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a(x, ty − x) ≥< φ, ty − x >H∗×H .

for any t ∈ R, v ∈ H. Factoring out t, we find

ta(x, y − xt−1) ≥ t < φ, y − xt−1 >H∗×H .

and passing with t→ ±∞, we obtain

a(x, y) ≥< φ, y >H∗×H , a(x, y) ≤< φ, y >H∗×H .

Remark 1.38. Elementary proof of the Lax–Milgram theorem. As we noted
earlier

a(x, y) =< φ, y >H∗×H

can be written as the equation

(Ax, y) = (f, y)

for any y ∈ H, where A : H → H, ‖Ax‖ ≤ C‖x‖ and (Ax, x) ≥ α‖x‖2. From
the latter, Ax = 0 implies x = 0, hence A is injective. Further, if y = Ax,
x = A−1y and

‖x‖2 = ‖A−1y‖‖x‖ ≤ α−1(y, x) ≤ α−1‖y‖‖x‖

so A−1 is bounded. This shows that the range of A, R(A), is closed. Indeed,
if (yn)n∈N , yn ∈ R(A), yn → y, then (yn)n∈N is Cauchy, but then (xn)n∈N,
xn = A−1 is also Cauchy and thus converges to some x ∈ A. But then, from
continuity of A, Ax = y. On the other hand, R(A) is dense. For, if for some
v ∈ H we have 0 = (Ax, v) for any x ∈ H, we can take v = x and

0 = (Av, v) ≥ α‖v‖2

so v = 0 and so R(A) is dense.

1.3.6 Dirchlet problem

Let us recall the variational formulation of the Dirichlet problem: find u ∈?
such that ∫

Ω

∇u · ∇φdx =

∫
Ω

fφdx. (1.49)

for all C∞0 (Ω). We also recall the associated minimization problem for

J(u) =
1

2

∫
Ω

|∇u|2dx−
∫
Ω

fudx (1.50)

over some closed subspace K = {u ∈?}.
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Let us consider the space H = L2(Ω), Ω ⊂ Rn bounded, with the scalar
product

(u, v)0 =

∫
Ω

u(x)v(x)dx.

We know that C∞0 (Ω)
H

= H. The relation (1.49) suggests that we should
consider another scalar product, initially on C∞0 (Ω), given by

(u, v)1 =

∫
Ω

∇u(x)∇v(x)dx.

Note that due to the fact that u, v have compact supports, this is a well defined
scalar product as

0 = (u, u)0,1 =

∫
Ω

|∇u(x)|2dx

implies uxi = 0 for all xi, i = 1, . . . , n hence u = const and thus u ≡ 0. Note
that this is not a scalar product on a space C∞(Ω̄).

A fundamental role in the theory is played by the Zaremba - Poincarè-
Friedrichs lemma.

Lemma 1.39. There is a constant d such that for any u ∈ C∞0 (Ω)

‖u‖0 ≤ d‖u‖0,1. (1.51)

Proof. Let R be a box [a1, b1]× . . .× [an, bn] such that Ω̄ ⊂ R and extend u
by zero to R. Since u vanishes at the boundary of R, for any x = (x1, . . . , xn)
we have

u(x) =

xi∫
ai

uxi(x1, . . . , t, . . .)dt

and, by Schwarz inequality,

u2(x) =

 xi∫
ai

uxi(x1, . . . , t, . . . , xn)dt

2

≤

 xi∫
ai

1dt

 xi∫
ai

u2
xi(x1, . . . , t, . . . , xn)dt


≤ (bi − ai)

bi∫
ai

u2
xi(x1, . . . , t, . . . , xn)dt

for any x ∈ R. Integrating over R we obtain∫
R

u2(x)dx ≤ (bi − ai)2

∫
R

u2
xi(x)dx.



36 1 Basic Facts from Functional Analysis and Banach Lattices

This can be re-written∫
Ω

u2(x)dx ≤ (bi − ai)2

∫
Ω

u2
xi(x)dx ≤ c

∫
Ω

|∇u(x)|2dx

We see that the lemma remains valid if Ω is bounded just in one direction.

