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An Overview of Semigroup Theory

In this chapter we are concerned with methods of finding solutions of the
Cauchy problem.

Definition 2.1. Given a Banach space and a linear operator A with domain
D(A) and range ImA contained in X and also given an element u0 ∈ X, find
a function u(t) = u(t, u0) such that

1. u(t) is continuous on [0,∞) and continuously differentiable on (0,∞),
2. for each t > 0, u(t) ∈ D(A) and

u′(t) = Au(t), t > 0, (2.1)

3.
lim
t→0+

u(t) = u0 (2.2)

in the norm of X.

A function satisfying all conditions above is called the classical (or strict)
solution of (2.1), (2.2).

2.1 What the semigroup theory is about

In the theory of differential equations, one of the first differential equations
encountered is

u′(t) = αu(t), α ∈ C (2.3)

with initial condition u(0) = u0. It is not difficult to verify that u(t) = etαu0

is a solution of Eq. (2.3).
As early as in 1887, G.P. Peano showed that the system of linear ordinary

differential equations with constant coefficients

u′1 = α11u1 + · · ·+ α1nun,
...

u′n = αn1u1 + · · ·+ αnnun,

(2.4)
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can be written in a matrix form as

u′(t) = Au(t), (2.5)

whereA is an n×nmatrix {αij}1≤i,j≤n and u is an n-vector whose components
are unknown functions, and can be solved using the explicit formula

u(t) = etAu0, (2.6)

where the matrix exponential etA is defined by

etA = I +
tA

1!
+
t2A2

2!
+ · · · . (2.7)

Taking a norm on Cn and the corresponding matrix-norm on Mn(C), the
space of all complex n × n matrices, one shows that the partial sums of the
series (2.7) form a Cauchy sequence and converge. Moreover, the map t→ etA

is continuous and satisfies the properties, [79, Proposition I.2.3]:

e(t+s)A = etAesA for all t, s ≥ 0
e0A = I.

(2.8)

Thus the one-parameter family {etA}t≥0 is a homomorphism of the additive
semigroup [0,∞) into a multiplicative semigroup of matrices Mn and forms
what is termed a semigroup of matrices.

The representation (2.7) can be used to obtain a solution of the abstract
Cauchy problem (2.1-2.2) where A : X → X is a bounded linear operator, as
in this case the series in (2.7) is still convergent with respect to the norm in
the space of linear operators L(X).

In general, however, the operators coming from applications, such as, for
example, differential operators, are not bounded on the whole space X and
(2.7) cannot be used to obtain a solution of the abstract Cauchy problem (??).
This is due to the fact that the domain of the operator A in such cases is a
proper subspace of X and because (2.7) involves iterates of A, their common
domain could shrink to the trivial subspace {0}. For the same reason, another
common representation of the exponential function

etA = lim
n→∞

(
1 +

t

n
A
)n

, (2.9)

cannot be used. For a large class of unbounded operators a variation of the
latter, however, makes the representation (2.6) meaningful with etA calculated
according to the formula

etAx = lim
n→∞

(
I − t

n
A
)−n

x = lim
n→∞

[
n

t

(n
t
−A

)−1
]n
x. (2.10)

The aim of the semigroup theory is to find conditions under which such a
generalization of the exponential function satisfying (2.8) is possible.
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2.2 Rudiments

2.2.1 Definitions and Basic Properties

If the solution to (2.1), (2.2) is unique, then we can introduce the family
of operators (G(t))t≥0 such that u(t, u0) = G(t)u0. Ideally, G(t) should be
defined on the whole space for each t > 0, and the function t → G(t)u0

should be continuous for each u0 ∈ X, leading to well-posedness of (2.1), (2.2).
Moreover, uniqueness and linearity of A imply that G(t) are linear operators.
A fine-tuning of these requirements leads to the following definition.

Definition 2.2. A family (G(t))t≥0 of bounded linear operators on X is called
a C0-semigroup, or a strongly continuous semigroup, if

(i) G(0) = I;
(ii) G(t+ s) = G(t)G(s) for all t, s ≥ 0;
(iii) limt→0+ G(t)x = x for any x ∈ X.

