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Corollary 2.12. A linear operator A is the generator of a C0 semigroup
(G(t))t≥0 satisfying ‖G(t)‖ ≤ eωt if and only if

(i) A is closed and D(A) = X;
(ii) ρ(A) ⊃ (ω,∞) and for such λ

‖R(λ,A)‖ ≤ 1

λ− ω
. (2.33)

Proof. Follows from the contractive semigroup S(t) = e−ωtG(t) being gener-
ated by A− ωI.

The full version of the Hille-Yosida theorem reads

Theorem 2.13. A ∈ G(M,ω) if and only if

(a) A is closed and densely defined,
(b) there exist M > 0, ω ∈ R such that (ω,∞) ⊂ ρ(A) and for all

n ≥ 1, λ > ω,

‖(λI −A)−n‖ ≤ M

(λ− ω)n
. (2.34)

2.2.3 Dissipative operators and the Lumer-Phillips theorem

Let X be a Banach space (real or complex) and X∗ be its dual. From the
Hahn–Banach theorem, Theorem 1.7 for every x ∈ X there exists x∗ ∈ X∗
satisfying

<x∗, x>= ‖x‖2 = ‖x∗‖2.

Therefore the duality set

J (x) = {x∗ ∈ X∗; <x∗, x>= ‖x‖2 = ‖x∗‖2} (2.35)

is nonempty for every x ∈ X.

Definition 2.14. We say that an operator (A,D(A)) is dissipative if for every
x ∈ D(A) there is x∗ ∈ J (x) such that

< <x∗, Ax>≤ 0. (2.36)

If X is a real space, then the real part in the above definition can be
dropped.

Theorem 2.15. A linear operator A is dissipative if and only if for all λ > 0
and x ∈ D(A),

‖(λI −A)x‖ ≥ λ‖x‖. (2.37)
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Proof. Let A be dissipative, λ > 0 and x ∈ D(A). If x∗ ∈ J and < <
Ax, x∗ >≤ 0, then

‖λx−Ax‖‖x‖ ≥ |(λx−Ax, x∗ > | ≥ < < λx−Ax, x∗ >≥ λ‖x‖2

so that we get (2.65).
Conversely, let x ∈ D(A) and λ‖x‖ ≤ ‖λx − Ax‖ for λ > 0. Consider

y∗λ ∈ J (λx−Ax) and z∗λ = y∗λ/‖y∗λ‖.

λ‖x‖ ≤ ‖λx−Ax‖ = ‖λx−Ax‖‖z∗λ‖ = ‖y∗λ‖1‖λx−Ax‖‖y∗λ‖ = ‖y∗λ‖1 < λx−Ax, y∗λ >
= < λx−Ax, z∗λ >= λ< < x, z∗λ > −< < Ax, z∗λ >

≤ λ‖x‖ − < < Ax, z∗λ >

for every λ > 0. From this estimate we obtain that < < Ax, z∗λ >≤ 0 and, by
|α| ≥ <α,

λ< < x, z∗λ >= λ‖x‖+< < Ax, z∗λ >≥ λ‖x‖−|< < Ax, z∗λ > | ≥ λ‖x‖−‖Ax‖

or < < x, z∗λ >≥ ‖x‖−λ−1‖Ax‖. Now, the unit ball in X∗ is weakly-∗ compact
and thus there is a sequence (z∗λn)n∈N converging to z∗ with ‖z∗‖ = 1. From
the above estimates, we get

< < Ax, z∗ >≤ 0

and < < x, z∗ >≥ ‖x‖. Hence, also, | < x, z∗ > | ≥ ‖x‖ On the other hand,
Re < x, z∗ >≤ | < x, z∗ > | ≤ ‖x‖ and hence < x, z∗ >= ‖x‖. Taking
x∗ = z∗‖x‖ we see that x∗ ∈ J (x) and < < Ax, x∗ >≤ 0 and thus A is
dissipative.

Theorem 2.16. Let A be a linear operator with dense domain D(A) in X.

