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Preface

Engineers, natural scientists and, increasingly, researchers
and practitioners working in economical and social sciences,
use mathematical models of the systems they are investi-
gating. Models give simplified descriptions of real-life prob-
lems so that they can be expressed in terms of mathemati-
cal equations which can be, hopefully, solved in one way or
another. Mathematical modelling is a subject difficult to
teach but it is what applied mathematics is about. The dif-
ficulty is that there are no set rules, and the understanding
of the ’right’ way to model can be only reached by familiar-
ity with a number of examples. This, together with basic
techniques for solving the resulting equations, is the main
content of this course.

Despite these difficulties, applied mathematicians have
a procedure that should be applied when building models.
First of all, there must be a phenomenon of interest that
one wants to describe or, more importantly, to explain and
make predictions about. Observation of this phenomenon
allows to make hypotheses about which quantities are most

xi



xii Preface

relevant to the problem and what are the relations between
them so that one can devise a hypothetical mechanism that
can explain the phenomenon. The purpose of a model is
then to formulate a description of this mechanism in quan-
titative terms, that is, as mathematical equations, and the
analysis of the resulting equations. It is then important to
interpret the solutions or other information extracted from
the equations as the statements about the original problem
so that they can be tested against the observations. Ide-
ally, the model also leads to predictions which, if verified,
lend authenticity to the model. It is important to realize
that modelling is usually an iterative procedure as it is very
difficult to achieve a balance between simplicity and mean-
ingfulness of the model: often the model turns out to be
too complicated to yield itself to an analysis, and often it
is over-simplified so that there is insufficient agreement be-
tween the actual experimental results and the results pre-
dicted from the model. In both these cases we have to
return to the first step of modelling and try to remedy the
ills.

The first step in modelling is the most creative but also
the most difficult, involving often a concerted effort of spe-
cialists in many diverse fields. Hence, though we describe
a number of models in detail, starting from first principles,
the main emphasis of the course is on the later stages of
the modelling process, that is: introducing mathematical
symbols and writing assumptions as equations, analysing
and/or solving these equations and interpreting their solu-
tions in the language of the original problem and reflecting
on whether the answers seem reasonable.

In most cases discussed here a model is a representation
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of a process, that is, it describes a change of the states of
some system in time. There are two ways of describing what
happens to a system: discrete and continuous. Discrete
models correspond to the situation in which we observe a
system in regular finite time intervals, say, every second
or every year and relate the observed state of the system
to the states at the previous instants. Such a system is
modelled through difference equations. In the continuous
cases we treat time as a continuum allowing observation
of the system at any instant. In such a case the model
expresses relations between the rates of change of various
quantities rather than between the states at various times
and, as rates of change are given by derivatives, the model
is represented by differential equations.

In the next two sections of this chapter we shall present
some simple discrete and continuous models. These models
are presented here as an illustration of the above discussion.
Their analysis, and a discussion of more advanced models,
will appear later in the course.





1

Basic models leading to difference
equations

1.1 Basic difference equations of finance
mathematics

1.1.1 Compound interest and loan repayments

Compound interest is relevant to loans or deposits made
over longer periods. The interest is added to the initial sum
at regular intervals, called conversion periods, and the new
amount, rather than the initial one, is used for calculating
the interest for the next conversion period. The fraction of
a year occupied by the conversion period is denoted by α so
that the conversion period of 1 month is given by α = 1/12.
Instead of saying that the conversion period is 1 month we
say that the interest is compounded monthly.

For an annual interest rate of p% and conversion period
equal to α, the interest earned for the period is equal to
αp% of the amount on deposit at the start of the period,

1



2 Basic models leading to difference equations

that is


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=
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100
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


amount on
deposit
after k

conversion
periods





To express this as a difference equation, for each k let S(k)
denote the amount on deposit after k conversion periods.
Thus

S(k + 1) = S(k) +
αp

100
S(k) = S(k)

(
1 +

αp

100

)

which is a simple first-order (that is, expressing the rela-
tion only between the consecutive values of the unknown
sequence) difference equation. Here, Sk follows the geo-
metric progression so that

S(k) =
(
1 +

αp

100

)k

S0 (1.1)

gives the so-called compound interest formula. If we want
to measure time in years, then k = t/α where t is time in
years. Then (1.1) takes the form

S(t) =
(
1 +

αp

100

)t/α

S0 (1.2)

It is worthwhile to introduce here the concept of effective
interest rate. First we note that in (1.2) with S0 = 1

S(1) =
(
1 +

αp

100

)1/α

= 1 +
p

100
+ . . . > 1 +

p

100

so if the interest is compounded several times per year the
increase in savings is bigger than if it was compounded
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annually. This is the basis of defining the effective interest
rate reff (relative to the conversion period), namely

1 + reff =
(
1 +

αp

100

)1/α

; (1.3)

that is, reff is the interest rate which, compounded an-
nually, would give the same return as the interest p com-
pounded with conversion period α.

A slight modification of the above argument can be used
to find the equation governing a loan repayment. The
scheme described here is usually used for the repayment
of house or car loans. Repayments are made at regular in-
tervals and usually in equal amounts to reduce the loan and
to pay the interest on the amount still owing.

