34 1 Basic Facts from Functional Analysis and Banach Lattices

$$
a(x, ty - x) \geq <\phi, ty - x>_{H^* \times H}.
$$

for any $t \in R$, $v \in H$. Factoring out t, we find

$$
ta(x, y - xt^{-1}) \ge t < \phi, y - xt^{-1} >_{H^* \times H}.
$$

and passing with $t \to \pm \infty$, we obtain

$$
a(x,y) \geq <\phi, y>_{H^*\times H}, \qquad a(x,y) \leq <\phi, y>_{H^*\times H}.
$$

Remark 1.38. Elementary proof of the Lax–Milgram theorem. As we noted earlier

$$
a(x, y) = \langle \phi, y \rangle_{H^* \times H}
$$

can be written as the equation

$$
(Ax, y) = (f, y)
$$

for any $y \in H$, where $A: H \to H$, $||Ax|| \leq C||x||$ and $(Ax, x) \geq \alpha ||x||^2$. From the latter, $Ax = 0$ implies $x = 0$, hence A is injective. Further, if $y = Ax$, $x = A^{-1}y$ and

$$
||x||^2 = ||A^{-1}y|| ||x|| \le \alpha^{-1}(y, x) \le \alpha^{-1} ||y|| ||x||
$$

so A^{-1} is bounded. This shows that the range of A, $R(A)$, is closed. Indeed, if $(y_n)_{n\in\mathbb{N}}$, $y_n \in R(A)$, $y_n \to y$, then $(y_n)_{n\in\mathbb{N}}$ is Cauchy, but then $(x_n)_{n\in\mathbb{N}}$, $x_n = A^{-1}$ is also Cauchy and thus converges to some $x \in A$. But then, from continuity of A, $Ax = y$. On the other hand, $R(A)$ is dense. For, if for some $v \in H$ we have $0 = (Ax, v)$ for any $x \in H$, we can take $v = x$ and

$$
0 = (Av, v) \ge \alpha ||v||^2
$$

so $v = 0$ and so $R(A)$ is dense.

1.3.6 Dirchlet problem

Let us recall the variational formulation of the Dirichlet problem: find $u \in ?$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla \phi dx = \int_{\Omega} f \phi dx.
$$
\n(1.49)

for all $C_0^{\infty}(\Omega)$. We also recall the associated minimization problem for

$$
J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} f u dx \qquad (1.50)
$$

over some closed subspace $K = \{u \in ?\}.$

1.3 Hilbert space methods 35

 (1.51)

 \cal{O}

Q

رما

Let us consider the space $H = L_2(\Omega)$, $\Omega \subset \mathbb{R}^n$ bounded, with the scalar product

$$
(u,v)_0 = \int_{\Omega} u(x)v(x)dx.
$$

We know that $\overline{C_0^{\infty}(\Omega)}^H = H$. The relation (1.49) suggests that we should consider another scalar product, initially on $C_0^{\infty}(\Omega)$, given by

$$
(u,v)_{\mathbf{X}} = \int_{\Omega} \nabla u(x) \nabla v(x) dx.
$$

Note that due to the fact that u, v have compact supports, this is a well defined scalar product as

$$
0 = (u, u)_{0,1} = \int_{\Omega} |\nabla u(x)|^2 dx
$$

implies $u_{x_i} = 0$ for all x_i , $i = 1, ..., n$ hence $u = const$ and thus $u \equiv 0$. Note that this is not a scalar product on a space $C^{\infty}(\overline{\Omega})$.

A fundamental role in the theory is played by the Zaremba - Poincaré-educhs lemma. Friedrichs lemma.

Lemma 1.39. There is a constant d such that for any $u \in C_0^{\infty}(\Omega)$

$$
||u||_0 \le d||u||_{0,1}
$$

Proof. Let R be a box $[a_1, b_1] \times ... \times [a_n, b_n]$ such that $\overline{\Omega} \subset R$ and extend u by zero to R. Since u vanishes at the boundary of R, for any $\mathbf{x} = (x_1, \ldots, x_n)$ we have

$$
u(\mathbf{x}) = \int\limits_{a_i}^{x_i} u_{x_i}(x_1,\ldots,t,\ldots)dt
$$

and, by Schwarz inequality,

$$
u^{2}(\mathbf{x}) = \left(\int_{a_{i}}^{x_{i}} u_{x_{i}}(x_{1},\ldots,t,\ldots,x_{n})dt\right)^{2} \leq \left(\int_{a_{i}}^{x_{i}} 1dt\right) \left(\int_{a_{i}}^{x_{i}} u_{x_{i}}^{2}(x_{1},\ldots,t,\ldots,x_{n})dt\right)
$$

$$
\leq (b_{i}-a_{i}) \int_{a_{i}}^{b_{i}} u_{x_{i}}^{2}(x_{1},\ldots,t,\ldots,x_{n})dt
$$

for any $x \in R$. Integrating over R we obtain

$$
\int_{R} u^2(\mathbf{x})d\mathbf{x} \le (b_i - a_i)^2 \int_{R} u_{x_i}^2(\mathbf{x})d\mathbf{x}.
$$

