Ã=-WI+A $\|R(\lambda, A)\| \le \frac{1}{\lambda - \epsilon}$ (2.33) $\mathbb{Q}(\lambda,A) = \frac{2}{2}$ *Proof.* Follows from the contractive semigroup $S(t) = e^{-\omega t}G(t)$ being gener- $\begin{array}{l} \lambda + \omega - \omega - A \quad \text{The full version of the Hille-Yosida theorem reads} \\ \hline \lambda - \omega - A \quad \text{Theorem 2.13. } A \in \mathcal{G}(M, \omega) \text{ if and only if} \\ = (\lambda - \omega) - A + \mathcal{G}_{a}) A \text{ is closed and densely defined,} \\ = (\lambda - \omega) - A \quad (b) \text{ there exist } M > 0, \omega \in \mathbb{R} \text{ such that } (\omega, \infty) \subset \rho(A) \text{ and for all} \\ n \geq 1, \lambda > \omega, \end{array}$ $\lambda - A = f$ ated by $A - \omega I$. $\|(\lambda I - A)^{-n}\| \le \frac{M}{(\lambda - \omega)^n}.$ $R(\lambda, A) = R(\lambda - \omega, \widetilde{A})$ $\|(\lambda I - A)^{-1}\| \leq \frac{M}{V - A}$ 7-620 2.2.3 Dissipative operators and the Lumer-Phillips theorem $\left(\left| \begin{array}{c} \mathcal{R} \left(\mathcal{F}_{\mathcal{D}}, \mathcal{F}_{\mathcal{D}} \right) \right|_{X} \right) = a \text{ Banach space (real or complex) and } X^{*}$ be its dual. From the Hahn-Banach theorem, Theorem 1.7 for every $x \in X$ there exists $x^* \in X^*$ satisfying $\langle x^*, x \rangle = \|x\|^2 = \|x^*\|^2.$ $\langle \exists (x), x \rangle$ Therefore the *duality set* $\mathcal{J}(x) = \{x^* \in X^*; \ <\!\!x^*, x\!\!>= \|x\|^2 = \|x^*\|^2\}$ (2.35) $u_{t} = Au_{t}$ $u_{t} = Au_{t}$ is nonempty for every $x \in X$. Definition 2.14. We say that an operator (A, D(A)) is dissipative if for every $x \in D(A)$ there is $x^{*} \in \mathcal{J}(x)$ such that (2.36)

$$\Re \langle x^*, Ax \rangle \le 0. \tag{2.36}$$

If X is a real space, then the real part in the above definition can be dropped.

Theorem 2.15. A linear operator A is dissipative if and only if for all $\lambda > 0$ and $x \in D(A)$,

$$\|(\lambda I - A)x\| \ge \lambda \|x\|. \tag{2.37}$$

(x*, x> < 11 × 11 11/1/

72 2 An Overview of Semigroup Theory

Proof. Let A be dissipative, $\lambda > 0$ and $x \in D(A)$. If $x^* \in \mathcal{J}_{\mathsf{A}}$ and $\Re < Ax, x^* \ge 0$, then

$$\|\lambda x - Ax\| \|x\| \ge |\langle x - Ax, x^* \rangle| \ge \Re < \lambda x - Ax, x^* \ge \lambda \|x\|^2$$

= $\Re (\chi \langle x + \chi^* \rangle) - \Re \langle Ax, x^* \rangle$

so that we get (2.65).

Conversely, let $x \in D(A)$ and $\lambda ||x|| \leq (||\lambda x - Ax||)$ for $\lambda > 0$. Consider $y_{\lambda}^{*} \in \mathcal{J}(\lambda x - Ax)$ and $z_{\lambda}^{*} = y_{\lambda}^{*}/||y_{\lambda}^{*}||$. $\lambda ||x|| \leq ||\lambda x - Ax|| = ||\lambda x - Ax|| ||z_{\lambda}^{*}|| = ||y_{\lambda}^{*}||^{1} ||\lambda x - Ax|| ||y_{\lambda}^{*}|| = ||y_{\lambda}^{*}||^{1} ||\lambda x - Ax|||y_{\lambda}^{*}|| = ||y_{\lambda}^{*}||^{1} ||x - Ax||||x - Ax||||x - Ax|||||x - Ax||||x - Ax|||x - Ax|||x - Ax||||x - Ax|||x - Ax||x - Ax|||x - Ax|||x - Ax|||x - Ax|||x - Ax|||x - Ax$

for every $\lambda > 0$. From this estimate we obtain that $\Re < Ax, z_{\lambda}^* > \leq 0$ and, by $|\alpha| \geq \Re \alpha$,

$$\widehat{\lambda} \times \widehat{\lambda} \times$$

$$(\langle \times, \times \rangle) \geqslant R_{e}$$
 $\Re < \underline{Ax, z^{*}} \ge 0$

Theorem 2.16. Let A be a linear operator with dense domain D(A) in X.

