Proof. If Ω is bounded then, using Theorem 1.45, we can extend u to a function $Eu \in W_2^1(\mathbb{R}^n)$ with bounded support. The existence of a $C_0^{\infty}(\mathbb{R}^n)$ sequence converging to u follows from the Friedrichs lemma. If Ω is unbounded (but not equal to \mathbb{R}^n), then first we approximate u by a sequence $(\chi_n u)_{n \in \mathbb{N}}$ where χ_n are cut-off functions. Next we construct an extension of $\chi_n u$ to \mathbb{R}^n . This is possible as it involves only the part of $\partial\Omega$ intersecting the ball $B(0, 2n + 1)$ and χ_n is equal to zero where the sphere intersects $\partial\Omega$. For this extension we pick up an approximating function from $C_0^{\infty}(\mathbb{R}^n)$.

1.4 Basic applications of the density theorem

1.4.1 Sobolev embedding

In Subsection 1.1.2 we have seen that in one dimension it is possible to identify a $W_2^1(\mathbb{R})$ function. Unfortunately, this is not true in higher dimensions.

Example 1.48. We can consider in $D = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 < 1\}$

$$
u(x,y) = \left|\frac{1}{2}\ln(x^2 + y^2)\right|^{1/3} = (-\ln r)^{1/3}.
$$

The function u is not continuous (even not bounded) at $(x, y) = (0, 0)$. It is in $L_2(D)$ and for derivatives we have

$$
u_x = -\frac{1}{3}(-\ln r)^{-2/3}\frac{x}{r^2}, \qquad u_y = -\frac{1}{3}(-\ln r)^{-2/3}\frac{y}{r^2}
$$

and, since

$$
\int_{D} (u_x^2 + u_y^2) dx dy = \frac{2}{9} \int_{0}^{1} \frac{dr}{r(-\ln r)^{4/3}} = \frac{2}{9} \int_{1}^{\infty} u^{-4/3} du < \infty
$$

we see that $u \in W_2^1(D)$.

However, there is still a link between Sobolev spaces and classical calculus provided we take sufficiently high order of derivatives (or index p in L_p spaces). The link is provided by the Sobolev lemma.

Let Ω be an open and bounded subset of \mathbb{R}^n . We say that Ω satisfies the cone condition if there are numbers $\rho > 0$ and $\gamma > 0$ such that each $\mathbf{x} \in \Omega$ is a vertex of a cone $K(\mathbf{x})$ of radius ρ and volume $\gamma \rho^n$. Precisely speaking, if σ_n is the $n-1$ dimensional measure of the unit sphere in \mathbb{R}^n , then the volume of a ball of radius ρ is $\sigma_n \rho^n/n$ and then the (solid) angle of the cone is $\gamma n/\omega_n$.

Lemma 1.49. If Ω satisfies the cone condition, then there exists a constant C such that for any $u \in C^m(\overline{\Omega})$ with $2m > n$ we have

$$
\sup_{\mathbf{x}\in\Omega}|u(\mathbf{x})|\leq C\|u\|_{m}
$$
\n(1.61)

Proof. Let us introduce a cut-off function $\phi \in C_0^{\infty}(\mathbb{R})$ which satisfies $\phi(t) = 1$ for $|t| \leq 1/2$ and $\phi(t) = 0$ for $|t| \geq 1$. Define $\tau(t) = \phi(t)/\rho$ and note that there are constants A_k , $k = 1, 2, \dots$ such that

$$
\left| \frac{d^k \tau(t)}{dt^k} \right| \le \frac{A_k}{\rho^k}.\tag{1.62}
$$

Let us take $u \in C^m(\overline{Q})$ and assume $2m > n$. For $\mathbf{x} \in \overline{Q}$ and the cone $K(\mathbf{x})$ we integrate along the ray $\{x + r\omega; 0 \le r \le \rho, |\omega| = 1\}$

$$
u(\mathbf{x}) = -\int_{0}^{\rho} D_r(\tau(r)u(\mathbf{x} + r\boldsymbol{\omega}))dr.
$$

Integrating over the surface Γ of the cone we get

$$
\int_{\Gamma} \int_{0}^{\rho} D_r(\tau(r)u(\mathbf{x}+\boldsymbol{\omega})) dr d\boldsymbol{\omega} = -u(\mathbf{x}) \int_{C} d\boldsymbol{\omega} = -u(\mathbf{x}) \frac{\gamma n}{\omega_n}.
$$

Next we integrate $m - 1$ times by parts, getting

$$
u(\mathbf{x})=\frac{(-1)^m\omega_n}{\gamma n(m-1)!}\int\limits_C\int\limits_0^\rho D^m_r(\tau(r)u(\mathbf{x}+r\boldsymbol{\omega}))r^{m-1}drd\boldsymbol{\omega}.
$$

and changing to Cartesian coordinates and applying Cauchy-Schwarz inequality we obtain

$$
|u(\mathbf{x})|^2 \leq \left(\frac{\omega_n}{\gamma n(m-1)!} \int\limits_{K(\mathbf{x})} |D_r^m(\tau u)| r^{m-n} d\mathbf{y}\right)^2
$$

$$
\leq \left(\frac{\omega_n}{\gamma n(m-1)!}\right)^2 \int\limits_{K(\mathbf{x})} |D_r^m(\tau u)|^2 d\mathbf{y} d\mathbf{y} \int\limits_{K(\mathbf{x})} r^{2(m-n)} d\mathbf{y}.
$$

The last term can be evaluated as

$$
\int_{K(\mathbf{x})} r^{2(m-n)} d\mathbf{y} = \int_{C} \int_{0}^{\rho} r^{2m-n-1} dr d\omega = \frac{\gamma n \rho^{2m-n}}{\omega_n (2m-n)}
$$

so that

$$
|u(\mathbf{x})|^2 \le C(m,n)\rho^{2m-n} \int\limits_{K(\mathbf{x})} |D_r^m(\tau u)|^2 d\mathbf{y}.
$$
 (1.63)