36 1 Basic Facts from Functional Analysis and Banach Lattices

This can be re-written

$$
\int_{\Omega} u^2(\mathbf{x})d\mathbf{x} \le (b_i - a_i)^2 \int_{\Omega} u_{x_i}^2(\mathbf{x})d\mathbf{x} \le c \int_{\Omega} |\nabla u(\mathbf{x})|^2 d\mathbf{x}
$$

We see that the lemma remains valid if Ω is bounded just in one direction. Let us define $\mathring{W}_2^1(\Omega)$ as the completion of $C_0^{\infty}(\Omega)$ in the norm $\|\cdot\|_{0,1}$. We have

Theorem 1.40. The space $\overset{\circ}{W}$ $_2^1(\Omega)$ is a separable Hilbert space which can be identified with a subspace continuously and densely embedded in $L_2(\Omega)$. Every $v \in \overset{\circ}{W}_2^1(\varOmega)$ has generalized derivatives $D_{x_i}v \in L_2(\varOmega)$. Furthermore, the distributional integration by parts formula

$$
\int_{\Omega} D_{x_i} v u d\mathbf{x} = -\int_{\Omega} v D_{x_i} u d\mathbf{x} \tag{1.52}
$$

is valid for any $u, v \in \overset{\circ}{W}_2^1(\Omega)$.

Proof. . The completion in the scalar product gives a Hilbert space. By Lemma 1.39, every equivalence class of the completion in the norm $\|\cdot\|_{0,1}$ is also an equivalence class in $\|\cdot\|_0$ and thus can be identified with the element of $\overline{C_0^{\infty}(\Omega)}^{\|\cdot\|_0}$ and thus with an element $v \in L_2(\Omega)$. This identification is oneto-one. Density follows from $C_0^{\infty}(\Omega) \subset W^1_2(\Omega) \subset L_2(\Omega)$ and continuity of injection from Lemma 1.39.

If $(v_n)_{n\in\mathbb{N}}$ of $C_0^{\infty}(\Omega)$ functions converges to $v \in W^1_2(\Omega)$ in $\|\cdot\|_{0,1}$, then $v_n \to v$ in $L_2(\Omega)$ and $D_{x_i}v_n \to v^i$ in $L_2(\Omega)$ for some functions $v^i \in L_2(\Omega)$. Taking arbitrary $\phi \in C_0^{\infty}(\Omega)$, we obtain

$$
\int\limits_{\Omega}D_{x_i}v_n\phi d\mathbf{x}=-\int\limits_{\Omega}v_nD_{x_i}\phi d\mathbf{x}
$$

and we can pass to the limit

$$
\int_{\Omega} v^i \phi d\mathbf{x} = -\int_{\Omega} v D_{x_i} \phi d\mathbf{x}
$$

showing that $v^i = D_{x_i} v$ in generalized sense. Furthermore, we can pass to the limit in $\|\cdot\|_{0,1}$ with $\phi \to u \in \overset{\circ}{W} \frac{1}{2}(\Omega)$ and, by the above, $D_{x_i} \phi \to D_{x_i} u$ in $L_2(\Omega)$, giving (1.52). This also shows that $\overset{\circ}{W}_2^1(\Omega)$ can be identified with a closed subspace of $(L_2(\Omega))^n$ (the graph of gradient) and thus it is a separable space.

$$
X = \text{circularing}
$$

\n $\begin{array}{ccc} \n\begin{array}{ccc}\n\searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \searrow & \searrow & \searrow \\
\searrow & \searrow & \searrow & \searrow & \se$

