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Proposition 1.43. (i) Let u, v ∈ W 1
2 (Ω) ∩ L∞(Ω). Then uv ∈ W 1

2 (Ω) ∩
L∞(Ω) with

∂j(uv) = ∂juv + u∂jv, i = 1, . . . , n (1.56)

Let Ω,Ω1 be two open sets in Rn and let H : Ω1 → Ω be a C1(Ω̄) diffeomor-
phism. If u ∈W 1

2 (Ω) then u ◦H ∈W 1
2 (Ω′) and∫

Ω1

(u ◦H)∂jφdy = −
∫
Ω1

n∑
i=1

(∂iu ◦H))∂jHiφdy (1.57)

Proof. Using Friedrichs lemma, we find sequences (uk)k∈N, (vk)k∈N in C∞0 (Ω)
such that

uk → u, vk → v

in L2(Ω) and for any Ω′ b Ω we have

∇uk → ∇u, ∇vk → ∇v

in L2(Ω′). Moreover, from the construction of the mollifiers we get

‖uk‖L∞(Ω) ≤ ‖u‖L∞(Ω) ‖vk‖L∞(Ω) ≤ ‖v‖L∞(Ω).

On the other hand∫
Ω

ukvk∂jφdx = −
∫
Ω

(∂jukvk + uk∂jvk)φdx

for any φ ∈ C∞0 (Ω). Thanks to the compact support of φ, the integration
actually occurs over compact subsets of Ω and we can use L2 convergence of
∇uk,∇vk. Thus ∫

Ω

uv∂jφdx = −
∫
Ω

(∂juv + u∂jv)φdx

and the fact that uv ∈ W 1
2 (Ω) follows from ∂ju, ∂jv ∈ W 1

2 (Ω) and u, v ∈
L∞(Ω). The proof of the second statement follows similarly. We select se-
quence (uk)k∈N as above; then clearly uk ◦H → u ◦H in L2(Ω1) and

(∂iuk ◦H)∂jHi → (∂iu ◦H)∂jHi

in L2(Ω′1) for any Ω′1 b Ω. For any ψ ∈ C∞0 (Ω1) we get∫
Ω1

(uk ◦H)∂jφdy = −
∫
Ω1

k∑
i=1

(∂iuk ◦H)∂jHiφdy

and in the limit we obtain (1.57).
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The next result shows that elements from W 1
2 (Ω) can by, in L2 norm,

approximated by finite differences.

Proposition 1.44. The following properties are equivalent:

(i) u ∈W 1
2 (Ω),

(ii) there is C such that for any φ ∈ C∞0 (Ω) and i = 1, . . . , n∫
Ω

u∂iφdx ≤ C‖u‖0, (1.58)

(iii) there is a constant C such that for any Ω′ b Ω and all h ∈ Rn with
|h| ≤ dist(Ω′, ∂Ω) we have

‖τhu− u‖0,Ω′ ≤ C|h|, (1.59)

where (τhu)(x) = u(x + h). In particular, if Ω = Rn, then

‖τhu− u‖0 ≤ C|h‖‖∇u‖0. (1.60)

Proof. (i)⇒ (ii) follows from the definition.
(ii)⇒ (i). Eqn. (1.58) shows that

φ→
∫
Ω

u∂iφdx,

extends to a bounded functional on L2(Ω) and thus there is vi ∈ L2(Ω) such
that ∫

Ω

u∂iφdx = −
∫
Ω

viφdx,

for any φ ∈ C∞0 (Ω).
(i)⇒ (iii). Let us take u ∈ C∞0 (Rn). For x,h ∈ Rn and t ∈ R we define

v(t) = u(x + th).

Then v′(t) = h∇u(x + th) and

u(x + h)− u(x) = v(1)− v(0) =

1∫
0

h∇u(x + th)dt.

Hence

|τhu(x)− u(x)|2 ≤ |h|2
1∫

0

|∇u(x + th)|2dt

so that
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∫
Ω′

|τhu(x)− u(x)|2dx ≤ |h|2
1∫

0

∫
Ω

|∇u(x+ th)|2dx

 dt

= |h|2
1∫

0

 ∫
Ω′+th

|∇u(y)|2dx

 dt.

If |h| < dist(Ω′, ∂Ω), then there is Ω′′ such that Ω′ + th ⊂ Ω′′ b Ω for all
t ∈ [0, 1] and thus∫

Ω′

|τhu(x)− u(x)|2dx ≤ |h|2
∫
Ω′′

|∇u(y)|2dx

which gives (1.59) for u ∈ C∞0 (Rn). Let u ∈ W 1
2 (Ω). Then, by the Friedrichs

lemma, we find (uk)k∈N, uk ∈ C∞0 (Rn) such that uk → u in L2(Ω) and
∇uk → ∇u in L2(Ω′) for any Ω′ b Ω. Noting that τhuk → τhu in L2(Ω′) we
can pass to the limit above, obtaining,

|τhu− u|0,Ω′ ≤ |h|
∫
Ω′′

|∇u(y)|2dx ≤ C|h|.

