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a(z,ty —x) >< oty — ¢ > -
for any t € R,v € H. Factoring out ¢, we find
ta(z,y — ot ) >t <,y —xt™' Spenp
and passing with ¢ — +00, we obtain
a(x,y) >< ¢,y >H-xH, a(r,y) << ¢,y >HexH -

Remark 1.38. Elementary proof of the Lax—Milgram theorem. As we noted
earlier

a(l’7y) =< QS?y >H*xH
can be written as the equation
(Az,y) = (f,y)

for any y € H, where A: H — H, ||Az|| < C||z|| and (Ax,z) > af|z||?. From
the latter, Ax = 0 implies x = 0, hence A is injective. Further, if y = Az,
z=A"1y and

lz)* = A yllll2]l < a7 (y,2) < o™ yllllz]

so A~! is bounded. This shows that the range of A, R(A), is closed. Indeed,
if (yn)nEN » Yn € R(A)v Yn — Y, then (yn)nEN is CaUChya but then (xn)nENa
x, = A71 is also Cauchy and thus converges to some x € A. But then, from
continuity of A, Az = y. On the other hand, R(A) is dense. For, if for some
v € H we have 0 = (Ax,v) for any © € H, we can take v = z and

0= (Av,v) > oz||vH2

so v =0 and so R(A) is dense.

1.3.6 Dirchlet problem

Let us recall the variational formulation of the Dirichlet problem: find u €7
such that

! Vu- Vedr = ([ foda. (1.49)

for all C§°(£2). We also recall the associated minimization problem for
1 2
J(u) = 3 |Vul*dz — | fudx (1.50)
2 Q

over some closed subspace K = {u €7}.
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Let us consider the space H = Ly(£2), 2 C R™ bounded, with the scalar
product

(u,v)0 = /u(x)v(a:)dx

9]

H
We know that C§°(§2) = H. The relation (1.49) suggests that we should
consider another scalar product, initially on C§°(£2), given by

(u,v)r = | Vu(z)Vo(z)de.
(0![) 7

Note that due to the fact that u, v have compact supports, this is a well defined
scalar product as

0= (u,u)o1 = /\Vu(m)\Qd:L‘
2

implies u,, = 0 for all z;, i =1,...,n hence u = const and thus u = 0. Note
that this is not a scalar product on a space C*°({2).
A fundamental role in the theory is played by the Zaremba - Poincard™

Friedrichs lemma. 2

Lemma 1.39. There is a constant d such that for any v € C3°(£2)

[ullo < dl|ul]o,- (1.51)

&2
Proof. Let R be a box [a1,b1] X ... X [an,b,] such that 2 C R and extend u M

by zero to R. Since u vanishes at the boundary of R, for any x = (x1,...,2y,)

we have
z;

u(x) = /umi(xl,...,t,...)dt

[£2
—_

and, by Schwarz inequality,

u?(x) = /ua,i(ml,...,t,...,xn)dt < /ldt /uii(ml,...,t,...,xn)dt

< (bl —ai)/uii(xl,...,t,...,xn)dt

a;

for any x € R. Integrating over R we obtain

[ ax < -0 [, (ot

R R
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This can be re-written

/uQ(x)dx < (b —a;)? /ui (x)dx < c/ |Vu(x)[2dx
Q

2 2

We see that the lemma remains valid if {2 is bounded just in one direction.

Let us define V?/%(.Q) as the completion of C§°(£2) in the norm || - ||o,1. We
have _—

Theorem 1.40. The space V([)/ 3(£2) is a separable Hilbert space which can
be identified with a subspace continuously and densely embedded in Lo(£2).

Every v EV([)/%(Q) has generalized derivatives Dy, v € Lo(§2). Furthermore, the
distributional integration by parts formula

/DzivudX: —/sziudx (1.52)
7 Q

is valid for any u,v EI/%%(Q)

Proof. . The completion in the scalar product gives a Hilbert space. By Lemma
1.39, every equivalence class of the completion in the norm | - ||o,1 is also an
equivalence class in || - ||o and thus can be identified with the element of

C’go(())‘ b and thus with an element v € Lo(f2). This identification is one-

to-one. Density follows from C§°({2) CV?/%(Q) C Ly(£2) and continuity of
injection from Lemma 1.39.

If (vn)nen of C§°(£2) functions converges to v EV([)/é(_Q) in || - |lo,1, then
vp, — v in La(£2) and Dy,v, — v in Ly(£2) for some functions v* € Ly(£2).
Taking arbitrary ¢ € C5°(£2), we obtain

/Dmivnqﬁdx: f/vaniqux
1)

(0]

and we can pass to the limit
/ vigdx = — / vD,, pdx
0 0

showing that v* = D,,v in generalized sense. Furthermore, we can pass to the
o
limit in || - [jo,1 with ¢ — u €W 3(£2) and, by the above, D,,¢ — D,,u in

Ly(92), giving (1.52). This also shows that I/?/%(Q) can be identified with a
closed subspace of (L2(£2))" (the graph of gradient) and thus it is a separable
space.
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1.3 Hilbert space methods

Consider now on V([)/%(!Z) the bilinear form é 9 (@ L/L)

a(u,v) = /Vqudx.

