1.3 Hilbert space methods

One of the most often used theorems of functional analysis is the Riesz representation theorem.

Theorem 1.30 (Riesz representation theorem). If x^* is a continuous linear functional on a Hilbert space H, then there is exactly one element $y \in H$ such that

$$\langle x^*, x \rangle = (x, y).$$
 (1.32)

1.3.1 To identify or not to identify-the Gelfand triple

Riesz theorem shows that there is a canonical isometry between a Hilbert space H and its dual H^* . It is therefore natural to identify H and H^* and is done so in most applications. There are, however, situations when it cannot be done.

Assume that H is a Hilbert space equipped with a scalar product $(\cdot, \cdot)_H$ and that $V \subset H$ is a subspace of H which is a Hilbert space in its own right, endowed with a scalar product $(\cdot, \cdot)_V$. Assume that V is densely and continuously embedded in H that is $\overline{V} = H$ and $||x||_H \leq c||x||_V$, $x \in V$, for some constant c. There is a canonical map $T : H^* \to V^*$ which is given by restriction to V of any $h^* \in H^*$:

$$< Th^*, v >_{V^* \times V} = < h^*, v >_{H^* \times H}, v \in V.$$

We easily see that

$$||Th^*||_{V^*} \le C ||h^*||_{H^*}.$$

Indeed

$$\begin{aligned} \|Th^*\|_{V^*} &= \sup_{\|v\|_V \le 1} | < Th^*, v >_{V^* \times V} | = \sup_{\|v\|_V \le 1} | < h^*, v >_{H^* \times H} | \\ &\leq \|h^*\|_{H^*} \sup_{\|v\|_V \le 1} \|v\|_H \le c \|h^*\|_{H^*}. \end{aligned}$$

Further, T is injective. For, if $Th_1^* = Th_2^*$, then

$$0 = < Th_1^* - Th_2^*, v >_{V^* \times V} = < h_1^* - h_2^*, v >_{H^* \times H}$$

for all $v \in V$ and the statement follows from density of V in H. Finally, the image of TH^* is dense in V^* . Indeed, let $v \in V^{**}$ be such that $\langle v, Th^* \rangle = 0$ for all $h^* \in H^*$. Then, by reflexivity,

$$0 = < v, Th^* >_{V^* \times V^*} = < Th^*, v >_{V^* \times V} = < h^*, v >_{H^* \times H}, \quad h^* \in H^*$$

implies v = 0.

Now, if we identify H^* with H by the Riesz theorem and using T as the canonical embedding from H^* into V^* , one writes

261 Basic Facts from Functional Analysis and Banach Lattices

$$V \subset H \simeq H^* \subset V^*$$

 $V \subset H \simeq H^* \subset V^* \qquad \qquad \bigvee \subset H \subset \bigvee^*$ and the injections are dense and continuous. In such a case we say that H is the pivot space. Note that the scalar product in H coincides with the duality pairing $< \cdot, \cdot >_{V^* \times V}$:

$$(f,g)_H = \langle f,g \rangle_{V^* \times V}, \quad f \in H, g \in V.$$

Remembering now that V is a Hilbert space with scalar product $(\cdot, \cdot)_V$ we see that identifying also V with V^* would lead to an absurd – we would have $V = H = H^* = V^*$. Thus, we cannot identify simultaneously both pairs. In such situations it is common to identify the pivot space H with its dual H^* bur to leave V and V^{*} as separate spaces with duality pairing being an extension of the scalar product in H.

An instructive example is $H = L_2([0, 1], dx)$ (real) with scalar product

$$(u,v) = \int_{0}^{1} u(x)v(x)dx$$

and $V = L_2([0, 1], wdx)$ with scalar product

$$(u,v) = \int_{0}^{1} u(x)v(x)w(x)dx,$$

where w is a nonnegative beyond measurable function. Then it is useful to identify $V^* = L_2([0, 1], w^{-1}dx)$ and

$$< f, g >_{V^* \times V} = \int_0^1 f(x)g(x)dx \le \int_0^1 f(x)\sqrt{w(x)}\frac{g(x)}{\sqrt{w(x)}}dx \le \|f\|_V \|g\|_{V^*}.$$

1.3.2 The Radon-Nikodym theorem

Let μ and ν be finite nonnegative measures on the same σ -algebra in Ω . We say that ν is absolutely continuous with respect to μ if every set that has μ -measure 0 also has ν measure 0.

