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|χ(x′, xn) ≤M |xn|

on Q. Thus∫
Q+

u∂xnηkχdx =

∫
Q+

u(ηk∂xnχ+ χ∂xnηk)dx→
∫
Q+

uηk∂xnχ

and thus we obtain in the limit∫
Q+

u∂xnχdx = −
∫
Q+

(∂xn)uχdx.

Returning to Q, we obtain∫
Q

u∗∂xnφdx =

∫
Q+

u∂xnχdx =

∫
Q

(∂xnu)•φdx.

We also obtain estimates

‖u∗‖0,Q ≤ 2‖u‖0,Q+ ‖u∗‖1,Q ≤ 2‖u‖1,Q+ .

Now we can pass to the general result. Let u ∈ W 1
2 (Ω), Ω bounded with

C1 boundary. Let {Bj , Hj}Nj=1 be the atlas on the boundary and {Gj}Nj=1 be

the finite subcover constructed in the previous section, that is G0 ⊂ Ḡ0 ⊂ Ω,
Ḡj ⊂ Bj with ∂Ω ⊂

⋃
Gj and let {β}Nj=1 be a subordinate partition of unity.

Then we take

u =

N∑
j=0

βju =

N∑
j=0

uj

with u0 ∈
o

W 2
1(Ω) and uj ∈ W 1

2 (Ω ∩ Bj). Clearly, ‖u0‖1,Ω ≤ C0‖u‖1,Ω and
‖uj‖1,Ω∩Bj ≤ Cj‖u‖1,Ω , j = 1, . . . , n. The function u0 can be extended to
û0 ∈ W 1

2 (Rn) by zero in a continuous way. Then vj := uj ◦ Hj ∈ W 1
2 (Q+)

and we can extend by reflection to v∗j ∈W 1
2 (Q). We note that v∗j has support

in Q since the support of uj only can touch ∂(Bj ∩ Ω at the points of ∂Ω.
Again,

‖v∗j ‖1,Q ≤ 2‖vj‖1,Q+
≤ C ′′j ‖uj‖1,Ω∩Bj ≤ C ′j‖u‖1,Ω .

Next, we define wj = v∗j ◦(Hj)−1 ∈W 1
2 (Bj), again with ‖wj‖1,Bj ≤ C ′′j ‖u‖1,Ω .

Moreover, we have wj(x) = uj(x) whenever x ∈ Bj ∩ Ω̄ as

v∗j ((Hj)−1(x)) = vj((H
j)−1(x)) = uj(H

j((Hj)−1(x))) = uj(x)

for such x. We also notice that for each j = 1, . . . , N , support of wj is con-
tained in Bj and thus can extend wj by zero to Rn continuously in W 1

2 (Rn)
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and denote this extension by ûj . We note that ûj(x) = uj(x) for x ∈ Ω̄. In-
deed, if x ∈ Ω̄, for a given j either x ∈ Bj∩Ω̄ and then ûj(x) = wj(x) = uj(x)
or x /∈ Bj ∩ Ω̄ in which case ûj(x) = 0 but then also uj(x) = 0 by definition.
The same argument applies to j = 0. Now we define the operator

Eu = û0 +

n∑
j=1

ûj

and we clearly have

Eu(x) = û0(x) +

n∑
j=1

ûj(x) = u0(x) +

n∑
j=1

uj(x) = u(x).

Linearity and continuity follows from continuity and linearity of each opera-
tion and the fact that the sum is finite.

Remark 1.46. Similar argument allows to prove that there is an extension
from Wm

2 (Ω) to Wm
2 (Rn) (as well as for Wm

p (Ω), 1 ≤ p ≤ ∞) but this
requires the boundary to be a Cm-manifold (so that the flattening preserves
the differentiability). However, the extension across the hyperplane xn = 0 is
done according to the following reflection

u∗(x′, xn) =

{
u(x′, xn) for xn > 0
λ1u(x′,−xn) + λ2u

(
x′,−xn2

)
+ . . .+ λmu

(
x′,−xnm

)
for xn < 0,

where λ1, . . . , λm is the solution of the system

λ1 + λ2 + . . .+ λm = 1,

−(λ1 + λ2/2 + . . .+ λm/m) = 1,

· · ·
(−1)m(λ1 + λ2/2

m−1 + . . .+ λm/m
m−1) = 1

These conditions ensure that the derivatives in the xn direction are continuous
across xn = 0.

