1.3 Hilbert space methods 45

$$
|\chi(\mathbf{x}',x_n)\leq M|x_n|
$$

on Q. Thus

$$
\int_{Q_+} u \partial_{x_n} \eta_k \chi d\mathbf{x} = \int_{Q_+} u(\eta_k \partial_{x_n} \chi + \chi \partial_{x_n} \eta_k) d\mathbf{x} \to \int_{Q_+} u \eta_k \partial_{x_n} \chi
$$

and thus we obtain in the limit

$$
\int_{Q_+} u \partial_{x_n} \chi d\mathbf{x} = -\int_{Q_+} (\partial_{x_n}) u \chi d\mathbf{x}.
$$

Returning to Q , we obtain

$$
\int_{Q} u^* \partial_{x_n} \phi d\mathbf{x} = \int_{Q_+} u \partial_{x_n} \chi d\mathbf{x} = \int_{Q} (\partial_{x_n} u)^{\bullet} \phi d\mathbf{x}.
$$

We also obtain estimates

$$
||u^*||_{0,Q} \le 2||u||_{0,Q_+} \qquad ||u^*||_{1,Q} \le 2||u||_{1,Q_+}.
$$

Now we can pass to the general result. Let $u \in W_2^1(\Omega)$, Ω bounded with C^1 boundary. Let $\{B_j, H^j\}_{j=1}^N$ be the atlas on the boundary and $\{G_j\}_{j=1}^N$ be the finite subcover constructed in the previous section, that is $G_0 \subset \widetilde{G}_0 \subset \Omega$, $\bar{G}_j \subset B_j$ with $\partial\Omega \subset \bigcup G_j$ and let $\{\beta\}_{j=1}^{\tilde{N}}$ be a subordinate partition of unity. Then we take

$$
u = \sum_{j=0}^{N} \beta_j u = \sum_{j=0}^{N} u_j
$$

with $u_0 \in \overset{\circ}{W}_1^2(\Omega)$ and $u_j \in W_2^1(\Omega \cap B_j)$. Clearly, $||u_0||_{1,\Omega} \leq C_0||u||_{1,\Omega}$ and $||u_j||_{1,\Omega \cap B_j} \leq C_j ||u||_{1,\Omega}, \ j=1,\ldots,n.$ The function u_0 can be extended to $\hat{u}_0 \in W_2^1(\mathbb{R}^n)$ by zero in a continuous way. Then $v_j := u_j \circ H^j \in W_2^1(Q_+)$ and we can extend by reflection to $v_j^* \in W_2^1(Q)$. We note that v_j^* has support in Q since the support of u_j only can touch $\partial (B_j \cap \Omega)$ at the points of $\partial \Omega$. Again,

$$
||v_j^*||_{1,Q} \le 2||v_j||_{1,Q_+} \le C_j''||u_j||_{1,\Omega \cap B_j} \le C_j'||u||_{1,\Omega}.
$$

Next, we define $w_j = v_j^* \circ (H^j)^{-1} \in W_2^1(B_j)$, again with $||w_j||_{1, B_j} \leq C''_j ||u||_{1, \Omega}$. Moreover, we have $w_j(\mathbf{x}) = u_j(\mathbf{x})$ whenever $\mathbf{x} \in B_j \cap \bar{\Omega}$ as

$$
v_j^*((H^j)^{-1}(\mathbf{x})) = v_j((H^j)^{-1}(\mathbf{x})) = u_j(H^j((H^j)^{-1}(\mathbf{x}))) = u_j(\mathbf{x})
$$

for such x. We also notice that for each $j = 1, ..., N$, support of w_j is contained in B_j and thus can extend w_j by zero to \mathbb{R}^n continuously in $W_2^1(\mathbb{R}^n)$

and denote this extension by \hat{u}_j . We note that $\hat{u}_j(\mathbf{x}) = u_j(\mathbf{x})$ for $\mathbf{x} \in \Omega$. Indeed, if $\mathbf{x} \in \overline{\Omega}$, for a given j either $\mathbf{x} \in B_j \cap \overline{\Omega}$ and then $\hat{u}_j(\mathbf{x}) = w_j(\mathbf{x}) = u_j(\mathbf{x})$ or $\mathbf{x} \notin B_j \cap \overline{\Omega}$ in which case $\hat{u}_j(\mathbf{x}) = 0$ but then also $u_j(\mathbf{x}) = 0$ by definition. The same argument applies to $j = 0$. Now we define the operator

$$
Eu = \hat{u}_0 + \sum_{j=1}^{n} \hat{u}_j
$$

and we clearly have

$$
Eu(\mathbf{x}) = \hat{u}_0(\mathbf{x}) + \sum_{j=1}^n \hat{u}_j(\mathbf{x}) = u_0(\mathbf{x}) + \sum_{j=1}^n u_j(\mathbf{x}) = u(\mathbf{x}).
$$

Linearity and continuity follows from continuity and linearity of each operation and the fact that the sum is finite.

