1.3 Hilbert space methods 39

Proposition 1.43. (i) Let $u, v \in W_2^1(\Omega) \cap L_{\infty}(\Omega)$. Then $uv \in W_2^1(\Omega) \cap L_{\infty}(\Omega)$ with

$$\partial_j(uv) = \partial_j uv + u\partial_j v, \qquad i = 1, \dots, n$$
 (1.56)

(i) Let Ω, Ω_1 be two open sets in \mathbb{R}^n and let $H : \Omega_1 \to \Omega$ be a $C^1(\overline{\Omega})$ diffeomorphism. If $u \in W_2^1(\Omega)$ then $u \circ H \in W_2^1(\Omega')$ and

$$\int_{\Omega_1} (u \circ H) \partial_j \phi d\mathbf{y} = -\int_{\Omega_1} \sum_{i=1}^n (\partial_i u \circ H)) \partial_j H_i \phi d\mathbf{y}$$
(1.57)

Proof. Using Friedrichs lemma, we find sequences $(u_k)_{k\in\mathbb{N}}$, $(v_k)_{k\in\mathbb{N}}$ in $C_0^{\infty}(\Omega)$ such that

$$u_k \to u, \qquad v_k \to v$$

in $L_2(\Omega)$ and for any $\Omega' \Subset \Omega$ we have

$$\nabla u_k \to \nabla u, \qquad \nabla v_k \to \nabla v$$

in $L_2(\Omega')$. Moreover, from the construction of the mollifiers we get

1

$$\begin{aligned} \|u_k\|_{L_{\infty}(\Omega)} &\leq \|u\|_{L_{\infty}(\Omega)} & \|v_k\|_{L_{\infty}(\Omega)} \leq \|v\|_{L_{\infty}(\Omega)}. \end{aligned}$$
On the other hand
$$\begin{aligned} u_k &= \int_{\Omega} u_k v_k \partial_j \phi d\mathbf{x} = -\int_{\Omega} (\partial_j u_k v_k + u_k \partial_j v_k) \phi d\mathbf{x} \end{aligned}$$

for any $\phi \in C_0^{\infty}(\Omega)$. Thanks to the compact support of ϕ , the integration actually occurs over compact subsets of Ω and we can use L_2 convergence of $\nabla u_k, \nabla v_k$. Thus

$$\int_{\Omega} uv \partial_j \phi d\mathbf{x} = -\int_{\Omega} (\partial_j uv + u \partial_j v) \phi d\mathbf{x}$$

and the fact that $uv \in W_2^1(\Omega)$ follows from $\partial_j u, \partial_j v \in W_2^1(\Omega)$ and $u, v \in L_{\infty}(\Omega)$. The proof of the second statement follows similarly. We select sequence $(u_k)_{k\in\mathbb{N}}$ as above; then clearly $u_k \circ H \to u \circ H$ in $L_2(\Omega_1)$ and

$$(\partial_{i}u_{k}\circ H)\partial_{j}H_{i} \to (\partial_{i}u\circ H)\partial_{j}H_{i}$$

in $L_{2}(\Omega_{1}')$ for any $\Omega_{1}' \in \Omega$. For any $\psi \in C_{0}^{\infty}(\Omega_{1})$ we get
$$\int_{\Omega_{1}} (u_{k}\circ H)\partial_{j}\phi d\mathbf{y} = -\int_{\Omega_{1}} \sum_{i=1}^{k} (\partial_{i}u_{k}\circ H)\partial_{j}H_{i}\phi d\mathbf{y}$$

and in the limit we obtain (1.57).

40 1 Basic Facts from Functional Analysis and Banach Lattices

The next result shows that elements from $W_2^1(\Omega)$ can by, in L_2 norm, approximated by finite differences.

Proposition 1.44. The following properties are equivalent: (i) $u \in W_2^1(\Omega)$, (ii) there is C such that for any $\phi \in C_0^{\infty}(\Omega)$ and i = 1, ..., n

(iii) there is a constant C such that for any $\Omega' \Subset \Omega$ and all $\mathbf{h} \in \mathbb{R}^n$ with $|\mathbf{h}| \leq \operatorname{dist}(\Omega', \partial \Omega)$ we have

$$\|\tau_h u - u\|_{0,\Omega'} \le C|\mathbf{h}|,\tag{1.59}$$

where $(\tau_h u)(\mathbf{x}) = u(\mathbf{x} + \mathbf{h})$. In particular, if $\Omega = \mathbb{R}^n$, then

$$\|\tau_h u - u\|_0 \le \langle |\mathbf{h}|| \|\nabla u\|_0.$$
 (1.60)

Proof. $(i) \Rightarrow (ii)$ follows from the definition.

