$$
S(t)=e^{-\omega t}G(t) \qquad S(t+s)=e^{-\omega(t+s)}G(t+s)
$$
\n
$$
=e^{-\omega t}e^{-\omega t}G(s)
$$
\n
$$
\frac{d}{ds}\int_{-\omega}^{s}G(t)ds
$$
\n
$$
=e^{-\omega t}e^{-\omega t}G(t) \qquad \text{for all } s \in \mathbb{Z}.
$$
\n
$$
S(t)=S(s)
$$
\n
$$
=C\sqrt{2}
$$
\n

is nonempty for every $x \in X$.

Definition 2.14. We say that an operator $(A, D(A))$ is dissipative if for every $x \in D(A)$ there is $x^* \in \mathcal{J}(x)$ such that

$$
\Re \langle x^*, Ax \rangle \le 0. \tag{2.36}
$$

If X is a real space, then the real part in the above definition can be dropped.

Theorem 2.15. A linear operator A is dissipative if and only if for all $\lambda > 0$ and $x \in D(A)$,

$$
\|(\lambda I - A)x\| \ge \lambda \|x\|.\tag{2.37}
$$

$\|$ $\frac{1}{4}$

72 2 An Overview of Semigroup Theory

Proof. Let A be dissipative, $\lambda > 0$ and $x \in D(A)$. If $x^* \in \mathcal{K}$ and \Re $Ax, x^* > \leq 0$, then

$$
\|\lambda x - Ax\| \|x\| \ge |\langle \lambda x - Ax, x^* \rangle| \ge \Re \langle \lambda x - Ax, x^* \rangle \ge \lambda \|x\|^2
$$

= $\Re \langle \chi \langle \chi, x^* \rangle - \Re \langle A \chi, x^* \rangle \rangle$

so that we get (2.65) .

Conversely, let
$$
x \in D(A)
$$
 and $\lambda ||x|| \leq (||\lambda x - Ax||)$ for $\lambda > 0$. Consider
\n
$$
y_{\lambda}^{*} \in \mathcal{J}(\lambda x - Ax)
$$
 and $z_{\lambda}^{*} = y_{\lambda}^{*}/||y_{\lambda}^{*}||$.
\n
$$
\overbrace{\left(\lambda ||x\right)} \leq ||\lambda x - Ax|| = ||\lambda x - Ax|| ||z_{\lambda}^{*}|| = ||y_{\lambda}^{*}|| \left(\lambda x - Ax|| ||y_{\lambda}^{*}||\right) = ||y_{\lambda}^{*}|| \left(\lambda x - Ax, y_{\lambda}^{*}\right)
$$
\n
$$
= \langle \lambda x - Ax, z_{\lambda}^{*} \rangle = \lambda \Re \langle x, z_{\lambda}^{*} \rangle - \Re \langle Ax, z_{\lambda}^{*} \rangle
$$

for every $\lambda > 0$. From this estimate we obtain that $\Re \langle Ax, z_{\lambda}^* \rangle \leq 0$ and, by $|\alpha| \geq \Re \alpha,$

$$
\mathsf{Re}\left\langle A \times \mathsf{P}_{\lambda}\right\rangle \overleftarrow{\lambda} \Re\left\langle x, z_{\lambda}^{*} \geq \right\rangle \geq \lambda \|x\| + \Re\left\langle Ax, z_{\lambda}^{*} \geq \lambda \|x\| - \|\mathbf{P}_{\lambda}^{*} \leq Ax, z_{\lambda}^{*} \geq |x| - \|Ax\| \right\}
$$

or $\Re \langle x, z_{\lambda}^* \rangle \ge ||x|| - \lambda^{-1} ||Ax||$, Now, the unit ball in X^* is weakly- $*$ compact And thus there is a sequence $(z_{\lambda_n}^*)_{n\in\mathbb{N}}$ converging to z^* with $||z^*||=1$. From the above estimates, we get

$$
| (x, x^*)| \geq Re \qquad \qquad \mathfrak{R} < \underline{Ax, z^*} > \leq 0
$$

and $\Re \langle x, z^* \rangle \ge ||x||$. Hence, also, $|\langle x, z^* \rangle| \ge ||x||$ On the other hand, $\mathbb{R} \leq x, z^* \geq |z|, |z^*| \leq |x|$ and hence $\leq x, z^* \geq |x|$. Taking Q_{s} of = $($ $x^* = z^* ||x||$ we see that $x^* \in \overline{\mathcal{J}(x)}$ and $\Re \langle Ax, \overline{x^*} \rangle \leq 0$ and thus A is $\alpha = \beta$ dissipative.

Theorem 2.16. Let A be a linear operator with dense domain $D(A)$ in X.