Remark 1.46 . Similar argument allows to prove that there is an extension from $W_2^{\{m\}}(n)$ to $W_2^{\{m\}}(n)$ (as well as for $W_{\{p\}}^m(n)$, $1 \leq p \leq \infty$) but this requires the boundary to be a C^m -manifold (so that the flattening preserves the differentiability). However, the extension across the hyperplane $x_n = 0$ is done according to the following reflection

$$
u^*(\mathbf{x}',x_n) = \begin{cases} u(\mathbf{x}',x_n) & \text{for } x_n > 0\\ \lambda_1 u(\mathbf{x}',-x_n) + \lambda_2 u(\mathbf{x}',-\frac{x_n}{2}) + \ldots + \lambda_m u(\mathbf{x}',-\frac{x_n}{m}) & \text{for } x_n < 0, \end{cases}
$$

where $\lambda_1, \ldots, \lambda_m$ is the solution of the system

$$
\lambda_1 + \lambda_2 + \ldots + \lambda_m = 1,
$$

$$
-(\lambda_1 + \lambda_2/2 + \ldots + \lambda_m/m) = 1,
$$

$$
\ldots
$$

$$
(-1)^m(\lambda_1 + \lambda_2/2^{m-1} + \ldots + \lambda_m/m^{m-1}) = 1
$$

These conditions ensure that the derivatives in the x_n direction are continuous across $x_n = 0$.

An immediate consequence of the extension theorem is

Theorem 1.47. Let Ω be a bounded set with a C^1 boundary $\partial\Omega$ and $u \in$ $W_2^1(\Omega)$. Then there exits $(u_n)_{n\in\mathbb{N}}$, $u_n \in C_0^{\infty}(\mathbb{R}^n)$ such that

$$
\lim_{n \to \infty} u_n|_{\Omega} = u, \quad \text{in } W_2^1(\Omega).
$$

In other words, the set of restriction to \varOmega of functions from $C_0^\infty(\mathbb{R})$ is dense in $W_2^1(\Omega)$.

Proof. If Ω is bounded then, using Theorem 1.45, we can extend u to a func- $\text{Hom}\,Eu \in W_2^1(\mathbb{R})$ with Bounded support. The existence of a $C_0^\infty(\mathbb{R}^n)$ sequence χ converging to u follows from the Friedrichs lemma. If Ω is unbounded (but not equal to \mathbb{R}^n), then first we approximate u by a sequence $(\chi_n u)_{n \in \mathbb{N}}$ where χ_n are cut-off functions. Next we construct an extension of $\chi_n u$ to \mathbb{R}^n . This is possible as it involves only the part of $\partial\Omega$ intersecting the ball $B(0, 2n + 1)$ and χ_n is equal to zero where the sphere intersects $\partial\Omega$. For this extension we pick up an approximating function from $C_0^{\infty}(\mathbb{R})$.

1.4 Basic applications of the density theorem

1.4.1 Sobolev embedding

In Subsection 1.1.2 we have seen that in one dimension it is possible to identify a $W_2^1(\mathbb{R})$ function, Unfortunately, this is not true in higher dimensions.

Example 1.48.

 $\chi_{\rm K}$

 χ' (x) =

 $\chi(\frac{\chi}{h})$

2 funly

 $C.$ \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{A}

 $\begin{array}{c} \n\leftarrow \\ \n\sqrt{2\pi} \n\end{array}$

 $\int_{x^2} \frac{2x}{x^2+y^2}$

 $\chi_{y} = \frac{2\mu}{\lambda^{3} + y^{2}}$

 x^2

he

u

 θ

ample 1.48.
However, there is still a link between Sobolev spaces and classical calculus $\omega_i^{\omega}(\mathfrak{L})$ provided we take sufficiently high order of derivatives (or index p in L_p spaces). The link is provided by the Sobolev lemma.

Let Ω be an open and bounded subset of \mathbb{R}^n . We say that Ω satisfies the condition if there are numbers $\rho > 0$ and $\gamma > 0$ such that each $\blacktriangle \in \Omega$ is $B(0,1)$ a vertex of a cone $K(\mathbf{x})$ of radius ρ and volume $\gamma \rho^n$. Precisely speaking, if σ_n is the $n-1$ dimensional measure of the unit sphere in \mathbb{R}^n , then the volume of a ball of radius ρ is $\sigma_n \rho^n/n$ and then the (solid) angle of the cone is $\gamma n/\omega_n$.

