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|X(X/a xn) S M|xn|

on @. Thus

/UazmkdeZ /u(nkaxnx+xaxn77k)dx—> /W?kaxnx
Q+ Q+ Q4

and thus we obtain in the limit
/ ud,, xdx = — /(8En)uxdx.
Q+ Q+

Returning to @), we obtain

/u*@xnd)dx: /u@xnxdx: /(&cnu)'qﬁdx.
Q

Q Q+

We also obtain estimates

o < 2[|lu

[w[lo,@ < 2[lullo,q. [l l1,Q. -

Now we can pass to the general result. Let u € W3 (§2), 2 bounded with
C' boundary. Let {B;, H/}_, be the atlas on the boundary and {G;}}_, be
the finite subcover constructed in the previous section, that is Gy C G C £2,
G C B; with 802 € |JG; and let {8}, be a subordinate partition of unity.

Then we take
N N
u=> Bu=) u
=0 =0

with uo €W 2(£2) and u; € Wi (20 B;). Clearly, |[uolli.o < Collull1.o and
lujlli,ons, < Cjllulli,e, j = 1,...,n. The function uy can be extended to
iip € W3 (R™) by zero in a continuous way. Then v; := uj o HY € W}(Q4)
and we can extend by reflection to v} € W4(Q). We note that v; has support
in @ since the support of u; only can touch 9(B; N {2 at the points of J(2.
Again,
105l < 2lvillues < CFllujliens, < Cjllullie.

Next, we define w; = vjo(H’)~! € W, (B;), again with ||w;[l1,5, < C} [[ull1,e-

Moreover, we have w;(x) = u;(x) whenever x € B; N {2 as

Ui (H7)7H(x)) = v ((H7) (%) = uy (H ((H?) 7 (%)) = u;(x)

for such x. We also notice that for each j = 1,..., N, support of w; is con-
tained in B; and thus can extend w; by zero to R continuously in Wy (R™)
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and denote this extension by ;. We note that 4;(x) = u;(x) for x € 2. In-
deed, if x € (2, for a given j either x € B;N{2 and then 4;(x) = w;(x) = u;(x)
or x ¢ B; N {2 in which case @;(x) = 0 but then also u;(x) = 0 by definition.
The same argument applies to j = 0. Now we define the operator

Eu:ﬁ()‘i’iﬁj

j=1

and we clearly have
Bu(x) = io(x) + 3 () = uo(x) + 3 ;) = ulx).

Linearity and continuity follows from continuity and linearity of each opera-
tion and the fact that the sum is finite.

Remark 1.46. Similar_argument allows to prove that there is an extension
from W@Q) to V@R") (as well as for WR(£2), 1 < p < oo0) but this
requires the boundary to be a C™-manifold (S0 that the flattening preserves
the differentiability). However, the extension across the hyperplane z,, = 0 is
done according to the following reflection

!/
U*(X/7JC7L) _ {’U,(X 73;77,) for x,, >0

Mu(x!, —z,) + Aou (x/, —%") + .o+ A (x’, —‘%) for x,, <0,

where A1, ..., A\, is the solution of the system

MFX+...+ A, =1,
(M +X/24 .+ A /m) = 1,

(=)™ + A/2" A /mm T =1

These conditions ensure that the derivatives in the x,, direction are continuous
across x, = 0.

An immediate consequence of the extension theorem is

Theorem 1.47. Let {2 be a bounded set with a C' boundary 052 and u €
W3 (82). Then there exits (un)nen, Un € C§°(R™) such that

lim u,|o = v, in W, (£2).
n—oo
v
In other words, the set of restriction to §2 of functions from C’(‘)’O(!g is dense
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Proof. If {2 is bou , using Theorem 1.45, we can extend v to a func-

y(xf ) — not equal to R™), th/n first we approximate u by a sequence (xnu)nen Where
= Xn are cut-off functions. Next we construct an extension of x,u to R™. This
i is possible as it involves only the part of 92 intersecting the ball B(0,2n+1)

> 2 ahd Xn is equal to zero where the sphere intersects 9f2. For this éxtension we

pick up an approximating function from C§°(R).

