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(—-"“-——Gt)rollary 2.12. A linear operator A is the generator of a Cy semigroup
)i>0 satisfying HG(t)H < e*! if and only if
(u L+ S S (
(i) A is closed and D(A) = X ; SQ G l-)x O{{;
(i) p(A) D (w,00) and for such A
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A= -ul+A

- 2
Q( >‘;A') o
Proof. Follows from the contractive semigroup S(t) = e “*G(t) being gener-
)...A:f ated by A — wl.
. - YA
A The full version of the Hille-Yosida theorem reads 1
')\-M-J'LJ‘ 6:&): f
Theorem 2.13. A € G(M,w) if and only if
(\ = /'\ ! ('{)a) A is closed and densely defined,
(b) there exist M > 0,w € R such that (w,00) C p(A) and for all
= (\ [BN] A
n>1,\>w,

1RO, A)) < . (2.33)
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2 2.3 Dissipative operators and the Lumer-Phillips theorem

¢ N\
“ Q (\’ b, )J X be a%anach space (real or complex) and X* be its dual. From the
Hahn—Banach theorem, Theorem 1.7 for every = € X there exists z* € X*

satisfying , ,
<t w>= o = o P T O
7

Therefore the duality set

N — * * *
J(x) = {2* € X*; <a*,a>= ||z|]* = ||=*|*} (2.35)
U= At
is nonempty for every z € X.
u+Am={
£ Definition 2.14. We say that an operator (A, D(A)) is dissipative if for every

x € D(A) there is x* € J(x) such that
R <z*, Ax><0. (2.36)

If X is a real space, then the real part in the above definition can be
dropped.

Theorem 2.15. A linear operator A is dissipative if and only if for all X > 0
and x € D(A),
(AL = A)z|| = Al (2.37)
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Proof. Let A be dissipative, A > 0 and = € D(A). If ie—jgandét <
Az, z* >< 0, then

Az — Az||||=| > |Q\m — Az, z* > | >R < \x — Az, 2* >> Mjz|?

so that we get (2.65). =R (%<, ‘(t)L-—QK'* X, X '>

Conversely, let z € D(A) and A||z| <(|]A\x — A;;Dfor A > 0. Consider
YA € J(A\z — Azx) and 25 = y3/|lv3l-

— e

< Mzl =R < Az, 25 >
L_________—_

for every A > 0. From this estimate we obtain that & < Az, 2z} >< 0 and, by
la] > Ra, S

~ L O
R CANZ3) SRS o, 24 >3l +% < Aa, 25 >2 Alal| — 1 < Aw, 25 > | > Aol - || Az

R dx 21D

or R < z,2% >> ||z||-A"'||Az|, Now, the unit ball in X* is weakly-* compact

? lix H-j'“e&xﬁnra thus there is a sequence (2} )nen converging to z* with [z*|| = 1. From

e\ (>
Q= (7

i -9 - = AJ‘\..-.""—"
o sepd @Y
A - & 2= AT's “

the above estimates, we get

((K,i¢>\>@? L§R<A:E,z*>§0_)

and ® < z,2" >> ||z||. Hence, also, | < z,2" > | > ||z|| On the other hand,
> < 1,27 >< | < z,2* > | < ||z|| and hence < z,z* >= |z||. Taking

(2 = z*||z|| we see that 2* € J(z) and ® < Az,;77 >< 0 and thus A is
dissipaftive. — A

Theorem 2.16. Let A be a linear operator with dense domain D(A) in X.

(a) If A is dissipative and there is Ao > 0 such that the range Im(Aol — A) =
X, then A is the generator of a Cy-semigroup of contractions in X.

(b) If A is the gemerator of a Cy semigroup of contractions on X, then
Im(A — A) = X for all A\ > 0 and A is dissipative. Moreover, for every
x € D(A) and every x* € J(x) we have R < Az, z* ><0.

Proof. Let A > 0, then dissipativeness of A implies [[Az a £m| > A||£|| for
x € D(A), A > 0. This gives injectivity,and, since by assumption, the Im (Aol —
A)D(A) = X, (\oI — A)~" is a bounded everywhere defined operator and thus
closed. But then Aol — A, and hence A, are closed. We have to prove that
Im(A — A)D(A) = X for all A > 0. Consider the set A = {A > 0; Im(\l —
A)D(A) = X}. Let A € A. This means that A € p(A) and, since p(A) is open,
A is open in the induced topology. We have to prove that A is closed in the
induced topology. Assume A,, — A\, A > 0. For every y € X thereis z,, € D(A)
such that
Anxn — Az, = 9.

) < e — ol = = Asl3] = Iy = Actlsg)] = 1316 o — o33 >
=< Az — Az, 2} >= AR < z, 2} >Jf§R<Ax,zf\ >
Y

T AYe- 0 HQ(_.ILA)"‘ [lé-i;\
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From ( )( lzall < 5-lyll < C for some C > 0. Now

AnllTn = Tl < A (Tn — Tm) —A(Tn — 20) |
_||J|-)\mx & AT AxﬁAx@'
‘)‘ _>\m|HInH <O|/\ _>\m‘

Thus, (2, )nen i @ Cauchy sequence. Let x,, — x, then Ax,, = Az —y. Slnce A
is closed, z € D(A) and Az — Az = y. Thus, for this A\, Im(A — A)D(A) = X
and A € A. Thus A is also closed in (0,00) and since Ag € A, A # 0 and
thus A = (0, 00) (as the latter is connected). Thus, the thesis follows from the
Hille-Yosida theorem.

On the other hand, if A is the generator of a semigroup of contractions
(G(t))t>0, then (0,00) C p(A) and Im(A — A)D(A) = X for all A > 0.