> **Lemma 1.49.** If Ω satisfies the cone condition, then there exists a constant C such that for any $u \in C^m(\overline{\Omega})$ with $2m > n$ we have

$$
\begin{array}{ccc}\n\bigcirc A & 2\pi \\
\bigcirc \bigcirc \bigcirc \mathcal{U}_{\mathbf{u}} \mathbf{r}^2 \mathbf{r} \mathcal{U}_{\mathbf{v}} & \text{if } \bigvee A \\
\bigcirc \bigcirc \bigcirc \mathcal{U}_{\mathbf{u}} \mathbf{r}^2 & \text{if } \bigvee A \\
\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bigcirc A & \text{if } \bigvee A \\
\bigcirc A & \text{if } \bigvee A \\
\end{array}
$$
\n
$$
\begin{array}{ccc}\n\text{sup } |u(\mathbf{x})| \le C ||u||_m \\
\text{sup } |u(\mathbf{x})| \le C ||u||_m\n\end{array}
$$
\n
$$
(1.61)
$$

Proof. Let us introduce a cut-off function $\phi \in C_0^{\infty}(\mathbb{R})$ which satisfies $\phi(t) = 1$ for $|t| \leq 1/2$ and $\phi(t) = 0$ for $|t| \geq \mathbf{0}$. Define $\tau(t) = \phi(t/\rho)$ and note that the are constants $\overline{A_k}$, $k = 1, 2, \ldots$ such that $\overline{}$ $\overline{}$ d k $\tau(t)$ $\overline{}$ A_k

$$
\left|\frac{d^k\tau(t)}{dt^k}\right| \leq \frac{A_k}{\rho^k} \qquad \qquad \mathcal{A}_{\mathbf{h}} \cong \mathbf{h}_{\mathbf{h}} \mathbf{h}_{\mathbf{h}} \mathbf{h}_{\mathbf{h}} \qquad (1,2)
$$

$$
\alpha = \frac{1}{(x^2+y^2)} \text{Let us take } u \in C^m(\bar{\Omega}) \text{ and assume } 2m > n. \text{ For } x \in \bar{\Omega} \text{ and the cone } K(x)
$$
\nwe integrate along the ray $\{x+r; 0 \le r \le \rho\}$ $\underline{\varphi} \in \mathcal{B}(0,1)$ \n
$$
\frac{\gamma^2 \sin^2 \theta}{\zeta^2}
$$
\n
$$
u(x) = -\int_0^{\rho} D_r(\underline{\tau}(r)u(x+r))dr.
$$

 $\overline{}$ $\overline{}$

Integrating over the surface of the cone in spherical coordinates we get

$$
\int_{C} \int_{0}^{\rho} D_r(\tau(r)u(\mathbf{x}+\mathbf{x})) dr d\omega = -u(\mathbf{x}) \int_{C} \mathcal{L} \frac{\mathcal{L} \mathcal{L}}{2u} = -u(\mathbf{x}) \frac{\gamma n}{\omega_n}.
$$

Next we integrate $m - 1$ times by parts, getting

$$
u(\mathbf{x}) = \frac{(-1)^m \omega_n}{\gamma n(m-1)!} \int\limits_C \int\limits_0^{\rho} D^m_r(\tau(r)u(\mathbf{x}+r))r^{m-\nu} dr d\omega \int\limits_{\Delta} \int\limits_{\Delta} -N \Delta
$$

 $\overline{}$

and changing to Cartesian coordinates and applying Cauchy-Schwarz inequality we obtain

$$
|u(\mathbf{x})|^2 \leq \left(\frac{\omega_n}{\gamma n(m-1)!} \int\limits_{K(\mathbf{x})} |D_r^m(\tau u)| \frac{\sqrt{n-n}dy}{\omega}\right)^2
$$

$$
\leq \left(\frac{\omega_n}{\gamma n(m-1)!}\right)^2 \left(\int\limits_{K(\mathbf{x})} |D_r^m(\tau u)|^2 d\mathbf{y} \right)^{2} \left(\int\limits_{K(\mathbf{x})} r^{2(m-n)}d\mathbf{y}.\right)
$$

The last term can be evaluated as

m can be evaluated as
\n
$$
\int_{K(\mathbf{x})} r^{2(m-n)} dy = \int_{C} \int_{0}^{\rho} r^{2m-n-1} dr d\omega = \frac{\gamma n \rho^{2m-n}}{\omega_n (2m-n)} \qquad \text{Im} \geq \frac{4}{2}
$$

so that

$$
|u(\mathbf{x})|^2 \le C(m,n)\rho^{2m-n} \int\limits_{\mathcal{K}(\mathbf{x})} |D_r^m(\tau u)|^2 d\mathbf{y}.
$$
 (1.63)

