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(a) Show that the change of coordinates B; y;(f)= x;(t/a; ;) reduces this system
of equations to

yi=n(l=y)+ay1y,  Y2=yp(1-y))—ayy1 5,
where a;=v, 8,/ B, and a,=7, B8,/ @, B>.
(b) What are the stable equilibrium populations when (i) 0 <a, <1, (ii) a;>1?
(c) It is observed that a; =3a, (a, is a measure of the aggressiveness of the pre-
dator). What is the value of 4, if the predator’s instinct is to maximize its
stable equilibrium population?

6. (a) Let x(¢) be a solution of x=ax— MVx , with M >a’\/x(t,) . Show that
avx =M—(M— aV/ x(t) )e“("’O)/z.

(b) Conclude from (a) that x(¢) approaches zero in finite time.

(c) Let x(2), y(¢) be a solution of (7), with by (1) >a’\/ x(2y) . Show that x(¢)
reaches zero in finite time. Hint: Observe that y(r) is increasing for ¢ > #,.

(d) It can be shown that by(r) will eventually exceed a’\/ x(r) for every solu-

tion x(7), y(9) of (7) with x(¢p) and y(¢,) positive. Conclude, therefore, that
all solutions x(r), y(r) of (7) achieve x=0 in finite time.

4.11 The principle of competitive exclusion
in population biology

It is often observed, in nature, that the struggle for existence between two
similar species competing for the same limited food supply and living
space nearly always ends in the complete extinction of one of the species.
This phenomenon is known as the “principle of competitive exclusion.” It
was first enunciated, in a slightly different form, by Darwin in 1859. In his
paper ‘The origin of species by natural selection’ he writes: “As the species
of the same genus usually have, though by no means invariably, much sim-
ilarity in habits and constitutions and always in structure, the struggle will
generally be more severe between them, if they come into competition with
each other, than between the species of distinct genera.”

There is a very interesting biological explanation of the principle of
competitive exclusion. The cornerstone of this theory is the idea of a
“niche.” A niche indicates what place a given species occupies in a com-
munity; i.e., what are its habits, food and mode of life. It has been ob-
served that as a result of competition two similar species rarely occupy the
same niche. Rather, each species takes possession of those kinds of food
and modes of life in which it has an advantage over its competitor. If the
two species tend to occupy the same niche then the struggle for existence
between them will be very intense and result in the extinction of the
weaker species.

An excellent illustration of this theory is the colony of terns inhabiting
the island of Jorilgatch in the Black Sea. This colony consists of four diffe-
rent species of terns: sandwich-tern, common-tern, blackbeak-tern, and lit-
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4.11 The principle of competitive exclusion in population biology

¢,m respectively, as ¢t approaches infinity. Lemma 2 of Section 4.8 implies
that (£,7m) is an equilibrium point of (4). Now, the only equilibrium points
of (4) are (0,0), (K,,0), and (0, K;), and (£,1) obviously cannot equal any of
these three points. We conclude therefore, that any solution N,(f), Ny(t) of
(4) which starts in region I must leave this region at a later time. O

Lemma 2. Any solution N (1), N(t) of (4) which starts in region 11 at time
t =ty will remain in this region for all future time t > t,, and ultimately ap-
proach the equilibrium solution N,= K, N,=0.

PROOF. Suppose that a solution N,(f), N(f) of (4) leaves region II at time
t=r*. Then, either N,(¢*) or N,(*) is zero, since the only way a solution of
(4) can leave region II is by crossing /, or /,. Assume that N (#%)=0. Dif-
ferentiating both sides of the first equation of (4) with respect to ¢ and set-
ting f=1* gives
d°N,(t*)  —aN, (%) dN,(1*)
dr? h K, dt )

This quantity is positive. Hence, N,(¢) has a minimum at z=¢*. But this is
impossible, since N,(¢) is increasing whenever a solution N(#), Ny(¢) of (4)
is in region II. Similarly, if Ny(¢*)=0, then

d*N, (1*) _ —a,N,(t*) dN, (t*)
ar K, a

This quantity is negative, implying that N,(7) has a maximum at /= ¢*. But
this is impossible, since N,(7) is decreasing whenever a solution N (1), Ny(t)
of (4) is in region 1I1.

The previous argument shows that any solution N (#), N,(¢) of (4) which
starts in region II at time ¢ =1, will remain in region II for all future time
t > t,. This implies that N,(¢) is monotonic increasing and N,(f) is mono-
tonic decreasing for 1> ¢, with N,(f) < K, and N,(¢) > K,. Consequently,
by Lemma 1 of Section 4.8, both N,(¢) and N,(¢) have limits §,7 respec-
tively, as ¢ approaches infinity. Lemma 2 of Section 4.8 implies that (§,-) is
an equilibrium point of (4). Now, (§,7) obviously cannot equal (0,0) or
(0, K;). Consequently, (£,m)=(K|,0), and this proves Lemma 2. O

Lemma 3. Any solution N (1), Ny(¢) of (4) which starts in region 111 at time
t=1t, and remains there for all future time must approach the equilibrium
solution N|(t)=K,, N,(£)=0 as t approaches infinity.

