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Proposition 1.43. (i) Let u,v € W3(2) N Loo($2). Then uv € W3 ()N
Loo(2) with
0;(uv) = djuv + ud;v, i=1,...,n (1.56)

(i) Let 2,82, be two open sets in R"™ and let H : 2, — 2 be a C*(2) diffeomor-
phism. If u € W4 (£2) then uwo H € W4 (') and

/(uoH)ajmy = —/Z(@iUOH))ajHigédy (1.57)
=1

2 0,

Proof. Using Friedrichs lemma, we find sequences (ug)ren, (Vk)ren in C§°(£2)
such that
U, — U, Vg — U

in Ly(£2) and for any 2’ € £2 we have
Vur — Vu, Vu, — Vo

in Lo(£2"). Moreover, from the construction of the mollifiers we get

lurlle @) < lullec)y okl @) < lvllze @)

On the other hand Uy = SQ“UL (!~3)‘“‘5«n(jJ dy

/ukvk(‘?j(i)dx = - /(@-ukvk + u0; vk ) pdx

2 2

for any ¢ € C5°(£2). Thanks to the compact support of ¢, the integration
actually occurs over compact subsets of {2 and we can use Ly convergence of
Vuyg, Vug. Thus

/uv8j¢dx =— /(6juv + ud;v)pdx

[0} 0

and the fact that uv € W3 (£2) follows from dju,djv € Wi (£2) and u,v €
Loo(£2). The proof of the second statement follows similarly. We select se-
quence (uy)ken as above; then clearly uy o H — wo H in Ly(£21) and

(&uk ¢} H)(%Hz — (8111, o H)asz H JZ

4
in Lo($2)) for any 21 € £2. For any ¢ € C§°(£21) we get
Ut
k
[wo masedy =~ [ (@ o )0, Hiody

ol o, =1

and in the limit we obtain (1.57).
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The next result shows that elements from Wi (£2) can by, in Ly norm,
approximated by finite differences.

s . . . (
Proposition 1.44. The following properties are equivalent: . o’

(i) ue Wi(®), =1V
(i1) there is C' such that for any ¢ € C§°(2) andi=1,...,n *
/
we &l /uamdx < Cligflo. (1.58)
3¢ Suou-fgy @

(iii) there is a constant C' such that for any ' € 2 and all h € R™ with
|h| < dist(£2',092) we have

IThu — ullo,r < Clhl, (1.59)
where (Tpu)(x) = u(x +h). In particular, if 2 =R™, then
s = ullo < KbVl (1.00)
Proof. (i) = (i1) follows from the definition.
(7) = (7). Eqn. (1.58) shows that
o — /u@i(bdx,
2 Llp) @€l )
extends to a bounded functional on Ly(f2) and thus there is v; € Ly (£2) such
that VK(Q):(LPI Vg')
/uaiqbdx = —/vmdx, YeLq(a)

[0} [0}

for any ¢ € C§°(12).
(i) = (i1i). Let us take u € C§°(R™). For x,h € R™ and t € R we define

v(t) = u(x + th).

Then v'(t) z@’ﬁ{VlJ(x + th) and

1
u(x +h) —u(x) =v(1) —v(0) = /hVu(X—i—th)dt.
[0 !
< \g/;‘!fbe ‘;iDu(;HfL.)f?uU
1
mu) ~ ubx) < b [ [Vux-+ e
0

Hence

so that
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1

/Irhu<x)—u<x)|2dxs |h|2/ /|vu(x+m>|2dx dt
S

Ql

0
:|h|2/1 Q/ Vu(y)[2dg | dt.
0 '+th

If |h| < dist(§2',042), then there is 2" such that 2’ +th C 2" € (2 for all

t € [0,1] and thus \
¢ | Slmgw,

/|Thu ) — u(x))?dx < |h|2/\Vu( )|?dx Ji

J @
which gives (1.59) for u € C§°(R"). Let u € W3 (£2). Then, by the Friedrichs
Temma, we And (up)ren, ur € Cg°(R™) such that u, — u in Ly(£2) and

Vug — Vu in Ly(£2') for any 2’ € £2. Noting that mpur — hu in Lo (82') we
can pass to the limit above, obtaining,

|[Thu — ulp,or < |h]

If 2 = R"™, then in all calculations above we can replace 2/, 2" by R™.
(#4i) = (i1). If (1.59) holds then, taking 2 € 2, ¢ € C§°(£2) with supp¢ C
£ and |h|L< dist(§2',012), we obtain

/(Thu —u)pdx| < Clhl||é]o.