Theorem 1.31. If ν is absolutely continuous with respect to μ then there is an integrable function q such that

$$\nu(E) = \int\limits_{E} g d\mu, \qquad (1.33)$$

for any μ -measurable set $E \subset \Omega$.

red

Proof. Assume for simplicity that $\mu(\Omega), \nu(\Omega) < \infty$. Let $H = L_2(\Omega, d\mu + d\nu)$ on the field of reals. Schwarz inequality shows that if $f \in H$, then $f \in L_1(d\mu + d\nu)$. The linear functional

$$< x^*, f > = \int_{\Omega} f d\mu$$

To be completed

1.3.3 Projection on a convex set

Corollary 1.32. Let K be a closed convex subset of a Hilbert space H. For any $x \in H$ there is a unique $y \in K$ such that

$$||x - y|| = \inf_{z \in K} ||x - z||.$$
(1.34)

Moreover, $y \in K$ is a unique solution to the variational inequality

$$(x - y, z - y) \le 0 \tag{1.35}$$

for any $z \in K$.

Proof. Let $d = \inf_{z \in K} ||x - z||$. We can assume $\chi \notin K$ and so d > 0. Consider d = f(z) = ||x - z||, $z \in K$ and consider a minimizing sequence $(z_n)_{n \in \mathbb{N}}$, $z_n \in K$ such that $d \leq f(z_n) \leq d + 1/n$. By the definition of f, $(z_n)_{n \in \mathbb{N}}$ is bounded and thus it contains a weakly convergent subsequence, say $(\zeta_n)_{n \in \mathbb{N}}$. Since K is closed and convex, by Corollary 1.24, $\zeta_n \rightharpoonup y \in K$. Further we have $(f(x, x - y)) = \lim_{n \to \infty} |(h, x - \zeta_n)| \leq ||h|| \liminf_{n \to \infty} ||x - \zeta_n|| \leq ||h|| \liminf_{n \to \infty} d + \frac{1}{n} = ||h|| d$

for any $h \in H$ and thus, taking supremum over $||h|| \leq 1$, we get $f(y) \leq d$ which gives existence of a minimizer.

To prove equivalence of (1.35) and (1.34) assume first that $y \in K$ satisfies (1.34) and let $z \in K$. Then, from convexity, $v = (1-t)y + tz \in K$ for $t \in [0, 1]$ and thus

$$\|x - y\| \le \|x - ((1 - t)y + tz)\| = \|(x - y) - t(z - y)\|$$

$$= ((x-y) - t(z-y), (x-y) - t(z-y), (x-y) - t(z-y) = (x-y)^{2} - 2t(x-y, z-y) + t^{2}||z-y||^{2}.$$

Hence

ar

$$t ||z - y||^2 \ge 2(x - y, z - y)$$

for any $t \in (0, 1]$ and thus, passing with $t \to 0$, $(x - y, z - y) \le 0$. Conversely, assume (1.35) is satisfied and consider

1 Basic Facts from Functional Analysis and Banach Lattices 28

$$\begin{aligned} \|x - y\|^2 - \|x - z\|^2 &= (x - y, x - y) - (x - z, x - z) & - (z, z) \\ & = 2(x, z) - 2(x, y) + 2(y, y) - 2(y, z) + 2(y, z) - (y, y) \\ &= 2(x - y, z - y) - (y - z, y - z) \le 0 \\ & = 2(x, z) - 2(x, y) - 2(y, z) + 2(y, y) - (y, y) \\ & hence & \\ & \|x - y\| \le \|x - z\| & (z, z) + 2(y, z) \\ & hence & \\ & \|x - y\| \le \|x - z\| & (z, z) + 2(y, z) \\ & hence & \\ & \|x - y\| \le \|x - z\| & (z, z) + 2(y, z) \\ & hence & \\ & \|x - y\| \le \|x - z\| & (z, z) + 2(y, z) \\ & hence & \\ & \|x - y\| \le \|x - z\| & (z, z) + 2(y, z) \\ & hence & \\ &$$

fo

For uniqueness, let y_1, y_2 satisfy

$$(x - y_1, z - y_1) \le 0, \qquad (x - y_2, z - y_2) \le 0, \qquad z \in H.$$

Choosing $z = y_2$ in the first inequality and $z = y_1$ in the second and adding them, we get $||y_1 - y_2||^2 \le 0$ which implies $y_1 = y_2$. $(\ y_1 - y_1 - y_1) = (\ y_2 - y_1 - y_2) = (\ y_2 - y_2)$

(1.34) the projection onto K and denote it by $P_{\mathbf{k}}$.