ProOF. If a solution N,(¢), Ny(¢) of (4) remains in region III for ¢ > ¢, then
both N,(¢) and N,(¢) are monotonic decreasing functions of time for ¢ > ¢,
with N,(#)>0 and N,(#)>0. Consequently, by Lemma 1 of Section 4.8,
both N (1) and N,(¢) have limits £ 7 respectively, as ¢ approaches infinity.
Lemma 2 of Section 4.8 implies that (§,7) is an equilibrium point of (4).
Now, (£,7) obviously cannot equal (0,0) or (0, K,). Consequently, (§,m)=
(KI’O)' D

453

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com


http://www.docudesk.com
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PROOF OF THEOREM 6. LLemmas 1 and 2 above state that every solution
N,(1), Ny(t) of (4) which starts in regions I or II at time ¢=1¢, must ap-
proach the equilibrium solution ¥, =K,, N,=0 as ¢ approaches infinity.
Similarly, Lemma 3 shows that every solution N,(¥), N,(¢) of (4) which
starts in region III at time ¢= ¢, and remains there for all future time must
also approach the equilibrium solution N, = K|, N,=0. Next, observe that
any solution N,(f), N,(¢) of (4) which starts on /, or /, must immediately
afterwards enter region II. Finally, if a solution N,(¢), N(?) of (4) leaves re-
gion III, then it must cross the line /; and immediately afterwards enter re-
gion II. Lemma 2 then forces this solution to approach the equilibrium
solution N, =K, N,=0. O

Theorem 6 deals with the case of identical species; i.e.,, a=8=1. By a
similar analysis (see Exercises 4-6) we can predict the outcome of the
struggle for existence for all values of « and 8.

Reference
Gause, G. F., ‘The Struggle for Existence,” Dover Publications, New York, 1964.

EXERCISES
1. Rewrite the system of equations (4) in the form
Kl le K N N K2 sz
alNl dt - I azN27

Then, subtract these two equations and integrate to obtain directly that N,(¢)
approaches zero for all solutions N,(r), Ny(¢) of (4) with N,(¢5)>0.

=K,— N,—N,.

2. The system of differential equations

dN,
i =Nil-ata(l-bN, - b,N,)]

*
Tt=N2["'a2+(,'2(1—b1N1_b2N2)]

is a model of two species competing for the same limited resource. Suppose that
¢;>a, and ¢;> a,. Deduce from Theorem 6 that N,(r) ultimately approaches
zero if a;c, > ayc;, and Ny(t) ultimately approaches zero if a,c, < a,c).

3. In 1926, Volterra presented the following model of two species competing for
the same limited food supply:
—i =[5 A (BN + B N2 )N,

dN,
'71— =[b2_)\2(thl +h2N2)]N2

Suppose that b, /A, > b, /A,. (The coefficient b,/ is called the susceptibility of
species i to food shortages.) Prove that species 2 will ultimately become extinct if
Ny (t5)>0.
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4.11 The principle of competitive exclusion in population biology

Problems 4-6 are concerned with the system of equations

dN, aN, dN, a,N,

- - _ _ T — — *
dt K, (K, — N, “Nz)’ dr K, (Kz N, BNI)' ()

4. (a) Assume that K,/a> K, and K,/ < K. Show that N,(#) approaches zero as
¢t approaches infinity for every solution N (1), No(r) of (*) with N(#) >0.
(b) Assume that K;/a < K, and K,/ B > K. Show that N () approaches zero as
t approaches infinity for every solution N(r), Ny(?) of (*) with N ;N5(1) >0.
Hint: Draw the lines /,: N, +aN,=K, and /,: N, + BN, = K,, and follow the
proof of Theorem 6.

5. Assume that X,/a > K, and K,/ > K. Prove that all solutions N (), Ny(¢) of
(*), with both N,(1;) and N,(¢,) positive, ultimately approach the equilibrium
solution

K]_(XKZ
1—aB ’

K, BK,

= 0= _—
Ny=N{ =B

Ny=Ng=

Hint:

(a) Draw the lines /;: N+ aN,=K, and /,: N,+ BN, = K. The two lines divide
the first quadrant into four regions (see Figure 2) in which both N, and N,
have fixed signs.

\ K./B
Figure 2

(b) Show that all solutions N (), N,(r) of (*) which start in either region II or
IIT must remain in these regions and ultimately approach the equilibrium
solution N;=NJ, N,=NJ.

(c) Show that all solutions N ,(r), N,(¢) of (*) which remain exclusively in region
I or region IV for all time > #, must ultimately approach the equilibrium
solution N, =N{, N,=Nj.
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N,
Ka
K,/al
1 N
Ko/B K, '
Figure 3

6. Assume that K;/a < K, and K,/ B< K.

(a) Show that the equilibrium solution N, =0, N,=0 of (*) is unstable.

(b) Show that the equilibrium solutions N,= K|, N,=0 and N,;=0, N,=K, of
(*) are asymptotically stable.

(c) Show that the equilibrium solution N, =N{, N,=N¥ (see Exercise 5) of (*)
is a saddle point. (This calculation is very cumbersome.)

(d) It is not too difficult to see that the phase portrait of (*) must have the form
described in Figure 3.

4.12 The Threshold Theorem of epidemiology

Consider the situation where a small group of people having an infectious
disease is inserted into a large population which is capable of catching the
disease. What happens as time evolves? Will the disease die out rapidly, or
will an epidemic occur? How many people will ultimately catch the dis-
ease? To answer these questions we will derive a system of differential
equations which govern the spread of an infectious disease within a popu-
lation, and analyze the behavior of its solutions. This approach will also
lead us to the famous Threshold Theorem of epidemiology which states
that an epidemic will occur only if the number of people who are suscept-
ible to the disease exceeds a certain threshold value.