- (a) If A is dissipative and there is $\lambda_0 > 0$ such that the range $Im(\lambda_0 I A) =$ X, then A is the generator of a C_0 -semigroup of contractions in X.
- (b) If A is the generator of a C_0 semigroup of contractions on X, then $Im(\lambda I - A) = X$ for all $\lambda > 0$ and A is dissipative. Moreover, for every $x \in D(A)$ and every $x^* \in \mathcal{J}(x)$ we have $\Re \langle Ax, x^* \rangle \leq 0$.

Proof. Let $\lambda \geq 0$, then dissipativeness of A implies $||\lambda x - \overline{X}||_2 \geq \lambda ||x||$ for $x \in D(A), \lambda > 0$. This gives injectivity and, since by assumption, the $Im(\lambda_0 I A(D(A) = X_n(\lambda_0 I - A)⁻¹$ is a bounded everywhere defined operator and thus closed. But then $\lambda_0 I - A$, and hence A, are closed. We have to prove that $Im(\lambda I - A)D(A) = X$ for all $\lambda > 0$. Consider the set $\Lambda = {\lambda > 0$; $Im(\lambda I - A)D(A)$ $A)D(A) = X$. Let $\lambda \in A$. This means that $\lambda \in \rho(A)$ and, since $\rho(A)$ is open, Λ is open in the induced topology. We have to prove that Λ is closed in the induced topology. Assume $\lambda_n \to \lambda$, $\lambda > 0$. For every $y \in X$ there is $x_n \in D(A)$ such that

 Λ خار (دره)

$$
\begin{array}{c}\n\lambda_{n}x_{n} - Ax_{n} = y. \\
\lambda_{n}x_{n} - x_{n} = y. \\
\lambda_{n}x_{n} - x_{n} = y. \\
\lambda_{n}x_{n} - x_{n} = x. \\
\lambda_{n}x_{n} - x_{n} = y. \\
\lambda_{n}x_{n} - x_{n}
$$

$$
\sqrt{\frac{\lambda x_{1}^{2} - A x_{2}^{2} - y_{1}}{\lambda x_{2}^{2} - A x_{3}^{2}}}
$$
\n
$$
\sqrt{\frac{\lambda x_{2}^{2} - A x_{3}}{|\lambda x_{3}|}} = \lambda x_{1} ||x_{2}||
$$
\n
$$
2.2 \text{ Ru}
$$

diments 73

From $(\mathcal{X}), \|x_n\| \leq \frac{1}{\lambda_n} \|y\| \leq C$ for some $C > 0$. Now

$$
\lambda_m ||x_n - x_m|| \le ||\lambda_m (x_n - x_m) - A(x_n - x_m)||
$$

= $|| + \lambda_m x_n + \lambda_m x_m - \lambda_n x_n + (\lambda_n x_n) - Ax_m||$
= $|\lambda_n - \lambda_m| ||x_n|| \le C |\lambda_n - \lambda_m|$

Thus, $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence. Let $x_n \to x$, then $Ax_n \to \lambda x - y$. Since A is closed, $x \in D(A)$ and $\lambda x - Ax = y$. Thus, for this λ , $Im(\lambda I - A)D(A) = X$ and $\lambda \in \Lambda$. Thus Λ is also closed in $(0, \infty)$ and since $\lambda_0 \in \Lambda$, $\Lambda \neq \emptyset$ and thus $\Lambda = (0, \infty)$ (as the latter is connected). Thus, the thesis follows from the Hille-Yosida theorem.

On the other hand, if A is the generator of a semigroup of contractions $(G(t))_{t\geq0}$, then $(0,\infty) \subset \rho(A)$ and $Im(\lambda I - A)D(A) = X$ for all $\lambda > 0$.
Furthermore, if $x \in D(A), x^* \in \mathcal{J}(x)$, then $G(\mathbf{t}) \times \mathbf{X} \longrightarrow \mathbf{A} \times \mathbf{A}$ Furthermore, if $x \in D(A), x^* \in \mathcal{J}(x)$, then

$$
|< G(t)x, x^*>|<||G(t)x|| ||x^*|| \leq ||x||^2 = ||x||^2
$$

and therefore

$$
\Re < G(t)x-x, x^*> = \Re < G(t) \quad \hbox{and} \quad 2 \leq 0
$$

and, dividing the left hand side by t and passing with $t \to \infty$, we obtain

 $\mathcal{R}_{\mathbf{0}} \leq Ax, x^* \geq 0.$

Since this holds for every $x^* \in \mathcal{J}(x)$, the proof is complete.

