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Basic Facts from Functional Analysis and
Banach Lattices

1.1 Spaces and Operators

1.1.1 General Notation

The symbol ‘:=’ denotes ‘equal by definition’. The sets of all natural (not
including 0), integer, real, and complex numbers are denoted by N, Z, R, C,
respectively. If λ ∈ C, then we write <λ for its real part, =λ for its imagi-
nary part, and λ̄ for its complex conjugate. The symbols [a, b], (a, b) denote,
respectively, closed and open intervals in R. Moreover,

R+ := [0,∞),

N0 := {0, 1, 2, . . .}.

If there is a need to emphasise that we deal with multidimensional quantities,
we use boldface characters, for example x = (x1, . . . , xn) ∈ Rn. Usually we
use the Euclidean norm in Rn, denoted by

|x| =

√
n∑
i=1

x2i .

If Ω is a subset of any topological space X, then by Ω and IntΩ we denote,
respectively, the closure and the interior of Ω with respect to X. If (X, d) is
a metric space with metric d, we denote by

Bx,r := {y ∈ X; d(x, y) ≤ r}

the closed ball with centre x and radius r. If X is also a linear space, then the
ball with radius r, centred at the origin, is denoted by Br.

Let f be a function defined on a set Ω and x ∈ Ω. We use one of the
following symbols to denote this function: f , x→ f(x), and f(·). The symbol
f(x) is in general reserved to denote the value of f at x, however, occasionally,
we abuse this convention and use it to denote the function itself.
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If {xn}n∈N is a family of elements of some set, then the sequence of these
elements, that is, the function n → xn, is denoted by (xn)n∈N. However,
for simplicity, we often abuse this notation and use (xn)n∈N also to denote
{xn}n∈N.

The derivative operator is usually denoted by ∂. However, as we occa-
sionally need to distinguish different types of derivatives of the same func-
tion, we use other commonly accepted symbols for differentiation. To indicate
the variable with respect to which we differentiate we write ∂t, ∂x, ∂

2
tx . . .. If

x = (x1, . . . , xn) ∈ Rn, then ∂x := (∂x1
, . . . , ∂xn) is the gradient operator.

If β := (β1, . . . , βn), βi ≥ 0 is a multi-index with |β| := β1 + · · ·+ βn = k,

then symbol ∂βxf is any derivative of f of order k. Thus,
∑k
|β|=0∂

βf means
the sum of all derivatives of f of order less than or equal to k.

If Ω ⊂ Rn is an open set, then for k ∈ N the symbol Ck(Ω) denotes
the set of k times continuously differentiable functions in Ω. We denote by
C(Ω) := C0(Ω) the set of all continuous functions in Ω and

C∞(Ω) :=

∞⋂
k=0

Ck(Ω).

Functions from Ck(Ω) need not be bounded in Ω. If they are required to be
bounded together with their derivatives up to the order k, then the corre-
sponding set is denoted by Ck(Ω).

For a continuous function f , defined on Ω, we define the support of f as

suppf = {x ∈ Ω; f(x) 6= 0}.

The set of all functions with compact support in Ω which have continuous
derivatives of order smaller than or equal to k is denoted by Ck0 (Ω). As above,
C0(Ω) := C0

0 (Ω) is the set of all continuous functions with compact support
in Ω and

C∞0 (Ω) :=

∞⋂
k=0

Ck0 (Ω).

Another important standard class of spaces are the spaces Lp(Ω), 1 ≤ p ≤
∞, of functions integrable with power p. To define them, let us establish some
general notation and terminology. We begin with a measure space (Ω,Σ, µ),
where Ω is a set, Σ is a σ-algebra of subsets of Ω, and µ is a σ-additive
measure on Σ. We say that µ is σ-finite if Ω is a countable union of sets of
finite measure.

In most applications in this book, Ω ⊂ Rn and Σ is the σ-algebra of
Lebesgue measurable sets. However, occasionally we need the family of Borel
sets which, by definition, is the smallest σ-algebra which contains all open
sets. The measure µ in the former case is called the Lebesgue measure and in
the latter the Borel measure. Such measures are σ-finite.

A function f : Ω → R is said to be measurable (with respect to Σ, or with
respect to µ) if f−1(B) ∈ Σ for any Borel subset B of R. Because Σ is a
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σ-algebra, f is measurable if (and only if) preimages of semi-infinite intervals
are in Σ.

Remark 1.1. The difference between Lebesgue and Borel measurability is visi-
ble if one considers compositions of functions. Precisely, if f is continuous and
g is measurable on R, then f ◦ g is measurable but, without any additional
assumptions, g ◦ f is not. The reason for this is that the preimage of {x > a}
through f is open and preimages of open sets through Lebesgue measurable
functions are measurable. On the other hand, preimage of {x > a} through g
is only a Lebesgue measurable set and preimages of such sets through contin-
uous are not necessarily measurable. To have measurability of g ◦ f one has
to assume that preimages of sets of measure zero through f are of measure
zero (e.g., f is Lipschitz continuous).

We identify two functions which differ from each other on a set of µ-
measure zero, therefore, when speaking of a function in the context of mea-
sure spaces, we usually mean a class of equivalence of functions. For most
applications the distinction between a function and a class of functions is
irrelevant.

One of the most important results in applications is the  Luzin theorem.

Theorem 1.2. If f is Lebesgue measurable and f(x) = 0 in the complement of
a set A with µ(A) <∞, then for any ε > 0 there exists a function g ∈ C0(Rn)
such that supx∈Rn g(x) ≤ supx∈Rn f(x) and µ({x; f(x) 6= g(x)}) < ε.

In other words, the theorem implies that there is a sequence of compactly
supported continuous functions converging to f almost everywhere. Indeed, for
any n we find a continuous function φn such that for An = {x; φn(x) 6= f(x)}
we have

µ(An) ≤ 1

n2
.

Define

A =

∞⋂
k=1

∞⋃
n=k

An.

We see that if x /∈ A, then there is k such that for any n ≥ k, x /∈ Ak, that is,
φn(x) = f(x) and hence φn(x)→ f(x) whenever x /∈ A. On the other hand,

0 ≤ µ(A) ≤ lim
k→∞

∞∑
n=k

1

n2
= 0

and hence (φn)n∈N converges to f almost everywhere.
The space of equivalence classes of all measurable real functions on Ω is

denoted by L0(Ω, dµ) or simply L0(Ω).
The integral of a measurable function f with respect to measure µ over a

set Ω is written as
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Ω

fdµ =

∫
Ω

f(x)dµx,

where the second version is used if there is a need to indicate the variable of
integration. If µ is the Lebesgue measure, we abbreviate dµx = dx.

For 1 ≤ p < ∞, the spaces Lp(Ω) are defined as the subspaces of L0(Ω)
consisting of functions for which

‖f‖p := ‖f‖Lp(Ω) =

∫
Ω

|f(x)|pdx

1/p <∞. (1.1)

The space Lp(Ω) with the above norm is a Banach space. It is customary to
complete the scale of Lp spaces by the space L∞(Ω) defined to be the space
of all Lebesgue measurable functions which are bounded almost everywhere
in Ω, that is, bounded everywhere except possibly on a set of measure zero.
The corresponding norm is defined by

‖f‖∞ := ‖f‖L∞(Ω) := inf{M ; µ({x ∈ Ω; |f(x)| > M}) = 0}. (1.2)

The expression on the right-hand side of (1.2) is frequently referred to as the
essential supremum of f over Ω and denoted ess supx∈Ω |f(x)|.

If µ(Ω) <∞, then for 1 ≤ p ≤ p′ ≤ ∞ we have

Lp′(Ω) ⊂ Lp(Ω) (1.3)

and, for f ∈ L∞(Ω),
‖f‖∞ = lim

p→∞
‖f‖p, (1.4)

which justifies the notation. However,⋂
1≤p<∞

Lp(Ω) 6= L∞(Ω),

as demonstrated by the function f(x) = lnx, x ∈ (0, 1]. If µ(Ω) = ∞, then
neither (1.3) nor (1.4) hold.

Occasionally we need functions from L0(Ω) which are Lp only on compact
subsets of Rn. Spaces of such functions are denoted by Lp,loc(Ω). A function
f ∈ L1,loc(Ω) is called locally integrable (in Ω).

Let Ω ⊂ Rn be an open set. It is clear that

C∞0 (Ω) ⊂ Lp(Ω)

for 1 ≤ p ≤ ∞. If p ∈ [1,∞), then we have even more: C∞0 (Ω) is dense in
Lp(Ω).

C∞0 (Ω) = Lp(Ω), (1.5)

where the closure is taken in the Lp-norm.
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Example 1.3. Having in mind further applications, it is worthwhile to have
some understanding of the structure of this result; see [?, Lemma 2.18]. Let
us define the function

ω(x) =

{
exp
(

1
|x|2−1

)
for |x| < 1,

0 for |x| ≥ 1.
(1.6)

This is a C∞0 (Rn) function with support B1.

Using this function we construct the family

ωε(x) = Cεω(x/ε),

where Cε are constants chosen so that
∫
Rn ωε(x)dx = 1; these are also C∞0 (Rn)

functions with support Bε, often referred to as mollifiers. Using them, we
define the regularisation (or mollification) of f by taking the convolution

(Jε ∗ f)(x) :=

∫
Rn

f(x− y)ωε(y)dy =

∫
Rn

f(y)ωε(x− y)dy. (1.7)

Precisely speaking, if Ω 6= Rn, we integrate outside the domain of definition
of f . Thus, in such cases below, we consider f to be extended by 0 outside Ω.

Then, we have

Theorem 1.4. With the notation above,

1. Let p ∈ [1,∞). If f ∈ Lp(Ω), then

lim
ε→0+

‖Jε ∗ f − f‖p = 0.

2. If f ∈ C(Ω), then Jε ∗ f → f uniformly on any Ḡ b Ω.
3. If Ω̄ is compact and f ∈ C(Ω̄), then Jε ∗ f → f uniformly on Ω̄.

Proof. For 1.–3., even if µ(Ω) = ∞, then any f ∈ Lp(Ω) can be approxi-
mated by (essentially) bounded (simple) functions with compact supports. It
is enough to consider a real nonnegative function u. For such a u, there is
a monotonically increasing sequence (sn)n∈N of nonnegative simple functions
converging point-wise to u on Ω. Since 0 ≤ sn(x) ≤ u(x), we have sn ∈ Lp(Ω),
(u(x) − sn(x))p ≤ up(x) and thus sn → u in Lp(Ω) by the Dominated Con-
vergence Theorem. Thus there exists a function s in the sequence for which
‖u−s‖p ≤ ε/2. Since p <∞ and s is simple, the support of s must have finite
volume. We can also assume that s(x) = 0 outside Ω. By the  Luzin theorem,
there is φ ∈ C0(Rn) such that |φ(x)| ≤ ‖s‖∞ for all x ∈ Rn and

µ({x ∈ Rn; φ(x) 6= s(x)} ≤
(

ε

4‖s‖∞

)p
.
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Hence
‖s− φ‖p ≤ ‖s− φ‖∞

ε

4‖s‖∞
≤ ε

2

and ‖u− φ‖p < ε.
Therefore, first we prove the result for continuous compactly supported

functions.
Because the effective domain of integration in the second integral is Bx,ε,

Jε ∗ f is well defined whenever f is locally integrable and, similarly, if the
support of f is bounded, then supp(Jε ∗f) is also bounded and it is contained
in the ε-neighbourhood of suppf . The functions fε are infinitely differentiable
with

∂βx (Jε ∗ f)(x) =

∫
Rn

f(y)∂βxωε(x− y)dy (1.8)

for any β. By Hölder inequality, if f ∈ Lp(Rn), then Jε ∗ f ∈ Lp(Rn) with

‖Jε ∗ f‖p ≤ ‖f‖p (1.9)

for any ε > 0. Indeed, for p = 1

∫
Rn

|Jε ∗ f(x)|dx ≤
∫
Rn

|f(y)|

∫
Rn

ωε(x− y)dx

 dy = ‖f‖1.

For p > 1, we have

|Jε ∗ f(x)| =

∣∣∣∣∣∣
∫
Rn

f(y)ωε(x− y)dy

∣∣∣∣∣∣
≤

∫
Rn

ωε(x− y)dy

1/q∫
Rn

|f(y)|pωε(x− y)dy

1/p

=

∫
Rn

|f(y)|pωε(x− y)dy

1/p

and, as above,

∫
Rn

|Jε ∗ f(x)|pdx ≤
∫
Rn

|f(y)|p
∫
Rn

ωε(x− y)dx

 dy = ‖f‖pp.

Next (remember f is compactly supported continuous function, and thus it is
uniformly continuous)
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|(Jε ∗ f)(x)− f(x)| =

∣∣∣∣∣∣
∫
Rn

f(y)ωε(x− y)dy −
∫
Rn

f(x)ωε(x− y)dy

∣∣∣∣∣∣
≤
∫
Rn

|f(y)− f(x)|ωε(x− y)dy ≤ sup
‖x−y‖≤ε

|f(x)− f(y)|.

By the compactness of support, and thus uniform continuity, of f we obtain
Jε ∗ f ⇒ f and, again by compactness of the support,

f = lim
ε→0+

fε in Lp(Rn) (1.10)

as well as in C(Ω̄), where in the latter case we extend f outside Ω by a
continuous function (e.g. by the Urysohn theorem).

To extend the result to an arbitrary f ∈ Lp(Ω), let φ ∈ C0(Ω) such that
‖f − φ‖p < η and ‖Jε ∗ φ− φ‖p < η

‖Jε ∗ f − f‖p ≤ ‖Jε ∗ f − Jε ∗ φ)‖p + ‖Jε ∗ φ− φ‖p + ‖f − φ‖
≤ 2‖f − φ‖+ ‖Jε ∗ φ− φ‖p < 3η

for sufficiently small ε.

As an example of application, we shall consider a generalization of the du
Bois-Reymond lemma. Let Ω ⊂ Rn be an open set and let u ∈ L1,loc(Ω) be
such that ∫

Ω

u(x)f(x)dx = 0

for any C∞0 (Ω). Then u = 0 almost everywhere on Ω. To prove this state-
ment, let g ∈ L∞(Ω) such that supp g is a compact set in Ω. We define
gm = J1/m ∗ g. Then gm ∈ C∞0 (Ω) for large m. Since a compactly supported
bounded function is integrable, we have gm → g in L1(Ω) and thus there is
a subsequence (denoted by the same indices) such that gm → g almost ev-
erywhere. Moreover, ‖gm‖∞ ≤ ‖g‖∞. Using compactness of the supports and
dominated convergence theorem, we obtain∫

Ω

u(x)g(x)dx = 0.

If we take any compact set K ⊂ Ω and define g = signu on K and 0 otherwise,
we find that for any K, ∫

K

|u(x)|dx = 0.

Hence u = 0 almost everywhere on K and, since K was arbitrary, this holds
almost everywhere on Ω.
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Remark 1.5. We observe that, if f is nonnegative, then fε are also nonnegative
by (1.7) and hence any non-negative f ∈ Lp(Rn) can be approximated by
nonnegative, infinitely differentiable, functions with compact support.

Remark 1.6. Spaces Lp(Ω) often are defined as the completion of C0(Ω) in
the Lp(Ω) norm, thus avoiding introduction of measure theory. The theorem
above shows that these two definitions are equivalent.

1.1.2 Operators

Let X,Y be real or complex Banach spaces with the norm denoted by ‖ · ‖ or
‖ · ‖X .

An operator from X to Y is a linear rule A : D(A)→ Y , where D(A) is a
linear subspace of X, called the domain of A. The set of operators from X to
Y is denoted by L(X,Y ). Operators taking their values in the space of scalars
are called functionals. We use the notation (A,D(A)) to denote the operator
A with domain D(A). If A ∈ L(X,X), then we say that A (or (A,D(A))) is
an operator in X.

By L(X,Y ), we denote the space of all bounded operators between X and
Y ; L(X,X) is abbreviated as L(X). The space L(X,Y ) can be made a Banach
space by introducing the norm of an operator X by

‖A‖ = sup
‖x‖≤1

‖Ax‖ = sup
‖x‖=1

‖Ax‖. (1.11)

If (A,D(A)) is an operator in X and Y ⊂ X, then the part of the operator A
in Y is defined as

AY y = Ay (1.12)

on the domain
D(AY ) = {x ∈ D(A) ∩ Y ; Ax ∈ Y }.

A restriction of (A,D(A)) to D ⊂ D(A) is denoted by A|D. For A,B ∈
L(X,Y ), we write A ⊂ B if D(A) ⊂ D(B) and B|D(A) = A.

Two operators A,B ∈ L(X) are said to commute if AB = BA. It is not
easy to extend this definition to unbounded operators due to the difficulties
with defining the domains of the composition. The extension is usually done to
the case when one of the operators is bounded. Thus, an operator A ∈ L(X)
is said to commute with B ∈ L(X) if

BA ⊂ AB. (1.13)

This means that for any x ∈ D(A), Bx ∈ D(A) and BAx = ABx.
We define the image of A by

ImA = {y ∈ Y ; y = Ax for some x ∈ D(A)}

and the kernel of A by
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KerA = {x ∈ D(A); Ax = 0}.

We note a simple result which is frequently used throughout the book.

Proposition 1.7. Suppose that A,B ∈ L(X,Y ) satisfy: A ⊂ B,KerB = {0},
and ImA = Y . Then A = B.

Proof. If D(A) 6= D(B), we take x ∈ D(B) \D(A) and let y = Bx. Because
A is onto, there is x′ ∈ D(A) such that y = Ax′. Because x′ ∈ D(A) ⊂ D(B)
and A ⊂ B, we have y = Ax′ = Bx′ and Bx′ = Bx. Because KerB = {0},
we obtain x = x′ which is a contradiction with x /∈ D(A). ut

Furthermore, the graph of A is defined as

G(A) = {(x, y) ∈ X × Y ; x ∈ D(A), y = Ax}. (1.14)

We say that the operator A is closed if G(A) is a closed subspace of X × Y .
Equivalently, A is closed if and only if for any sequence (xn)n∈N ⊂ D(A), if
limn→∞ xn = x in X and limn→∞Axn = y in Y , then x ∈ D(A) and y = Ax.

An operator A in X is closable if the closure of its graph G(A) is itself a
graph of an operator, that is, if (0, y) ∈ G(A) implies y = 0. Equivalently, A is
closable if and only if for any sequence (xn)n∈N ⊂ D(A), if limn→∞ xn = 0 in
X and limn→∞Axn = y in Y , then y = 0. In such a case the operator whose
graph is G(A) is called the closure of A and denoted by A.

By definition, when A is closable, then

D(A) = {x ∈ X; there is (xn)n∈N ⊂ D(A) and y ∈ X such that

‖xn − x‖ → 0 and ‖Axn − y‖ → 0},
Ax = y.

For any operator A, its domain D(A) is a normed space under the graph norm

‖x‖D(A) := ‖x‖X + ‖Ax‖Y . (1.15)

The operator A : D(A) → Y is always bounded with respect to the graph
norm, and A is closed if and only if D(A) is a Banach space under (1.15).

The differentiation operator

One of the simplest and most often used unbounded, but closed or closable,
operators is the operator of differentiation. If X is any of the spaces C([0, 1])
or Lp([0, 1]), then considering fn(x) := Cnx

n, where Cn = 1 in the former
case and Cn = (np + 1)1/p in the latter, we see that in all cases ‖fn‖ = 1.
However,

‖f ′n‖ = n

(
np+ 1

np+ 1− p

)1/p
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in Lp([0, 1]) and ‖f ′n‖ = n in C([0, 1]), so that the operator of differentiation
is unbounded.

Let us define Tf = f ′ as an unbounded operator on D(T ) = {f ∈ X; Tf ∈
X}, whereX is any of the above spaces. We can easily see that inX = C([0, 1])
the operator T is closed. Indeed, let us take (fn)n∈N such that limn→∞ fn = f
and limn→∞ Tfn = g in X. This means that (fn)n∈N and (f ′n)n∈N converge
uniformly to, respectively, f and g, and from basic calculus f is differentiable
and f ′ = g.

The picture changes, however, in Lp spaces. To simplify the notation, we
take p = 1 and consider the sequence of functions

fn(x) =


0 for 0 ≤ x ≤ 1

2 ,
n
2

(
x− 1

2

)2
for 1

2 < x ≤ 1
2 + 1

n ,
x− 1

2 −
1
2n for 1

2 + 1
n < x ≤ 1.

These are differentiable functions and it is easy to see that (fn)n∈N converges
in L1([0, 1]) to the function f given by f(x) = 0 for x ∈ [0, 1/2] and f(x) =
x− 1/2 for x ∈ (1/2, 1] and the derivatives converge to g(x) = 0 if x ∈ [0, 1/2]
and to g(x) = 1 otherwise. The function f , however, is not differentiable and
so T is not closed. On the other hand, g seems to be a good candidate for the
derivative of f in some more general sense. Let us develop this idea further.
First, we show that T is closable. Let (fn)n∈N and (f ′n)n∈N converge in X to
f and g, respectively. Then, for any φ ∈ C∞0 ((0, 1)), we have, integrating by
parts,

1∫
0

f ′n(x)φ(x)dx = −
1∫

0

fn(x)φ′(x)dx

and because we can pass to the limit on both sides, we obtain

1∫
0

g(x)φ(x)dx = −
1∫

0

f(x)φ′(x)dx. (1.16)

Using the equivalent characterization of closability, we put f = 0, so that

1∫
0

g(x)φ(x)dx = 0

for any φ ∈ C∞0 ((0, 1)) which yields g(x) = 0 almost everywhere on [0, 1].
Hence g = 0 in L1([0, 1]) and consequently T is closable.

The domain of T in L1([0, 1]) is called the Sobolev space W 1
1 ([0, 1]) which

is discussed in more detail in Subsection ??.
These considerations can be extended to hold in any Ω ⊂ Rn. In particular,

we can use (1.16) to generalize the operation of differentiation in the following
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way: we say that a function g ∈ L1,loc(Ω) is the generalised (or distributional)
derivative of f ∈ L1,loc(Ω) of order α, denoted by ∂αx f , if∫

Ω

g(x)φ(x)dx = (−1)|β|
∫
Ω

f(x)∂βxφ(x)dx (1.17)

for any φ ∈ C∞0 (Ω).
This operation is well defined. This follows from the du Bois Reymond

lemma.
From the considerations above it is clear that ∂βx is a closed operator

extending the classical differentiation operator (from C |β|(Ω)). One can also
prove that ∂β is the closure of the classical differentiation operator.

Proposition 1.8. If Ω = Rn, then ∂β is the closure of the classical differen-
tiation operator.