We begin with the assumptions that the disease under consideration
confers permanent immunity upon any individual who has completely re-
covered from it, and that it has a negligibly short incubation period. This
latter assumption implies that an individual who contracts the disease be-
comes infective immediately afterwards. In this case we can divide the
population into three classes of individuals: the infective class (7), the sus-
ceptible class (S) and the removed class (R). The infective class consists of
those individuals who are capable of transmitting the disease to others.
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4.12  The Threshold Theorem of epidemiology

The susceptible class consists of those individuals who are not infective,
but who are capable of catching the disease and becoming infective. The
removed class consists of those individuals who have had the disease and
are dead, or have recovered and are permanently immune, or are isolated
until recovery and permanent immunity occur.

The spread of the disease is presumed to be governed by the following
rules.

Rule 1: The population remains at a fixed level N in the time interval
under consideration. This means, of course, that we neglect births, deaths
from causes unrelated to the disease under consideration, immigration and
emigration.

Rule 2: The rate of change of the susceptible population is proportional
to the product of the number of members of (S) and the number of mem-
bers of (I).

Rule 3: Individuals are removed from the infectious class (/) at a rate
proportional to the size of (/). ]

Let S(¥),1{?), and R (¢) denote the number of individuals in classes (S),
(1), and (R), respectively, at time ¢. It follows immediately from Rules 1-3
that S (£),1(r), R(?) satisfies the system of differential equations

ds _

71‘ = —rSI

dl

E=rSI—yI (H
dR _

a Y

for some positive constants r and y. The proportionality constant r is
called the infection rate, and the proportionality constant v is called the re-
moval rate.

The first two equations of (1) do not depend on R. Thus, we need only
consider the system of equations

as da _

- rS1, 7 =rSI—vyl (2)
for the two unknown functions S(¢) and 7(¢). Once S(¢) and I(f) are
known, we can solve for R (¢) from the third equation of (1). Alternately,

observe that d(S+ 7+ R)/dt=0. Thus,
S()+1(t)+ R(t)y=constant=N
so that R())=N—-S()—1(¥).
The orbits of (2) are the solution curves of the first-order equation

dr _rSI—yI _ Y
ds —rSI H-rS' )
Integrating this differential equation gives
1(S)=Ip+S,~S+pln-3-, (4)
0
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4 Qualitative theory of differential equations

/ (So’Io)
; S

P
Figure 1. The orbits of (2)

where S, and /; are the number of susceptibles and infectives at the initial
time ¢ =ty, and p=y/r. To analyze the behavior of the curves (4), we com-
pute I'(S)= —1+p/S. The quantity —1+p/S is negative for § >p, and
positive for S <p. Hence, I(S) is an increasing function of S for § <p, and
a decreasing function of S for § >p.

Next, observe that 1(0)= — o0 and [(Sy)= 1,>0. Consequently, there
exists a unique point S, with 0< S < S, such that I(S_)=0, and 7(S)
>0 for S, < S< S, The point (S,,0) is an equilibrium point of (2) since
both dS/dt and dI/dt vanish when I=0. Thus, the orbits of (2), for 1, <1
< o0, have the form described in Figure 1.

Let us see what all this implies about the spread of the disease within
the population. As ¢ runs from ¢, to oo, the point (S(¢),1(¢)) travels along
the curve (4), and it moves along the curve in the direction of decreasing S,
since S(r) decreases monotonically with time. Consequently, if S is less
than p, then I(r) decreases monotonically .to zero, and S (¢) decreases
monotonically to S_. Thus, if a small group of infectives I, is inserted into
a group of susceptibles S, with S, <p, then the disease will die out rapidly.
On the other hand, if S, is greater than p, then /(¢) increases as S () de-
creases to p, and it achieves a maximum value when S=p. It only starts
decreasing when the number of susceptibles falls below the threshold value
p. From these results we may draw the following conclusions.

Conclusion 1: An epidemic will occur only if the number of susceptibles
in a population exceeds the threshold value p=1vy/r.

Conclusion 2: The spread of the disease does not stop for lack of a sus-
ceptible population; it stops only for lack of infectives. In particular, some
individuals will escape the disease altogether.

Conclusion 1 corresponds to the general observation that epidemics
tend to build up more rapidly when the density of susceptibles is high due
to overcrowding, and the removal rate is low because of ignorance, inade-
quate isolation and inadequate medical care. On the other hand, outbreaks
tend to be of only limited extent when good social conditions entail lower
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4.12 The Threshold Theorem of epidemiology

densities of susceptibles, and when removal rates are high because of good
public health vigilance and control.

If the number of susceptibles S, is initially greater than, but close to, the
threshold value p, then we can estimate the number of individuals who
ultimately contract the disease. Specifically, if S;—p is small compared to
p, then the number of individuals who ultimately contract the disease is ap-
proximately 2(.S; — p). This is the famous Threshold Theorem of epidemiol-
ogy, which was first proven in 1927 by the mathematical biologists
Kermack and McKendrick.

Theorem 7 (Threshold Theorem of epidemiology). Let So=p+ v and
assume that v /p is very small compared to one. Assume moreover, that the
number of initial infectives I, is very small. Then, the number of individu-
als who ultimately contract the disease is 2v. In other words, the level of
susceptibles is reduced to a point as far below the threshold as it originally
was above it.