Let us estimate the derivative. From (1.62) we obtain by the chain rule and the Leibniz formula

$$
|D_r^m(\tau u)| = \left| \sum_{k=0}^m {n \choose k} D_r^{m-k} \tau D_r^k u \right| \leq \sum_{k=0}^m {n \choose k} \frac{A_{m-k}}{\rho^{m-k}} |D_r^k u|,
$$

hence

$$
|D_r^m(\tau u)|^2 \le C' \sum_{k=0}^m \frac{1}{\rho^{2(m-k)}} |D_r^k u|^2
$$

for some constant C' . With this estimate we can re-write (1.63) as

$$
|u(\mathbf{x})|^2 \le C(m,n)C' \sum_{k=0}^{m} \rho^{2k-n} \int\limits_{K(\mathbf{x})} |D_r^m(u)|^2 d\mathbf{y}.
$$
 (1.64)

Since by the chain rule

$$
|D_r^m u|^2 \leq C'' \sum_{|\alpha| \leq k} |D^\alpha u|^2
$$

by extending the integral to Ω we obtain

$$
\sup_{\mathbf{x}\in\Omega}|u(\mathbf{x})|\leq C\|u\|_m
$$

which is (1.61).

Theorem 1.50. Assume that Ω is a bounded open set with C^m boundary and let $m > k + n/2$ where m and k are integers. Then the embedding

$$
W_2^m(\Omega) \subset C^k(\bar{\Omega})
$$

is continuous.

Proof. Under the assumptions, the problem can be reduced to the set $G_0 \in \Omega$ consisting of internal point, separated from the boundary by a fixed positive distance, and points in the boundary strip, covered by sets $\overline{\Omega} \cap B_i$ which are transformed onto $Q_+ \cup Q_0$. Any point in G_0 satisfies the cone conditions. Points on $Q_0 \cup Q_+$ also satisfy the condition so, if $u \in W_2^m(\Omega)$, then extending the boundary components of Au to Q we obtain functions in $W_2^1(\Omega)$ and $W_2^1(Q)$ with compact supports in respective domains. By Friedrichs lemma, restrictions to Ω and Q of $C^{\infty}(\mathbb{R}^n)$ functions are dense in, respectively, $W_2^m(\Omega)$ and $W_2^m(Q)$ and therefore the estimate (1.61) can be extended by density to $W_2^m(\Omega)$ showing that the canonical injection into $C(\overline{\Omega})$ is continuous. To obtain the result for higher derivatives we substitute higher derivatives of u for u in (1.61). Thus, all components of Au are they are C^k functions. Transferring them back, we see that $u \in C^k(\overline{\Omega})$, by regularity of the local atlas and $m > k$, we obtain the thesis.

1.4.2 Compact embedding and Rellich–Kondraschov theorem

Lemma 1.51. let $Q = {\mathbf{x}}$; $a_j \le x_j \le b_j$ be a cube in \mathbb{R}^n with edges of length $d > 0$. If $u \in C^1(\overline{Q})$, then

$$
||u||_{0,Q}^{2} \leq d^{-n} \left(\int_{Q} u d\mathbf{x}\right)^{2} + \frac{nd^{2}}{2} \sum_{j=1}^{n} ||\partial_{x_{j}} u||_{0,Q}^{2}
$$
 (1.65)

Proof. For any $\mathbf{x}, \mathbf{y} \in Q$ we can write

$$
u(\mathbf{x}) - u(\mathbf{y}) = \sum_{j=1}^n \int_{y_j}^{x_j} \partial_{x_j} u(y_1, \dots, y_{j-1}, s, x_{j+1}, \dots, x_n) ds.
$$

Squaring this identity and using Cauchy-Schwarz inequality we obtain

$$
u^{2}(\mathbf{x})+u^{2}(\mathbf{y})-2u(\mathbf{x})u(\mathbf{y}) \leq nd \sum_{j=1}^{n} \int_{a_{j}}^{b_{j}} (\partial_{j}u)^{2}(y_{1},\ldots,y_{j-1},s,x_{j+1},\ldots,x_{n}) ds.
$$

Integrating the above inequality with respect to all variables, we obtain

$$
2d^{n}||u||_{0,Q}^{2} \le 2\left(\int_{Q} u d\mathbf{x}\right)^{2} + nd^{n+2} \sum_{j=1}^{n} ||\partial_{j} u||_{0,Q}^{2}
$$

as required.

Theorem 1.52. Let Ω be open and bounded. If the sequence $(u_k)_{k\in\mathbb{N}}$ of elements of $\overset{\circ}{W}^1_2(\varOmega)$ is bounded, then there is a subsequence which converges in in $L_2(\Omega)$. In other words, the injection $\overset{\circ}{W}^1_2(\Omega) \subset L_2(\Omega)$ is compact.

Proof. By density, we may assume $u_k \in C_0^{\infty}$. Let $M = \sup_k \{||u_k||_1\}$. We enclose Ω in a cube Q ; we may assume the edges of Q to be of unit length. Further, we extend each u_k by zero to $Q \setminus \Omega$.

We decompose Q into N^n cubes of edges of length $1/N$. Since clearly $(u_k)_{k\in\mathbb{N}}$ is bounded in $L_2(Q)$ it contains a weakly convergent subsequence (which we denote again by $(u_k)_{k\in\mathbb{N}}$). For any ϵ' there is n_0 such that

$$
\left| \int_{Q_j} (u_k - u_l) d\mathbf{x} \right| < \epsilon', \qquad k, l \ge n_0 \tag{1.66}
$$

for each $j = 1, ..., Nⁿ$. Now, we apply (1.65) on each Q_j and sum over all j getting

$$
||u_k - u_l||_{0,Q}^2 \le N^n \epsilon' + \frac{n}{2N^2} 2M^2.
$$

Now, we see that for a fixed ϵ we can find N large that $nM^2/N^2 < \epsilon$ and, having fixed N, for $\epsilon' = \epsilon/2N^n$ we can find n_0 such that (1.66) holds. Thus $(u_k)_{k\in\mathbb{N}}$ is Cauchy in $L_2(\Omega)$.

