
8 1 Basic Facts from Functional Analysis and Banach Lattices

Remark 1.5. We observe that, if f is nonnegative, then fε are also nonnegative
by (1.7) and hence any non-negative f ∈ Lp(Rn) can be approximated by
nonnegative, infinitely differentiable, functions with compact support.

Remark 1.6. Spaces Lp(Ω) often are defined as a completion of C0(Ω) in the
Lp(Ω) norm, thus avoiding introduction of measure theory. The theorem above
shows that these two definitions are equivalent.

1.1.2 Operators

Let X,Y be real or complex Banach spaces with the norm denoted by ‖ · ‖ or
‖ · ‖X .

An operator from X to Y is a linear rule A : D(A)→ Y , where D(A) is a
linear subspace of X, called the domain of A. The set of operators from X to
Y is denoted by L(X,Y ). Operators taking their values in the space of scalars
are called functionals. We use the notation (A,D(A)) to denote the operator
A with domain D(A). If A ∈ L(X,X), then we say that A (or (A,D(A))) is
an operator in X.

By L(X,Y ), we denote the space of all bounded operators between X and
Y ; L(X,X) is abbreviated as L(X). The space L(X,Y ) can be made a Banach
space by introducing the norm of an operator X by

‖A‖ = sup
‖x‖≤1

‖Ax‖ = sup
‖x‖=1

‖Ax‖. (1.11)

If (A,D(A)) is an operator in X and Y ⊂ X, then the part of the operator A
in Y is defined as

AY y = Ay (1.12)

on the domain
D(AY ) = {x ∈ D(A) ∩ Y ; Ax ∈ Y }.

A restriction of (A,D(A)) to D ⊂ D(A) is denoted by A|D. For A,B ∈
L(X,Y ), we write A ⊂ B if D(A) ⊂ D(B) and B|D(A) = A.

Two operators A,B ∈ L(X) are said to commute if AB = BA. It is not
easy to extend this definition to unbounded operators due to the difficulties
with defining the domains of the composition. The extension is usually done to
the case when one of the operators is bounded. Thus, an operator A ∈ L(X)
is said to commute with B ∈ L(X) if

BA ⊂ AB. (1.13)

This means that for any x ∈ D(A), Bx ∈ D(A) and BAx = ABx.
We define the image of A by

ImA = {y ∈ Y ; y = Ax for some x ∈ D(A)}

and the kernel of A by
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KerA = {x ∈ D(A); Ax = 0}.

We note a simple result which is frequently used throughout the book.

Proposition 1.7. Suppose that A,B ∈ L(X,Y ) satisfy: A ⊂ B,KerB = {0},
and ImA = Y . Then A = B.

Proof. If D(A) 6= D(B), we take x ∈ D(B) \D(A) and let y = Bx. Because
A is onto, there is x′ ∈ D(A) such that y = Ax′. Because x′ ∈ D(A) ⊂ D(B)
and A ⊂ B, we have y = Ax′ = Bx′ and Bx′ = Bx. Because KerB = {0},
we obtain x = x′ which is a contradiction with x /∈ D(A). ut

Furthermore, the graph of A is defined as

G(A) = {(x, y) ∈ X × Y ; x ∈ D(A), y = Ax}. (1.14)

We say that the operator A is closed if G(A) is a closed subspace of X × Y .
Equivalently, A is closed if and only if for any sequence (xn)n∈N ⊂ D(A), if
limn→∞ xn = x in X and limn→∞Axn = y in Y , then x ∈ D(A) and y = Ax.

An operator A in X is closable if the closure of its graph G(A) is itself a
graph of an operator, that is, if (0, y) ∈ G(A) implies y = 0. Equivalently, A is
closable if and only if for any sequence (xn)n∈N ⊂ D(A), if limn→∞ xn = 0 in
X and limn→∞Axn = y in Y , then y = 0. In such a case the operator whose
graph is G(A) is called the closure of A and denoted by A.

By definition, when A is closable, then

D(A) = {x ∈ X; there is (xn)n∈N ⊂ D(A) and y ∈ X such that

‖xn − x‖ → 0 and ‖Axn − y‖ → 0},
Ax = y.