If Ω = Rn, then in all calculations above we can replace Ω′, Ω′′ by Rn.
(iii)⇒ (ii). If (1.59) holds then, taking Ω′ b Ω, φ ∈ C∞0 (Ω) with suppφ ⊂

Ω′ and |h‖ < dist(Ω′, ∂Ω), we obtain∣∣∣∣∣∣
∫
Ω

(τhu− u)φdx

∣∣∣∣∣∣ ≤ C|h|‖φ‖0.
On the other hand∫

Ω

(τhu− u)(x)φ(x)dx =

∫
Ω

u(y)(τ−hφ− φ)(y)dy,

so ∫
Ω

u
(τ−hφ− φ)

|h|
dy ≤ C‖φ‖0.

Choosing h = tei, i = 1, . . . , n and passing to the limit with t→ 0, we obtain
(1.58).

1.3.8 Localization and flattening of the boundary

Assume that Ω is an open, bounded set with boundary ∂Ω which is an n− 1
dimensional Cm manifold; further assume that that Ω lies locally at one side
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of the boundary. Denote Q = {y ∈ Rn; |yi| < 1, i = 1, . . . , n}, Q0 = {y ∈
Q; yn = 0} and Q+ = {y ∈ Q; xn > 0}. Then we have a finite local atlas on
∂Ω, that is, a finite collection {Bj , Hj}1≤j≤N where Bj are open balls covering
∂Ω, Hj : Q→ Bj are Cm diffeomorphisms with positive Jacobians which are
bijections of Q,Q0 and Q+ onto Bj , Bj ∩ ∂Ω and Bj ∩Ω, respectively.

Given the local atlas {Bj , Hj}1≤j≤N , we construct a finite open subcover

{Gj}1≤j≤N in such a way that Gj b Bj and ∂Ω ⊂
⋃N
j=1Gj . In fact, we can

take Gj = Bkj to be balls concentric with Bj and slightly smaller radius, say,
ρj = rj − 1/k for some k. Indeed, suppose it is impossible, then for any k

there is xk ∈ ∂Ω such that xk /∈
⋃N
j=1B

k
j . From compactness of ∂Ω we obtain

an accumulation point x ∈ ∂Ω. Hence x ∈ Bj for some j and thus x ∈ Bkj for
sufficiently large k. This contradicts the construction that x is an accumulation
point of points which are outside

⋃N
j=1B

k
j . Defining G0 = Ω \

⋃N
j=1 Ḡj we

further get an open set G0 with Ḡ0 ⊂ Ω. Thus

Ω̄ ⊂ Ω ∪
N⋃
j=1

Gj , Ω ⊂
N⋃
j=0

Ḡj .

Now, we choose αj ∈ C∞0 (Rn) satisfying 0 ≤ α ≤ 1, suppαj ⊂ Bj and αj = 1
on Ḡj . Further, α ∈ C∞0 (Rn) satisfies

suppα ⊂ Ω ∪
N⋃
j=1

Gj , 0 ≤ α ≤ 1, α = 1 on Ω̄.

Then define

βj(x) =
α(x)αj(x)
N∑
k=0

αk(x)

for x ∈
⋃N
j=0 Ḡj and βj(x) = 0 for x ∈ Rn \

⋃N
j=0 Ḡj . We note that each

βj is well defined. Indeed, at least one αj(x) is equal 1 on
⋃N
j=0 Ḡj so that

the denominator is at least 1 there. On the other hand, α vanishes outside
a compact set contained in

⋃N
j=0Gj . Hence, βj ∈ C∞0 (Rn), suppβj ⊂ Bj ,

βj ≥ 0 and
N∑
j=0

βj(x) = 1

for x ∈ Ω̄.
We call the collection {βj}Nj=0 a partition of unity subordinated to the

open cover {Gj}Nj=0 of Ω and {βj}Nj=1 a partition of unity subordinated to

the open cover {Gj}Nj=1 of Ω of ∂Ω.

Suppose now we have u ∈ W 1
2 (Ω). Then u =

∑N
j=0 βju on Ω and, by

Proposition 1.43 (i), βju ∈W 1
2 (Ω∩Gj), j = 1, . . . , N . Using Proposition 1.43
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(ii) we see that for each j = 1, . . . , N we (βju) ◦Hj ∈ W 1
2 (Q+) with support

in Q. Define Λ : W 1
2 (Ω)→

o

W 2
1(Q)× [W 1

2 (Ω)]N by

Λu = (β0u, β1u ◦H1, . . . , βNu ◦HN ).

