which it is continuous.

Theories for discrete and continuous dynamical systems are to some extent
parallel. In what follows mainly we will be concerned with continuous dynam-
ical systems. Also, to fix attention we shall discuss only systems defined for
t ≥ 0, that are sometimes called semidynamical systems. Thus by a contin-
uous dynamical system we will understand a family of functions (operators)
(x(t, ·))t≥0 such that for each t, x(t, ·) : X → X is a continuous function, for
each x0 the function t→ x(t,x0) is continuous with x(0,x0) = x0. Moreover,
typically it is required that the following semigroup property is satisfied (both
in discrete and continuous case)

x(t+ s,x0) = x(t,x(s,x0)), t, s ≥ 0, (1.28)

which expresses the fact that the final state of the system can be obtained as
the superposition of intermediate states.

Often discrete dynamical systems arise from iterations of a function

x(t+ 1,x0) = f(x(t,x0)), t ∈ N, (1.29)

while when t is continuous, the dynamics are usually described by a differential
equation

dx

dt
=
·
x= A(x), x(0) = x0 t ∈ R+. (1.30)
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Let (X, d) be a metric space where, to avoid non-degeneracy, we assume
that X 6= {x(t,p)}t≥0 for any p ∈ X , that is, the space does not degenerates
to a single orbit). We say that the dynamical system (x(t))t≥0 on (X, d) is
topologically transitive if for any two non-empty open sets U, V ⊂ X there is
t0 ≥ 0 such that x(t, U) ∩ V 6= ∅. A periodic point of (x(t))t≥0 is any point
p ∈ X satisfying

x(T,p) = p,

for some T > 0. The smallest such T is called the period of p. We say that the
system has sensitive dependence on initial conditions, abbreviated as sdic, if
there exists δ > 0 such that for every p ∈ X and a neighbourhood Np of p
there exists a point y ∈ Np and t0 > 0 such that the distance between x(t0,p)
and x(t0,y) is larger than δ. This property captures the idea that in chaotic
systems minute errors in experimental readings eventually lead to large scale
divergence, and is widely understood to be the central idea in chaos.

With this preliminaries we are able to state Devaney’s definition of chaos
(as applied to continuous dynamical systems).

Definition 1.21. Let X be a metric space. A dynamical system (x(t))t≥0 in
X is said to be chaotic in X if

1. (x(t))t≥0 is transitive,
2. the set of periodic points of (x(t))t≥0 is dense in X,
3. (x(t))t≥0 has sdic.

To summarize, chaotic systems have three ingredients: indecomposabil-
ity (property 1), unpredictability (property 3), and an element of regularity
(property 2).

It is then a remarkable observation that properties 1. and 2 together imply
sdic.

Theorem 1.22. If (x(t))t≥0 is topologically transitive and has dense set of
periodic points, then it has sdic.

We say that X is non-degenerate, if continuous images of a compact in-
tervals are nowhere dense in X.

Lemma 1.23. Let X be a non-degenerate metric space. If the orbit O(p) =
{x(t,p)}t≥0 is dense in X, then also the orbit O(x(s,p)) = {x(t,p)}t>s is
dense in X, for any s > 0.

Proof. Assume that O(x(s,p)) is not dense in X, then there is an open
ball B such that B ∩ O(x(s,p)) = ∅. However, each point of the ball is a
limit point of the whole orbit O(p), thus we must have {x(t,p)}0≤t≤s =

{x(t,p)}0≤t≤s ⊃ B which contradicts the assumption of nondegeneracy.
To fix terminology we say that a semigroup having a dense trajectory is

called hypercyclic. We note that by continuity O(p) = {x(t,p)}t∈Q, where Q
is the set of positive rational numbers, therefore hypercyclic semigroups can
exist only in separable spaces.
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By Xh we denote the set of hypercyclic vectors, that is,

Xh = {p ∈ X; O(p) is dense in X}

Note that if (x(t))t≥0 has one hypercyclic vector, then it has a dense set of
hypercyclic vectors as each of the point on the orbit O(p) is hypercyclic (by
the first part of the proof above).

Theorem 1.24. Let (x(t))t≥0 be a strongly continuous semigroup of continu-
ous operators (possibly nonlinear) on a complete (separable) metric space X.
The following conditions are equivalent:

1. Xh is dense in X,
2. (x(t))t≥0 is topologically transitive.

Proof. Let as take the set of nonegative rational numbers and enumerate
them as {t1, t2, . . .}. Consider now the family {x(tn)}n∈N. Clearly, the orbit of
p through (x(t))t≥0 is dense in X if and only if the set {x(tn)p}n∈N is dense.