Proposition 1.33. Let K be a nonempty closed and convex set. Then P_K is non expansive mapping.

Proof. Let $y_i = P_K x_i$, i = 1, 2. We have

$$(x_1 - y_1, z - y_1) \le 0,$$
 $(x_2 - y_2, z - y_2) \le 0,$ $z \in H$

so choosing, as before, $z = y_2$ in the first and $z = y_1$ in the second inequality and adding them together we obtain $\begin{pmatrix} (x_1 - y_1, y_2 - y_3) \\ (y_1 - y_2, y_2 - y_3) \\ (y_1 - y_3, y_3 - y_3$

hence
$$||P_K x_1 - P_K x_2|| \le ||x_1 - x_2||$$
.
 $||Y_1 - y_2||^2 \le (x_1 - x_2, y_1 - y_2),$
 $||P_K x_1 - P_K x_2|| \le ||x_1 - x_2||.$
 $||P_K x_1 - P_K x_2|| \le ||x_1 - x_2||.$
 $||P_K x_1 - P_K x_2|| \le ||x_1 - x_2||.$
 $||Q_K x_1 - Y_1 - Y$

the Dirichlet problem for the Laplace equation in Ω

$$-\Delta u = f \quad \text{in} \quad \Omega, \tag{1.36}$$

$$u|_{\partial\Omega} = \underbrace{0.} \qquad \mathbf{9} \tag{1.37}$$

Assume that there is a solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$. If we multiply (1.36) by a test function $\phi \in C_0^{\infty}(\Omega)$ and integrate by parts, then we obtain the problem

$$\int \Delta u \, \varphi h_{\tau}^{-} \quad \int_{\Omega} \varphi \, \nabla u \cdot n \, ds - \int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\Omega} f \phi \, dx. \tag{1.38}$$

1.3 Hilbert space methods 29

cethe Dischlete

Or

Conversely, if u satisfies (1.38), then it is a distributional solution to (1.37).

Moreover, if we consider the minimization problem for

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} f u dx$$

over $K = \{u \in C^2(\Omega); u|_{\partial\Omega} = 0\}$ and if \underline{u} is a solution to this problem then for any $\underline{\epsilon} \not \in \mathbb{R}$ and $C_0^{\infty}(\Omega)$ we have

for any $\epsilon \leq \mathbb{R}$ and $C_0^{\infty}(\Omega)$ we have $\varepsilon \geq 0$ $\varphi \in J(u + \epsilon \phi) \geq J(u), = |\nabla u|^2 + \varepsilon |\nabla \varphi|^2 +$

In a similar way, we consider the obstacle problem, to minimize J over $K = \{u \in C^2(\Omega); u|_{\partial\Omega} = 0, u \geq g\}$ over some continuous function g satisfying $g|_{\partial\Omega} < 0$. Note that K is convex. Again, if $u \in K$ is a solution then for any $\epsilon > 0$ and $\phi \in K$ we obtain that $u + \epsilon(\phi - u) = (1 - \epsilon)u + \epsilon \phi$ is in K and therefore

$$J(u + \epsilon(\phi - u)) \ge J(u).$$

Here, we obtain only

$$J(u + \epsilon(\phi - u)) \ge J(u).$$

$$\int_{\Omega} \nabla u \cdot \nabla(\phi - u) dx \ge \int_{\Omega} f(\phi - u) dx.$$

$$\int_{\Omega} \nabla u \cdot \nabla(\phi - u) dx \ge \int_{\Omega} f(\phi - u) dx.$$

$$\int_{\Omega} \nabla u \cdot \nabla(\phi - u) dx \ge \int_{\Omega} f(\phi - u) dx.$$

for any $\phi \in K$. For twice differentiable u we obtain

$$-\int_{\Omega} \Delta u(\phi-u) dx \geq \int_{\Omega} f(\phi-u) dx$$

and choosing $\phi = u + \psi, \ \psi \in C_0^\infty(\Omega)$ we get $\bigvee_{O} -\Delta u \ge f$

$$-\Delta u \ge f$$

almost everywhere on Ω . As u is continuous, the set $N = \{x \in \Omega; u(x) > 0\}$ g(x) is open. Thus, taking $\psi \in C_0^{\infty}(N)$, we see that for sufficiently small $\epsilon > 0, u \pm \epsilon \phi \in K$. Then, on N

$$-\Delta u = f$$

Summarizing, for regular solutions the minimizer satisfies

$$\begin{split} -\Delta u &\geq f \\ u &\geq g \\ (\Delta u + f)(u - g) &= 0 \end{split}$$

on Ω .