 $(ii) \Rightarrow (i)$. Eqn. (1.58) shows that

$$\phi
ightarrow \int u \partial_i \phi d\mathbf{x},$$
 $\Omega \qquad \mathcal{L}(\varphi) \qquad \varphi \in \mathcal{L}_1(\mathfrak{R})$

extends to a bounded functional on $L_2(\Omega)$ and thus there is $v_i \in L_2(\Omega)$ such that $\forall \mathcal{L}(q) = (\varphi, v_i)$

$$\int_{\Omega} u\partial_i \phi d\mathbf{x} = -\int_{\Omega} v_i \phi d\mathbf{x}, \quad \forall \in L_1(\mathbf{a})$$

for any $\phi \in C_0^{\infty}(\Omega)$.

 $(i) \Rightarrow (iii)$. Let us take $u \in C_0^{\infty}(\mathbb{R}^n)$. For $\mathbf{x}, \mathbf{h} \in \mathbb{R}^n$ and $t \in \mathbb{R}$ we define

$$v(t) = u(\mathbf{x} + t\mathbf{h}).$$

Then $v'(t) = k(\nabla u)(\mathbf{x} + t\mathbf{h})$ and

$$\begin{split} u(\mathbf{x} + \mathbf{h}) - u(\mathbf{x}) &= v(1) - v(0) = \int_{0}^{1} \mathbf{h} \nabla u(\mathbf{x} + t\mathbf{h}) dt. \\ & \leftarrow \int_{0}^{1} \mathbf{h} \mathcal{U} \mathbf{k} \cdot \int_{0}^{1} |\nabla u(\mathbf{x} + t\mathbf{h})|^{2} \mathcal{U} \\ & |\underline{\tau_{h} u(\mathbf{x})} - u(\mathbf{x})|^{2} \leq |\mathbf{h}|^{2} \int_{0}^{1} |\nabla u(\mathbf{x} + t\mathbf{h})|^{2} dt \end{split}$$

Hence

1.3 Hilbert space methods 41

$$\int_{\Omega'} |\tau_h u(\mathbf{x}) - u(\mathbf{x})|^2 d\mathbf{x} \le |\mathbf{h}|^2 \int_0^1 \left(\int_{\Omega'} |\nabla u(x + t\mathbf{h})|^2 d\mathbf{x} \right) dt$$
$$= |\mathbf{h}|^2 \int_0^1 \left(\int_{\Omega' + t\mathbf{h}} |\nabla u(\mathbf{y})|^2 d\mathbf{x} \right) dt.$$

If $|\mathbf{h}| < \operatorname{dist}(\Omega', \partial \Omega)$, then there is Ω'' such that $\Omega' + t\mathbf{h} \subset \Omega'' \in \Omega$ for all $t \in [0, 1]$ and thus . . . (

which gives (1.59) for $u \in C_0^{\infty}(\mathbb{R}^n)$. Let $u \in W_2^1(\Omega)$. Then, by the Friedrichs lemma, we find $(u_k)_{k \in \mathbb{N}}$, $u_k \in C_0^{\infty}(\mathbb{R}^n)$ such that $u_k \to u$ in $L_2(\Omega)$ and $\nabla u_k \to \nabla u$ in $L_2(\Omega')$ for any $\Omega' \Subset \Omega$. Noting that $\tau_h u_k \to \tau_h u$ in $L_2(\Omega')$ we can pass to the limit above, obtaining,

$$\left\| \tau_h u - u \right\|_{0,\Omega'} \le |\mathbf{h}| \iint_{\Omega''} |\nabla u(\mathbf{y})|^2 d\mathbf{x} \le C |\mathbf{h}|.$$

If $\Omega = \mathbb{R}^n$, then in all calculations above we can replace Ω', Ω'' by \mathbb{R}^n . (*iii*) \Rightarrow (*ii*). If (1.59) holds then, taking $\Omega' \Subset \Omega, \phi \in C_0^{\infty}(\Omega)$ with $\operatorname{supp} \phi \subset$ Ω' and $|\mathbf{h}| < \operatorname{dist}(\Omega', \partial \Omega)$, we obtain

$$\left| \int_{\Omega} (\tau_h u - u) \phi d\mathbf{x} \right| \le C |\mathbf{h}| \|\phi\|_0.$$

On the other hand

$$\int_{\Omega} (\tau_h u - u)(\mathbf{x})\phi(\mathbf{x})d\mathbf{x} = \int_{\Omega} u(\mathbf{y})(\tau_{-h}\phi - \phi)(\mathbf{y})d\mathbf{y},$$
$$\int_{\Omega} (\tau_{-h}\phi - \phi)(\mathbf{y})d\mathbf{y} \leq C \|\boldsymbol{y}\|_{O}$$
$$\int_{\Omega} u \frac{(\tau_{-h}\phi - \phi)}{|\mathbf{h}|} d\mathbf{y} \leq C \|\boldsymbol{\phi}\|_{O}.$$

 \mathbf{SO}

Choosing $\mathbf{h} = t\mathbf{e}_i, i = 1, \dots, n$ and passing to the limit with $t \to 0$, we obtain (1.58).