Let us estimate the derivative. From (1.62) we obtain by the chain rule and the Leibniz formula

$$
|D_r^m(\tau u)| = \left| \sum_{k=0}^m {n \choose k} D_r^{m-k} \tau D_r^k u \right| \leq \sum_{k=0}^m {n \choose k} \frac{A_{m-k}}{\rho^{m-k}} |D_r^k u|,
$$

hence

$$
|D_r^m(\tau u)|^2 \le C' \sum_{k=0}^m \frac{1}{\rho^{2(m-k)}} |D_r^k u|^2
$$

for some constant C' . With this estimate we can re-write (1.63) as

$$
|u(\mathbf{x})|^2 \le C(m,n)C' \sum_{k=0}^{m} \rho^{2k-n} \int\limits_{K(\mathbf{x})} |D_r^m(u)|^2 d\mathbf{y}.
$$
 (1.64)

Since by the chain rule

$$
|D_r^m|u||^2 \leq C'' \sum_{|\alpha| \leq k} |D^\alpha u|^2
$$

by extending the integral to Ω we obtain

$$
\sup_{\mathbf{x}\in\Omega}|u(\mathbf{x})|\leq C\|u\|_{m} \qquad \qquad \sup_{\mathbf{U}\mathbf{Q}}|u(\mathbf{x})|\leq C\|\mathbf{U}\|\mathbf{U}\|_{m}
$$

which is (1.61).

Theorem 1.50. Assume that Ω is a bounded open set with C^m boundary and let $m > k + n/2$ where m and k are integers. Then the embedding

$$
W^m_2(\varOmega)\subset C^k(\bar{\varOmega})
$$

is continuous.

Proof. Under the assumptions, the problem can be reduced to the set $G_0 \n\subseteq \Omega$ consisting of internal point, separated from the boundary by a fixed positive distance, and points in the boundary strip, covered by sets $\Omega \cap B_i$ which are transformed onto $Q_+ \cup Q_0$. Any point in G_0 satisfies the cone conditions. Points on $Q_0 \cup Q_+$ also satisfy the condition so, if $u \in W_2^m(\Omega)$, then extending the boundary components of Au to Q we obtain functions in $W_2^1(\Omega)$ and W_2^1 **!**(*Q*) with compact supports in respective domains. By Friedrichs lemma, restrictions to Ω and Q of $C^{\infty}(\mathbb{R}^n)$ functions are dense in, respectively, $W_2^m(\Omega)$ and $W_2^m(\mathbb{Q})$ and therefore the estimate (1.61) can be extended by density to $W_2^m(\Omega)$ showing that the canonical injection into $C(\overline{\Omega})$ is continuous. To obtain the result for higher derivatives we substitute higher derivatives of u for u in (1.61). Thus, all components of Au are they are C^k functions. Transferring them back, we see that $u \in C^k(\overline{\Omega})$, by regularity of the local atlas and $m > k$, we obtain the thesis.

1.4.2 Compact embedding and Rellich–Kondraschov theorem

Lemma 1.51. let $Q = {\mathbf{x}}$; $a_j \le x_j \le b_j$ be a cube in \mathbb{R}^n with edges of length $d > 0$. If $u \in C^1(\overline{Q})$, then

$$
||u||_{0,Q}^2 \le d^{-n} \left(\int\limits_Q u d\mathbf{x}\right)^2 + \underbrace{\widehat{\mathcal{D}}d^2}_{\text{(2)}} \sum_{j=1}^n ||\partial_j'u||_{0,Q}^2 \tag{1.65}
$$

Proof. For any $x, y \in Q$ we can write

$$
\mathbf{V}_{\mathbf{S}} = \begin{bmatrix} \mathbf{V} & \mathbf{V} \\ \mathbf{V} & \mathbf{V} \\ \mathbf{V} & \mathbf{V} \end{bmatrix} \qquad u(\mathbf{x}) - u(\mathbf{y}) = \sum_{j=1}^{N} \int_{y_j}^{x_j} \partial_j u(y_1, \dots, y_{j-1}, s, x_{j+1}, \dots, x_n) ds. \qquad \begin{bmatrix} \|\mathbf{V}_{\mathbf{S}} \mathbf{V}_{\mathbf{S}} - \mathbf{V}_{\mathbf{S}} \mathbf{V}_{\mathbf{S}} \\ \mathbf{V}_{\mathbf{S}} \mathbf{V}_{\mathbf{S}} \\ \mathbf{V}_{\mathbf{S}} \mathbf{V}_{\mathbf{S}} \end{bmatrix}
$$

$$
F=\{u\}CLp | field by length the right||B_{n}u-u||_{Lp(u)} \rightarrow 0 \t [which is the rightg_{n}u(t)=u(x+u)
$$

Squaring this identity and using Cauchy-Schwarz inequality we obtain

$$
u^{2}(\mathbf{x})+u^{2}(\mathbf{y})-2u(\mathbf{x})u(\mathbf{y})\leq nd\sum_{j=1}^{n}\prod_{a_j}^{b_j}(\partial_j u)^{2}(y_1,\ldots,y_{j-1},s,x_{j+1},\ldots,x_n)ds.
$$

Integrating the above inequality with respect to all variables, we obtain

$$
2d^{n}||u||_{0,Q}^{2} \le 2\left(\int_{Q} u d\mathbf{x}\right)^{2} + nd^{n+2} \sum_{j=1}^{n} ||\partial_{j} u||_{0,Q}^{2}
$$

as required.