Corollary 1.53. If Ω is a bounded open subset of \mathbb{R}^n , then the embedding $\overset{\circ}{W}{}^m_2(\Omega) \subset \overset{\circ}{W}{}^{m-1}_2(\Omega)$ is compact.

Proof. Applying the previous theorem to the sequences of derivatives, we see that the derivatives form bounded sequences in $W_2^1(\Omega)$ and thus contain subsequences converging in $L_2(\Omega)$. Selecting common subsequence we get convergence in $W_2^1(\Omega)$ etc, (by closedness of derivatives).

Theorem 1.54. If $\partial\Omega$ is a C^m boundary of a bounded open set Ω . Then the embedding $W_2^m(\Omega) \subset W_2^{m-1}(\Omega)$ is compact.

Proof. The result follows by extension to $\overset{\circ}{W}_{2}^{m}(\Omega')$ where Ω' is a bounded set containing Ω .

1.4.3 Trace theorems

We know that if $u \in W_2^m(\Omega)$ with $m > n/2$ then u can be represented by a continuous function and thus can be assigned a value at the boundary of Ω (or, in fact, at any point). The requirement on m is, however, too restrictive — we have solved the Dirichlet problem, which requires a boundary value of the solution, in $\mathring{W}_2^1(\Omega)$. In this space, unless $n=1$, the solution need not be continuous. It turns out that it is possible to give a meaning to the operation of taking the boundary value of a function even if it is not continuous.

We begin with the simplest (nontrivial) case when $\Omega = \mathbb{R}^n_+ := {\mathbf{x}}; \mathbf{x} =$ $(\mathbf{x}', x_n), 0 < x_n$ }.

Theorem 1.55. The trace operator γ_0 : $C^1(\overline{\mathbb{R}^n_+}) \cap W_2^1(\mathbb{R}^n_+) \to C^0(\mathbb{R}^{n-1})$ defined by

$$
(\gamma_0 \phi)(\mathbf{x}') = \phi(\mathbf{x}', 0), \qquad \phi \in C^1(\overline{\mathbb{R}^n_+}) \cap W^1_2(\mathbb{R}^n_+), \mathbf{x}' \in \mathbb{R}^{n-1},
$$

has a unique extension to a continuous linear operator $\gamma_0 : W_2^1(\mathbb{R}^n_+) \to$ $L_2(\mathbb{R}^{n-1})$ whose range in dense in $L_2(\mathbb{R}^{n-1})$. The extension satisfies

$$
\gamma_0(\beta u) = \gamma_0(\beta)\gamma_0(u), \qquad \beta \in C^1(\overline{\mathbb{R}^n_+}) \cap L_\infty(\mathbb{R}^n_+), u \in W^1_2(\mathbb{R}^n_+).
$$

Proof. Let $\phi \in C^1(\overline{\mathbb{R}^n_+}) \cap W_2^1(\mathbb{R}^n_+)$. Then, from continuity, for any \mathbf{x}' , $\partial_{x_n} |\phi(\mathbf{x}', x_n)|^2 \in L_2(\mathbb{R}_+)$ we can write

$$
|\phi(\mathbf{x}',r)|^2 - |\phi(\mathbf{x}',0)|^2 = \int_0^r \partial_{x_n} |u(\mathbf{x}',x_n)|^2 dx_n
$$

and thus $|\phi(\mathbf{x}', r)|^2$ has a limit which must equal 0. Hence

$$
|\phi(\mathbf{x}',0)|^2 = -\int_0^\infty \partial_{x_n} |\phi(\mathbf{x}',x_n)|^2 dx_n.
$$

Integrating over \mathbb{R}^{n-1} we obtain

$$
\begin{aligned} \|\phi(\mathbf{x}',0)\|_{0,\mathbb{R}^{n-1}}^2 &\le 2\int\limits_{\mathbb{R}^n_+} \partial_{x_n}\phi(\mathbf{x})\phi(\mathbf{x})d\mathbf{x} \\ &\le 2\|\partial_{x_n}\phi\|_{0,\mathbb{R}^n_+}\|\phi\|_{0,\mathbb{R}^n_+} \le \|\partial_{x_n}\phi\|_{0,\mathbb{R}^n_+}^2 + \|\phi\|_{0,\mathbb{R}^n_+}^2. \end{aligned}
$$

Hence, by density, the operation of taking value at $x_n = 0$ extends to $W_2^1(\mathbb{R}^n_+)$.

If $\phi \in C_0^{\infty}(\mathbb{R}^{n-1})$ and τ is a truncation function $\tau(t) = 1$ for $|t| \leq 1$ and $\tau(t) = 0$ for $|t| \geq 0$ then $\phi(\mathbf{x}) = \psi(\mathbf{x}')\tau(x_n) \in C^1(\overline{\mathbb{R}^n_+}) \cap W^1_2(\mathbb{R}^n_+)$ and $\gamma_0(\phi) = \psi$ so that the range of the trace operator contains $C_0^{\infty}(\mathbb{R}^{n-1})$ and thus is dense. The last identity follows from continuity of the trace operator and of the operator of multiplication by bounded differentiable functions in $W_2^1(\mathbb{R}^n_+).$

Theorem 1.56. Let $u \in W_2^1(\mathbb{R}^n_+)$. Then $u \in W_2^1(\mathbb{R}^n_+)$ if an only if $\gamma_0(u) = 0$,

Proof. If $u \in \overset{\circ}{W}_2^1(\mathbb{R}^n_+)$, then u is the limit of a sequence $(\phi_k)_{k \in \mathbb{N}}$ from $C_0^{\infty}(\mathbb{R}^n_+)$ in $W_2^1(\mathbb{R}^n_+)$. Since $\gamma_0(\phi_k) = 0$ for any k, we obtain $\gamma_0(u) = 0$.