Consider now the covering of X by the enumerated sequence of balls Bm
centered at points of a countable subset of X with rational radii. Since each
x(tm) is continuous, the sets

Gm =
⋃
n∈N

x−1(tn, Bm)

are open. Next we claim that

Xh =
⋂
m∈N

Gm.

In fact, let p ∈ Xh, that is, p is hypercyclic. It means that x(tn,p) visits
each neigbourhood of each point of X for some n. In particular, for each m
there must be n such that x(tn,p) ∈ Bm or p ∈ x−1(tn, Bm) which means
p ∈

⋂
m∈N

Gm.

Conversely, if p ∈
⋂
m∈N

Gm, then for each m there is n such that p ∈

x−1(tn, Bm), that is, x(tn,p) ∈ Bm. This means that {x(tn,p)}n∈N is dense.
The next claim is condition 2. is equivalent to each set Gm being dense

in X. If Gm were not dense, then for some Br, Br ∩ x−1(tn, Bm) = ∅ for any
n. But then x(tn, Br) ∩Bm = ∅ for any n. Since the continuous semigroup is
topologically transitive, we know that there is y ∈ Br such that x(t0,y) ∈ Bm
for some t0. Since Bm is open, x(t,y) ∈ Bm for t from some neighbourhood
of t0 and this neighbourhood must contain rational numbers.

The converse is immediate as for given open U and V we find Bm ⊂ V
and since Gm is dense U ∩ Gm 6= ∅. Thus U ∩ x−1(tn, Bm) 6= ∅ for some n,
hence x(tn, U) ∩Bm 6= ∅.
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So, if (x(t))t≥0 is topologically transitive, then Xh is the intersection of a
countable collection of open dense sets, and by Baire Theorem in a complete
space such an intersection must be still dense, thus Xh is dense.

Conversely, if Xh is dense, then each term of the intersection must be
dense, thus each Gm is dense which yields the transitivity.

Back to the Banach–Steinhaus Theorem

To understand its importance, let us reflect for a moment on possible types of
convergence of sequences of operators. Because the space L(X,Y ) can be made
a normed space by introducing the norm (1.11), the most natural concept of
convergence of a sequence (An)n∈N would be with respect to this norm. Such
a convergence is referred to as the uniform operator convergence. However, for
many purposes this notion is too strong and we work with the pointwise or
strong convergence : the sequence (An)n∈N is said to converge strongly if, for
each x ∈ X, the sequence (Anx)n∈N converges in the norm of Y . In the same
way we define uniform and strong boundedness of a subset of L(X,Y ).

Note that if Y = R (or C), then strong convergence coincides with ∗-weak
convergence.

After these preliminaries we can formulate the Banach–Steinhaus theorem.

Theorem 1.25. Assume that X is a Banach space and Y is a normed space.
Then a subset of L(X,Y ) is uniformly bounded if and only if it is strongly
bounded.

One of the most important consequences of the Banach–Steinhaus theo-
rem is that a strongly converging sequence of bounded operators is always
converging to a linear bounded operator. That is, if for each x there is yx such
that

lim
n→∞

Anx = yx,

then there is A ∈ L(X,Y ) satisfying Ax = yx.

Further comments on weak convergence

Example 1.26. We can use the above result to get a better understanding of
the concept of weak convergence and, in particular, to clarify the relation be-
tween reflexive and weakly sequentially complete spaces. First, by considering
elements of X∗ as operators in L(X,C), we see that every ∗-weakly converg-
ing sequence of functionals converges to an element of X∗ in ∗-weak topology.
On the other hand, for a weakly converging sequence (xn)n∈N ⊂ X, such an
approach requires that xn, n ∈ N, be identified with elements of X∗∗ and thus,
by the Banach–Steinhaus theorem, a weakly converging sequence always has
a limit x ∈ X∗∗. If X is reflexive, then x ∈ X and X is weakly sequentially
complete. However, for nonreflexive X we might have x ∈ X∗∗ \X and then
(xn)n∈N does not converge weakly to any element of X.
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On the other hand, (1.27) implies that a weakly convergent sequence in
a normed space is norm bounded. Indeed, we consider (xn)n∈N such that for
each x∗ ∈ X∗ < x∗, xn > converges. Treating xn as elements of X∗∗, we
see that the numerical sequences < xn, x

∗ > are bounded for each x∗ ∈ X∗.
X∗ is a Banach space (even if X is not). Then (‖xn‖)n≥0 is bounded by the
Banach-Steinhaus theorem.

