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1

Basic Facts from Functional Analysis and
Banach Lattices

1.1 Spaces and Operators

1.1.1 General Notation

The symbol =’ denotes ‘equal by definition’. The sets of all natural (not
including 0), integer, real, and complex numbers are denoted by N, Z, R, C,
respectively. If A € C, then we write 3 A for its real part, & A for its imaginary
part, and \ for its complex conjugate. The symbols [a,b], (a,b) denote closed
and open intervals in R. Moreover,

No := {0,1,2,...}.

If there is a need to emphasise that we deal with multidimensional quantities,
we use boldface characters, for example x = (z1,...,z,) € R™. Usually we
use the Euclidean norm in R", denoted by,

N2
x| =4[ 2=
i=1

If 2 is a subset of any topological space X, then by 2 and Int £2 we denote,
respectively, the closure and the interior of {2 with respect to X. If (X, d) is
a metric space with metric d, we denote by

By = {ye X; d(z,y) <7}

the closed ball with centre z and radius r. If X is also a linear space, then the
ball with radius r centred at the origin is denoted by B,..

Let f be a function defined on a set {2 and z € 2. We use one of the
following symbols to denote this function: f, x — f(z), and f(-). The symbol
f(z) is in general reserved to denote the value of f at x, however, occasionally
we abuse this convention and use it to denote the function itself.
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If {@, }nen is a family of elements of some set, then the sequence of these
elements, that is, the function n — z,, is denoted by (x,)nen. However,
for simplicity, we often abuse this notation and use (x,)nen also to denote
{xn}n€N~

The derivative operator is usually denoted by 0. However, as we occa-
sionally need to distinguish different types of derivatives of the same func-
tion, we use other commonly accepted symbols for differentiation. To indicate
the variable with respect to which we differentiate we write 0y, 0,972, . ... If
x = (21,...,2n) € R", then Ox := (Jg,, - .., 0s,) is the gradient operator.

If 8:=(B1,...,5n), Bi > 0is a multi-index with |3]| := 81 + -+ + 8 =k,
then symbol 92 f is any derivative of f of order k. Thus, Zfﬁ‘zoﬁﬁ f means
the sum of all derivatives of f of order less than or equal to k.

If 2 C R” is an open set, then for k& € N the symbol C*(§2) denotes
the set of k times continuously differentiable functions in 2. We denote by
C(£2) := C%(£2) the set of all continuous functions in 2 and

\0”‘

PR

C>®(0) = ﬁ CF(0).
k=0

Functions from C*(§2) need not be bounded in §2. If they are required to be

- bounded together with their derivatives up to the order k, then the corre-
£ sponding set is denoted by C*(£2).
é/ For a continuous function f, defined on 2, we define the support of f as
By S suppf = [x € 2 1) £ 0J.
— The set of all functions with compact support in {2 which have continuous

derivatives of order smaller than or equal to k is denoted by C&(£2). As above,
Co(92) := CJ(£2) is the set of all continuous functions with compact support

in 2 and (@) :—ﬁcg(”)' S |£[ ?SK )Wh

Another important standard class of spaces are the spa%gg L,(2),1<p<
oo of functions integrable with power p. To define them, let us establish some
general notation and terminology. We begin with a measure space (2, X, ),
where (2 is a set, X' is a o-algebra of subsets of 2, and p is a o-additive
measure on Y. We say that p is o-finite if {2 is a countable union of sets of
finite measure.

In most applications in this book, 2 C R™ and X is the o-algebra of
Lebesgue measurable sets. However, occasionally we need the family of Borel
sets which, by definition, is the smallest o-algebra which contains all open

sets. The measure p in the former case is called the Lebesgue measure and in
the latter the Borel measure. Such measures are o-finite.

A function f : 2 — R is said to be measurable (with respect to X, or with
respect to p) if f71(B) € X for any Borel subset B of R. Because ¥ is a
— -""'__l___-_-_-
~
0 |- K| \ X\
4

(I ) = ~-
O \X\74=_ ( :
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o-algebra, f is measurable if (and only if) preimages of semi-infinite intervals
are in X —

Remark 1.1. The difference between Lebesgue and Borel measurability is visi-
ble if one considers compositions of functions. Precisely, if f is continuous and
g is measurable on R, then f o g is measurable but, without any additional
assumptions, g o f is not. The reason for this is that the preimage of {z > a}
through f is open and preimages of open sets through Lebesgue measurable
functions are measurable. On the other hand, preimage of {x > a} through ¢
is only a Lebesgue measurable set and preimages of such sets through contin-
uous are not necessarily measurable. To have measurability of g o f one has
to assume that preimages of sets of measure zero through f are of measure
zero (e.g., f is Lipschitz continuous).

