34 1 Basic Facts from Functional Analysis and Banach Lattices

$$a(x, ty - x) \ge <\phi, ty - x >_{H^* \times H}.$$

for any $t \in R, v \in H$. Factoring out t, we find

$$ta(x, y - xt^{-1}) \ge t < \phi, y - xt^{-1} >_{H^* \times H}$$
.

and passing with $t \to \pm \infty$, we obtain

$$a(x,y) \ge \langle \phi, y \rangle_{H^* \times H}, \qquad a(x,y) \le \langle \phi, y \rangle_{H^* \times H}.$$

Remark 1.38. Elementary proof of the Lax–Milgram theorem. As we noted earlier

$$a(x,y) = \langle \phi, y \rangle_{H^* \times H}$$

can be written as the equation

$$(Ax, y) = (f, y)$$

for any $y \in H$, where $A : H \to H$, $||Ax|| \leq C||x||$ and $(Ax, x) \geq \alpha ||x||^2$. From the latter, Ax = 0 implies x = 0, hence A is injective. Further, if y = Ax, $x = A^{-1}y$ and

$$||x||^2 = ||A^{-1}y|| ||x|| \le \alpha^{-1}(y,x) \le \alpha^{-1} ||y|| ||x||$$

so A^{-1} is bounded. This shows that the range of A, R(A), is closed. Indeed, if $(y_n)_{n\in\mathbb{N}}$, $y_n \in R(A)$, $y_n \to y$, then $(y_n)_{n\in\mathbb{N}}$ is Cauchy, but then $(x_n)_{n\in\mathbb{N}}$, $x_n = A^{-1}$ is also Cauchy and thus converges to some $x \in A$. But then, from continuity of A, Ax = y. On the other hand, R(A) is dense. For, if for some $v \in H$ we have 0 = (Ax, v) for any $x \in H$, we can take v = x and

$$0 = (Av, v) \ge \alpha \|v\|^2$$

so v = 0 and so R(A) is dense.

1.3.6 Dirchlet problem

Let us recall the variational formulation of the Dirichlet problem: find $u \in$? such that

$$\int_{\Omega} \nabla u \cdot \nabla \phi dx = \int_{\Omega} f \phi dx.$$
(1.49)

for all $C_0^{\infty}(\Omega)$. We also recall the associated minimization problem for

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} f u dx \qquad (1.50)$$

over some closed subspace $K = \{u \in ?\}$.

1.3 Hilbert space methods 35

С

Q

6,

(1.51)

Let us consider the space $H = L_2(\Omega), \ \Omega \subset \mathbb{R}^n$ bounded, with the scalar product

$$(u,v)_0 = \int_{\Omega} u(x)v(x)dx.$$

We know that $\overline{C_0^{\infty}(\Omega)}^H = H$. The relation (1.49) suggests that we should consider another scalar product, initially on $C_0^{\infty}(\Omega)$, given by

$$(u, v)_{\mathcal{A}} = \int_{\Omega} \nabla u(x) \nabla v(x) dx.$$

Note that due to the fact that u, v have compact supports, this is a well defined scalar product as

$$0 = (u, u)_{0,1} = \int_{\Omega} |\nabla u(x)|^2 dx$$

implies $u_{x_i} = 0$ for all x_i , i = 1, ..., n hence u = const and thus $u \equiv 0$. Note that this is not a scalar product on a space $C^{\infty}(\overline{\Omega})$.

A fundamental role in the theory is played by the Zaremba - Poincaré-Friedrichs lemma.

Lemma 1.39. There is a constant d such that for any $u \in C_0^{\infty}(\Omega)$

$$||u||_0 \le d||u||_{0,1}$$

Proof. Let R be a box $[a_1, b_1] \times \ldots \times [a_n, b_n]$ such that $\overline{\Omega} \subset R$ and extend u by zero to R. Since u vanishes at the boundary of R, for any $\mathbf{x} = (x_1, \ldots, x_n)$ we have

$$u(\mathbf{x}) = \int_{a_i}^{x_i} u_{x_i}(x_1, \dots, t, \dots) dt$$

and, by Schwarz inequality,

$$u^{2}(\mathbf{x}) = \left(\int_{a_{i}}^{x_{i}} u_{x_{i}}(x_{1}, \dots, t, \dots, x_{n})dt\right)^{2} \leq \left(\int_{a_{i}}^{x_{i}} 1dt\right) \left(\int_{a_{i}}^{x_{i}} u_{x_{i}}^{2}(x_{1}, \dots, t, \dots, x_{n})dt\right)$$
$$\leq (b_{i} - a_{i})\int_{a_{i}}^{b_{i}} u_{x_{i}}^{2}(x_{1}, \dots, t, \dots, x_{n})dt$$

for any $\mathbf{x} \in R$. Integrating over R we obtain

$$\int_{R} u^{2}(\mathbf{x}) d\mathbf{x} \leq (b_{i} - a_{i})^{2} \int_{R} u_{x_{i}}^{2}(\mathbf{x}) d\mathbf{x}$$

