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Proof. If {2 is bounded then, using Theorem 1.45, we can extend u to a func-
tion Eu € W3 (R™) with bounded support. The existence of a C§°(R") se-
quence converging to u follows from the Friedrichs lemma. If {2 is unbounded
(but not equal to R™), then first we approximate u by a sequence (X,u)nen
where y, are cut-off functions. Next we construct an extension of y,u to
R™. This is possible as it involves only the part of 0f2 intersecting the ball
B(0,2n 4+ 1) and x4, is equal to zero where the sphere intersects 9f2. For this
extension we pick up an approximating function from C§°(R™).

1.4 Basic applications of the density theorem

1.4.1 Sobolev embedding

In Subsection 1.1.2 we have seen that in one dimension it is possible to identify
a W (R) function. Unfortunately, this is not true in higher dimensions.
Example 1.48. We can consider in D = {(z,y) € R?; 2% +y? < 1}

1/3

1
u(x,y) = ’2 In(z® + %) = (=lnr)"/%

The function w is not continuous (even not bounded) at (z,y) = (0,0). It is
in Ly(D) and for derivatives we have

1 1
Uy = 75(71117")*2/3;—2, Uy = 75(71117")*2/37%
and, since
2 [ d 2 [
2 2 _ r _ —4/3
D 0 1

we see that u € W3 (D).

However, there is still a link between Sobolev spaces and classical calculus
provided we take sufficiently high order of derivatives (or index p in L, spaces).
The link is provided by the Sobolev lemma.

Let {2 be an open and bounded subset of R™. We say that (2 satisfies the
cone condition if there are numbers p > 0 and vy > 0 such that each x € {2 is
a vertex of a cone K (x) of radius p and volume ~p™. Precisely speaking, if o,
is the n — 1 dimensional measure of the unit sphere in R™, then the volume of
a ball of radius p is o,p"/n and then the (solid) angle of the cone is yn/w;,.

Lemma 1.49. If 2 satisfies the cone condition, then there exists a constant

C such that for any u € C™(§2) with 2m > n we have

sup |u(x)| < Cllul|m (1.61)
xEeN
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Proof. Let us introduce a cut-off function ¢ € C§°(R) which satisfies ¢(t) = 1
for |t| <1/2 and ¢(t) = 0 for |[t| > 1. Define 7(t) = ¢(t/p) and note that there
are constants Ay, k =1,2,... such that

dkT(t)’ < Ak
dtk - pk:

(1.62)

Let us take u € C™(£2) and assume 2m > n. For x € 2 and the cone K(x)
we integrate along the ray {x +rw; 0 <r < p, |jw|=1

u(x) = —/DT(T(T‘)U(X + rw))dr.
0

Integrating over the surface I" of the cone we get

p Dy (r(r)u(x + w))drdw = —u(x) | dw = —u(x) 2.
/] /

Wn,
c
Next we integrate m — 1 times by parts, getting
nHm i
u(x) = M //D;"(T(T)U(XJr rw))r™ tdrdw.
c 0
and changing to Cartesian coordinates and applying Cauchy-Schwarz inequal-

ity we obtain

2

WP < | e [ Dy
K(x)
(—e Y | DI (7u) 2 dyd 20m=m)g
< (sowss) [ Wwreutasiy [ 2o,
K(x) K(x)

The last term can be evaluated as

p

2m—
T
K (x) c 0 "

so that
u < Clmm*™ " [ |DP(ru) Py, (1.63)
K(x)

Let us estimate the derivative. From (1.62) we obtain by the chain rule and
the Leibniz formula
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"\ A
k=0

m

Z (Z) Di”_kTDfu

k=0

)

D} (ru)| =

hence

u“ 1
D (ru)]? < 'Y =) | DEu)?
k=0

for some constant C’. With this estimate we can re-write (1.63) as

W2 < Clm, )OS p*n / D™ (u)|2dy. (1.64)
k=0 K(x)
Since by the chain rule

D> <" D%y
K
la| <k

by extending the integral to {2 we obtain

sup [u(x)| < Cllul|m
xes2

which is (1.61).

Theorem 1.50. Assume that 2 is a bounded open set with C™ boundary and
let m > k 4+ n/2 where m and k are integers. Then the embedding

Wi () c ck(2)
15 continuous.