Proof. We use (1.7) and (1.8). Indeed, let f ∈ Lp(Rn) and g = ∂βf ∈ Lp(Rn).
We consider fε := Jε ∗ f → f in Lp. By the Fubini theorem, we prove∫

Rn

(Jε ∗ f)(x)∂βφ(x)dx =

∫
Rn

ωε(y)

∫
Rn

f(x− y)∂βφ(x)dxdy

= (−1)|β|
∫
Rn

ωε(y)

∫
Rn

g(x− y)φ(x)dxdy

= (−1)|β|
∫
Rn

(Jε ∗ g)φ(x)dx

so that ∂βfε = Jε ∗ ∂βf = Jε ∗ g → g as ε → 0 in Lp(Rn). This shows that
action of the distributional derivative can be obtained as the closure of the
classical derivation.

Otherwise the proof is more complicated (see, e.g., [?, Theorem 3.16]) since
we do not know whether we can extend f outside Ω in such a way that the
extension still will have the generalized derivative. We shall discuss it later.

Example 1.9. A non closable operator. Let us consider the space X =
L2((0, 1)) and the operator K : X → Y , Y = X × C (with the Euclidean
norm), defined by

Kv =< v, v(1) > (1.18)

on the domain D(K) consisting of continuous functions on [0, 1]. We have the
following lemma

Lemma 1.10. K is not closable, but has a bounded inverse. ImK is dense in
Y .
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Proof. Let f ∈ C∞([0, 1]) be such that

f(x) =

{
0 for 0 ≤ x < 1/3
1 for 2/3 < x ≤ 1.

To construct such a function, we can consider e.g. Jε ∗ f̄ , where

f̄(x) =

{
1 for 2

3 − ε < x ≤ 1,
0 otherwise

and ε < 1/3. Let vn(x) = f(xn) for 0 ≤ x ≤ 1. Clearly, vn ∈ D(K) and
vn → 0 in L2((0, 1)) as

1∫
0

f2(xn)dx =

1∫
3−1/n

f2(xn)dx =
1

n

1∫
1/3

z−1+1/nf2(z)dz.

However, Kvn =< vn, 1 >→< 0, 1 > 6=< 0, 0 >.
Further, K is one-to-one with K−1(v, v(1)) = v and

‖K−1(v, v(1))‖2 = ‖v‖2 ≤ ‖v‖2 + |v(1)|2.

To prove that ImK is dense in Y , let < y, α >∈ Y . We know that
C∞0 ((0, 1)) ⊂ D(K) is dense in Z = L2((0, 1)). Let (φn) be sequence of C∞0 -
functions which approximate y in L2(0, 1) and put wn = φn + αvn. We have
Kwn =< wn, α >→< y, α >.

Absolutely continuous functions

In one-dimensional spaces the concept of the generalised derivative is closely
related to a classical notion of absolutely continuous function. Let I = [a, b] ⊂
R1 be a bounded interval. We say that f : I → C is absolutely continuous if, for
any ε > 0, there is δ > 0 such that for any finite collection {(ai, bi)}i of disjoint
intervals in [a, b] satisfying

∑
i(bi−ai) < δ, we have

∑
i |f(bi)−f(ai)| < ε. The

fundamental theorem of calculus, [?, Theorem 8.18], states that any absolutely
continuous function f is differentiable almost everywhere, its derivative f ′ is
Lebesgue integrable on [a, b], and f(t) − f(a) =

∫ t
a
f ′(s)ds. It can be proved

(e.g., [?, Theorem VIII.2]) that absolutely continuous functions on [a, b] are
exactly integrable functions having integrable generalised derivatives and the
generalised derivative of f coincides with the classical derivative of f almost
everywhere.

Let us explore this connection. We prove

Theorem 1.11. Assume that u ∈ L1,loc(R) and its generalized derivative Du
also satisfies Du ∈ L1,loc(R). Then there is a continuous representation ũ of
u such that



1.1 Spaces and Operators 13

ũ(x) = C +

x∫
0

Du(t)dt

for some constant C and thus u is differentiable almost everywhere.

Proof. The proof is carried out in three steps. In Step 1, we prove that if

F (x) =

x∫
a

f(y)dy, (1.19)

where f ∈ L1,loc(R), then F is differentiable almost everywhere (it is ab-
solutely continuous) and f is its derivative. In Step 2, we show that if an
L1,loc(R) function has the generalised derivative equal to zero, then it is con-
stant (almost everywhere). Finally, in Step 3, we show that the generalised
derivative of F defined by (1.19) coincides with f , which will allow to draw
the final conclusion.

Step 1. Consider

Ahf(x) =
1

h

x+h∫
x

f(y)dy.

Clearly it is a jointly continuous function on R+ × R. Further, denote

Hf(x) = sup
h>0

Ah|f |(x).

We restrict considerations to some bounded open interval I. Then Ahf(x)→
f(x) if there is no n such that x ∈ Sn = {x; lim suph→0 |Ahf(x) − f(x)| ≥
1/n}. Thus, we have to prove µ(Sn) = 0 for any n.

Then we can assume that f is of bounded support and therefore, by the
Theorem 1.4, for any ε there is a continuous function g with bounded support
with

∫
I
|f(x)− g(x)|dx ≤ ε. From this it follows that

ε ≥
∫
I

|f(x)− g(x)|dx ≥
∫

{x; |f(x)−g(x)|≥1/n)

|f(x)− g(x)|dx

≥ 1

n
µ({x; |f(x)− g(x)| ≥ 1/n}),

that is,
µ({x; |f(x)− g(x)| ≥ 1/n}) ≤ nε. (1.20)

Fix any ε and corresponding g. Then

lim sup
h→0

|Ahf(x)−f(x)| ≤ sup
h>0
|Ah(f(x)−g(x))|+lim

h→0
|Ahg(x)−g(x)|+|f(x)−g(x)|

The second term is zero by the continuity of g. We begin with estimating the
first term. For a given φ consider an open set Eα = {x ∈ I;Hφ(x) > α} (Eα is
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open as it is the sum of the sets {x ∈ I; Ah|φ|(x) > α} over h > 0, where the
latter are open by continuity of Ah|φ|. For any x ∈ Eα we find rx such that
Arx |φ|(x) > α. Consider intervals Ix,rx = (x−rx, x+rx). Thus, Eα is covered
by these intervals. From the theory of Lebesque measure, the measure of any
measurable set S is supremum over measures of compact sets K ⊂ S. Thus,
for any c < µ(Eα) we can find compact set K ⊂ Eα with c < µ(K) ⊂ µ(Eα)
and a finite cover of K by Ixi,rxi , i = 1, . . . , iK . Let us modify this cover in
the following way. Let I1 be the element of maximum length 2r1, centred at
x1, I2 be the largest of the remaining which are disjoint with I1, centred at
x2, and so on, until the collection is exhausted with j = J . According to the
construction, if some Ixi,rxi is not in the selected list, then there is j such that
Ixi,rxi ∩ Ij 6= ∅. Let as take the smallest such j, that is, the largest Ij . Then
2rxi is at most equal to the length of Ij , 2rj , and thus Ixi,rxi ⊂ I∗j where
the latter is the interval with the same centre as Ij but with length 6rj . The

collection of I∗j also covers K and, since Arj |φ|(xj) = r−1j
∫ xj+rj
xj

|φ(y)|dy ≥ α,

we obtain

c ≤ 6

J∑
j=1

rj ≤
6

α

J∑
j=1

xj+rj∫
xj

|φ(y)|dy ≤ 6

α

∫
I

|φ(y)|dy,

since the intervals Ij , and thus (xj , xj+rj), do not overlap (and we can restrict
h to be small enough for the intervals to be in I). Passing with c→ µ(Eα) we
get

µ(Eα) = µ({x ∈ I;Hφ(x) > α}) ≤ 6

α

∫
I

|φ(y)|dy.

Using this estimate for φ = f − g and combining it with (1.20), we see that
for any ε > 0 we have

µ(Sn) ≤ 6nε+ nε

and, since ε is arbitrary, µ(Sn) = 0 for any n. So, we have differentiability of
x→

∫ x
x0
f(y)dy almost everywhere.

Step 2. Next, we observe that if f ∈ L1,loc(R) satisfies∫
R

fφ′dx = 0

for any φ ∈ C∞0 (R), then f = const almost everywhere. To prove this, we
observe that if ψ ∈ C∞0 (R) satisfies

∫
R ψdx = 1, then for any ω ∈ C∞0 (R)

there is φ ∈ C∞0 (R) satisfying

φ′ = ω − ψ
∫
R

ωdx.
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Indeed, h = ω − ψ
∫
R
ωdx is continuous compactly supported with

∫
R hdx = 0

and thus it has a unique compactly supported primitive.
Hence ∫

R

fφ′dx =

∫
R

f(ω − ψ
∫
R

ωdy)dx = 0

or ∫
R

(f −
∫
R

fψdy)ωdx = 0

for any ω ∈ C∞0 (R) and thus f = const almost everywhere.
Step 3. Next, if v(x) =

∫ x
x0
f(y)dy for f ∈ L1,loc(R), then v is continuous

and the generalized derivative of v, Dv, equals f . In the proof, we can put
x0 = 0. Then

∫
R

vφ′dx =

∞∫
0

(

x∫
0

f(y)φ′(x)dy)dx−
0∫

−∞

(

0∫
x

f(y)φ′(x)dy)dx

=

∞∫
0

f(y)(

∞∫
y

φ′(x)dx)dy −
0∫

−∞

f(y)(

0∫
−∞

φ′(x)dx)dy

= −
∫
R

f(y)φ(y)dy.

With these results, let u ∈ L1,loc(R) be the distributional derivative Du ∈

L1,loc(R) and set ū(x) =
x∫
0

Du(t)dt. Then Dū = Du almost everywhere and

hence ū + C = u almost everywhere. Defining ũ = ū + C, we see that ũ is
continuous and has integral representation and thus it is differentiable almost
everywhere.

1.2 Fundamental Theorems of Functional Analysis

The foundation of classical functional analysis are the four theorems which
we formulate and discuss below.

1.2.1 Hahn–Banach Theorem

Theorem 1.12. (Hahn–Banach) Let X be a normed space, X0 a linear sub-
space of X, and x∗1 a continuous linear functional defined on X0. Then there
exists a continuous linear functional x∗ defined on X such that x∗(x) = x∗1(x)
for x ∈ X0 and ‖x∗‖ = ‖x∗1‖.
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The Hahn–Banach theorem has a multitude of applications. For us, the
most important one is in the theory of the dual space to X. The space L(X,R)
(or L(X,C)) of all continuous functionals is denoted by X∗ and referred to as
the dual space. The Hahn–Banach theorem implies that X∗ is nonempty (as
one can easily construct a continuous linear functional on a one-dimensional
space) and, moreover, there are sufficiently many bounded functionals to sep-
arate points of x; that is, for any two points x1, x2 ∈ X there is x∗ ∈ X∗ such
that x∗(x1) = 0 and x∗(x2) = 1. The Banach space X∗∗ = (X∗)∗ is called the
second dual. Every element x ∈ X can be identified with an element of X∗∗

by the evaluation formula
x(x∗) = x∗(x); (1.21)

that is, X can be viewed as a subspace of X∗∗. To indicate that there is some
symmetry between X and its dual and second dual we shall often write

x∗(x) =<x∗, x>X∗×X ,

where the subscript X∗ ×X is suppressed if no ambiguity is possible.
In general X 6= X∗∗. Spaces for which X = X∗∗ are called reflexive. Exam-

ples of reflexive spaces are rendered by Hilbert and Lp spaces with 1 < p <∞.
However, the spaces L1 and L∞, as well as nontrivial spaces of continuous
functions, fail to be reflexive.

Example 1.13. If 1 < p < ∞, then the dual to Lp(Ω) can be identified with
Lq(Ω) where 1/p+ 1/q = 1, and the duality pairing is given by

<f, g>=

∫
Ω

f(x)g(x)dx, f ∈ Lp(Ω), g ∈ Lq(Ω). (1.22)

This shows, in particular, that L2(Ω) is a Hilbert space and the above duality
pairing gives the scalar product in the real case. If L2(Ω) is considered over
the complex field, then in order to get a scalar product, (1.22) should be
modified by taking the complex adjoint of g.

Moreover, as mentioned above, the spaces Lp(Ω) with 1 < p < ∞ are
reflexive. On the other hand, if p = 1, then (L1(Ω))∗ = L∞(Ω) with duality
pairing given again by (1.22). However, the dual to L∞ is much larger than
L1(Ω) and thus L1(Ω) is not a reflexive space.

Another important corollary of the Hahn–Banach theorem is that for each
0 6= x ∈ X there is an element x̄∗ ∈ X∗ that satisfies ‖x̄∗‖ = ‖x‖ and
<x̄∗, x>= ‖x‖. In general, the correspondence x→ x̄∗ is multi-valued: this is
the case in L1-spaces and spaces of continuous functions it becomes, however,
single-valued if the unit ball in X is strictly convex (e.g., in Hilbert spaces or
Lp-spaces with 1 < p <∞; see [?]).

1.2.2 Spanning theorem and its application

A workhorse of analysis is the spanning criterion.
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Theorem 1.14. Let X be a normed space and {yj} ⊂ X. Then z ∈ Y :=
Lin{yj} if and only if

∀x∗∈X∗ < x∗, yj >= 0 implies < x∗, z >= 0.

Proof. In one direction it follows easily from linearity and continuity.
Conversely, assume < x∗, z >= 0 for all x∗ annihilating Y and z 6= Y .

Thus, infy∈Y ‖z − y‖ = d > 0 (from closedness). Define Z = Lin{Y, z} and
define a functional y∗ on Z by < y∗, ξ >=< y∗, y + az >= a. We have

‖y + az‖ = |a|‖y
a

+ z‖ ≥ |a|d

hence

| < y∗, ξ >= |a| ≤ ‖y + az‖
d

= d−1‖ξ‖

and y∗ is bounded. By H.-B. theorem, we extend it to ỹ∗ on X with < ỹ∗, x >=
0 on Y and < ỹ∗, z >= 1 6= 0.

Next we consider the Müntz theorem.

Theorem 1.15. Let (λj)j∈N be a sequence of positive numbers tending to ∞.
The functions {tλj}j∈N span the space of all continuous functions on [0, 1]
that vanish at t = 0 if and only if

∞∑
j=1

1

λj
=∞.

Proof. We prove the ‘sufficient’ part. Let x∗ be a bounded linear functional
that vanishes on all tλj :

< x∗, tλj >= 0, j ∈ N.

For ζ ∈ C such that <ζ > 0, the functions ζ → tζ are analytic functions with
values in C([0, 1]) This can be proved by showing that

lim
C3h→0

tζ+h − tζ

h
= (ln t)tζ

uniformly in t ∈ [0, 1]. Then

f(ζ) =< x∗, tζ >

is a scalar analytic function of ζ with <ζ > 0. We can assume that ‖x∗‖ ≤ 1.
Then

|f(ζ)| ≤ 1

for <ζ > 0 and f(λj) = 0 for any j ∈ N.
Next, for a given N , we define a Blaschke product by
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BN (ζ) =

N∏
j=1

ζ − λj
ζ + λj

.

We see that BN (ζ) = 0 if and only if ζ = λj , |BN (ζ)| → 1 both as <ζ → 0
and |ζ| → ∞. Hence

gN (ζ) =
f(ζ)

BN (ζ)

is analytic in <ζ > 0. Moreover, for any ε′ there is δ0 > 0 such that for any
δ > δ0 we have |BN (ζ)| ≥ 1− ε′ on <ζ = δ and |ζ| = δ−1. Hence for any ε

|gN (ζ)| ≤ 1 + ε

there and by the maximum principle the inequality extends to the interior of
the domain. Taking ε→ 0 we obtain |gN (ζ)| ≤ 1 on <ζ > 0.

Assume now there is k > 0 for which f(k) 6= 0. Then we have

N∏
j=1

∣∣∣∣λj + k

λj − k

∣∣∣∣ ≤ 1

f(k)
.

Note, that this estimate is uniform in N . If we write

λj + k

λj − k
= 1 +

2k

λj − k

then, by λj → ∞ almost all terms bigger then 1. Remembering that bound-
edness of the product is equivalent to the boundedness of the sum

N∑
j=1

1

λj − k

we see that we arrived at contradiction with the assumption. Hence, we must
have f(k) = 0 for any k > 0. This means, however, that any functional that
vanishes on {tλj} vanishes also on tk for any k. But, by the Stone- Weierstrass
theorem, it must vanish on any continuous function (taking value 0 at zero).
Hence, by the spanning criterion, any such continuous function belongs to the
closed linear span of {tλj}.

Non-reflexiveness of C([−1, 1])

Consider the Banach space X = C([−1, 1]) normed with the sup norm. If X
was reflexive, then we could identify X∗∗ with X and thus, for every x∗ ∈ X∗
there would be x ∈ X such that

‖x‖ = 1, < x∗, x >= ‖x∗‖. (1.23)
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Let us define x∗ ∈ X∗ by

< x∗, x >=

1∫
−1

signtx(t)dt.

Then
| < x∗, x > | < 2‖x‖. (1.24)

Indeed, restrict our attention to ‖x‖ = 1. We see then that | < x∗, x > | < 2.
Clearly, for the integral to attain maximum possible values, the integral should
be of opposite values. We can focus on the case when the integral over (−1, 0)
is negative and over (0, 1) is positive and then for the best values, x(t) must
negative on (−1, 0) and positive on (0, 1). Then, each term is at most 1 and
for this x(t) = 1 for t ∈ (0, 1) and x(t) = −1 for t ∈ (−1, 0). But this is
impossible as g is continuous at 0. On the other hand, by choosing x(t) to be
−1 for −1 < t < −ε, 1 for ε < t < 1 and linear between −ε and ε we see that

< x∗, x >= 2− ε

with ‖x‖ = 1. Hence, ‖x∗‖ = 2. However, this is impossible by (1.24).

Norms of functionals

Example 1.16. The existence of an element x̄∗ satisfying <x̄∗, x>= ‖x‖ has an
important consequence for the relation between X and X∗∗ in a nonreflexive
case. Let B,B∗, B∗∗ denote the unit balls in X,X∗, X∗∗, respectively. Because
x∗ ∈ X∗ is an operator over X, the definition of the operator norm gives

‖x∗‖X∗ = sup
x∈B
| <x∗, x> | = sup

x∈B
<x∗, x>, (1.25)

and similarly, for x ∈ X considered as an element of X∗∗ according to (1.21),
we have

‖x‖X∗∗ = sup
x∗∈B∗

| <x∗, x> | = sup
x∗∈B∗

<x∗, x> . (1.26)

Thus, ‖x‖X∗∗ ≤ ‖x‖X . On the other hand,

‖x‖X =<x̄∗, x>≤ sup
x∗∈B∗

<x∗, x>= ‖x‖X∗∗

and
‖x‖X∗∗ = ‖x‖X . (1.27)

Hence, in particular, the identification given by (1.21) is an isometry and X
is a closed subspace of X∗∗.
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First comments on weak convergence

The existence of a large number of functionals over X allows us to intro-
duce new types of convergence. Apart from the standard norm (or strong)
convergence where (xn)n∈N ⊂ X converges to x if

lim
n→∞

‖xn − x‖ = 0,

we define weak convergence by saying that (xn)n∈N weakly converges to x, if
for any x∗ ∈ X∗,

lim
n→∞

<x∗, xn>=<x∗, x> .

In a similar manner, we say that (x∗n)n∈N ⊂ X∗ converges ∗-weakly to x∗ if,
for any x ∈ X,

lim
n→∞

<x∗n, x>=<x∗, x> .

Remark 1.17. It is worthwhile to note that we have a concept of a weakly
convergent or weakly Cauchy sequence if the finite limit limn→∞ <x∗, xn>
exists for any x∗ ∈ X∗. In general, in this case we do not have a limit element.
If every weakly convergent sequence converges weakly to an element of X, the
Banach space is said to be weakly sequentially complete. It can be proved that
reflexive spaces and L1 spaces are weakly sequentially complete. On the other
hand, no space containing a subspace isomorphic to the space c0 (of sequences
that converge to 0) is weakly sequentially complete (see, e.g., [?]).

Remark 1.18. In finite dimensional spaces weak and strong convergence is
equivalent which can be seen by taking x∗ being the coordinate vectors. Then
weak convergence reduces to coordinate-wise convergence.

However, the weak convergence is indeed weaker than the convergence in
norm. For example, consider any orthonormal basis {en}n≥1 of a separable
Hilbert space X. Then ‖en‖ = 1 but for any f ∈ X we know that the series

∞∑
n=1

< f, en > en

converges in X and, equivalently,

∞∑
n=1

| < f, en > |2 <∞.

Thus
lim
n→∞

< f, en >= 0

for any f ∈ X(= X∗) and so (en)n≥0 weakly converges to zero.
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1.2.3 Banach–Steinhaus Theorem

Another fundamental theorem of functional analysis is the Banach–Steinhaus
theorem, or the Uniform Boundedness Principle. It is based on a fundamental
topological results known as the Baire Category Theorem.

Theorem 1.19. Let X be a complete metric space and let {Xn}n≥1 be a
sequence of closed subsets in X. If IntXn = ∅ for any n ≥ 1, then

Int
∞⋃
n=1

Xn = ∅. Equivalently, taking complements, we can state that a count-

able intersection of open dense sets is dense.

Remark 1.20. Baire’s theorem is often used in the following equivalent form:
if X is a complete metric space and {Xn}n≥1 is a countable family of closed

sets such that
∞⋃
n=1

Xn = X, then IntXn 6= ∅ at least for one n.

Chaotic dynamical systems

We assume that X is a complete metric space, called the state space. In gen-
eral, a dynamical system on X is just a family of states (x(t))t∈T parametrized
by some parameter t (time). Two main types of dynamical systems occur in
applications: those for which the time variable is discrete (like the observation
times) and those for which it is continuous.

Theories for discrete and continuous dynamical systems are to some extent
parallel. In what follows mainly we will be concerned with continuous dynam-
ical systems. Also, to fix attention we shall discuss only systems defined for
t ≥ 0, that are sometimes called semidynamical systems. Thus by a contin-
uous dynamical system we will understand a family of functions (operators)
(x(t, ·))t≥0 such that for each t, x(t, ·) : X → X is a continuous function, for
each x0 the function t→ x(t,x0) is continuous with x(0,x0) = x0. Moreover,
typically it is required that the following semigroup property is satisfied (both
in discrete and continuous case)

x(t+ s,x0) = x(t,x(s,x0)), t, s ≥ 0, (1.28)

which expresses the fact that the final state of the system can be obtained as
the superposition of intermediate states.