ProoOF. Letting ¢ approach infinity in (4) gives

oo

0=1Iy+ Sg— S, +pln—==.
SO

If 1, is very small compared to S, then we can neglect it, and write

O=SO—Sw+pln?0
So—(Se— S,
=5,— S, +pln _0(_;_)}
0
So— S
=8, S, tpln|1— S .
0

Now, if S;—p is small compared to p, then S;— S, will be small compared
to S,. Consequently, we can truncate the Taylor series

SO_Soo SO_Soo 1 SO—Soo :
In| 1— = — — = + ...
So So 2 So
after two terms. Then,

SO_Soc p SO—Soo ?
rnesnf S5

p P
=(So= S, )| 1- = - ——(5,—5) |-
( 0 w)l: SO 2S02 0 oo)}
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Solving for S;— S, we see that

So ptv
So= =285 | = 1 =2(p+v)[——p———l}

=2(p+1) L =2 (1+1)1;~=2.
(p )p o\1+5 )5 =2 O

During the course of an epidemic it is impossible to accurately ascertain
the number of new infectives each day or week, since the only infectives
who can be recognized and removed from circulation are those who seek
medical aid. Public health statistics thus record only the number of new re-
movals each day or week, not the number of new infectives. Therefore, in
order to compare the results predicted by our model with data from actual
epidemics, we must find the quantity dR/dt as a function of time. This is
accomplished in the following manner. Observe first that

dR

—dT=yI=y(N—R—S).

Second, observe that

ds _das/di _ —ys1_ -8
dR dR/d: vl p

Hence, S (R)= Sye ®/? and
4R _
dr 7

Equation (5) is separable, but cannot be solved explicitly. However, if the

epidemic is not very large, then R/p is small and we can truncate the
Taylor series

(N—R—Sue®/7). (5)

2
e‘R/”=l—5—+l(£) +...
p 2\p

after three terms. With this approximation,

o =1 N RS 1= R/p+ 5 R/

S S 2]
N—S0+(?°—1)R——3(£) .

—_

The solution of this equation is

2

PN 1
R(t)=§—0[70—l+atanh(l(xyt—¢) (6)
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where
1/2

11
> , ¢=tanh a(p 1)

S, 2 28, (N-S
(01)+ o 0)
p

and the hyperbolic tangent function tanhz is defined by

z

z _
e‘—e

tanhz=—F——.
e‘+e

It is easily verified that

4 tanhz=sech?z = 4 >
dz (ez+e—z)
Hence,
dR _ve?o® (1 .
@~ 28, sech ant—q) . @)

Equation (7) defines a symmetric bell shaped curve in the +~dR/dt plane
(see Figure 2). This curve is called the epidemic curve of the disease. It
illustrates very well the common observation that in many actual epidem-
ics, the number of new cases reported each day climbs to a peak value and
then dies away again.

dR
dt

L t
2¢/aY

Figure 2

Kermack and McKendrick compared the values predicted for dR/dt
from (7) with data from an actual plague in Bombay which spanned the
last half of 1905 and the first half of 1906. They set

‘fi—f —890sech?(0.2/ — 3.4)

with ¢ measured in weeks, and compared these values with the number of
deaths per week from the plague. This quantity is a very good approxima-
tion of dR/dt, since almost all cases terminated fatally. As can be seen
from Figure 3, there is excellent agreement between the actual values of
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dR/dt, denoted by e, and the values predicied by (7). This indicates, of
course, that the system of differential equations (1) is an accurate and reli-
able model of the spread of an infectious disease within a population of
fixed size.
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EXERCISES
1. Derive Equation (6).

2. Suppose that the members of (§) are vaccinated against the disease at a rate A
proportional to their number. Then,
as _ o
W = rSI—AS s
(a) Find the orbits of (*).
(b) Conclude from (a) that S (f) approaches zero as ¢ approaches infinity, for ev-
ery solution S (z), 1(¢) of (*).

dI

I— — %x
7 =rSI—vl. *
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4.13 A model for the spread of gonorrhea

3. Suppose that the members of (§) are vaccinated against the disease at a rate A
proportional to the product of their numbers and the square of the members of
(). Then,

S _ i yor2
- rSI—ASI4,

(a) Find the orbits of (*).
(b) Will any susceptibles remain after the disease dies out?

dl

= 1(S=7) ™

4. The intensity i of an epidemic is the proportion of the total number of suscept-
ibles that finally contracts the disease. Show that

o L+ S5,—-S,

i= s,

where S, is a root of the equation
S=S0e(5—50—10)/9.

5. Compute the intensity of the epidemic if p=1000, ;= 10, and (a) S,=1100, (b)
So=1200, (c) Sy=1300, (d) S;=1500, (¢) S,=1800, (f) So=1900. (This cannot
be done analytically.)

6. Let R, denote the total number of individuals who contract the disease.
(a) Show that R =1+ S;— S,.
(b) Let R, denote the members of (R) who are removed from the population
prior to the peak of the epidemic. Compute R,/ R, for each of the values of
S, in 5a-5f. Notice that most of the removals occur after the peak. This type
of asymmetry is often found in actual notifications of infectious diseases.

7. It was observed in London during the early 1900’s, that large outbreaks of
measles epidemics recurred about once every two years. The mathematical biol-
ogist H. E. Soper tried to explain this phenomenon by assuming that the stock
of susceptibles is constantly replenished by new recruits to the population. Thus,
he assumed that

dl

= — *
@ rSI—vI *)

as _
E— rSI+p.,

for some positive constants r, y, and p.

(a) Show that S=y/r, I=p/y is the only equilibrium solution of (*).

(b) Show that every solution S(¢), 7(?) of (*) which starts sufficiently close to
this equilibrium point must ultimately approach it as ¢ approaches infinity.

(c) It can be shown that every solution S(¢), /(f) of (*) approaches the
equilibrium solution S=1vy/r, I=p/y as ¢ approaches infinity. Conclude,
therefore, that the system (*) does not predict recurrent outbreaks of measles
epidemics. Rather, it predicts that the disease will ultimately approach a
steady state.