Theorem 1.52. Let Ω be open and bounded. If the sequence $(u_k)_{k\in\mathbb{N}}$ of elements of $\overset{\circ}{W}^2_1(\Omega)$ is bounded, then there is $\rho_{\mathbf{S}}$ ubsequence which converges in in $L_2(\Omega)$. In other words, the injection $\mathring{W}_1^2 \subset L_2(\Omega)$ is compact.

Proof. By density, we may assume $u_k \in C_0^{\infty}$. Let $M = \sup_k \{||u_k||_1\}$. We enclose Ω in a cube Q ; we may assume the edges of Q to be of unit length. Further, we extend each u_k by zero to $Q \setminus \Omega$.

We decompose Q into N^n cubes of edges of length $1/N$. Since clearly $(u_k)_{k\in\mathbb{N}}$ is bounded in $L_2(Q)$ it contains a weakly convergent subsequence (which we denote again by $(u_k)_{k\in\mathbb{N}}$). For any ϵ' there is n_0 such that

$$
\left| \begin{array}{c} \left| \mathbf{Q}_{k} u \right|^{2} \mathbf{L} \mathbf{R} \\ \mathbf{Q}_{k} \end{array} \right| \left| \begin{array}{c} \left| \mathbf{Q}_{k} u_{k} - u_{k} \right| \\ \left| \begin{array}{c} \left| \left(u_{k} - u_{l} \right) \right| \mathbf{d} \mathbf{R} \\ \left| \mathbf{Q}_{j} \right| & \left| \mathbf{d} \right| \end{array} \right| < \epsilon', \quad k, l \ge n_{0} \end{array} \right| \tag{1.66}
$$

for each $j = 1, ..., Nⁿ$. Now, we apply (1.65) on each Q_j and sum over all j getting $||u_k - u_l||_{0,Q}^2 \le N^n \epsilon' + \left(\frac{n}{2N}\right)$ $\frac{n}{2N^2}$ 2 M^2

Now, we see that for a fixed ϵ we can find N large that $nM^2/N^2 < \epsilon$ and, having fixed N, for $\epsilon' = \epsilon/2N^n$ we can find n_0 such that (1.66) holds. Thus $(u_k)_{k\in\mathbb{N}}$ is Cauchy in $L_2(\Omega)$.

Corollary 1.53. If Ω is a bounded open subset of \mathbb{R}^n , then the embedding $\overset{\circ}{W}_{\mathbf{\mathcal{D}}\cdot\mathbf{R}}^{\mathbf{\mathcal{M}}}(\Omega) \subset \overset{\circ}{W}_{\mathbf{\mathcal{D}}\cdot\mathbf{R}}^{\mathbf{\mathcal{M}}}(\Omega)$ is compact.

Proof. Applying the previous theorem to the sequences of derivatives, we see that the derivatives form bounded sequences in $W_2^1(\Omega)$ and thus contain subsequences converging in $L_2(\Omega)$. Selecting common subsequence we get convergence in $W_2^1(\Omega)$ etc, (by closedness of derivatives).

Theorem 1.54. If $\partial\Omega$ is a C^m boundary of a bounded open set Ω . Then the embedding $W_2^m(\Omega) \subset W_2^{m-1}(\Omega)$ is compact.

Proof. The result follows by extension to \mathring{W} ⁿ \mathscr{M} (Ω') where Ω' is a bounded set containing Ω .

1.4.3 Trace theorems

We know that if $u \in W_2^m(\Omega)$ with $m > n/2$ then u can be represented by a continuous function and thus can be assigned a value at the boundary of Ω (or, in fact, at any point). The requirement on m is, however, too restrictive — we have solved the Dirichlet problem, which requires a boundary value of the solution, in $\mathring{W}_1^2(\Omega)$. In this space, unless $n=1$, the solution need not be continuous. It turns out that it is possible to give a meaning to the operation of taking the boundary value of a function even if it is not continuous.

We begin with the simplest (nontrivial) case when $\Omega = \mathbb{R}^n_+ := {\mathbf{x}}; \mathbf{x} =$ $(\mathbf{x}', x_n), 0 < x_n$ }.