Conversely, let $u \in W_2^1(\mathbb{R}^n_+)$ with $\gamma_0 u = 0$. By using the truncating functions, we may assume that u has compact support in $\overline{\mathbb{R}^n_+}$.

Next we use the truncating functions $\eta_k \in C^{\infty}(\mathbb{R})$, as in Theorem 1.45, by taking function η which satisfies $\eta(t) = 1$ for $t \ge 1$ and $\eta(t) = 0$ for $t \le 1/2$ and define $\eta_k(x_n) = \eta(kx_n)$. To simplify notation, we assume that $0 \le \eta' \le 3$ for $t \in [1/2, 1]$ so that $0 \leq \eta'_k(x_n) \leq 3k$. Then the extension by 0 to \mathbb{R}^n of $\mathbf{x} \to \eta_k(x_n) u(\mathbf{x}', x_n)$ is in $W_2^1(\mathbb{R}^n)$ and can be approximated by $C_0^{\infty}(\mathbb{R}^n_+)$ functions in $W_2^1(\mathbb{R}^n_+)$. Hence, we have to prove that $\eta_k u \to u$ in $W_2^1(\mathbb{R}^n_+)$.

As in the proof of Theorem 1.45 we can prove $\eta_k u \to u$ in $L_2(\mathbb{R}^n_+)$ and for each $i = 1, ..., n - 1$, $\partial_{x_i}(\eta_k u) = \eta_k \partial_{x_i} u \rightarrow \partial_{x_i} u$ in $L_2(\mathbb{R}^n_+)$ as $k \rightarrow \infty$.

Since

$$
\partial_{x_n}(\eta_k u) = u \partial_{x_n} \eta_k + \eta_k \partial_{x_n} u
$$

we see that we have to prove that $u\partial_{x_n}\eta_k\to 0$ in $L_2(\mathbb{R}^n_+)$ as $k\to\infty$. For this, first we prove that if $\gamma_0(u) = 0$, then

$$
u(\mathbf{x}',s) = \int_{0}^{s} \partial_{x_n} u(\mathbf{x}',t) dt
$$
 (1.67)

almost everywhere on \mathbb{R}^n_+ . Indeed, let u_r be a bounded support C^1 function approximating u in $W_2^1(\mathbb{R}^n_+)$. Then $\int_0^s \partial_{x_n} u_r(\mathbf{x}',t) dt \to \int_0^s$ $\int\limits_0^1 \partial_{x_n} u(\mathbf{x}',t) dt$ in

 $L_2(\mathbb{R}^n_+)$. This follows from $\partial_{x_n} u_r \to \partial_{x_n} u$ in $L_2(\mathbb{R}^n_+)$ and, taking Q to be the box enclosing support of all u_r, u , with edges of length at most d

$$
\int_{Q} \left| \int_{0}^{s} \partial_{x_n} u_r(\mathbf{x}',t) dt - \int_{0}^{s} \partial_{x_n} u(\mathbf{x}',t) dt \right|^{2} d\mathbf{x}
$$

$$
\leq d^2 \int_{Q} |\partial_{x_n} u_r(\mathbf{x}',t) - \partial_{x_n} u(\mathbf{x}',t)|^{2} d\mathbf{x}
$$

Then we have, for any $s, 0 \le s \le d$

$$
\int_{Q} \left| \int_{0}^{s} \partial_{x_n} u_r(\mathbf{x}',t) dt - u_r(\mathbf{x}',s) \right|^2 d\mathbf{x} = \int_{Q} |u_r(\mathbf{x}',0)|^2 d\mathbf{x} = d \int_{\mathbb{R}^{n-1}} |u_r(\mathbf{x}',0)|^2 d\mathbf{x}'
$$

and, since the right hand side goes to zero as $r \to \infty$, we obtain (1.67). Then, by Cauchy-Schwarz inequality

$$
|u(\mathbf{x}',s)|^2 \leq s \int\limits_0^s |\partial_{x_n} u(x',t)|^2 dt
$$

and therefore

$$
\int_{0}^{\infty} |\eta'_k(s)u(\mathbf{x}',s)|^2 ds \leq 9k^2 \int_{0}^{2/k} s \int_{0}^{s} |\partial_{x_n}u(\mathbf{x}',t)|^2 dt ds
$$

$$
18k \int_{0}^{2/k} \int_{0}^{s} |\partial_{x_n}u(\mathbf{x}',t)|^2 dt ds = 18k \int_{0}^{2/k} \int_{t}^{2/k} |\partial_{x_n}u(\mathbf{x}',t)|^2 ds dt
$$

$$
\leq 36 \int_{0}^{2/k} |\partial_{x_n}u(\mathbf{x}',t)|^2 dt.
$$

Integration over \mathbb{R}^{n-1} gives

$$
\|\eta'_k u\|_{0,\mathbb{R}^n_+}^2 \le 36 \int_{\mathbb{R}^{n-1} \times 2/k} |\partial_{x_n} u|^2 d\mathbf{x}
$$

which tends to 0.

The consideration above can be extended to the case where Ω is an open bounded region in \mathbb{R}^n lying locally on one side of its C^1 boundary. Using the partition of unity, we define

$$
\gamma_0(u) := \sum_{j=1}^N (\gamma_0((\beta_j u) \circ H^j)) \circ (H^j)^{-1}
$$

It is clear that if $u \in C^1(\overline{\Omega})$, then $\gamma_0 u$ is the restriction of u to $\partial \Omega$. Thus, we have the following result

Theorem 1.57. Let Ω be a bounded open subset of \mathbb{R}^n which lies on one side of its boundary $\partial\Omega$ which is assumed to be a C^1 manifold. Then there exists a unique continuous and linear operator $\gamma_0 : W_2^1(\Omega) \to L_2(\partial \Omega)$ such that for each $u \in C^1(\overline{\Omega})$, γ_0 is the restriction of u to $\partial \overline{\Omega}$. The kernel of γ_0 is equal to $\overset{\circ}{W}\frac{1}{2}(\varOmega)$ and its range is dense in $L_2(\partial\varOmega)$.