0

On the other hand

/ (rht — ) (3) $(x)dx = / u(y)(rnd — 6)(y)dy,

@ 2 (waq, dq < Cly|l

X -
SO /ﬁ' JT ‘ :i ©
T_n$ — ¢) y{
< C[9llo-
‘ o= =iy < el
Choosing h = te;,i = 1,...,n and passing to the limit with ¢ — 0, we obtain
(1.58).

1.3.8 Localization and flattening of the boundary

Assume that (2 is an open, bounded set with boundary 0f2 which is an n — 1
dimensional C™ manifold; further assume that that {2 lies locally at one side




H
|
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of the boundary. Denote Q = {y € R™; |y;| < 1,4 = 1,...,n}, Qo = {y €
Q; yn =0} and Q4+ = {y € Q; x,, > 0}. Then we have a finite local atlas on
042, that is, a finite collection f{rB_j,/H_L-_}lS j<n~ where B; are open balls covering
082, H; : Q — B; are C™ diffeomorphisms with positive Jacobians which are
bijections of @, Qo and Q4 onto Bj, B; N 92 and B; N {2, respectively.
Given the local atlas {B;, H; }1<j<n, we construct a finite open subcover
{G;}1<j<n in such a way that G; € B; and 82 C Ujvzl G;. In fact, we can
take G J_:_Q;i to be balls concentric with B; and slightly smaller radius, say,
pi=ri—1 & for some k. Indeed, suppose it is impossible, then for any k
there is ?Ek_e 042 such that xy, ¢ Ujvzl B]’?. From compactness of 92 we obtain

an accumulation point x € 9f2. Hence x € B; for some j and thus = € B;? for
sufficiently large k. This contradicts the construction that x is an accumulation
point of points which are outside Ujvzl BY. Deﬁningﬁo = 4 e
further get an open set Gy with Gy C £2. Thus

f2c QU\CI?Q' 0 c]L:Joéj.

Now, we choose a; € C3°(R") satisfying 0 < a < 1, suppoy

on Gj. Further,mgatisﬁes
N
suppozC_QULJGj7 0<a<l1l, a=1 on 2.

Then define

fo% X e(U;vZO Gjrand B;(x) = 0 for x € R" \ UéV:O G;j. We note that each
_B; is well defined. Indeed, at least one a;(x) is equal 1 or&ﬁz o G; so that
the denominator is at least 1 there. On the other hand, « vanishes outside
a compac_tmmjiogﬂHence, B; € Cg°(R™), suppp; C Bj,
B; > 0 and —_ -

for x € 1.

We call the collection {S; ;-V:O a partition of unity subordinated to the
open cover {G;}N., of 2 and {3;}, a partition of unity subordinated to
the open cover {Gj}jyzl of 2 of 012.

Suppose now we have u € W3 (£2). Then u = Z;V:O Bju on 2 and, by

Proposition 1.43 (i), 8ju € W3 (2NG,), j =1,...,N. Using Proposition 1.43
L'__'-'--_J

S G
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(ii) we see that for each j =1,...,N we (Bju) o H; € W3 (Q4) with support
in Q. Define A : W (2) 5 W2(Q) x [Wi(2)]N by l‘—ql

N .

©

Au = (Bou, Bruo Hy,...,Bnuoc Hy).

Note that we can write Syu EVC[)/%(Q) as Bou has compact support in 2 and
thus, by Friedrichs lemma, it can be approximated by C§°(Q) functions. The
mapping A is a linear injection as if u(z) # 0, then at least one entry of A
must be nonzero as s sum up to 1. Also, using Proposition 1.43, we can show
that the norm on AW} (§2) is equivalent to the norm on W3({2) and thus A
is an isomorphism of W3 (2) onto its closed image.

U, —7 W w L\)q,l(.ﬂ,)

1.3.9 Extension operator

We observed that one of the main obstacles in proving that W3 (2) can be
obtained by closure of restrictions of C§°(R"™) functions to {2 is that we have
no control over the regularization at points close to the boundary of 2. A
remedy could be if we are able to show that any function W3 (£2) can be
extended to a function from Wy (£2).