Furthermore, if z € D(A), 2" € J (), then Gy - X —7 A x
€
| < G®)a,x” > [ <[IG@allle"]l < l2]* = [ x
and therefore <1( K >

@<G()xf:za_3 S= %W”QSO
S

and, dividing the left hand side by t and passing with ¢ — co, we obtain

Q,,\< Az, z* ><0.
Since this holds for every «* € J(x), the proof is complete.
Adjoint operators

Before we move to an important corollary, let as recall the concept of the
adjoint operator. If A € L(X,Y"), then the adjoint operator A* is defined as

<y*,Ax>= @ x> (2.38)
[ ——

and it can be proved that it belongs to £L(Y™*, X*) with ||[A*|| = ||A]|. If A is
an unbounded operator, then the situation is more complicated. In general,
A* may not exist as a single-valued operator. In other words, there may be
many operators B satisfying @ £

<y*, Ax>=<By*, x>, x € D(A), y* € D(B). (2.39)

Operators A and B satisfying (2.39) are called adjoint to each other.
However, if D(A) is dense in X, then there is a unique maximal operator
A* adjoint to A; that is, any other B such that A and B are adjoint to each
other, must satisfy B C A*. This A* is called the adjoint operator to A. It
can be constructed in the following way. The domain D(A*) consists of all
elements y* of Y* for which there exists f* € X* with the property

Avs Au WY () A 5;@x) {}Jlﬁkﬁw*
LM—

(Auv = Soudw = Cavow _Ruel,
veu ) é“&t’l(“)“)
"LJ ( VA éL;:f




4
¢« €D(y

O;'\/&:g,

xeD(A)

XX

Ase 40 s

(x>

" * A
Ly xad=CL0> §
Cy A= (gx> Dl An)

74 2 An Overview of Semigroup Theory

xe D/A )

<y", Ar>=<f" 1> (2.40)

for any = € D(A). Because D(A) is dense, such element f* can be proved
to be unique and therefore we can define A*y* = f*. Moreover, the assump-
tion D(A) = X ensures that A* is a closed operator though not necessarily
densely defined. In reflexive spaces the situation is better: if both X and Y
are reflexive, then A* is closed and densely defined with

KED(h) yela( A= (2.41)
seé [105, Theorems IT1.5.28, T11.5.29].

AX\.:T/@‘-U"'Corollary 2.17. Let A be a densely defined closed linear operator. If both A

(e (T

and A* are dissipative, then A is the generator of a Cy-semigroup of contrac-

) tions on X.
{ and M

Proof. Tt suffices to prove that, e.g., Im(I — A) = X. Since A is dissipative

5@/ Xeand closed, Im(MI — A) is a closed subspace of X. Indeed, if y, — 4, yn €
—Im(I — A), then, by dissipativity, ||z, — || < |[(2n — 2n) — (Azy — Azp,)|| =

\n_-bﬂ

lyn — ymll and (z,)nen converges. But then (Az,)n,en converges and, by
closedness, z € D(A) and z — Az = y € Im(I — A). Assume Im(I — A) £ X, <O x>

wa —x_\| £ then by H-B theorem, there is 0 # z* € X* such that < z*,z — Ax >=0 for
7 allz € D(A). But then z* € D(A*) and, by density of D(A), —A*z* =0
< “but dissipativeness of A* gives z* = 0. «
| (xot) x5 x> = LAY
X =Kwm] =
(XX The Cauchy problem for the heat equation = ( Ve /.\’x'f )(> —0

A (x- x|l

i

Y-l

Let C = 2 x (0,00),X = 92 x (0,00) where 2 is an open set in R”. We -/

consider the problem o ve ( }y
Opu = Au, inf2 x [0, 7], (2.42)
u=0, onkX, (2.43)
u =1ug, onf2. (2.44)

Theorem 2.18. Assume that ug € La(§2) where (2 is bounded and has a C?
boundary. Then there exists a unique function u satzsfymg (2.44)7 such

that u € C((0, 00); La(2)) N C( @ 00); W2(2)N W(1)),

Proof The strategy is to consider (2.44-(12€) as the abstract C% r
u' = Au, u(0) = ug

in X = Ly(f2) where A is the unbounded operator defined by | ; C

Au = Au

——
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ue D(A) = {u eWl(Q): Au € Lo(R2)} = W2(2)N Wi(02)).

First we observe that A is densely defined as C§°(£2) CI/?/%(.Q) and AC°(£2) C
Lo(£2). Next, A is dissipative. For v € Lo(£2), Ju = u and

(Au,u):—/|Vu|2dX§O w "Ab\ = ﬁéL‘L
N we@ra)

Further, we consider the variational problem associated with I — A, that is,
o
to find u €W3(£2) to

2> 0
a(u,v) :/Vqudx+/uvdx:/fvdx, UGVC[}'%(Q) MO
I7) Q Q
where f € Ly(§2) is given. Clearly, a(u,u) = [ul3 , and thus is coercive.

Hence there is a unique solution u GVC[)/% % ch, by writing
/Vqudx = /fvdx— /uvdx = /(f — u)vdx,
0 0 2 o}

can be shown to be in W3 (£2). This ends the proof of generation.
If we wanted to use the Hille-Yosida theorem instead, then to find the
resolvent, we would have to solve
>
a(u,v) = [ VuVudx+ A [ wodx = | fudx, v EV([)/'é(!Z) "X O

2 U= RORA)EL 2

for A > 0. The procedure is the same and we get in particular for+4ie solution

, 1
[Vurllg,o + AMlualls.e < I1fllo.elluallo,o- &A) 'L’lt“ﬂ)‘)wt

9
Since uy = R(A, A)f we obtain m

HIROAIE 0 <A fllo.o Lo ()10

Closedness follows from continuous invertibility. j ;.12 (\ ’ M ) ‘ Lq ( A )
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