Let us define
o

W 1
2(Ω) as the completion of C∞0 (Ω) in the norm ‖ · ‖0,1. We

have

Theorem 1.40. The space
o

W 1
2(Ω) is a separable Hilbert space which can

be identified with a subspace continuously and densely embedded in L2(Ω).

Every v ∈
o

W 1
2(Ω) has generalized derivatives Dxiv ∈ L2(Ω). Furthermore, the

distributional integration by parts formula∫
Ω

Dxivudx = −
∫
Ω

vDxiudx (1.52)

is valid for any u, v ∈
o

W 1
2(Ω).

Proof. . The completion in the scalar product gives a Hilbert space. By Lemma
1.39, every equivalence class of the completion in the norm ‖ · ‖0,1 is also an
equivalence class in ‖ · ‖0 and thus can be identified with the element of

C∞0 (Ω)
‖·‖0

and thus with an element v ∈ L2(Ω). This identification is one-

to-one. Density follows from C∞0 (Ω) ⊂
o

W 1
2(Ω) ⊂ L2(Ω) and continuity of

injection from Lemma 1.39.

If (vn)n∈N of C∞0 (Ω) functions converges to v ∈
o

W 1
2(Ω) in ‖ · ‖0,1, then

vn → v in L2(Ω) and Dxivn → vi in L2(Ω) for some functions vi ∈ L2(Ω).
Taking arbitrary φ ∈ C∞0 (Ω), we obtain∫

Ω

Dxivnφdx = −
∫
Ω

vnDxiφdx

and we can pass to the limit∫
Ω

viφdx = −
∫
Ω

vDxiφdx

showing that vi = Dxiv in generalized sense. Furthermore, we can pass to the

limit in ‖ · ‖0,1 with φ → u ∈
o

W 1
2(Ω) and, by the above, Dxiφ → Dxiu in

L2(Ω), giving (1.52). This also shows that
o

W 1
2(Ω) can be identified with a

closed subspace of (L2(Ω))n (the graph of gradient) and thus it is a separable
space.
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Consider now on
o

W 1
2(Ω) the bilinear form

a(u, v) =

∫
Ω

∇u∇vdx.

Clearly, by Schwarz inequality

|a(u, v)| ≤ ‖u‖0,1‖v‖0,1

and

a(u, u) =

∫
Ω

∇u∇udx = ‖u‖20,1

and thus a is a continuous and coercive bilinear form on
o

W 1
2(Ω). Thus, if we

take f ∈ (
o

W 1
2(Ω))∗ ⊃ L2(Ω) then there is a unique u ∈

o

W 1
2(Ω) satisfying∫

Ω

∇u∇vdx =< f, v >
(

o
W1

2(Ω))∗×
o
W1

2(Ω)

for any v ∈
o

W 1
2(Ω) or, equivalently, minimizing the functional

J(v) =
1

2

∫
Ω

|∇v|2dx− < f, v >
(

o
W1

2(Ω))∗×
o
W1

2(Ω)

over K =
o

W 1
2(Ω).

The question is what this solution represents. Clearly, taking v ∈ C∞0 (Ω)
we obtain

−∆u = f

in the sense of distribution. However, to get a deeper understanding of the

meaning of the solution, we have investigate the structure of
o

W 1
2(Ω).

1.3.7 Sobolev spaces

Let Ω be a nonempty open subset of Rn, n ≥ 1 and let m ∈ N. The Sobolev
space Wm

2 (Ω) consists of all u ∈ L2(Ω) for which all generalized derivatives
Dαu exist and belong to L2. Wm

2 (Ω) is equipped with the scalar product

(u, v)m =
∑
|α|≤m

∫
Ω

DαuDαvdx. (1.53)

In particular,

(u, v)1 =

∫
Ω

uv +∇u∇vdx.

We obtain
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Proposition 1.41. The space Wm
2 (Ω) is a separable Hilbert space.

Proof. The proof follows since the generalized differentiation is a closed oper-
ator in L2(Ω).