Indeed, we have

Theorem 1.45. Suppose that (2 is bounded with a C* boundary 0£2. Then
there exists a linear extension operator
1 1
E:W5(02) = Wy (R)

such that for any u € W3 (£2)

1. Bu|g = u;
2. | Eullorn < Cllullo,o;
8. || Eullire < Cllull,e;

Proof. We begin by showing that we can construct an extension operator from
W3 (Qy) to Wi(Q). Let u € W4(Q) and define extension by reflection
X

“
v _ Jux',z,) forz, >0,
5()' (X, ) = {u(x',xn) for z,, <0
where x’ = (x1,...,2,-1). In the same way, we define the odd reflection
~ Jux z) for z,, > 0,
u (X, 2n) = { —u(x/', —zy,) for z, <0

Further, we define a cut-off function close to z,, = 0, that is, we take a C*°(R)
function n which satisfies n(t) = 1 for t > 1 and n(t) = 0 for t < 1/2 and define
Nk (zn) = n(kzy). Let us take ¢ € C§°(Q) and consider, for 1 <i<n—1,

Tﬂ_*f) \W () < 4

. )
J 1

L
T

=T
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/ u* qﬁdx—*/u@ apdx 4‘% S““ “')? ‘f(‘”’g*
J _ o

where (%', 2,,) = ¢(x, 2,,) + ¢(X', —x,,). Typically, ¥ is not zero at Qo and
cannot be used as a test funcfion. However, ng(z,)9(x) € C§5°(Q4+) and we

\-\_—,_,/

can write U;
/u@wi (mep)dx :-/ 8wi1167k1p)dx.
LQ+
However, 0y, k) = nk&hw as 77 does not depend onxz;,i=1,...,n—1and
hence —

[ mdnvix =~ [ o, unvax.
(@ @+ »

We can pass to the limit by dominated convergence getting
. ,_Sgluq(x',x_}il
[ o=~ flogpox. 22T w
Q+ Q+ - S Sg cf“ O)&
so that, returning to Q - S e ((_Q[)( Xh) LPU - "’*-))Ul/

, Q A S@ "
WOy pdx = — | Dpyupdx = — [ (9, u)"@dx. %)
C! Q/+L—m Qé ? - Cf(") l’a

Now let us consider differentiability with respect to z,. Again, taking ¢ €
C5*(@) Q-

/u*@mngbdx: /u@xnxdx "gx“(P(’(Txn)
@ — —

Q

/

where x(x', z,) = ¢(x', ) - o(x', —x,,). If we again use 7y, then
O (0 Xyt x@ Mk ) l

where Jp, i (2n) = kfni(kxn))Then ¢ Clutol dy dyi

N
1/k QD ¢ > Dk-an

k/ () (o)X () dz </éM/ /|u o | ax < O )ldx — 0

+

as k — oo, where &: SUD;e0,1] |n/(t)|;and M is obtained from the estimate

IX(x',2n) < Mlzy|
on (. Thus

u.@xm k'X) ¢£Z = u(®x_p ))(_.lx qu’a{ﬂxd(
e o

]g wQ.n )X&&( £k (e \p/ (L) | X () dx
Q4 Q e Mkl | X (x'\v)= O

-

< L(C& &xSm] x X () x)-O

5 (t )= £>'

£2l
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/u6 @kaix—/ u(NgOx,, X —i—de% /unkaxn

+

and thus we obtain in the limit

/u@xnxdx: - /8xnuxdx.

Q+ Q+

Returning to @, we obtain

Z (0. 0ax =Q{ ud, b = Z (02, ) i

We also obtain estimates

v llo.@ < 2lullo,gy  Nullig < 2[ulliq,-

we i (JU) S —opomiy
GoceSL G oame o cU g,
&, C By ‘ !
R (T (e
T = 0w ug e WSV

UG e W{l(\_ﬂn BL)

Qmﬂhmt U, l"—ﬂ l Owr,.':&:

— ¥ € G'p - ! s

G- u:; L ae W (R™)
LT

v;'(j)= U\L'(“;(q)) .

(Qa)

RGN
W, \Ul H 1 C “ \

g g oo ¢ 1N

QJ'L Slernsinee valwﬂj
Ew = t;* \'f’_"i_.»
R

Euw e W (l?) Cu 1oty wodul
e JL o \whk xe By =2 weEuwe 2

(Ev\)(’f):[':;‘* 1~ uce = ('é,m +Z:(L’“U—° T3°\A- |

= wix)