Often discrete dynamical systems arise from iterations of a function

x(t+ 1,x0) = f(x(t,x0)), t ∈ N, (1.29)

while when t is continuous, the dynamics are usually described by a differential
equation

dx

dt
=
·
x= A(x), x(0) = x0 t ∈ R+. (1.30)
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Let (X, d) be a metric space where, to avoid non-degeneracy, we assume
that X 6= {x(t,p)}t≥0 for any p ∈ X , that is, the space does not degenerates
to a single orbit). We say that the dynamical system (x(t))t≥0 on (X, d) is
topologically transitive if for any two non-empty open sets U, V ⊂ X there is
t0 ≥ 0 such that x(t, U) ∩ V 6= ∅. A periodic point of (x(t))t≥0 is any point
p ∈ X satisfying

x(T,p) = p,

for some T > 0. The smallest such T is called the period of p. We say that the
system has sensitive dependence on initial conditions, abbreviated as sdic, if
there exists δ > 0 such that for every p ∈ X and a neighbourhood Np of p
there exists a point y ∈ Np and t0 > 0 such that the distance between x(t0,p)
and x(t0,y) is larger than δ. This property captures the idea that in chaotic
systems minute errors in experimental readings eventually lead to large scale
divergence, and is widely understood to be the central idea in chaos.

With this preliminaries we are able to state Devaney’s definition of chaos
(as applied to continuous dynamical systems).

Definition 1.21. Let X be a metric space. A dynamical system (x(t))t≥0 in
X is said to be chaotic in X if

1. (x(t))t≥0 is transitive,
2. the set of periodic points of (x(t))t≥0 is dense in X,
3. (x(t))t≥0 has sdic.

To summarize, chaotic systems have three ingredients: indecomposabil-
ity (property 1), unpredictability (property 3), and an element of regularity
(property 2).

It is then a remarkable observation that properties 1. and 2 together imply
sdic.

Theorem 1.22. If (x(t))t≥0 is topologically transitive and has dense set of
periodic points, then it has sdic.

We say that X is non-degenerate, if continuous images of a compact in-
tervals are nowhere dense in X.

Lemma 1.23. Let X be a non-degenerate metric space. If the orbit O(p) =
{x(t,p)}t≥0 is dense in X, then also the orbit O(x(s,p)) = {x(t,p)}t>s is
dense in X, for any s > 0.

Proof. Assume that O(x(s,p)) is not dense in X, then there is an open
ball B such that B ∩ O(x(s,p)) = ∅. However, each point of the ball is a
limit point of the whole orbit O(p), thus we must have {x(t,p)}0≤t≤s =

{x(t,p)}0≤t≤s ⊃ B which contradicts the assumption of nondegeneracy.
To fix terminology we say that a semigroup having a dense trajectory is

called hypercyclic. We note that by continuity O(p) = {x(t,p)}t∈Q, where Q
is the set of positive rational numbers, therefore hypercyclic semigroups can
exist only in separable spaces.
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By Xh we denote the set of hypercyclic vectors, that is,

Xh = {p ∈ X; O(p) is dense in X}

Note that if (x(t))t≥0 has one hypercyclic vector, then it has a dense set of
hypercyclic vectors as each of the point on the orbit O(p) is hypercyclic (by
the first part of the proof above).

Theorem 1.24. Let (x(t))t≥0 be a strongly continuous semigroup of continu-
ous operators (possibly nonlinear) on a complete (separable) metric space X.
The following conditions are equivalent:

1. Xh is dense in X,
2. (x(t))t≥0 is topologically transitive.

Proof. Let as take the set of nonegative rational numbers and enumerate
them as {t1, t2, . . .}. Consider now the family {x(tn)}n∈N. Clearly, the orbit of
p through (x(t))t≥0 is dense in X if and only if the set {x(tn)p}n∈N is dense.

Consider now the covering of X by the enumerated sequence of balls Bm
centered at points of a countable subset of X with rational radii. Since each
x(tm) is continuous, the sets

Gm =
⋃
n∈N

x−1(tn, Bm)

are open. Next we claim that

Xh =
⋂
m∈N

Gm.

In fact, let p ∈ Xh, that is, p is hypercyclic. It means that x(tn,p) visits
each neigbourhood of each point of X for some n. In particular, for each m
there must be n such that x(tn,p) ∈ Bm or p ∈ x−1(tn, Bm) which means
p ∈

⋂
m∈N

Gm.

Conversely, if p ∈
⋂
m∈N

Gm, then for each m there is n such that p ∈

x−1(tn, Bm), that is, x(tn,p) ∈ Bm. This means that {x(tn,p)}n∈N is dense.
The next claim is condition 2. is equivalent to each set Gm being dense

in X. If Gm were not dense, then for some Br, Br ∩ x−1(tn, Bm) = ∅ for any
n. But then x(tn, Br) ∩Bm = ∅ for any n. Since the continuous semigroup is
topologically transitive, we know that there is y ∈ Br such that x(t0,y) ∈ Bm
for some t0. Since Bm is open, x(t,y) ∈ Bm for t from some neighbourhood
of t0 and this neighbourhood must contain rational numbers.

The converse is immediate as for given open U and V we find Bm ⊂ V
and since Gm is dense U ∩ Gm 6= ∅. Thus U ∩ x−1(tn, Bm) 6= ∅ for some n,
hence x(tn, U) ∩Bm 6= ∅.
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So, if (x(t))t≥0 is topologically transitive, then Xh is the intersection of a
countable collection of open dense sets, and by Baire Theorem in a complete
space such an intersection must be still dense, thus Xh is dense.

Conversely, if Xh is dense, then each term of the intersection must be
dense, thus each Gm is dense which yields the transitivity.

Back to the Banach–Steinhaus Theorem

To understand its importance, let us reflect for a moment on possible types of
convergence of sequences of operators. Because the space L(X,Y ) can be made
a normed space by introducing the norm (1.11), the most natural concept of
convergence of a sequence (An)n∈N would be with respect to this norm. Such
a convergence is referred to as the uniform operator convergence. However, for
many purposes this notion is too strong and we work with the pointwise or
strong convergence : the sequence (An)n∈N is said to converge strongly if, for
each x ∈ X, the sequence (Anx)n∈N converges in the norm of Y . In the same
way we define uniform and strong boundedness of a subset of L(X,Y ).

Note that if Y = R (or C), then strong convergence coincides with ∗-weak
convergence.

After these preliminaries we can formulate the Banach–Steinhaus theorem.

Theorem 1.25. Assume that X is a Banach space and Y is a normed space.
Then a subset of L(X,Y ) is uniformly bounded if and only if it is strongly
bounded.

One of the most important consequences of the Banach–Steinhaus theo-
rem is that a strongly converging sequence of bounded operators is always
converging to a linear bounded operator. That is, if for each x there is yx such
that

lim
n→∞

Anx = yx,

then there is A ∈ L(X,Y ) satisfying Ax = yx.

Further comments on weak convergence

Example 1.26. We can use the above result to get a better understanding of
the concept of weak convergence and, in particular, to clarify the relation be-
tween reflexive and weakly sequentially complete spaces. First, by considering
elements of X∗ as operators in L(X,C), we see that every ∗-weakly converg-
ing sequence of functionals converges to an element of X∗ in ∗-weak topology.
On the other hand, for a weakly converging sequence (xn)n∈N ⊂ X, such an
approach requires that xn, n ∈ N, be identified with elements of X∗∗ and thus,
by the Banach–Steinhaus theorem, a weakly converging sequence always has
a limit x ∈ X∗∗. If X is reflexive, then x ∈ X and X is weakly sequentially
complete. However, for nonreflexive X we might have x ∈ X∗∗ \X and then
(xn)n∈N does not converge weakly to any element of X.
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On the other hand, (1.27) implies that a weakly convergent sequence in
a normed space is norm bounded. Indeed, we consider (xn)n∈N such that for
each x∗ ∈ X∗ < x∗, xn > converges. Treating xn as elements of X∗∗, we
see that the numerical sequences < xn, x

∗ > are bounded for each x∗ ∈ X∗.
X∗ is a Banach space (even if X is not). Then (‖xn‖)n≥0 is bounded by the
Banach-Steinhaus theorem.

We can also prove the partial reverse of this inequality: if (xn)n∈N is a
sequence in a normed space X weakly converging to x, then

‖x‖ ≤ lim inf
n→∞

‖xn‖. (1.31)

To prove this, there is x∗ ∈ X∗ such that

‖x∗‖ = 1, | < x∗, x > | = ‖x‖.

Hence

‖x‖ = | < x∗, x > | = | lim
n→∞

< x∗, xn > | ≤ lim inf
n→∞

| < x∗, xn > | lim inf
n→∞

‖xn‖.

However, we point out that a theorem proved by Mazur (e.g., see [?], p.
120) says that if xn → x weakly, then there is a sequence of convex combina-
tions of elements of (xn)n∈N that converges to x in norm. To prove this result,
let us introduce the concept of the support function of a set. For a set M we
define

SM (x∗) = sup
x∈M

< x∗, x > .

A crucial result is

Lemma 1.27. If X is a normed space over R and M is a closed convex subset
of X then z ∈M if and only if < x∗, z >≤ SM (x∗) for any x∗ ∈ X∗.

Proof. If z ∈M, then < x∗, z >≤ sup
x∈M

< x∗, x >= SM (x∗) by definition.

If z /∈ M then, by closedness, there is a ball B(z, r) not intersecting with
M . By the geometric version of the Hahn-Banach theorem, there is a linear
functional z∗ and a constant c such that for any x ∈ M and y ∈ B(z, r) we
have

< z∗, x >≤ c ≤< z∗, y > .

Since y = z + rv, ‖v‖ ≤ 1, we have

c ≤< z∗, z + rx >=< z∗, z > +r < z∗, x > .

Using the fact that inf‖x‖≤1 < z∗, z >= −‖z∗‖, we obtain

c ≤< z∗, z + rx >=< z∗, z > −r‖z∗‖.

On the other hand
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SM (z∗) ≤ c ≤< z∗, z > −r‖z∗‖

which yields
< z∗, z >≥ SM (z∗) + r‖z∗‖ > SM (z∗)

and completes the proof.

With this result we can prove the Mazur theorem.
Let K be a closed convex set and (xn)n∈N be a sequence weakly converging

to x ∈ K. Consider SK(x∗). We have

< x∗, xn >≤ SK(x∗)

for any x∗ ∈ X∗. But this implies

< x∗, x >≤ SK(x∗)

and the result follows by the above lemma.

The Banach-Steinhaus theorem and convergence on subsets

We note another important corollary of the Banach–Steinhaus theorem which
we use in the sequel.

Corollary 1.28. A sequence of operators (An)n∈N is strongly convergent if
and only if it is convergent uniformly on compact sets.

Proof. It is enough to consider convergence to 0. If (An)n∈N converges
strongly, then by the Banach–Steinhaus theorem, a = supn∈N ‖An‖ < +∞.
Next, if Ω ⊂ X is compact, then for any ε we can find a finite set Nε =
{x1, . . . , xk} such that for any x ∈ Ω there is xi ∈ Nε with ‖x − xi‖ ≤ ε/2a.
Because Nε is finite, we can find n0 such that for all n > n0 and i = 1, . . . , k
we have ‖Anxi‖ ≤ ε/2 and hence

‖Anx‖ = ‖Anxi‖+ a‖x− xi‖ ≤ ε

for any x ∈ Ω. The converse statement is obvious. ut

We conclude this unit by presenting a frequently used result related to the
Banach–Steinhaus theorem.

Proposition 1.29. Let X,Y be Banach spaces and (An)n∈N ⊂ L(X,Y ) be a
sequence of operators satisfying supn∈N ‖An‖ ≤ M for some M > 0. If there
is a dense subset D ⊂ X such that (Anx)n∈N is a Cauchy sequence for any
x ∈ D, then (Anx)n∈N converges for any x ∈ X to some A ∈ L(X,Y ).

Proof. Let us fix ε > 0 and y ∈ X. For this ε we find x ∈ D with ‖x−y‖ < ε/M
and for this x we find n0 such that ‖Anx−Amx‖ < ε for all n,m > n0. Thus,

‖Any −Amy‖ ≤ ‖Anx−Amx‖+ ‖An(x− y)‖+ ‖Am(x− y)‖ ≤ 3ε.

Hence, (Any)n∈N is a Cauchy sequence for any y ∈ X and, because Y is
a Banach space, it converges and an application of the Banach–Steinhaus
theorem ends the proof. ut
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Application–limits of integral expressions

Consider an equation describing growth of, say, cells

∂N

∂t
+
∂(g(m)N)

∂m
= −µ(m)N(t,m), m ∈ (0, 1), (1.32)

with the boundary condition

g(0)N(t, 0) = 0 (1.33)

and with the initial condition

N(0,m) = N0(m) for m ∈ [0, 1]. (1.34)

Here N(m) denotes cells’ density with respect to their size/mass and we con-
sider the problem in L1([0, 1]).

Consider the ‘formal’ equation for the stationary version of the equation
(the resolvent equation)

λN(m) + (g(m)N(m))′ + µ(m)N(m) = f(m) ∈ L1([0, 1]),

whose solution is given by

Nλ(m) =
e−λG(m)−Q(m)

g(m)

∫ m

0

eλG(s)+Q(s)f(s) ds (1.35)

where G(m) =
∫m
0

(1/g(s)) ds and Q(m) =
∫m
0

(µ(s)/g(s)) ds. To shorten no-
tation we denote

e−λ(m) := e−λG(m)−Q(m), eλ(m) := eλG(m)+Q(m).

Our aim is to show that g(m)Nλ(m)→ 0 as m→ 1− provided 1/g or µ is not
integrable close to 1. If the latter condition is satisfied, then eλ(m)→∞ and
e−λ(m)→ 0 as m→ 1−.

Indeed, consider the family of functionals {ξm}m∈[1−ε,1) for some ε > 0
defined by

ξmf = e−λ(m)

∫ m

0

eλ(s)f(s) ds

for f ∈ L1[0, 1]. We have

|ξmf | ≤ e−λ(m)

∫ m

0

eλ(s)|f(s)| ds ≤
∫ 1

0

|f(s)| ds

on account of monotonicity of eλ. Moreover, for f with support in [0, 1 − δ]
with any δ > 0 we have limm→1− ξmf = 0 and, by Proposition 1.29, the above
limit extends by density for any f ∈ L1[0, 1].



28 1 Basic Facts from Functional Analysis and Banach Lattices

1.2.4 Weak compactness

In finite dimensional spaces normed spaces we have Bolzano-Weierstrass theo-
rem stating that from any bounded sequence of elements of Xn one can select
a convergent subsequence. In other words, a closed unit ball in Xn is compact.

There is no infinite dimensional normed space in which the unit ball is
compact.

Weak compactness comes to the rescue. Let us begin with (separable)
Hilbert spaces.

Theorem 1.30. Each bounded sequence (un)n∈N in a separable Hilbert space
X has a weakly convergent subsequence.

Proof. Let {vk}k∈N be dense inX and consider numerical sequences ((un, vk))n∈N
for any k. From Banach-Steinhaus theorem and

|(un, vk)| ≤ ‖un‖‖vk‖

we see that for each k these sequences are bounded and hence each has a con-
vergent subsequence. We use the diagonal procedure: first we select (u1n)n∈N
such that (u1n, v1) → a1, then from (u1n)n∈N we select (u2n)n∈N such that
(u2n, v2) → a2 and continue by induction. Finally, we take the diagonal se-
quence wn = unn which has the property that (wn, vk) → ak. This follows
from the fact that elements of (wn)n∈N belong to (ukn for n ≥ k. Since
{vk}k∈N is dense in X and (un)n∈N is norm bounded, Proposition 1.29 implies
((wn, v))n∈N converges to, say, a(v) for any v ∈ X and v → a(v) is a bounded
(anti) linear functional on X. By the Riesz representation theorem, there is
w ∈ X such that a(v) = (v, w) and thus wn ⇀ w.

If X is not separable, then we can consider Y = Lin{un}n∈N which is
separable and apply the above theorem in Y getting an element w ∈ Y for
which

(wn, v)→ (w, v), v ∈ Y.

Let now z ∈ X. By orthogonal decomposition, z = v + v⊥ by linearity and
continuity (as w ∈ Y )

(wn, z) = (wn, v)→ (w, v) = (w, z)

and so wn ⇀ w in X.

Corollary 1.31. Closed unit ball in X is weakly sequentially compact.

Proof. We have
(v, wn)→ (v, w), n→∞

for any v. We can assume w = 0 We prove that for any k there are indices
n1, . . . , nk such that

k−1(wn1
+ . . .+ wnk)→ 0
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in X. Since (w1, wn)→ 0, we set n1 = 1 and select n2 such that |(wn1
, wn2

)| ≤
1/2. Then we select n3 such that |(wn1

, wn3
)| ≤ 1/2 and |(wn2

, wn3
)| ≤ 1/2

and further, nk such that |(wn1
, wnk)| ≤ 1/(k−1), . . . , |(wnk−1

, wnk)| ≤ 1/(k−
1). Since ‖wn‖ ≤ C, we obtain

‖k−1(wn1
+ . . .+ wnk)‖2

≤ k−2
 k∑
j=1

‖wnj‖2 + 2

k−1∑
j=1

(wnj , wnk) + 2

k−2∑
j=1

(wnj , wnk−1
) + . . .


≤ k−2(kC2 + 2(k − 1)(k − 1)−1 + 2(k − 2)(k − 2)−1 + . . . 2)

≤ k−1(C2 + 2)

Note that this result shows that any closed convex set in X is weakly
sequentially compact. What about other spaces?

Practically the same proof (using the fact that a closed subspace of a
reflexive space is reflexive) shows that if a Banach space is reflexive, then
the closed unit ball is weakly sequentially compact. The converse is also true
(Eberlain).

Helly’s theorem: If X is a separable Banach space and U = X∗, then
the closed unit ball in U is weak∗ sequentially compact. Alaoglu removed
separability.

1.2.5 The Open Mapping Theorem

The Open Mapping Theorem is fundamental for inverting linear operators.
Let us recall that an operator A : X → Y is called surjective if ImA = Y and
open if the set AΩ is open for any open set Ω ⊂ X.

Theorem 1.32. Let X,Y be Banach spaces. Any surjective A ∈ L(X,Y ) is
an open mapping.

One of the most often used consequences of this theorem is the Bounded
Inverse Theorem.

Corollary 1.33. If A ∈ L(X,Y ) is such that KerA = {0} and ImA = Y ,
then A−1 ∈ L(Y,X).

The corollary follows as the assumptions on the kernel and the image
ensure the existence of a linear operator A−1 defined on the whole Y . The
operator A−1 is continuous by the Open Mapping Theorem, as the preimage
of any open set in X through A−1, that is, the image of this set through A,
is open.

Throughout the book we are faced with invertibility of unbounded opera-
tors. An operator (A,D(A)) is said to be invertible if there is a bounded oper-
ator A−1 ∈ L(Y,X) such that A−1Ax = x for all x ∈ D(A) and A−1y ∈ D(A)
with AA−1y = y for any y ∈ Y . We have the following useful conditions for
invertibility of A.
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Proposition 1.34. Let X,Y be Banach spaces and A ∈ L(X,Y ). The follow-
ing assertions are equivalent.

(i) A is invertible;
(ii) ImA = Y and there is m > 0 such that ‖Ax‖ ≥ m‖x‖ for all x ∈ D(A);
(iii) A is closed, ImA = Y and there is m > 0 such that ‖Ax‖ ≥ m‖x‖ for

all x ∈ D(A);
(iv) A is closed, ImA = Y , and KerA = {0}.

Proof. The equivalence of (i) and (ii) follows directly from the definition of
invertibility. By Theorem 1.35, the graph of any bounded operator is closed
and because the graph of the inverse is given by

G(A) = {(x, y); (y, x) ∈ G(A−1)},

we see that the graph of any invertible operator is closed and thus any such
an operator is closed. Hence, (i) and (ii) imply (iii) and (iv). Assume now
that (iii) holds. G(A) is a closed subspace of X × Y , therefore it is a Banach
space itself. The inequality ‖Ax‖ ≥ m‖x‖ implies that the mapping G(A) 3
(x,Ax) → Ax ∈ ImA is an isomorphism onto ImA and hence ImA is also
closed. Thus ImA = Y and (ii) follows. Finally, if (iv) holds, then Corollary
1.33 can be applied to A from D(A) (with the graph norm) to Y to show that
A−1 ∈ L(Y,D(A)) ⊂ L(Y,X). ut

Norm equivalence. An important result is that if X is a Banach space with
respect to two norms ‖ · ‖1 and ‖ · ‖2 and there is C such that ‖x‖1 ≤ C‖x‖2,
then both norms are equivalent.

The Closed Graph Theorem

It is easy to see that a bounded operator defined on the whole Banach space X
is closed. That the inverse also is true follows from the Closed Graph Theorem.

Theorem 1.35. Let X,Y be Banach spaces. An operator A ∈ L(X,Y ) with
D(A) = X is bounded if and only if its graph is closed.

We can rephrase this result by saying that an everywhere defined closed
operator in a Banach space must be bounded.

Proof. Indeed, consider on X two norms, the original norm ‖·‖ and the graph
norm

‖x‖D(A) = ‖x‖+ ‖Ax‖.

By closedness, X is a Banach space with respect to D(A) and A is continuous
in the norm ‖ · ‖D(A). Hence, the norms are equivalent and A is continuous in
the norm ‖ · ‖.
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To give a nice and useful example of an application of the Closed Graph
Theorem, we discuss a frequently used notion of relatively bounded operators.
Let two operators (A,D(A)) and (B,D(B)) be given. We say that B is A-
bounded if D(A) ⊂ D(B) and there exist constants a, b ≥ 0 such that for any
x ∈ D(A),

‖Bx‖ ≤ a‖Ax‖+ b‖x‖. (1.36)

Note that the right-hand side defines a norm on the space D(A), which is
equivalent to the graph norm (1.15).

Corollary 1.36. If A is closed and B closable, then D(A) ⊂ D(B) implies
that B is A-bounded.

Proof. If A is a closed operator, then D(A) equipped with the graph norm is
a Banach space. If we assume that D(A) ⊂ D(B) and (B,D(B)) is closable,
then D(A) ⊂ D(B). Because the graph norm on D(A) is stronger than the
norm induced from X, the operator B, considered as an operator from D(A)
to X is everywhere defined and closed. On the other hand, B|D(A) = B;
hence B : D(A) → X is bounded by the Closed Graph Theorem and thus B
is A-bounded. ut

1.3 Hilbert space methods

One of the most often used theorems of functional analysis is the Riesz rep-
resentation theorem.

Theorem 1.37 (Riesz representation theorem). If x∗ is a continuous
linear functional on a Hilbert space H, then there is exactly one element y ∈ H
such that

< x∗, x >= (x, y). (1.37)

1.3.1 To identify or not to identify–the Gelfand triple

Riesz theorem shows that there is a canonical isometry between a Hilbert
space H and its dual H∗. It is therefore natural to identify H and H∗ and is
done so in most applications. There are, however, situations when it cannot
be done.