- (a) If A is dissipative and there is $\lambda_0 > 0$ such that the range $Im(\lambda_0 I A) = X$, then A is the generator of a C_0 -semigroup of contractions in X.
- (b) If A is the generator of a C_0 semigroup of contractions on X, then $Im(\lambda I A) = X$ for all $\lambda > 0$ and A is dissipative. Moreover, for every $x \in D(A)$ and every $x^* \in \mathcal{J}(x)$ we have $\Re < Ax, x^* > \leq 0$.

Proof. Let $\lambda > 0$, then dissipativeness of A implies $\|\lambda x - Ax\| \ge \lambda \|x\|$ for $x \in D(A), \lambda > 0$. This gives injectivity and, since by assumption, the $Im(\lambda_0 I - A)D(A) = X$, $(\lambda_0 I - A)^{-1}$ is a bounded everywhere defined operator and thus closed. But then $\lambda_0 I - A$, and hence A, are closed. We have to prove that $Im(\lambda I - A)D(A) = X$ for all $\lambda > 0$. Consider the set $\Lambda = \{\lambda > 0; Im(\lambda I - A)D(A) = X\}$. Let $\lambda \in \Lambda$. This means that $\lambda \in \rho(A)$ and, since $\rho(A)$ is open, Λ is open in the induced topology. We have to prove that Λ is closed in the induced topology. Assume $\lambda_n \to \lambda, \lambda > 0$. For every $y \in X$ there is $x_n \in D(A)$ such that

A= (0,0)

$$\lambda_{n}x_{n} - Ax_{n} = y.$$

$$\lambda_{n}x_{n} - Ax_{n} = y.$$

$$\lambda_{n}x_{n} - Ax_{n} = y.$$

$$\|(x, \overline{1} - A)^{-1}f\| \leq \frac{1}{2}\|\|f\|$$

$$\lambda_{n}x_{n} - Ax_{n} = y.$$

$$\|(x, \overline{1} - A)^{-1}f\| \leq \frac{1}{2}\|\|f\|$$

$$\lambda_{n}x_{n} - Ax_{n} = y.$$

$$\|(x, \overline{1} - A)^{-1}f\| \leq \frac{1}{2}\|\|f\|$$

$$\lambda_{n}x_{n} - Ax_{n} = y.$$

$$\|(x, \overline{1} - A)^{-1}f\| \leq \frac{1}{2}\|\|f\|$$

$$\lambda_{n}x_{n} - Ax_{n} = y.$$

$$\|(x, \overline{1} - A)^{-1}f\| \leq \frac{1}{2}\|\|f\|$$

$$\lambda_{n}x_{n} - Ax_{n} = y.$$

$$Ax_{n} - Ax_{n} = y.$$

$$Ax_{n$$

73

From $(\mathbf{X}), \|x_n\| \leq \frac{1}{\lambda_n} \|y\| \leq C$ for some C > 0. Now

$$\lambda_m \|x_n - x_m\| \le \|\lambda_m (x_n - x_m) - A(x_n - x_m)\|$$

= $\| + \lambda_m x_n + \lambda_m x_m - \lambda_n x_n + \lambda_n x_n + Ax_m \|$
= $|\lambda_n - \lambda_m| \|x_n\| \le C |\lambda_n - \lambda_m|$

Thus, $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence. Let $x_n \to x$, then $Ax_n \to \lambda x - y$. Since A is closed, $x \in D(A)$ and $\lambda x - Ax = y$. Thus, for this λ , $Im(\lambda I - A)D(A) = X$ and $\lambda \in A$. Thus A is also closed in $(0, \infty)$ and since $\lambda_0 \in A$, $A \neq \emptyset$ and thus $A = (0, \infty)$ (as the latter is connected). Thus, the thesis follows from the Hille-Yosida theorem.