An immediate consequence of the extension theorem is

Theorem 1.47. Let Ω be a bounded set with a C1 boundary ∂Ω and u ∈
W 1

2 (Ω). Then there exits (un)n∈N, un ∈ C∞0 (Rn) such that

lim
n→∞

un|Ω = u, in W 1
2 (Ω).

In other words, the set of restriction to Ω of functions from C∞0 (Ω) is dense
in W 1

2 (Ω).
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Proof. If Ω is bounded then, using Theorem 1.45, we can extend u to a func-
tion Eu ∈W 1

2 (Ω) with bounded support. The existence of a C∞0 (Rn) sequence
converging to u follows from the Friedrichs lemma. If Ω is unbounded (but
not equal to Rn), then first we approximate u by a sequence (χnu)n∈N where
χn are cut-off functions. Next we construct an extension of χnu to Rn. This
is possible as it involves only the part of ∂Ω intersecting the ball B(0, 2n+ 1)
and χn is equal to zero where the sphere intersects ∂Ω. For this extension we
pick up an approximating function from C∞0 (Ω).

1.4 Basic applications of the density theorem

1.4.1 Sobolev embedding

In Subsection 1.1.2 we have seen that in one dimension it is possible to identify
a W 1

2 (R) function. Unfortunately, this is not true in higher dimensions.

Example 1.48.

However, there is still a link between Sobolev spaces and classical calculus
provided we take sufficiently high order of derivatives (or index p in Lp spaces).
The link is provided by the Sobolev lemma.

Let Ω be an open and bounded subset of Rn. We say that Ω satisfies the
cone condition if there are numbers ρ > 0 and γ > 0 such that each x ∈ Ω is
a vertex of a cone K(x) of radius ρ and volume γρn. Precisely speaking, if σn
is the n− 1 dimensional measure of the unit sphere in Rn, then the volume of
a ball of radius ρ is σnρ

n/n and then the (solid) angle of the cone is γn/ωn.

Lemma 1.49. If Ω satisfies the cone condition, then there exists a constant
C such that for any u ∈ Cm(Ω̄) with 2m > n we have

sup
x∈Ω
|u(x)| ≤ C‖u‖m (1.61)

Proof. Let us introduce a cut-off function φ ∈ C∞0 (R) which satisfies φ(t) = 1
for |t| ≤ 1/2 and φ(t) = 0 for |t| ≥ 0. Define τ(t) = φ(t/ρ) and note that there
are constants Ak, k = 1, 2, . . . such that∣∣∣∣dkτ(t)

dtk

∣∣∣∣ ≤ Ak
ρk
. (1.62)

Let us take u ∈ Cm(Ω̄) and assume 2m > n. For x ∈ Ω̄ and the cone K(x)
we integrate along the ray {x + r; 0 ≤ r ≤ ρ

u(x) = −
ρ∫

0

Dr(τ(r)u(x + r))dr.
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Integrating over the surface of the cone in spherical coordinates we get

∫
C

ρ∫
0

Dr(τ(r)u(x + r))drdω = −u(x)

∫
C

= −u(x)
γn

ωn
.

Next we integrate m− 1 times by parts, getting

u(x) =
(−1)mωn
γn(m− 1)!

∫
C

ρ∫
0

Dm
r (τ(r)u(x + r))rm−1drdω.

and changing to Cartesian coordinates and applying Cauchy-Schwarz inequal-
ity we obtain

|u(x)|2 ≤

 ωn
γn(m− 1)!