1.3.8 Localization and flattening of the boundary

Assume that Ω is an open, bounded set with boundary $\partial \Omega$ which is an n-1dimensional C^m manifold; further assume that that Ω lies locally at one side

of the boundary. Denote $Q = \{\mathbf{y} \in \mathbb{R}^n; |y_i| < 1, i = 1, ..., n\}, Q_0 = \{\mathbf{y} \in Q; y_n = 0\}$ and $Q_+ = \{\mathbf{y} \in Q; x_n > 0\}$. Then we have a finite local atlas on $\partial \Omega$, that is, a finite collection $\{B_j, H_j\}_{1 \le j \le N}$ where B_j are open balls covering $\partial \Omega$, $\underline{H}_j : Q \to B_j$ are C^m diffeomorphisms with positive Jacobians which are bijections of Q, Q_0 and Q_+ onto $B_j, B_j \cap \partial \Omega$ and $B_j \cap \Omega$, respectively.

Given the local atlas $\{\underline{B}_j, H_j\}_{1 \le j \le N}$, we construct a finite open subcover $\{G_j\}_{1 \le j \le N}$ in such a way that $G_j \in B_j$ and $\partial \Omega \subset \bigcup_{j=1}^N G_j$. In fact, we can take $G_j = B_j^k$ to be balls concentric with B_j and slightly smaller radius, say, $p'_j = r_j - 1/k$ for some k. Indeed, suppose it is impossible, then for any k there is $x_k \in \partial \Omega$ such that $x_k \notin \bigcup_{j=1}^N B_j^k$. From compactness of $\partial \Omega$ we obtain an accumulation point $\underline{x} \in \partial \Omega$. Hence $\underline{x} \in B_j$ for some j and thus $x \in B_j^k$ for sufficiently large k. This contradicts the construction that x is an accumulation point of points which are outside $\bigcup_{j=1}^N B_j^k$. Defining $G_0 = \bigcap_{j=1}^N \overline{G_j}$ we further get an open set G_0 with $\overline{G_0} \subset \Omega$. Thus

Now, we choose $\alpha_j \in C_0^{\infty}(\mathbb{R}^n)$ satisfying $0 \le \alpha \le 1$, suppose B_j and $\alpha_j = 1$ on \overline{G}_j . Further, $\alpha \in C_0^{\infty}(\mathbb{R}^n)$ satisfies

 $\underline{\beta_j}$ is well defined. Indeed, at least one $\alpha_j(\mathbf{x})$ is equal 1 on $\bigcup_{j=0}^N \overline{G_j}$ so that the denominator is at least 1 there. On the other hand, α vanishes outside a compact set contained in $\bigcup_{j=0}^N \overline{G_j}$. Hence, $\underline{\beta_j} \in C_0^{\infty}(\mathbb{R}^n)$, $\operatorname{supp}_{\beta_j} \subset B_j$, $\beta_j \ge 0$ and

$$\sum_{j=0}^{N} \beta_j(\mathbf{x}) = 1$$

for $\mathbf{x} \in \overline{\Omega}$.

We call the collection $\{\beta_j\}_{j=0}^N$ a partition of unity subordinated to the open cover $\{G_j\}_{j=0}^N$ of Ω and $\{\beta_j\}_{j=1}^N$ a partition of unity subordinated to the open cover $\{G_j\}_{j=1}^N$ of Ω of $\partial\Omega$.