Theorem 1.55. The trace operator γ_0 : $C^1(\overline{\mathbb{R}^n_+}) \cap W_2^1(\mathbb{R}^n_+) \to C^0(\mathbb{R}^{n-1})$ defined by

$$
(\gamma_0 \phi)(\mathbf{x}') = \phi(\mathbf{x}', 0), \qquad \phi \in C^1(\overline{\mathbb{R}^n_+}) \cap W^1_2(\mathbb{R}^n_+), \mathbf{x}' \in \mathbb{R}^{n-1},
$$

has a unique extension to a continuous linear operator γ_0 : $W_2^1(\mathbb{R}^n_+) \rightarrow$ $L_2(\mathbb{R}^{n-1})$ whose range in dense in $L_2(\mathbb{R}^{n-1})$. The extension satisfies

$$
\gamma_0(\beta u) = \gamma_0(\beta)\gamma_0(u), \qquad \beta \in C^1(\overline{\mathbb{R}^n_+}) \cap L_\infty(\mathbb{R}^n_+), u \in W^1_2(\mathbb{R}^n_+).
$$

Proof. Let $\phi \in C^1(\overline{\mathbb{R}^n_+}) \cap W_2^1(\mathbb{R}^n_+)$. Then, by Fubini's theorem, for almost any $\mathbf{x}', \partial_{x_n} |\mathcal{Q}(\mathbf{x}', \overline{x_n})|^2 \in L_2(\mathbb{R}_+)$ we can write

$$
|\phi(\mathbf{x}',r)|^2 - |\phi(\mathbf{x}',0)|^2 = \int_0^r \partial_{x_n} \mathbf{Q}(\mathbf{x}',x_n)|^2 dx_n
$$

and thus $|\phi(\mathbf{x}', r)|^2$ has a limit which must equal 0. Hence

$$
|\phi(\mathbf{x}',0)|^2=-\int\limits_0^\infty \partial_{x_n}\mathbf{x}(\mathbf{x}',x_n)|^2dx_n.
$$

Integrating over \mathbb{R}^{n-1} we obtain

 $\begin{array}{c} N \mathfrak{I} \\ C_{\mathfrak{I}}^{\infty} \left(\mathbb{R}^n\right) \end{array}$

$$
\leq C \|\varphi\|_{\mathcal{U}^{\{R\}}_{\mathcal{U}}} (\|\varphi(x,\theta)\|_{0,\mathbb{R}^{n-1}}^2 \leq 2 \int_{\mathbb{R}^n_+} \langle \partial_{x_n} \phi(x) \phi(x) dx
$$
\n
$$
\leq C \|\varphi\|_{\mathcal{U}^{\{R\}}_{\mathcal{U}}} (\|\varphi\|_{\mathcal{U}^{\{R\}}}) \leq C \|\partial_{x_n} \phi\|_{0,\mathbb{R}^n_+} \|\phi\|_{0,\mathbb{R}^n_+} \leq \|\partial_{x_n} \phi\|_{0,\mathbb{R}^n_+}^2 + \|\phi\|_{0,\mathbb{R}^n_+}^2.
$$

Hence, by density, the operation of taking value at $x_n = 0$ extends to $W_2^1(\mathbb{R}^n_+)$. $\begin{array}{c} \mathcal{F}^{\mathfrak{h}} \\ \omega^{\mathcal{A}}_{\mathfrak{l}} \left(\mathfrak{m}^{\mathfrak{h}} \right) \end{array}$ If $\phi \in C_0^{\infty}(\mathbb{R}^{n-1})$ and τ is a truncation function $\tau(t) = 1$ for $|t| \leq 1$ and $\tau(t) = 0$ for $|t| \geq 0$ then $\phi(\mathbf{x}) = \psi(\mathbf{x}')\tau(x_n) \in C^1(\overline{\mathbb{R}^n_+}) \cap W^1_2(\mathbb{R}^n_+)$ and $\gamma_0(\phi) = \psi$ so that the range of the trace operator contains $C_0^{\infty}(\mathbb{R}^{n-1})$ and thus is dense. The last identity follows from continuity of the trace operator and of the operator of multiplication by bounded differentiable functions in $W_2^1(\mathbb{R}^n_+).$

$$
\leq C \| Q_{s} - Q_{n} \| \|_{L_{1}^{q}} \| \alpha_{n}^{q}.
$$

Theorem 1.56. Let $u \in W_2^1(\mathbb{R}^n_+)$. Then $u \in \overset{\circ}{W}_{\mathcal{Z}}^{\mathcal{Z}}(\mathbb{R}^n_+)$ if an only if $\gamma_0(u) = 0$,