Assume that H is a Hilbert space equipped with a scalar product (·, ·)H
and that V ⊂ H is a subspace of H which is a Hilbert space in its own
right, endowed with a scalar product (·, ·)V . Assume that V is densely and
continuously embedded in H that is V = H and ‖x‖H ≤ c‖x‖V , x ∈ V , for
some constant c. There is a canonical map T : H∗ → V ∗ which is given by
restriction to V of any h∗ ∈ H∗:

< Th∗, v >V ∗×V =< h∗, v >H∗×H , v ∈ V.
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We easily see that
‖Th∗‖V ∗ ≤ C‖h∗‖H∗ .

Indeed

‖Th∗‖V ∗ = sup
‖v‖V ≤1

| < Th∗, v >V ∗×V | = sup
‖v‖V ≤1

| < h∗, v >H∗×H |

≤ ‖h∗‖H∗ sup
‖v‖V ≤1

‖v‖H ≤ c‖h∗‖H∗ .

Further, T is injective. For, if Th∗1 = Th∗2, then

0 =< Th∗1 − Th∗2, v >V ∗×V =< h∗1 − h∗2, v >H∗×H

for all v ∈ V and the statement follows from density of V in H. Finally, the
image of TH∗ is dense in V ∗. Indeed, let v ∈ V ∗∗ be such that < v, Th∗ >= 0
for all h∗ ∈ H∗. Then, by reflexivity,

0 =< v, Th∗ >V ∗∗×V ∗=< Th∗, v >V ∗×V =< h∗, v >H∗×H , h∗ ∈ H∗

implies v = 0.
Now, if we identify H∗ with H by the Riesz theorem and using T as the

canonical embedding from H∗ into V ∗, one writes

V ⊂ H ' H∗ ⊂ V ∗

and the injections are dense and continuous. In such a case we say that H is
the pivot space. Note that the scalar product in H coincides with the duality
pairing < ·, · >V ∗×V :

(f, g)H =< f, g >V ∗×V , f ∈ H, g ∈ V.

Remembering now that V is a Hilbert space with scalar product (·, ·)V we
see that identifying also V with V ∗ would lead to an absurd – we would have
V = H = H∗ = V ∗. Thus, we cannot identify simultaneously both pairs.
In such situations it is common to identify the pivot space H with its dual
H∗ bur to leave V and V ∗ as separate spaces with duality pairing being an
extension of the scalar product in H.

An instructive example is H = L2([0, 1], dx) (real) with scalar product

(u, v) =

1∫
0

u(x)v(x)dx

and V = L2([0, 1], wdx) with scalar product

(u, v) =

1∫
0

u(x)v(x)w(x)dx,
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where w is a nonnegative unbounded measurable function. Then it is useful
to identify V ∗ = L2([0, 1], w−1dx) and

< f, g >V ∗×V =

1∫
0

f(x)g(x)dx ≤
1∫

0

f(x)
√
w(x)

g(x)√
w(x)

dx ≤ ‖f‖V ‖g‖V ∗ .

1.3.2 The Radon-Nikodym theorem

Let µ and ν be finite nonnegative measures on the same σ-algebra in Ω. We
say that ν is absolutely continuous with respect to µ if every set that has
µ-measure 0 also has ν measure 0.

Theorem 1.38. If ν is absolutely continuous with respect to µ then there is
an integrable function g such that

ν(E) =

∫
E

gdµ, (1.38)

for any µ-measurable set E ⊂ Ω.

Proof. Assume for simplicity that µ(Ω), ν(Ω) <∞. Let H = L2(Ω, dµ+ dν)
on the field of reals. Schwarz inequality shows that if f ∈ H, then f ∈ L1(dµ+
dν), then the linear functional

< x∗, f >:=

∫
Ω

fdµ

is bounded on H. Indeed

| < x∗, f > | ≤
∫
Ω

1·fdµ ≤
√
µ(Ω)

√√√√∫
Ω

f2dµ ≤
√
µ(Ω)

√√√√∫
Ω

f2d(µ+ ν) ≤
√
µ(Ω)‖f‖H .

Thus, by the Riesz theorem, there is y ∈ H such that∫
Ω

fdµ =

∫
Ω

fyd(µ+ ν).

Thus we obtain ∫
Ω

f(1− y)dµ =

∫
Ω

fydν.

We claim that 0 < y ≤ 1 almost everywhere with respect to µ (and thus ν).
Consider the set F = {x ∈ Ω; y ≤ 0} and f as the characteristic function of
F , f = χF so that
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F

(1− y)dµ =

∫
F

ydν.

If µ(F ) > 0, then the left hand side is bigger that µ(F ) > 0 and the right
hand side is at most 0 (as it may happen that ν(F ) = 0 – absolute continuity
works only one way). Thus, µ(F ) = 0 and y > 0 µ (and ν) almost everywhere.
Let now E = {x ∈ Ω; y > 0} and f be the characteristic function of E so
that ∫

E

(1− y)dµ =

∫
E

ydν.

Now, if µ(E) > 0, then the left hand side is strictly negative whereas the
right hand side is at least 0 (if ν(E) = 0). Thus, µ(E) = 0 and y ≤ 1 µ
(and ν) almost everywhere. We can modify y on a µ measure zero set so that
0 < y ≤ 1 everywhere so that

g =
1− y
y

is a finite nonnegative function on Ω. Let us denote

En = {x ∈ Ω; y(x) ≥ n−1}.

The sequence (En)n∈N is a nested sequence with
⋂
En = ∅ as y is positive

everywhere. Thus we ca write χEn = yfn for some fn ∈ H. Indeed, 0 ≤
fn ≤ χEn/y ≤ n so that f is bounded and thus square integrable for each n.
Therefore we can write∫

Ω

χEny
−1(1− y)dµ =

∫
Ω

χEndν.

Since χEn ↗ 1 everywhere on Ω, using the dominated convergence theorem
we obtain that g = y−1(1−y) is integrable on Ω. Taking arbitrary measurable
subset E ⊂ Ω and its characteristic function, we obtain

ν(E) =

∫
E

dν =

∫
E

gdµ.

1.3.3 Projection on a convex set

Corollary 1.39. Let K be a closed convex subset of a real Hilbert space H.
For any x ∈ H there is a unique y ∈ K such that

‖x− y‖ = inf
z∈K
‖x− z‖. (1.39)

Moreover, y ∈ K is a unique solution to the variational inequality

(x− y, z − y) ≤ 0 (1.40)

for any z ∈ K.
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Proof. Let d = inf
z∈K
‖x−z‖. We can assume x /∈ K and so d > 0. Consider

f(z) = ‖x − z‖, z ∈ K and consider a minimizing sequence (zn)n∈N, zn ∈ K
such that d ≤ f(zn) ≤ d + 1/n. By the definition of f , (zn)n∈N is bounded
and thus it contains a weakly convergent subsequence, say (ζn)n∈N. Since K
is closed and convex, by Corollary 1.31, ζn ⇀ y ∈ K. Further we have

|(h, x−y)| = lim
n→∞

|(h, x−ζn)| ≤ ‖h‖ lim inf
n→∞

‖x−ζn‖ ≤ ‖h‖ lim inf
n→∞

d+
1

n
= ‖h‖d

for any h ∈ H and thus, taking supremum over ‖h‖ ≤ 1, we get f(y) ≤ d
which gives existence of a minimizer.

To prove equivalence of (1.40) and (1.39) assume first that y ∈ K satisfies
(1.39) and let z ∈ K. Then, from convexity, v = (1− t)y+ tz ∈ K for t ∈ [0, 1]
and thus

‖x− y‖ ≤ ‖x− ((1− t)y + tz)‖ = ‖(x− y)− t(z − y)‖

and thus

‖x− y‖2 ≤ ‖x− y‖2 − 2t(x− y, z − y) + t2‖z − y‖2.

Hence
t‖z − y‖2 ≥ 2(x− y, z − y)

for any t ∈ (0, 1] and thus, passing with t→ 0, (x− y, z − y) ≤ 0. Conversely,
assume (1.40) is satisfied and consider

‖x− y‖2 − ‖x− z‖2 = (x− y, x− y)− (x− z, x− z)
= 2(x, z)− 2(x, y) + 2(y, y)− 2(y, z) + 2(y, z)− (y, y)

= 2(x− y, z − y)− (y − z, y − z) ≤ 0

hence
‖x− y‖ ≤ ‖x− z‖

for any z ∈ K.
For uniqueness, let y1, y2 satisfy

(x− y1, z − y1) ≤ 0, (x− y2, z − y2) ≤ 0, z ∈ H.

Choosing z = y2 in the first inequality and z = y1 in the second and adding
them, we get ‖y1 − y2‖2 ≤ 0 which implies y1 = y2.

We call the operator assigning to any x ∈ K the element y ∈ K satisfying
(1.39) the projection onto K and denote it by PK .

Proposition 1.40. Let K be a nonempty closed and convex set. Then PK is
non expansive mapping.
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Proof. Let yi = PKxi, i = 1, 2. We have

(x1 − y1, z − y1) ≤ 0, (x2 − y2, z − y2) ≤ 0, z ∈ H

so choosing, as before, z = y2 in the first and z = y1 in the second inequality
and adding them together we obtain

‖y1 − y2‖2 ≤ (x1 − x2, y1 − y2),

hence ‖PKx1 − PKx2‖ ≤ ‖x1 − x2‖.

1.3.4 Theorems of Stampacchia and Lax-Milgram

1.3.5 Motivation

Consider the Dirichlet problem for the Laplace equation in Ω ⊂ Rn

−∆u = f in Ω, (1.41)

u|∂Ω = 0. (1.42)

Assume that there is a solution u ∈ C2(Ω)∩C(Ω̄). If we multiply (1.41) by a
test function φ ∈ C∞0 (Ω) and integrate by parts, then we obtain the problem∫

Ω

∇u · ∇φdx =

∫
Ω

fφdx. (1.43)

Conversely, if u satisfies (1.43), then it is a distributional solution to (1.41).
Moreover, if we consider the minimization problem for

J(u) =
1

2

∫
Ω

|∇u|2dx−
∫
Ω

fudx

over K = {u ∈ C2(Ω); u|∂Ω = 0} and if u is a solution to this problem then
for any ε ∈ R and φ ∈ C∞0 (Ω) we have

J(u+ εφ) ≥ J(u),

then we also obtain (1.43). The question is how to obtain the solution.
In a similar way, we consider the obstacle problem, to minimize J over

K = {u ∈ C2(Ω); u|∂Ω = 0, u ≥ g} over some continuous function g
satisfying g|∂Ω < 0. Note that K is convex. Again, if u ∈ K is a solution then
for any ε > 0 and φ ∈ K we obtain that u+ ε(φ− u) = (1− ε)u+ εφ is in K
and therefore

J(u+ ε(φ− u)) ≥ J(u).

Here, we obtain only
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Ω

∇u · ∇(φ− u)dx ≥
∫
Ω

f(φ− u)dx. (1.44)

for any φ ∈ K. For twice differentiable u we obtain∫
Ω

∆u(φ− u)dx ≥
∫
Ω

f(φ− u)dx

and choosing φ = u+ ψ, 0 ≤ ψ ∈ C∞0 (Ω) we get

−∆u ≥ f

almost everywhere on Ω. As u is continuous, the set N = {x ∈ Ω; u(x) >
g(x)} is open. Thus, taking ψ ∈ C∞0 (N), we see that for sufficiently small
ε > 0, u± εφ ∈ K. Then, on N

−∆u = f

Summarizing, for regular solutions the minimizer satisfies

−∆u ≥ f

u ≥ g

(∆u+ f)(u− g) = 0

on Ω.

Hilbert space theory

We begin with the following definition.

Definition 1.41. Let H be a Hilbert space. A bilinear form a : H ×H → R
is said to be

(i) continuous of there is a constant C such that

|a(x, y)| ≤ C‖x‖‖y‖, x, y ∈ H;

coercive if there is a constant α > 0 such that

a(x, x) ≥ α‖x‖2.

Note that in the complex case, coercivity means |a(x, x)| ≥ α‖x‖2.

Theorem 1.42. Assume that a(·, ·) is a continuous coercive bilinear form on
a Hilbert space H. Let K be a nonempty closed and convex subset of H. Then,
given any φ ∈ H∗, there exists a unique element x ∈ K such that for any
y ∈ K
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a(x, y − x) ≥< φ, y − x >H∗×H (1.45)

Moreover, if a is symmetric, then x is characterized by the property

x ∈ K and
1

2
a(x, x)− < φ, x >H∗×H= min

y∈K

1

2
a(y, y)− < φ, y >H∗×H .

(1.46)

Proof. First we note that from Riesz theorem, there is f ∈ H such that
< φ, y >H∗×H= (f, y) for all y ∈ H. Now, if we fix x ∈ H, then y → a(x, y) is
a continuous linear functional on H. Thus, again by the Riesz theorem, there
is an operator A : H → H satisfying a(x, y) = (Ax, y). Clearly, A is linear
and satisfies

‖Ax‖ ≤ C‖x‖, (1.47)

(Ax, x) ≥ α‖x‖2. (1.48)

Indeed,
‖Ax‖ = sup

‖y‖=1

|(Ax, y)| ≤ C‖x‖ sup
‖y‖=1

‖y‖,

and (1.48) is obvious.
Problem (1.45) amounts to finding x ∈ K satisfying, for all y ∈ K,

(Ax, y − x) ≥ (f, y − x). (1.49)

Let us fix a constant ρ to be determined later. Then, multiplying both sides
of (1.49) by ρ and moving to one side, we find that (1.49) is equivalent to

(ρf − ρAx+ x− x, y − x) ≤ 0. (1.50)

Here we recognize the equivalent formulation of the projection problem (1.40),
that is, we can write

x = PK(ρf − ρAx+ x) (1.51)

This is a fixed point problem for x inK. Denote Sy = PK(ρf−ρAy+y) Clearly
S : K → K as it is a projection onto K and K, being closed, is a complete
metric space in the metric induced from H. Since PK is nonexpansive, we
have

‖Sy1 − Sy2‖ ≤ ‖(y1 − y2)− ρ(Ay1 −Ay2)‖

and thus

‖Sy1 − Sy2‖2 = ‖y1 − y2‖2 − 2ρ(Ay1 −Ay2, y1 − y2) + ρ2‖Ay1 −Ay2‖2

≤ ‖y1 − y2‖2(1− 2ρα+ ρ2C2)

We can choose ρ in such a way that k2 = 1− 2ρα + ρ2C2 < 1 we see that S
has a unique fixed point in K.
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Assume now that a is symmetric. Then (x, y)1 = a(x, y) defines a new
scalar product which defines an equivalent norm ‖x‖1 =

√
a(x, x) on H.

Indeed, by continuity and coerciveness

‖x‖1 =
√
a(x, x) ≤

√
C‖x‖

and
‖x‖ =

√
a(x, x) ≥

√
α‖x‖.

Using again Riesz theorem, we find g ∈ H such that

< φ, y >H∗×H= a(g, y)

and then (1.45) amounts to finding x ∈ K such that

a(g − x, y − x) ≤ 0

for all y ∈ K but this is nothing else but finding projection x onto K with
respect to the new scalar product. Thus, there is a unique x ∈ K√

a(g − x, g − x) = min
y∈K

√
a(g − x, g − x).

However, expanding, this is the same as finding minimum of the function

y → a(g−y, g−y) = a(g, g)+a(y, y)−2a(g, y) = a(y, y)−2 < φ, y >H∗×H +a(g, g).

Taking into account that a(g, g) is a constant, we see that x is the unique
minimizer of

y → 1

2
a(y, y)− < φ, y >H∗×H .

Corollary 1.43. Assume that a(·, ·) is a continuous coercive bilinear form on
a Hilbert space H. Then, given any φ ∈ H∗, there exists a unique element
x ∈ H such that for any y ∈ H

a(x, y) =< φ, y >H∗×H (1.52)

Moreover, if a is symmetric, then x is characterized by the property

x ∈ H and
1

2
a(x, x)− < φ, x >H∗×H= min

y∈H

1

2
a(y, y)− < φ, y >H∗×H .

(1.53)

Proof. We use the Stampacchia theorem with K = H. Then there is a unique
element x ∈ H satisfying

a(x, y − x) ≥< φ, y − x >H∗×H .

Using linearity, this must hold also for
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a(x, ty − x) ≥< φ, ty − x >H∗×H .

for any t ∈ R, v ∈ H. Factoring out t, we find

ta(x, y − xt−1) ≥ t < φ, y − xt−1 >H∗×H .

and passing with t→ ±∞, we obtain

a(x, y) ≥< φ, y >H∗×H , a(x, y) ≤< φ, y >H∗×H .

Remark 1.44. Elementary proof of the Lax–Milgram theorem. As we noted
earlier

a(x, y) =< φ, y >H∗×H

can be written as the equation

(Ax, y) = (f, y)

for any y ∈ H, where A : H → H, ‖Ax‖ ≤ C‖x‖ and (Ax, x) ≥ α‖x‖2. From
the latter, Ax = 0 implies x = 0, hence A is injective. Further, if y = Ax,
x = A−1y and

‖x‖2 = ‖A−1y‖‖x‖ ≤ α−1(y, x) ≤ α−1‖y‖‖x‖

so A−1 is bounded. This shows that the range of A, R(A), is closed. Indeed,
if (yn)n∈N , yn ∈ R(A), yn → y, then (yn)n∈N is Cauchy, but then (xn)n∈N,
xn = A−1 is also Cauchy and thus converges to some x ∈ A. But then, from
continuity of A, Ax = y. On the other hand, R(A) is dense. For, if for some
v ∈ H we have 0 = (Ax, v) for any x ∈ H, we can take v = x and

0 = (Av, v) ≥ α‖v‖2

so v = 0 and so R(A) is dense.

1.3.6 Dirchlet problem

Let us recall the variational formulation of the Dirichlet problem: find u ∈?
such that ∫

Ω

∇u · ∇φdx =

∫
Ω

fφdx. (1.54)

for all C∞0 (Ω). We also recall the associated minimization problem for

J(u) =
1

2

∫
Ω

|∇u|2dx−
∫
Ω

fudx (1.55)

over some closed subspace K = {u ∈?}.
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Let us consider the space H = L2(Ω), Ω ⊂ Rn bounded, with the scalar
product

(u, v)0 =

∫
Ω

u(x)v(x)dx.

We know that C∞0 (Ω)
H

= H. The relation (1.54) suggests that we should
consider another scalar product, initially on C∞0 (Ω), given by

(u, v)0,1 =

∫
Ω

∇u(x)∇v(x)dx.

Note that due to the fact that u, v have compact supports, this is a well defined
scalar product as

0 = (u, u)0,1 =

∫
Ω

|∇u(x)|2dx

implies uxi = 0 for all xi, i = 1, . . . , n hence u = const and thus u ≡ 0. Note
that this is not a scalar product on a space C∞(Ω̄).

A fundamental role in the theory is played by the Zaremba - Poincarè-
Friedrichs lemma.

Lemma 1.45. There is a constant d such that for any u ∈ C∞0 (Ω)

‖u‖0 ≤ d‖u‖0,1. (1.56)

Proof. Let R be a box [a1, b1]× . . .× [an, bn] such that Ω̄ ⊂ R and extend u
by zero to R. Since u vanishes at the boundary of R, for any x = (x1, . . . , xn)
we have

u(x) =

xi∫
ai

uxi(x1, . . . , t, . . .)dt

and, by Schwarz inequality,

u2(x) =

 xi∫
ai

uxi(x1, . . . , t, . . . , xn)dt

2

≤

 xi∫
ai

1dt

 xi∫
ai

u2xi(x1, . . . , t, . . . , xn)dt


≤ (bi − ai)

bi∫
ai

u2xi(x1, . . . , t, . . . , xn)dt

for any x ∈ R. Integrating over R we obtain∫
R

u2(x)dx ≤ (bi − ai)2
∫
R

u2xi(x)dx.
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This can be re-written∫
Ω

u2(x)dx ≤ (bi − ai)2
∫
Ω

u2xi(x)dx ≤ c
∫
Ω

|∇u(x)|2dx

We see that the lemma remains valid if Ω is bounded just in one direction.

Let us define
o

W 1
2(Ω) as the completion of C∞0 (Ω) in the norm ‖ · ‖0,1. We

have

Theorem 1.46. The space
o

W 1
2(Ω) is a separable Hilbert space which can

be identified with a subspace continuously and densely embedded in L2(Ω).

Every v ∈
o

W 1
2(Ω) has generalized derivatives Dxiv ∈ L2(Ω). Furthermore, the

distributional integration by parts formula∫
Ω

Dxivudx = −
∫
Ω

vDxiudx (1.57)

is valid for any u, v ∈
o

W 1
2(Ω).

Proof. . The completion in the scalar product gives a Hilbert space. By Lemma
1.45, every equivalence class of the completion in the norm ‖ · ‖0,1 is also an
equivalence class in ‖ · ‖0 and thus can be identified with the element of

C∞0 (Ω)
‖·‖0

and thus with an element v ∈ L2(Ω). This identification is one-

to-one. Density follows from C∞0 (Ω) ⊂
o

W 1
2(Ω) ⊂ L2(Ω) and continuity of

injection from Lemma 1.45.

If (vn)n∈N of C∞0 (Ω) functions converges to v ∈
o

W 1
2(Ω) in ‖ · ‖0,1, then

vn → v in L2(Ω) and Dxivn → vi in L2(Ω) for some functions vi ∈ L2(Ω).
Taking arbitrary φ ∈ C∞0 (Ω), we obtain∫

Ω

Dxivnφdx = −
∫
Ω

vnDxiφdx

and we can pass to the limit∫
Ω

viφdx = −
∫
Ω

vDxiφdx

showing that vi = Dxiv in generalized sense. Furthermore, we can pass to the

limit in ‖ · ‖0,1 with φ → u ∈
o

W 1
2(Ω) and, by the above, Dxiφ → Dxiu in

L2(Ω), giving (1.57). This also shows that
o

W 1
2(Ω) can be identified with a

closed subspace of (L2(Ω))n (the graph of gradient) and thus it is a separable
space.
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Consider now on
o

W 1
2(Ω) the bilinear form

a(u, v) =

∫
Ω

∇u∇vdx.

Clearly, by Schwarz inequality

|a(u, v)| ≤ ‖u‖0,1‖v‖0,1

and

a(u, u) =

∫
Ω

∇u∇udx = ‖u‖20,1

and thus a is a continuous and coercive bilinear form on
o

W 1
2(Ω). Thus, if we

take f ∈ (
o

W 1
2(Ω))∗ ⊃ L2(Ω) then there is a unique u ∈

o

W 1
2(Ω) satisfying∫

Ω

∇u∇vdx =< f, v >
(

o
W1

2(Ω))∗×
o
W1

2(Ω)

for any v ∈
o

W 1
2(Ω) or, equivalently, minimizing the functional

J(v) =
1

2

∫
Ω

|∇v|2dx− < f, v >
(

o
W1

2(Ω))∗×
o
W1

2(Ω)

over K =
o

W 1
2(Ω).