For any operator A, its domain D(A) is a normed space under the graph norm

‖x‖D(A) := ‖x‖X + ‖Ax‖Y . (1.15)

The operator A : D(A) → Y is always bounded with respect to the graph
norm, and A is closed if and only if D(A) is a Banach space under (1.15).

The differentiation operator

One of the simplest and most often used unbounded, but closed or closable,
operators is the operator of differentiation. If X is any of the spaces C([0, 1])
or Lp([0, 1]), then considering fn(x) := Cnx

n, where Cn = 1 in the former
case and Cn = (np + 1)1/p in the latter, we see that in all cases ‖fn‖ = 1.
However,

‖f ′n‖ = n

(
np+ 1

np+ 1− p

)1/p
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in Lp([0, 1]) and ‖f ′n‖ = n in C([0, 1]), so that the operator of differentiation
is unbounded.

Let us define Tf = f ′ as an unbounded operator on D(T ) = {f ∈ X; Tf ∈
X}, whereX is any of the above spaces. We can easily see that inX = C([0, 1])
the operator T is closed. Indeed, let us take (fn)n∈N such that limn→∞ fn = f
and limn→∞ Tfn = g in X. This means that (fn)n∈N and (f ′n)n∈N converge
uniformly to, respectively, f and g, and from basic calculus f is differentiable
and f ′ = g.

The picture changes, however, in Lp spaces. To simplify the notation, we
take p = 1 and consider the sequence of functions

fn(x) =


0 for 0 ≤ x ≤ 1

2 ,
n
2

(
x− 1

2

)2
for 1

2 < x ≤ 1
2 + 1

n ,
x− 1

2 −
1

2n for 1
2 + 1

n < x ≤ 1.

These are differentiable functions and it is easy to see that (fn)n∈N converges
in L1([0, 1]) to the function f given by f(x) = 0 for x ∈ [0, 1/2] and f(x) =
x− 1/2 for x ∈ (1/2, 1] and the derivatives converge to g(x) = 0 if x ∈ [0, 1/2]
and to g(x) = 1 otherwise. The function f , however, is not differentiable and
so T is not closed. On the other hand, g seems to be a good candidate for the
derivative of f in some more general sense. Let us develop this idea further.
First, we show that T is closable. Let (fn)n∈N and (f ′n)n∈N converge in X to
f and g, respectively. Then, for any φ ∈ C∞0 ((0, 1)), we have, integrating by
parts,

1∫
0

f ′n(x)φ(x)dx = −
1∫

0

fn(x)φ′(x)dx

and because we can pass to the limit on both sides, we obtain

1∫
0

g(x)φ(x)dx = −
1∫

0

f(x)φ′(x)dx. (1.16)

Using the equivalent characterization of closability, we put f = 0, so that

1∫
0

g(x)φ(x)dx = 0

for any φ ∈ C∞0 ((0, 1)) which yields g(x) = 0 almost everywhere on [0, 1].
Hence g = 0 in L1([0, 1]) and consequently T is closable.

The domain of T in L1([0, 1]) is called the Sobolev space W 1
1 ([0, 1]) which

is discussed in more detail in Subsection 2.3.1.
These considerations can be extended to hold in any Ω ⊂ Rn. In particular,

we can use (1.16) to generalize the operation of differentiation in the following
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way: we say that a function g ∈ L1,loc(Ω) is the generalised (or distributional)
derivative of f ∈ L1,loc(Ω) of order α, denoted by ∂αx f , if∫

Ω

g(x)φ(x)dx = (−1)|β|
∫
Ω

f(x)∂βxφ(x)dx (1.17)

for any φ ∈ C∞0 (Ω).
This operation is well defined. This follows from the du Bois Reymond

lemma.
From the considerations above it is clear that ∂βx is a closed operator

extending the classical differentiation operator (from C |β|(Ω)). One can also
prove that ∂βx is the closure of the classical differentiation operator.

