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1.3 Hilbert space methods

One of the most often used theorems of functional analysis is the Riesz rep-
resentation theorem.

Theorem 1.30 (Riesz representation theorem). If z* is a continuous
linear functional on a Hilbert space H, then there is exactly one elementy € H
such that

<z*x>=(x,y). (1.32)

1.3.1 To identify or not to identify—the Gelfand triple

Riesz theorem shows that there is a canonical isometry between a Hilbert
space H and its dual H*. It is therefore natural to identify H and H* and is
done so in most applications. There are, however, situations when it cannot
be done.

Assume that H is a Hilbert space equipped with a scalar product (-,)gy
and that V' C H is a subspace of H which is a Hilbert space in its own
right, endowed with a scalar product (-,-)y. Assume that V is densely and
continuously embedded in H that is V = H and ||z||g < c||z||v, z € V, for
some constant c¢. There is a canonical map T : H* — V* which is given by
restriction to V of any h* € H*:

<Th*,v>yixv=<h*,v >g+xy, vEV.
We easily see that
TR [y~ < CI\R ||+
Indeed
ITh* ||y« = sup | <Th* v >y«xv |= sup |<h*,v>pgxm|
llollv<1 llollv<1
< [h* = sup vl < cl|h*[a-.
llollv<1
Further, T is injective. For, if Th] = Thj, then
0=<Th] —Th,v>y«xy=<h] —h3, v >gexy

for all v € V' and the statement follows from density of V' in H. Finally, the
image of TH™ is dense in V*. Indeed, let v € V** be such that < v, Th* >=0
for all h* € H*. Then, by reflexivity,

0=<v,Th* >ysxy+=<Th", v >y«xy=<h*,v >g+xpyg, h*€ H"
implies v = 0.

Now, if we identify H* with H by the Riesz theorem and using T as the
canonical embedding from H* into V*, one writes
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and the injections are dense and continuous. In such=a cascg we sayhfhgt H is
the pivot space. Note that the scalar product in H comCldes Wlth the duality,
pairing < -, - >y«xy: i;(.bL

(f7g>H:<fag>V*><V7 fEH,gEV

Remembering now that V' is a Hilbert space with scalar product (-,-)y we
see that identifying also V' with V* would lead to an absurd — we would have
V = H = H* = V*. Thus, we cannot identify simultaneously both pairs.
In such situations it is common to identify the pivot space H with its dual
H* bur to leave V and V* as separate spaces with duality pairing being an
extension of the scalar product in H.

An instructive example is H = Ly(([0, 1], dz) (real) with scalar product

1
_ O/u(x)v(x da

and V = Lo ([0, 1], wdz) with scalar product
1
(u,v) = /u(x)v(x)w(m)dx,
LA_M}())OM-WL&‘L

where w is a nonnegative bessssi measurable function. Then it is useful to
identify V* = Ly([0, 1], w™tdz) and

1 1
9(x)
<f7 > = f d f d < f
g >vexv 0/(93)9 z < O/ NN 1f1lv gl

1.3.2 The Radon-Nikodym theorem

Let © and v be finite nonnegative measures on the same o-algebra in 2. We
say that v is absolutely continuous with respect to p if every set that has
pu-measure 0 also has v measure 0.

Theorem 1.31. If v is absolutely continuous with respect to p then there is
an integrable function g such that

v(E) :/gd,u7 (1.33)

E

for any p-measurable set E C (2.
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Proof. Assume for simplicity that p($2),v(§2) < co. Let H = Lo(£2,dp + dv)
on the field of reals. Schwarz inequality shows that if f € H, then f € Ly (du+
dv). The linear functional

<o’ f>= [ fdu
0
To be completed

1.3.3 Projection on a convex set veod

Corollary 1.32. Let K be a closed convex subset of a Hilbert space H. For
any x € H there is a unique y € K such that

— = inf —Zz||. 1.34
lz =yl = inf ||z 2| (1.34)

Moreover, y € K 1is a unique solution to the variational inequality
(r—y,2—y) <0 (1.35)

for any z € K. ((‘l'?"‘“é dii

UWeaqu € neiq
Proof. Let d = inf{ |z — z||. We can assume X ¢ K and so d > 0. Consider 4+
o ze