$$
-\Delta u + b \cdot Du + cu
$$

 $A_{u} = \sum Q_{i} (e_{ij} \partial_{x_{i}} u)$

1.3 Hilbert space methods 37

Consider now on $\overset{\circ}{W}_2^1(\varOmega)$ the bilinear form

$$
a(u,v) = \int_{\Omega} \nabla u \nabla v d\mathbf{x}.
$$

Clearly, by Schwarz inequality

$$
|a(u, v)| \leq ||u||_{0,1} ||v||_{0,1}
$$

and

$$
a(u, u) = \int_{\Omega} \nabla u \nabla u d\mathbf{x} = ||u||_{0,1}^2
$$

and thus a is a continuous and coercive bilinear form on $\overset{\circ}{W}_2^1(\varOmega)$. Thus, if we take $f \in (\overset{\circ}{W}_2^1(\varOmega))^* \supset L_2(\varOmega)$ then there is a unique $u \in \overset{\circ}{W}_2^1(\varOmega)$ satisfying

$$
\int\limits_\Omega \nabla u\nabla v d\mathbf{x} = _{(\stackrel{\circ}{W_2^1}(\Omega))^* \times \stackrel{\circ}{W_2^1}(\Omega)}
$$

for any $v \in \overset{\circ}{W}{}^1_2(\varOmega)$ or, equivalently, minimizing the functional

$$
J(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 d\mathbf{x} - \langle f, v \rangle_{(\hat{W}_2^1(\Omega))^* \times \hat{W}_2^1(\Omega)}
$$

over $K = \overset{\circ}{W}_2^1(\Omega)$.

The question is what this solution represents. Clearly, taking $v \in C_0^{\infty}(\Omega)$ we obtain

$$
-\Delta u = f
$$

in the sense of distribution. However, to get a deeper understanding of the meaning of the solution, we have investigate the structure of $\mathring{W}_2^1(\Omega)$.

1.3.7 Sobolev spaces

Let Ω be a nonempty open subset of \mathbb{R}^n , $n \geq 1$ and let $m \in \mathbb{N}$. The Sobolev space $W_2^m(\Omega)$ consists of all $u \in L_2(\Omega)$ for which all generalized derivatives $D^{\alpha}u$ exist and belong to L_2 . $W_2^m(\Omega)$ is equipped with the scalar product

$$
(u,v)_m = \sum_{|\alpha| \le m} \int_{\Omega} D^{\alpha} u D^{\alpha} v d\mathbf{x}.
$$
 (1.53)

In particular,

$$
(u, v)_1 = \int_{\Omega} \underbrace{(uv + \nabla u \nabla v)} \mathbf{dx}.
$$

We obtain

$$
-\sum_{i,j} |e_{ij}\rangle \langle \xi_i \xi_j \rangle
$$

38 1 Basic Facts from Functional Analysis and Banach Lattices

Proposition 1.41. The space $W_2^m(\Omega)$ is a separable Hilbert space.

Proof. The proof follows since the generalized differentiation is a closed operator in $L_2(\Omega)$.

We note that $\mathring{W}_2^1(\Omega)$ is a closed subspace of $W_2^1(\Omega)$ as the norms $\|\cdot\|_{0,1}$ and $\|\cdot\|_1$ coincide there.

We shall focus on the case $m = 1$. A workhorse of the theory is the Friedrichs lemma.

Lemma 1.42. Let $u \in W_2^1(\Omega)$. Then there exists a sequence $(u_k)_{k \in \mathbb{N}}$ from $C_0^{\infty}(\mathbb{R}^n)$ such that

$$
u_k|_{\Omega} \to u \quad \text{in} \quad L_2(\Omega) \tag{1.54}
$$

 \overline{u}

R

and for any $\Omega' \in \Omega$

$$
\nabla u_k|_{\Omega'} \to \nabla u \quad \text{in} \quad L_2(\Omega) \tag{1.55}
$$

If $\Omega = \mathbb{R}^n$, then both convergences occur in \mathbb{R}^n .

Proof. Set

 \mathcal{R}

<u> 13</u> (

Dlo

 $y \in \Omega$

$$
u^{e}(x) = \begin{cases} u(x) \text{ for } x \in \Omega \\ 0 \text{ for } x \notin \Omega \end{cases}
$$

and define $v_{\epsilon} = u^e * \omega_{\epsilon}$. We know $v_{\epsilon} \in C^{\infty}(\mathbb{R}^n)$ and $v_{\epsilon} \to u$ in $L_2(\Omega)$. Let us take $\Omega' \in \Omega$ and fix a function $\alpha \in C_0^{\infty}(\Omega)$ which equals 1 on a neighbourhood of Ω' . Then, for sufficiently small ϵ , we have α

$$
\omega_{\epsilon} * (\alpha u)^{\epsilon} = \omega_{\epsilon} * u^{\epsilon}
$$

on Ω' . Then, by Proposition 1.6,

$$
\partial_j(\omega_{\epsilon} * (\alpha u)^{\epsilon}) = \omega_{\epsilon} * (\alpha \partial_j u + \partial_j \alpha u)^{\epsilon}
$$