The question is what this solution represents. Clearly, taking v ∈ C∞0 (Ω)
we obtain

−∆u = f

in the sense of distribution. However, to get a deeper understanding of the

meaning of the solution, we have investigate the structure of
o

W 1
2(Ω).

1.3.7 Sobolev spaces

Let Ω be a nonempty open subset of Rn, n ≥ 1 and let m ∈ N. The Sobolev
space Wm

2 (Ω) consists of all u ∈ L2(Ω) for which all generalized derivatives
Dαu exist and belong to L2. Wm

2 (Ω) is equipped with the scalar product

(u, v)m =
∑
|α|≤m

∫
Ω

DαuDαvdx. (1.58)

In particular,

(u, v)1 =

∫
Ω

uv +∇u∇vdx.

We obtain
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Proposition 1.47. The space Wm
2 (Ω) is a separable Hilbert space.

Proof. The proof follows since the generalized differentiation is a closed oper-
ator in L2(Ω).

We note that
o

W 1
2(Ω) is a closed subspace of W 1

2 (Ω) as the norms ‖ · ‖0,1
and ‖ · ‖1 coincide there.

We shall focus on the case m = 1. A workhorse of the theory is the
Friedrichs lemma.

Lemma 1.48. Let u ∈ W 1
2 (Ω). Then there exists a sequence (uk)k∈N from

C∞0 (Rn) such that
uk|Ω → u in L2(Ω) (1.59)

and for any Ω′ b Ω
∇uk|Ω′ → ∇u in L2(Ω′) (1.60)

If Ω = Rn, then both convergences occur in Rn.

Proof. Set

ue(x) =

{
u(x) for x ∈ Ω
0 for x /∈ Ω

and define vε = ue ∗ ωε. We know vε ∈ C∞(Rn) and vε → u in L2(Ω). Let us
take Ω′ b Ω and fix a function α ∈ C∞0 (Ω) which equals 1 on a neighbourhood
of Ω′. Then, for sufficiently small ε, we have

ωε ∗ (αu)ε = ωε ∗ uε

on Ω′. Then, by Proposition 1.8,

∂xj (ωε ∗ (αu)ε) = ωε ∗
(
α∂xju+ ∂xjαu

)e
hence

∂xj (ωε ∗ (αu)ε)→
(
α∂xju+ ∂xjαu

)e
in L2(Ω) and, in particular,

∂xj (ωε ∗ (αu)ε)→ pju

in L2(Ω′). But on Ω′ we can discard α to get

∂xj (ωε ∗ uε)→ pju.

If vk do not have compact support (e.g. when Ω is not bounded), then we
multiply vk by a sequence of smooth cut-off functions ζk = ζ(x/k) where
ζ(x) = 1 for |x| ≤ 1 and ζ(x) = 0 for |x| ≥ 2.

As an immediate application we show
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Proposition 1.49. (i) Let u, v ∈ W 1
2 (Ω) ∩ L∞(Ω). Then uv ∈ W 1

2 (Ω) ∩
L∞(Ω) with

∂xj (uv) = ∂juv + u∂xjv, i = 1, . . . , n (1.61)

(ii) Let Ω,Ω1 be two open sets in Rn and let H : Ω1 → Ω be a C1(Ω̄)
diffeomorphism. If u ∈W 1

2 (Ω) then u ◦H ∈W 1
2 (Ω′) and∫

Ω1

(u ◦H)∂yjφdy = −
∫
Ω1

n∑
i=1

(∂xiu ◦H))∂yjHiφdy (1.62)

Proof. Using Friedrichs lemma, we find sequences (uk)k∈N, (vk)k∈N in C∞0 (Ω)
such that

uk → u, vk → v

in L2(Ω) and for any Ω′ b Ω we have

∇uk → ∇u, ∇vk → ∇v

in L2(Ω′). Moreover, from the construction of the mollifiers we get

‖uk‖L∞(Ω) ≤ ‖u‖L∞(Ω) ‖vk‖L∞(Ω) ≤ ‖v‖L∞(Ω).

On the other hand∫
Ω

ukvk∂xjφdx = −
∫
Ω

(∂jukvk + uk∂jvk)φdx

for any φ ∈ C∞0 (Ω). Thanks to the compact support of φ, the integration
actually occurs over compact subsets of Ω and we can use L2 convergence of
∇uk,∇vk. Thus ∫

Ω

uv∂xjφdx = −
∫
Ω

(∂xjuv + u∂xjv)φdx

and the fact that uv ∈ W 1
2 (Ω) follows from ∂xju, ∂xjv ∈ W 1

2 (Ω) and
u, v ∈ L∞(Ω). The proof of the second statement follows similarly. We se-
lect sequence (uk)k∈N as above; then clearly uk ◦H → u ◦H in L2(Ω1) and

(∂xiuk ◦H)∂yjHi → (∂xiu ◦H)∂yjHi

in L2(Ω′1) for any Ω′1 b Ω. For any ψ ∈ C∞0 (Ω1) we get∫
Ω1

(uk ◦H)∂yjφdy = −
∫
Ω1

k∑
i=1

(∂xiuk ◦H)∂yjHiφdy

and in the limit we obtain (1.62).
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Sometimes it will be necessary to indicate the domain of the definition of
a Sobolev space. Then we use the ‖ · ‖0,Ω to denote the norm in L2(Ω) and
analogous convention is used for the Sobolev space norms.

Proposition 1.50. The following properties are equivalent:

(i) u ∈W 1
2 (Ω),

(ii) there is C such that for any φ ∈ C∞0 (Ω) and i = 1, . . . , n∣∣∣∣∣∣
∫
Ω

u∂iφdx

∣∣∣∣∣∣ ≤ C‖φ‖0, (1.63)

(iii) there is a constant C such that for any Ω′ b Ω and all h ∈ Rn with
|h| ≤ dist(Ω′, ∂Ω) we have

‖τhu− u‖0,Ω′ ≤ C|h|, (1.64)

where (τhu)(x) = u(x + h). In particular, if Ω = Rn, then

‖τhu− u‖0 ≤ |h|‖∇u‖0. (1.65)

Proof. (i)⇒ (ii) follows from the definition.
(ii)⇒ (i). Eqn. (1.63) shows that

φ→
∫
Ω

u∂iφdx,

extends to a bounded functional on L2(Ω) and thus there is vi ∈ L2(Ω) such
that ∫

Ω

u∂iφdx = −
∫
Ω

viφdx,

for any φ ∈ C∞0 (Ω).
(i)⇒ (iii). Let us take u ∈ C∞0 (Rn). For x,h ∈ Rn and t ∈ R we define

v(t) = u(x + th).

Then v′(t) = h∇u(x + th) and

u(x + h)− u(x) = v(1)− v(0) =

1∫
0

h∇u(x + th)dt.

Hence

|τhu(x)− u(x)|2 ≤ |h|2
1∫

0

|∇u(x + th)|2dt
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so that ∫
Ω′

|τhu(x)− u(x)|2dx ≤ |h|2
1∫

0

∫
Ω′

|∇u(x+ th)|2dx

 dt

= |h|2
1∫

0

 ∫
Ω′+th

|∇u(y)|2dx

 dt.

If |h| < dist(Ω′, ∂Ω), then there is Ω′′ such that Ω′ + th ⊂ Ω′′ b Ω for all
t ∈ [0, 1] and thus∫

Ω′

|τhu(x)− u(x)|2dx ≤ |h|2
∫
Ω′′

|∇u(y)|2dx

which gives (1.64) for u ∈ C∞0 (Rn). Let u ∈ W 1
2 (Ω). Then, by the Friedrichs

lemma, we find (uk)k∈N, uk ∈ C∞0 (Rn) such that uk → u in L2(Ω) and
∇uk → ∇u in L2(Ω′) for any Ω′ b Ω. Noting that τhuk → τhu in L2(Ω′) we
can pass to the limit above, obtaining,

‖τhu− u‖0,Ω′ ≤ |h|

√√√√∫
Ω′′

|∇u(y)|2dx ≤ C|h|.

If Ω = Rn, then in all calculations above we can replace Ω′, Ω′′ by Rn.
(iii)⇒ (ii). If (1.64) holds then, taking Ω′ b Ω, φ ∈ C∞0 (Ω) with suppφ ⊂

Ω′ and |h| < dist(Ω′, ∂Ω), we obtain∣∣∣∣∣∣
∫
Ω

(τhu− u)φdx

∣∣∣∣∣∣ ≤ C|h|‖φ‖0.
On the other hand∫

Ω

(τhu− u)(x)φ(x)dx =

∫
Ω

u(y)(τ−hφ− φ)(y)dy,

so ∫
Ω

u
(τ−hφ− φ)

|h|
dy ≤ C‖φ‖0.

Choosing h = tei, i = 1, . . . , n and passing to the limit with t→ 0, we obtain
(1.63).
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1.3.8 Localization and flattening of the boundary

Assume that Ω is an open, bounded set with boundary ∂Ω which is an n− 1
dimensional Cm manifold; further assume that that Ω lies locally at one side
of the boundary. Denote Q = {y ∈ Rn; |yi| < 1, i = 1, . . . , n}, Q0 = {y ∈
Q; yn = 0} and Q+ = {y ∈ Q; xn > 0}. Then we have a finite local atlas on
∂Ω, that is, a finite collection {Bj , Hjj}1≤j≤N whereBj are open sets covering
∂Ω, Hj : Q→ Bj are Cm diffeomorphisms with positive Jacobians which are
bijections of Q,Q0 and Q+ onto Bj , Bj ∩ ∂Ω and Bj ∩Ω, respectively.

Given the local atlas {Bj , Hj}1≤j≤N , we construct a finite open subcover

{Gj}1≤j≤N in such a way that Gj b Bj and ∂Ω ⊂
⋃N
j=1Gj . In fact, we

can take Gj = Bkj where Bkj = {x ∈ Bj ; dist(x, ∂Ω > 1/k} for some k.
Indeed, suppose it is impossible, then for any k there is xk ∈ ∂Ω such that
xk /∈

⋃N
j=1B

k
j . From compactness of ∂Ω we obtain an accumulation point

x ∈ ∂Ω. Hence x ∈ Bj for some j and thus x ∈ Bkj for sufficiently large k.
This contradicts the construction that x is an accumulation point of points
which are outside

⋃N
j=1B

k
j . Defining G0 = Ω \

⋃N
j=1 Ḡj we further get an

open set G0 with Ḡ0 ⊂ Ω. Thus

Ω̄ ⊂ Ω ∪
N⋃
j=1

Gj , Ω ⊂
N⋃
j=0

Ḡj .

Now, we choose αj ∈ C∞0 (Rn) satisfying 0 ≤ α ≤ 1, suppαj ⊂ Bj and αj = 1
on Ḡj . Further, α ∈ C∞0 (Rn) satisfies

suppα ⊂ Ω ∪
N⋃
j=1

Gj , 0 ≤ α ≤ 1, α = 1 on Ω̄.

Then define

βj(x) =
α(x)αj(x)
N∑
k=0

αk(x)

for x ∈
⋃N
j=0 Ḡj and βj(x) = 0 for x ∈ Rn \

⋃N
j=0 Ḡj . We note that each

βj is well defined. Indeed, at least one αj(x) is equal 1 on
⋃N
j=0 Ḡj so that

the denominator is at least 1 there. On the other hand, α vanishes outside
a compact set contained in

⋃N
j=0Gj . Hence, βj ∈ C∞0 (Rn), suppβj ⊂ Bj ,

βj ≥ 0 and
N∑
j=0

βj(x) = 1

for x ∈ Ω̄.
We call the collection {βj}Nj=0 a partition of unity subordinated to the

open cover {Gj}Nj=0 of Ω and {βj}Nj=1 a partition of unity subordinated to

the open cover {Gj}Nj=1 of Ω of ∂Ω.
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Suppose now we have u ∈ W 1
2 (Ω). Then u =

∑N
j=0 βju on Ω and, by

Proposition 1.49 (i), βju ∈W 1
2 (Ω∩Gj), j = 1, . . . , N . Using Proposition 1.49

(ii) we see that for each j = 1, . . . , N we (βju) ◦Hj ∈ W 1
2 (Q+) with support

in Q. Define Λ : W 1
2 (Ω)→

o

W 1
2(Q)× [W 1

2 (Ω)]N by

Λu = (β0u, β1u ◦H1, . . . , βNu ◦HN ).

Note that we can write β0u ∈
o

W 1
2(Q) as β0u has compact support in Ω and

thus, by Friedrichs lemma, it can be approximated by C∞0 (Q) functions. The
mapping Λ is a linear injection as if u(x) 6= 0, then at least one entry of Λ
must be nonzero as βs sum up to 1. Also, using Proposition 1.49, we can show
that the norm on ΛW 1

2 (Ω) is equivalent to the norm on W 1
2 (Ω) and thus Λ

is an isomorphism of W 1
2 (Ω) onto its closed image.

1.3.9 Extension operator

We observed that one of the main obstacles in proving that W 1
2 (Ω) can be

obtained by closure of restrictions of C∞0 (Rn) functions to Ω is that we have
no control over the regularization at points close to the boundary of Ω. A
remedy could be if we are able to show that any function W 1

2 (Ω) can be
extended to a function from W 1

2 (Ω).
Indeed, we have

Theorem 1.51. Suppose that Ω is bounded with a C1 boundary ∂Ω. Then
there exists a linear extension operator

E : W 1
2 (Ω)→W 1

2 (Rn)

such that for any u ∈W 1
2 (Ω)

1. Eu|Ω = u;
2. ‖Eu‖0,Rn ≤ C‖u‖0,Ω;
3. ‖Eu‖1,Rn ≤ C‖u‖1,Ω;

Proof. We begin by showing that we can construct an extension operator from
W 1

2 (Q+) to W 1
2 (Q). Let u ∈W 1

2 (Q+) and define extension by reflection

u∗(x′, xn) =

{
u(x′, xn) for xn > 0,
u(x′,−xn) for xn < 0

where x′ = (x1, . . . , xn−1). In the same way, we define the odd reflection

u•(x′, xn) =

{
u(x′, xn) for xn > 0,
−u(x′,−xn) for xn < 0

Further, we define a cut-off function close to xn = 0, that is, we take a C∞(R)
function η which satisfies η(t) = 1 for t ≥ 1 and η(t) = 0 for t ≤ 1/2 and define
ηk(xn) = η(kxn). Let us take φ ∈ C∞0 (Q) and consider, for 1 ≤ i ≤ n− 1,



50 1 Basic Facts from Functional Analysis and Banach Lattices∫
Q

u∗∂xiφdx =

∫
Q+

u∂xiψdx

where ψ(x′, xn) = φ(x′, xn) + φ(x′,−xn). Typically, ψ is not zero at Q0 and
cannot be used as a test function. However, ηk(xn)ψ(x) ∈ C∞0 (Q+) and we
can write ∫

Q+

u∂xi(ηkψ)dx =

∫
Q+

(∂xiu)ηkψdx.

However, ∂xi(ηkψ) = ηk∂xiψ as η does not depend on xi, i = 1, . . . , n− 1 and
hence ∫

Q+

ηku∂xiψdx = −
∫
Q+

(∂xiu)ηkψdx.

We can pass to the limit by dominated convergence getting∫
Q+

u∂xiψdx = −
∫
Q+

(∂xiu)ψdx,

so that, returning to Q∫
Q

u∗∂xiφdx = −
∫
Q+

(∂xiu)ψdx = −
∫
Q

(∂xiu)∗φdx.

Now let us consider differentiability with respect to xn. Again, taking φ ∈
C∞0 (Q) ∫

Q

u∗∂xnφdx =

∫
Q+

u∂xnχdx

where χ(x′, xn) = φ(x′, xn)− φ(x′,−xn). If we again use ηk, then

∂xn(ηkχ) = ηk∂xnχ+ χ∂xnηk

where ∂xnηk(xn) = kη′(kxn). Then

k

∣∣∣∣∣∣∣
∫
Q+

u(x)η′(kxn)χ(x)dx

∣∣∣∣∣∣∣ ≤ kCM

∫
Q0

 1/k∫
0

|u(x)|xndxn

 dx′

≤ CM

∫
Q+

|u(x)|dx→ 0

as k →∞, where C = supt∈[0,1] |η′(t)| and M is obtained from the estimate
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|χ(x′, xn) ≤M |xn|

on Q. Thus∫
Q+

u∂xnηkχdx =

∫
Q+

u(ηk∂xnχ+ χ∂xnηk)dx→
∫
Q+

uηk∂xnχ

and thus we obtain in the limit∫
Q+

u∂xnχdx = −
∫
Q+

(∂xn)uχdx.

Returning to Q, we obtain∫
Q

u∗∂xnφdx =

∫
Q+

u∂xnχdx =

∫
Q

(∂xnu)•φdx.

We also obtain estimates

‖u∗‖0,Q ≤ 2‖u‖0,Q+ ‖u∗‖1,Q ≤ 2‖u‖1,Q+ .

Now we can pass to the general result. Let u ∈ W 1
2 (Ω), Ω bounded with

C1 boundary. Let {Bj , Hj}Nj=1 be the atlas on the boundary and {Gj}Nj=1 be

the finite subcover constructed in the previous section, that is G0 ⊂ Ḡ0 ⊂ Ω,
Ḡj ⊂ Bj with ∂Ω ⊂

⋃
Gj and let {β}Nj=1 be a subordinate partition of unity.

Then we take

u =

N∑
j=0

βju =

N∑
j=0

uj

with u0 ∈
o

W 1
2(Ω) and uj ∈ W 1

2 (Ω ∩ Bj). Clearly, ‖u0‖1,Ω ≤ C0‖u‖1,Ω and
‖uj‖1,Ω∩Bj ≤ Cj‖u‖1,Ω , j = 1, . . . , n. The function u0 can be extended to
û0 ∈ W 1

2 (Rn) by zero in a continuous way. Then vj := uj ◦ Hj ∈ W 1
2 (Q+)

and we can extend by reflection to v∗j ∈W 1
2 (Q). We note that v∗j has support

in Q since the support of uj only can touch ∂(Bj ∩ Ω at the points of ∂Ω.
Again,

‖v∗j ‖1,Q ≤ 2‖vj‖1,Q+
≤ C ′′j ‖uj‖1,Ω∩Bj ≤ C ′j‖u‖1,Ω .

Next, we define wj = v∗j ◦(Hj)−1 ∈W 1
2 (Bj), again with ‖wj‖1,Bj ≤ C ′′j ‖u‖1,Ω .

Moreover, we have wj(x) = uj(x) whenever x ∈ Bj ∩ Ω̄ as

v∗j ((Hj)−1(x)) = vj((H
j)−1(x)) = uj(H

j((Hj)−1(x))) = uj(x)

for such x. We also notice that for each j = 1, . . . , N , support of wj is con-
tained in Bj and thus can extend wj by zero to Rn continuously in W 1

2 (Rn)
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and denote this extension by ûj . We note that ûj(x) = uj(x) for x ∈ Ω̄. In-
deed, if x ∈ Ω̄, for a given j either x ∈ Bj∩Ω̄ and then ûj(x) = wj(x) = uj(x)
or x /∈ Bj ∩ Ω̄ in which case ûj(x) = 0 but then also uj(x) = 0 by definition.
The same argument applies to j = 0. Now we define the operator

Eu = û0 +

n∑
j=1

ûj

and we clearly have

Eu(x) = û0(x) +

n∑
j=1

ûj(x) = u0(x) +

n∑
j=1

uj(x) = u(x).

Linearity and continuity follows from continuity and linearity of each opera-
tion and the fact that the sum is finite.

Remark 1.52. Similar argument allows to prove that there is an extension
from Wm

2 (Ω) to Wm
2 (Rn) (as well as for Wm

p (Ω), 1 ≤ p ≤ ∞) but this
requires the boundary to be a Cm-manifold (so that the flattening preserves
the differentiability). However, the extension across the hyperplane xn = 0 is
done according to the following reflection

u∗(x′, xn) =

{
u(x′, xn) for xn > 0
λ1u(x′,−xn) + λ2u

(
x′,−xn2

)
+ . . .+ λmu

(
x′,−xnm

)
for xn < 0,

where λ1, . . . , λm is the solution of the system

λ1 + λ2 + . . .+ λm = 1,

−(λ1 + λ2/2 + . . .+ λm/m) = 1,

· · ·
(−1)m(λ1 + λ2/2

m−1 + . . .+ λm/m
m−1) = 1

These conditions ensure that the derivatives in the xn direction are continuous
across xn = 0.

An immediate consequence of the extension theorem is

Theorem 1.53. Let Ω be a bounded set with a C1 boundary ∂Ω and u ∈
W 1

2 (Ω). Then there exits (un)n∈N, un ∈ C∞0 (Rn) such that

lim
n→∞

un|Ω = u, in W 1
2 (Ω).

In other words, the set of restriction to Ω of functions from C∞0 (Ω) is dense
in W 1

2 (Ω).
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Proof. If Ω is bounded then, using Theorem 1.51, we can extend u to a func-
tion Eu ∈ W 1

2 (Rn) with bounded support. The existence of a C∞0 (Rn) se-
quence converging to u follows from the Friedrichs lemma. If Ω is unbounded
(but not equal to Rn), then first we approximate u by a sequence (χnu)n∈N
where χn are cut-off functions. Next we construct an extension of χnu to
Rn. This is possible as it involves only the part of ∂Ω intersecting the ball
B(0, 2n+ 1) and χn is equal to zero where the sphere intersects ∂Ω. For this
extension we pick up an approximating function from C∞0 (Rn).

1.4 Basic applications of the density theorem

1.4.1 Sobolev embedding

In Subsection 1.1.2 we have seen that in one dimension it is possible to identify
a W 1

2 (R) function. Unfortunately, this is not true in higher dimensions.

Example 1.54. We can consider in D = {(x, y) ∈ R2; x2 + y2 < 1}

u(x, y) =

∣∣∣∣12 ln(x2 + y2)

∣∣∣∣1/3 = (− ln r)1/3.

The function u is not continuous (even not bounded) at (x, y) = (0, 0). It is
in L2(D) and for derivatives we have

ux = −1

3
(− ln r)−2/3

x

r2
, uy = −1

3
(− ln r)−2/3

y

r2

and, since∫
D

(u2x + u2y)dxdy =
2

9

1∫
0

dr

r(− ln r)4/3
=

2

9

∞∫
1

u−4/3du <∞

we see that u ∈W 1
2 (D).