—_—

f(2) = |lz — z||, z € K and consider a minimizing sequence (z,)nen, 2n € K
such that d < f(z,) < d + 1/n. By the definition of f, (z,)nen is bounded
and thus it contains a weakly convergent subsequence, say ((,)nen. Since K
is closed and convex, by Corollary 1.24, (,, — y € K. Further we have
7 W\ x-4bvo Sﬁ-t{:[-f“("\r"h)'l — )
|[(h,z=y)| = lim |(h, x—=Cn)| < [[R[|lim inf [lz—Cp[] < [|A][Tim inf d+— = |[A[|d
n—oo n—o00 n—oo n

for any h € H and thus, taking supremum over ||h|| < 1, we get f(y) < d
which gives existence of a minimizer.
To prove equivalence of (1.35) and (1.34) assume first that y € K satisfies

(1.34) and let z € K. Then, from convexity, v = (1 —t)y+tz cKforte [0,1]
and thus —

7 2
e —yll < llz— (1 —t)y +t2)]| = [[(x — y) — t(z — y)]|

and thus = (_()ﬁ;‘j ) ~t(2-9) , (x-a)i'c (2-7))

2 ) 2 2
€T~ < — 2t(x — y 2 — + 7|z — .

Hence
tlz—yl*>2(z —y,2—y)
—

for any ¢ € (0,1] and thus, passing with ¢ — 0, (z — y,z —y) < 0, Conversely,
assume (1.35) is satisfied and consider — \
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M>_ ,g\\,)) —(‘.17")"'&‘:\‘1)"",(’"/‘) 2&!3)

o= y? = llz — 2I1* = (& - e v~ (e -z z) -G2 g,
= 2 x z 2(z,y) + , )+ 2(y, , ‘
O 2y) + 24, 9) — (,2) = (4,9)
Ty z— P (y -z y—z) SO
= 2(x2) - 2(x. -2 (y,2 )+ -
hence s ) ‘3) \11 ) ‘j\ U) (-‘jfj)
[z =yl <z -z T (27) r2(y,2)
for any 2z € K. (*=94,4,-94) ¢ O
For uniqueness, let vy, yo satisfy (x=Yq, y-ya) ¢ O
(x —y1,2—y1) <0, (z —y2,2—y2) <0, z€ H.
RS Q4
Choosing z = ys in the first inequality and z = y; in the second and adding
them, we get ||y; — y2[? < 0 which implies y; = y». L P e A ) <>
- (‘31, Ya— “i‘l-). -
We call the operator assigning to any x € K the element y € K satisfying
(1.34) the projection onto K and denote it by Fy.
Proposition 1.33. Let K be a nonempty closed and convex set. Then Pk s
Nnon erpansive mapping.
Proof. Let y; = Pgx;, i = 1,2. We have
(1 —y1,2—y1) <0, (2 — Y2, 2 — y2) <0, ze€H
so choosing, as before, z = y5 in the first and z = y; in the second inequality
and adding them together we obtain
//E(K,, 2 B ¥a (Y"rﬁh 'j-;"j’l)éo
Iy = wl® < (1 = w0 — ), | (Kamda - 9oy ¢o
hence | Pxx1 — Pras|| < ||z1 — z2]|. (v, 1Y~ "jn)-!(x\"-j;]i

'l
R - Pl ¢ U xall I'G r_,(\ﬁ 91-4.)
1.3.4 Theorems of Stampacchia and Lax—Mllgrar‘fl A
(X2-%, Ya- 9a) " e dey)
=+ (“31'3/1 | ‘ﬁ‘l' qa)
Consider the Dirichlet problem for the Laplace equation in {2 C R"

1.3.5 Motivation

—Au = in £, (1.36)

uloe ’ 9 (1.37)

Assume that there is a solution u € C?(£2) N C(£2). If we multiply (13@ by a
test function ¢ € C§°(£2) and 1ntegrate by parts then we obtain the problem

- " Ou Vg dl 1
\géu LPL‘_ S({)\Q /Vu V¢d§ /fqbd (1.38)

9]




) - S L

1.3 Hilbert space methods 29

Conversely, if u satisfies (1.38), then it is a distributional solution to (1.37).
Moreover, if we consider the minimization problem for D o
(o ble

1
() = = [ |Vul?dz — | fudx
2™

over K = {u € C*(12); ulape = 0} and if u is a solution to this problem then
fo;z;néeé@m:;eCo (£2) we have [ O« Q,OLQ\

| (ute) > T 9
<o Alogl 2o e 'S & - O Pl 208,

then we also obtain (1.38). The questlontqs how to obtain the solution.