1.4 Basic applications of the density theorem

Y" (1 ) = 1.4.1 Sobolev embedding
X ( X ) In Subsection 1.1.2 we have seen that in one dimension it is possible to identify
a W3 (R) function,, Unfortunately, this is not true in higher dimensions.
Example 1.48. " “u ]\m Ao rs Y
1 {Lu\“(-\ ' W Iﬂ (
LI However, there is still a link between Sobolev spaces and classical calculus 1 JL)
oy (},@,, provided we take sufficiently high order of derivatives (or index p in L, spaces).

The link is provided by the Sobolev lemma.
1 ‘L Let {2 be an open and bounded subset of R"”. We say that (2 satisfies the
g (v j) one condition if there are numbers p > 0 and v > 0 such that each X\ € is
e B(O 1 ) a vertex of a cone K (x) of radius p and volume yp™. Precisely bpeakmg, if oy,
is the n — 1 dimensional measure of the unit sphere in R”, then the volume of
g 4_ C ( {9 I )a ball of radius p is 0,,p™/n and then the (solid) angle of the cone is yn/w,.

Lemma 1.49. If {2 satisfies the cone condition, then there exists a constant \ >
g & (,1 C' such that for any u € C™(§2) with 2m > n we have

i%rbr e F W1 (BON) s <l L6)

Proof. Let us introduce a cut-off function ¢ € C’O (R) which satisfies ¢(¢) = 1

J
T A for [t| < 1/2 and ¢(t) = 0 for |¢| >4. Define 7(t) = ¢(t/p) and note that ‘g,

e j‘r are constants A, k =1,2,... such that

. 14 d*r(t) A
&,7 = 7‘1«'3 < k - !‘\
dtk ’ = k" = g /
e A e
gﬂi = (_—'?—711’)1 Let us take u € C™(£2) and assume 2m > n. For x € 2 and the cone K (x)
X = i ;
e we integrate along the ray {x +7; 0 <r <p C e B(O. »\) (r
r L, B2 T o -
r -
c /DT x+7))dr
Mo 0
rL
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Integrating over the surface of the cone in spherical coordinates we get

dQ
//D x—l—r))drdw = —u(x)/ = —u(x )'yn
Wn
c —_
Next we integrate m — 1 times by parts, getting

-A) A
r'a\ r WA

u(x)— / / DI (r () 4 7)) drds, 14

—_—

and changing to Cartesian coordinates and applying Cauchy-Schwarz inequal-
ity we obtain

2

ux)* < | " [ D" (ru) i<y
yn(m — 1)! =
K(x)
< (o) | orieorapnl [
K(x) K(x)

The last term can be evaluated as

o Q}‘“‘“‘/-l-)'d

(m—n) 2m—n—1 _ " “
/ dy = //7‘ drdw = (2m—n) W 7
K (x) 0 L____-———J
so that
w0 < Clmm*™ " [ |DP(ru) Py, (1.63)

K(x)

Let us estimate the derivative. From (1.62) we obtain by the chain rule and
the Leibniz formula

" /n " Ak
DI (ru)] = Z()D:ﬂ*mfu sz() ok Dy
k=0 k k=0 k p
hence
m ¢ 1
DRl < €'Y gy [Pkl
k=0

for some constant C’. With this estimate we can re-write (1.63) as

W[ < Clmm)C" Y / D () dy. (1.64)

k=0 K(x)
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Since by the chain rule

7
<C" Y |D

|| <k

Dy fu 2

by extending the integral to {2 we obtain
sup |u(x)] < Cluflm suf | € Clmllg
xE

o we?” ()L)

which is (1.61).

