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1.3 Hilbert space methods

One of the most often used theorems of functional analysis is the Riesz rep-
resentation theorem.

Theorem 1.30 (Riesz representation theorem). If x∗ is a continuous
linear functional on a Hilbert space H, then there is exactly one element y ∈ H
such that

< x∗, x >= (x, y). (1.32)

1.3.1 To identify or not to identify–the Gelfand triple

Riesz theorem shows that there is a canonical isometry between a Hilbert
space H and its dual H∗. It is therefore natural to identify H and H∗ and is
done so in most applications. There are, however, situations when it cannot
be done.

Assume that H is a Hilbert space equipped with a scalar product (·, ·)H
and that V ⊂ H is a subspace of H which is a Hilbert space in its own
right, endowed with a scalar product (·, ·)V . Assume that V is densely and
continuously embedded in H that is V = H and ‖x‖H ≤ c‖x‖V , x ∈ V , for
some constant c. There is a canonical map T : H∗ → V ∗ which is given by
restriction to V of any h∗ ∈ H∗:

< Th∗, v >V ∗×V =< h∗, v >H∗×H , v ∈ V.

We easily see that
‖Th∗‖V ∗ ≤ C‖h∗‖H∗ .

Indeed

‖Th∗‖V ∗ = sup
‖v‖V ≤1

| < Th∗, v >V ∗×V | = sup
‖v‖V ≤1

| < h∗, v >H∗×H |

≤ ‖h∗‖H∗ sup
‖v‖V ≤1

‖v‖H ≤ c‖h∗‖H∗ .

Further, T is injective. For, if Th∗1 = Th∗2, then

0 =< Th∗1 − Th∗2, v >V ∗×V =< h∗1 − h∗2, v >H∗×H

for all v ∈ V and the statement follows from density of V in H. Finally, the
image of TH∗ is dense in V ∗. Indeed, let v ∈ V ∗∗ be such that < v, Th∗ >= 0
for all h∗ ∈ H∗. Then, by reflexivity,

0 =< v, Th∗ >V ∗∗×V ∗=< Th∗, v >V ∗×V =< h∗, v >H∗×H , h∗ ∈ H∗

implies v = 0.
Now, if we identify H∗ with H by the Riesz theorem and using T as the

canonical embedding from H∗ into V ∗, one writes
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V ⊂ H ' H∗ ⊂ V ∗

and the injections are dense and continuous. In such a case we say that H is
the pivot space. Note that the scalar product in H coincides with the duality
pairing < ·, · >V ∗×V :

(f, g)H =< f, g >V ∗×V , f ∈ H, g ∈ V.

Remembering now that V is a Hilbert space with scalar product (·, ·)V we
see that identifying also V with V ∗ would lead to an absurd – we would have
V = H = H∗ = V ∗. Thus, we cannot identify simultaneously both pairs.
In such situations it is common to identify the pivot space H with its dual
H∗ bur to leave V and V ∗ as separate spaces with duality pairing being an
extension of the scalar product in H.

An instructive example is H = L2([0, 1], dx) (real) with scalar product

(u, v) =

1∫
0

u(x)v(x)dx

and V = L2([0, 1], wdx) with scalar product

(u, v) =

1∫
0

u(x)v(x)w(x)dx,

where w is a nonnegative bounded measurable function. Then it is useful to
identify V ∗ = L2([0, 1], w−1dx) and

< f, g >V ∗×V =

1∫
0

f(x)g(x)dx ≤
1∫

0

f(x)
√
w(x)

g(x)√
w(x)

dx ≤ ‖f‖V ‖g‖V ∗ .

1.3.2 The Radon-Nikodym theorem

Let µ and ν be finite nonnegative measures on the same σ-algebra in Ω. We
say that ν is absolutely continuous with respect to µ if every set that has
µ-measure 0 also has ν measure 0.