 $-\langle x,x^{\star}\rangle$

Adjoint operators

Before we move to an important corollary, let as recall the concept of the adjoint operator. If $A \in \mathcal{L}(X, Y)$, then the adjoint operator A^* is defined as

$$
\langle y^*, Ax \rangle = \langle A^* y^* \rangle x \rangle \tag{2.38}
$$

and it can be proved that it belongs to $\mathcal{L}(Y^*, X^*)$ with $||A^*|| = ||A||$. If A is an unbounded operator, then the situation is more complicated. In general, A[∗] may not exist as a single-valued operator. In other words, there may be many operators B satisfying φ *

$$
\langle y^*, Ax \rangle = \langle By^*, x \rangle, \qquad x \in D(A), \ y^* \in D(B). \tag{2.39}
$$

Operators A and B satisfying (2.39) are called *adjoint to each other*.

However, if $D(A)$ is dense in X, then there is a unique maximal operator A^* adjoint to A; that is, any other B such that A and B are adjoint to each other, must satisfy $B \subset A^*$. This A^* is called the *adjoint operator* to A. It can be constructed in the following way. The domain $D(A^*)$ consists of all elements y^* of Y^* for which there exists $f^* \in X^*$ with the property

$$
\forall x \in D(A) < y \land A x > = < f \land x > \qquad \qquad \left(\frac{g}{\alpha} \right)^{x} \land \qquad \q
$$

 $Q = \left\langle \begin{matrix} 74 \\ 8 \end{matrix} \right\rangle^2$ An Overview of Semigroup Theory

$$
\langle y^*, Ax \rangle = \langle f^*, x \rangle \qquad \text{Xc } \mathcal{D}(\mathcal{A}) \tag{2.40}
$$

 $\bigvee_{x \in D(A)}$ for any $x \in D(A)$. Because $D(A)$ is dense, such element f^* can be proved to be unique and therefore we can define $A^*y^* = f^*$. Moreover, the assumption $\overline{D(A)} = X$ ensures that A^* is a closed operator though not necessarily densely defined. In reflexive spaces the situation is better: if both X and Y are reflexive, then A^* is closed and densely defined with

$$
\chi_{\mathbf{w}} \rightarrow \chi \qquad \qquad \chi \leftarrow \mathbf{1} / \mathbf{1}
$$
\n
$$
\mathbf{1}_{\mathbf{w}} \rightarrow \chi_{\mathbf{w}} \qquad \qquad \chi_{\mathbf{w}} \in \mathbf{1}_{\mathbf{w}} \qquad \qquad \chi_{\mathbf{w}} \in \mathbf{1}_{\mathbf{w}} \qquad \qquad \mathbf{1}_{\mathbf{w}} \qquad \qquad \mathbf{1}_{\mathbf{w}} \in \mathbf{1}_{\mathbf{w}} \qquad \qquad \mathbf{1}_{\mathbf{w}} \qquad \qquad \mathbf{1}_{\math
$$

and A^* are dissipative, then A is the generator of a C_0 -semigroup of contrac- $(m(\underline{J}, A))$ tions on X.

Proof. It suffices to prove that, e.g., $Im(I - A) = X$. Since A is dissipative \bigcup_{α} = \bigcup_{α} A) X \bigcup_{α} and closed, $Im(\lambda I - A)$ is a closed subspace of X. Indeed, if $y_n \to y$, $y_n \in$ $\widehat{-1}m(I-A)$, then, by dissipativity, $||x_n - x_m|| \le ||(x_n - x_m) - (Ax_n - Ax_m)|| =$ $||y_n - y_m||$ and $(x_n)_{n \in \mathbb{N}}$ converges. But then $(Ax_n)_{n \in \mathbb{N}}$ converges and, by closedness, $x \in D(A)$ and $x - Ax = y \in Im(I - A)$. Assume $Im(I - A) \neq X, \angle O, \times$ $||x_{n}-x_{m}|| \leq$ then by H-B theorem, there is $0 \neq x^* \in X^*$ such that $\langle x^*, x - Ax \rangle = 0$ for all $x \in D(A)$. But then $x^* \in D(A^*)$ and, by density of $D(A)$, $x^* - A^*x^* = 0$ but dissipativeness of A^* gives $x^* = 0$. $\langle x^\ast, x\rangle - \langle A^{\ast\ast}_x, x\rangle$ $(x_{n}-x_{m})$ $z(x^* - A'x',x) = 0$ The Cauchy problem for the heat equation $A(x_{-}x_{n})$ Let $C = \Omega \times (0, \infty), \Sigma = \partial \Omega \times (0, \infty)$ where Ω is an open set in \mathbb{R}^n . We consider the problem $V\in\mathcal{O}(N)$ $||y_{2}-y_{m}||$ $\partial_t u = \Delta u, \quad \text{in}\Omega \times [0,\mathbb{Z}],$ (2.42) $u = 0, \quad \text{on}\Sigma,$ (2.43) $u = u_0, \quad \text{on}\Omega.$ (2.44)