1.4.4 Regularity of variational solutions to the Dirichlet problem

From Subsection 1.3.6 we know that there is a unique variational solution $u\in \overset{\circ}{W}{}^1_2(\varOmega)$ of the problem

$$
\int_{\Omega} \nabla u \nabla v d\mathbf{x} = \langle f, v \rangle_{(\hat{W}_2^1(\Omega))^* \times \hat{W}_2^1(\Omega)}, \quad \left(v \in \overset{\circ}{W}_2^1(\Omega). \right)
$$

Moreover, now we can say that $\gamma_0 u = 0$ on $\partial\Omega$ (provided $\partial\Omega$ is C^1).

We have the following theorem

l

Theorem 1.58. Let $\Omega \subset \mathbb{R}^n$ be an open bounded set with C^2 poundary (or $\Omega = \mathbb{R}^n_+$). Let $f \in L_2(\Omega)$ and let $u \in \overset{\circ}{W}_2^1(\Omega)$ satisfy

$$
\int_{\Omega} \nabla u \nabla v d\mathbf{x} = (f, v), \qquad v \in \overset{\circ}{W}_2^1(\Omega). \tag{1.68}
$$

Then $u \in W_2^2(\Omega)$ and $||u||_{2,\Omega} \leq C||f||_{0,\Omega}$ where C is a constant depending only on Ω . Furthermore, if Ω is of class C^{m+2} and $f \in (W^m_2(\Omega))$ then

 $u \in W_2^{m+2}(\Omega)$ and $||u||_{m+2,\Omega} \leq C||f||_{m,\Omega}.$

In particular, if $m \leq n/2$, then $u \in C^2(\overline{\Omega})$ is a classical solution. Moreover, if Ω is bounded, then the solution operator $G: L_2(\Omega) \to \overset{\circ}{W}_2^1(\Omega)$

is self-adjoint and compact.

Proof. The proof naturally splits into two cases: interior estimates and boundary estimates. Let Ω be bounded with at least C^1 boundary and consider the partition of unity $\{\beta_j\}_{j=0}^N$ subordinated to the covering $\{G_j\}_{j=0}^N$. For the interior estimates let us consider $u_0 = \beta_0 u$ and let $v \in \overset{\circ}{W}_2^1(\Omega)$. Then we can write

$$
\int_{\Omega} \nabla \mathbf{u} \nabla \mathbf{v} = \int_{\Omega} \mathbf{f}(\mathbf{v})
$$

$$
\int_{\Omega} \nabla(\underbrace{\beta_{0}u}_{\Omega})\nabla v dx = \int_{\Omega} \underbrace{\beta_{0}\nabla u}_{\Omega}\nabla v dx + \int_{\Omega} \underbrace{u}_{\Omega}\nabla \beta_{0}\nabla v dx
$$
\n
$$
= \int_{\Omega} \nabla u \nabla(\beta_{0}v) dx - \int_{\Omega} v \nabla u \nabla \beta_{0}dx + \int_{\Omega} u \bigotimes v \nabla \beta_{0}dx
$$
\n
$$
= \int_{\Omega} \nabla u \nabla(\beta_{0}v) dx - \int_{\Omega} v \nabla u \nabla \beta_{0}dx - \int_{\Omega} \underbrace{\nabla (u \nabla \beta_{0})v dx}_{\Omega}
$$
\n
$$
= \int_{\Omega} \nabla u \nabla(\beta_{0}v) dx - 2 \int_{\Omega} \underbrace{\nabla u \nabla \beta_{0}dx}_{\Omega} - \int_{\Omega} \underbrace{\nabla u \Delta \beta_{0}dx}_{\Omega}
$$
\n
$$
= \int_{\Omega} (f \beta_{0}) - \Delta \beta_{0}u - 2 \underline{\nabla u \nabla \beta_{0}}v dx = \int_{\Omega} F v dx, \qquad v \in \stackrel{\circ}{W}_{2}^{1}(\Omega),
$$

$$
\iota\!\!\downarrow_2^{\!\!2\!-}
$$

 S^{D}

 $V = \int Fv$

 $\frac{\overline{v}\in\overline{W}_{2}^{1}(\Omega)}{\int\limits_{0}^{\infty}\varphi D_{-n}\psi}$

where $F \in L_2(\Omega)$ and we used $v \in \overset{\circ}{W}_2^1(\Omega)$ to get Z Ω $u\nabla v\nabla\beta_0 d\mathbf{x} = -$ Ω $\nabla(u\nabla\beta_0)v d\mathbf{x}$.

> Hence, the function $w = \beta_0 u$ is the variational solution to the above problem in \mathbb{R}^n . Let us define $\widehat{D_h u} = |\mathbf{h}|^{-1}(\tau_h u - u)$ and take $\widehat{v} = \widehat{D_{-h}(D_h w)}$. It is possible since w has compact support in Ω and thus $v \in W_2^1(\Omega)$ for sufficiently small h. Thus we obtain

$$
\int_{\Omega} |\nabla D_h w|^2 d\mathbf{x} = \int_{\Omega} \underline{F} D_{-h}(D_h w) d\mathbf{x},
$$

that is,

$$
\underbrace{\|D_h w\|_{1,\Omega}^2} \le \|F\|_{0,\Omega} \left(\underbrace{D_{-h}(D_h w)\|_{0,\Omega}} \right) \tag{1.69}
$$

On the other hand, from Friedrichs lemma, for any $v \in W_2^1(\Omega)$ with compact support

$$
||D_{-h}v||_{0,\Omega}^2 \le ||\nabla v||_{0,\Omega}.
$$
\n(1.70)

$$
\int_{0}^{1} \log(x) \frac{1}{\log(x)} \left[\frac{1}{\log(x)} \left(\frac{1}{x} + h \right) - \frac{1}{\log(x)} \right]
$$

Applying this to $v = D_h u$, we obtain $||D_h w||_{1,\Omega}^2 \leq ||F||_{0,\Omega} ||\nabla D_h w||_{0,\Omega} \leq ||F||_{0,\Omega} ||D_h w||_{1,\Omega},$ that is,

$$
||D_h w||_{1,\Omega} \le ||F||_{0,\Omega}.
$$

In particular, we obtain

$$
||D_h\partial_{x_i}w||_{0,\Omega}\leq ||F||_{0,\Omega}, \quad i=1,\ldots,n,
$$

which yields $\partial_{x_i} w \in W_2^1(\Omega)$, that is, $w \in W_2^2(\Omega)$.