We identify two functions which differ from each other on a set of p-
measure zero, therefore, when speaking of a function in the context of mea-
sure spaces, we usually mean a class of equivalence of functions. For most
applications the distinction between a function and a class of functions is
irrelevant.

One of the most important results in applications is the Luzin theorem.

Theorem 1.2. If f is Lebesque measurable and f(x) = 0 in the complement of
a set A with u(A) < oo, then for any € > 0 there exists a function g € Co(R™)

such that supycgn g(X) < supyepn f(x) and p({x; f(x) # g(x)}) <e.

In other words, the theorem implies that there is a sequence of compactly
supported continuous functions converging to f almost everywhere. Indeed, for
any n we find a continuous function ¢,, such that for A,, = {x; ¢,(x) # f(x)}
we have

Define

We see that if x ¢ A, then there is k such that for any n > k, x ¢ Ay, that is,
¢n(x) = f(x) and hence ¢, (x) — f(x) whenever x ¢ A. On the other hand,

o0
) 1
O<pld) < i D 7 =0

and hence (¢, )nen converges to f almost everywhere.

The space of equivalence classes of all measurable real functions on (2 is
denoted by Lo(£2,du) or simply Lo({2).

The integral of a measurable function f with respect to measure p over a
set {2 is written as

x(aq}
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/fdu=/f(><)dux?
2 (]

where the second version is used if there is a need to indicate the variable of \
integration. If i is the Lebesgue measure, we abbreviate dux = dx. A
For 1 < p < oo the spaces L,({2) are defined as subspaces of Lo({2)
consisting of functions for which )
| K
/p Iu| ,1 -

1
191 =1y = | [17GaPax | <oc. (1)
10}

The space L,({2) with the above norm is a Banach space. It is customary to A
complete the scale of L, spaces by the space L ({2) defined to be the space
of all Lebesgue measurable functions which are bounded almost everywhere
in §2, that is, bounded everywhere except possibly on a set of measure zero.

The corresponding norm is defined by

[Flloe := 1fllLoc () 7= f{M; p({x € 25 [f(x)| > M}) = 0}. (1.2)

The expression on the right-hand side of (1.2) is frequently referred to as the
essential supremum of f over {2 and denoted esssup,cq |f(x)].
If 1u(£2) < oo, then for 1 < p < p’ < 0o we have

Ly () C Ly(2) (1.3)

and for f € Lo (£2)
I7loe = tim £l (14)

which justifies the notation. However,

() Lp(2) # Lo (£2),

1<p<o©

as demonstrated by the function f(z) = Inz, x € (0,1]. If u(2) = oo, then
neither (1.3) nor (1.4) hold.

Occasionally we need functions from Lo ({2) which are L, only on compact
subsets of R™. Spaces of such functions are denoted by L, jo.(£2). A function
f € L1,10c(£2) is called locally integrable (in (2).

Let £2 C R™ be an open set. It is clear that

C5o(92) € Ly(92)
for 1 <p < oco.If p €[1,00), then we have even more: C§°(2) is dense in

Lyp(92).

C5o(92) = Ly(£2), (1.5)

where the closure is taken in the Lj,-norm.
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Ezxample 1.3. Having in mind further applications, it is worthwhile to have \ X \ < 1
some understanding of the structure of this result; see [4, Lemma 2.18]. Let
us define the function

w<x>={exp(|x%1) for x| <1, T ‘é | / d

0 for x| > 1.

This is a C§°(R™) function with support Bj.

Using this function we construct the family \ \ C E
we(x) = Cew(x/e),
AN
--.J'/—" A\ where C, are constants chosen so that fRn we(x)dx = 1; these are also C3°(R")
g (G T functions with support B, often referred to as mollzﬁers Using them, we
' / \ \ define the regularisation (or mollzﬁcatwn) of f by taklng the convolution
/

i{il (Jo * F)(x /fx— wely dy /f Joelx = y)dy.  (L7)

Precisely speaking, if 2 # R", we integrate outside the domain of definition
of f. Thus, in such cases below, we consider f to be extended by 0 outside 2. ~— } | ( (,J |
Then, we have - 4