∫
K(x)

|Dm
r (τu)|rm−ndy


2

≤
(

ωn
γn(m− 1)!

)2 ∫
K(x)

|Dm
r (τu)|2dyrm−ndy

∫
K(x)

r2(m−n)dy.

The last term can be evaluated as∫
K(x)

r2(m−n)dy =

∫
C

ρ∫
0

r2m−n−1drdω =
γnρ2m−n

ωn(2m− n)

so that

|u(x)|2 ≤ C(m,n)ρ2m−n
∫

K(x)

|Dm
r (τu)|2dy. (1.63)

Let us estimate the derivative. From (1.62) we obtain by the chain rule and
the Leibniz formula

|Dm
r (τu)| =

∣∣∣∣∣
m∑
k=0

(
n

k

)
Dm−k
r τDk

ru

∣∣∣∣∣ ≤
m∑
k=0

(
n

k

)
Am−k
ρm−k

∣∣Dk
ru
∣∣ ,

hence

|Dm
r (τu)|2 ≤ C ′

m∑
k=0

1

ρ2(m−k)

∣∣Dk
ru
∣∣2

for some constant C ′. With this estimate we can re-write (1.63) as

|u(x)|2 ≤ C(m,n)C ′
m∑
k=0

ρ2k−n
∫

K(x)

|Dm
r (u)|2dy. (1.64)
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Since by the chain rule

|Dm
r (u)|2 ≤ C ′′

∑
|α|≤k

|Dαu|

by extending the integral to Ω we obtain

sup
x∈Ω
|u(x)| ≤ C‖u‖m

which is (1.61).

Theorem 1.50. Assume that Ω is a bounded open set with Cm boundary and
let m > k + n/2 where m and k are integers. Then the embedding

Wm
2 (Ω) ⊂ Ck(Ω̄)

is continuous.

Proof. Under the assumptions, the problem can be reduced to the set G0 b Ω
consisting of internal point, separated from the boundary by a fixed positive
distance, and points in the boundary strip, covered by sets Ω̄ ∩Bj which are
transformed ontoQ+∪Q0. Any point inG0 satisfies the cone conditions. Points
on Q0 ∪Q+ also satisfy the condition so, if u ∈ Wm

2 (Ω), then extending the
boundary components of Λu to Q we obtain functions in W 1

2 (Ω) and W 1
2 2(Q)

with compact supports in respective domains. By Friedrichs lemma, restric-
tions to Ω and Q of C∞(Rn) functions are dense in, respectively, Wm

2 (Ω)
and Wm

2 (Ω) and therefore the estimate (1.61) can be extended by density to
Wm

2 (Ω) showing that the canonical injection into C(Ω̄) is continuous. To ob-
tain the result for higher derivatives we substitute higher derivatives of u for u
in (1.61). Thus, all components of Λu are they are Ck functions. Transferring
them back, we see that u ∈ Ck(Ω̄), by regularity of the local atlas and m > k,
we obtain the thesis.

1.4.2 Compact embedding and Rellich–Kondraschov theorem

Lemma 1.51. let Q = {x; aj ≤ xj ≤ bj} be a cube in Rn with edges of length
d > 0. If u ∈ C1(Ω̄), then

‖u‖20,Q ≤ d−n
∫
Q

udx

2

+
nd2

2

n∑
j=1

‖∂ju‖20,Q (1.65)

Proof. For any x,y ∈ Q we can write

u(x)− u(y) =
∑
j=1

n

xj∫
yj

∂ju(y1, . . . , yj−1, s, xj+1, . . . , xn)ds.
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Squaring this identity and using Cauchy-Schwarz inequality we obtain

u2(x)+u2(y)−2u(x)u(y) ≤ nd
∑
j=1

n

bj∫
aj

(∂ju)2(y1, . . . , yj−1, s, xj+1, . . . , xn)ds.

