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1

Basic Facts from Functional Analysis and
Banach Lattices

1.1 Spaces and Operators

1.1.1 General Notation

The symbol ‘:=’ denotes ‘equal by definition’. The sets of all natural (not
including 0), integer, real, and complex numbers are denoted by N, Z, R, C,
respectively. If λ ∈ C, then we write <λ for its real part, =λ for its imaginary
part, and λ̄ for its complex conjugate. The symbols [a, b], (a, b) denote closed
and open intervals in R. Moreover,

R+ := [0,∞),

N0 := {0, 1, 2, . . .}.

If there is a need to emphasise that we deal with multidimensional quantities,
we use boldface characters, for example x = (x1, . . . , xn) ∈ Rn. Usually we
use the Euclidean norm in Rn, denoted by,

|x| =

√
n∑
i=1

x2
i .

If Ω is a subset of any topological space X, then by Ω and IntΩ we denote,
respectively, the closure and the interior of Ω with respect to X. If (X, d) is
a metric space with metric d, we denote by

Bx,r := {y ∈ X; d(x, y) ≤ r}

the closed ball with centre x and radius r. If X is also a linear space, then the
ball with radius r centred at the origin is denoted by Br.

Let f be a function defined on a set Ω and x ∈ Ω. We use one of the
following symbols to denote this function: f , x→ f(x), and f(·). The symbol
f(x) is in general reserved to denote the value of f at x, however, occasionally
we abuse this convention and use it to denote the function itself.



2 1 Basic Facts from Functional Analysis and Banach Lattices

If {xn}n∈N is a family of elements of some set, then the sequence of these
elements, that is, the function n → xn, is denoted by (xn)n∈N. However,
for simplicity, we often abuse this notation and use (xn)n∈N also to denote
{xn}n∈N.

The derivative operator is usually denoted by ∂. However, as we occa-
sionally need to distinguish different types of derivatives of the same func-
tion, we use other commonly accepted symbols for differentiation. To indicate
the variable with respect to which we differentiate we write ∂t, ∂x, ∂

2
tx . . .. If

x = (x1, . . . , xn) ∈ Rn, then ∂x := (∂x1
, . . . , ∂xn) is the gradient operator.

If β := (β1, . . . , βn), βi ≥ 0 is a multi-index with |β| := β1 + · · ·+ βn = k,

then symbol ∂βxf is any derivative of f of order k. Thus,
∑k
|β|=0∂

βf means
the sum of all derivatives of f of order less than or equal to k.

If Ω ⊂ Rn is an open set, then for k ∈ N the symbol Ck(Ω) denotes
the set of k times continuously differentiable functions in Ω. We denote by
C(Ω) := C0(Ω) the set of all continuous functions in Ω and

C∞(Ω) :=

∞⋂
k=0

Ck(Ω).

Functions from Ck(Ω) need not be bounded in Ω. If they are required to be
bounded together with their derivatives up to the order k, then the corre-
sponding set is denoted by Ck(Ω).

For a continuous function f , defined on Ω, we define the support of f as

suppf = {x ∈ Ω; f(x) 6= 0}.

The set of all functions with compact support in Ω which have continuous
derivatives of order smaller than or equal to k is denoted by Ck0 (Ω). As above,
C0(Ω) := C0

0 (Ω) is the set of all continuous functions with compact support
in Ω and

C∞0 (Ω) :=

∞⋂
k=0

Ck0 (Ω).

Another important standard class of spaces are the spaces Lp(Ω), 1 ≤ p ≤
∞ of functions integrable with power p. To define them, let us establish some
general notation and terminology. We begin with a measure space (Ω,Σ, µ),
where Ω is a set, Σ is a σ-algebra of subsets of Ω, and µ is a σ-additive
measure on Σ. We say that µ is σ-finite if Ω is a countable union of sets of
finite measure.

In most applications in this book, Ω ⊂ Rn and Σ is the σ-algebra of
Lebesgue measurable sets. However, occasionally we need the family of Borel
sets which, by definition, is the smallest σ-algebra which contains all open
sets. The measure µ in the former case is called the Lebesgue measure and in
the latter the Borel measure. Such measures are σ-finite.

A function f : Ω → R is said to be measurable (with respect to Σ, or with
respect to µ) if f−1(B) ∈ Σ for any Borel subset B of R. Because Σ is a
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σ-algebra, f is measurable if (and only if) preimages of semi-infinite intervals
are in Σ.

Remark 1.1. The difference between Lebesgue and Borel measurability is visi-
ble if one considers compositions of functions. Precisely, if f is continuous and
g is measurable on R, then f ◦ g is measurable but, without any additional
assumptions, g ◦ f is not. The reason for this is that the preimage of {x > a}
through f is open and preimages of open sets through Lebesgue measurable
functions are measurable. On the other hand, preimage of {x > a} through g
is only a Lebesgue measurable set and preimages of such sets through contin-
uous are not necessarily measurable. To have measurability of g ◦ f one has
to assume that preimages of sets of measure zero through f are of measure
zero (e.g., f is Lipschitz continuous).