30 1 Basic Facts from Functional Analysis and Banach Lattices

Hilbert space theory

We begin with the following definition.

Definition 1.34. Let H be a Hilbert space. A bilinear form $a : H \times H \to \mathbb{R}$ is said to be

(i) continuous of there is a constant C such that

$$|a(x,y)| \le C ||x|| ||y||, \quad x,y \in H;$$

coercive if there is a constant $\alpha > 0$ such that

$$a(x,x) \ge \alpha \|x\|^2.$$

Note that in the complex case, coercivity means $|a(x,x)| \ge \alpha ||x||^2$.

Theorem 1.35. Assume that $a(\cdot, \cdot)$ is a continuous coercive bilinear form on a Hilbert space H. Let K be a nonempty closed and convex subset of H. Then, given any $\phi \in H^*$ there exists a unique element $x \in K$ such that for any $y \in K$

$$a(x, y - x) \ge \langle \phi, y - x \rangle_{H^* \times H}$$
(1.40)

Moreover, if a is symmetric, then x is characterized by the property

$$x \in K$$
 and $\frac{1}{2}a(x,x) - \langle \phi, x \rangle_{H^* \times H} = \min_{y \in K} \frac{1}{2}a(y,y) - \langle \phi, y \rangle_{H^* \times H}$.
(1.41)

Proof. First we note that from Riesz theorem, there is $f \in H$ such that $\langle \phi, y \rangle_{H^* \times H} = (f, y)$ for all $y \in H$. Now, if we fix $x \in H$, then $y \to a(x, y)$ is a continuous linear functional on H. Thus, again by the Riesz theorem, there is an operator $A : H \to H$ satisfying a(x, y) = (Ax, y). Clearly, A is linear and satisfies

$$||Ax|| \le C||x||, \tag{1.42}$$

$$e(\mathbf{x}, \mathbf{x}) = (Ax, x) \ge \alpha ||x||^2 \mathbf{y}.$$

$$= \sup |e(\mathbf{x}, \mathbf{x})|$$
(1.43)

Indeed,

$$||Ax|| = \sup_{\|y\|=1} |(Ax, y)| \le C ||x|| \sup_{\|y\|=1} ||y||,$$

and (1.43) is obvious.

Problem (1.40) amounts to finding $x \in K$ satisfying, for all $y \in K$,

Let us fix a constant ρ to be determined later. Then, multiplying both sides of (1.44) by ρ and moving to one side, we find that (1.44) is equivalent to

(u - x, y - x) (1.3 Hilbert space methods 31

$$\bigvee_{\mathbf{y} \in \mathbf{k}} (\rho f - \rho A x + x - x, y - x) \le 0.$$
(1.45)

Here we recognize the equivalent formulation of the projection problem (1.35), that is, we can write

$$x = P_K(\rho f - \rho A x + x) \tag{1.46}$$

This is a fixed point problem for x in K. Denote $Sy = P_K(\rho f - \rho Ay + y)$. Clearly $S: K \to K$ as it is a projection onto K and K, being closed, is a complete metric space in the metric induced from H. Since P_K is nonexpansive, we have $\|Sy_K - Sy_K\| \leq \|(y_K - y_K) - \rho(Ay_K - Ay_K)\|$

and thus

$$||Sy_1 - Sy_2|| \le ||(y_1 - y_2) - \rho(Ay_1 - Ay_2)|| \left(A(y_1 - y_1), y_2 - y_2 \right) \ge \alpha ||y_2 - y_2||^2$$

$$||Sy_1 - Sy_2||^2 = ||y_1 - y_2||^2 - 2\rho(Ay_1 - Ay_2, y_1 - y_2) + \rho^2 ||Ay_1 - Ay_2||^2$$

$$\leq ||y_1 - y_2||^2 (1 - 2\rho\alpha + \rho^2 C^2) \quad \text{old} \quad \text{old$$

We can choose ρ in such a way that $k^2 = 1 - 2\rho\alpha + \rho^2 C^2 < 1$ we see that S has a unique fixed point in K.