Integrating the above inequality with respect to all variables, we obtain

2dn‖u‖20,Q ≤ 2

∫
Q

udx

2

+ ndn+2
n∑
j=1

‖∂ju‖20,Q

as required.

Theorem 1.52. Let Ω be open and bounded. If the sequence (uk)k∈N of ele-

ments of
o

W 2
1(Ω) is bounded, then there is a subsequence which converges in

in L2(Ω). In other words, the injection
o

W 2
1 ⊂ L2(Ω) is compact.

Proof. By density, we may assume uk ∈ C∞0 . Let M = supk{‖uk‖1}. We
enclose Ω in a cube Q; we may assume the edges of Q to be of unit length.
Further, we extend each uk by zero to Q \Ω.

We decompose Q into Nn cubes of edges of length 1/N . Since clearly
(uk)k∈N is bounded in L2(Q) it contains a weakly convergent subsequence
(which we denote again by (uk)k∈N). For any ε′ there is n0 such that∣∣∣∣∣∣∣

∫
Qj

(uk − ul)dx

∣∣∣∣∣∣∣ < ε′, k, l ≥ n0 (1.66)

for each j = 1, . . . , Nn. Now, we apply (1.65) on each Qj and sum over all j
getting

‖uk − ul‖20,Q ≤ Nnε′ +
n

2N2
2M2.

Now, we see that for a fixed ε we can find N large that nM2/N2 < e and,
having fixed N , for ε′ = ε/2Nn we can find n0 such that (1.66) holds. Thus
(uk)k∈N is Cauchy in L2(Ω).

Corollary 1.53. If Ω is a bounded open subset of Rn, then the embedding
o

W 2
m(Ω) ⊂

o

W 2
m−1(Ω) is compact.

Proof. Applying the previous theorem to the sequences of derivatives, we see
that the derivatives form bounded sequences in W 1

2 (Ω) and thus contain sub-
sequences converging in L2(Ω). Selecting common subsequence we get con-
vergence in W 1

2 (Ω) etc, (by closedness of derivatives).

Theorem 1.54. If ∂Ω is a Cm boundary of a bounded open set Ω. Then the
embedding Wm

2 (Ω) ⊂Wm−1
2 (Ω) is compact.

Proof. The result follows by extension to
o

W 2
m(Ω′) where Ω′ is a bounded set

containing Ω.
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1.4.3 Trace theorems

We know that if u ∈ Wm
2 (Ω) with m > n/2 then u can be represented by a

continuous function and thus can be assigned a value at the boundary of Ω
(or, in fact, at any point). The requirement on m is, however, too restrictive
— we have solved the Dirichlet problem, which requires a boundary value of

the solution, in
o

W 2
1(Ω). In this space, unless n = 1, the solution need not be

continuous. It turns out that it is possible to give a meaning to the operation
of taking the boundary value of a function even if it is not continuous.

We begin with the simplest (nontrivial) case when Ω = Rn+ := {x; x =
(x′, xn), 0 < xn}.
Theorem 1.55. The trace operator γ0 : C1(Rn+) ∩ W 1

2 (Rn+) → C0(Rn−1)
defined by

(γ0φ)(x′) = φ(x′, 0), φ ∈ C1(Rn+) ∩W 1
2 (Rn+),x′ ∈ Rn−1,

has a unique extension to a continuous linear operator γ0 : W 1
2 (Rn+) →

L2(Rn−1) whose range in dense in L2(Rn−1). The extension satisfies

γ0(βu) = γ0(β)γ0(u), β ∈ C1(Rn+) ∩ L∞(Rn+), u ∈W 1
2 (Rn+).

Proof. Let φ ∈ C1(Rn+)∩W 1
2 (Rn+). Then, by Fubini’s theorem, for almost any

x′, ∂xn |u(x′, xn)|2 ∈ L2(R+) we can write

|φ(x′, r)|2 − |φ(x′, 0)|2 =

r∫
0

∂xn |u(x′, xn)|2dxn

and thus |φ(x′, r)|2 has a limit which must equal 0. Hence

|φ(x′, 0)|2 = −
∞∫

0

∂xn |u(x′, xn)|2dxn.