We identify two functions which differ from each other on a set of µ-
measure zero, therefore, when speaking of a function in the context of mea-
sure spaces, we usually mean a class of equivalence of functions. For most
applications the distinction between a function and a class of functions is
irrelevant.

One of the most important results in applications is the  Luzin theorem.

Theorem 1.2. If f is Lebesgue measurable and f(x) = 0 in the complement of
a set A with µ(A) <∞, then for any ε > 0 there exists a function g ∈ C0(Rn)
such that supx∈Rn g(x) ≤ supx∈Rn f(x) and µ({x; f(x) 6= g(x)}) < ε.

In other words, the theorem implies that there is a sequence of compactly
supported continuous functions converging to f almost everywhere. Indeed, for
any n we find a continuous function φn such that for An = {x; φn(x) 6= f(x)}
we have

µ(An) ≤ 1

n2
.

Define

A =

∞⋂
k=1

∞⋃
n=k

An.

We see that if x /∈ A, then there is k such that for any n ≥ k, x /∈ Ak, that is,
φn(x) = f(x) and hence φn(x)→ f(x) whenever x /∈ A. On the other hand,

0 ≤ µ(A) ≤ lim
k→∞

∞∑
n=k

1

n2
= 0

and hence (φn)n∈N converges to f almost everywhere.
The space of equivalence classes of all measurable real functions on Ω is

denoted by L0(Ω, dµ) or simply L0(Ω).
The integral of a measurable function f with respect to measure µ over a

set Ω is written as
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Ω

fdµ =

∫
Ω

f(x)dµx,

where the second version is used if there is a need to indicate the variable of
integration. If µ is the Lebesgue measure, we abbreviate dµx = dx.

For 1 ≤ p < ∞ the spaces Lp(Ω) are defined as subspaces of L0(Ω)
consisting of functions for which

‖f‖p := ‖f‖Lp(Ω) =

∫
Ω

|f(x)|pdx

1/p

<∞. (1.1)

The space Lp(Ω) with the above norm is a Banach space. It is customary to
complete the scale of Lp spaces by the space L∞(Ω) defined to be the space
of all Lebesgue measurable functions which are bounded almost everywhere
in Ω, that is, bounded everywhere except possibly on a set of measure zero.
The corresponding norm is defined by

‖f‖∞ := ‖f‖L∞(Ω) := inf{M ; µ({x ∈ Ω; |f(x)| > M}) = 0}. (1.2)

The expression on the right-hand side of (1.2) is frequently referred to as the
essential supremum of f over Ω and denoted ess supx∈Ω |f(x)|.

If µ(Ω) <∞, then for 1 ≤ p ≤ p′ ≤ ∞ we have

Lp′(Ω) ⊂ Lp(Ω) (1.3)

and for f ∈ L∞(Ω)
‖f‖∞ = lim

p→∞
‖f‖p, (1.4)

which justifies the notation. However,⋂
1≤p<∞

Lp(Ω) 6= L∞(Ω),

as demonstrated by the function f(x) = lnx, x ∈ (0, 1]. If µ(Ω) = ∞, then
neither (1.3) nor (1.4) hold.

Occasionally we need functions from L0(Ω) which are Lp only on compact
subsets of Rn. Spaces of such functions are denoted by Lp,loc(Ω). A function
f ∈ L1,loc(Ω) is called locally integrable (in Ω).

Let Ω ⊂ Rn be an open set. It is clear that

C∞0 (Ω) ⊂ Lp(Ω)

for 1 ≤ p ≤ ∞. If p ∈ [1,∞), then we have even more: C∞0 (Ω) is dense in
Lp(Ω).

C∞0 (Ω) = Lp(Ω), (1.5)

where the closure is taken in the Lp-norm.
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Example 1.3. Having in mind further applications, it is worthwhile to have
some understanding of the structure of this result; see [4, Lemma 2.18]. Let
us define the function

ω(x) =

{
exp
(

1
|x|2−1

)
for |x| < 1,

0 for |x| ≥ 1.
(1.6)

This is a C∞0 (Rn) function with support B1.

Using this function we construct the family

ωε(x) = Cεω(x/ε),

where Cε are constants chosen so that
∫
Rn ωε(x)dx = 1; these are also C∞0 (Rn)

functions with support Bε, often referred to as mollifiers. Using them, we
define the regularisation (or mollification) of f by taking the convolution

(Jε ∗ f)(x) :=

∫
Rn

f(x− y)ωε(y)dy =

∫
Rn

f(y)ωε(x− y)dy. (1.7)

Precisely speaking, if Ω 6= Rn, we integrate outside the domain of definition
of f . Thus, in such cases below, we consider f to be extended by 0 outside Ω.

Then, we have

Theorem 1.4. With the notation above,

1. Let p ∈ [1,∞). If f ∈ Lp(Ω), then

lim
ε→0+

‖Jε ∗ f − f‖p = 0.

2. If f ∈ C(Ω), then Jε ∗ f → f uniformly on any Ḡ ⊂ Ω.
3. If Ω̄ is compact and f ∈ C(Ω̄), then Jε ∗ f → f uniformly on Ω̄.

