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Proof. We can assume f real. Consider any K b Ω and Φ = signf on K and
zero elsewhere. There is a sequence of φn ∈ C∞0 (Ω) with |φn(x)| ≤ 1 and
φn → Φ a.e. on K. Thus, by Lebesgue dominated convergence theorem∫

K

|f |dx =

∫
K

f limφndx = lim

∫
K

fφndx = 0.

From the considerations above it is clear that ∂βx is a closed operator
extending the classical differentiation operator (from C |β|(Ω)). One can also
prove that ∂βx is the closure of the classical differentiation operator. If Ω = Rn,
then this statement follows directly from (1.7) and (1.8). Indeed, let f ∈
Lp(Rn) and g = Dαf ∈ Lp(Rn). We consider fε = Jε ∗ f → f in Lp. By
Fubini theorem, we prove∫

Rn

(Jε ∗ f)(x)Dαφ(x)dx =

∫
Rn

ωε(y)

∫
Rn

f(x− y)Dαφ(x)dxdy

= (−1)|α|
∫
Rn

ωε(y)

∫
Rn

g(x− y)φ(x)dxdy

= (−1)|α|
∫
Rn

(Jε ∗ g)φ(x)dx

so that Dαfε = Jε ∗Dαf = Jε ∗ g → g as ε→ 0 in Lp. This shows that action
of the distributional derivative can be obtained as the closure of the classical
derivation.

Otherwise the proof is more complicated (see, e.g., [4, Theorem 3.16]) since
we do not know whether we can extend f outside Ω in such a way that the
extension still will have the generalized derivative.

In one-dimensional spaces the concept of the generalised derivative is
closely related to a classical notion of absolutely continuous function. Let
I = [a, b] ⊂ R1 be a bounded interval. We say that f : I → C is abso-
lutely continuous if, for any ε > 0, there is δ > 0 such that for any finite
collection {(ai, bi)}i of disjoint intervals in [a, b] satisfying

∑
i(bi − ai) < δ,

we have
∑
i |f(bi) − f(ai)| < ε. The fundamental theorem of calculus, [150,

Theorem 8.18], states that any absolutely continuous function f is differen-
tiable almost everywhere, its derivative f ′ is Lebesgue integrable on [a, b],

and f(t) − f(a) =
∫ t
a
f ′(s)ds. It can be proved (e.g., [61, Theorem VIII.2])

that absolutely continuous functions on [a, b] are exactly integrable functions
having integrable generalised derivatives and the generalised derivative of f
coincides with the classical derivative of f almost everywhere.

Let us briefly explore this connection. First, let us observe that if

F (x) =

x∫
a

f(y)dy
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where f ∈ Lp,loc(R), then f is differentiable almost everywhere (it is absolutely
continuous). Consider

Ahf(x) =
1

h

x+h∫
x

g(y)dy.

Clearly it a jointly continuous function on R+ × R. Further, denote

Hf(x) = sup
h>0

Ah|f |(x).

We restrict considerations to some bounded open interval I. Then Ahf(x)→
f(x) if there is no n such that x ∈ Sn = {x; lim suph→0 |Ahf(x) − f(x)| ≥
1/n}. Thus, we have to prove µ(Sn) = 0 for any n.

Then we can assume that f is of bounded support and therefore, by Luzin
theorem, for any ε there is a continuous function g with bounded support with
µ({x ∈ I, f(x) 6= g(x)}) ≤ ε. Fix any ε and corresponding g. Then

lim sup
h→0

|Ahf(x)−f(x)| ≤ sup
h>0
|Ah(f(x)−g(x))|+lim

h→0
|Ahg(x)−g(x)|+|f(x)−g(x)|

The second term is zero, the third is 0 outside a set of measure ε. We need
to estimate the first term. For a given φ consider an open set Eα = {x ∈
I;Hφ(x) > α}. For any x ∈ Eα we find Ix,rx = (x − rx, x + rx) such that
Ahf(x) > α. Thus, Eα is covered by these intervals. From the theory of
Lebesque measure, the measure of any measurable set S is supremum over
measures of compact sets K ⊂ S. Thus, for any c < µ(Eα) we can find
compact set K ⊂ Eα with c < µ(K) ⊂ µ(Eα) and a finite cover of K by
Ixi,rxi , i = 1, . . . , iK . Let us modify this cover in the following way. Let I1 be
the element of maximum length 2r1, I2 be the largest of the remaining which
are disjoint with I1 and so on, until the collection is exhausted with j = J .
According to the construction, if some Ixi,rxi is not in the selected list, then
there is j such that Ixi,rxi ∩ Ij 6= ∅. Let as take the smallest such j, that is,
the largest Ij . Then 2rxi is at most equal to the length of Ij , 2rj , and thus
Ixi,rxi ⊂ I∗j where the latter is the interval with the same centre as Ij but
with length 6rj . The collection of I∗j also covers K and we have