Theorem 1.31. If ν is absolutely continuous with respect to µ then there is
an integrable function g such that

ν(E) =

∫
E

gdµ, (1.33)

for any µ-measurable set E ⊂ Ω.
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Proof. Assume for simplicity that µ(Ω), ν(Ω) <∞. Let H = L2(Ω, dµ+ dν)
on the field of reals. Schwarz inequality shows that if f ∈ H, then f ∈ L1(dµ+
dν). The linear functional

< x∗, f >=

∫
Ω

fdµ

To be completed

1.3.3 Projection on a convex set

Corollary 1.32. Let K be a closed convex subset of a Hilbert space H. For
any x ∈ H there is a unique y ∈ K such that

‖x− y‖ = inf
z∈K
‖x− z‖. (1.34)

Moreover, y ∈ K is a unique solution to the variational inequality

(x− y, z − y) ≤ 0 (1.35)

for any z ∈ K.

Proof. Let d = inf
z∈K
‖x − z‖. We can assume z /∈ K and so d > 0. Consider

f(z) = ‖x − z‖, z ∈ K and consider a minimizing sequence (zn)n∈N, zn ∈ K
such that d ≤ f(zn) ≤ d + 1/n. By the definition of f , (zn)n∈N is bounded
and thus it contains a weakly convergent subsequence, say (ζn)n∈N. Since K
is closed and convex, by Corollary 1.24, ζn ⇀ y ∈ K. Further we have

|(h, x−y)| = lim
n→∞

|(h, x−ζn)| ≤ ‖h‖ lim inf
n→∞

‖x−ζn‖ ≤ ‖h‖ lim inf
n→∞

d+
1

n
= ‖h‖d

for any h ∈ H and thus, taking supremum over ‖h‖ ≤ 1, we get f(y) ≤ d
which gives existence of a minimizer.

To prove equivalence of (1.35) and (1.34) assume first that y ∈ K satisfies
(1.34) and let z ∈ K. Then, from convexity, v = (1− t)y+ tz ∈ K for t ∈ [0, 1]
and thus

‖x− y‖ ≤ ‖x− ((1− t)y + tz)‖ = ‖(x− y)− t(z − y)‖

and thus

‖x− y‖2 ≤ ‖x− y‖2 − 2t(x− y, z − y) + t2‖z − y‖2.

Hence
t‖z − y‖2 ≥ 2(x− y, z − y)

for any t ∈ (0, 1] and thus, passing with t→ 0, (x− y, z − y) ≤ 0. Conversely,
assume (1.35) is satisfied and consider
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‖x− y‖2 − ‖x− z‖2 = (x− y, x− y)− (x− z, x− z)
= 2(x, z)− 2(x, y) + 2(y, y)− 2(y, z) + 2(y, z)− (y, y)

= 2(x− y, z − y)− (y − z, y − z) ≤ 0

hence
‖x− y‖ ≤ ‖x− z‖

for any z ∈ K.
For uniqueness, let y1, y2 satisfy

(x− y1, z − y1) ≤ 0, (x− y2, z − y2) ≤ 0, z ∈ H.

Choosing z = y2 in the first inequality and z = y1 in the second and adding
them, we get |y1 − y2|2 ≤ 0 which implies y1 = y2.

We call the operator assigning to any x ∈ K the element y ∈ K satisfying
(1.34) the projection onto K and denote it by Pk.

Proposition 1.33. Let K be a nonempty closed and convex set. Then PK is
non expansive mapping.

Proof. Let yi = PKxi, i = 1, 2. We have

(x1 − y1, z − y1) ≤ 0, (x2 − y2, z − y2) ≤ 0, z ∈ H

so choosing, as before, z = y2 in the first and z = y1 in the second inequality
and adding them together we obtain

‖y1 − y2‖2 ≤ (x1 − x2, y1 − y2),

hence ‖PKx1 − PKx2‖ ≤ ‖x1 − x2‖.