Proof. Under the assumptions, the problem can be reduced to the set Gy € 2
consisting of internal point, separated from the boundary by a fixed positive
distance, and points in the boundary strip, covered by sets 2N Bj; which are
transformed onto 1 UQo. Any point in G satisfies the cone conditions. Points
on Qo U Q4 also satisfy the condition so, if u € Wi(£2), then extending the
boundary components of Au to @ we obtain functions in Wy (£2) and W4 (Q)
with compact supports in respective domains. By Friedrichs lemma, restric-
tions to 2 and @ of C*°(R™) functions are dense in, respectively, Wj*({2)
and W3 (Q) and therefore the estimate (1.61) can be extended by density to
W3 (£2) showing that the canonical injection into C(f2) is continuous. To ob-
tain the result for higher derivatives we substitute higher derivatives of u for u
in (1.61). Thus, all components of Au are they are C* functions. Transferring
them back, we see that u € C*(£2), by regularity of the local atlas and m > k,
we obtain the thesis.
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1.4.2 Compact embedding and Rellich—Kondraschov theorem

Lemma 1.51. let Q = {x; a; < z; < b} be a cube in R™ with edges of length
d>0. Ifue CYQ), then
2
2 —n nd® & 2
ulq < d [ [udx | + "5 o, (1.65)
Q 7=1

Proof. For any x,y € @) we can write
u(x) —u(y) = Z / O, (Y1 - Yj—1, 8, Tjg1, - - T )dS.
j=1
J

Squaring this identity and using Cauchy-Schwarz inequality we obtain

bj
)+ (y) ~ 2u(uly) <nd Y (O onee v s e )
j=1

Integrating the above inequality with respect to all variables, we obtain
2
n
20" |2, < 2 /udx a2 S ol o
Q j=1
as required.

Theorem 1.52. Let 2 be open and bounded. If the sequence (uy)ren of ele-
ments of V([)/%(.Q) is bounded, then there is a subsequence which converges in
in Lo(£2). In other words, the injection I/?/%(_Q) C Lo(£2) is compact.

Proof. By density, we may assume u, € C§°. Let M = sup,{|uk|1}. We
enclose {2 in a cube Q; we may assume the edges of @) to be of unit length.
Further, we extend each uy by zero to @ \ {2.

We decompose @ into N™ cubes of edges of length 1/N. Since clearly
(ug)gen is bounded in Lo(Q) it contains a weakly convergent subsequence
(which we denote again by (uy)ren). For any € there is ng such that

/(uk —w)dx| < €, k1> ng (1.66)
i

for each j =1,...,N™. Now, we apply (1.65) on each @; and sum over all j
getting
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w2 < N+ L oM.
HUk ul”(],Q — € + 2N2

Now, we see that for a fixed € we can find N large that nM?/N? < e and,
having fixed N, for € = ¢/2N™ we can find ng such that (1.66) holds. Thus
(ug)ken is Cauchy in Lo(£2).

Corollary 1.53. If 2 is a bounded open subset of R™, then the embedding
VC[)/ST(Q) CVC[)/gFl(Q) is compact.

Proof. Applying the previous theorem to the sequences of derivatives, we see
that the derivatives form bounded sequences in W4 (§2) and thus contain sub-
sequences converging in Lo (f2). Selecting common subsequence we get con-
vergence in W4 (§2) etc, (by closedness of derivatives).

Theorem 1.54. If 012 is a C™ boundary of a bounded open set {2. Then the
embedding W3*(£2) € W3~ (82) is compact.

Proof. The result follows by extension to V([)/Q"(Q’ ) where 2" is a bounded set
containing (2.

1.4.3 Trace theorems

We know that if v € Wi (£2) with m > n/2 then u can be represented by a
continuous function and thus can be assigned a value at the boundary of 2
(or, in fact, at any point). The requirement on m is, however, too restrictive
— we have solved the Dirichlet problem, which requires a boundary value of

the solution, in I/?/é(()) In this space, unless n = 1, the solution need not be
continuous. It turns out that it is possible to give a meaning to the operation
of taking the boundary value of a function even if it is not continuous.