A linear operator A is called the (infinitesimal) generator of (G(t))t≥0 if

Ax = lim
h→0+

G(h)x− x
h

, (2.11)

with D(A) defined as the set of all x ∈ X for which this limit exists. If we
need to use differen generators, then typically the semigroup generated by A
will be denoted by (GA(t))t≥0, otherwise simply by (G(t))t≥0.

Why C0-semigroups?

Proposition 2.3. If (G(t))t≥0 is uniformly bounded, then its generator is
bounded.

Proof. Since ρ−1
ρ∫
0

G(s)ds → I in the uniform operator norm, then there is

ρ > 0 such that ‖ρ−1
ρ∫
0

G(s)ds − I‖ < 1 and thus ρ−1
ρ∫
0

G(s)ds and hence

ρ∫
0

G(s)ds are invertible.

G(h)− I
h

ρ∫
0

G(s)ds =
1

h

ρ∫
0

(G(s+ h)−G(s))ds

=
1

h

ρ+h∫
ρ

G(s)xds− 1

h

ρ∫
0

G(s)xds

Thus
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G(h)− I
h

=

 1

h

ρ+h∫
ρ

G(s)xds− 1

h

ρ∫
0

G(s)xds

 ρ∫
0

G(s)ds

−1

.

Letting h → 0, we see that (G(h) − I)/h → (G(ρ) − I)(
∫ ρ

0
G(s)ds)−1 in the

uniform norm and thus the generator is bounded.

Proposition 2.4. Let (G(t))t≥0 be a C0-semigroup. Then there are constants
ω ≥ 0, M ≥ 1 such that

‖G(t)‖ ≤Meωt, t ≥ 0. (2.12)

Proof. First we observe that ‖G(t)‖ is bounded on some interval. Indeed, if
not, there is (tn)n∈N, tn → 0, ‖G(tn)‖ ≥ n, that is (G(tn)) is unbounded.
But, by the Banach-Steinhaus theorem there is an x ∈ X and a subsequence
(tnk)nk∈N such that (G(tnk)x) is unbounded, contrary to (iii). So, ‖G(t)‖ ≤M
for 0 ≤ t ≤ η for some η and M ≥ 1 as G(0) = I. For any t ≥ 0 we take
t = nη + δ, 0 ≤ δ < η and, by the semigroup property,

‖G(t)‖ = ‖G(δ)(G(η))n‖ ≤MMn = Me(t−δ) lnM/η ≤Meωt

where ω = η−1 lnM ≥ 0.

As a corollary, we have

Corollary 2.5. Let (G(t))t≥0 be a C0-semigroup. Then for every x ∈ X,
t→ G(t)x ∈ C(R+ ∪ {0}, X).

Proof. We have for t, h ≥ 0

‖G(t+ h)x−G(t)x‖ ≤ ‖G(t)‖‖G(h)x− x‖ ≤Meωt‖G(h)x− x‖

and for t ≥ h ≥ 0

‖G(t− h)x−G(t)x‖ ≤ ‖G(t− h)‖‖G(h)x− x‖ ≤Meωt‖G(h)x− x‖

and the statement follows from condition (iii).

Remark 2.6. As we have seen above, for semigroups, the existence of a one-
sided limit at some t0 > 0 yields the existence of the limit.

Let (G(t))t≥0 be a semigroup generated by the operator A. The following
properties of (G(t))t≥0 are frequently used.

Lemma 2.7. Let (G(t))t≥0 be a C0-semigroup generated by A.