In a similar way, we consider the obstacle problem, to minimize J over
K = {u € C*(); ulapge = 0, u > g} over some continuous function g
satisfying glsn < 0. Note that K is convex. Again, if u € K is a solution then
for any € > 0 and ¢ € K we obtain that u +e(¢p —u) = (1 — €)u + € is in K
and therefore

J(u+ (¢ — ) = J(u).
Here, we obtain only

A =l
—_———

/Vu V(¢ —u)da > /f(¢ —w)da. | *wV '}?3‘5)
(9] (%}

“olu f()v -ol§ vAb1
for any ¢ € K. For twice differentiable u we obtain “odl - g) «(‘,(\,_9
2 0
.../ Au(¢p — u)dx > /f((b —u)dx
Q Q

gwﬂ@ﬂ

and choosing ¢ = u + v, ¢ € C§°(£2) we get
V/ .
o auzd T TN
almost everywhere on 2. As u is continuous, the set N = {z € 2; u(z) >

g(x)} is open. Thus, taking ¢» € C§°(N), we see that for sufficiently small
€e>0,utep e K. Then, on N

—Au=f
Summarizing, for regular solutions the minimizer satisfies

—Au > f
u>g
(Au+ f)(u—yg)=0

on 2.
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Hilbert space theory

We begin with the following definition.

Definition 1.34. Let H be a Hilbert space. A bilinear form a: H x H — R
is said to be

(i) continuous of there is a constant C such that
la(z,y)l < Cllzllllyll, .y e H;
coercive if there is a constant a > 0 such that
a(z,z) > al|z|?.
Note that in the complex case, coercivity means |a(z, z)| > o z|?.
3+ Qccl-u"&..
Theorem 1.35. Assume that a(-,-) is a continuous coercive bilinear form on

a Hilbert space H. Let K be a nonempty closed and convex subset of H. Then,
given any ¢ € H*) there exists a unique element x € K such that for any

yekK )
a(z,y — ) 2@@ X H (1.40)

Moreover, if a is symmetric, then x is characterized by the property

1 1
ze K and Za(z,z)— < ¢,z >grxg=min—a(y,y)— < &,y >gxH -
2 yeK 2
- *(1.41)

Proof. First we note that from Riesz theorem, there is f € H such that
< ¢,y >p-xu= (f,y) for all y € H. Now, if we fix x € H, then y — a(z,y) is
a continuous linear functional on H. Thus, again by the Riesz theorem, there
is an operator A : H — H satisfying a(x,y) = (Az,y). Clearly, A is linear
and satisfies

| Az|| < Cllz]], (1.42)
e luy)= (Az, ) Z_0i||5ﬂ|\2 . (1.43)
Indeed = SW(’[ el

[Az|| = sup [(Az,y)| < Cllz|| sup [ly|],
llyll=1 lyll=1
and (1.43) is obvious.
Problem (1.40) amounts to finding = € K satisfying, for all y € K,

S (A.T,y—.’l?) Zf(fay_x) (144)

(A, 9-x)3 (58 y-x) :
Let us fix a constant p to be determined later. Then, multiplying both sides

of (1.44) by p and moving to one side, we find that (1.44) is equivalent to
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<0. (1.45)

Z (< (pf —pAz+2 —2,y —2) <0

Here we recognize the equivalent formulation of the projection problem (1.35),
that is, we can write
x = Px(pf — pAz + x) (1.46)

This is a fixed point problem for x in K. Denote Sy = P (pf—pAy+y).Clearly
S : K — K as it is a projection onto K and K, being closed, is a complete
metric space in the metric induced from H. Since Py is nonexpansive, we
have