36 1 Basic Facts from Functional Analysis and Banach Lattices

This can be re-written

$$\int_{\Omega} u^2(\mathbf{x}) d\mathbf{x} \le (b_i - a_i)^2 \int_{\Omega} u^2_{x_i}(\mathbf{x}) d\mathbf{x} \le c \int_{\Omega} |\nabla u(\mathbf{x})|^2 d\mathbf{x}$$

We see that the lemma remains valid if Ω is bounded just in one direction. Let us define $\overset{o}{W}_{2}^{1}(\Omega)$ as the completion of $C_{0}^{\infty}(\Omega)$ in the norm $\|\cdot\|_{0,1}$. We have

Theorem 1.40. The space $\overset{\circ}{W}_{2}^{1}(\Omega)$ is a separable Hilbert space which can be identified with a subspace continuously and densely embedded in $L_{2}(\Omega)$. Every $v \in \overset{\circ}{W}_{2}^{1}(\Omega)$ has generalized derivatives $D_{x_{i}}v \in L_{2}(\Omega)$. Furthermore, the distributional integration by parts formula

$$\int_{\Omega} D_{x_i} v u d\mathbf{x} = -\int_{\Omega} v D_{x_i} u d\mathbf{x}$$
(1.52)

is valid for any $u, v \in W_2^0(\Omega)$.

Proof. The completion in the scalar product gives a Hilbert space. By Lemma 1.39, every equivalence class of the completion in the norm $\|\cdot\|_{0,1}$ is also an equivalence class in $\|\cdot\|_0$ and thus can be identified with the element of $\overline{C_0^{\infty}(\Omega)}^{\|\cdot\|_0}$ and thus with an element $v \in L_2(\Omega)$. This identification is one-to-one. Density follows from $C_0^{\infty}(\Omega) \subset \overset{\circ}{W} \frac{1}{2}(\Omega) \subset L_2(\Omega)$ and continuity of injection from Lemma 1.39.

If $(v_n)_{n\in\mathbb{N}}$ of $C_0^{\infty}(\Omega)$ functions converges to $v \in W_2^1(\Omega)$ in $\|\cdot\|_{0,1}$, then $v_n \to v$ in $L_2(\Omega)$ and $D_{x_i}v_n \to v^i$ in $L_2(\Omega)$ for some functions $v^i \in L_2(\Omega)$. Taking arbitrary $\phi \in C_0^{\infty}(\Omega)$, we obtain

$$\int_{\Omega} D_{x_i} v_n \phi d\mathbf{x} = -\int_{\Omega} v_n D_{x_i} \phi d\mathbf{x}$$

and we can pass to the limit

$$\int_{\Omega} v^i \phi d\mathbf{x} = -\int_{\Omega} v D_{x_i} \phi d\mathbf{x}$$

showing that $v^i = D_{x_i}v$ in generalized sense. Furthermore, we can pass to the limit in $\|\cdot\|_{0,1}$ with $\phi \to u \in \overset{\circ}{W}{}^{1}{}_{2}(\Omega)$ and, by the above, $D_{x_i}\phi \to D_{x_i}u$ in $L_2(\Omega)$, giving (1.52). This also shows that $\overset{\circ}{W}{}^{1}{}_{2}(\Omega)$ can be identified with a closed subspace of $(L_2(\Omega))^n$ (the graph of gradient) and thus it is a separable space.

X-oscollova
$$\{x_n\}_{c \in X}$$

Y-doulnich $B(x_n,r_n)$ r_n -arguman.
 $\forall \exists B(x_n,r_n) \land Y \neq \phi$
 $r_n \times_n B(x_n,r_n) \land Y \neq \phi$
 $\chi_{i \in Y}$
 $\chi_{i \in S(x_n,r_n) \land Y}$