1.3.4 Theorems of Stampacchia and Lax-Milgram

1.3.5 Motivation

Consider the Dirichlet problem for the Laplace equation in Ω ⊂ Rn

−∆u = f in Ω, (1.36)

u|∂Ω = 0. (1.37)

Assume that there is a solution u ∈ C2(Ω)∩C(Ω̄). If we multiply (1.37) by a
test function φ ∈ C∞0 (Ω) and integrate by parts, then we obtain the problem∫

Ω

∇u · ∇φdx =

∫
Ω

fφdx. (1.38)
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Conversely, if u satisfies (1.38), then it is a distributional solution to (1.37).
Moreover, if we consider the minimization problem for

J(u) =
1

2

∫
Ω

|∇u|2dx−
∫
Ω

fudx

over K = {u ∈ C2(Ω); u|∂Ω = 0} and if u is a solution to this problem then
for any ε > 0 and C∞0 (Ω) we have

J(u+ εφ) ≥ J(u),

then we also obtain (1.38). The question is how to obtain the solution.
In a similar way, we consider the obstacle problem, to minimize J over

K = {u ∈ C2(Ω); u|∂Ω = 0, u ≥ g} over some continuous function g
satisfying g|∂Ω < 0. Note that K is convex. Again, if u ∈ K is a solution then
for any ε > 0 and φ ∈ K we obtain that u+ ε(φ− u) = (1− ε)u+ εφ is in K
and therefore

J(u+ ε(φ− u)) ≥ J(u).

Here, we obtain only∫
Ω

∇u · ∇(φ− u)dx ≥
∫
Ω

f(φ− u)dx. (1.39)

for any φ ∈ K. For twice differentiable u we obtain∫
Ω

∆u(φ− u)dx ≥
∫
Ω

f(φ− u)dx

and choosing φ = u+ ψ, ψ ∈ C∞0 (Ω) we get

−∆u ≥ f

almost everywhere on Ω. As u is continuous, the set N = {x ∈ Ω; u(x) >
g(x)} is open. Thus, taking ψ ∈ C∞0 (N), we see that for sufficiently small
ε > 0, u± εφ ∈ K. Then, on N

−∆u = f

Summarizing, for regular solutions the minimizer satisfies

−∆u ≥ f

u ≥ g

(∆u+ f)(u− g) = 0

on Ω.
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Hilbert space theory

We begin with the following definition.

Definition 1.34. Let H be a Hilbert space. A bilinear form a : H ×H → R
is said to be

(i) continuous of there is a constant C such that

|a(x, y)| ≤ C‖x‖‖y‖, x, y ∈ H;

coercive if there is a constant α > 0 such that

a(x, x) ≥ α‖x‖2.

Note that in the complex case, coercivity means |a(x, x)| ≥ α‖x‖2.

Theorem 1.35. Assume that a(·, ·) is a continuous coercive bilinear form on
a Hilbert space H. Let K be a nonempty closed and convex subset of H. Then,
given any φ ∈ H∗, there exists a unique element x ∈ K such that for any
y ∈ K

a(x, y − x) ≥< φ, y − x >H∗×H (1.40)

Moreover, if a is symmetric, then x is characterized by the property

x ∈ K and
1

2
a(x, x)− < φ, x >H∗×H= min

y∈K

1

2
a(y, y)− < φ, y >H∗×H .

(1.41)

Proof. First we note that from Riesz theorem, there is f ∈ H such that
< φ, y >H∗×H= (f, y) for all y ∈ H. Now, if we fix x ∈ H, then y → a(x, y) is
a continuous linear functional on H. Thus, again by the Riesz theorem, there
is an operator A : H → H satisfying a(x, y) = (Ax, y). Clearly, A is linear
and satisfies

‖Ax‖ ≤ C‖x‖, (1.42)

(Ax, x) ≥ α‖x‖2, . (1.43)

Indeed,
‖Ax‖ = sup

‖y‖=1

|(Ax, y)| ≤ C‖x‖ sup
‖y‖=1

‖y‖,

and (1.43) is obvious.
Problem (1.40) amounts to finding x ∈ K satisfying, for all y ∈ K,

(Ax, y − x) ≥ (f, y − x). (1.44)

Let us fix a constant ρ to be determined later. Then, multiplying both sides
of (1.44) by ρ and moving to one side, we find that (1.44) is equivalent to
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(ρf − ρAx+ x− x, y − x) ≤ 0. (1.45)

Here we recognize the equivalent formulation of the projection problem (1.35),
that is, we can write

x = PK(ρf − ρAx+ x) (1.46)

