Applications in Biology

In this chapter we make use of the techniques developed in the previous few
chapters to examine some nonlinear systems that have been used as mathe-
matical models for a variety of biological systems. In Section 11.1 we utilize
the preceding results involving nullclines and linearization to describe sev-
eral biological models involving the spread of communicable diseases. In
Section 11.2 we investigate the simplest types of equations that model a preda-
tor/prey ecology. A more sophisticated approach is used in Section 11.3 to
study the populations of a pair of competing species. Instead of developing
explicit formulas for these differential equations, we instead make only quali-
tative assumptions about the form of the equations. We then derive geometric
information about the behavior of solutions of such systems based on these
assumptions.

11.1 Infectious Diseases

The spread of infectious diseases such as measles or malaria may be modeled
as a nonlinear system of differential equations. The simplest model of this
type is the SIR model. Here we divide a given population into three disjoint
groups. The population of susceptible individuals is denoted by S, the infected
population by I, and the recovered population by R. As usual, each of these
is a function of time. We assume for simplicity that the total population is
constant, so that (S+ 1+ R) = 0.
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In the most basic case we make the assumption that, once an individual
has been infected and subsequently has recovered, that individual cannot
be reinfected. This is the situation that occurs for such diseases as measles,
mumps, and smallpox, among many others. We also assume that the rate
of transmission of the disease is proportional to the number of encounters
between susceptible and infected individuals. The easiest way to character-
ize this assumption mathematically is to put ' = —BSI for some constant
B > 0. We finally assume that the rate at which infected individuals recover is
proportional to the number of infected. The SIR model is then

S = —BsI
' = BST —vI
R =vI

where 8 and v are positive parameters.

As stipulated, we have (S + I + R)’ = 0, so that S + I + R is a constant.
This simplifies the system, for if we determine S(¢) and I(¢), we then derive
R(t) for free. Hence it suffices to consider the two-dimensional system

S = —BSI
I' = BSI — vl.

The equilibria for this system are given by the S-axis (I = 0). Linearization
at (S, 0) yields the matrix
0 —BS
0 BS—v)’

so the eigenvalues are 0 and BS — v. This second eigenvalue is negative if
0 < S <v/B and positive if S > v/p.

The S-nullclines are given by the S and I axes. On the [-axis, we have
I' = —vlI, so solutions simply tend to the origin along this line. The I-
nullclines are I = 0 and the vertical line S = v/B. Hence we have the
nullcline diagram depicted in Figure 11.1. From this it appears that, given
any initial population (S, Ip) with So > v/g and Iy > 0, the susceptible popu-
lation decreases monotonically, while the infected population at first rises, but
eventually reaches a maximum and then declines to 0.

We can actually prove this analytically, because we can explicitly compute
a function that is constant along solution curves. Note that the slope of the
vector field is a function of S alone:

I'  BSI—vI %
S el R
ST _BsI S
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Figure 11.1 The
nullclines and direction
field for the SIR model.

Hence we have

dl . dl/dt B v

s asa - T

which we can immediately integrate to find
v
I=I(S)=-S+ ElogS + constant.

Hence the function I + S — (v/8)log S is constant along solution curves. It
then follows that there is a unique solution curve connecting each equilibrium
point in the interval v/ < § < 0o to one in the interval 0 < § < v/ as shown
in Figure 11.2.

/  S=v/B

S

Figure 11.2 The phase portrait
for the SIR system.
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A slightly more complicated model for infectious diseases arises when we
assume that recovered individuals may lose their immunity and become rein-
fected with the disease. Examples of this type of disease include malaria and
tuberculosis. We assume that the return of recovered individuals to the class S
occurs at a rate proportional to the population of recovered individuals. This
leads to the SIRS model (where the extra S indicates that recovered individuals
may reenter the susceptible group). The system becomes

S = —BSI + uR
I' = BST — vl
R =vI— uR.

Again we see that the total population S + I + R is a constant, which we
denote by . We may eliminate R from this system by setting R=7 — S — I:

S'=—-BSI+pu(t—S-1
I' = BSI — vl

Here 8, i, v, and t are all positive parameters.
Unlike the SIR model, we now have at most two equilibria, one at (7, 0) and
the other at

(§*,T%) = (KMT—_E))
B v+u

The first equilibrium point corresponds to no disease whatsoever in the pop-
ulation. The second equilibrium point only exists when t > v/B. When
T = v/fB, we have a bifurcation as the two equilibria coalesce at (7,0). The
quantity v/g is called the threshold level for the disease.

The linearized system is given by

_ (—ﬂl—u —ﬂS—M) v
BI BS—v
At the equilibrium point (7, 0), the eigenvalues are —u and 8t — v, so this
equilibrium point is a saddle provided that the total population exceeds the
threshold level. At the second equilibrium point, a straightforward computa-
tion shows that the trace of the matrix is negative, while the determinant is

positive. It then follows from the results in Chapter 4 that both eigenvalues
have negative real parts, and so this equilibrium point is asymptotically stable.
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Biologically, this means that the disease may become established in the com-
munity only when the total population exceeds the threshold level. We will
only consider this case in what follows.

Note that the SIRS system is only of interest in the region given by I, S > 0
and S 4 I < 7. Denote this triangular region by A (of course!). Note that the
I-axis is no longer invariant, while on the S-axis, solutions increase up to the
equilibrium at (7, 0).

Proposition. The region A is positively invariant.

Proof: We check the direction of the vector field along the boundary of A.
The field is tangent to the boundary along the lower edge I = 0 as well as at
(0,7). Along S = 0 we have S’ = pu(tr — I) > 0, so the vector field points
inward for 0 < I < 7. Along the hypoteneuse, if 0 < S < v/B, we have
S = —BSI <0and I’ = I(BS — v) < 0 so the vector field points inward.
When v/ < S <t we have

1< I =-1+ Y 0
s BS ~
so again the vector field points inward. This completes the proof. |

The I-nullclines are given as in the SIR model by I = 0 and S = v/8. The
S-nullcline is given by the graph of the function

_p(r=9)

I=18 =35

A calculus student will compute that I'(S) < 0and I”(S) >0when0 < S < 7.
So this nullcline is the graph of a decreasing and concave up function that passes
through both (7, 0) and (0, ), as displayed in Figure 11.3. Note that in this
phase portrait, all solutions appear to tend to the equilibrium point (S*, I*);
the proportion of infected to susceptible individuals tends to a “steady state.”
To prove this, however, one would need to eliminate the possibility of closed
orbits encircling the equilibrium point for a given set of parameters 8, u, v,
and 7.

11.2 Predator/Prey Systems

We next consider a pair of species, one of which consists of predators whose
population is denoted by y and the other its prey with population x. We assume
that the prey population is the total food supply for the predators. We also