Integrating over Rn−1 we obtain

‖φ(x′, 0)‖20,Rn−1 ≤ 2

∫
Rn+

(∂xnφ(x)φ(x)dx

≤ ‖∂xnφ‖0,Rn+‖φ‖0,Rn+ ≤ ‖∂xnφ‖
2
0,Rn+ + ‖φ‖20,Rn+ .

Hence, by density, the operation of taking value at xn = 0 extends to W 1
2 (Rn+).

If φ ∈ C∞0 (Rn−1) and τ is a truncation function τ(t) = 1 for |t| ≤ 1
and τ(t) = 0 for |t| ≥ 0 then φ(x) = ψ(x′)τ(xn) ∈ C1(Rn+) ∩W 1

2 (Rn+) and
γ0(φ) = ψ so that the range of the trace operator contains C∞0 (Rn−1) and
thus is dense. The last identity follows from continuity of the trace operator
and of the operator of multiplication by bounded differentiable functions in
W 1

2 (Rn+).
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Theorem 1.56. Let u ∈W 1
2 (Rn+). Then u ∈

o

W 2
1(Rn+) if an only if γ0(u) = 0,

Proof. . If u ∈
o

W 2
1(Rn+), then u is the limit of a sequence (φk)k∈N from C∞0 (Rn+)

in W 1
2 (Rn+). Since γ0(φk) = 0 for any k, we obtain γ0(u) = 0.

Conversely, let u ∈ W 1
2 (Rn+) with γ0u = 0. By using the truncating func-

tions, we may assume that u has compact support in Rn+.
Next we use the truncating functions ηk ∈ C∞(R), as in Theorem 1.45, by

taking function η which satisfies η(t) = 1 for t ≥ 1 and η(t) = 0 for t ≤ 1/2
and define ηk(xn) = η(kxn). To simplify notation, we assume that 0 ≤ η′ ≤ 3
for t ∈ [1/2, 1] so that 0 ≤ η′k(xn) ≤ 3k. Then the extension by 0 to Rn−
of x → ηk(xn)u(x′, xn) is in W 1

2 (Rn) and can be approximated by C∞0 (Rn+)
functions in W 1

2 (Rn+). Hence, we have to prove that ηku→ u in W 1
2 (Rn+).

As in the proof of Theorem 1.45 we can prove ηku→ u in L2(Rn+) and for
each i = 1, . . . , n− 1, ∂xi(ηku) = ηk∂xiu→ ∂xiu in L2(Rn+) as k →∞.

Since
∂xn(ηku) = u∂xnηk + ηk∂xiu

we see that we have to prove that u∂xnηk → 0 in L2(Rn+) as k →∞. For this,
first we prove that if γ0(u) = 0, then

u(x′, s) =

s∫
0

∂xnu(x′, t)dt (1.67)

almost everywhere on Rn+. Indeed, let ur be a bounded support C1 func-

tion approximating u in W 1
2 (Rn+). Then

s∫
0

∂xnur(x
′, t)dt→

s∫
0

∂xnur(x
′, t)dt in

L2(Rn+). This follows from ∂xnur → ∂xnu in L2(Rn+) and, taking Q to be the
box enclosing support of all ur, u, with edges of length at most d

∫
Q

∣∣∣∣∣∣
s∫

0

∂xnur(x
′, t)dt−

s∫
0

∂xnur(x
′, t)dt

∣∣∣∣∣∣
2

dx

≤ d2

∫
Q

|∂xnur(x′, t)dt− ∂xnur(x′, t)dt|
2
dx

Then we have, for any s, 0 ≤ s ≤ d

∫
Q

∣∣∣∣∣∣
s∫

0

∂xnur(x
′, t)dt− ur(x′, s)