We begin with the simplest (nontrivial) case when 2 = R?} = {x; x =
(x',2,),0 < x,}.
Theorem 1.55. The trace operator vo : C*(R7) N W3 (R%) — CO(R™™)
defined by

(108)(x') = (x',0), ¢ € CR})NW;(RY),x e R*,

has a unique extension to a continuous linear operator vy : W3 (RY) —
Lo(R™ 1) whose range in dense in Lo(R"™1). The extension satisfies

0(Bu) =y (B)w(w), B € CHRE) N Loo(RY),u € Wy(RY).
Proof. Let ¢ € C*(R7T) N W3(R%). Then, from continuity, for any x/,

O, |6(xX',2,)|? € La(R,) we can write

6,7 — [o(, ) = / By (' ) Pt
0
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and thus |¢(x’,7)|? has a limit which must equal 0. Hence

o(x' ) [Pda,.

6,0 =~ [0,
0
Integrating over R"~! we obtain

66,0 <2 [ 01, 0x)0(x)dx
J

+

< 2005, dlloy [6llozs < 102, Gl zx + 161135 -

Hence, by density, the operation of taking value at x,, = 0 extends to Wy (R’}).

If ¢ € C°(R™ 1) and 7 is a truncation function 7(¢) = 1 for [¢t| < 1
and 7(t) = 0 for |t| > 0 then ¢(x) = Y(x')7(z,) € C*(RY) N W3 (R7}) and
v0(¢) = ® so that the range of the trace operator contains C§°(R"~!) and
thus is dense. The last identity follows from continuity of the trace operator
and of the operator of multiplication by bounded differentiable functions in
WHRE).

Theorem 1.56. Let u € Wy (R'). Then u EI/?/%(RT;) if an only if yo(u) =0,

Proof. If u 6{/%%(}1%1), then w is the limit of a sequence (¢ )ren from C5° (R )
in W3 (R"). Since vo(¢x) = 0 for any k, we obtain v (u) = 0.

Conversely, let u € W (R"}) with you = 0. By using the truncating func-
tions, we may assume that v has compact support in M

Next we use the truncating functions 7, € C*°(R), as in Theorem 1.45, by
taking function n which satisfies n(t) = 1 for ¢ > 1 and n(¢) = 0 for ¢t < 1/2
and define ny (z,,) = n(kx,). To simplify notation, we assume that 0 <’ <3
for ¢t € [1/2,1] so that 0 < 7, (z,) < 3k. Then the extension by 0 to R™
of x = ni(xy)u(x’,z,) is in W3 (R™) and can be approximated by C§°(R%)
functions in W3 (R ). Hence, we have to prove that nyu — u in W3 (R7).

As in the proof of Theorem 1.45 we can prove nu — u in Lo(R7 ) and for
eachi=1,...,n—1, 0y, (M) = MOy, u — Op,u in Ly(R7}) as k — oo.

Since

Oz, (Mu) = u0yz, Mk + Nk O, u

we see that we have to prove that u0,,m, — 0 in Ly(R"}) as k — oo. For this,
first we prove that if yo(u) = 0, then

u(x',s) = /8Inu(x',t)dt (1.67)
0

almost everywhere on R’. Indeed, let u, be a bounded support C' func-

S S
tion approximating w in W3 (R%). Then [0, u,(x',t)dt — [ 0,,u(x’,t)dt in
0 0
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Ly(R?). This follows from 0,,u, — 0,,u in Ly(R"}) and, taking @ to be the
box enclosing support of all w,,u, with edges of length at most d
2

/ /(‘%nur(x’,t)dt—/&Cnu(x’,t)dt dx
0 0

Q

< d2/|8%ur(x',t) 0y, u(x, 1)) dx
Q

Then we have, for any s, 0 < s <d
2

//&Enur(x',t)dt—ur(x’,s) dx:/\uT(X’,O)\de:d / lu, (%', 0)2dx’
0 Q

Q RA—1

and, since the right hand side goes to zero as r — 0o, we obtain (1.67). Then,
by Cauchy-Schwarz inequality

lu(x', s)|? < s/|8znu(x',t)\2dt
0

and therefore

2/k

/|n,/€(s)u(x',s)|2ds < 9k2/5/|8mnu(x',t)|2dtds

0 0o 0
2/k s 2/k2/k

18k / / 10, u(x, £)|2dtds = 18k / / 10, u(x, 1) 2dsdt
0 0 0

2/k
§36/|8znu(x/,t)|2dt.
0

Integration over R* ! gives

Inull§ g < 36 / |0, ul?dx

Rr=1x2/k
which tends to 0.