 $Au = \sum_{i} \partial_{x_{i}} (e_{ij} \partial_{x_{i}} u)$

1.3 Hilbert space methods 37

Consider now on $\overset{o}{W_{2}^{1}}(\Omega)$ the bilinear form

$$a(u,v) = \int_{\Omega} \nabla u \nabla v d\mathbf{x}.$$

Clearly, by Schwarz inequality

$$a(u,v)| \le ||u||_{0,1} ||v||_{0,1}$$

and

$$a(u,u) = \int_{\Omega} \nabla u \nabla u d\mathbf{x} = \|u\|_{0,1}^2$$

and thus a is a continuous and coercive bilinear form on $\overset{\circ}{W}{}_{2}^{1}(\Omega)$. Thus, if we take $f \in (\overset{\circ}{W}{}_{2}^{1}(\Omega))^{*} \supset L_{2}(\Omega)$ then there is a unique $u \in \overset{\circ}{W}{}_{2}^{1}(\Omega)$ satisfying

$$\int\limits_{\varOmega} \nabla u \nabla v d\mathbf{x} = < f, v >_{(\mathring{W}_{2}^{i}(\varOmega))^{*} \times \mathring{W}_{2}^{i}(\varOmega)}$$

for any $v \in \overset{o}{W_2^1}(\Omega)$ or, equivalently, minimizing the functional

$$J(v) = \frac{1}{2} \int\limits_{\Omega} |\nabla v|^2 d\mathbf{x} - \langle f, v \rangle_{(\overset{\circ}{W_2^1}(\Omega))^* \times \overset{\circ}{W_2^1}(\Omega)}$$

over $K = \overset{o}{W_2^1}(\Omega)$.

The question is what this solution represents. Clearly, taking $v\in C_0^\infty(\varOmega)$ we obtain

$$-\Delta u = f$$

in the sense of distribution. However, to get a deeper understanding of the meaning of the solution, we have investigate the structure of $\overset{\circ}{W}{}_{2}^{1}(\Omega)$.

1.3.7 Sobolev spaces

Let Ω be a nonempty open subset of \mathbb{R}^n , $n \geq 1$ and let $m \in \mathbb{N}$. The Sobolev space $W_2^m(\Omega)$ consists of all $u \in L_2(\Omega)$ for which all generalized derivatives $D^{\alpha}u$ exist and belong to L_2 . $W_2^m(\Omega)$ is equipped with the scalar product

$$(u,v)_m = \sum_{|\alpha| \le m} \int_{\Omega} D^{\alpha} u D^{\alpha} v d\mathbf{x}.$$
 (1.53)

In particular,

$$(u,v)_1 = \int_{\Omega} (uv + \nabla u \nabla v) d\mathbf{x}.$$

We obtain

38 1 Basic Facts from Functional Analysis and Banach Lattices

Proposition 1.41. The space $W_2^m(\Omega)$ is a separable Hilbert space.

Proof. The proof follows since the generalized differentiation is a closed operator in $L_2(\Omega)$.

We note that $\overset{\circ}{W_2}(\Omega)$ is a closed subspace of $W_2^1(\Omega)$ as the norms $\|\cdot\|_{0,1}$ and $\|\cdot\|_1$ coincide there. or equively there

We shall focus on the case m = 1. A workhorse of the theory is the Friedrichs lemma.

Lemma 1.42. Let $u \in W_2^1(\Omega)$. Then there exists a sequence $(u_k)_{k \in \mathbb{N}}$ from $C_0^{\infty}(\mathbb{R}^n)$ such that

$$u_k|_{\Omega} \to u \quad \text{in} \quad L_2(\Omega) \tag{1.54}$$

U

R

and for any $\Omega' \subseteq \Omega$

$$abla u_k|_{\Omega'} \to \nabla u \quad \text{in} \quad L_2(\Omega)$$

$$(1.55)$$

If $\Omega = \mathbb{R}^n$, then both convergences occur in \mathbb{R}^n .

Proof. Set

$$u^{e}(x) = \begin{cases} u(x) \text{ for } x \in \Omega\\ 0 \quad \text{for } x \notin \Omega \end{cases}$$

and define $\underline{v}_{\epsilon} = u^{e} * \omega_{\epsilon}$. We know $v_{\epsilon} \in C^{\infty}(\mathbb{R}^{n})$ and $v_{\epsilon} \to u$ in $L_{2}(\Omega)$. Let us take $\underline{\Omega}' \Subset \Omega$ and fix a function $\alpha \in C_{0}^{\infty}(\Omega)$ which equals 1 on a neighbourhood of Ω' . Then, for sufficiently small ϵ , we have

$$\omega_{\epsilon} * (\alpha u)^{\epsilon} = \omega_{\epsilon} * u^{\epsilon}$$

on Ω' . Then, by Proposition 1.6,

$$\partial_j(\omega_\epsilon * (\alpha u)^\epsilon) = \omega_\epsilon * (\alpha \partial_j u + \partial_j \alpha u)^e$$