c ≤ 6

J∑
j=1

rj = 3

J∑
j=1

µ(Ij) ≤
3

α

J∑
j=1

∫
Ij

|φ(y)|dy ≤ 3

α

∫
I

|φ(y)|dy.

Passing with c→ µ(Eα) we get

µ(Eα) = µ({x ∈ I;Hφ(x) > α}) ≤ 3

α

∫
I

|φ(y)|dy.

Using this for φ = f − g we see that for any ε > 0 we have
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µ(Sn) ≤ 3nε+ ε

and, since ε is arbitrary, µ(Sn) = 0 for any n. So, we have differentiability of
x→

∫ x
x0
f(y)dy almost everywhere.

Now, we observe that if f ∈ L1,loc(R) satisfies∫
R

fφ′dx = 0

for any φ ∈ C∞0 (R), then f = 0 almost everywhere. To prove this, we observe
that if φ ∈ C∞0 (R) satisfies

∫
R ψdx = 1, the for any ω ∈ C∞0 (R) there is

φ ∈ C∞0 (R) satisfying

φ′ = ω − ψ
∫
R

ωdx.

Indeed, h = ω − ψ
∫
R
ωdx is continuous compactly supported with

∫
R hdx = 0

and thus it has a unique compactly supported primitive. Hence∫
R

fφ′dx =

∫
R

f(ω − ψ
∫
R

ωdy)dx = 0

or ∫
R

(f −
∫
R

fψdy)ωdx = 0

for any ω ∈ C∞0 (R) and thus f = const almost everywhere.
Next, if v(x) =

∫ x
x0
f(y)dy for f ∈ L1,loc(R), then v is continuous and the

generalized derivative of v, Dv, equals f . We can put x0 = 0. Then∫
R

vφ′dx =

∞∫
0

(

x∫
0

f(y)φ′(x)dy)dx−
0∫

−∞

(

0∫
x

f(y)φ′(x)dy)dx

=

∞∫
0

f(y)(

∞∫
y

φ′(x)dx)dy −
0∫

−∞

f(y)(

0∫
−∞

φ′(x)dx)dy

= −
∫
R

f(y)φ(y)dy.

With these results, let u ∈ L1,loc(R) the distributional derivative Du ∈

L1,loc(R) and set ū(x) =
x∫
0

Du(t)dt Then Dū = Du almost everywhere and

hence ū + C = u almost everywhere. Defining ũ = ū + C we see that ũ is
continuous and has integral representation and thus it is differentiable almost
everywhere.
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1.2 Fundamental Theorems of Functional Analysis

The foundation of classical functional analysis are the four theorems which
we formulate and discuss below.

1.2.1 Hahn–Banach Theorem

Theorem 1.6. (Hahn–Banach) Let X be a normed space, X0 a linear sub-
space of X, and x∗1 a continuous linear functional defined on X0. Then there
exists a continuous linear functional x∗ defined on X such that x∗(x) = x∗1(x)
for x ∈ X0 and ‖x∗‖ = ‖x∗1‖.