We note that
o

W 1
2(Ω) is a closed subspace of W 1

2 (Ω) as the norms ‖ · ‖0,1
and ‖ · ‖1 coincide there.

We shall focus on the case m = 1. A workhorse of the theory is the
Friedrichs lemma.

Lemma 1.42. Let u ∈ W 1
2 (Ω). Then there exists a sequence (uk)k∈N from

C∞0 (Rn) such that
uk|Ω → u in L2(Ω) (1.54)

and for any Ω′ b Ω
∇uk|Ω′ → ∇u in L2(Ω) (1.55)

If Ω = Rn, then both convergences occur in Rn.

Proof. Set

ue(x) =

{
u(x) for x ∈ Ω
0 for x /∈ Ω

and define vε = ue ∗ ωε. We know vε ∈ C∞(Rn) and vε → u in L2(Ω). Let us
take Ω′ b Ω and fix a function α ∈ C∞0 (Ω) which equals 1 on a neighbourhood
of Ω′. Then, for sufficiently small ε, we have

ωε ∗ (αu)ε = ωε ∗ uε

on Ω′. Then, by Proposition 1.6,

∂j(ωε ∗ (αu)ε) = ωε ∗ (α∂ju+ ∂jαu)
e

hence
∂j(ωε ∗ (αu)ε)→ (α∂ju+ ∂jαu)

e

in L2(Ω) and, in particular,

∂j(ωε ∗ (αu)ε)→ pju

in L2(Ω′). But on Ω′ we can discard α to get

∂j(ωε ∗ uε)→ pju.

If vk do not have compact support (e.g. when Ω is not bounded), then we
multiply vk by a sequence of smooth cut-off functions ζk = ζ(x/k) where
ζ(x) = 1 for |x| ≤ 1 and ζ(x) = 0 for |x| ≥ 2.

As an immediate application we show
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Proposition 1.43. (i) Let u, v ∈ W 1
2 (Ω) ∩ L∞(Ω). Then uv ∈ W 1

2 (Ω) ∩
L∞(Ω) with

∂j(uv) = ∂juv + u∂jv, i = 1, . . . , n (1.56)

Let Ω,Ω1 be two open sets in Rn and let H : Ω1 → Ω be a C1(Ω̄) diffeomor-
phism. If u ∈W 1

2 (Ω) then u ◦H ∈W 1
2 (Ω′) and∫

Ω1

(u ◦H)∂jφdy = −
∫
Ω1

n∑
i=1

(∂iu ◦H))∂jHiφdy (1.57)

Proof. Using Friedrichs lemma, we find sequences (uk)k∈N, (vk)k∈N in C∞0 (Ω)
such that

uk → u, vk → v

in L2(Ω) and for any Ω′ b Ω we have

∇uk → ∇u, ∇vk → ∇v

in L2(Ω′). Moreover, from the construction of the mollifiers we get

‖uk‖L∞(Ω) ≤ ‖u‖L∞(Ω) ‖vk‖L∞(Ω) ≤ ‖v‖L∞(Ω).

On the other hand∫
Ω

unvk∂jφdx = −
∫
Ω

(∂junvk + uk∂jvk)φdx

for any φ ∈ C∞0 (Ω). Thanks to the compact support of φ, the integration
actually occurs over compact subsets of Ω and we can use L2 convergence of
∇uk,∇vk. Thus ∫

Ω

uv∂jφdx = −
∫
Ω

(∂juv + u∂jv)φdx

and the fact that uv ∈ W 1
2 (Ω) follows from ∂ju, ∂jv ∈ W 1

2 (Ω) and u, v ∈
L∞(Ω). The proof of the second statement follows similarly. We select se-
quence (uk)k∈N as above; then clearly uk ◦H → u ◦H in L2(Ω1) and

(∂iuk ◦H)∂jHi → (∂iu ◦H)∂jHi

in L2(Ω′1) for any Ω′1 b Ω. For any ψ ∈ C∞0 (Ω1) we get∫
Ω1

(uk ◦H)∂jφdy = −
∫
Ω1

k∑
i=1

(∂iuk ◦H))∂jHiφdy

and in the limit we obtain (1.57).