Proposition 1.8. If Ω = Rn, then ∂βx is the closure of the classical differen-
tiation operator.

Proof. We use (1.7) and (1.8). Indeed, let f ∈ Lp(Rn) and g = Dαf ∈ Lp(Rn).
We consider fε = Jε ∗ f → f in Lp. By the Fubini theorem, we prove∫

Rn

(Jε ∗ f)(x)Dαφ(x)dx =

∫
Rn

ωε(y)

∫
Rn

f(x− y)Dαφ(x)dxdy

= (−1)|α|
∫
Rn

ωε(y)

∫
Rn

g(x− y)φ(x)dxdy

= (−1)|α|
∫
Rn

(Jε ∗ g)φ(x)dx

so that Dαfε = Jε ∗Dαf = Jε ∗ g → g as ε→ 0 in Lp. This shows that action
of the distributional derivative can be obtained as the closure of the classical
derivation.

Otherwise the proof is more complicated (see, e.g., [4, Theorem 3.16]) since
we do not know whether we can extend f outside Ω in such a way that the
extension still will have the generalized derivative. We shall discuss it later.

Example 1.9. A non closable operator. Let us consider the space X =
L1((0, 1)) and the operator K : X → Y , Y = X × C (with the Euclidean
norm), defined by

Kv =< v, v(1) > (1.18)

on the domain D(K) consisting of continuous functions on [0, 1]. We have the
following lemma

Lemma 1.10. K is not closeable, but has a bounded inverse. ImK is dense
in Y .
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Proof. Let f ∈ C∞([0, 1]) be such that

f(x) =

{
0 for 0 ≤ x < 1/3
1 for 2/3 < x ≤ 1.

To construct such a function, we can consider e.g. J1/3 ∗ f̄ where

f̄(x) =

{
1 for 2/3 < x ≤ 1,
0 otherwise

Let vn(x) = f(xn) for 0 ≤ x ≤ 1. Clearly, vn ∈ D(K) and vn → 0 in L2((0, 1))
as

1∫
0

f2(xn)dx =

1∫
3−1/n

f2(xn)dx =
1

n

1∫
1/3

z−1+1/nf2(z)dz.

However, Kvn =< vn, 1 >→< 0, 1 > 6=< 0, 0 >.
Further, K is one-to-one with K−1(v, v(1)) = v and

‖K−1(v, v(1))‖2 = ‖v‖2 ≤ ‖v‖2 + |v(1)|2.

To prove that ImK is dense in Y , let < y, α >∈ Y . We know that
C∞0 ((0, 1)) ⊂ D(K) is dense in Z = L2((0, 1)). Let (φn) be sequence of C∞0 -
functions which approximate y in L2(0, 1) and put wn = φn + αvn. We have
Kwn =< wn, α >→< y, α >.

Absolutely continuous functions

In one-dimensional spaces the concept of the generalised derivative is closely
related to a classical notion of absolutely continuous function. Let I = [a, b] ⊂
R1 be a bounded interval. We say that f : I → C is absolutely continuous if, for
any ε > 0, there is δ > 0 such that for any finite collection {(ai, bi)}i of disjoint
intervals in [a, b] satisfying

∑
i(bi−ai) < δ, we have

∑
i |f(bi)−f(ai)| < ε. The

fundamental theorem of calculus, [150, Theorem 8.18], states that any abso-
lutely continuous function f is differentiable almost everywhere, its derivative
f ′ is Lebesgue integrable on [a, b], and f(t) − f(a) =

∫ t
a
f ′(s)ds. It can be

proved (e.g., [61, Theorem VIII.2]) that absolutely continuous functions on
[a, b] are exactly integrable functions having integrable generalised derivatives
and the generalised derivative of f coincides with the classical derivative of f
almost everywhere.

Let us explore this connection. We prove

Theorem 1.11. Assume that u ∈ L1,loc(R) and its generalized derivative Du
also satisfies Du ∈ L1,loc(R). Then there is a continuous representation ũ of
u such that

ũ(x) = C +

x∫
0

Du(t)dt

for some constant C and thus u is differentiable almost everywhere.