4.13 A model for the spread of gonorrhea

Gonorrhea ranks first today among reportable communicable diseases in
the United States. There are more reported cases of gonorrhea every year
than the combined totals for syphilis, measles, mumps, and infectious
hepatitis. Public health officials estimate that more than 2,500,000 Ameri-
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cans contract gonorrhea every year. This painful and dangerous disease,
which is caused by the gonococcus germ, is spread from person to person
by sexual contact. A few days after the infection there is usually itching
and burning of the genital area, particularly while urinating. About the
same time a discharge develops which males will notice, but which females
may not notice. Infected women may have no easily recognizable symp-
toms, even while the disease does substantial internal damage. Gonorrhea
can only be cured by antibiotics (usually penicillin). However, treatment
must be given early if the disease is to be stopped from doing serious
damage to the body. If untreated, gonorrhea can result in blindness, steril-
ity, arthritis, heart failure, and ultimately, death.

In this section we construct a mathematical model of the spread of
gonorrhea. Our work is greatly simplified by the fact that the incubation
period of gonorrhea is very short (3-7 days) compared to the often quite
long period of active infectiousness. Thus, we will assume in our model
that an individual becomes infective immediately after contracting gonor-
rhea. In addition, gonorrhea does not confer even partial immunity to
those individuals who have recovered from it. Immediately after recovery,
an individual is again susceptible. Thus, we can split the sexually active
and promiscuous portion of the population into two groups, susceptibles
and infectives. Let ¢,(¢) be the total number of promiscuous males, c(f)
the total number of promiscuous females, x(¢) the total number of infec-
tive males, and y(¢) the total number of infective females, at time ¢. Then,
the total numbers of susceptible males and susceptible females are c,(f) —
x(t) and c¢,(f) —y(¢) respectively. The spread of gonorrhea is presumed to
be governed by the following rules:

1. Male infectives are cured at a rate @, proportional to their total num-
ber, and female infectives are cured at a rate a, proportional to their total
number. The constant a, is larger than a, since infective males quickly de-
velop painful symptoms and therefore seek prompt medical attention.
Female infectives, on the other hand, are usually asymptomatic, and there-
fore are infectious for much longer periods.

2. New infectives are added to the male population at a rate b, propor-
tional to the total number of male susceptibles and female infectives. Simi-
larly, new infectives are added to the female population at a rate b, pro-
portional to the total number of female susceptibles and male infectives.

3. The total numbers of promiscuous males and promiscuous females re-
main at constant levels ¢, and c,, respectively.

It follows immediately from rules 1-3 that

dx

gt—=—a,x+b,(c1——x)y

(M

dy
@Y +by(c;—y)x.
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Remark. The system of equations (1) treats only those cases of gonorrhea
which arise from heterosexual contacts; the case of homosexual contacts
(assuming no interaction between heterosexuals and homosexuals) is
treated in Exercises 5 and 6. The number of cases of gonorrhea which arise
from homosexual encounters is a small percentage of the total number of
incidents of gonorrhea. Interestingly enough, this situation is completely
reversed in the case of syphilis. Indeed, more than 90% of all cases of
syphilis reported in the state of Rhode Island during 1973 resulted from
homosexual encounters. (This statistic is not as startling as it first appears.
Within ten to ninety days after being infected with syphilis, an individual
usually develops a chancre sore at the spot where the germs entered the
body. A homosexual who contracts syphilis as a result of anal intercourse
with an infective will develop a chancre sore on his rectum. This individ-
ual, naturally, will be reluctant to seek medical attention, since he will then
have to reveal his identity as a homosexual. Moreover, he feels no sense of
urgency, since the chancre sore is usually painless and disappears after
several days. With gonorrhea, on the other hand, the symptoms are so
painful and unmistakable that a homosexual will seek prompt medical
attention. Moreover, he need not reveal his identity as a homosexual since
the symptoms of gonorrhea appear in the genital area.)

Our first step in analyzing the system of differential equations (1) is to
show that they are realistic. Specifically, we must show that x(¢) and y(¢)
can never become negative, and can never exceed ¢, and c,, respectively.
This is the content of Lemmas 1 and 2.

Lemma 1. If x(ty) and y(t,) are positive, then x(t) and y(t) are positive for
all t> 1,

Lemma 2. If x(t,) is less than ¢, and y(t,) is less than c,, then x(t) is less
than c, and y(t) is less than c, for all t > t,.

PROOF OF LEMMA 1. Suppose that Lemma 1 is false. Let t* > ¢, be the first
time at which either x or y is zero. Assume that x is zero first. Then,
evaluating the first equation of (1) at t=1¢* gives x(¢t*)=b,c,y(¢t*). This
quantity is positive. (Note that y(¢*) cannot equal zero since x=0, y=0is
an equilibrium solution of (1).) Hence, x(¢) is less than zero for ¢ close to,
and less than r*. But this contradicts our assumption that ¢* is the first
time at which x(#) equals zero. We run into the same contradiction if y(¢*)
=0. Thus, both x(7) and y(¢) are positive for ¢ > ¢,. O

PROOF OF LEMMA 2. Suppose that Lemma 2 is false. Let t* > ¢, be the first
time at which either x=c¢,, or y =c¢,. Suppose that x(t*)=c,. Evaluating
the first equation of (1) at ¢=* gives X(t*)= — a,c,. This quantity is nega-
tive. Hence, x(t) is greater than c, for ¢ close to, and less than ¢*. But this
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4 Qualitative theory of differential equations

contradicts our assumption that ¢* is the first time at which x(¢) equals c,.
We run into the same contradiction if y(#*)=c,. Thus, x(?) is less than ¢,
and y(¢) is less than ¢, for ¢ > ¢, O

Having shown that the system of equations (1) is a realistic model of
gonorrhea, we now seec what predictions it makes concerning the future
course of this disease. Will gonorrhea continue to spread rapidly and un-
controllably as the data in Figure 1 seems to suggest, or will it level off
eventually? The following extremely important theorem of epidemiology
provides the answer to this question.