The Hahn–Banach theorem has a multitude of applications. For us, the most
important one is in the theory of the dual space to X. The space L(X,R) (or
L(X,C)) of all continuous functionals is denoted by X∗ and referred to as the
dual space. The Hahn–Banach theorem implies that X∗ is nonempty (as one
can easily construct a continuous linear functional on a one-dimensional space)
and, moreover, there are sufficiently many bounded functionals to separate
points of x; that is, for any two points x1, x2 ∈ X there is x∗ ∈ X∗ such that
x∗(x1) = 0 and x∗(x2) = 1. The Banach space X∗∗ = (X∗)∗ is called the
second dual. Every element x ∈ X can be identified with an element of X∗∗

by the evaluation formula
x(x∗) = x∗(x); (1.19)

that is, X can be viewed as a subspace of X∗∗. To indicate that there is some
symmetry between X and its dual and second dual we shall often write

x∗(x) =<x∗, x>X∗×X ,

where the subscript X∗ ×X is suppressed if no ambiguity is possible.
In general X 6= X∗∗. Spaces for which X = X∗∗ are called reflexive. Exam-

ples of reflexive spaces are rendered by Hilbert and Lp spaces with 1 < p <∞.
However, the spaces L1 and L∞, as well as nontrivial spaces of continuous
functions, fail to be reflexive.

Example 1.7. If 1 < p < ∞, then the dual to Lp(Ω) can be identified with
Lq(Ω) where 1/p+ 1/q = 1, and the duality pairing is given by

<f, g>=

∫
Ω

f(x)g(x)dx, f ∈ Lp(Ω), g ∈ Lq(Ω). (1.20)

This shows, in particular, that L2(Ω) is a Hilbert space and the above duality
pairing gives the scalar product in the real case. If L2(Ω) is considered over
the complex field, then in order to get a scalar product, (1.20) should be
modified by taking the complex adjoint of g.

Moreover, as mentioned above, the spaces Lp(Ω) with 1 < p < ∞ are
reflexive. On the other hand, if p = 1, then (L1(Ω))∗ = L∞(Ω) with duality
pairing given again by (1.20). However, the dual to L∞ is much larger than
L1(Ω) and thus L1(Ω) is not a reflexive space.
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Another important corollary of the Hahn–Banach theorem is that for each 0 6=
x ∈ X there is an element x̄∗ ∈ X∗ that satisfies ‖x̄∗‖ = 1 and <x̄∗, x>= ‖x‖.
In general, the correspondence x→ x̄∗ is multi-valued: this is the case in L1-
spaces and spaces of continuous functions it becomes, however, single-valued
if the unit ball in X is strictly convex (e.g., in Hilbert spaces or Lp-spaces
with 1 < p <∞; see [82]).

1.2.2 Spanning theorem and its application

A workhorse of analysis is the spanning criterion.

Theorem 1.8. Let X be a normed space and {yj} ⊂ X. Then z ∈ Y :=
Lin{yj} if and only if

∀x∗∈X∗ < x∗, yj >= 0 implies < x∗, z >= 0.

Proof. In one direction it follows easily from linearity and continuity.
Conversely, assume < x∗, z >= 0 for all x∗ annihilating Y and z 6= Y .

Thus, infy∈Y ‖z − y‖ = d > 0 (from closedness). Define Z = Lin{Y, z} and
define a functional y∗ on Z by < y∗, ξ >=< y∗, y + az >= a. We have

‖y + az‖ = |a|‖y
a

+ z‖ ≥ |a|d

hence

| < y∗, ξ >= |a| ≤ ‖y + az‖
d

= d−1‖ξ‖

and y∗ is bounded. By H.-B. theorem, we extend it to ỹ∗ on X with < ỹ∗, x >=
0 on Y and < ỹ∗, z >= 1 6= 0.

Next we consider the Müntz theorem.

Theorem 1.9. Let (λj)j∈N be a sequence of positive numbers tending to ∞.
The functions {tλj}j∈N span the space of all continuous functions on [0, 1]
that vanish at t = 0 if and only if

∞∑
j=1

1

λj
=∞.

Proof. We prove the ‘sufficient’ part. Let x∗ be a bounded linear functional
that vanishes on all tλj :

< x∗, tλj >= 0, j ∈ N.

For ζ ∈ C such that <ζ > 0, the functions ζ → tζ are analytic functions with
values in C([0, 1]) This can be proved by showing that

lim
C3h→0

tζ+h − tζ

h
= (ln t)tζ
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uniformly in t ∈ [0, 1]. Then

f(ζ) =< x∗, tζ >

is a scalar analytic function of ζ with <ζ > 0. We can assume that ‖x∗‖ ≤ 1.
Then

|f(ζ)| ≤ 1

for <ζ > 0 and f(λj) = 0 for any j ∈ N.
Next, for a given N , we define a Blaschke product by

BN (ζ) =

N∏
j=1

ζ − λj
ζ + λj

.