(a) For x ∈ X

lim
h→0

1

h

t+h∫
t

G(s)xds = G(t)x. (2.13)
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(b) For x ∈ X,
∫ t

0
G(s)xds ∈ D(A) and

A

t∫
0

G(s)xds = G(t)x− x. (2.14)

(c) For x ∈ D(A), G(t)x ∈ D(A) and

d

dt
G(t)x = AG(t)x = G(t)Ax. (2.15)

(d) For x ∈ D(A),

G(t)x−G(s)x =

t∫
s

G(τ)Axdτ =

t∫
s

AG(τ)xdτ. (2.16)

Proof. (a) follows from continuity of the semigroup. To prove (b) we consider
x ∈ X and h > 0. Then

G(h)− I
h

t∫
0

G(s)xds =
1

h

t∫
0

(G(s+ h)x−G(s)x)ds

=
1

h

t+h∫
t

G(s)xds− 1

h

t∫
0

G(s)x)ds

and the right hand side tends to G(t)x − x by (a) which proves that
t∫

0

G(s)xds ∈ D(A) and (2.14). To prove (c), let x ∈ D(A) and h > 0. As

above
G(h)− I

h
G(t)x = G(t)

(
G(h)− I

h

)
x→ T (t)x

as h → 0. Thus, G(t)x ∈ D(A) and AG(t)x = G(t)Ax for x ∈ D(A). The
limit above also shows that

d+

dt
G(t)x = AG(t)x = G(t)Ax,

that is, the right derivative of G(t)x is AG(t). Take now t > 0 and h ≤ t.
Then

lim
h→0

(
G(t− h)x−G(t)x

−h
−AG(t)x

)
lim
h→0

G(t− h)

(
G(h)x− x

h
−Ax

)
+ lim
h→0

(G(t− h)Ax−G(t)Ax)

and we see that both limits are 0 by uniform boundedness of (G(t))t≥0, strong
continuity and x ∈ D(A).

Part (d) is obtained by integrating (2.15).
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From (2.15) and condition (iii) of Definition 2.2 we see that if A is the
generator of (G(t))t≥0, then for x ∈ D(A) the function t→ G(t)x is a classical
solution of the following Cauchy problem,

∂tu(t) = A(u(t)), t > 0, (2.17)

lim
t→0+

u(t) = x. (2.18)

We note that ideally the generator A should coincide with A but in reality
very often it is not so.

Remark 2.8. We noted above that for x ∈ D(A) the function u(t) = G(t)x is
a classical solution to (2.17), (2.18). For x ∈ X \D(A), however, the function
u(t) = G(t)x is continuous but, in general, not differentiable, norD(A)-valued,
and, therefore, not a classical solution. Nevertheless, from (2.14), it follows

that the integral v(t) =
∫ t

0
u(s)ds ∈ D(A) and therefore it is a strict solution

of the integrated version of (2.17), (2.18):

∂tv = Av + x, t > 0

v(0) = 0, (2.19)

or equivalently,

u(t) = A

t∫
0

u(s)ds+ x. (2.20)

We say that a function u satisfying (2.19) (or, equivalently, (2.20)) is a mild
solution or integral solution of (2.17), (2.18).

Corollary 2.9. If (G(t))t≥0 is a C0-semigroup generated by A, then A is a
closed densely defined linear operator.

Proof. For x ∈ X we set xt = t−1
t∫

0

G(s)xds. By (b), xt ∈ D(A) and by (a),

xt → x as t → 0. To prove closedness, let D(A) 3 xn → x ∈ X and let
Axn → y ∈ X. From (d) we have

G(t)xn − xn =

t∫
0

G(s)Axnds.

By local boundedness of (G(t))t≥0 we have that G(s)Axn → G(s)y uniformly
on bounded intervals, hence, by letting n→∞,

G(t)x− x =

t∫
0

G(s)yds.

Thus, using (a), x ∈ D(A) and Ax ∈ y.



2.2 Rudiments 67

Thus, if we have a semigroup, we can identify the Cauchy problem of which
it is a solution. Usually, however, we are interested in the reverse question,
that is, in finding the semigroup for a given equation.

A first step in this direction is

Theorem 2.10. Let (GA(t))t≥0 and (GB(t))t≥0 be C0 semigroups generated
by, respectively, A and B. If A = B, then GA(t) = GB(T ).