Theorem 8.
(a) Suppose that aa, is less than b,b,c,c,. Then, every solution x(t),
y () of (1) with 0< x(#5) < ¢, and 0<y(1y) < c,, approaches the
equilibrium solution

blbzcch_alaz blb2ClC2—a|a2
"~ ab,+ bbby, r= ab,+ b,byc,

as t approaches infinity. In other words, the total numbers of infective
males and infective females will ultimately level off.

(b)Suppose that a,a, is greater than b b,c,c,. Then every solution x(1),
y () of (1) with 0< x(ty)<c, and 0<y(t,)<c,, approaches zero as t ap-
proaches infinity. In other words, gonorrhea will ultimately die out.

Our first step in proving part (a) of Theorem 8 is to split the rectangle
0<x<¢;, 0<y<c, into regions in which both dx/dr and dy/dr have
fixed signs. This is accomplished in the following manner. Setting dx /dt =
0 in (1), and solving for y as a function of x gives

alx ¢( )
=——=d,(X).
YT b (emx)

Similarly, setting dy/dt=0 in (1) gives

e a,y )= bycyx
by(ey=y)’

Observe first that ¢,(x) and ¢,(x) are monotonic increasing functions of x;
¢,(x) approaches infinity as x approaches ¢, and ¢,(x) approaches c, as x
approaches infinity. Second, observe that the curves y =¢,(x) and y =¢,(x)
intersect at (0,0) and at (x,, y,) where

=¢,(x).

a,+bx

b,bycic;—aya, bb,cc;—aya,
Xg=———"F—"—, Yyg=— .
ab,+ b,b,c, O a,b,+ b,byc,
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4 Qualitative theory of differential equations

y
y=¢(x)
C, £
7 I x< 0
x>0 y<0
y< O ,y=¢>z(x)
(xo ,yo)
" I
,{,0‘ x<O
A" y>0
X
CI
Figure 2

Third, observe that ¢,(x) is increasing faster than ¢,(x) at x=0, since
, by, a ,
$,(0)= o >m =67 (0).

Hence, ¢,(x) lies above ¢,(x) for 0 < x < x,, and ¢,(x) lies below ¢,(x) for
X< x < ¢, as shown in Figure 2. The point (xg, y,) is an equilibrium point
of (1) since both dx /dr and dy /dt are zero when x=x, and y =y,

Finally, observe that dx/dt is positive at any point (x,y) above the
curve y =¢,(x), and negative at any point (x,y) below this curve. Similarly,
dy / dt is positive at any point (x,y) below the curve y =¢,(x), and negative
at any point (x,y) above this curve. Thus, the curves y=¢,(x) and y =
¢,(x) split the rectangle 0< x<¢;, 0<y <, into four regions in which
dx/dt and dy /dt have fixed signs (see Figure 2).

Next, we require the following four simple lemmas.

Lemma 3. Any solution x(t), y(t) of (1) which starts in region 1 at time t=t,
will remain in this region for all future time t > t, and approach the
equilibrium solution x = x,, y =y, as t approaches infinity.

PRrROOF. Suppose that a solution x(¢), y(¢) of (1) leaves region I at time =
t*. Then, either x(¢*) or y(¢*) is zero, since the only way a solution of (1)
can leave region I is by crossing the curve y =¢,(x) or y =¢,(x). Assume
that x(#*)=0. Differentiating both sides of the first equation of (1) with re-
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4.13 A model for the spread of gonorrhea

spect to ¢ and setting r=t* gives

x () B
2 =b,(c,—x(1*)) a

This quantity is positive, since x(¢*) is less than ¢, and dy /dt is positive on
the curve y =¢,(x), 0< x < x,. Hence, x(¢) has a minimum at ¢=r*. But
this is impossible, since x(¢) is increasing whenever the solution x(¢), y(¢) is
in region I. Similarly, if y(¢1*)=0, then

d’y(1*)
dr?

dx(t*
=by(c;—y(1*)) (Stt)

This quantity is positive, since y(#*) is less than ¢,, and dx /dt is positive on
the curve y =¢,(x), 0< x < x,. Hence, y(¢) has a minimum at ¢t=¢*. But
this is impossible, since y(¢) is increasing whenever the solution x(?), y(¢) is
in region 1.

The previous argument shows that any solution x(¢),y(¢) of (1) which
starts in region I at time ¢ = ¢, will remain in region I for all future time ¢ >
ty. This implies that x(r) and y(f) are monotonic increasing functions of
time for ¢ > t,, with x(¢) < x, and y(#) <y,. Consequently, by Lemma 1 of
Section 4.8, both x(¢) and y(¢) have limits §, 7, respectively, as ¢ approaches
infinity. Lemma 2 of Section 4.8 implies that (§,7) is an equilibrium point
of (1). Now, it is easily seen from Figure 2 that the only equilibrium points
of (1) are (0,0) and (x4, yg). But (£,1) cannot equal (0,0) since both x(¢)
and y(¢) are increasing functions of time. Hence, (§,71)=(x,, yo), and this
proves Lemma 3. |

Lemma 4. Any solution x(1), y(t) of (1) which starts in region 111 at time t =
ty will remain in this region for all future time and ultimately approach the
equilibrium solution x = x,, y = y,.