Theorem 1.50. Assume that 2 is a bounded open set with C™ boundary and
let m > k 4+ n/2 where m and k are integers. Then the embedding

Wi(02) c C*(Q)
18 continuous.

Proof. Under the assumptions, the problem can be reduced to the set Gy € 2
consisting of internal point, separated from the boundary by a fixed positive
distance, and points in the boundary strip, covered by sets _Q_O_@_q_ which are
transformed onto Q1+ UQo. Any point in G satisfies the cone conditions. Points
on Qo U Q4 also satisfy the condition so, if u € WJ™*(£2), then extending the
boundary components of Au to @ we obtain functions in W3 (£2) and W3 #(Q)
with compact supports in respective domains. By Friedrichs lemma, restric-
tions to 2 and @ of C*°(R™) functions are dense in, respectively, Wim(§2)
and W3 (@) and therefore the estimate (1.61) can be extended by density to
W3 (£2) showing that the canonical injection into C({2) is continuous. To ob-

tain the result for higher derivatives we substitute higher derivatives of u for u

n (1.61). Thus, all components of Au are they are C* functions. Transferring
them back, we see that u € C*(£2), by regularity of the local atlas and m > k,
we obtain the thesis.

1.4.2 Compact embedding and Rellich—Kondraschov theorem

Lemma 1.51. let Q = {x; a; < x; < b;} be a cube in R™ with edges of length
d>0.Ifue Cl(Q, then

N 2 &
Jul g <a | [ uax @ ||a/ W2 g (1.65)
Q

Proof. For any x,y € @) we can write

”3,}\‘—- “ "L ‘(&J

H_—__‘-f_' < Zj ¥
\(v_—’—[ - U(X) - U(y) = Zn/aju(ylv s Yji—1, 8, Lj41, - - - ,CCn)dS é lk' “ DM'”
X =1y, gL' cc S

S-{ulclp ol wf wh ik
LAH L(»{'dl) ':—)'____)?? \'l..!u.,.;-‘bh—l'u\,fﬁ\ro
Fou = aliay) u € I

|| B, w -
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Squaring this identity and using Cauchy-Schwarz inequality we obtain
u?(x)+u?(y) —2u(x ) < nd W/ 0; ) (Y1 Yjm1, 8, Tjg1, - -, Ty )ds.

Integrating the above inequality with respect to all variables, we obtain
2

2d"|ul3 , < 2 /udx +nd" 2> " |0ullf o
Q =t

as required.
Theorem 1.52. Let 2 be open and bounded. If the sequence (uy)ren of ele-
ments of V([)/l( ) is bounded, then there zs f«, S}Lbsequence which converges in
in La(82). In other words, the injection W1 C L2(92) is compact.
Proof. By density, we may assume u, € C§°. Let M = sup,{|ux|1}. We
enclose (2 in a cube Q; we may assume the edges of @) to be of unit length.
Further, we extend each uy by zero to @ \ £2.

We decompose @ into N™ cubes of edges of length 1/N. Since clearly

(ug)gen is bounded in Lo(Q) it contains a weakly convergent subsequence
(which we denote again by (uy)ren). For any € there is ng such that

Slqkﬂ Py AN

o

S ‘a(hu I ].ll

R

K\aul
oS

/(uk —w)dx| < €, k,1>mng (1.66)
i
for each j =1,...,N™. Now, we apply (1.65) on each @; and sum over all j
ettin
: ) uk—ul||(2)Q<N”’+(g]T\;7 2 “9( Ml"(h (ax “ “
7 nt
‘\Tow we see that for a fixed € we can find N large that nM?/N? < e and

having fixed N, for ¢ = ¢/2N"™ we can find ng such that (1.66) holds. Thus
(ug)ken is Cauchy in Lo (£2).

Corollary 1.53. If 2 is a bounded open subset of R™, then the embedding
o O -l .
W@_(Q) CW@_Q(_Q) is compact.