The consideration above can be extended to the case where {2 is an open
bounded region in R™ lying locally on one side of its C* boundary. Using the
partition of unity, we define
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N

Yo(u) =Y (vo((Bju) o HY)) o (HI)™!

j=1

It is clear that if u € C(£2), then you is the restriction of u to 9£2. Thus, we
have the following result

Theorem 1.57. Let §2 be a bounded open subset of R™ which lies on one side
of its boundary 082 which is assumed to be a C' manifold. Then there exists
a unique continuous and linear operator o : W4 (2) — Lo(92) such that for
each u € C1(£2), o is the restriction of u to 052. The kernel of o is equal to

V([)/%(Q) and its range is dense in Lo(0(2).

1.4.4 Regularity of variational solutions to the Dirichlet problem

From Subsection 1.3.6 we know that there is a unique variational solution
o
u €EW3(£2) of the problem

/Vqudx <f,v>(wi(Q e WA(@) UGW2
L_ﬁ_,

Moreover, now we can say that you = 0 on 92 (provided 942 is C*).
We have the following theorem

Theorem 1.58. Let 2 C R™ be an open bounded set wit@oundary (or
2 =R7%). Let f € Ly(92) and let u EV‘[D/é(Q) satisfy

/Vqudx =(fv), veWi). (1.68)
(9]

Then u_€ W3 (£2) and ||ull2,0 < C|/fllo re C i t depending
only on (2. Furthermore if £2 is of cla Cm+2 nd f G@ﬂthen

u EJVQ’””(Q) and lullmi2,2 < Cl|flm 0

In particular, if{m > n/2i then u € C%(£2) is a classical solution.

Moreover, if {2 is bounded, then the solution operator G : Lo((2) %I/?/%(Q
1s self-adjoint and compact.

Proof. The proof naturally splits into two cases: interior estimates and bound-
ary estimates. Let 2 be bounded with at least C' boundary and consider the
partition of unity {5;}}_, subordinated to the covering {G;}}_,. For the in-

o
terior estimates let us consider ug = Bou and let v €W 3(£2). Then we can
write —
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/ V(@"@;dx - / 5@dx+ / uV BoVudx N
Q 19, Q S@u L )

— /Vuv(ﬂofu)dx—/vVuVBOdXJr/t@VﬂOdX
7

I
1) 7] UQ—_U

2
= VuV(ﬂov)dx—/vVuV,Bodx—/V(uVﬁo)vdx
o Yl —— 2

= [ VuV(Bov)dx — 2 /@VuVﬁodx - /@vABOdX
W L_Or_—-—- (e B—

7 2
= /— ABou — 2VuV fo)vdx = /dex7 v EI/?/%(Q),
e h e —

where F' € Ly(£2) and we used v EV?/%(Q) to get

¢l C
I'fgl:gx[/L %I'“ /quVﬁodx = —/V(uVﬁo)vdx.

0
DLJ D \/ Hence, the functiontw_:__ﬁ_og is the variational solution to
in R™. Let us define Dpu = |h|=}(rpu — u) and take;& = D_j,(Dpw). It is
— possible since w has compact supportim§2-and thus v €W 5(£2) for sufficiently
F \V4 small h. Thus we obtain e
v A1 /|Vth|2dx = /FD_h(th)dx,
v & u ( \S). o) Q
v )
that is,
, k||th||rin < [Fllo,ef D-n(Drw)llo, (1.69)
C? D q/ On the other hand, from Friedrichs lemma, for any v € Wi (£2) with compact
—h support
! 1D-olly < 9]0 (1.70)
SL@ [K) | &Q (){_\,\) Applying this to v = Dpu, we obtain
\\ \ - ||th||{ﬂ < Fllo,2l[VDrwllo,e < IIFIIO,QHwaIIm’

that is, -
( IDwwle < | Flo..