We can also prove the partial reverse of this inequality: if (xn)n∈N is a
sequence in a normed space X weakly converging to x, then

‖x‖ ≤ lim inf
n→∞

‖xn‖. (1.31)

To prove this, there is x∗ ∈ X∗ such that

‖x∗‖ = 1, | < x∗, x > | = ‖x‖.

Hence

‖x‖ = | < x∗, x > | = | lim
n→∞

< x∗, xn > | ≤ lim inf
n→∞

| < x∗, xn > | lim inf
n→∞

‖xn‖.

However, we point out that a theorem proved by Mazur (e.g., see [172],
p. 120) says that if xn → x weakly, then there is a sequence of convex com-
binations of elements of (xn)n∈N that converges to x in norm. To prove this
result, let us introduce the concept of the support function of a set. For a set
M we define

SM (x∗) = sup
x∈M

< x∗, x > .

A crucial result is

Lemma 1.27. If X is a normed space over R and M is a closed convex subset
of X then z ∈M if and only if < x∗, z >≤ SM (x∗) for any x∗ ∈ X∗.

Proof. If z ∈M, then < x∗, z >≤ sup
x∈M

< x∗, x >= SM (x∗) by definition.

If z /∈ M then, by closedness, there is a ball B(z, r) not intersecting with
M . By the geometric version of the Hahn-Banach theorem, there is a linear
functional z∗ and a constant c such that for any x ∈ M and y ∈ B(z, r) we
have

< z∗, x >≤ c ≤< z∗, y > .

Since y = z + rv, ‖v‖ ≤ 1, we have

c ≤< z∗, z + rx >=< z∗, z > +r < z∗, x > .

Using the fact that inf‖x‖≤1 < z∗, z >= −‖z∗‖, we obtain

c ≤< z∗, z + rx >=< z∗, z > −r‖z∗‖.

On the other hand
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SM (z∗) ≤ c ≤< z∗, z > −r‖z∗‖

which yields
< z∗, z >≥ SM (z∗) + r‖z∗‖ > SM (z∗)

and completes the proof.

With this result we can prove the Mazur theorem.
Let K be a closed convex set and (xn)n∈N be a sequence weakly converging

to x ∈ K. Consider SK(x∗). We have

< x∗, xn >≤ SK(x∗)

for any x∗ ∈ X∗. But this implies

< x∗, x >≤ SK(x∗)

and the result follows by the above lemma.

The Banach-Steinhaus theorem and convergence on subsets

We note another important corollary of the Banach–Steinhaus theorem which
we use in the sequel.

Corollary 1.28. A sequence of operators (An)n∈N is strongly convergent if
and only if it is convergent uniformly on compact sets.

Proof. It is enough to consider convergence to 0. If (An)n∈N converges
strongly, then by the Banach–Steinhaus theorem, a = supn∈N ‖An‖ < +∞.
Next, if Ω ⊂ X is compact, then for any ε we can find a finite set Nε =
{x1, . . . , xk} such that for any x ∈ Ω there is xi ∈ Nε with ‖x − xi‖ ≤ ε/2a.
Because Nε is finite, we can find n0 such that for all n > n0 and i = 1, . . . , k
we have ‖Anxi‖ ≤ ε/2 and hence

‖Anx‖ = ‖Anxi‖+ a‖x− xi‖ ≤ ε

for any x ∈ Ω. The converse statement is obvious. ut

We conclude this unit by presenting a frequently used result related to the
Banach–Steinhaus theorem.

Proposition 1.29. Let X,Y be Banach spaces and (An)n∈N ⊂ L(X,Y ) be a
sequence of operators satisfying supn∈N ‖An‖ ≤ M for some M > 0. If there
is a dense subset D ⊂ X such that (Anx)n∈N is a Cauchy sequence for any
x ∈ D, then (Anx)n∈N converges for any x ∈ X to some A ∈ L(X,Y ).

Proof. Let us fix ε > 0 and y ∈ X. For this ε we find x ∈ D with ‖x−y‖ < ε/M
and for this x we find n0 such that ‖Anx−Amx‖ < ε for all n,m > n0. Thus,

‖Any −Amy‖ ≤ ‖Anx−Amx‖+ ‖An(x− y)‖+ ‖Am(x− y)‖ ≤ 3ε.