’ Z € L8>
Clearly, by Schwarz inequality - J _S(
|a(u, v)| < [lullo1|v]lo,x

and o Y18

a(u,u) = /VuVudX = HU||(2)1

and thus a is a continuous and coercive bilinear form on I/(I)/%(Q) Thus, if we
take f € (IX/%(Q))* D L(f2) then there is a unique u GI/(I)/%(Q) satisfying

/vadx =< 10> i i)

o
for any v €W3(£2) or, equivalently, minimizing the functional

2
/|Vv\ dx— <f,v> 2 xTA2)

o
over K =Wi(£2).
The question is what this solution represents. Clearly, taking v € C5°(§2)
we obtain
—Au=f
in the sense of distribution. However, to get a deeper understanding of the

o
meaning of the solution, we have investigate the structure of Wi(2).

1.3.7 Sobolev spaces

Let {2 be a nonempty open subset of R™, n > 1 and let m € N. The Sobolev
space WJ*(§2) consists of all u € Ly(§2) for which all generalized derivatives
D®u exist and belong to Lo. W3™(£2) is equipped with the scalar product

(U, V), = Z D*uD%vdx. (1.53)

la|<m

(u,v); = !Gw + Vqu)fx.

In particular,

We obtain
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Proposition 1.41. The space W3*(§2) is a separable Hilbert space.

Proof. The proof follows since the generalized differentiation is a closed oper-
ator in Lo (£2).

We note that I/?/%(Q) is a closed subspace of Wi (2)
and || - |1 cotmeidThere. QAL WMUM

We shall focus on the case m = 1. A workhorse of the theory is the
Friedrichs lemma.

as the norms || - |/o.1

Lemma 1.42. Let u € W3(£2). Then there exists a sequence (ug)ken from
C§°(R™) such that
in LQ(Q)

Uk|Q — U (1.54)

and for any 2’ € 2

Vuglor — Vu in  Ly(2) (1.55)

If 2 = R", then both convergences occur in R™.
Proof. Set
u(z) for x € 2

“e(x):{o for z ¢ 02

and define . = u° * w.. We know v, € C*(R") and ve — u in Lo(£2). Let us
take 2/ € §2 and fix a function o € C§°(£2) which equals 1 on a neighbourhood
of 2. Then, for sufficiently small €, we have

o

we * (Qu)€ = we % u°
on §2'. Then, by Proposition 1.6,

Dj(we * (qu)®) = we * (@dju + djou)”
._--/I ’
hence

0;(we €) — (hdju + dse)
j(we * (au)®) = (4dju + 9yett)

in Ly(£2) and, in particular,

0s(we  (au)?) = @yu

¢ %Ay
Cf(){) Swg (;:5
>

ye S1

Y

&

X@)ﬁj

in Ly(£2"). But on 2" we can discard « to get

0j(we * u) —wju.

If v; do not have compact support (e.g. when (2 is not bounded), then we
multiply v; by a sequence of smooth cut-off functions ¢, = ((z/k) where
¢(z) =1for x| <1 and {(x) =0 for |z| > 2.

As an immediate application we show




W (R) = Wi (")
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Proposition 1.43. (i) Let u,v € W3(2) N Loo($2). Then uv € W3 ()N
Loo(2) with
0;(uv) = djuv + ud;v, i=1,...,n (1.56)

Let 2,21 be two open sets in R"™ and let H : 21 — (2 be a C1(2) diffeomor-
phism. If u € W3 (£2) then uwo H € W3 (£2') and

/(uoH)aj(bdy = —/Z(@iUOH))ajHi¢dy (1.57)
o =1

21

Proof. Using Friedrichs lemma, we find sequences (ug)ien, (Vk)ren in C§°(£2)
such that
U — U, Vi — U

in Ly(£2) and for any 2’ € {2 we have
Vu — Vu, Vo, — Vo

in Lo (£2"). Moreover, from the construction of the mollifiers we get

llurllL(2) < llulloo (@) vkl () < vl ()

On the other hand

/unvkajqﬁdx = - /(8junvk + ur0;vg ) pdx
19 o)

for any ¢ € C5°(£2). Thanks to the compact support of ¢, the integration
actually occurs over compact subsets of 2 and we can use Ly convergence of
Vuy, Vug. Thus

/uvaj¢dx =— /(8juv + ud;v)pdx

[0} 0

and the fact that uv € W3 (£2) follows from 9;u,d;v € W3 (£2) and u,v €
Loo(82). The proof of the second statement follows similarly. We select se-
quence (ug)ken as above; then clearly ug o H — wo H in Lo(f21) and

in Lo($2]) for any 21 € 2. For any ¢ € C§°(£21) we get
k
/(uk o H)ajqﬁdy = — / Z(&uk o H))ajHZ¢dy
O o, =1

and in the limit we obtain (1.57).