2chence

(y) Jy

Я

Dho

χ€ S

$$\partial_j(\omega_\epsilon * (\alpha u)^\epsilon) \to (\alpha \partial_j u + \partial_j \alpha u)^e$$

in $L_2(\Omega)$ and, in particular,

 $\partial_j(\omega_\epsilon * (\alpha u)^\epsilon) \to \mathcal{O}_j u$

in $L_2(\Omega')$. But on Ω' we can discard α to get

$$\partial_j(\omega_\epsilon * u^\epsilon) \to p_j u.$$

If v_k do not have compact support (e.g. when Ω is not bounded), then we multiply v_k by a sequence of smooth cut-off functions $\zeta_k = \zeta(x/k)$ where $\zeta(x) = 1$ for $|x| \le 1$ and $\zeta(x) = 0$ for $|x| \ge 2$.

As an immediate application we show

 $\hat{\mathcal{W}}_{2}^{\dagger}(\mathbb{R}^{n}) = \mathcal{W}_{2}^{\dagger}(\mathbb{R}^{n})$

1.3 Hilbert space methods 39

Proposition 1.43. (i) Let $u, v \in W_2^1(\Omega) \cap L_{\infty}(\Omega)$. Then $uv \in W_2^1(\Omega) \cap L_{\infty}(\Omega)$ with

$$\partial_j(uv) = \partial_j uv + u\partial_j v, \qquad i = 1, \dots, n$$
 (1.56)

Let Ω, Ω_1 be two open sets in \mathbb{R}^n and let $H: \Omega_1 \to \Omega$ be a $C^1(\overline{\Omega})$ diffeomorphism. If $u \in W_2^1(\Omega)$ then $u \circ H \in W_2^1(\Omega')$ and

$$\int_{\Omega_1} (u \circ H) \partial_j \phi d\mathbf{y} = -\int_{\Omega_1} \sum_{i=1}^n (\partial_i u \circ H)) \partial_j H_i \phi d\mathbf{y}$$
(1.57)

Proof. Using Friedrichs lemma, we find sequences $(u_k)_{k\in\mathbb{N}}$, $(v_k)_{k\in\mathbb{N}}$ in $C_0^{\infty}(\Omega)$ such that

$$k \to u, \qquad v_k \to v$$

in $L_2(\Omega)$ and for any $\Omega' \subseteq \Omega$ we have

$$\nabla u_k \to \nabla u, \qquad \nabla v_k \to \nabla v$$

in $L_2(\Omega')$. Moreover, from the construction of the mollifiers we get

u

$$\|u_k\|_{L_{\infty}(\Omega)} \le \|u\|_{L_{\infty}(\Omega)} \qquad \|v_k\|_{L_{\infty}(\Omega)} \le \|v\|_{L_{\infty}(\Omega)}.$$

On the other hand

$$\int_{\Omega} u_n v_k \partial_j \phi d\mathbf{x} = -\int_{\Omega} (\partial_j u_n v_k + u_k \partial_j v_k) \phi d\mathbf{x}$$

for any $\phi \in C_0^{\infty}(\Omega)$. Thanks to the compact support of ϕ , the integration actually occurs over compact subsets of Ω and we can use L_2 convergence of $\nabla u_k, \nabla v_k$. Thus

$$\int_{\Omega} uv \partial_j \phi d\mathbf{x} = -\int_{\Omega} (\partial_j uv + u \partial_j v) \phi d\mathbf{x}$$

and the fact that $uv \in W_2^1(\Omega)$ follows from $\partial_j u, \partial_j v \in W_2^1(\Omega)$ and $u, v \in L_{\infty}(\Omega)$. The proof of the second statement follows similarly. We select sequence $(u_k)_{k\in\mathbb{N}}$ as above; then clearly $u_k \circ H \to u \circ H$ in $L_2(\Omega_1)$ and

$$(\partial_i u_k \circ H) \partial_j H_i \to (\partial_i u \circ H) \partial_j H_i$$

in $L_2(\Omega'_1)$ for any $\Omega'_1 \Subset \Omega$. For any $\psi \in C_0^{\infty}(\Omega_1)$ we get

$$\int_{\Omega_1} (u_k \circ H) \partial_j \phi d\mathbf{y} = -\int_{\Omega_1} \sum_{i=1}^k (\partial_i u_k \circ H) \partial_j H_i \phi d\mathbf{y}$$

and in the limit we obtain (1.57).