Theorem 1.4. With the notation above,

1. Let p € [1,00). If f € Ly(£2), then G CC ﬂ Wf/@
A

Tim [« f — fllp = 0. (ﬂ
AR B
Proof. For 1.-3., even if u(£2) = oo, then any f € L,(§2) can be approxi-
mated by (essentially) bounded (simple) functions with compact supports. It X@
is enough to consider a real nonnegative function u. For such a wu, there is ~
a monotonically increasing sequence (s, )nen of nonnegative simple functions
converging point-wise to u on {2. Since 0 < s,,(x) < u(x), we have s, € L,,({2), N
(u(x) — $p(x))P < uP(x) and thus s, — u in L,(£2) by the Dominated Con-
vergence Theorem. Thus there exists a function s in the sequence for which
llu—s|l, < ¢€/2. Since p < oo and s is simple, the support of s must have finite
volume. We can also assume that s(x) = 0 outside §2. By the Luzin theorem,
there is ¢ € Co(R™) such that |p(x)| < ||s]|e for all x € R™ and

2. If f€ C(R2), then Jc x f — [ uniformly on any G cC 1. {
3. If 2 is compact and f € C(R2), then J. * f — f uniformly on £2.

p({x € R™; ¢(x) # s(x)} < (4” |Oo>p A

W QUV.Q Wﬁ/ﬂﬂ \. le\"

Vs

— - jq* ¢ (U\)Q(m‘”




6 1 Basic Facts from Functional Analysis and Banach Lattices

m

€
HS ¢”P f; HS ¢|hx>4”$”00 f; 2
and fJu— g, < .

Therefore, first we prove the result for continuous compactly supported
functions:

Because the effective domain of integration in the second integral is By ,
Je x f is well defined whenever f is locally integrable and, similarly, if the
support of f is bounded, then suppJ. * f is also bounded and it is contained
in the e-neighbourhood of supp f. The functions f. are infinitely differentiable
with

00+ 1)) = [ 13105l — y)dy (18)
RTL
for any 8. By Hoélder inequality, if f € L,(R™), then J, x f € L,(R"™) with
[ Je* Fllp < [1f1lp (1.9)

for any € > 0. Indeed, for p =1

___.—--‘

G
62
S\ IS gl

p—

[x’, (p W @(xﬂ

/‘J*f 'dx</‘fy (m/wex y)dx)dy 1711 é W\ o~ d?“ C—

S &\Ji %~%\&kﬂ MJ“

o* f()] = / f<y>w6<x— y)dy

n

1/q 1/p
(&/ we(x — y)dy / [F(¥)[Pwe(x = y)dy

For p > 1, we have S n(
K

IN

n n

/ ) Pwelx — y)dy

1/p

and, as above,

[l searax< [P | [ o= yax | dy = 115,

R Rn n

Next (remember f is compactly supported continuous function, and thus it is
uniformly continuous)
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ex £)() I—L/f e (x — y)dy — /f XJwe(x — ¥ gp?

4

g/Wﬁ—ﬂ@M@—ﬂ@s sup | F(x) — F(y)l-
Ix—yll<e

R’Vl
By the compactness of support, and thus uniform continuity, of f we obtain
Je x f = f and, again by compactness of the support,

f=lim fo  inLy(R") (1.10)

as well as in C(f2), where in the latter case we extend f outside {2 by a
continuous function (e.g. by the Urysohn theorem).
To extend the result to an arbitrary f € L,(£2), let ¢ € Cy(£2) such that

1f = ¢lly <mand [[Jex ¢ — ol <n

[Jex f=fllp < Jex f=Jexd)llp+ [T x b = ollp + [If — 4l

smvm+n4*¢mu<%p
-—--""-
for sufficiently small e.

As an example of application, we shall consider a generalization of the
duBois-Reymond lemma. Let {2 C R™ be an open set and let u € Ly joc(£2)
be such that

[ utrixax o
(]

for any C3°(£2). Then u = 0 almost everywhere on (2. To prove this state-
ment, let ¢ € Loo(f2) such that suppg is a compact set in 2. We define
9m = J1/m * g. Then g,, € C§°(§2) for large m. Since a compactly supported
bounded function is integrable, we have g,, — ¢ in L1(§2) and thus there is
a subsequence (denoted by the same indices) such that g,, — ¢ almost ev-
erywhere. Moreover, ||gmlco < ||9]lco- Using compactness of the supports and
dominated convergence theorem, we obtain

[ utxgoxyix =o.

2

If we take any compact set K C {2 and define g = signu on K and 0 otherwise,
we find that for any K,

/ () dx = 0,

K

Hence u = 0 almost everywhere on K and, since K was arbitrary, this holds
almost everywhere on (2.

—_7
Ev. = &

(10 )
WLt
< (

&MUy