In particular, we obtain

HDha’viw”QQ < HFHO,Q’ i=1...,n,

—_—
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which yields 9,,w € W4 (£2), that is, w € WZ(£2).

" In the mext step, we shall move to estimates close to the boundary. Let
us fix some some set B; and corresponding function 3;, 1 < j < N from the
partition of unity and drop the index j. Then we have a C? diffeomorphism
H : () — B the inverse of which we denote J = H/so tlrEt—H(QQ =0NB
and H(Qq) = 02N B. We denote x = H(y),y € Q and y = J(x). As before,
we see that w = pu is a variational solution to

>

/ VwVuvdx = / (f8 —uAp —2VuVp)vdx = / gudx, v Gﬁ/é(ﬁ)

2NnB QnB 2nB ( |
1.71
where the Green’s formula SV %S Dﬂ o
¢ (Jn G)
QnB onB

can be justified by noting that the integration is actually carried out over the
domain G € B and we can use a function XU, where x is equal to 1 on G

and has support in B, instead of v. Function x XV W (Q N B) (as v can be

approximated by ¢ compactly supported in (}m_)mb—e‘arpproximated

by x¢ compactly supported in 2N B).
Now we transfer (1.71) to Q4. We have z(y) = w(H(y)) for y € Q4 or

w(x) = z(J(x)) for x € 2N B. Let ¢ EV?/%(QJF) and ¢(x) = ¢(J(x)). Then
® EV([)/%(Q N B) and we have

Op,w =Y 0y 200, Tk, Oa,¢ = 0y p0a,J)
k=1 1=
and hence
/ VuwVedx = / Z Oz ; JxOr,; J10y, 20y, |det Ty |dy = / Z g, 10y, 20y, Ydy
QNB Q. k=1 k=1
where J is the Jacobi matrix of H. We note that we can write
ag, = |det x| Ts T+ -
T
and thus we have I'EL( 3%\\ l :f f\
J~

=
> ari&eds = |detTul(T] €, TT€) > alg)? (1.72)
k=1
for all € = (&1,...,&,) € R™ since both Jacobi matrices Jp, J; are nonsingu-

lar. Also
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[ gvix= [ (9o myuldetTuliy = [ Gudy

2NB Q4+ Q+

where G € Ly(Q4) so that z EI/?/é(Q) is a solution to the (elliptic) variational
problem

/ S 18y, 20y tly = / Gudy, ¥ EWHQs). (1.73)

> k=1

Next the process is split into two cases. First we shall consider the method
of finite differences, as in the Gy case but only in the directions parallel to
the boundary. Thus, we take 1) = D_p(Dyz) for |h| small enough to still have

P EV%%(Q.Q. Then, as above

/ D | Y axudy.z | 0y (Dnz)dy = / GD_j,(Dpz)dy.

Q+ kii=1 Qy

o
Since Dz €W3(Q+), we can use Friedrichs lemma to estimate

/ GD_(Dp2)
Gt

Then, using 7,(fg) — fg = muf(thg — 9) + (7n.f — f)g, we find

I1D-n(Dnz)llo.qy < 1Gllo.@, IV(Drz)llo.q, -

Dy, Z a0y, 2 | (¥) = ag(y + 1)y, Dpz(y) + (Drak,i)(y) 0y, (¥)
k=1

and thus we can write, be the reverse Cauchy-Schwarz inequality

/Dh Z 10y, 2 | Oy, (Dpz)dy

g, k=1
/ Z Thakl e th) L th dy+/ Z Dhakl ykzﬁyl (th)
k,l=1 k,l=1

Z OéHV(DhZ)Ilo,Q+ = ClIVzllo.q ||V(Dh2)||o,Q+

where C' depends on the C! norm of ax; (and thus C? norm of the local atlas).
Thus

IVDr2) 5., <o (] IV(Dr2)llo,2 + Cll (Dn2)lo.q-)
< CNGlo.e IV(Dr2)o.q. (1.74)

a 1002l DD+ ¢

\.D < (¢ OO

v)|
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where we have used the Wi (§2) estimates for solutions to (1.73): for ¢ =