Hence, (Any)n∈N is a Cauchy sequence for any y ∈ X and, because Y is
a Banach space, it converges and an application of the Banach–Steinhaus
theorem ends the proof. ut
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Application–limits of integral expressions

Consider an equation describing growth of, say, cells

∂N

∂t
+
∂(g(m)N)

∂m
= −µ(m)N(t,m), m ∈ (0, 1), (1.32)

with the boundary condition

g(0)N(t, 0) = 0 (1.33)

and with the initial condition

N(0,m) = N0(m) for m ∈ [0, 1]. (1.34)

Here N(m) denotes cells’ density with respect to their size/mass and we con-
sider the problem in L1([0, 1]).

Consider the ‘formal’ equation for the stationary version of the equation
(the resolvent equation)

λN(m) + (g(m)N(m))′ + µ(m)N(m) = f(m) ∈ L1([0, 1]),

whose solution is given by

Nλ(m) =
e−λG(m)−Q(m)

g(m)

∫ m

0

eλG(s)+Q(s)f(s) ds (1.35)

where G(m) =
∫m

0
(1/g(s)) ds and Q(m) =

∫m
0

(µ(s)/g(s)) ds. To shorten no-
tation we denote

e−λ(m) := e−λG(m)−Q(m), eλ(m) := eλG(m)+Q(m).

Our aim is to show that g(m)Nλ(m)→ 0 as m→ 1− provided 1/g or µ is not
integrable close to 1. If the latter condition is satisfied, then eλ(m)→∞ and
e−λ(m)→ 0 as m→ 1−.

Indeed, consider the family of functionals {ξm}m∈[1−ε,1) for some ε > 0
defined by

ξmf = e−λ(m)

∫ m

0

eλ(s)f(s) ds

for f ∈ L1[0, 1]. We have

|ξmf | ≤ e−λ(m)

∫ m

0

eλ(s)|f(s)| ds ≤
∫ 1

0

|f(s)| ds

on account of monotonicity of eλ. Moreover, for f with support in [0, 1 − δ]
with any δ > 0 we have limm→1− ξmf = 0 and, by Proposition 1.29, the above
limit extends by density for any f ∈ L1[0, 1].
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1.2.4 Weak compactness

In finite dimensional spaces normed spaces we have Bolzano-Weierstrass theo-
rem stating that from any bounded sequence of elements of Xn one can select
a convergent subsequence. In other words, a closed unit ball in Xn is compact.

There is no infinite dimensional normed space in which the unit ball is
compact.

Weak compactness comes to the rescue. Let us begin with (separable)
Hilbert spaces.

Theorem 1.30. Each bounded sequence (un)n∈N in a separable Hilbert space
X has a weakly convergent subsequence.

Proof. Let {vk}k∈N be dense inX and consider numerical sequences ((un, vk))n∈N
for any k. From Banach-Steinhaus theorem and

|(un, vk)| ≤ ‖un‖‖vk‖

we see that for each k these sequences are bounded and hence each has a con-
vergent subsequence. We use the diagonal procedure: first we select (u1n)n∈N
such that (u1n, v1) → a1, then from (u1n)n∈N we select (u2n)n∈N such that
(u2n, v2) → a2 and continue by induction. Finally, we take the diagonal se-
quence wn = unn which has the property that (wn, vk) → ak. This follows
from the fact that elements of (wn)n∈N belong to (ukn for n ≥ k. Since
{vk}k∈N is dense in X and (un)n∈N is norm bounded, Proposition 1.29 implies
((wn, v))n∈N converges to, say, a(v) for any v ∈ X and v → a(v) is a bounded
(anti) linear functional on X. By the Riesz representation theorem, there is
w ∈ X such that a(v) = (v, w) and thus wn ⇀ w.

If X is not separable, then we can consider Y = Lin{un}n∈N which is
separable and apply the above theorem in Y getting an element w ∈ Y for
which

(wn, v)→ (w, v), v ∈ Y.

Let now z ∈ X. By orthogonal decomposition, z = v + v⊥ by linearity and
continuity (as w ∈ Y )

(wn, z) = (wn, v)→ (w, v) = (w, z)

and so wn ⇀ w in X.

Corollary 1.31. Closed unit ball in X is weakly sequentially compact.

Proof. We have
(v, wn)→ (v, w), n→∞

for any v. We can assume w = 0 We prove that for any k there are indices
n1, . . . , nk such that

k−1(wn1
+ . . .+ wnk)→ 0