In the next step, we shall move to estimates close to the boundary. Let us fix some some set B_j and corresponding function β_j , $1 \leq j \leq N$ from the partition of unity and drop the index j. Then we have a $C²$ diffeomorphism $H: Q \to B$ the inverse of which we denote $J = H^{-1}$ so that $H(Q_+) = \Omega \cap B$ and $H(Q_0) = \partial \Omega \cap B$. We denote $\mathbf{x} = H(\mathbf{y}), \mathbf{y} \in Q$ and $\mathbf{y} = J(\mathbf{x})$. As before, we see that $w = \beta u$ is a variational solution to

$$
\int_{\Omega \cap B} \nabla w \nabla v d\mathbf{x} = \int_{\Omega \cap B} (f\beta - u\Delta\beta - 2\nabla u \nabla \beta) v d\mathbf{x} = \int_{\Omega \cap B} g v d\mathbf{x}, \qquad v \in \stackrel{\circ}{W}_2^1(\Omega)
$$
\nwhere the Green's formula\n
$$
\oint_{\mathscr{C}} \mathscr{C}(\mathscr{L}_n \mathscr{G})
$$
\n(1.71)

where the Green's formula

$$
\int_{\Omega \cap B} (\underbrace{\partial \nabla v}_{\Omega}) \nabla \beta \phi \, dx = - \int_{\Omega \cap B} \nabla (u \nabla \beta \phi) v \, dx.
$$

can be justified by noting that the integration is actually carried out over the domain $G \in B$ and we can use a function χv , where χ is equal to 1 on G and has support in B, instead of v. Function $\chi v \in \overset{\circ}{W}_2^1(\Omega \cap B)$ (as v can be approximated by ϕ compactly supported in Ω and χv can be approximated by $\chi\phi$ compactly supported in $\Omega \cap B$).

Now we transfer (1.71) to Q_+ . We have $z(\mathbf{y}) = w(H(\mathbf{y}))$ for $\mathbf{y} \in Q_+$ or $w(\mathbf{x}) = z(J(\mathbf{x}))$ for $\mathbf{x} \in \Omega \cap B$. Let $\psi \in \overset{\circ}{W}{}^1_2(Q_+)$ and $\phi(\mathbf{x}) = \psi(J(\mathbf{x}))$. Then $\phi \in \overset{\circ}{W}\,{}^1_2(\Omega \cap B)$ and we have

$$
\partial_{x_j} w = \sum_{k=1}^n \partial_{y_k} z \partial_{x_j} J_k, \qquad \partial_{x_j} \phi = \sum_{l=1}^n \partial_{y_l} \psi \partial_{x_j} J_l
$$

and hence

$$
\int\limits_{\Omega\cap B}\nabla w\nabla \phi d\mathbf{x}=\int\limits_{Q_{+}}\sum\limits_{k,j,l=1}^{n}\partial_{x_{j}}J_{k}\partial_{x_{j}}J_{l}\partial_{y_{k}}z\partial_{y_{l}}\psi|\text{det}\mathcal{J}_{H}|d\mathbf{y}=\int\limits_{Q_{+}}\sum\limits_{k,l=1}^{n}a_{k,l}\partial_{y_{k}}z\partial_{y_{l}}\psi d\mathbf{y}
$$

where $\mathcal J$ is the Jacobi matrix of H . We note that we can write

$$
a_{k,l} = |\text{det}\mathcal{J}_H|\mathcal{J}_J\mathcal{J}_J^T
$$

and thus we have

$$
\sum_{k,l=1}^n a_{k,l}\xi_k\xi_l = |\text{det}\mathcal{J}_H|(\mathcal{J}_J^T\xi, \mathcal{J}_J^T\xi) \ge \alpha |\xi|^2
$$
(1.72)

for all $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$ since both Jacobi matrices $\mathcal{J}_H, \mathcal{J}_J$ are nonsingular. Also

$$
(u_{xx} + u_{x_{1}x_{2}}) u_{x_{2}x_{1}} = f
$$

 x^2

1.4 Basic applications of the density theorem 57

$$
\int_{\Omega \cap B} g \phi d\mathbf{x} = \int_{Q_+} (g \circ H) \psi |\det \mathcal{J}_H| d\mathbf{y} = \int_{Q_+} G \psi d\mathbf{y}
$$

where $G \in L_2(Q_+)$ so that $z \in W_2^1(Q)$ is a solution to the (elliptic) variational problem

$$
\int_{Q_+} \sum_{k,l=1}^n a_{k,l} \partial_{y_k} z \partial_{y_l} \psi d\mathbf{y} = \int_{Q_+} G \psi d\mathbf{y}, \qquad \psi \in \overset{\circ}{W}_2^1(Q_+). \tag{1.73}
$$

Next the process is split into two cases. First we shall consider the method of finite differences, as in the G_0 case but only in the directions parallel to the boundary. Thus, we take $\psi = D_{-h}(D_h z)$ for $|\mathbf{h}|$ small enough to still have $\psi \in \overset{\circ}{W}{}^1_2(Q_+)$. Then, as above

$$
\int_{Q_+} D_h \left(\sum_{k,l=1}^n a_{k,l} \partial_{y_k} z \right) \partial_{y_l} (D_h z) d\mathbf{y} = \int_{Q_+} G D_{-h} (D_h z) d\mathbf{y}.
$$