∣∣∣∣∣∣
2

dx =

∫
Q

|ur(x′, 0)|2dx = d

∫
Rn−1

|ur(x′, 0)|2dx′

and, since the left hand side goes to zero as r →∞, we obtain (1.67). Then,
by Cauchy-Schwarz inequality
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|u(x′, s)|2 ≤ s
s∫

0

|∂xnu(x′, t)|2dt

and therefore

∞∫
0

|η′k(s)u(x′, s)|2ds ≤ 9k2

2/k∫
0

s

s∫
0

|∂xnu(x′, t)|2dtds

18k

2/k∫
0

s∫
0

|∂xnu(x′, t)|2dtds = 18k

2/k∫
0

2/k∫
t

|∂xnu(x′, t)|2dsdt

≤ 36

2/k∫
0

|∂xnu(x′, t)|2dt.

Integration over Rn−1 gives

‖η′ku‖20,Rn+ ≤ 36

|∫
Rn−1×2/k

∂xnu|2dx

which tends to 0.

The consideration above can be extended to the case where Ω is an open
bounded region in Rn lying locally on one side of its C1 boundary. Using the
partition of unity, we define

γ0(u) :=

N∑
j=1

(γ0((βju) ◦Hj)) ◦ (Hj)−1

It is clear that if u ∈ C1(Ω̄), then γ0u is the restriction of u to ∂Ω. Thus, we
have the following result

Theorem 1.57. Let Ω be a bounded open subset of Rn which lies on one side
of its boundary ∂Ω which is assumed to be a C1 manifold. Then there exists
a unique continuous and linear operator γ0 : W 1

2 (Ω)→ L2(∂Ω) such that for
each u ∈ C1(Ω̄), γ0 is the restriction of u to ∂Ω. The kernel of γ0 is equal to
o

W 2
1(Ω) and its range is dense in L2(∂Ω).

1.4.4 Regularity of variational solutions to the Dirichlet problem

From Subsection 1.3.6 we know that there is a unique variational solution

u ∈
o

W 2
1(Ω) of the problem
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Ω

∇u∇vdx =< f, v >
(

o
W2

1(Ω))∗×
o
W2

1(Ω)
, v ∈

o

W
2
1(Ω).

Moreover, now we can say that γ0u = 0 on ∂Ω (provided ∂Ω is C1).
We have the following theorem

Theorem 1.58. Let Ω ⊂ Rn be an open bounded set with C2 boundary (or

Ω = Rn+). Let f ∈ L2(Ω) and let u ∈
o

W 2
1(Ω) satisfy∫

Ω

∇u∇vdx = (f, v), v ∈
o

W
2
1(Ω). (1.68)

Then u ∈ W 2
2 (Ω) and ‖u‖2,Ω ≤ C‖f‖0,Ω where C is a constant depending

only on Ω. Furthermore, if Ω is of class Cm+2 and f ∈Wm
2 (Ω), then

u ∈Wm+2
2 (Ω) and ‖u‖m+2,Ω ≤ C‖f‖m,Ω .

In particular, if m ≥ n/2, then u ∈ C2(Ω̄) is a classical solution.

Moreover, if Ω is bounded, then the solution operator G : L2(Ω)→
o

W 2
1(Ω)

is self-adjoint and compact.

Proof. The proof naturally splits into two cases: interior estimates and bound-
ary estimates. Let Ω be bounded with at least C1 boundary and consider the
partition of unity {βj}Nj=0 subordinated to the covering {Gj}Nj=0. For the in-

terior estimates let us consider u0 = β0u and let v ∈
o

W 2
1(Ω). Then we can

write∫
Ω

∇(β0u)∇vdx =

∫
Ω

β0∇u∇vdx +

∫
Ω

u∇β0∇vdx

=

∫
Ω

∇u∇(β0v)dx− 2

∫
Ω

∇uv∇β0dx−
∫
Ω

uv∆β0dx

=

∫
Ω

(f −∆β0u− 2∇u∇β0)vdx =

∫
Ω

Fvdx.