We see that BN (ζ) = 0 if and only if ζ = λj , |BN (ζ)| → 1 both as <ζ → 0
and |ζ| → ∞. Hence

gN (ζ) =
f(ζ)

BN (ζ)

is analytic in <ζ > 0. Moreover, for any ε′ there is δ0 > 0 such that for any
δ > δ0 we have |BN (ζ)| ≥ 1− ε′ on <ζ = δ and |ζ| = δ−1. Hence for any ε

|gN (ζ)| ≤ 1 + ε

there and by the maximum principle the inequality extends to the interior of
the domain. Taking ε→ 0 we obtain |gN (ζ)| ≤ 1 on <ζ > 0.

Assume now there is k > 0 for which f(k) 6= 0. Then we have

N∏
j=1

∣∣∣∣λj + k

λj − k

∣∣∣∣ ≤ 1

f(k)
.

Note, that this estimate is uniform in N . If we write

λj + k

λj − k
= 1 +

2k

λj − k

then, by λj → ∞ almost all terms bigger then 1. Remembering that bound-
edness of the product is equivalent to the boundedness of the sum

N∑
j=1

1

λj − k

we see that we arrived at contradiction with the assumption. Hence, we must
have f(k) = 0 for any k > 0. This means, however, that any functional that
vanishes on {tλj} vanishes also on tk for any k. But, by the Stone- Weierstrass
theorem, it must vanish on any continuous function (taking value 0 at zero).
Hence, by the spanning criterion, any such continuous function belongs to the
closed linear span of {tλj}.
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Example 1.10. The existence of an element x̄∗ satisfying <x̄∗, x>= ‖x‖ has an
important consequence for the relation between X and X∗∗ in a nonreflexive
case. Let B,B∗, B∗∗ denote the unit balls in X,X∗, X∗∗, respectively. Because
x∗ ∈ X∗ is an operator over X, the definition of the operator norm gives

‖x∗‖X∗ = sup
x∈B
| <x∗, x> | = sup

x∈B
<x∗, x>, (1.21)

and similarly, for x ∈ X considered as an element of X∗∗ according to (1.19),
we have

‖x‖X∗∗ = sup
x∗∈B∗

| <x∗, x> | = sup
x∗∈B∗

<x∗, x> . (1.22)

Thus, ‖x‖X∗∗ ≤ ‖x‖X . On the other hand,

‖x‖X =<x̄∗, x>≤ sup
x∗∈B∗

<x∗, x>= ‖x‖X∗∗

and
‖x‖X∗∗ = ‖x‖X . (1.23)

Hence, in particular, the identification given by (1.19) is an isometry and X
is a closed subspace of X∗∗.

The existence of a large number of functionals over X allows us to intro-
duce new types of convergence. Apart from the standard norm (or strong)
convergence where (xn)n∈N ⊂ X converges to x if

lim
n→∞

‖xn − x‖ = 0,

we define weak convergence by saying that (xn)n∈N weakly converges to x, if
for any x∗ ∈ X∗,

lim
n→∞

<x∗, xn>=<x∗, x> .

In a similar manner, we say that (x∗n)n∈N ⊂ X∗ converges ∗-weakly to x∗ if,
for any x ∈ X,

lim
n→∞

<x∗n, x>=<x∗, x> .

Remark 1.11. It is worthwhile to note that we have a concept of a weakly
convergent or weakly Cauchy sequence if the finite limit limn→∞ <x∗, xn>
exists for any x∗ ∈ X∗. In general, in this case we do not have a limit element.
If every weakly convergent sequence converges weakly to an element of X, the
Banach space is said to be weakly sequentially complete. It can be proved that
reflexive spaces and L1 spaces are weakly sequentially complete. On the other
hand, no space containing a subspace isomorphic to the space c0 (of sequences
that converge to 0) is weakly sequentially complete (see, e.g., [6]).

Remark 1.12. Weak convergence is indeed weaker than the convergence in
norm. However, we point out that a theorem proved by Mazur (e.g., see [172],
p. 120) says that if xn → x weakly, then there is a sequence of convex combina-
tions of elements of (xn)n∈N that converges to x in norm. Thus, in particular,
the norm and the weak closure of a convex sets coincide.