Proof. Applying the previous theorem to the sequences of derivatives, we see
that the derivatives form bounded sequences in W4 (£2) and thus contain sub-

b é_ @ 4' Bsequences converging in Ly(£2). Selecting common subsequence we get con-

v vergence in W3 (£2) etc, (by closedness of derivatives).

Theorem 1.54. If 012 is a C™ boundary of a bounded open set 2. Then the
embedding W3*(£2) € W3~ (82) is compact.

Proof. The result follows by extension to V([)/%‘(Q’ ) where 2" is a bounded set
containing (2.
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1.4.3 Trace theorems

We know that if v € Wi (£2) with m > n/2 then u can be represented by a
continuous function and thus can be assigned a value at the boundary of 2
(or, in fact, at any point). The requirement on m is, however, too restrictive
— we have solved the Dirichlet problem, which requires a boundary value of

the solution, in I/?/%(Q) In this space, unless n = 1, the solution need not be
continuous. It turns out that it is possible to give a meaning to the operation
of taking the boundary value of a function even if it is not continuous.

We begin with the simplest (nontrivial) case when 2 = R} := {x; x =
(x',2,),0 < x,}.

Theorem 1.55. The trace operator vy : C'(R%) N W3 (R%) — CO(R™™1)
defined by

(’Y(J(b)(xl) = ¢(X/7 0)7 ¢ € Cl(@) N ng(Ri),X/ S Rn_l,

has a unique extension to a continuous linear operator vy : W3 (R%T) —
Lo(R™ 1) whose range in dense in La(R™™1). The extension satisfies

2(Bu) =0(B)w(w),  BeCHRY) N Loo(RY), u € Wy (RY).
Proof. Let ¢ € C1(R™)NW3(R%). Then, by Fubini’s theorem, for almost any
x', Oy, |ﬁf’(x L) |* € Loy(RY) we can write
lp(x',7))? — |p(x', 0)] /3 (x', 2,)|?d,, 4

and thus |¢(x’,7)|? has a limit which must equal 0. Hence

6(x',0)] / 0c, (. P

66 Oz < 2 (¥, 6(300(x)x
J

+
210z, llozz ll6llorn < 102, 615z

Hence, by density, the operation of taking value at x,, = 0 extends to W21 (Ri)
If $ € C§°(R"1) and 7 is a truncation function 7(¢) = 1 for |¢t| < 1
and 7'( ) = 0 for [¢| > 0 then ¢(x) = Y(x')7(z,) € C*H(RY) N W3 (R?%) and
= 1) so that the range of the trace operator contains C§°(R"~1) and
thusu dense. The last identity follows from continuity of the trace operator
d of the operator of multiplication by bounded differentiable functions in
Wi (R7%).

W7 U?k((w;(@‘ft)
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o
Theorem 1.56. Let u € Wy (R':). Then u EW%(RZQ if an only if yo(u) =0,

[ Proof. xIfu WA (R ), then u is the limit of a sequence (¢x)xen from CF°(R?)

in W3 (R). Since 7o(¢x,) = 0 for any k, we obtain o (u) =0. -

( @ Conversely, let u € W (R%) with you = 0. By using the truncating func-
“tions, we may assume that u has compact support in R".

Next we use the truncating functions 7 € C*°(R), as in Theorem 1.45, by

taking function 17 which satisfies n(t) = 1 for ¢ > 1 and n(¢) = 0 for ¢ g 1/2

/ define ny(z,,) = n(kxy). To simplify notation, we assume that 0 <7’ <3

for t € [1/2,1] so that 0 < nk(xn) < 3k. Then the extension by 0 to R”

of x — (xn)u(x xn\ is in ) ,and can be approximated by Cg°(R?})
unctions m Hencemto prove that niu — u in W4 (]R"
ASAh the proof of Theorem 1.45 we can prove ngu — u in Lo(R’ ) and for
eachi=1,. — 1, Oy, (Mru) fnkamluaa uin Ly(R7T) as k — oo.
Since = 5
O i) @+ Doy K
N we see that we have to prove that ud,,nm, — 0 in Ly(R"}) as k — oo. For this,