On the other hand, if A is the generator of a semigroup of contractions $(G(t))_{t\geq 0}$, then $(0,\infty) \subset \rho(A)$ and $Im(\lambda I - A)D(A) = X$ for all $\lambda > 0$. Furthermore, if $x \in D(A), x^* \in \mathcal{J}(x)$, then $G(4) \neq -X = -7$ A X

$$| < G(t)x, x^* > | \le ||G(t)x|| ||x^*|| \le ||x||^2 \quad = \quad (| \times |x|^2) = ||x||^2 \quad = \quad (|x|^2) = ||x||^2 = ||x||^2 = ||x||^2$$

and therefore

$$\Re < G(t)x - x, x^* > = \Re < G(t)x, x^* > - ||x||^2 \le 0$$

and, dividing the left hand side by t and passing with $t \to \infty$, we obtain

 $Q < Ax, x^* > \leq 0.$

Since this holds for every $x^* \in \mathcal{J}(x)$, the proof is complete.

 $-\langle \chi, \chi^{\star}\rangle$

Adjoint operators

Before we move to an important corollary, let as recall the concept of the adjoint operator. If $A \in \mathcal{L}(X, Y)$, then the adjoint operator A^* is defined as

$$\langle y^*, Ax \rangle = \langle A^*y^* \rangle, x \rangle \tag{2.38}$$

and it can be proved that it belongs to $\mathcal{L}(Y^*, X^*)$ with $||A^*|| = ||A||$. If A is an unbounded operator, then the situation is more complicated. In general, A^* may not exist as a single-valued operator. In other words, there may be many operators B satisfying $\mathcal{L} \neq \mathcal{K}$

$$\langle y^*, Ax \rangle = \langle By^*, x \rangle, \qquad x \in D(A), \ y^* \in D(B).$$
 (2.39)

Operators A and B satisfying (2.39) are called *adjoint to each other*.

However, if D(A) is dense in X, then there is a unique maximal operator A^* adjoint to A; that is, any other B such that A and B are adjoint to each other, must satisfy $B \subset A^*$. This A^* is called the *adjoint operator* to A. It can be constructed in the following way. The domain $D(A^*)$ consists of all elements y^* of Y^* for which there exists $f^* \in X^*$ with the property

 $\mathcal{O} = \langle \mathbf{f}^{+}, \mathbf{g}^{+}, \mathbf{x} \rangle$ 2 An Overview of Semigroup Theory

$$\langle y^*, Ax \rangle = \langle f^*, x \rangle$$
 (2.40)

for any $x \in D(A)$. Because D(A) is dense, such element f^* can be proved to be unique and therefore we can define $A^*y^* = f^*$. Moreover, the assumption $\overline{D(A)} = X$ ensures that A^* is a closed operator though not necessarily densely defined. In reflexive spaces the situation is better: if both X and Y are reflexive, then A^* is closed and densely defined with

 $\left(\prod_{i=1}^{n} A_{i} \right)$ and A^{*} are dissipative, then A is the generator of a C_{0} -semigroup of contractions on X.

Proof. It suffices to prove that, e.g., Im(I - A) = X. Since A is dissipative (I - A) X and closed, Im(XI - A) is a closed subspace of X. Indeed, if $y_n \to y, y_n \in [I - A]$ =Im(I-A), then, by dissipativity, $||x_n - x_m|| \le ||(x_n - x_m) - (Ax_n - Ax_m)|| =$ $||y_n - y_m||$ and $(x_n)_{n \in \mathbb{N}}$ converges. But then $(Ax_n)_{n \in \mathbb{N}}$ converges and, by closedness, $x \in D(A)$ and $x - Ax = y \in Im(I - A)$. Assume $Im(I - A) \neq X, \angle O, \times \rangle$ 11×n-×mll C then by H-B theorem, there is $0 \neq x^* \in X^*$ such that $\langle x^*, x - Ax \rangle = 0$ for all $x \in D(A)$. But then $x^* \in D(A^*)$ and, by density of D(A), $x^* - A^*x^* = 0$ but dissipativeness of A^* gives $x^* = 0$. (x,x) - (A,x,x)1 (x_-x_m) -= (x*- A*x',x)=D The Cauchy problem for the heat equation A (x_- x_) || Let $C = \Omega \times (0,\infty), \Sigma = \partial \Omega \times (0,\infty)$ where Ω is an open set in \mathbb{R}^n . We consider the problem KED(A) 1142 - Yml $\partial_t u = \Delta u, \quad \text{in} \Omega \times [0, \mathbb{Z}],$ (2.42) $u = 0, \quad \text{on}\Sigma,$ (2.43) $u = u_0, \quad \text{on}\Omega.$ (2.44)