Proof. Let x ∈ D(A) = D(B). Consider the function

s→ GA(t− s)GB(s)x, 0 ≤ s ≤ t

is continuous on [0, t]. Writing, for appropriate s, h

GA(t− (s+ h))GB(s+ h)x−GA(t− s)GB(s)x

h

=
GA(t− (s+ h))GB(s+ h)x−GA(t− (s+ h))GB(s)x

h

+
GA(t− (s+ h))GB(s)x−GA(t− s)GB(s)x

h

we see that by local boundedness both terms converge and, by (c), we obtain

d

ds
GA(t− s)GB(s)x = −AGA(t− s)GB(s)x+GA(t− s)BGB(s)x

= −GA(t− s)AGB(s)x+GA(t− s)BGB(s)x = 0.

Thus GA(t− s)GB(s)x is constant and, in particular, evaluating at s = 0 and
s = t we get GA(t)x = GB(t)x for any t and x ∈ D(A). From density, we
obtain the equality on X.

The final answer is given by the Hille–Yoshida theorem (or, more prop-
erly, the Feller–Miyadera–Hille–Phillips–Yosida theorem). Before, however, we
need to discuss the concept of resolvent.

Let A be any operator in X. The resolvent set of A is defined as

ρ(A) = {λ ∈ C; λI −A : D(A)→ X is invertible}. (2.21)

We call (λI−A)−1 the resolvent of A and denote it by R(λ,A) = (λI−A)−1,
λ ∈ ρ(A). The complement of ρ(A) in C is called the spectrum of A and
denoted by σ(A).

The resolvent of any operator A satisfies the resolvent identity

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A), λ, µ ∈ ρ(A), (2.22)

from which it follows, in particular, that R(λ,A) and R(µ,A) commute. Writ-
ing

R(µ,A) = R(λ,A)(I − (µ− λ)R(µ,A))



68 2 An Overview of Semigroup Theory

we see by the Neuman expansion that R(λ,A) can be written as the power
series

R(λ,A) =
∞∑
n=0

(µ− λ)nR(µ,A)n+1 (2.23)

for |µ−λ| < ‖R(µ,A)‖−1 so that ρ(A) is open and λ→ R(λ,A) is an analytic
function in ρ(A). The iterates of the resolvent and its derivatives are related
by

dn

dλn
R(λ,A) = (−1)nn!R(λ,A)n+1. (2.24)

2.2.2 The Hille–Yosida Theorem

We begin with the simplest case of contractive semigroups. A C0 semigroup
(GA(t))t≥0 is called contractive if

‖GA(T )‖ ≤ 1

Theorem 2.11. A is the generator of a contractive semigroup (GA(t))t≥0 if
and only if

(a) A is closed and densely defined,
(b) (0,∞) ⊂ ρ(A) and for all λ > 0,

‖R(λ,A)‖ ≤ 1

λ
. (2.25)

Proof. (Necessity) If A is the generator of a C0 semigroup (GA(t))t≥0, then
it is densely defined and closed. Let us define

R(λ)x =

∞∫
0

e−λtG(t)xdt (2.26)

is valid for all x ∈ X. Since (GA(t))t≥0 is contractive, the integral exists for
λ > 0 as an improper Riemann integral and defines a bounded linear operator
R(λ)x (by the Banach-Steinhaus theorem). R(λ) satisfeis

‖R(λ)x‖ ≤ 1

λ
‖x‖.

Furthermore, h > 0,

GA(t)− I
h

R(λ)x =
1

h

∞∫
0

e−λt(GA(t+ h)x−GA(t)x)dt

=
1

h

 ∞∫
h

e−λ(t−h)GA(t)xdt−
∞∫

0

e−λtGA(t)xdt


=
eλh − 1

h

∞∫
h

e−λtGA(t)xdt− eλh

h

∞∫
0

e−λtGA(t)xdt
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By strong continuity of GA, the right hand side converges to λR(λ)x − x.
This implies that for any x ∈ D(A) and λ > 0 we have R(λ)x ∈ D(A) and
AR(λ) = λR(λ)− I so

(λI −A)R(λ) = I. (2.27)

On the other hand, for x ∈ D(A) we have

R(λ)Ax =

∞∫
0

e−λtG(t)Axdt = A

 ∞∫
0

e−λtG(t)x

 dt = AR(λ)x

by commutativity (Lemma 2.7 (c)) and closedness of A. Thus A and R(λ)
commute and