Proof. χ If $u \in \mathring{W}_{\mathcal{D}}^{\mathcal{R}}(\mathbb{R}^n_+)$, then \underline{u} is the limit of a sequence $(\phi_k)_{k \in \mathbb{N}}$ from $C_0^{\infty}(\mathbb{R}^n_+)$ in $W_2^1(\mathbb{R}^n_+)$. Since $\gamma_0(\phi_k) = 0$ for any k, we obtain $\gamma_0(u) = 0$. Conversely, let $u \in W_2^1(\mathbb{R}^n_+)$ with $\gamma_0 u = 0$. By using the truncating functions, we may assume that u has compact support in $\overline{\mathbb{R}^n_+}$. Next we use the truncating functions $\eta_k \in C^{\infty}(\mathbb{R})$, as in Theorem 1.45, by (Ky taking function η which satisfies $\eta(t) = 1$ for $t \ge 1$ and $\eta(t) = 0$ for $t \le 1/2$ 57 and define $\eta_k(x_n) = \eta(kx_n)$. To simplify notation, we assume that $0 \le \eta' \le 3$ for $t \in [1/2, 1]$ so that $0 \leq \eta'_k(x_n) \leq 3k$. Then the extension by 0 to \mathbb{R}^n of $(\mathbf{x} \to \eta_k(x_n)u(\mathbf{x}', x_n)$ is in $W_2^1(\mathbb{R}^n)$ and can be approximated by $C_0^{\infty}(\mathbb{R}^n_+)$ functions in $\widehat{W_2^1(\mathbb{R}^n_+)}$. Hence, we have to prove that $\eta_k u \to u$ in $\widehat{W_2^1(\mathbb{R}^n_+)}$. \overline{AS} in the proof of Theorem 1.45 we can prove $\eta_k \overline{u \to u \text{ in } L_2(\mathbb{R}^n_+)}$ and for η each $i = 1, ..., n - 1$, $\partial_{x_i}(\eta_k u) = \eta_k \partial_{x_i} u \rightarrow \partial_{x_i} u$ in $L_2(\mathbb{R}^n_+)$ as $k \rightarrow \infty$. D Since $\partial_{x_n}(\eta_k u) = (u \partial_{x_n} \eta_k) + \eta_k \partial_{x_k} u$ we see that we have to prove that $u\partial_{x_n}\eta_k\to 0$ in $L_2(\mathbb{R}^n_+)$ as $k\to\infty$. For this, first we prove that if $\gamma_0(u) = 0$, then $u(\mathbf{x}',s) = \int^s$ $\partial_{x_n} u(\mathbf{x}',t) dt$ (1.67)

> almost everywhere on \mathbb{R}^n_+ . Indeed, let u_r be a bounded support C^1 function approximating u in $W_2^1(\mathbb{R}^n_+)$. Then $\int_0^s \partial_{x_n} u_r(\mathbf{x}',t)dt \to \int_0^s$ $\int\limits_{0}^{\infty} \partial_{x_n} u_{\mathbf{\ell}}(\mathbf{x}',t) dt$ in $L_2(\mathbb{R}^n_+)$. This follows from $\partial_{x_n} u_r \to \partial_{x_n} u$ in $L_2(\mathbb{R}^n_+)$ and, taking Q to be the box enclosing support of all u_r, u , with edges of length at most d

0

$$
\int_{Q} \left| \int_{0}^{s} \partial_{x_n} u_r(\mathbf{x}',t) dt - \int_{0}^{s} \partial_{x_n} u_{\mathbf{x}}(\mathbf{x}',t) dt \right|^{2} d\mathbf{x}
$$

$$
\leq d^2 \int_{Q} |\partial_{x_n} u_r(\mathbf{x}',t) \partial_{\mathbf{x}} \left(- \partial_{x_n} u_{\mathbf{x}}(\mathbf{x}',t) \partial_{\mathbf{x}} \right|^{2} d\mathbf{x}
$$

Then we have, for any $s, 0 \leq s \leq d$

$$
\int_{Q} \left| \int_{0}^{s} \partial_{x_n} u_r(\mathbf{x}',t) dt - u_r(\mathbf{x}',s) \right|^2 d\mathbf{x} = \int_{Q} |u_r(\mathbf{x}',0)|^2 d\mathbf{x} = d \int_{\mathbb{R}^{n-1}} |u_r(\mathbf{x}',0)|^2 d\mathbf{x}'
$$

and, since the left hand side goes to zero as $r \to \infty$, we obtain (1.67). Then, by Cauchy-Schwarz inequality

1.4 Basic applications of the density theorem 53

$$
|u(\mathbf{x}',s)|^2 \leq s \int_0^s |\partial_{x_n} u(x',t)|^2 dt
$$

and therefore

$$
\int_{0}^{\infty} |\eta_k'(s)u(\mathbf{x}',s)|^2 ds \leq 9k^2 \int_{0}^{2/k} s \int_{0}^{s} |\partial_{x_n}u(\mathbf{x}',t)|^2 dt ds
$$

$$
18k \int_{0}^{2/k} \int_{0}^{s} |\partial_{x_n}u(\mathbf{x}',t)|^2 dt ds = 18k \int_{0}^{2/k} \int_{t}^{2/k} |\partial_{x_n}u(\mathbf{x}',t)|^2 ds dt
$$

$$
\leq 36 \int_{0}^{2/k} |\partial_{x_n}u(\mathbf{x}',t)|^2 dt.
$$

Integration over \mathbb{R}^{n-1} gives

$$
\|\eta_k'u\|_{0,\mathbb{R}_+^n}^2 \leq 36\int\limits_{\mathbb{R}^{n-1}\times 2/k} |\partial_{x_n}u|^2 d\mathbf{x}
$$

which tends to 0.