Proof. For 1.–3., even if µ(Ω) = ∞, then any f ∈ Lp(Ω) can be approxi-
mated by (essentially) bounded (simple) functions with compact supports. It
is enough to consider a real nonnegative function u. For such a u, there is
a monotonically increasing sequence (sn)n∈N of nonnegative simple functions
converging point-wise to u on Ω. Since 0 ≤ sn(x) ≤ u(x), we have sn ∈ Lp(Ω),
(u(x) − sn(x))p ≤ up(x) and thus sn → u in Lp(Ω) by the Dominated Con-
vergence Theorem. Thus there exists a function s in the sequence for which
‖u−s‖p ≤ ε/2. Since p <∞ and s is simple, the support of s must have finite
volume. We can also assume that s(x) = 0 outside Ω. By the  Luzin theorem,
there is φ ∈ C0(Rn) such that |φ(x)| ≤ ‖s‖∞ for all x ∈ Rn and

µ({x ∈ Rn; φ(x) 6= s(x)} ≤
(

ε

4‖s‖∞

)p
.

Hence
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‖s− φ‖p ≤ ‖s− φ‖∞
ε

4‖s‖∞
≤ ε

2

and ‖u− φ‖p < ε.
Therefore, first we prove the result for continuous compactly supported

functions.
Because the effective domain of integration in the second integral is Bx,ε,

Jε ∗ f is well defined whenever f is locally integrable and, similarly, if the
support of f is bounded, then suppJε ∗ f is also bounded and it is contained
in the ε-neighbourhood of suppf . The functions fε are infinitely differentiable
with

∂βx (Jε ∗ f)(x) =

∫
Rn

f(y)∂βxωε(x− y)dy (1.8)

for any β. By Hölder inequality, if f ∈ Lp(Rn), then Jε ∗ f ∈ Lp(Rn) with

‖Jε ∗ f‖p ≤ ‖f‖p (1.9)

for any ε > 0. Indeed, for p = 1

∫
Rn

|Jε ∗ f(x)|dx ≤
∫
Rn

|f(y)|

∫
Rn

ωε(x− y)dx

 dy = ‖f‖1.

For p > 1, we have

|Jε ∗ f(x)| =

∣∣∣∣∣∣
∫
Rn

f(y)ωε(x− y)dy

∣∣∣∣∣∣
≤

∫
Rn

ωε(x− y)dy

1/q∫
Rn

|f(y)|pωε(x− y)dy

1/p

=

∫
Rn

|f(y)|pωε(x− y)dy

1/p

and, as above,

∫
Rn

|Jε ∗ f(x)|pdx ≤
∫
Rn

|f(y)|p
∫
Rn

ωε(x− y)dx

 dy = ‖f‖pp.

Next (remember f is compactly supported continuous function, and thus it is
uniformly continuous)
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|(Jε ∗ f)(x)− f(x)| =

∣∣∣∣∣∣
∫
Rn

f(y)ωε(x− y)dy −
∫
Rn

f(x)ωε(x− y)dy

∣∣∣∣∣∣
≤
∫
Rn

|f(y)− f(x)|ωε(x− y)dy ≤ sup
‖x−y‖≤ε

|f(x)− f(y)|.

By the compactness of support, and thus uniform continuity, of f we obtain
Jε ∗ f ⇒ f and, again by compactness of the support,

f = lim
ε→0+

fε in Lp(Rn) (1.10)

as well as in C(Ω̄), where in the latter case we extend f outside Ω by a
continuous function (e.g. by the Urysohn theorem).

To extend the result to an arbitrary f ∈ Lp(Ω), let φ ∈ C0(Ω) such that
‖f − φ‖p < η and ‖Jε ∗ φ− φ‖p < η

‖Jε ∗ f − f‖p ≤ ‖Jε ∗ f − Jε ∗ φ)‖p + ‖Jε ∗ φ− φ‖p + ‖f − φ‖
≤ 2‖f − φ‖+ ‖Jε ∗ φ− φ‖p < η

for sufficiently small ε.

As an example of application, we shall consider a generalization of the
duBois-Reymond lemma. Let Ω ⊂ Rn be an open set and let u ∈ L1,loc(Ω)
be such that ∫

Ω

u(x)f(x)dx = 0

for any C∞0 (Ω). Then u = 0 almost everywhere on Ω. To prove this state-
ment, let g ∈ L∞(Ω) such that suppg is a compact set in Ω. We define
gm = J1/m ∗ g. Then gm ∈ C∞0 (Ω) for large m. Since a compactly supported
bounded function is integrable, we have gm → g in L1(Ω) and thus there is
a subsequence (denoted by the same indices) such that gm → g almost ev-
erywhere. Moreover, ‖gm‖∞ ≤ ‖g‖∞. Using compactness of the supports and
dominated convergence theorem, we obtain∫

Ω

u(x)g(x)dx = 0.

If we take any compact set K ⊂ Ω and define g = signu on K and 0 otherwise,
we find that for any K, ∫

K

|u(x)|dx = 0.

Hence u = 0 almost everywhere on K and, since K was arbitrary, this holds
almost everywhere on Ω.