Since $D_h x \in \overset{\circ}{W}_2^1(Q_+)$, we can use Friedrichs lemma to estimate

$$
\int_{Q_+} G D_{-h}(D_h z) d\mathbf{y} \leq ||G||_{0,Q_+} ||D_{-h}(D_h z)||_{0,Q_+} \leq ||G||_{0,Q_+} ||\nabla(D_h z)||_{0,Q_+}.
$$

Then, using $\tau_h(fg) - fg = \tau_h f(\tau_h g - g) + (\tau_h f - f)g$, we find

$$
D_h\left(\sum_{k,l=1}^n a_{k,l}\partial_{y_k}z\right)(\mathbf{y}) = a_{k,l}(\mathbf{y} + \mathbf{h})\partial_{y_k}D_hz(\mathbf{y}) + (D_ha_{k,l})(\mathbf{y})\partial_{y_k}(\mathbf{y})
$$

and thus we can write, be the reverse Cauchy-Schwarz inequality

$$
\int_{Q_+} D_h \left(\sum_{k,l=1}^n a_{k,l} \partial_{y_k} z \right) \partial_{y_l} (D_h z) d\mathbf{y}
$$
\n
$$
= \int_{Q_+} \sum_{k,l=1}^n (\tau_h a_{k,l}) \partial_{y_k} (D_h z) \partial_{y_l} (D_h z) d\mathbf{y} + \int_{Q_+} \sum_{k,l=1}^n (D_h a_{k,l}) \partial_{y_k} z \partial_{y_l} (D_h z) d\mathbf{y}
$$
\n
$$
\geq \alpha ||\nabla (D_h z)||_{0,Q_+}^2 - C ||\nabla z||_{0,Q_+} ||\nabla (D_h z)||_{0,Q_+}
$$

where C depends on the C^1 norm of $a_{k,l}$ (and thus C^2 norm of the local atlas). Thus

$$
\|\nabla(D_h z)\|_{0,Q_+}^2 \leq \alpha^{-1} \left(\|G\|_{0,Q_+} \|\nabla(D_h z)\|_{0,\Omega} + C \|z\|_{1,\Omega} \|\nabla(D_h z)\|_{0,Q_+} \right)
$$

\n
$$
\leq C' \|G\|_{0,Q_+} \|\nabla(D_h z)\|_{0,Q_+}, \qquad (1.74)
$$

\n
$$
\alpha \|\nabla \rho_{\mathbf{u}} z\|_{\mathbf{u}}^2 - C \|\nabla \mathbf{u}\nabla \mathbf{u}\nabla \rho_{\mathbf{u}} z\|_{\mathbf{u}}^2 \leq C' \|\nabla \mathbf{u}\nabla \
$$

where we have used the $W_2^1(\Omega)$ estimates for solutions to (1.73): for $\psi =$ $z \in W_2^0(Q_+)$

$$
\alpha \|\nabla z\|^2 \leq \int\limits_{\mathbf{Q}_\mathbf{l}} \sum_{k,l=1}^n a_{k,l} \partial_{y_k} z \partial_{y_l} z d\mathbf{y} = \int\limits_{Q_+} Gz d\mathbf{y} \leq \frac{\|G\|_{0,Q_+}}{\|G\|_{0,Q_+}} \|\nabla z\|_{0,Q_+}.
$$

Note that in the last inequality we used the Poincarè inequality as $z \in \overset{\circ}{W}_2^1(Q_+)$ and the constant in this inequality can be taken 1.

Thus we have

$$
\|\nabla(D_h z)\|_{0,Q_+} \le C' \|G\|_{0,Q_+},\tag{1.75}
$$

for any **h** which is parallel to Q_0 . Let $j = 1, ..., n$, $\mathbf{h} = |\mathbf{h}|\mathbf{e}_k$, $k = 1, ..., n-1$
and $\phi \in C^{\infty}(\Omega)$. Then we can write and $\phi \in C_0^{\infty}(Q_+)$. Then we can write

$$
\int_{Q_+} \underline{D}_h \partial_{y_j} z \phi d\mathbf{y} = -\int_{Q_+} \partial_{y_j} z \underline{D}_{-h} \phi d\mathbf{y}
$$

and, by (1.75),

$$
\left|\int\limits_{Q_+} \partial_{y_j} z D_{-h} \phi d\mathbf{y} \right| = \left|\int\limits_{Q_+} D_h \partial_{y_j} z \phi d\mathbf{y} \right| \leq C' \|G\|_{0, Q_+} \|\phi\|_{0, Q_+}
$$

which, passing to the limit as $|h| \to 0$ gives for any $(j, k) \neq (n, n)$ Z Q_+ $\partial_{y_j}z\partial_{y_k}\phi d\mathbf{y}$ $\leq C' \|G\|_{0,Q_+} \|\phi\|_{0,Q_+}.$ (1.76)

To conclude, we have to show also the above estimate for $k = n$. First we observe that $a_{nn} \ge \alpha$ on Q_+ . This follows from (1.72) by taking $\boldsymbol{\xi} = (1, 0, \dots, 0)$. Thus, we can replace in (1.73) ψ by ψ/a_{nn} . Then we rewrite (1.73) as

$$
\int_{Q_{+}} a_{n,n} \partial_{y} \zeta \frac{\partial_{y} \zeta_{k} \frac{\partial_{y} \zeta_{k} \left(a_{n,n}^{-1} \psi\right) d\mathbf{y}}{\partial_{+}}}{\partial_{+}} = \int_{Q_{+}} a_{n,n} G(a_{n,n}^{-1} \psi) d\mathbf{y}
$$
\n
$$
- \int_{Q_{+}} \sum_{(k,l) \neq (n,n)} a_{k,l} \partial_{y_{k}} z \partial_{y_{l}} (a_{n,n}^{-1} \psi) d\mathbf{y},
$$

and differentiating on the left hand side

$$
\begin{split} \int\limits_{Q_{+}}\partial_{y}\mathbf{v}_{\mathbf{v}}\partial_{y}\mathbf{v}^{y}d\mathbf{y}=&\int\limits_{Q_{+}}a_{n,n}^{-1}\psi\partial_{y_{n}}a_{n,n}\partial_{y}\mathbf{v}_{\mathbf{v}}^{z}d\mathbf{y}+\int\limits_{Q_{+}}a_{n,n}G\cdot(a_{n,n}^{-1}\psi)d\mathbf{y}\\ &-\int\limits_{Q_{+}}\sum\limits_{(k,l)\neq(n,n)}(a_{n,n}^{-1}\psi)\partial_{y_{l}}a_{k,l}\partial_{y_{k}}zd\mathbf{y}\\ &+\int\limits_{Q_{+}}\sum\limits_{(k,l)\neq(n,n)}\partial_{y_{k}}z\partial_{y_{l}}(a_{n,n}^{-1}a_{k,l}\psi)d\mathbf{y}, \end{split}
$$