R(λ)(λI −A)x = Ax

on D(A). Thus R(λ) is the resolvent of A and satisfies the desired estimate
The converse is more difficult to prove. The starting point of the second

part of the proof is the observation that if (A,D(A)) is a closed and densely
defined operator satisfying ρ(A) ⊃ (0,∞) and ‖λR(λ,A)‖ ≤ 1 for all λ > 0,
then

(i) for any x ∈ X,
lim
λ→∞

λR(λ,A)x = x. (2.28)

Indeed, first consider x ∈ D(A). Then

‖λR(λ,A)x− x‖ = ‖AR(λ,A)x‖ = ‖R(λ,A)Ax‖ ≤ 1

λ
‖Ax‖ → 0

as λ→∞. Since D(A) is dense and ‖λR(λ,A)‖ ≤ 1 then by 3ε argument
we extend the convergence to X.

(ii) AR(λ,A) are bounded operators and for any x ∈ D(A),

lim
λ→∞

λAR(λ,A)x = Ax. (2.29)

Boundedness follows from AR(λ,A) = λR(λ,A) − I. Eq. (2.29) follows
(2.28).

It was Yosida’s idea to use the bounded operators

Aλ = λAR(λ,A), (2.30)

as an approximation of A for which we can define semigroups uniformly con-
tinuous semigroups (Gλ(t))t≥0 via the exponential series. First we note that
(Gλ(t))t≥0 are semigroups of contractions and, for any x ∈ X and λ, µ > 0
we have

‖Gλ(t)x−Gµ(t)x‖ ≤ t‖Aλx−Aµx‖. (2.31)

Indeed, using Aλ = λ2R(λ,A)− λI and the series estimates
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‖Gλx‖ ≤ e−λteλ‖R(λ,A)‖t ≤ 1.

Further, from the definition operators Gλ(t), Gµ(t), Aλ, Aµ commute with
each other. Then

‖Gλ(t)x−Gµ(t)x‖ =

∥∥∥∥∥∥
1∫

0

d

ds
etsAλet(1−s)Aµxds

∥∥∥∥∥∥
≤ t

1∫
0

‖etsAλet(1−s)Aµ(Aλx−Aµx)‖ds ≤ t‖Aλx−Aµx‖.

Using (2.31) we obtain for x ∈ D(A)

‖Gλ(t)x−Gµ(t)x‖ ≤ t‖Aλx−Aµx‖ ≤ t(‖Aλx−Ax‖+ ‖Ax−Aµx‖).

Hence (Gλ(t)x))λ strongly converges and the convergence (for each x) is uni-
form in t on bounded intervals (almost uniform on R+. Since D(A) is dense
in X and ‖Gλ(t)‖ ≤ 1 we get

lim
λ→∞

Gλ(t)x =: S(t)x

for x ∈ X. The convergence is still almost uniform on R+. From the limit we
see that (S(t))t≥0 is a C0 semigroup of contractions.

What remains is to show that (S(t))t≥0 is generated by A. Let x ∈ D(A).
Then

G(t)x− x = lim
λ→∞

(Gλ(t)x− x) = lim
λ→∞

t∫
0

esAλAλxds =

t∫
0

G(s)Axds (2.32)

where the last equality follows from

‖esAλAλx−G(s)Ax‖ ≤ ‖esAλAλx− esAλAx‖+ ‖esAλAx−G(s)Ax‖
≤ ‖Aλx−Ax‖+ ‖esAλAx−G(s)Ax‖,

by contractivity of (Gλ(t))t≥0, so that convergence is uniform on bounded
intervals. Assume now that (G(t))t≥0 is generated by B. Dividing (2.32) by t
and passing to the limit, we obtain

Bx = Ax, x ∈ D(A)

so that A ⊂ B. On the other hand, we know that I − A and I − B are
bijections from, resp D(A) and D(B) with D(A) ⊂ D(B). But then we have
(I − B)D(A) = (I − A)D(A) = X, that is, D(A) = (I − B)−1X = D(B) so
A = B.