2 EWHQy)

Al V22 < [ S aridy, 20y, 2dy = / Gzdy < |Gllo.a, [V=loa, .
O Q f, kil=1 o -

Note that in the last inequality we used the Poincare inequality as z GI/?/é(QQ
and the constant in this inequality can be taken 1.
Thus we have
IV(Dnrz)llo.qr < C'lIGllo.q (1.75)

for any h which is parallel to Qo. Let j =1,...,n, h=|hles, k=1,...,n—1
and ¢ € C§°(Q+). Then we can write

/Dhay].z¢dy: —/8ysz,h¢dy
Q+ o Q+

and, by (1.75),

[ 0u,:0-10y| = | [ Did, 60| < C'1Glna. [olloc,
+ +

which, passing to the limit as [h| — 0 gives for any (jAT AT n) J = lt SoiA
w=l,..w- 1

[ 0120,60%| < €'1G o [0l (1.76)

+

To conclude, we have to show also the above estimate for k = n. First we ob-
serve that a,, > « on Q4. This follows from (1.72) by taking & = (1,0, ...,0).
Thus, we can replace in (1.73) ¢ by ¢ /apn,. Then we rewrite (1.73) as

/amn@yhzayh(a;}nw)dy: /amnG(a;’lnqp)dy

Q+ Q+

- > ariy 20y, (a,0)dy,
Q+ (k’l)i(n’n)

and differentiating on the left hand side
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[ duzoniy = / 050y, Oy + [ 0G0y
+ Q+

/ Z (a’n nw)ayl ak layk Zdy

(k,1)#(n,n)
+ / > 0y20y(apak1)dy,
Q+ (k’l)¢(n7n)

Applying now (1.78), we get

/(‘911,“ yhz/de < C(

+llzlue)¥lo.e- (L.77)

This shows that

[ 020,05 < CGlng. Iolloc, (1.78)

+

for any j,k = 1,...n and thus, by Proposition 1.44, each first derivative of z
belongs to W3 (Q4) and thus z € W2(Q, ). Using the first part of the proof
and transferring the solution back to {2 shows that u € W2(£2).

Let us consider higher derivatives. As before, we split u according to the
partition of unity and separately argue argue in Gy € {2 and in Q. Let us
begin with u € W2(£2)N I/?/'%(Q) and consider w = Bou. Let f € W4 () and
consider any derivative du, i = 1,...,n. We know that du € W (£2). Then we
can use ¢ € C§° and take 0¢ as the test function in (1.68) so that , integrating
by parts

_ ([ Ofodx — ! fOgdx — ([ VuVapdx = — ! VouVedx

so that Ou is a variational solution with square integrable right hand side and
thus Ou € W3 (£2) and u € W3 (£2). Then we can proceed by induction.

o
Let us consider z € W(Q+)N W3 and let Ju be any derivative in dire(’tion

tangential to Qp. We claim that 0z €W2 First, we note that D,z 6W2 it
parallel to Qq for sufficiently small |h|. By (1. 75) Dy,z is bounded in WZHQ

and thus we have a subsequence h,, such that Dy z — g EI/?/%(Q) Clearly,
Dy, z converges weakly in Lo(Q4) and thus for any ¢ € C§°(Q4)

/ (Dy, )iy = / 2D_y, bdy

Q+ Q+

) Ll
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and thus passing to the limit

/ gody = - / 20pdy

Q+ Q+

and thus 9z GV([)/% (Q4+). Then, as before

/ OGydy = / > 0y, (02)0,,vdy (1.79)
2 o ki=1
for any ¢ EI/(I)/% (Q4). We argue by induction in m. Let f € W3"*(Q. ). From
induction assumption, we have € W™2(Q, ). Als6 0z in any tangential
. /R4 o
“ derizetive is in W3 (Q ) and satisfies (1.79). By induction assumption 6 0%z
and 0G we se? tha‘iﬁa@;e W3t2(Q4). Finally we can write om
g ‘w4 2
M2 “re ° 92)
1
o= |G- [ X 0,020,0dy

o (kD#(n,n)

X X

so that the claim follows. 7 ’
. 0 2-- _\( ) + G
O+ € W 1 (d\’) “r @

S