> **Theorem 2.18.** Assume that $u_0 \in L_2(\Omega)$ where Ω is bounded and has a C^2 boundary. Then there exists a unique function u satisfying (2.44) (1.26) such that $u \in C([0,\infty); L_2(\Omega)) \cap C([0,\infty); W_2^2(\Omega) \cap W_2^1(\Omega))$, *Proof.* The strategy is to consider (2.44–(1.26) as the abstract Cauchy prob-

t

C

52

Proof. The strategy is to consider (2.44–(**1.26**) as the abstract Cauchy prob-

$$u' = Au, \quad u(0) = u_0$$

in $X = L_2(\Omega)$ where A is the unbounded operator defined by

 $Au = \Delta u$

for

$$u \in D(A) = \{ u \in \overset{\circ}{W_2^1}(\Omega); \Delta u \in L_2(\Omega) \} = W_2^2(\Omega) \cap \overset{\circ}{W_2^1}(\Omega))$$

First we observe that A is densely defined as $C_0^{\infty}(\Omega) \subset W_2^1(\Omega)$ and $\Delta C_0^{\infty}(\Omega) \subset L_2(\Omega)$. Next, A is dissipative. For $u \in L_2(\Omega)$, $\mathcal{J}u = u$ and

$$(Au, u) = -\int_{\Omega} |\nabla u|^2 d\mathbf{x} \le 0 \qquad \qquad u - \Delta u = \int_{\Omega} \mathcal{L}_{\mathbf{x}}$$

Further, we consider the variational problem associated with I - A, that is, to find $u \in W_2^1(\Omega)$ to

$$a(u,v) = \int_{\Omega} \nabla u \nabla v d\mathbf{x} + \int_{\Omega} uv d\mathbf{x} = \int_{\Omega} fv d\mathbf{x}, \quad v \in \overset{o}{W_{2}^{1}}(\Omega) \qquad \qquad \mathcal{I} \subset \mathcal{O}$$

where $f \in L_2(\Omega)$ is given. Clearly, $a(u, u) = ||u||_{1,\Omega}^2$ and thus is coercive. Hence there is a unique solution $u \in W_2^{\circ}(\mathcal{K})$ which, by writing

$$\int_{\Omega} \nabla u \nabla v d\mathbf{x} = \int_{\Omega} f v d\mathbf{x} - \int_{\Omega} u v d\mathbf{x} = \int_{\Omega} (f - u) v d\mathbf{x},$$

can be shown to be in $W_2^2(\Omega)$. This ends the proof of generation.

If we wanted to use the Hille-Yosida theorem instead, then to find the resolvent, we would have to solve

$$a(u,v) = \int_{\Omega} \nabla u \nabla v d\mathbf{x} + \lambda \int u v d\mathbf{x} = \int_{\Omega} f v d\mathbf{x}, \quad v \in \overset{\circ}{W}_{2}^{1}(\Omega) \qquad \qquad \searrow > O$$

for $\lambda > 0$. The procedure is the same and we get in particular for the solution

$$\begin{split} \|\nabla u_{\lambda}\|_{0,\Omega}^{2} + \lambda \|u_{\lambda}\|_{0,\Omega}^{2} \leq \|f\|_{0,\Omega} \|u_{\lambda}\|_{0,\Omega}. \quad & \begin{array}{c} \mathbb{P}(\lambda, A) : \mathcal{L}_{1}(\mathcal{K}) \to \mathcal{U}_{1}^{*}\\ & \\ \text{Since } u_{\lambda} = R(\lambda, A)f \text{ we obtain} \\ & & \\ & & \\ \mathbb{P}[R(\lambda, A)f\|_{0,\Omega}^{2} \leq \lambda^{-1} \|f\|_{0,\Omega}. \\ & \\ \text{Closedness follows from continuous invertibility.} \\ & &$$