Note that we can write β0u ∈
o

W 2
1(Q) as β0u has compact support in Ω and

thus, by Friedrichs lemma, it can be approximated by C∞0 (Q) functions. The
mapping Λ is a linear injection as if u(x) 6= 0, then at least one entry of Λ
must be nonzero as βs sum up to 1. Also, using Proposition 1.43, we can show
that the norm on ΛW 1

2 (Ω) is equivalent to the norm on W 1
2 (Ω) and thus Λ

is an isomorphism of W 1
2 (Ω) onto its closed image.

1.3.9 Extension operator

We observed that one of the main obstacles in proving that W 1
2 (Ω) can be

obtained by closure of restrictions of C∞0 (Rn) functions to Ω is that we have
no control over the regularization at points close to the boundary of Ω. A
remedy could be if we are able to show that any function W 1

2 (Ω) can be
extended to a function from W 1

2 (Ω).
Indeed, we have

Theorem 1.45. Suppose that Ω is bounded with a C1 boundary ∂Ω. Then
there exists a linear extension operator

E : W 1
2 (Ω)→W 1

2 (R)

such that for any u ∈W 1
2 (Ω)

1. Eu|Ω = u;
2. ‖Eu‖0,Rn ≤ C‖u‖0,Ω;
3. ‖Eu‖1,Rn ≤ C‖u‖1,Ω;

Proof. We begin by showing that we can construct an extension operator from
W 1

2 (Q+) to W 1
2 (Q). Let u ∈W 1

2 (Q+) and define extension by reflection

u∗(x′, xn) =

{
u(x′, xn) for xn > 0,
u(x′,−xn) for xn < 0

where x′ = (x1, . . . , xn−1). In the same way, we define the odd reflection

u (x′, xn) =

{
u(x′, xn) for xn > 0,
−u(x′,−xn) for xn < 0

Further, we define a cut-off function close to xn = 0, that is, we take a C∞(R)
function η which satisfies η(t) = 1 for t ≥ 1 and η(t) = 0 for t ≤ 1/2 and define
ηk(xn) = η(kxn). Let us take φ ∈ C∞0 (Q) and consider, for 1 ≤ i ≤ n− 1,
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Q

u∗∂xiφdx =

∫
Q+

u∂xiψdx

where ψ(x′, xn) = φ(x′, xn) + φ(x′,−xn). Typically, ψ is not zero at Q0 and
cannot be used as a test function. However, ηk(xn)ψ(x) ∈ C∞0 (Q+) and we
can write ∫

Q+

u∂xi(ηkψ)dx =

∫
Q+

∂xiuηkψdx.

However, ∂xiηkψ = ηk∂xiψ as η does not depend on xi, i = 1, . . . , n − 1 and
hence ∫

Q+

ηku∂xiψdx = −
∫
Q+

∂xiuηkψdx.

We can pass to the limit by dominated convergence getting∫
Q+

u∂xiψdx = −
∫
Q+

∂xiuψdx,

so that, returning to Q∫
Q

u∗∂xiφdx = −
∫
Q+

∂xiuψdx = −
∫
Q+

(∂xiu)∗ψdx.

Now let us consider differentiability with respect to xn. Again, taking φ ∈
C∞0 (Q) ∫

Q

u∗∂xnφdx =

∫
Q+

u∂xnχdx

where χ(x′, xn) = φ(x′, xn)− φ(x′,−xn). If we again use ηk, then

∂xnηkχ = ηk∂xnχ+ χ∂xnηk

where ∂xnηk(xn) = kη′(kxn). Then

k

∣∣∣∣∣∣∣
∫
Q+

u(x)η′(kxn)χ(x)dx

∣∣∣∣∣∣∣ ≤ kCM
∫
Q0

 1/k∫
0

|u(x)|xndxn

 dx′ ≤ CM
∫
Q+

|u(x)|dx→ 0

as k →∞, where C = supt∈[0,1] |η′(t)| and M is obtained from the estimate

|χ(x′, xn) ≤M |xn|

on Q. Thus
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Q+

u∂xnηkχdx =

∫
Q+

u(ηk∂xnχ+ χ∂xnηk)dx→
∫
Q+

uηk∂xnχ

and thus we obtain in the limit∫
Q+

u∂xnχdx = −
∫
Q+

∂xnuχdx.

Returning to Q, we obtain∫
Q

u∗∂xnφdx =

∫
Q+

u∂xnφdx =

∫
Q

(∂xnu) φdx.

We also obtain estimates

‖u∗‖0,Q ≤ 2‖u‖0,Q+
‖u∗‖1,Q ≤ 2‖u‖1,Q+

.