However, there is still a link between Sobolev spaces and classical calculus
provided we take sufficiently high order of derivatives (or index p in Lp spaces).
The link is provided by the Sobolev lemma.

Let Ω be an open and bounded subset of Rn. We say that Ω satisfies the
cone condition if there are numbers ρ > 0 and γ > 0 such that each x ∈ Ω is
a vertex of a cone K(x) of radius ρ and volume γρn. Precisely speaking, if σn
is the n− 1 dimensional measure of the unit sphere in Rn, then the volume of
a ball of radius ρ is σnρ

n/n and then the (solid) angle of the cone is γn/ωn.

Lemma 1.55. If Ω satisfies the cone condition, then there exists a constant
C such that for any u ∈ Cm(Ω̄) with 2m > n we have

sup
x∈Ω
|u(x)| ≤ C‖u‖m (1.66)
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Proof. Let us introduce a cut-off function φ ∈ C∞0 (R) which satisfies φ(t) = 1
for |t| ≤ 1/2 and φ(t) = 0 for |t| ≥ 1. Define τ(t) = φ(t/ρ) and note that there
are constants Ak, k = 1, 2, . . . such that∣∣∣∣dkτ(t)

dtk

∣∣∣∣ ≤ Ak
ρk
. (1.67)

Let us take u ∈ Cm(Ω̄) and assume 2m > n. For x ∈ Ω̄ and the cone K(x)
we integrate along the ray {x + rω; 0 ≤ r ≤ ρ, |ω| = 1

u(x) = −
ρ∫

0

Dr(τ(r)u(x + rω))dr.

Integrating over the surface Γ of the cone we get∫
Γ

ρ∫
0

Dr(τ(r)u(x + ω))drdω = −u(x)

∫
C

dω = −u(x)
γn

ωn
.

Next we integrate m− 1 times by parts, getting

u(x) =
(−1)mωn
γn(m− 1)!

∫
C

ρ∫
0

Dm
r (τ(r)u(x + rω))rm−1drdω.

and changing to Cartesian coordinates and applying Cauchy-Schwarz inequal-
ity we obtain

|u(x)|2 ≤

 ωn
γn(m− 1)!

∫
K(x)

|Dm
r (τu)|rm−ndy


2

≤
(

ωn
γn(m− 1)!

)2 ∫
K(x)

|Dm
r (τu)|2dydy

∫
K(x)

r2(m−n)dy.

The last term can be evaluated as∫
K(x)

r2(m−n)dy =

∫
C

ρ∫
0

r2m−n−1drdω =
γnρ2m−n

ωn(2m− n)

so that

|u(x)|2 ≤ C(m,n)ρ2m−n
∫

K(x)

|Dm
r (τu)|2dy. (1.68)

Let us estimate the derivative. From (1.67) we obtain by the chain rule and
the Leibniz formula
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|Dm
r (τu)| =

∣∣∣∣∣
m∑
k=0

(
n

k

)
Dm−k
r τDk

ru

∣∣∣∣∣ ≤
m∑
k=0

(
n

k

)
Am−k
ρm−k

∣∣Dk
ru
∣∣ ,

hence

|Dm
r (τu)|2 ≤ C ′

m∑
k=0

1

ρ2(m−k)

∣∣Dk
ru
∣∣2

for some constant C ′. With this estimate we can re-write (1.68) as

|u(x)|2 ≤ C(m,n)C ′
m∑
k=0

ρ2k−n
∫

K(x)

|Dm
r (u)|2dy. (1.69)

Since by the chain rule

|Dm
r u|2 ≤ C ′′

∑
|α|≤k

|Dαu|2

by extending the integral to Ω we obtain

sup
x∈Ω
|u(x)| ≤ C‖u‖m

which is (1.66).

Theorem 1.56. Assume that Ω is a bounded open set with Cm boundary and
let m > k + n/2 where m and k are integers. Then the embedding

Wm
2 (Ω) ⊂ Ck(Ω̄)

is continuous.

Proof. Under the assumptions, the problem can be reduced to the set G0 b Ω
consisting of internal point, separated from the boundary by a fixed positive
distance, and points in the boundary strip, covered by sets Ω̄ ∩Bj which are
transformed ontoQ+∪Q0. Any point inG0 satisfies the cone conditions. Points
on Q0 ∪Q+ also satisfy the condition so, if u ∈ Wm

2 (Ω), then extending the
boundary components of Λu to Q we obtain functions in W 1

2 (Ω) and W 1
2 (Q)

with compact supports in respective domains. By Friedrichs lemma, restric-
tions to Ω and Q of C∞(Rn) functions are dense in, respectively, Wm

2 (Ω)
and Wm

2 (Q) and therefore the estimate (1.66) can be extended by density to
Wm

2 (Ω) showing that the canonical injection into C(Ω̄) is continuous. To ob-
tain the result for higher derivatives we substitute higher derivatives of u for u
in (1.66). Thus, all components of Λu are they are Ck functions. Transferring
them back, we see that u ∈ Ck(Ω̄), by regularity of the local atlas and m > k,
we obtain the thesis.
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1.4.2 Compact embedding and Rellich–Kondraschov theorem

Lemma 1.57. let Q = {x; aj ≤ xj ≤ bj} be a cube in Rn with edges of length
d > 0. If u ∈ C1(Q̄), then

‖u‖20,Q ≤ d−n
∫
Q

udx

2

+
nd2

2

n∑
j=1

‖∂xju‖20,Q (1.70)

Proof. For any x,y ∈ Q we can write

u(x)− u(y) =

n∑
j=1

xj∫
yj

∂xju(y1, . . . , yj−1, s, xj+1, . . . , xn)ds.

Squaring this identity and using Cauchy-Schwarz inequality we obtain

u2(x) + u2(y)− 2u(x)u(y) ≤ nd
n∑
j=1

bj∫
aj

(∂ju)2(y1, . . . , yj−1, s, xj+1, . . . , xn)ds.

Integrating the above inequality with respect to all variables, we obtain

2dn‖u‖20,Q ≤ 2

∫
Q

udx

2

+ ndn+2
n∑
j=1

‖∂ju‖20,Q

as required.

Theorem 1.58. Let Ω be open and bounded. If the sequence (uk)k∈N of ele-

ments of
o

W 1
2(Ω) is bounded, then there is a subsequence which converges in

in L2(Ω). In other words, the injection
o

W 1
2(Ω) ⊂ L2(Ω) is compact.

Proof. By density, we may assume uk ∈ C∞0 . Let M = supk{‖uk‖1}. We
enclose Ω in a cube Q; we may assume the edges of Q to be of unit length.
Further, we extend each uk by zero to Q \Ω.

We decompose Q into Nn cubes of edges of length 1/N . Since clearly
(uk)k∈N is bounded in L2(Q) it contains a weakly convergent subsequence
(which we denote again by (uk)k∈N). For any ε′ there is n0 such that∣∣∣∣∣∣∣

∫
Qj

(uk − ul)dx

∣∣∣∣∣∣∣ < ε′, k, l ≥ n0 (1.71)

for each j = 1, . . . , Nn. Now, we apply (2.36) on each Qj and sum over all j
getting



1.4 Basic applications of the density theorem 57

‖uk − ul‖20,Q ≤ Nnε′ +
n

2N2
2M2.

Now, we see that for a fixed ε we can find N large that nM2/N2 < e and,
having fixed N , for ε′ = ε/2Nn we can find n0 such that (1.71) holds. Thus
(uk)k∈N is Cauchy in L2(Ω).

Corollary 1.59. If Ω is a bounded open subset of Rn, then the embedding
o

Wm
2 (Ω) ⊂

o

W
m−1
2 (Ω) is compact.

Proof. Applying the previous theorem to the sequences of derivatives, we see
that the derivatives form bounded sequences in W 1

2 (Ω) and thus contain sub-
sequences converging in L2(Ω). Selecting common subsequence we get con-
vergence in W 1

2 (Ω) etc, (by closedness of derivatives).

Theorem 1.60. If ∂Ω is a Cm boundary of a bounded open set Ω. Then the
embedding Wm

2 (Ω) ⊂Wm−1
2 (Ω) is compact.

Proof. The result follows by extension to
o

Wm
2 (Ω′) where Ω′ is a bounded set

containing Ω.

1.4.3 Trace theorems

We know that if u ∈ Wm
2 (Ω) with m > n/2 then u can be represented by a

continuous function and thus can be assigned a value at the boundary of Ω
(or, in fact, at any point). The requirement on m is, however, too restrictive
— we have solved the Dirichlet problem, which requires a boundary value of

the solution, in
o

W 1
2(Ω). In this space, unless n = 1, the solution need not be

continuous. It turns out that it is possible to give a meaning to the operation
of taking the boundary value of a function even if it is not continuous.

We begin with the simplest (nontrivial) case when Ω = Rn+ := {x; x =
(x′, xn), 0 < xn}.

Theorem 1.61. The trace operator γ0 : C1(Rn+) ∩ W 1
2 (Rn+) → C0(Rn−1)

defined by

(γ0φ)(x′) = φ(x′, 0), φ ∈ C1(Rn+) ∩W 1
2 (Rn+),x′ ∈ Rn−1,

has a unique extension to a continuous linear operator γ0 : W 1
2 (Rn+) →

L2(Rn−1) whose range in dense in L2(Rn−1). The extension satisfies

γ0(βu) = γ0(β)γ0(u), β ∈ C1(Rn+) ∩ L∞(Rn+), u ∈W 1
2 (Rn+).

Proof. Let φ ∈ C1(Rn+) ∩ W 1
2 (Rn+). Then, from continuity, for any x′,

∂xn |φ(x′, xn)|2 ∈ L2(R+) we can write

|φ(x′, r)|2 − |φ(x′, 0)|2 =

r∫
0

∂xn |u(x′, xn)|2dxn
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and thus |φ(x′, r)|2 has a limit which must equal 0. Hence

|φ(x′, 0)|2 = −
∞∫
0

∂xn |φ(x′, xn)|2dxn.

Integrating over Rn−1 we obtain

‖φ(x′, 0)‖20,Rn−1 ≤ 2

∫
Rn+

∂xnφ(x)φ(x)dx

≤ 2‖∂xnφ‖0,Rn+‖φ‖0,Rn+ ≤ ‖∂xnφ‖
2
0,Rn+ + ‖φ‖20,Rn+ .

Hence, by density, the operation of taking value at xn = 0 extends to W 1
2 (Rn+).

If φ ∈ C∞0 (Rn−1) and τ is a truncation function τ(t) = 1 for |t| ≤ 1
and τ(t) = 0 for |t| ≥ 0 then φ(x) = ψ(x′)τ(xn) ∈ C1(Rn+) ∩W 1

2 (Rn+) and
γ0(φ) = ψ so that the range of the trace operator contains C∞0 (Rn−1) and
thus is dense. The last identity follows from continuity of the trace operator
and of the operator of multiplication by bounded differentiable functions in
W 1

2 (Rn+).

Theorem 1.62. Let u ∈W 1
2 (Rn+). Then u ∈

o

W 1
2(Rn+) if an only if γ0(u) = 0,

Proof. If u ∈
o

W 1
2(Rn+), then u is the limit of a sequence (φk)k∈N from C∞0 (Rn+)

in W 1
2 (Rn+). Since γ0(φk) = 0 for any k, we obtain γ0(u) = 0.

Conversely, let u ∈ W 1
2 (Rn+) with γ0u = 0. By using the truncating func-

tions, we may assume that u has compact support in Rn+.
Next we use the truncating functions ηk ∈ C∞(R), as in Theorem 1.51, by

taking function η which satisfies η(t) = 1 for t ≥ 1 and η(t) = 0 for t ≤ 1/2
and define ηk(xn) = η(kxn). To simplify notation, we assume that 0 ≤ η′ ≤ 3
for t ∈ [1/2, 1] so that 0 ≤ η′k(xn) ≤ 3k. Then the extension by 0 to Rn−
of x → ηk(xn)u(x′, xn) is in W 1

2 (Rn) and can be approximated by C∞0 (Rn+)
functions in W 1

2 (Rn+). Hence, we have to prove that ηku→ u in W 1
2 (Rn+).

As in the proof of Theorem 1.51 we can prove ηku→ u in L2(Rn+) and for
each i = 1, . . . , n− 1, ∂xi(ηku) = ηk∂xiu→ ∂xiu in L2(Rn+) as k →∞.

Since
∂xn(ηku) = u∂xnηk + ηk∂xnu

we see that we have to prove that u∂xnηk → 0 in L2(Rn+) as k →∞. For this,
first we prove that if γ0(u) = 0, then

u(x′, s) =

s∫
0

∂xnu(x′, t)dt (1.72)

almost everywhere on Rn+. Indeed, let ur be a bounded support C1 func-

tion approximating u in W 1
2 (Rn+). Then

s∫
0

∂xnur(x
′, t)dt →

s∫
0

∂xnu(x′, t)dt in
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L2(Rn+). This follows from ∂xnur → ∂xnu in L2(Rn+) and, taking Q to be the
box enclosing support of all ur, u, with edges of length at most d

∫
Q

∣∣∣∣∣∣
s∫

0

∂xnur(x
′, t)dt−

s∫
0

∂xnu(x′, t)dt

∣∣∣∣∣∣
2

dx

≤ d2
∫
Q

|∂xnur(x′, t)− ∂xnu(x′, t)|2 dx

Then we have, for any s, 0 ≤ s ≤ d

∫
Q

∣∣∣∣∣∣
s∫

0

∂xnur(x
′, t)dt− ur(x′, s)

∣∣∣∣∣∣
2

dx =

∫
Q

|ur(x′, 0)|2dx = d

∫
Rn−1

|ur(x′, 0)|2dx′

and, since the right hand side goes to zero as r →∞, we obtain (1.72). Then,
by Cauchy-Schwarz inequality

|u(x′, s)|2 ≤ s
s∫

0

|∂xnu(x′, t)|2dt

and therefore

∞∫
0

|η′k(s)u(x′, s)|2ds ≤ 9k2
2/k∫
0

s

s∫
0

|∂xnu(x′, t)|2dtds

18k

2/k∫
0

s∫
0

|∂xnu(x′, t)|2dtds = 18k

2/k∫
0

2/k∫
t

|∂xnu(x′, t)|2dsdt

≤ 36

2/k∫
0

|∂xnu(x′, t)|2dt.

Integration over Rn−1 gives

‖η′ku‖20,Rn+ ≤ 36

∫
Rn−1×2/k

|∂xnu|2dx

which tends to 0.

The consideration above can be extended to the case where Ω is an open
bounded region in Rn lying locally on one side of its C1 boundary. Using the
partition of unity, we define
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γ0(u) :=

N∑
j=1

(γ0((βju) ◦Hj)) ◦ (Hj)−1

It is clear that if u ∈ C1(Ω̄), then γ0u is the restriction of u to ∂Ω. Thus, we
have the following result

Theorem 1.63. Let Ω be a bounded open subset of Rn which lies on one side
of its boundary ∂Ω which is assumed to be a C1 manifold. Then there exists
a unique continuous and linear operator γ0 : W 1

2 (Ω)→ L2(∂Ω) such that for
each u ∈ C1(Ω̄), γ0 is the restriction of u to ∂Ω. The kernel of γ0 is equal to
o

W 1
2(Ω) and its range is dense in L2(∂Ω).

1.4.4 Regularity of variational solutions to the Dirichlet problem

From Subsection 1.3.6 we know that there is a unique variational solution

u ∈
o

W 1
2(Ω) of the problem∫

Ω

∇u∇vdx =< f, v >
(

o
W1

2(Ω))∗×
o
W1

2(Ω)
, v ∈

o

W
1
2(Ω).

Moreover, now we can say that γ0u = 0 on ∂Ω (provided ∂Ω is C1).
We have the following theorem

Theorem 1.64. Let Ω ⊂ Rn be an open bounded set with C2 boundary (or

Ω = Rn+). Let f ∈ L2(Ω) and let u ∈
o

W 1
2(Ω) satisfy∫

Ω

∇u∇vdx = (f, v), v ∈
o

W
1
2(Ω). (1.73)

Then u ∈ W 2
2 (Ω) and ‖u‖2,Ω ≤ C‖f‖0,Ω where C is a constant depending

only on Ω. Furthermore, if Ω is of class Cm+2 and f ∈Wm
2 (Ω), then

u ∈Wm+2
2 (Ω) and ‖u‖m+2,Ω ≤ C‖f‖m,Ω .

In particular, if m ≥ n/2, then u ∈ C2(Ω̄) is a classical solution.

Moreover, if Ω is bounded, then the solution operator G : L2(Ω)→
o

W 1
2(Ω)

is self-adjoint and compact.

Proof. The proof naturally splits into two cases: interior estimates and bound-
ary estimates. Let Ω be bounded with at least C1 boundary and consider the
partition of unity {βj}Nj=0 subordinated to the covering {Gj}Nj=0. For the in-

terior estimates let us consider u0 = β0u and let v ∈
o

W 1
2(Ω). Then we can

write
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Ω

∇(β0u)∇vdx =

∫
Ω

β0∇u∇vdx +

∫
Ω

u∇β0∇vdx

=

∫
Ω

∇u∇(β0v)dx−
∫
Ω

v∇u∇β0dx +

∫
Ω

u∇v∇β0dx

=

∫
Ω

∇u∇(β0v)dx−
∫
Ω

v∇u∇β0dx−
∫
Ω

∇(u∇β0)vdx

=

∫
Ω

∇u∇(β0v)dx− 2

∫
Ω

v∇u∇β0dx−
∫
Ω

uv∆β0dx

=

∫
Ω

(fβ0 −∆β0u− 2∇u∇β0)vdx =

∫
Ω

Fvdx, v ∈
o

W
1
2(Ω),

where F ∈ L2(Ω) and we used v ∈
o

W 1
2(Ω) to get∫

Ω

u∇v∇β0dx = −
∫
Ω

∇(u∇β0)vdx.

Hence, the function w = β0u is the variational solution to the above problem
in Rn. Let us define Dhu = |h|−1(τhu − u) and take v = D−h(Dhw). It is

possible since w has compact support in Ω and thus v ∈
o

W 1
2(Ω) for sufficiently

small h. Thus we obtain∫
Ω

|∇Dhw|2dx =

∫
Ω

FD−h(Dhw)dx,

that is,
‖Dhw‖21,Ω ≤ ‖F‖0,Ω‖D−h(Dhw)‖0,Ω . (1.74)

On the other hand, from Friedrichs lemma, for any v ∈W 1
2 (Ω) with compact

support
‖D−hv‖20,Ω ≤ ‖∇v‖0,Ω . (1.75)

Applying this to v = Dhu, we obtain

‖Dhw‖21,Ω ≤ ‖F‖0,Ω‖∇Dhw‖0,Ω ≤ ‖F‖0,Ω‖Dhw‖1,Ω ,

that is,
‖Dhw‖1,Ω ≤ ‖F‖0,Ω .

In particular, we obtain

‖Dh∂xiw‖0,Ω ≤ ‖F‖0,Ω , i = 1, . . . , n,
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which yields ∂xiw ∈W 1
2 (Ω), that is, w ∈W 2

2 (Ω).
In the next step, we shall move to estimates close to the boundary. Let

us fix some some set Bj and corresponding function βj , 1 ≤ j ≤ N from the
partition of unity and drop the index j. Then we have a C2 diffeomorphism
H : Q→ B the inverse of which we denote J = H−1 so that H(Q+) = Ω ∩B
and H(Q0) = ∂Ω ∩B. We denote x = H(y), y ∈ Q and y = J(x). As before,
we see that w = βu is a variational solution to∫
Ω∩B

∇w∇vdx =

∫
Ω∩B

(fβ − u∆β − 2∇u∇β)vdx =

∫
Ω∩B

gvdx, v ∈
o

W
1
2(Ω)

(1.76)
where the Green’s formula∫

Ω∩B

u∇v∇β0dx = −
∫

Ω∩B

∇(u∇β0)vdx.

can be justified by noting that the integration is actually carried out over the
domain G b B and we can use a function χv, where χ is equal to 1 on G

and has support in B, instead of v. Function χv ∈
o

W 1
2(Ω ∩ B) (as v can be

approximated by φ compactly supported in Ω and χv can be approximated
by χφ compactly supported in Ω ∩B).

Now we transfer (1.76) to Q+. We have z(y) = w(H(y)) for y ∈ Q+ or

w(x) = z(J(x)) for x ∈ Ω ∩ B. Let ψ ∈
o

W 1
2(Q+) and φ(x) = ψ(J(x)). Then

φ ∈
o

W 1
2(Ω ∩B) and we have

∂xjw =

n∑
k=1

∂ykz∂xjJk, ∂xjφ =

n∑
l=1

∂ylψ∂xjJl

and hence∫
Ω∩B

∇w∇φdx =

∫
Q+

n∑
k,j,l=1

∂xjJk∂xjJl∂ykz∂ylψ|detJH |dy =

∫
Q+

n∑
k,l=1

ak,l∂ykz∂ylψdy

where J is the Jacobi matrix of H. We note that we can write

ak,l = |detJH |JJJ TJ

and thus we have

n∑
k,l=1

ak,lξkξl = |detJH |(J TJ ξ,J TJ ξ) ≥ α|ξ|2 (1.77)

for all ξ = (ξ1, . . . , ξn) ∈ Rn since both Jacobi matrices JH ,JJ are nonsingu-
lar. Also
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Ω∩B

gφdx =

∫
Q+

(g ◦H)ψ|detJH |dy =

∫
Q+

Gψdy

where G ∈ L2(Q+) so that z ∈
o

W 1
2(Q) is a solution to the (elliptic) variational

problem ∫
Q+

n∑
k,l=1

ak,l∂ykz∂ylψdy =

∫
Q+

Gψdy, ψ ∈
o

W
1
2(Q+). (1.78)

Next the process is split into two cases. First we shall consider the method
of finite differences, as in the G0 case but only in the directions parallel to
the boundary. Thus, we take ψ = D−h(Dhz) for |h| small enough to still have

ψ ∈
o

W 1
2(Q+). Then, as above

∫
Q+

Dh

 n∑
k,l=1

ak,l∂ykz

 ∂yl(Dhz)dy =

∫
Q+

GD−h(Dhz)dy.

Since Dhx ∈
o

W 1
2(Q+), we can use Friedrichs lemma to estimate∫

Q+

GD−h(Dhz)dy ≤ ‖G‖0,Q+‖D−h(Dhz)‖0,Q+ ≤ ‖G‖0,Q+‖∇(Dhz)‖0,Q+ .