Proor. Exactly the same as Lemma 3 (see Exercise 1). a

Lemma 5. Any solution x(t), y(¢t) of (1) which starts in region 11 at time t =
ty, and remains in region 11 for all future time, must approach the
equilibrium solution x= x,, y =y, as t approaches infinity.

ProoF. If a solution x(¢), y(¢) of (1) remains in region II for ¢ > ¢,, then
x(¢) is monotonic decreasing and y(?) is monotonic increasing for ¢ > ¢,
Moreover, x(f) is positive and y(¢) is less than ¢,, for ¢ > f,. Consequently,
by Lemma 1 of Section 4.8, both x(¢) and y(¢) have limits £, 7 respectively,
as t approaches infinity. Lemma 2 of Section 4.8 implies that (§,7) is an
equilibrium point of (1). Now, (£ 7) cannot equal (0,0) since y(¢) is increas-
ing for ¢ > t,. Therefore, (§71)=(xg, ), and this proves Lemma 5. a
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4 Qualitative theory of differential equations

Lemma 6. Any solution x(t), y(t) of (1) which starts in region IV at time t =
ty and remains in region IV for all future time, must approach the
equilibrium solution x = x,, y =y, as t approaches infinity.

PrOOF. Exactly the same as Lemma 5 (see Exercise 2). |

We are now in a position to prove Theorem 8.

PROOF OF THEOREM 8. (a) Lemmas 3 and 4 state that every solution x(¢),
y(t) of (1) which starts in region I or III at time ¢=f, must approach the
equilibrium solution x = x4, y =y, as ¢t approaches infinity. Similarly,
Lemmas 5 and 6 state that every solution x(z), y(¢) of (1) which starts in
region II or 1V and which remains in these regions for all future time, must
also approach the equilibrium solution x = x4, y =y, Now, observe that if
a solution x(¢), y(¢) of (1) leaves region II or IV, then it must cross the
curve y=¢,(x) or y =¢,(x), and immediately afterwards enter region I or
region III. Consequently, all solutions x(¢), y(¢r) of (1) which start in re-
gions II and IV or on the curves y =¢,(x) and y =¢,(x), must also ap-
proach the equilibrium solution x (1) = x,, y(£)=y,. O

(b) ProoF #1. If a,a, is greater than b,b,c,c,, then the curves y =¢,(x)
and y =¢,(x) have the form described in Figure 3 below. In region I,
dx /dt is positive and dy / dt is negative; in region II, both dx /dt and dy / dt
are negative; and in region III, dx/dt is negative and dy/dt is positive. It
is a simple matter to show (see Exercise 3) that every solution x(r), y(¢) of
(1) which starts in region II at time ¢ = ¢, must remain in this region for all

y=¢(x)
f /
C,
I i<0 y=¢ (X)
. < 0 - 2
x>0 I y<
y<O
x<O
y>0
X
¢
Figure 3
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4.13 A model for the spread of gonorrhea

future time, and approach the equilibrium solution x=0, y=0 as ¢ ap-
proaches infinity. It is also trivial to show that every solution x(#), y(¢) of
(1) which starts in region I or region III at time ¢ = #, must cross the curve
y=¢,(x) or y =¢,(x), and immediately afterwards enter region II (see Ex-
ercise 4). Consequently, every solution x(?), y(#) of (1), with 0< x(#y) <c,
and 0< y(t,) < c,, approaches the equilibrium solution x=0, y=0 as ¢ ap-
proaches infinity. |

Proor #2. We would now like to show how we can use the Poincaré-
Bendixson theorem to give an elegant proof of part (b) of Theorem 8. Ob-
serve that the system of differential equations (1) can be written in the

form

d(x —a; biey\x by xy

20 "2 )0)-(3) @
Thus, by Theorem 2 of Section 4.3, the stability of the solution x=0, y=0
of (2) is determined by the stability of the equilibrium solution x=0, y =0
of the linearized system

d(x x —a; b\ x

4(5)-406)-(5 " )(3)
The characteristic polynomial of the matrix A is

A2+ (a;+a,)A+ a,a,— b,bycc,
whose roots are
2 1/2
—(a)+ay)* [(al +ay) —4a,a;— bleClCZ)]
B 2

It is easily verified that both these roots are real and negative. Hence, the
equilibrium solution x =0, y =0 of (2) is asymptotically stable. This implies
that any solution x(7), y(#) of (1) which starts sufficiently close to the
origin x =y =0 will approach the origin as ¢ approaches infinity. Now,
suppose that a solution x(?), y(¢) of (1), with 0< x(#) < ¢, and 0<y(#,) <
¢,, does not approach the origin as ¢ approaches infinity. By the previous
remark, this solution must always remain a minimum distance from the
origin. Consequently, its orbit for 7 > ¢, lies in a bounded region in the x —
y plane which contains no equilibrium points of (1). By the Poincaré-
Bendixson Theorem, therefore, its orbit must spiral into the orbit of a peri-
odic solution of (1). But the system of differential equations (1) has no
periodic solution in the first quadrant x >0, y > 0. This follows im-
mediately from Exercise 11, Section 4.8, and the fact that

d ]
'é;[_alx'*'bl(cl“x))’]'*'5['“2)’*‘1’2(02_)’))‘]
=—(a;+ay+b,y+byx)

is strictly negative if both x and y are nonnegative. Consequently, every
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4 Qualitative theory of differential equations

solution x(¢), y(¢) of (1), with 0< x(#y) < ¢, and 0<y(¢y) <c, approaches
the equilibrium solution x =0,y =0 as ¢ approaches infinity. O