Suppose now we have $u \in W_2^1(\Omega)$. Then $u = \sum_{j=0}^N \beta_j u$ on Ω and, by Proposition 1.43 (i), $\beta_j u \in W_2^1(\Omega \cap G_j)$, $j = 1, \ldots, N$. Using Proposition 1.43

(ii) we see that for each j = 1, ..., N we $(\beta_j u) \circ H_j \in W_2^1(Q_+)$ with support in Q. Define $\Lambda : W_2^1(\Omega) \to \overset{\circ}{W_1^2}(Q) \times [W_2^1(\Omega)]^N$ by $\Lambda u = (\beta_0 u, \beta_1 u \circ H_1, ..., \beta_N u \circ H_N).$

Note that we can write $\beta_0 u \in \overset{\circ}{W}_1^2(Q)$ as $\beta_0 u$ has compact support in Ω and thus, by Friedrichs lemma, it can be approximated by $C_0^{\infty}(Q)$ functions. The mapping Λ is a linear injection as if $u(x) \neq 0$, then at least one entry of Λ must be nonzero as β s sum up to 1. Also, using Proposition 1.43, we can show that the norm on $\Lambda W_2^1(\Omega)$ is equivalent to the norm on $W_2^1(\Omega)$ and thus Λ is an isomorphism of $W_2^1(\Omega)$ onto its closed image.

$$u_n \rightarrow u \quad w \quad W_1(\mathcal{X})$$

1.3.9 Extension operator

We observed that one of the main obstacles in proving that $W_2^1(\Omega)$ can be obtained by closure of restrictions of $C_0^{\infty}(\mathbb{R}^n)$ functions to Ω is that we have no control over the regularization at points close to the boundary of Ω . A remedy could be if we are able to show that any function $W_2^1(\Omega)$ can be extended to a function from $W_2^1(\Omega)$.

Indeed, we have

Theorem 1.45. Suppose that Ω is bounded with a C^1 boundary $\partial \Omega$. Then there exists a linear extension operator

$$E: W_2^1(\Omega) \to W_2^1(\mathbb{R})$$

such that for any $u \in W_2^1(\Omega)$

1. $Eu|_{\Omega} = u;$ 2. $||Eu||_{0,\mathbb{R}^n} \le C ||u||_{0,\Omega};$ 3. $||Eu||_{1,\mathbb{R}^n} \le C ||u||_{1,\Omega};$

Proof. We begin by showing that we can construct an extension operator from $W_2^1(Q_+)$ to $W_2^1(Q)$. Let $u \in W_2^1(Q_+)$ and define extension by reflection

$$u^*(\mathbf{x}', x_n) = \begin{cases} u(\mathbf{x}', x_n) & \text{for } x_n > 0, \\ u(\mathbf{x}', -x_n) & \text{for } x_n < 0 \end{cases}$$

where $\mathbf{x}' = (x_1, \ldots, x_{n-1})$. In the same way, we define the odd reflection

$$\mathbf{u}(\mathbf{x}', x_n) = \begin{cases} u(\mathbf{x}', x_n) & \text{for } x_n > 0, \\ -u(\mathbf{x}', -x_n) & \text{for } x_n < 0 \end{cases}$$

Further, we define a cut-off function close to $x_n = 0$, that is, we take a $C^{\infty}(\mathbb{R})$ function η which satisfies $\eta(t) = 1$ for $t \ge 1$ and $\eta(t) = 0$ for $t \le 1/2$ and define $\eta_k(x_n) = \eta(kx_n)$. Let us take $\phi \in C_0^{\infty}(Q)$ and consider, for $1 \le i \le n-1$,

$$\int u^{*} \partial_{x_{i}} q \, dx = \int u \partial_{x_{i}} q \, dx + \int u^{*} \partial_{x} q \, dx$$

$$Q^{*} = \int (\int u(x_{i}^{*}x_{i}) \partial_{x_{i}} q(x_{i}^{*}x_{i}) dx)$$

44 1 Basic Facts from Functional Analysis and Banach Lattices $x_{\gamma} - \gamma - \chi$

$$\int_{Q} u^* \partial_{x_i} \phi d\mathbf{x} = \int_{Q_+} u \partial_{x_i} \psi d\mathbf{x} + \int_{Q_0} \int_{O} u(\mathbf{x}', \mathbf{x}_{\bullet}) \partial_{x_i} \varphi(\mathbf{x}', \mathbf{x}_{\bullet})$$

where $\psi(\mathbf{x}', x_n) = \phi(\mathbf{x}', x_n) + \phi(\mathbf{x}', -x_n)$. Typically, ψ is not zero at Q_0 and cannot be used as a test function. However, $\eta_k(x_n)\psi(\mathbf{x}) \in C_0^{\infty}(Q_+)$ and we can write

$$\int_{Q_+} u \partial_{x_i}(\eta_k \psi) d\mathbf{x} = -\int_{Q_+} \partial_{x_i} u \eta_k \psi d\mathbf{x}.$$

However, $\partial_{x_i}\eta_k\psi = \overline{\eta_k\partial_{x_i}\psi}$ as η does not depend on x_i , i = 1, ..., n-1 and hence

$$\int_{Q_+} \eta_k u \partial_{x_i} \psi d\mathbf{x} = -\int_{Q_+} \partial_{x_i} u \eta_k \psi d\mathbf{x}.$$