(a) If A is dissipative and there is λ0 > 0 such that the range Im(λ0I−A) =
X, then A is the generator of a C0-semigroup of contractions in X.

(b) If A is the generator of a C0 semigroup of contractions on X, then
Im(λI − A) = X for all λ > 0 and A is dissipative. Moreover, for every
x ∈ D(A) and every x∗ ∈ J (x) we have < < Ax, x∗ >≤ 0.

Proof. Let λ > 0, then dissipativeness of A implies ‖λx − Ax‖ ≥ λ‖x‖ for
x ∈ D(A), λ > 0. This gives injectivity and, since by assumption, the Im(λ0I−
A)D(A) = X, (λ0I−A)−1 is a bounded everywhere defined operator and thus
closed. But then λ0I − A, and hence A, are closed. We have to prove that
Im(λI − A)D(A) = X for all λ > 0. Consider the set Λ = {λ > 0; Im(λI −
A)D(A) = X}. Let λ ∈ Λ. This means that λ ∈ ρ(A) and, since ρ(A) is open,
Λ is open in the induced topology. We have to prove that Λ is closed in the
induced topology. Assume λn → λ, λ > 0. For every y ∈ X there is xn ∈ D(A)
such that

λnxn −Axn = y.
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From (??), ‖xn‖ ≤ 1
λn
‖y‖ ≤ C for some C > 0. Now

λm‖xn − xm‖ ≤ ‖λm(xn − xm)−A(xn − xm)‖
= ‖ − λmxn + λmxm − λnxn + λnxn −Axn +Axm‖
= |λn − λm|‖xn‖ ≤ C|λn − λm|

Thus, (xn)n∈N is a Cauchy sequence. Let xn → x, then Axn → λx−y. Since A
is closed, x ∈ D(A) and λx−Ax = y. Thus, for this λ, Im(λI−A)D(A) = X
and λ ∈ Λ. Thus Λ is also closed in (0,∞) and since λ0 ∈ Λ, Λ 6= ∅ and
thus Λ = (0,∞) (as the latter is connected). Thus, the thesis follows from the
Hille-Yosida theorem.

On the other hand, if A is the generator of a semigroup of contractions
(G(t))t≥0, then (0,∞) ⊂ ρ(A) and Im(λI − A)D(A) = X for all λ > 0.
Furthermore, if x ∈ D(A), x∗ ∈ J (x), then

| < G(t)x, x∗ > | ≤ ‖G(t)x‖‖x∗‖ ≤ ‖x‖2

and therefore

< < G(t)x− x, x∗ >= < < G(t)x, x∗ > −‖x‖2 ≤ 0

and, dividing the left hand side by t and passing with t→∞, we obtain

< Ax, x∗ >≤ 0.

Since this holds for every x∗ ∈ J (x), the proof is complete.

Adjoint operators

Before we move to an important corollary, let as recall the concept of the
adjoint operator. If A ∈ L(X,Y ), then the adjoint operator A∗ is defined as

<y∗, Ax>=<A∗y∗, x> (2.38)

and it can be proved that it belongs to L(Y ∗, X∗) with ‖A∗‖ = ‖A‖. If A is
an unbounded operator, then the situation is more complicated. In general,
A∗ may not exist as a single-valued operator. In other words, there may be
many operators B satisfying

<y∗, Ax>=<By∗, x>, x ∈ D(A), y∗ ∈ D(B). (2.39)

Operators A and B satisfying (2.39) are called adjoint to each other.
However, if D(A) is dense in X, then there is a unique maximal operator

A∗ adjoint to A; that is, any other B such that A and B are adjoint to each
other, must satisfy B ⊂ A∗. This A∗ is called the adjoint operator to A. It
can be constructed in the following way. The domain D(A∗) consists of all
elements y∗ of Y ∗ for which there exists f∗ ∈ X∗ with the property
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<y∗, Ax>=<f∗, x> (2.40)

for any x ∈ D(A). Because D(A) is dense, such element f∗ can be proved
to be unique and therefore we can define A∗y∗ = f∗. Moreover, the assump-
tion D(A) = X ensures that A∗ is a closed operator though not necessarily
densely defined. In reflexive spaces the situation is better: if both X and Y
are reflexive, then A∗ is closed and densely defined with

A = (A∗)∗; (2.41)

see [105, Theorems III.5.28, III.5.29].