Then, using τh(fg)− fg = τhf(τhg − g) + (τhf − f)g, we find

Dh

 n∑
k,l=1

ak,l∂ykz

 (y) = ak,l(y + h)∂ykDhz(y) + (Dhak,l)(y)∂yk(y)

and thus we can write, be the reverse Cauchy-Schwarz inequality∫
Q+

Dh

 n∑
k,l=1

ak,l∂ykz

 ∂yl(Dhz)dy

=

∫
Q+

n∑
k,l=1

(τhak,l)∂yk(Dhz)∂yl(Dhz)dy +

∫
Q+

n∑
k,l=1

(Dhak,l)∂ykz∂yl(Dhz)dy

≥ α‖∇(Dhz)‖20,Q+
− C‖∇z‖0,Q+

‖∇(Dhz)‖0,Q+

where C depends on the C1 norm of ak,l (and thus C2 norm of the local atlas).
Thus

‖∇(Dhz)‖20,Q+
≤ α−1

(
‖G‖0,Q+‖∇(Dhz)‖0,Ω + C‖z‖1,Ω‖∇(Dhz)‖0,Q+

)
≤ C ′‖G‖0,Q+

‖∇(Dhz)‖0,Q+
, (1.79)
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where we have used the W 1
2 (Ω) estimates for solutions to (1.78): for ψ =

z ∈
o

W 1
2(Q+)

α‖∇z‖2 ≤
∫
Q+

n∑
k,l=1

ak,l∂ykz∂ylzdy =

∫
Q+

Gzdy ≤ ‖G‖0,Q+‖∇z‖0,Q+ .

Note that in the last inequality we used the Poincarè inequality as z ∈
o

W 1
2(Q+)

and the constant in this inequality can be taken 1.
Thus we have

‖∇(Dhz)‖0,Q+ ≤ C ′‖G‖0,Q+ , (1.80)

for any h which is parallel to Q0. Let j = 1, . . . , n, h = |h|ek, k = 1, . . . , n−1
and φ ∈ C∞0 (Q+). Then we can write∫

Q+

Dh∂yjzφdy = −
∫
Q+

∂yjzD−hφdy

and, by (1.80),∣∣∣∣∣∣∣
∫
Q+

∂yjzD−hφdy

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
Q+

Dh∂yjzφdy

∣∣∣∣∣∣∣ ≤ C ′‖G‖0,Q+
‖φ‖0,Q+

which, passing to the limit as |h| → 0 gives for any (j, k) 6= (n, n)∣∣∣∣∣∣∣
∫
Q+

∂yjz∂ykφdy

∣∣∣∣∣∣∣ ≤ C ′‖G‖0,Q+
‖φ‖0,Q+

. (1.81)

To conclude, we have to show also the above estimate for k = n. First we ob-
serve that ann ≥ α on Q+. This follows from (1.77) by taking ξ = (1, 0, . . . , 0).
Thus, we can replace in (1.78) ψ by ψ/ann. Then we rewrite (1.78) as∫

Q+

an,n∂ykz∂yl(a
−1
n,nψ)dy =

∫
Q+

an,nG(a−1n,nψ)dy

−
∫
Q+

∑
(k,l) 6=(n,n)

ak,l∂ykz∂yl(a
−1
n,nψ)dy,

and differentiating on the left hand side
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Q+

∂ykz∂ylψdy =

∫
Q+

a−1n,nψ∂ynan,n∂ykzdy +

∫
Q+

an,nG · (a−1n,nψ)dy

−
∫
Q+

∑
(k,l)6=(n,n)

(a−1n,nψ)∂ylak,l∂ykzdy

∫
Q+

∑
(k,l)6=(n,n)

∂ykz∂yl(a
−1
n,nak,lψ)dy,

Applying now (1.83), we get∣∣∣∣∣∣∣
∫
Q+

∂ykz∂ylψdy

∣∣∣∣∣∣∣ ≤ C(‖G‖0,Q+ + ‖z‖1,Q+)‖ψ‖0,Q. (1.82)

This shows that ∣∣∣∣∣∣∣
∫
Q+

∂yjz∂ykφdy

∣∣∣∣∣∣∣ ≤ C ′‖G‖0,Q+
‖φ‖0,Q+

. (1.83)

for any j, k = 1, . . . n and thus, by Proposition 1.50, each first derivative of z
belongs to W 1

2 (Q+) and thus z ∈ W 2
2 (Q+). Using the first part of the proof

and transferring the solution back to Ω shows that u ∈W 2
2 (Ω).

Let us consider higher derivatives. As before, we split u according to the
partition of unity and separately argue argue in G0 b Ω and in Q+. Let us

begin with u ∈ W 2
2 (Ω)∩

o

W 1
2(Ω) and consider w = β0u. Let f ∈ W 1

2 (Ω) and
consider any derivative ∂u, i = 1, . . . , n. We know that ∂u ∈W 1

2 (Ω). Then we
can use φ ∈ C∞0 and take ∂φ as the test function in (1.73) so that , integrating
by parts

−
∫
Ω

∂fφdx =

∫
Ω

f∂φdx =

∫
Ω

∇u∇∂φdx = −
∫
Ω

∇∂u∇φdx

so that ∂u is a variational solution with square integrable right hand side and
thus ∂u ∈W 2

2 (Ω) and u ∈W 3
2 (Ω). Then we can proceed by induction.

Let us consider z ∈W 2
2 (Q+)∩

o

W 1
2 and let ∂u be any derivative in direction

tangential to Q0. We claim that ∂z ∈
o

W 1
2. First, we note that Dhz ∈

o

W 1
2 if h is

parallel to Q0 for sufficiently small |h|. By (1.80), Dhz is bounded in W 1
0 (Q)

and thus we have a subsequence hn such that Dhnz ⇀ g ∈
o

W 1
2(Q). Clearly,

Dhnz converges weakly in L2(Q+) and thus for any φ ∈ C∞0 (Q+)∫
Q+

(Dhnz)φdy =

∫
Q+

zD−hnφdy
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and thus passing to the limit∫
Q+

gφdy = −
∫
Q+

z∂φdy

and thus ∂z ∈
o

W 1
2(Q+). Then, as before∫

Ω

∂Gψdy =

∫
Ω

n∑
k,l=1

∂yk(∂z)∂ylψdy (1.84)

for any φ ∈
o

W 1
2(Q+). We argue by induction in m. Let f ∈Wm+1

2 (Q+). From
induction assumption, we have u ∈ Wm+2(Q+). Also ∂u in any tangential

derivative is in
o

W 1
2(Q+) and satisfies (1.84). By induction assumption to ∂u

and ∂G we see that ∂u ∈Wm+2
2 (Q+). Finally we can write

∂2xnxnu =
1

an,n

−G− ∫
Ω

∑
(k,l)6=(n,n)

∂yk(∂z)∂ylψdy


so that the claim follows.



2

An Overview of Semigroup Theory

In this chapter we are concerned with methods of finding solutions of the
Cauchy problem.

Definition 2.1. Given a Banach space and a linear operator A with domain
D(A) and range ImA contained in X and also given an element u0 ∈ X, find
a function u(t) = u(t, u0) such that

1. u(t) is continuous on [0,∞) and continuously differentiable on (0,∞),
2. for each t > 0, u(t) ∈ D(A) and

u′(t) = Au(t), t > 0, (2.1)

3.
lim
t→0+

u(t) = u0 (2.2)

in the norm of X.

A function satisfying all conditions above is called the classical (or strict)
solution of (2.1), (2.2).

2.1 What the semigroup theory is about

In the theory of differential equations, one of the first differential equations
encountered is

u′(t) = αu(t), α ∈ C (2.3)

with initial condition u(0) = u0. It is not difficult to verify that u(t) = etαu0
is a solution of Eq. (2.3).

As early as in 1887, G.P. Peano showed that the system of linear ordinary
differential equations with constant coefficients

u′1 = α11u1 + · · ·+ α1nun,
...

u′n = αn1u1 + · · ·+ αnnun,

(2.4)
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can be written in a matrix form as

u′(t) = Au(t), (2.5)

whereA is an n×nmatrix {αij}1≤i,j≤n and u is an n-vector whose components
are unknown functions, and can be solved using the explicit formula

u(t) = etAu0, (2.6)

where the matrix exponential etA is defined by

etA = I +
tA

1!
+
t2A2

2!
+ · · · . (2.7)

Taking a norm on Cn and the corresponding matrix-norm on Mn(C), the
space of all complex n × n matrices, one shows that the partial sums of the
series (2.7) form a Cauchy sequence and converge. Moreover, the map t→ etA

is continuous and satisfies the properties, [?, Proposition I.2.3]:

e(t+s)A = etAesA for all t, s ≥ 0
e0A = I.

(2.8)

Thus the one-parameter family {etA}t≥0 is a homomorphism of the additive
semigroup [0,∞) into a multiplicative semigroup of matrices Mn and forms
what is termed a semigroup of matrices.

The representation (2.7) can be used to obtain a solution of the abstract
Cauchy problem (2.1-2.2) where A : X → X is a bounded linear operator, as
in this case the series in (2.7) is still convergent with respect to the norm in
the space of linear operators L(X).

In general, however, the operators coming from applications, such as, for
example, differential operators, are not bounded on the whole space X and
(2.7) cannot be used to obtain a solution of the abstract Cauchy problem (??).
This is due to the fact that the domain of the operator A in such cases is a
proper subspace of X and because (2.7) involves iterates of A, their common
domain could shrink to the trivial subspace {0}. For the same reason, another
common representation of the exponential function

etA = lim
n→∞

(
1 +

t

n
A
)n

, (2.9)

cannot be used. For a large class of unbounded operators a variation of the
latter, however, makes the representation (2.6) meaningful with etA calculated
according to the formula

etAx = lim
n→∞

(
I − t

n
A
)−n

x = lim
n→∞

[
n

t

(n
t
−A

)−1]n
x. (2.10)

The aim of the semigroup theory is to find conditions under which such a
generalization of the exponential function satisfying (2.8) is possible.
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2.2 Rudiments

2.2.1 Definitions and Basic Properties

If the solution to (2.1), (2.2) is unique, then we can introduce the family
of operators (G(t))t≥0 such that u(t, u0) = G(t)u0. Ideally, G(t) should be
defined on the whole space for each t > 0, and the function t → G(t)u0
should be continuous for each u0 ∈ X, leading to well-posedness of (2.1), (2.2).
Moreover, uniqueness and linearity of A imply that G(t) are linear operators.
A fine-tuning of these requirements leads to the following definition.

Definition 2.2. A family (G(t))t≥0 of bounded linear operators on X is called
a C0-semigroup, or a strongly continuous semigroup, if

(i) G(0) = I;
(ii) G(t+ s) = G(t)G(s) for all t, s ≥ 0;
(iii) limt→0+ G(t)x = x for any x ∈ X.

A linear operator A is called the (infinitesimal) generator of (G(t))t≥0 if

Ax = lim
h→0+

G(h)x− x
h

, (2.11)

with D(A) defined as the set of all x ∈ X for which this limit exists. If we
need to use differen generators, then typically the semigroup generated by A
will be denoted by (GA(t))t≥0, otherwise simply by (G(t))t≥0.

Proposition 2.3. Let (G(t))t≥0 be a C0-semigroup. Then there are constants
ω ≥ 0, M ≥ 1 such that

‖G(t)‖ ≤Meωt, t ≥ 0. (2.12)

Proof. First we observe that ‖G(t)‖ is bounded on some interval. Indeed, if
not, there is (tn)n∈N, tn → 0, ‖G(tn)‖ ≥ n, that is (G(tn)) is unbounded.
But, by the Banach-Steinhaus theorem there is an x ∈ X and a subsequence
(tnk)nk∈N such that (G(tnk)x) is unbounded, contrary to (iii). So, ‖G(t)‖ ≤M
for 0 ≤ t ≤ η for some η and M ≥ 1 as G(0) = I. For any t ≥ 0 we take
t = nη + δ, 0 ≤ δ < η and, by the semigroup property,

‖G(t)‖ = ‖G(δ)(G(η))n‖ ≤MMn = Me(t−δ) lnM/η ≤Meωt

where ω = η−1 lnM ≥ 0.

As a corollary, we have

Corollary 2.4. Let (G(t))t≥0 be a C0-semigroup. Then for every x ∈ X,
t→ G(t)x ∈ C(R+ ∪ {0}, X).
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Proof. We have for t, h ≥ 0

‖G(t+ h)x−G(t)x‖ ≤ ‖G(t)‖‖G(h)x− x‖ ≤Meωt‖G(h)x− x‖

and for t ≥ h ≥ 0

‖G(t− h)x−G(t)x‖ ≤ ‖G(t− h)‖‖G(h)x− x‖ ≤Meωt‖G(h)x− x‖

and the statement follows from condition (iii).

Remark 2.5. As we have seen above, for semigroups, the existence of a one-
sided limit at some t0 > 0 yields the existence of the limit.

Let (G(t))t≥0 be a semigroup generated by the operator A. The following
properties of (G(t))t≥0 are frequently used.

Lemma 2.6. Let (G(t))t≥0 be a C0-semigroup generated by A.

(a) For x ∈ X

lim
h→0

1

h

t+h∫
t

G(s)xds = G(t)x. (2.13)

(b) For x ∈ X,
∫ t
0
G(s)xds ∈ D(A) and

A

t∫
0

G(s)xds = G(t)x− x. (2.14)

(c) For x ∈ D(A), G(t)x ∈ D(A) and

d

dt
G(t)x = AG(t)x = G(t)Ax. (2.15)

(d) For x ∈ D(A),

G(t)x−G(s)x =

t∫
s

G(τ)Axdτ =

t∫
s

AG(τ)xdτ. (2.16)

Proof. (a) follows from continuity of the semigroup. To prove (b) we consider
x ∈ X and h > 0. Then

G(h)− I
h

t∫
0

G(s)xds =
1

h

t∫
0

(G(s+ h)x−G(s)x)ds

=
1

h

t+h∫
t

G(s)xds− 1

h

h∫
0

G(s)x)ds
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and the right hand side tends to G(t)x − x by (a) which proves that
t∫
0

G(s)xds ∈ D(A) and (2.14). To prove (c), let x ∈ D(A) and h > 0. As

above
G(h)− I

h
G(t)x = G(t)

(
G(h)− I

h

)
x→ T (t)x

as h → 0. Thus, G(t)x ∈ D(A) and AG(t)x = G(t)Ax for x ∈ D(A). The
limit above also shows that

d+

dt
G(t)x = AG(t)x = G(t)Ax,

that is, the right derivative of G(t)x is AG(t). Take now t > 0 and h ≤ t.
Then

lim
h→0

(
G(t− h)x−G(t)x

−h
−AG(t)x

)
lim
h→0

G(t− h)

(
G(h)x− x

h
−Ax

)
+ lim
h→0

(G(t− h)Ax−G(t)Ax)

and we see that both limits are 0 by uniform boundedness of (G(t))t≥0, strong
continuity and x ∈ D(A).

Part (d) is obtained by integrating (2.15).

Why C0-semigroups?

Proposition 2.7. If (G(t))t≥0 is uniformly bounded, then its generator is
bounded.

Proof. Since ρ−1
ρ∫
0

G(s)ds → I in the uniform operator norm, then there is

ρ > 0 such that ‖ρ−1
ρ∫
0

G(s)ds − I‖ < 1 and thus ρ−1
ρ∫
0

G(s)ds and hence

ρ∫
0

G(s)ds are invertible.

G(h)− I
h

ρ∫
0

G(s)ds =
1

h

ρ∫
0

(G(s+ h)−G(s))ds

=
1

h

ρ+h∫
h

G(s)xds− 1

h

ρ∫
0

G(s)xds =
1

h

ρ+h∫
ρ

G(s)xds− 1

h

h∫
0

G(s)xds

Thus
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G(h)− I
h

=

 1

h

ρ+h∫
ρ

G(s)xds− 1

h

h∫
0

G(s)xds

 ρ∫
0

G(s)ds

−1 .
Letting h → 0, we see that (G(h) − I)/h → (G(ρ) − I)(

∫ ρ
0
G(s)ds)−1 in the

uniform norm and thus the generator is bounded.

From (2.15) and condition (iii) of Definition 2.2 we see that if A is the
generator of (G(t))t≥0, then for x ∈ D(A) the function t→ G(t)x is a classical
solution of the following Cauchy problem,

∂tu(t) = A(u(t)), t > 0, (2.17)

lim
t→0+

u(t) = x. (2.18)

We note that ideally the generator A should coincide with A but in reality
very often it is not so.

Remark 2.8. We noted above that for x ∈ D(A) the function u(t) = G(t)x is
a classical solution to (2.17), (2.18). For x ∈ X \D(A), however, the function
u(t) = G(t)x is continuous but, in general, not differentiable, norD(A)-valued,
and, therefore, not a classical solution. Nevertheless, from (2.14), it follows

that the integral v(t) =
∫ t
0
u(s)ds ∈ D(A) and therefore it is a strict solution

of the integrated version of (2.17), (2.18):

∂tv = Av + x, t > 0

v(0) = 0, (2.19)

or equivalently,

u(t) = A

t∫
0

u(s)ds+ x. (2.20)

We say that a function u satisfying (2.19) (or, equivalently, (2.20)) is a mild
solution or integral solution of (2.17), (2.18).

Corollary 2.9. If (G(t))t≥0 is a C0-semigroup generated by A, then A is a
closed densely defined linear operator.

Proof. For x ∈ X we set xt = t−1
t∫
0

G(s)xds. By (b), xt ∈ D(A) and by (a),

xt → x as t → 0. To prove closedness, let D(A) 3 xn → x ∈ X and let
Axn → y ∈ X. From (d) we have

G(t)xn − xn =

t∫
0

G(s)Axnds.
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By local boundedness of (G(t))t≥0 we have that G(s)Axn → G(s)y uniformly
on bounded intervals, hence, by letting n→∞,

G(t)x− x =

t∫
0

G(s)yds.

Thus, using (a), x ∈ D(A) and Ax = y.

Thus, if we have a semigroup, we can identify the Cauchy problem of which
it is a solution. Usually, however, we are interested in the reverse question,
that is, in finding the semigroup for a given equation.

A first step in this direction is

Theorem 2.10. Let (GA(t))t≥0 and (GB(t))t≥0 be C0 semigroups generated
by, respectively, A and B. If A = B, then GA(t) = GB(t).

Proof. Let x ∈ D(A) = D(B). Consider the function

s→ GA(t− s)GB(s)x, 0 ≤ s ≤ t,

continuous on [0, t]. Writing, for appropriate s, h

GA(t− (s+ h))GB(s+ h)x−GA(t− s)GB(s)x

h

=
GA(t− (s+ h))GB(s+ h)x−GA(t− (s+ h))GB(s)x

h

+
GA(t− (s+ h))GB(s)x−GA(t− s)GB(s)x

h

we see that by local boundedness both terms converge and, by (c), we obtain

d

ds
GA(t− s)GB(s)x = −AGA(t− s)GB(s)x+GA(t− s)BGB(s)x

= −GA(t− s)AGB(s)x+GA(t− s)BGB(s)x = 0.

Thus GA(t− s)GB(s)x is constant and, in particular, evaluating at s = 0 and
s = t we get GA(t)x = GB(t)x for any t and x ∈ D(A). From density, we
obtain the equality on X.

The final answer is given by the Hille–Yoshida theorem (or, more prop-
erly, the Feller–Miyadera–Hille–Phillips–Yosida theorem). Before, however, we
need to discuss the concept of the resolvent.

Let A be any operator in X. The resolvent set of A is defined as

ρ(A) = {λ ∈ C; λI −A : D(A)→ X is invertible}. (2.21)

We call (λI−A)−1 the resolvent of A and denote it by R(λ,A) = (λI−A)−1,
λ ∈ ρ(A). The complement of ρ(A) in C is called the spectrum of A and
denoted by σ(A).
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The resolvent of any operator A satisfies the resolvent identity

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A), λ, µ ∈ ρ(A), (2.22)

from which it follows, in particular, that R(λ,A) and R(µ,A) commute. Writ-
ing

R(µ,A) = R(λ,A)(I − (µ− λ)R(µ,A))

we see by the Neuman expansion that R(λ,A) can be written as the power
series

R(λ,A) =
∞∑
n=0

(µ− λ)nR(µ,A)n+1 (2.23)

for |µ−λ| < ‖R(µ,A)‖−1 so that ρ(A) is open and λ→ R(λ,A) is an analytic
function in ρ(A). The iterates of the resolvent and its derivatives are related
by

dn

dλn
R(λ,A) = (−1)nn!R(λ,A)n+1. (2.24)

2.2.2 The Hille–Yosida Theorem

We begin with the simplest case of contractive semigroups. A C0 semigroup
(GA(t))t≥0 is called contractive if

‖GA(t)‖ ≤ 1

Theorem 2.11. A is the generator of a contractive semigroup (GA(t))t≥0 if
and only if

(a) A is closed and densely defined,
(b) (0,∞) ⊂ ρ(A) and for all λ > 0,

‖R(λ,A)‖ ≤ 1

λ
. (2.25)

Proof. (Necessity) If A is the generator of a C0 semigroup (GA(t))t≥0, then
it is densely defined and closed. Let us define

R(λ)x =

∞∫
0

e−λtG(t)xdt (2.26)

is valid for all x ∈ X. Since (GA(t))t≥0 is contractive, the integral exists for
λ > 0 as an improper Riemann integral and defines a bounded linear operator
R(λ)x (by the Banach-Steinhaus theorem). R(λ) satisfeis

‖R(λ)x‖ ≤ 1

λ
‖x‖.
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Furthermore, h > 0,

GA(t)− I
h

R(λ)x =
1

h

∞∫
0

e−λt(GA(t+ h)x−GA(t)x)dt

=
1

h

 ∞∫
h

e−λ(t−h)GA(t)xdt−
∞∫
0

e−λtGA(t)xdt


=
eλh − 1

h

∞∫
h

e−λtGA(t)xdt− 1

h

h∫
0

e−λtGA(t)xdt.

By strong continuity of GA, the right hand side converges to λR(λ)x − x.
This implies that for any x ∈ D(A) and λ > 0 we have R(λ)x ∈ D(A) and
AR(λ) = λR(λ)− I so

(λI −A)R(λ) = I. (2.27)

On the other hand, for x ∈ D(A) we have

R(λ)Ax =

∞∫
0

e−λtG(t)Axdt = A

 ∞∫
0

e−λtG(t)x

 dt = AR(λ)x

by commutativity (Lemma 2.6 (c)) and closedness of A. Thus A and R(λ)
commute and

R(λ)(λI −A)x = Ax

on D(A). Thus R(λ) is the resolvent of A and satisfies the desired estimate.
The converse is more difficult to prove. The starting point of the second

part of the proof is the observation that if (A,D(A)) is a closed and densely
defined operator satisfying ρ(A) ⊃ (0,∞) and ‖λR(λ,A)‖ ≤ 1 for all λ > 0,
then

(i) for any x ∈ X,
lim
λ→∞

λR(λ,A)x = x. (2.28)

Indeed, first consider x ∈ D(A). Then

‖λR(λ,A)x− x‖ = ‖AR(λ,A)x‖ = ‖R(λ,A)Ax‖ ≤ 1

λ
‖Ax‖ → 0

as λ→∞. Since D(A) is dense and ‖λR(λ,A)‖ ≤ 1 then by 3ε argument
we extend the convergence to X.