first we prove that if yo(u) = 0, then
| —

almost everywhere on R’/. Indeed, let ur be a bounded support C' func-

[Nl

tion approximating u in W3 (R%). Then f@znur (x/,t)dt — f&‘mnu, (x/,t)dt in

Ly(R?%). This follows from 0, u, — (“)xnu in Lo(R?%) and, taklng @ to be the
box enclosing support of all u,,u, with edges of length at most d

2

//8znurx tdt—/@mnu‘x t)dt| dx \
<d2/|8 u,,xt;g&(? u,xt;@ dx )

Then we have, for any s, 0 < s <d

2

//axnur(x',t)dt—ur(x',s) dXZ/"LLT(X/70)‘2dX=d / lu,.(x',0)|?dx’

Q 10 Q Rn—1

and, since the left hand side goes to zero as r — oo, we obtain (1.67). Then,
by Cauchy-Schwarz inequality
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S
< ) < s [ 10, e’ 1)

and therefore

0 2k s
/ 171 (5) |d8<9@/ /|3xnuxt|dtds
) —
2/k s 2/k2/k
18k//\3znu(x’,t)\2dtds:18k/ / |0,, u(x', ) |*dsdt
00 0t
2/k
<36 [ 10, u(x, 0)dr.
( 8 ————
Integration over R"~! gives
=
Il <36 [ Vo, uPax
Rr=1x2/k

which tends to 0.

The consideration above can be extended to the case where {2 is an open
bounded region in R™ lying locally on one side of its C' boundary. Using the
partition of unity, we define

N
Z% (Bju) o H?)) o (HI)™*

It is clear that if u € C1(£2), then ou is the restriction of u to 9£2. Thus, we
have the following result

Theorem 1.57. Let §2 be a bounded open subset of R™ which lies on one side
of its boundary 082 which is assumed to be a C' manifold. Then there exists
a unique continuous and linear operator o : Wa(£2) — Lo (052) such that for
each u € CY(§2), 7o is the restriction of u to 052. The kernel of o is equal to

V([)/'%(Q) and its range is dense in Ly(052).
1.4.4 Regularity of variational solutions to the Dirichlet problem

From Subsection 1.3.6 we know that there is a unique variational solution
o
u €W3($2) of the problem
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o

v EWT(2).

/Vqudx =< 50> G aizay
(9]

Moreover, now we can say that you = 0 on 92 (provided 942 is C*).
We have the following theorem

Theorem 1.58. Let 2 C R™ be an open bounded set with C? boundary (or
2 =R71). Let f € Ly(82) and let u EV([)/%(Q) satisfy
/Vqudx =(f,v), veEWQ). (1.68)
2

Then u € W3(£2) and |ull2,0 < C||fllo,2 where C is a constant depending
only on 2. Furthermore, if §2 is of class C™ 2 and f € Wi(02), then

we Wy 2(2) and  Jullmiz,e < C|lfllm.o-

In particular, if m > n/2, then u € C?(£2) is a classical solution.

Moreover, if 2 is bounded, then the solution operator G : Lo({2) %I/?/%(Q)
1s self-adjoint and compact.

Proof. The proof naturally splits into two cases: interior estimates and bound-
ary estimates. Let 2 be bounded with at least C!' boundary and consider the
partition of unity {5;}}_, subordinated to the covering {G;}}L,. For the in-

o
terior estimates let us consider ug = Bou and let v €W 2(£2). Then we can
write

/V(ﬁou)Vvdx = /ﬂOVqudx+/uVﬂOVvdx
19, Q

2

VuV (Bov)dx — 2 | VuvVppdx — | uwvAfodx
fessann -+ frum

(9}

2
/(f — ABou — 2VuV fy)vdx = /dex.
2 2