> **Theorem 2.18.** Assume that $u_0 \in L_2(\Omega)$ where Ω is bounded and has a C^2 boundary. Then there exists a unique function u satisfying (2.44) (1.26) such t that $u \in C([0,\infty); L_2(\Omega)) \cap C(\mathbf{0}, \infty); W_2^2(\Omega) \cap W_2^1(\Omega)),$ *Proof.* The strategy is to consider $(2.44-(1.26))$ as the abstract Cauchy problem $u' = Au, \quad u(0) = u_0$ in $X = L_2(\Omega)$ where A is the unbounded operator defined by L

> > 52

 $Au = \Delta u$

for

$$
u \in D(A) = \{u \in \hat{W}_2^1(\Omega); \Delta u \in L_2(\Omega)\} = W_2^2(\Omega) \cap \hat{W}_2^1(\Omega)).
$$

First we observe that A is densely defined as $C_0^{\infty}(\Omega) \subset W_2^1(\Omega)$ and $\Delta C_0^{\infty}(\Omega) \subset$ $L_2(\Omega)$. Next, A is dissipative. For $u \in L_2(\Omega)$, $\mathcal{J}u = u$ and

$$
(Au, u) = -\int_{\Omega} |\nabla u|^2 dx \le 0 \qquad \qquad u - \Delta u \ge \int_{\Omega} \mathcal{L} \mathcal{L}_1
$$

Further, we consider the variational problem associated with $I - A$, that is, to find $u \in \overset{\circ}{W}{}^1_2(\Omega)$ to λ

$$
a(u,v) = \int_{\Omega} \nabla u \nabla v d\mathbf{x} + \int_{\Omega} uv d\mathbf{x} = \int_{\Omega} fv d\mathbf{x}, \quad v \in \overset{\circ}{W}_2^1(\Omega) \qquad \qquad \searrow \qquad \circlearrowright
$$

where $f \in L_2(\Omega)$ is given. Clearly, $a(u, u) = ||u||_{1,\Omega}^2$ and thus is coercive. Hence there is a unique solution $u \in \tilde{W}_2^1(\mathcal{X})$ which, by writing

$$
\int_{\Omega} \nabla u \nabla v d\mathbf{x} = \int_{\Omega} f v d\mathbf{x} - \int_{\Omega} u v d\mathbf{x} = \int_{\Omega} (f - u) v d\mathbf{x},
$$

can be shown to be in $W_2^2(\Omega)$. This ends the proof of generation.

If we wanted to use the Hille-Yosida theorem instead, then to find the resolvent, we would have to solve

$$
a(u,v) = \int_{\Omega} \nabla u \nabla v d\mathbf{x} + \lambda \int uv d\mathbf{x} = \int_{\Omega} fv d\mathbf{x}, \quad v \in \overset{\circ}{W}_2(\Omega) \qquad \qquad \lambda > \mathcal{O}
$$

for $\lambda > 0$. The procedure is the same and we get in particular for the solution

$$
\|\nabla u_{\lambda}\|_{0,\Omega}^{2} + \lambda \|u_{\lambda}\|_{0,\Omega}^{2} \leq \|f\|_{0,\Omega} \|u_{\lambda}\|_{0,\Omega}. \quad \mathcal{L}(\lambda A) : \mathcal{L}_{1}(\mathcal{R}) \to \omega_{\mathbf{Q}}^{2}
$$

\nSince $u_{\lambda} = R(\lambda, A)f$ we obtain
\n
$$
\text{and } \mathcal{L}_{1}(\lambda, A) f \|_{0,\Omega}^{2} \leq \lambda^{-1} \|f\|_{0,\Omega}. \quad \mathcal{L}_{1}(\mathcal{R}) \to \mathcal{L}_{1}(\mathcal{R})
$$

\nClosedness follows from continuous invertibility.
\n
$$
\bigcup_{\mathcal{L}_{0} \in L_{1}(\mathcal{R})} \bigcup_{\mathcal{L}_{1}(\mathcal{R})} \bigcup_{\mathcal{L}_{2}(\mathcal{R})} \bigcup_{\mathcal{L}_{2}(\mathcal{R})} \bigcup_{\mathcal{L}_{2}(\mathcal{R})} \bigcup_{\mathcal{L}_{2}(\mathcal{R})} \bigcup_{\mathcal{L}_{2}(\mathcal{R})} \bigcup_{\mathcal{L}_{1}(\mathcal{R})} \bigcup_{\mathcal{L}_{2}(\mathcal{R})} \bigcup
$$