(ii) AR(λ,A) are bounded operators and for any x ∈ D(A),

lim
λ→∞

λAR(λ,A)x = Ax. (2.29)

Boundedness follows from AR(λ,A) = λR(λ,A) − I. Eq. (2.29) follows
(2.28).
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It was Yosida’s idea to use the bounded operators

Aλ = λAR(λ,A), (2.30)

as an approximation of A for which we can define semigroups uniformly con-
tinuous semigroups (Gλ(t))t≥0 via the exponential series. First we note that
(Gλ(t))t≥0 are semigroups of contractions and, for any x ∈ X and λ, µ > 0
we have

‖Gλ(t)x−Gµ(t)x‖ ≤ t‖Aλx−Aµx‖. (2.31)

Indeed, using Aλ = λ2R(λ,A)− λI and the series estimates

‖Gλ(t)x‖ ≤ e−λteλ‖R(λ,A)‖t ≤ 1.

Further, from the definition operators Gλ(t), Gµ(t), Aλ, Aµ commute with
each other. Then

‖Gλ(t)x−Gµ(t)x‖ =

∥∥∥∥∥∥
1∫

0

d

ds
etsAλet(1−s)Aµxds

∥∥∥∥∥∥
≤ t

1∫
0

‖etsAλet(1−s)Aµ(Aλx−Aµx)‖ds ≤ t‖Aλx−Aµx‖.

Using (2.31) we obtain for x ∈ D(A)

‖Gλ(t)x−Gµ(t)x‖ ≤ t‖Aλx−Aµx‖ ≤ t(‖Aλx−Ax‖+ ‖Ax−Aµx‖).

Hence (Gλ(t)x))λ strongly converges and the convergence (for each x) is uni-
form in t on bounded intervals (almost uniform on R+. Since D(A) is dense
in X and ‖Gλ(t)‖ ≤ 1 we get

lim
λ→∞

Gλ(t)x =: S(t)x

for x ∈ X. The convergence is still almost uniform on R+. From the limit we
see that (S(t))t≥0 is a C0 semigroup of contractions.

What remains is to show that (S(t))t≥0 is generated by A. Let x ∈ D(A).
Then

S(t)x− x = lim
λ→∞

(Gλ(t)x− x) = lim
λ→∞

t∫
0

esAλAλxds =

t∫
0

S(s)Axds (2.32)

where the last equality follows from

‖esAλAλx− S(s)Ax‖ ≤ ‖esAλAλx− esAλAx‖+ ‖esAλAx− S(s)Ax‖
≤ ‖Aλx−Ax‖+ ‖esAλAx− S(s)Ax‖,
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by contractivity of (Gλ(t))t≥0, so that the convergence is uniform on bounded
intervals. Assume now that (S(t))t≥0 is generated by B. Dividing (2.32) by t
and passing to the limit, we obtain

Bx = Ax, x ∈ D(A)

so that A ⊂ B. On the other hand, we know that I − A and I − B are
bijections from, resp D(A) and D(B) with D(A) ⊂ D(B). But then we have
(I − B)D(A) = (I − A)D(A) = X, that is, D(A) = (I − B)−1X = D(B) so
A = B.

Corollary 2.12. A linear operator A is the generator of a C0 semigroup
(G(t))t≥0 satisfying ‖G(t)‖ ≤ eωt if and only if

(i) A is closed and D(A) = X;
(ii) ρ(A) ⊃ (ω,∞) and for such λ

‖R(λ,A)‖ ≤ 1

λ− ω
. (2.33)

Proof. Follows from the contractive semigroup S(t) = e−ωtG(t) being gener-
ated by A− ωI.

The full version of the Hille-Yosida theorem reads

Theorem 2.13. A ∈ G(M,ω) if and only if

(a) A is closed and densely defined,
(b) there exist M > 0, ω ∈ R such that (ω,∞) ⊂ ρ(A) and for all

n ≥ 1, λ > ω,

‖(λI −A)−n‖ ≤ M

(λ− ω)n
. (2.34)

The proof of this result is based on re-norming of the original space. We
have

Lemma 2.14. Let A be an operator with ρ(A) ⊃ (0,∞). If there is M such
that

‖λn(R(λ,A))n‖ ≤M (2.35)

then there exists a norm | · | that satisfies

‖x‖ ≤ |x| ≤M‖x‖, x ∈ X (2.36)

and
|λR(λ,A)x| ≤ |x|, x ∈ X,λ > 0. (2.37)
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Proof. For µ > 0 we define first

‖x‖µ = sup
n≥0
‖µn(R(µ,A))n‖. (2.38)

Then obviously
‖x‖ ≤ |x|µ ≤M‖x‖, x ∈ X (2.39)

and
‖µR(µ,A)x‖ ≤ ‖x‖µ. (2.40)

Further, using the resolvent identity

R(λ,A) = R(µ,A) + (µ− λ)R(µ,A)R(µ,A),

by (2.40), we obtain for λ ≤ µ

‖R(λ,A)x‖µ ≤
1

µ
‖µR(µ,A)x‖µ +

(
1− λ

µ

)
‖R(λ,A)x‖µ

hence
‖λR(λ,A)x‖µ ≤ ‖x‖µ, 0 < λ ≤ µ. (2.41)

Thus

‖λnR(λ,A)nx‖ ≤ ‖λnR(λ,A)nx‖µ ≤ ‖x‖µ, 0 < λ ≤ µ (2.42)

and therefore, by taking supremum over n

‖x‖λ ≤ ‖x‖µ, 0 < λ ≤ µ.

Thus the limit
|x| := lim

µ→∞
‖x‖µ (2.43)

exists and finite; it defines a norm on X that is equivalent to ‖ · ‖ by (2.39).
Finally, taking n = 1 in (2.42) we have

‖λR(λ,A)x‖µ ≤ ‖x‖µ

and the thesis follows by taking the limit as µ→∞.

Proof of Theorem 2.13. Similarly to Corollary 2.12, the problem can be
reduced to the one for uniformly bounded semigroups: ‖G(t)‖ ≤M . Then the
resolvent estimate becomes

‖λn(R(λ,A))n‖ ≤M, λ > 0, n = 1, 2, . . . . (2.44)

The necessity part is reduced to the contractive case by renorming the space
using

|x| = sup
t≥0
‖G(t)x‖. (2.45)
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Then
‖x‖ ≤ |x| ≤M‖x‖ (2.46)

and hence | · | is an equivalent norm on X. In this norm

|G(t)x| = sup
s≥0
‖G(t)G(s)x‖ ≤ sup

τ≥0
‖G(τ)x‖ = |x|

by the semigroup property. Then there is the generator A, densely defined
and closed, satisfying |λR(λ,A)x| ≤ |x|. But then, by (2.46),

‖λn(R(λ,A))nx‖ ≤ |λn(R(λ,A))nx| ≤ |x| ≤M‖x‖.

For sufficiency, we renorm the space using (2.43) so that |λR(λ,A)x| ≤ |x|
and in this norm A generates a contractive semigroup (G(t))t≥0. But then,
by (2.36),

‖G(t)x‖ ≤ |G(t)x| ≤ |x| ≤M‖x‖

and the theorem follows.

2.2.3 Relation with the exponential formula

Theorem 2.15. Let (GA(t))t≥0 be a C0-semigroup on X generated by A.
Then

GA(t)x = lim
n→∞

(
I − t

n
A

)−n
x = lim

n→∞

(n
t
R
(n
t
,A
))n

x, x ∈ X, (2.47)

and the limit is uniform in t on any bounded interval.

Proof. Let ‖GA(t)‖ ≤ Meωt. For λ > ω the resolvent R(λ,A) is an analytic
function satisfying

R(λ,A)x =

∞∫
0

e−λsGA(s)xds, x ∈ X. (2.48)

Then

dn

dλn
R(λ,A)x =

∞∫
0

(−s)ne−λsGA(s)xds

that, upon substitution λ = t/n, gives

dn

dλn
R

(
t

n
,A

)
x = (−1)n

∞∫
0

sne−n
s
tGA(s)xds

and, substituting v = s/t,
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dn

dλn
R

(
t

n
,A

)
x = (−1)ntn+1

∞∫
0

vne−nvGA(tv)xdv.

Then, by (2.24),(
n

t
R

(
t

n
,A

))n+1

x =
nn+1

n!

∞∫
0

vne−nvGA(tv)xdv.

However, from the definition of the Γ function

nn+1

n!

∞∫
0

vne−nvdv =
1

n!

∞∫
0

rne−rdr =
Γ (n+ 1)

n!
= 1,

thus we can write(
n

t
R

(
t

n
,A

))n+1

x−GA(t)x =
nn+1

n!

∞∫
0

vne−nv(GA(tv)x−GA(t)x)dv.

From the strong continuity of (GA(t))t≥0, for any ε > 0, 0 < t0 < ∞ we can
find 0 < a < 1 < b <∞ such that for any t ∈ [0, t0], v ∈ [a, b] we have

‖GA(tv)x−GA(t)x‖ ≤ ε.

Next, we observe that v → vne−nv is strictly increasing on [0, 1) attains
maximum e−1 at v = 1 and is strictly decreasing on (0,∞). Now, we write

nn+1

n!

∞∫
0

vne−nv(GA(tv)x−GA(t)x)dv = I1 + I2 + I3,

where

‖I1‖ ≤

∥∥∥∥∥∥n
n+1

n!

a∫
0

vne−nv(GA(tv)x−GA(t)x)dv

∥∥∥∥∥∥
≤ nn+1

n!
ane−na

a∫
0

‖(GA(tv)x−GA(t)x)‖dv

‖I2‖ ≤

∥∥∥∥∥∥n
n+1

n!

b∫
a

vne−nv(GA(tv)x−GA(t)x)dv

∥∥∥∥∥∥ ≤ εn
n+1

n!

b∫
a

vne−nvdx ≤ ε

‖I3‖ ≤

∥∥∥∥∥∥n
n+1

n!

∞∫
b

vne−nv(GA(tv)x−GA(t)x)dv

∥∥∥∥∥∥
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where we used the monotonicity of v → vne−nv on [0, 1) for the estimate of
I1. Further, for a given a < 1, ae−a = q < e−1 and using the Strirling formula

Γ (n+ 1) = n! = O

(√
nnn

en

)
we obtain

nn+1

n!

a∫
0

vne−nv = O(
√
n(eq)n)

which shows ‖I1‖ → 0 as n → ∞. Now, for I3 we observe ‖GA(tv)x −
GA(t)x‖ ≤ M‖x‖(eωtv + eωt) ≤ 2M‖x‖eωtv (as v ≥ b > 1) and hence the
integral is finite if we take n > ωt. For a given t0, let us fix n0 > ωt0. Then
we can write

‖I3‖ ≤ 2M
nn+1

n!

∞∫
b

vne−(n−n0)ve−(n0−ωt)vdv.

The maximum of v → vne−(n−n0)v is attained at vmax = n
n−n0

and thus

satisfies 1 < vmax < b for sufficiently large n. Hence v → vne−(n−n0)v is
strictly decreasing on [b,∞) for large n and we can write

‖I3‖ ≤ 2M
nn+1

n!
bne−nben0b

∞∫
b

e−(n0−ωt)vdv.

Therefore ‖I3‖ → 0 as n → ∞ uniformly on [0, t0] by the same argument as
for I1. Thus, for any ε > 0 there is N such that for any n > N∥∥∥∥(nt R(nt ,A))n+1

x−GA(t)x

∥∥∥∥ ≤ ε;
that is,

lim
n→∞

(n
t
R
(n
t
,A
))n+1

x = GA(t)x

uniformly on [0, t0] for any t0 < ∞. However, by (2.28) and the Banach-
Steinhaus theorem (uniform boundedness of strongly convergent sequence of
operators), we obtain (2.47).

2.2.4 Dissipative operators and the Lumer-Phillips theorem

Let X be a Banach space (real or complex) and X∗ be its dual. From the
Hahn–Banach theorem, Theorem 1.12 for every x ∈ X there exists x∗ ∈ X∗
satisfying

<x∗, x>= ‖x‖2 = ‖x∗‖2.
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Therefore the duality set

J (x) = {x∗ ∈ X∗; <x∗, x>= ‖x‖2 = ‖x∗‖2} (2.49)

is nonempty for every x ∈ X.

Definition 2.16. We say that an operator (A,D(A)) is dissipative if for every
x ∈ D(A) there is x∗ ∈ J (x) such that

< <x∗, Ax>≤ 0. (2.50)

If X is a real space, then the real part in the above definition can be
dropped.

Theorem 2.17. A linear operator A is dissipative if and only if for all λ > 0
and x ∈ D(A),

‖(λI −A)x‖ ≥ λ‖x‖. (2.51)

Proof. Let A be dissipative, λ > 0 and x ∈ D(A). If x∗ ∈ J and < <
Ax, x∗ >≤ 0, then

‖λx−Ax‖‖x‖ ≥ |(λx−Ax, x∗ > | ≥ < < λx−Ax, x∗ >≥ λ‖x‖2

so that we get (2.51).
Conversely, let x ∈ D(A) and λ‖x‖ ≤ ‖λx − Ax‖ for λ > 0. Consider

y∗λ ∈ J (λx−Ax) and z∗λ = y∗λ/‖y∗λ‖.

λ‖x‖ ≤ ‖λx−Ax‖ = ‖λx−Ax‖‖z∗λ‖ = ‖y∗λ‖1‖λx−Ax‖‖y∗λ‖ = ‖y∗λ‖1 < λx−Ax, y∗λ >
= < λx−Ax, z∗λ >= λ< < x, z∗λ > −< < Ax, z∗λ >

≤ λ‖x‖ − < < Ax, z∗λ >

for every λ > 0. From this estimate we obtain that < < Ax, z∗λ >≤ 0 and, by
|α| ≥ <α,

λ< < x, z∗λ >= λ‖x‖+< < Ax, z∗λ >≥ λ‖x‖−|< < Ax, z∗λ > | ≥ λ‖x‖−‖Ax‖

or < < x, z∗λ >≥ ‖x‖−λ−1‖Ax‖. Now, the unit ball in X∗ is weakly-∗ compact
and thus there is a sequence (z∗λn)n∈N converging to z∗ with ‖z∗‖ = 1. From
the above estimates, we get

< < Ax, z∗ >≤ 0

and < < x, z∗ >≥ ‖x‖. Hence, also, | < x, z∗ > | ≥ ‖x‖ On the other hand,
Re < x, z∗ >≤ | < x, z∗ > | ≤ ‖x‖ and hence < x, z∗ >= ‖x‖. Taking
x∗ = z∗‖x‖ we see that x∗ ∈ J (x) and < < Ax, x∗ >≤ 0 and thus A is
dissipative.

Theorem 2.18. Let A be a linear operator with dense domain D(A) in X.
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(a) If A is dissipative and there is λ0 > 0 such that the range Im(λ0I−A) =
X, then A is the generator of a C0-semigroup of contractions in X.

(b) If A is the generator of a C0 semigroup of contractions on X, then
Im(λI − A) = X for all λ > 0 and A is dissipative. Moreover, for every
x ∈ D(A) and every x∗ ∈ J (x) we have < < Ax, x∗ >≤ 0.

Proof. Let λ > 0, then dissipativeness of A implies ‖λx − Ax‖ ≥ λ‖x‖ for
x ∈ D(A), λ > 0. This gives injectivity and, since by assumption, the Im(λ0I−
A)D(A) = X, (λ0I−A)−1 is a bounded everywhere defined operator and thus
closed. But then λ0I − A, and hence A, are closed. We have to prove that
Im(λI − A)D(A) = X for all λ > 0. Consider the set Λ = {λ > 0; Im(λI −
A)D(A) = X}. Let λ ∈ Λ. This means that λ ∈ ρ(A) and, since ρ(A) is open,
Λ is open in the induced topology. We have to prove that Λ is closed in the
induced topology. Assume λn → λ, λ > 0. For every y ∈ X there is xn ∈ D(A)
such that

λnxn −Axn = y.

From (??), ‖xn‖ ≤ 1
λn
‖y‖ ≤ C for some C > 0. Now

λm‖xn − xm‖ ≤ ‖λm(xn − xm)−A(xn − xm)‖
= ‖ − λmxn + λmxm − λnxn + λnxn −Axn +Axm‖
= |λn − λm|‖xn‖ ≤ C|λn − λm|

Thus, (xn)n∈N is a Cauchy sequence. Let xn → x, then Axn → λx−y. Since A
is closed, x ∈ D(A) and λx−Ax = y. Thus, for this λ, Im(λI−A)D(A) = X
and λ ∈ Λ. Thus Λ is also closed in (0,∞) and since λ0 ∈ Λ, Λ 6= ∅ and
thus Λ = (0,∞) (as the latter is connected). Thus, the thesis follows from the
Hille-Yosida theorem.

On the other hand, if A is the generator of a semigroup of contractions
(G(t))t≥0, then (0,∞) ⊂ ρ(A) and Im(λI − A)D(A) = X for all λ > 0.
Furthermore, if x ∈ D(A), x∗ ∈ J (x), then

| < G(t)x, x∗ > | ≤ ‖G(t)x‖‖x∗‖ ≤ ‖x‖2

and therefore

< < G(t)x− x, x∗ >= < < G(t)x, x∗ > −‖x‖2 ≤ 0

and, dividing the left hand side by t and passing with t→∞, we obtain

< Ax, x∗ >≤ 0.

Since this holds for every x∗ ∈ J (x), the proof is complete.
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Adjoint operators

Before we move to an important corollary, let as recall the concept of the
adjoint operator. If A ∈ L(X,Y ), then the adjoint operator A∗ is defined as

<y∗, Ax>=<A∗y∗, x> (2.52)

and it can be proved that it belongs to L(Y ∗, X∗) with ‖A∗‖ = ‖A‖. If A is
an unbounded operator, then the situation is more complicated. In general,
A∗ may not exist as a single-valued operator. In other words, there may be
many operators B satisfying

<y∗, Ax>=<By∗, x>, x ∈ D(A), y∗ ∈ D(B). (2.53)

Operators A and B satisfying (2.53) are called adjoint to each other.
However, if D(A) is dense in X, then there is a unique maximal operator

A∗ adjoint to A; that is, any other B such that A and B are adjoint to each
other, must satisfy B ⊂ A∗. This A∗ is called the adjoint operator to A. It
can be constructed in the following way. The domain D(A∗) consists of all
elements y∗ of Y ∗ for which there exists f∗ ∈ X∗ with the property

<y∗, Ax>=<f∗, x> (2.54)

for any x ∈ D(A). Because D(A) is dense, such element f∗ can be proved
to be unique and therefore we can define A∗y∗ = f∗. Moreover, the assump-
tion D(A) = X ensures that A∗ is a closed operator though not necessarily
densely defined. In reflexive spaces the situation is better: if both X and Y
are reflexive, then A∗ is closed and densely defined with

A = (A∗)∗; (2.55)

see [?, Theorems III.5.28, III.5.29].

Corollary 2.19. Let A be a densely defined closed linear operator. If both A
and A∗ are dissipative, then A is the generator of a C0-semigroup of contrac-
tions on X.

Proof. It suffices to prove that, e.g., Im(I − A) = X. Since A is dissipative
and closed, Im(λI − A) is a closed subspace of X. Indeed, if yn → y, yn ∈
Im(I−A), then, by dissipativity, ‖xn−xm‖ ≤ ‖(xn−xm)− (Axn−Axm)‖ =
‖yn − ym‖ and (xn)n∈N converges. But then (Axn)n∈N converges and, by
closedness, x ∈ D(A) and x−Ax = y ∈ Im(I −A). Assume Im(I −A) 6= X,
then by H-B theorem, there is 0 6= x∗ ∈ X∗ such that < x∗, x−Ax >= 0 for
all x ∈ D(A). But then x∗ ∈ D(A∗) and, by density of D(A), x∗ − A∗x∗ = 0
but dissipativeness of A∗ gives x∗ = 0.
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The Cauchy problem for the heat equation

Let C = Ω × (0,∞), Σ = ∂Ω × (0,∞) where Ω is an open set in Rn. We
consider the problem

∂tu = ∆u, inΩ × [0, T ], (2.56)

u = 0, onΣ, (2.57)

u = u0, onΩ. (2.58)

Theorem 2.20. Assume that u0 ∈ L2(Ω) where Ω is bounded and has a C2

boundary. Then there exists a unique function u satisfying (2.58)–(1.30) such

that u ∈ C([0,∞);L2(Ω)) ∩ C([0,∞);W 2
2 (Ω)∩

o

W 1
2(Ω)),

Proof. The strategy is to consider (2.58–(1.30) as the abstract Cauchy prob-
lem

u′ = Au, u(0) = u0

in X = L2(Ω) where A is the unbounded operator defined by

Au = ∆u

for
u ∈ D(A) = {u ∈

o

W
1
2(Ω);∆u ∈ L2(Ω)} = W 2

2 (Ω)∩
o

W
1
2(Ω)).

First we observe that A is densely defined as C∞0 (Ω) ⊂
o

W 1
2(Ω) and∆C∞0 (Ω) ⊂

L2(Ω). Next, A is dissipative. For u ∈ L2(Ω), J u = u and

(Au, u) = −
∫
Ω

|∇u|2dx ≤ 0

Further, we consider the variational problem associated with I − A, that is,

to find u ∈
o

W 1
2(Ω) to

a(u, v) =

∫
Ω

∇u∇vdx +

∫
Ω

uvdx =

∫
Ω

fvdx, v ∈
o

W
1
2(Ω)

where f ∈ L2(Ω) is given. Clearly, a(u, u) = ‖u‖21,Ω and thus is coercive.

Hence there is a unique solution u ∈
o

W 1
2 which, by writing∫

Ω

∇u∇vdx =

∫
Ω

fvdx−
∫
Ω

uvdx =

∫
Ω

(f − u)vdx,

can be shown to be in W 2
2 (Ω). This ends the proof of generation.

If we wanted to use the Hille-Yosida theorem instead, then to find the
resolvent, we would have to solve
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a(u, v) =

∫
Ω

∇u∇vdx + λ

∫
Ω

uvdx =

∫
Ω

fvdx, v ∈
o

W
1
2(Ω)

for λ > 0. The procedure is the same and we get in particular for the solution

‖∇uλ‖20,Ω + λ‖uλ‖20,Ω ≤ ‖f‖0,Ω‖uλ‖0,Ω .

Since uλ = R(λ,A)f we obtain

λ‖R(λ,A)f‖0,Ω ≤ λ−1‖f‖0,Ω .

Closedness follows from continuous invertibility.