Assume now that a is symmetric. Then $(x, y)_1 = a(x, y)$ defines a new scalar product which defines an equivalent norm $||x||_1 = \sqrt{a(x, x)}$ on H. Indeed, by continuity and coerciveness

$$\|x\|_1 = \sqrt{a(x,x)} \le \sqrt{C} \|x\|$$

and

$$\|x\|_{\mathbf{1}} = \sqrt{a(x,x)} \ge \sqrt{\alpha} \|x\|.$$

Using again Riesz theorem, we find $g \in H$ such that

$$\langle \phi, y \rangle_{H^* \times H} = a(g, y)$$

and then (1.40) amounts to finding $x \in K$ such that

$$(g-x, g-x) = a(g-x, y-x) \leq 0$$

for all $y \in K$ but this is nothing else but finding projection x onto K with respect to the new scalar product. Thus, there is a unique $x \in K$

$$\sqrt{a(g-x,g-x)} = \min_{\substack{y \in K}} \sqrt{a(g-y,g-y)}.$$

However, expanding, this is the same as finding minimum of the function

$$y \to a(g-y, g-y) = a(g, g) + a(y, y) - 2a(g, y) = a(y, y) - 2 < \phi, y >_{H^* \times H} + a(g, g) + a(y, y) - 2a(g, y) = a(y, y) - 2a(g, y$$

Taking into account that a(g,g) is a constant, we see that x is the unique minimizer of

$$y \to \frac{1}{2}a(y,y) - \langle \phi, y \rangle_{H^* \times H}$$

1 Basic Facts from Functional Analysis and Banach Lattices 32

Corollary 1.36. Assume that $a(\cdot, \cdot)$ is a continuous coercive bilinear form on a Hilbert space H. Then, given any $\phi \in H^*_{-}$, there exists a unique element $\begin{cases} H = H^{*}(\mathbf{m}) \\ \omega_{2}^{*}(\mathbf{n}) \end{cases}$ (1.47)

Moreover, if a is symmetric, then x is characterized by the property

$$x \in H$$
 and $\frac{1}{2}a(x,x) - \langle \phi, x \rangle_{H^* \times H} = \min_{y \in H} \frac{1}{2}a(y,y) - \langle \phi, y \rangle_{H^* \times H}$.
(1.48)

Proof. We use the Stampacchia theorem with K = H. Then there is a unique $||A \times || \ge \propto || \times ||$ element $x \in H$ satisfying

$$a(x,ty-x) \ge <\phi, ty-x >_{H^* \times H}.$$

for any $t \in R, y \in H$. Factoring out t, we find

$$a(x, ty - x) \ge \langle \phi, ty - x \rangle_{H^* \times H} .$$

$$\in H. \text{ Factoring out } t, \text{ we find}$$

$$ta(x, y \rightarrow xt^{-1}) \ge t \langle \phi, y - xt^{-1} \rangle_{H^* \times H} .$$

$$h \ t \rightarrow \pm \infty, \text{ we obtain} \qquad t \rightarrow - \infty$$

$$R \ (A)$$

$$e \ (x, y) \ge \langle h \ x \|^2$$

$$(Ax, y) = (f, y)$$

$$(Ax, y) = a \ (x, y)$$

$$(Ax, y) = a \ (x, y)$$

and passing with $t \to \pm \infty$, we obtain $\mathcal{R}(\mathbf{A})$

An important role in functional analysis is played by the operation of taking operator adjoint. If $A \in \mathcal{L}(X, Y)$, then the adjoint operator A^* is defined as

$$\langle y^*, Ax \rangle = \langle A^*y^*, x \rangle$$
 (1.49)

and it can be proved that it belongs to $\mathcal{L}(Y^*, X^*)$ with $||A^*|| = ||A||$. If A is an unbounded operator, then the situation is more complicated. In general, A^* may not exist as a single-valued operator. In other words, there may be many operators B satisfying

$$\langle y^*, Ax \rangle = \langle By^*, x \rangle, \qquad x \in D(A), \ y^* \in D(B).$$
 (1.50)

Operators A and B satisfying (1.50) are called *adjoint to each other*.

However, if D(A) is dense in X, then there is a unique maximal operator A^* adjoint to A; that is, any other B such that A and B are adjoint to each other, must satisfy $B \subset A^*$. This A^* is called the *adjoint operator* to A. It can be constructed in the following way. The domain $D(A^*)$ consists of all elements y^* of Y^* for which there exists $f^* \in X^*$ with the property