Applying now (1.78) , we get

$$
\left| \int_{Q_+} \partial_{y_{\mathbf{A}}} z \partial_{y_{\mathbf{A}}} \psi d\mathbf{y} \right| \le C (||G||_{0,Q_+} + ||z||_{1,Q_+}) ||\psi||_{0,Q}. \tag{1.77}
$$

This shows that

$$
\left| \int\limits_{Q_+} \partial_{y_j} z \partial_{y_k} \phi d\mathbf{y} \right| \le C' \|G\|_{0, Q_+} \|\phi\|_{0, Q_+}.
$$
\n(1.78)

for any $j, k = 1, \ldots n$ and thus, by Proposition 1.44, each first derivative of z belongs to $W_2^1(Q_+)$ and thus $z \in W_2^2(Q_+)$. Using the first part of the proof and transferring the solution back to Ω shows that $u \in W_2^2(\Omega)$.

Let us consider higher derivatives. As before, we split u according to the partition of unity and separately argue argue in $G_0 \in \Omega$ and in Q_+ . Let us begin with $u \in W_2^2(\Omega) \cap W_2^1(\Omega)$ and consider $w = \beta_0 u$. Let $f \in W_2^1(\Omega)$ and consider any derivative $\partial u, i = 1, \ldots, n$. We know that $\partial u \in W_2^1(\Omega)$. Then we can use $\phi \in C_0^{\infty}$ and take $\partial \phi$ as the test function in (1.68) so that , integrating by parts

$$
-\int_{\Omega} \partial f \phi d\mathbf{x} = \int_{\Omega} f \partial \phi d\mathbf{x} = \int_{\Omega} \nabla u \nabla \partial \phi d\mathbf{x} = -\int_{\Omega} \nabla \partial u \nabla \phi d\mathbf{x}
$$

so that ∂u is a variational solution with square integrable right hand side and thus $\partial u \in W_2^2(\Omega)$ and $u \in W_2^3(\Omega)$. Then we can proceed by induction.

Let us consider $z \in W_2^2(Q_+) \cap W_2^1$ and let ∂u be any derivative in direction tangential to Q_0 . We claim that $\partial z \in W_2^1$. First, we note that $D_h z \in W_2^1$ if \mathbf{h}' is parallel to Q_0 for sufficiently small |**h**|. By (1.75), $D_h z$ is bounded in $W_0^1(Q)$ and thus we have a subsequence \mathbf{h}_n such that $D_{h_n}z \to g \in \overset{\circ}{W}_2^1(Q)$. Clearly, $D_{h_n} z$ converges weakly in $L_2(Q_+)$ and thus for any $\phi \in C_0^{\infty}(Q_+)$

$$
\int\limits_{Q_{+}} (D_{h_n}z)\phi d\mathbf{y} = \int\limits_{Q_{+}} zD_{-h_n}\phi d\mathbf{y}
$$

and thus passing to the limit

$$
\int\limits_{Q_{+}} g \phi d\mathbf{y} = -\int\limits_{Q_{+}} z \partial \phi d\mathbf{y}
$$

and thus $\partial z \in W_2^1(Q_+)$. Then, as before

$$
\int_{\Omega} \partial G \psi d\mathbf{y} = \int_{\Omega} \sum_{k,l=1}^{n} \partial_{y_k} (\partial z) \partial_{y_l} \psi d\mathbf{y}
$$
\n(1.79)

for any $\phi \in \overset{\circ}{W}_2^1(Q_+)$. We argue by induction in m. Let $f \in W_2^{m+1}(Q_+)$. From induction assumption, we have $\mathbf{Z} \in W^{m+2}(Q_+)$. Also $\overline{\partial \mathbf{z}}$ in any tangential derivative is in $\hat{W}_2^1(Q_+)$ and satisfies (1.79). By induction assumption to $\partial \overline{\phi}$

and
$$
\partial G
$$
 we see that $\partial \partial \xi \in W_2^{m+2}(Q_+)$. Finally we can write
\n
$$
\begin{pmatrix}\n\mathbf{a}_1 & \mathbf{b}_2 & \mathbf{c}_1 \\
\mathbf{c}_2 & \mathbf{c}_3 & \mathbf{c}_2 \\
\mathbf{c}_3 & \mathbf{c}_4 & \mathbf{c}_5 & \mathbf{c}_6\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\mathbf{a}_1 & \mathbf{b}_2 & \mathbf{c}_3 \\
\mathbf{b}_3 & \mathbf{c}_4 & \mathbf{c}_5 \\
\mathbf{c}_5 & \mathbf{c}_7 & \mathbf{c}_8\n\end{pmatrix}
$$
\nso that the claim follows.

so that the claim follows.

$$
\begin{array}{c|c}\n\circ & \circ & \text{if all forms.} \\
\downarrow & \circ & \circ \\
\circ & \downarrow & \circ & \circ \\
\circ & \circ & \circ & \circ \\
\end{array} \qquad \qquad \begin{array}{c}\n\circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ \\
\end{array} \qquad \qquad \begin{array}{c}\n\circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ \\
\end{array} \qquad \qquad \begin{array}{c}\n\circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ \\
\end{array}
$$