This is a fixed point problem for x inK. Denote Sy = PK(ρf−ρAy+y) Clearly
S : K → K as it is a projection onto K and K, being closed, is a complete
metric space in the metric induced from H. Since PK is nonexpansive, we
have

‖Sy1 − Sy2‖ ≤ ‖(y1 − y2)− ρ(Ay1 −Ay2)‖

and thus

‖Sy1 − Sy2‖2 = ‖y1 − y2‖2 − 2ρ(Ay1 −Ay2, y1 − y2) + ρ2‖Ay1 −Ay2‖2

≤ ‖y1 − y2‖2(1− 2ρα+ ρ2C2)

We can choose ρ in such a way that k2 = 1− 2ρα + ρ2C2 < 1 we see that S
has a unique fixed point in K.

Assume now that a is symmetric. Then (x, y)1 = a(x, y) defines a new
scalar product which defines an equivalent norm ‖x‖1 =

√
a(x, x) on H.

Indeed, by continuity and coerciveness

‖x‖1 =
√
a(x, x) ≤

√
C‖x‖

and
‖x‖ =

√
a(x, x) ≥

√
α‖x‖.

Using again Riesz theorem, we find g ∈ H such that

< φ, y >H∗×H= a(g, y)

and then (1.40) amounts to finding x ∈ K such that

a(g − x, y − x) ≤ 0

for all y ∈ K but this is nothing else but finding projection x onto K with
respect to the new scalar product. Thus, there is a unique x ∈ K√

a(g − x, g − x) = min
y∈K

√
a(g − x, g − x).

However, expanding, this is the same as finding minimum of the function

y → a(g−y, g−y) = a(g, g)+a(y, y)−2a(g, y) = a(y, y)−2 < φ, y >H∗×H +a(g, g).

Taking into account that a(g, g) is a constant, we see that x is the unique
minimizer of

y → 1

2
a(y, y)− < φ, y >H∗×H .
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Corollary 1.36. Assume that a(·, ·) is a continuous coercive bilinear form on
a Hilbert space H. Then, given any φ ∈ H∗, there exists a unique element
x ∈ H such that for any y ∈ H

a(x, y) =< φ, y >H∗×H (1.47)

Moreover, if a is symmetric, then x is characterized by the property

x ∈ H and
1

2
a(x, x)− < φ, x >H∗×H= min

y∈H

1

2
a(y, y)− < φ, y >H∗×H .

(1.48)

Proof. We use the Stampacchia theorem with K = H. Then there is a unique
element x ∈ H satisfying

a(x, y − x) ≥< φ, y − x >H∗×H .

Using linearity, this must hold also for

a(x, ty − x) ≥< φ, ty − x >H∗×H .

for any t ∈ R, v ∈ H. Factoring out t, we find

ta(x, y − xt−1) ≥ t < φ, y − xt−1 >H∗×H .

and passing with t→ ±∞, we obtain

a(x, y) ≥< φ, y >H∗×H , a(x, y) ≥< φ, y >H∗×H .

1.3.6 Adjoint Operators

An important role in functional analysis is played by the operation of taking
operator adjoint. If A ∈ L(X,Y ), then the adjoint operator A∗ is defined as

<y∗, Ax>=<A∗y∗, x> (1.49)

and it can be proved that it belongs to L(Y ∗, X∗) with ‖A∗‖ = ‖A‖. If A is
an unbounded operator, then the situation is more complicated. In general,
A∗ may not exist as a single-valued operator. In other words, there may be
many operators B satisfying

<y∗, Ax>=<By∗, x>, x ∈ D(A), y∗ ∈ D(B). (1.50)

Operators A and B satisfying (1.50) are called adjoint to each other.
However, if D(A) is dense in X, then there is a unique maximal operator

A∗ adjoint to A; that is, any other B such that A and B are adjoint to each
other, must satisfy B ⊂ A∗. This A∗ is called the adjoint operator to A. It
can be constructed in the following way. The domain D(A∗) consists of all
elements y∗ of Y ∗ for which there exists f∗ ∈ X∗ with the property