Now, it is quite difficult to evaluate the coefficients a,, a,, b,, 0,, ¢,, and
¢,. Indeed, it is impossible to obtain even a crude estimate of a,, which
should be interpreted as the average amount of time that a female remains
infective. (Similarly, a, should be interpreted as the average amount of
time that a male remains infective.) This is because most females do not
exhibit symptoms. Thus, a female can be infective for an amount of time
varying from just one day to well over a year. Nevertheless, it is still possi-
ble to ascertain from public health data that a,a, is less than b,b,¢,c,, as
we now show. Observe that the condition a,a, < b,b,c,c, is equivalent to

b.c b,c
1<(L)(ﬂ)
a, a,

The quantity b,c,/a, can be interpreted as the average number of males
that one female infective contacts during her infectious period, if every
male is susceptible. Similarly, the quantity b,c,/a, can be interpreted as
the average number of females that one male infective contacts during his
infectious period, if every female is susceptible. The quantities b,c,/a, and
b,c,/ a, are called the maximal female and male contact rates, respectively.
Theorem 8 can now be interpreted in the following manner.

(a) If the product of the maximal male and female contact rates is greater
than one, then gonorrhea will approach a nonzero steady state.

(b) If the product of the maximal male and female contact rates is less
than one, then gonorrhea will die out eventually.

In 1973, the average number of female contacts named by a male infec-
tive during his period of infectiousness was 0.98, while the average number
of male contacts named by a female infective during her period of infec-
tiousness was 1.15. These numbers are very good approximations of the
maximal male and female contact rates, respectively, and their product
does not exceed the product of the maximal male and female contact rates.
(The number of contacts of a male or female infective during their period
of infectiousness is slightly less than the maximal male or female contact
rates. However, the actual number of contacts is often greater than the
number of contacts named by an infective.) The product of 1.15 with 0.98
is 1.0682. Thus, gonorrhea will ultimately approach a nonzero steady state.

Remark. Our model of gonorrhea is rather crude since it lumps all prom-
iscuous males and all promiscuous females together, regardless of age. A
more accurate model can be obtained by separating the male and female
populations into different age groups and then computing the rate of
change of infectives in each age group. This has been done recently, but
the analysis is too difficult to present here. We just mention that a result
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completely analogous to Theorem 8 is obtained: either gonorrhea dies out
in each age group, or it approaches a constant, positive level in each age

group.
EXERCISES

In Problems 1 and 2, we assume that a,a, < b,b,c,c,.

1. (a) Suppose that a solution x(#), y() of (1) leaves region III of Figure 2 at time
t=1t* by crossing the curve y =¢,(x) or y =¢,(x). Conclude that either x(¢)
or y(f) has a maximum at ¢t=r* Then, show that this is impossible. Con-
clude, therefore, that any solution x(¢), y(¢) of (1) which starts in region III
at time f= ¢y, must remain in region III for all future time 7> ¢;.

(b) Conclude from (a) that any solution x(¢), y(f) of (1) which starts in region
IIT has a limit £,7 as ¢ approaches infinity. Then, show that (§,n) must equal
(x0, ¥0)-

2. Suppose that a solution x(¢), y(¢) of (1) remains in region IV of Figure 2 for all
time ¢ > ;. Prove that x(r) and y(¢) have limits £ 7 respectively, as ¢ approaches
infinity. Then conclude that (§,m) must equal (x, yg).

In Problems 3 and 4, we assume that a,a, > b,b,c,c,.

3. Suppose that a solution x(?), y(#) of (1) leaves region II of Figure 3 at time r=¢*
by crossing the curve y =¢,(x) or y =¢,(x). Show that either x(7) or y(¢) has a
maximum at ¢ =¢*. Then, show that this is impossible. Conclude, therefore, that
every solution x(¢), y (f) of (1) which starts in region II at time ¢ = ¢, must remain
in region II for all future time ¢ > ¢,

4. (a) Suppose that a solution x(¢), y(¢) of (1) remains in either region I or III of
Figure 3 for all time ¢ > #,. Show that x(¢) and y(¢) have limits £ 7 respec-
tively, as ¢ approaches infinity.

(b) Conclude from Lemma 1 of Section 4.8 that (§,1)=(0,0).

(c) Show that (£,m) cannot equal (0,0) if x(¢), y(f) remains in region I or region
IIT for all time ¢ > ¢,.

(d) Show that any solution x(1),y () of (1) which starts on either y =¢,(x) ory =
¢(x) will immediately afterwards enter region IL.

5. Assume that a,a;, < bb,c;c,. Prove directly, using Theorem 2 of Section 4.3, that
the equilibrium solution x=x,, y =y, of (1) is asymptotically stable. Warning:
The calculations are extremely tedious.

6. Assume that the number of homosexuals remains constant in time. Call this con-
stant c. Let x(¢) denote the number of homosexuals who have gonorrhea at time
t. Assume that homosexuals are cured of gonorrhea at a rate a;, and that new
infectives are added at a rate 8,(c —x)x.
(a) Show that x= —a,x+ B;x(c— x).
(b) What happens to x(¢) as ¢ approaches infinity?

7. Suppose that the number of homosexuals c(f) grows according to the logistic
law é = c¢(a — bc), for some positive constants @ and b. Let x(f) denote the num-
ber of homosexuals who have gonorrhea at time ¢, and assume (see Problem 6)
that x = — a;x+ B,x(c— x). What happens to x(¢) as ¢t approaches infinity?
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