 $\frac{2}{\Omega}$ hence

 (y) ly

$$
\partial_j(\omega_{\epsilon} * (\alpha u)^{\epsilon}) \to (\alpha \partial_j u + \partial_j \alpha u)^{\epsilon}
$$

in $L_2(\Omega)$ and, in particular,

 $\partial_j(\omega_{\epsilon} \ast (\alpha u)^{\epsilon}) \rightarrow \phi_j u$

in $L_2(\Omega')$. But on Ω' we can discard α to get

$$
\partial_j(\omega_\epsilon * u^\epsilon) \to \partial y u.
$$

If v_k do not have compact support (e.g. when Ω is not bounded), then we multiply v_k by a sequence of smooth cut-off functions $\zeta_k = \zeta(x/k)$ where $\zeta(x) = 1$ for $|x| \leq 1$ and $\zeta(x) = 0$ for $|x| \geq 2$.

As an immediate application we show

 $\overset{\circ}{\bigvee}_{2}^{1}(\mathbb{R}^{n})=\overset{\circ}{\bigvee}_{2}^{1}(\mathbb{R}^{n})$

1.3 Hilbert space methods 39

Proposition 1.43. (i) Let $u, v \in W_2^1(\Omega) \cap L_\infty(\Omega)$. Then $uv \in W_2^1(\Omega) \cap L_\infty(\Omega)$ $L_{\infty}(\Omega)$ with

$$
\partial_j(uv) = \partial_j uv + u\partial_j v, \qquad i = 1, \dots, n \tag{1.56}
$$

Let Ω, Ω_1 be two open sets in \mathbb{R}^n and let $H : \Omega_1 \to \Omega$ be a $C^1(\overline{\Omega})$ diffeomorphism. If $u \in W_2^1(\Omega)$ then $u \circ H \in W_2^1(\Omega')$ and

$$
\int_{\Omega_1} (u \circ H) \partial_j \phi d\mathbf{y} = -\int_{\Omega_1} \sum_{i=1}^n (\partial_i u \circ H)) \partial_j H_i \phi d\mathbf{y} \tag{1.57}
$$

Proof. Using Friedrichs lemma, we find sequences $(u_k)_{k \in \mathbb{N}}$, $(v_k)_{k \in \mathbb{N}}$ in $C_0^{\infty}(\Omega)$ such that

$$
u_k \to u, \qquad v_k \to v
$$

in $L_2(\Omega)$ and for any $\Omega' \in \Omega$ we have

$$
\nabla u_k \to \nabla u, \qquad \nabla v_k \to \nabla v
$$

in $L_2(\Omega')$. Moreover, from the construction of the mollifiers we get

$$
||u_k||_{L_{\infty}(\Omega)} \le ||u||_{L_{\infty}(\Omega)} \qquad ||v_k||_{L_{\infty}(\Omega)} \le ||v||_{L_{\infty}(\Omega)}.
$$

On the other hand

$$
\int_{\Omega} u_n v_k \partial_j \phi d\mathbf{x} = -\int_{\Omega} (\partial_j u_n v_k + u_k \partial_j v_k) \phi d\mathbf{x}
$$

for any $\phi \in C_0^{\infty}(\Omega)$. Thanks to the compact support of ϕ , the integration actually occurs over compact subsets of Ω and we can use L_2 convergence of $\nabla u_k, \nabla v_k$. Thus

$$
\int_{\Omega} uv \partial_j \phi d\mathbf{x} = -\int_{\Omega} (\partial_j uv + u \partial_j v) \phi d\mathbf{x}
$$

and the fact that $uv \in W_2^1(\Omega)$ follows from $\partial_j u, \partial_j v \in W_2^1(\Omega)$ and $u, v \in$ $L_{\infty}(\Omega)$. The proof of the second statement follows similarly. We select sequence $(u_k)_{k\in\mathbb{N}}$ as above; then clearly $u_k \circ H \to u \circ H$ in $L_2(\Omega_1)$ and

$$
(\partial_i u_k \circ H) \partial_j H_i \to (\partial_i u \circ H) \partial_j H_i
$$

in $L_2(\Omega'_1)$ for any $\Omega'_1 \in \Omega$. For any $\psi \in C_0^{\infty}(\Omega_1)$ we get

$$
\int_{\Omega_1} (u_k \circ H) \partial_j \phi d\mathbf{y} = -\int_{\Omega_1} \sum_{i=1}^k (\partial_i u_k \circ H)) \partial_j H_i \phi d\mathbf{y}
$$

and in the limit we obtain (1.57).