The consideration above can be extended to the case where Ω is an open bounded region in \mathbb{R}^n lying locally on one side of its C^1 boundary. Using the partition of unity, we define

$$
\gamma_0(u) := \sum_{j=1}^N (\gamma_0((\beta_j u) \circ H^j)) \circ (H^j)^{-1}
$$

It is clear that if $u \in C^1(\overline{\Omega})$, then $\gamma_0 u$ is the restriction of u to $\partial \Omega$. Thus, we have the following result

Theorem 1.57. Let Ω be a bounded open subset of \mathbb{R}^n which lies on one side of its boundary $\partial\Omega$ which is assumed to be a C^1 manifold. Then there exists a unique continuous and linear operator $\gamma_0 : W_2^1(\Omega) \to L_2(\partial \Omega)$ such that for each $u \in C^1(\overline{\Omega})$, γ_0 is the restriction of u to $\partial \overline{\Omega}$. The kernel of γ_0 is equal to $\stackrel{\circ}{W}_{\phi}^{\mathcal{A}}(\Omega)$ and its range is dense in $L_2(\partial\Omega)$.

1.4.4 Regularity of variational solutions to the Dirichlet problem

From Subsection 1.3.6 we know that there is a unique variational solution $u \in \overset{\circ}{W}_1^2(\varOmega)$ of the problem

$$
\int_{\Omega} \nabla u \nabla v d\mathbf{x} = \langle f, v \rangle_{(\mathring{W}_1^2(\Omega))^* \times \mathring{W}_1^2(\Omega)}, \qquad v \in \mathring{W}_1^2(\Omega).
$$

Moreover, now we can say that $\gamma_0 u = 0$ on $\partial\Omega$ (provided $\partial\Omega$ is C^1).

We have the following theorem

Theorem 1.58. Let $\Omega \subset \mathbb{R}^n$ be an open bounded set with C^2 boundary (or $\Omega = \mathbb{R}^n_+$). Let $f \in L_2(\Omega)$ and let $u \in \overset{\circ}{W}_1^2(\Omega)$ satisfy

$$
\int_{\Omega} \nabla u \nabla v d\mathbf{x} = (f, v), \qquad v \in \stackrel{\circ}{W}_1^2(\Omega). \tag{1.68}
$$

Then $u \in W_2^2(\Omega)$ and $||u||_{2,\Omega} \leq C||f||_{0,\Omega}$ where C is a constant depending only on Ω . Furthermore, if Ω is of class C^{m+2} and $f \in W_2^m(\Omega)$, then

 $u \in W_2^{m+2}(\Omega)$ and $||u||_{m+2,\Omega} \leq C||f||_{m,\Omega}.$

In particular, if $m \geq n/2$, then $u \in C^2(\overline{\Omega})$ is a classical solution.

Moreover, if Ω is bounded, then the solution operator $G: L_2(\Omega) \to \overset{\circ}{W}_1^2(\Omega)$ is self-adjoint and compact.

Proof. The proof naturally splits into two cases: interior estimates and boundary estimates. Let Ω be bounded with at least C^1 boundary and consider the partition of unity $\{\beta_j\}_{j=0}^N$ subordinated to the covering $\{G_j\}_{j=0}^N$. For the interior estimates let us consider $u_0 = \beta_0 u$ and let $v \in \overset{\circ}{W}_1^2(\Omega)$. Then we can write

$$
\int_{\Omega} \nabla(\beta_0 u) \nabla v d\mathbf{x} = \int_{\Omega} \beta_0 \nabla u \nabla v d\mathbf{x} + \int_{\Omega} u \nabla \beta_0 \nabla v d\mathbf{x}
$$
\n
$$
= \int_{\Omega} \nabla u \nabla(\beta_0 v) d\mathbf{x} - 2 \int_{\Omega} \nabla u v \nabla \beta_0 d\mathbf{x} - \int_{\Omega} u v \Delta \beta_0 d\mathbf{x}
$$
\n
$$
= \int_{\Omega} (f - \Delta \beta_0 u - 2 \nabla u \nabla \beta_0) v d\mathbf{x} = \int_{\Omega} F v d\mathbf{x}.
$$