Corollary 2.17. Let A be a densely defined closed linear operator. If both A
and A∗ are dissipative, then A is the generator of a C0-semigroup of contrac-
tions on X.

Proof. It suffices to prove that, e.g., Im(I − A) = X. Since A is dissipative
and closed, Im(λI − A) is a closed subspace of X. Indeed, if yn → y, yn ∈
Im(I−A), then, by dissipativity, ‖xn−xm‖ ≤ ‖(xn−xm)− (Axn−Axm)‖ =
‖yn − ym‖ and (xn)n∈N converges. But then (Axn)n∈N converges and, by
closedness, x ∈ D(A) and x−Ax = y ∈ Im(I −A). Assume Im(I −A) 6= X,
then by H-B theorem, there is 0 6= x∗ ∈ X∗ such that < x∗, x−Ax >= 0 for
all x ∈ D(A). But then x∗ ∈ D(A∗) and, by density of D(A), x∗ − A∗x∗ = 0
but dissipativeness of A∗ gives x∗ = 0.

The Cauchy problem for the heat equation

Let C = Ω × (0,∞), Σ = ∂Ω × (0,∞) where Ω is an open set in Rn. We
consider the problem

∂tu = ∆u, inΩ × [0, T ], (2.42)

u = 0, onΣ, (2.43)

u = u0, onΩ. (2.44)

Theorem 2.18. Assume that u0 ∈ L2(Ω) where Ω is bounded and has a C2

boundary. Then there exists a unique function u satisfying (2.44)–(1.26) such

that u ∈ C([0,∞);L2(Ω)) ∩ C([0,∞);W 2
2 (Ω)∩

o

W 1
2(Ω)),

Proof. The strategy is to consider (2.44–(1.26) as the abstract Cauchy prob-
lem

u′ = Au, u(0) = u0

in X = L2(Ω) where A is the unbounded operator defined by

Au = ∆u

for
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u ∈ D(A) = {u ∈
o

W
1
2(Ω);∆u ∈ L2(Ω)} = W 2

2 (Ω)∩
o

W
1
2(Ω)).

First we observe that A is densely defined as C∞0 (Ω) ⊂
o

W 1
2(Ω) and∆C∞0 (Ω) ⊂

L2(Ω). Next, A is dissipative. For u ∈ L2(Ω), J u = u and

(Au, u) = −
∫
Ω

|∇u|2dx ≤ 0

Further, we consider the variational problem associated with I − A, that is,

to find u ∈
o

W 1
2(Ω) to

a(u, v) =

∫
Ω

∇u∇vdx +

∫
Ω

uvdx =

∫
Ω

fvdx, v ∈
o

W
1
2(Ω)

where f ∈ L2(Ω) is given. Clearly, a(u, u) = ‖u‖21,Ω and thus is coercive.

Hence there is a unique solution u ∈
o

W 1
2 which, by writing∫

Ω

∇u∇vdx =

∫
Ω

fvdx−
∫
Ω

uvdx =

∫
Ω

(f − u)vdx,

can be shown to be in W 2
2 (Ω). This ends the proof of generation.

If we wanted to use the Hille-Yosida theorem instead, then to find the
resolvent, we would have to solve

a(u, v) =

∫
Ω

∇u∇vdx + λ

∫
Ω

uvdx =

∫
Ω

fvdx, v ∈
o

W
1
2(Ω)

for λ > 0. The procedure is the same and we get in particular for the solution

‖∇uλ‖20,Ω + λ‖uλ‖20,Ω ≤ ‖f‖0,Ω‖uλ‖0,Ω .

Since uλ = R(λ,A)f we obtain

λ‖R(λ,A)f‖20,Ω ≤ λ−1‖f‖0,Ω .

Closedness follows from continuous invertibility.