We can pass to the limit by dominated convergence getting

$$\int_{Q_{+}} u \partial_{x_{i}} \psi d\mathbf{x} = -\int_{Q_{+}} (\partial_{x_{i}} \psi d\mathbf{x}, -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x} = -\int_{Q_{+}} (\partial_{x_{i}} u)^{*} \psi d\mathbf{x} = -\int_{Q_{+}} (\partial_{x_{i}} u)^{*} \psi d\mathbf{x}, -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x} = -\int_{Q_{+}} (\partial_{x_{i}} u)^{*} \psi d\mathbf{x}, -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x} = -\int_{Q_{+}} (\partial_{x_{i}} u)^{*} \psi d\mathbf{x}, -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x} = -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x} = -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x} = -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x}, -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x}, -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x} = -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x} = -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x}, -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x}, -\int_{Q_{+}} \partial_{z_{i}} \psi d\mathbf{x} = -\int_{Q_{+}} \partial$$

Now let us consider differentiability with respect to x_n . Again, taking $\phi \in C_0^{\infty}(Q)$ $Q = x_n - x_n$

$$\int_{Q} u^* \partial_{x_n} \phi d\mathbf{x} = \int_{Q_+} \underbrace{u \partial_{x_n} \chi d\mathbf{x}}_{Q_+} - \partial_{\mathbf{x}_n} \phi \left(\mathbf{x}_{\mathbf{x}_n} \right)$$

where $\chi(\mathbf{x}', x_n) = \phi(\mathbf{x}', x_n) - \phi(\mathbf{x}', -x_n)$. If we again use η_k , then

where
$$\partial_{x_n}\eta_k(\underline{x}_n) = k\eta'(kx_n)$$
 Then

$$k \left| \int_{Q_+} u(\mathbf{x})\eta'(kx_n)\chi(\mathbf{x})dx \right| \leq kCM \int_{Q_0} \left(\int_{0}^{1/k} |u(\mathbf{x})|x_n|dx_n \right) d\mathbf{x}' \leq CM \int_{Q_0} |u(\mathbf{x})|dx_n|d\mathbf{x}' \leq CM \int_{Q_0} |u(\mathbf{x})|d\mathbf{x} \to 0$$

as $k \to \infty$, where $\underbrace{C = \sup_{t \in [0,1]} |\eta'(t)|}_{|\chi(\mathbf{x}', x_n) \leq M |x_n|}$ and M is obtained from the estimate

on Q. Thus

so that, retu

$$\begin{aligned} & \int u(\partial_{x_n} \eta_n \chi) dx = \int u(\partial_{x_n} \eta_n) \chi dx + \int u \eta_n \partial_{x_n} \chi dx \\ & Q_+ \\ & Q_+ \\ & Q_+ \\ & = \\ & \int u(\partial_{x_n} \eta_n) \chi dx \\ & \leq k \int |u| |\eta'(h x_n)| |\chi(x)| dx \\ & Q_+ \\ & = \\ & k \int u \int \chi dx \\ & = \\ & k \int u \int \chi dx \\ & = \\ & = \\ & k \int u \int \chi dx \\ & = \\ & = \\ & \int u \int \chi dx \\ & = \\ & = \\ & \int u \int \chi dx \\ & = \\ & = \\ & \int u \int \chi dx \\ & = \\ & = \\ & \int u \int \chi dx \\ & = \\ & = \\ & \int u \int \chi dx \\ & = \\ & = \\ & \int u \int \chi dx \\ & = \\ & \int u \int u \int dx \\ & = \\ & \int u \int dx \\ & = \\ & \int u \int u \int dx \\ & = \\ & \int u$$

1.3 Hilbert space methods 45

$$\int_{Q_+} u \partial_{x_n} (\eta_k \chi) d\mathbf{x} = \int_{Q_+} u(\eta_k \partial_{x_n} \chi + \chi \partial_{x_n} \eta_k) d\mathbf{x} \to \int_{Q_+} u \eta_k \partial_{x_n} \chi \quad .$$

and thus we obtain in the limit

$$\int_{Q_+} u\partial_{x_n}\chi d\mathbf{x} = -\int_{Q_+} \partial_{x_n} u\chi d\mathbf{x}.$$

Returning to Q, we obtain

$$\int_{Q} \overbrace{Q_{+}}^{*} \partial_{x_{n}} \phi d\mathbf{x} = \int_{Q_{+}} u \partial_{x_{n}} \phi d\mathbf{x} = \int_{Q} (\partial_{x_{n}} u) \phi d\mathbf{x}.$$

We also obtain estimates