1Sy1 — Syall < [(y1 — y2) — p(Ayr — Ay) ||
and thus kA(‘ﬂA':}t),‘j,"fl‘L)} N‘\Hr'dx"ll

151 = Syal® = lly1 — v2ll* = 2p(Ay1 — Aya, y1 — yo) + p*[| Ay1 — Ayol|®
<y = g2lP(1 = 200+ p*C%) 5 2 5;5
We can choose p in such a way that k2 :/1/— 2pa+ p?C? < we see that S
has a unique fixed point in K.
Assume now that a is symmetric. Then (z,y); = a(x,y) defines a new
scalar product which defines an equivalent norm ||z|; = /a(x,z) on H.
Indeed, by continuity and coerciveness

Izl = Va(z, 2) < VO]

and
el = VaCe,2) = valle].

Using again Riesz theorem, we find g € H such that

< ¢7y >H*xH= a(g7y)

and then (1.40) amounts to finding « € K such that

(g, g-x), = alg—z,y—x) <0

for all y € K but this is nothing else but finding projection x onto K with
respect to the new scalar product. Thus, there is a unique x € K
alg—=z,9—x)= ;rgg\/a(g 39— %)
1§ g"x'l]‘ = \b\'\"-ﬂ& “S“_‘j \!
However, expanding, this is the same as”ﬁngi\ng minimum of the function

y = alg—y,9-y) = alg, 9)+aly,y)—2a(g,y) =aly,y)2 < &,y >a-xm falg,9)-

Taking into account that a(g,g) is a constant, we see that x is the unique

minimizer of

1
Y — §a(y7y)— < O, Y >HexH -
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Corollary 1.36. Assume that a(-,-) is a continuous coercive bilinear form on
a Hilbert space H. Then, given any ¢ € H*, there exists a unique element
- H=

x € H such that for any y € H S\vaj = \S‘P':j ﬁ H gy

Frs u {J‘L )
a(r,y) =< b,y >mexn (1.47)
o - 7 -

Moreover, if a is symmetric, then x is characterized by the property
1 o1
xe€H and —a(z,2)— < ¢,z >gxpg=min—a(y,y)— < &, Yy >H+xH -
2 yeH 2
(1.48)

Proof. We use the Stampacchia theorem with K = H. Then there is a unique
element x € H satisfying \\A v || 2« I\ x 1\

d >< @,y —x >p~ . VQ(*’. )=<IL
jg/éM a(z,y—x) 2< Yy — T >p-xn g BYARC AT,
Using linearity, this must hold also for | @) | ¢ Clixliag
2
a(z,ty — ) >< ¢ty — & >pexi - Qi‘;’()zwllxu
for any_ﬂg_Rg € H. Factoring out t, we find V(AX. ‘j) = (‘?. U)

xy)< >/<¢y/@%Q>H*XH ?_“)rx" < C\x)
_ Am
and passing with ¢t — 400, we obtain £ e [&\ 1) .

&—«;{u"-\—-/‘v]e_ R Lx) AT
? ((r Y) ><¢7y>H*><H7 a(z,y) < &,y >mexm - 0= @ (x,x)
(\ﬁ A ) Ax ")) < Q(A») . 50(\\1(10"

1.3.6 Ad_]on’zt f)pergtlbrs y=Ax ¥* = A E:l

ol A l] Wdi=> o
@ (=< x) £ clan®
An 1mp0rtant role in functional analysis is played by the operation of taking

operator adjoint. If A € L(X,Y), then the adjoint operator A* is defined as
<y*, Ar>=<A*y*, > (1.49)

and it can be proved that it belongs to £(Y™*, X™*) with ||A*|| = ||A||. If A is
an unbounded operator, then the situation is more complicated. In general,
A* may not exist as a single-valued operator. In other words, there may be
many operators B satisfying

<y*, Ax>=<By*, >, x € D(A), y* € D(B). (1.50)

Operators A and B satisfying (1.50) are called adjoint to each other.
However, if D(A) is dense in X, then there is a unique maximal operator
A* adjoint to A; that is, any other B such that A and B are adjoint to each
other, must satisfy B C A*. This A* is called the adjoint operator to A. It
can be constructed in the following way. The domain D(A*) consists of all
elements y* of Y* for which there exists f* € X* with the property