It is supposed that the compound interest at p% is charged
on the outstanding debt with the conversion period equal
to the same fraction α of the year as the period between
the repayments. Between payments, the debt increases be-
cause of the interest charged on the debt still outstanding
after the last repayment. Hence

{
debt after

k + 1 payments

}
=

{
debt after

k payments

}

+
{

interest
on this debt

}
− {payment}

To write this as a difference equation, let D0 be the initial
debt to be repaid, for each k let the outstanding debt after
the kth repayment be Dk, and let the payment made after
each conversion period be R. Thus

Dk+1 = Dk +
αp

100
Dk −R = Dk

(
1 +

αp

100

)
−R. (1.4)

We note that if the instalment was paid at the beginning
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of the conversion period, the equation would take a slightly
different form

Dk+1 = Dk −R +
αp

100
(Dk −R) = (Dk −R)

(
1 +

αp

100

)
.

(1.5)
The reason for the change is that the interest is calculated
from the debt Dk reduced by the payment R done at the
beginning of the conversion period. These equations are
more difficult to solve. We shall discuss general methods
of solving first order difference equations in Section 1 of
Chapter 3.

The modelling process in these two examples was very
simple and involved only translation of given rules into
mathematical symbols. This was due to the fact that there
was no need to discover these rules as they are explicitly
stated in bank’s regulations. In the next sections we shall
attempt to model behaviour of more complicated systems
and then modelling will involve making some hypotheses
about the rules governing them.

1.1.2 Some money related models

Walras equilibrium
We study pricing of a certain commodity. According to
Walras the market price is the equilibrium price; that is, it
is the price at which demand D for this commodity equals
supply S of it. Let p(n) denotes the price in period n. The
assumptions are that D(n) = f(p(n)) where f is a decreas-
ing function and S(n) = g(p(n− 1)), where g is an increas-
ing function. The fact that S depends on p(n − 1) and
D depends on p(n) is due to the fact that producers need
some time to react to changing prices whereas consumers
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react almost immediately. Thus, folowing the equilibrium
hypothesis

f(p(n)) = g(p(n− 1)),

which is highly nonlinear first order equation. If f is strictly
decreasing and the ranges of f and g are the same, this
equation can be solved for p(n) giving

p(n) = f−1(g(p(n− 1))).

Still, to proceed we have to make some further assumptions
on the functions f and g. The simplest functions satisfying
the assumptions are

f(p(n)) = −mdp(n)+bd, g(p(n−1)) = msp(n−1)+bs

where md, ms, bd > 0, bs ≥ 0 are constants. Coefficients md

and ms are called, respectively, consumers’ and suppliers’
sensitivity to price. For these assumptions we obtain the
following linear equation for price:

p(n) = −ms

md
p(n− 1) +

bd − bs

md
. (1.6)

The Keynesian National Income Model

In market economy, the national income Y (n) of a coun-
try in a given period n can be written as

Y (n) = C(n) + I(n) + G(n), (1.7)

where

• C(n) is the consumer expenditure for purchase of con-
sumer goods;

• I(n) is the private investment for buying capital equip-
ment;
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• G(n) is government expenditure.

There are various model for the above functions. We use
widely accepted assumptions introduced by Samuelson [1].
The consumption satisfies

C(n) = αY (n− 1); (1.8)

that is the consumer expenditure is proportional to the in-
come in the preceding year. It is natural that 0 < α < 1.
The investment satisfies

I(n) = β(C(n)− C(n− 1)), (1.9)

so that the private investment is induced by the increase
in consumption rather that by the consumption itself. The
constant β is positive that is acceleration of consumption
results in an increased investment while deceleration causes
its decrease. Finally, it is assumed that the government
expenditure remains constant over the years and we rescale
the variables to have

G(n) = 1. (1.10)

Inserting (1.8) into (1.9) results in

I(n) = αβ(Y (n− 1)− Y (n− 2))

so that (1.7) can be written as the second order linear dif-
ference equation:

Y (n + 2)− α(1 + β)Y (n + 1) + αβY (n) = 1. (1.11)

Gambler’s ruin This problem involves a different type of
modelling with roots in the probability theory. Problems
of this type are common in the theory of Markov chains,
see [?].
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A gambler plays a sequence of games against an adver-
sary. The probability that the gambler wins R 1 in any
given game is q and the probability of him losing R 1 is
1 − q. He quits the game if he either wins a prescribed
amount of N rands, or loses all his money; in the latter
case we say that he has been ruined. Let p(n) denotes
the probability that the gambler will be ruined if he starts
gambling with n rands. We build the difference equation
satisfied by p(n) using the following argument. Firstly, note
that we can start observation at any moment, that is, the
probability of him being ruined with n rands at the start
is the same as the probability of him being ruined if he ac-
quires n rands at any moment during the game. If at some
moment during the game he has n rands, he can be ruined
in two ways: by winning the next game and ruined with
n + 1 rand, or by losing and then being ruined with n − 1
rands. Thus

p(n) = qp(n + 1) + (1− q)p(n− 1). (1.12)

Replacing n by n + 1 and dividing by q, we obtain

p(n + 2)− 1
q
p(n + 1) +

1− q

q
p(n) = 0, (1.13)

with n = 0, 1 . . . , N . This is a second order linear difference
equation which requires two side conditions. While in the
previous cases the side (initial) conditions were natural and
we have not ponder on them, here the situation is slightly
untypical. Namely, we know that the probability of ruin
starting with 0 rands is 1, hence p(0) = 1. Further, if the
player has N rands, then he quits and cannot be ruined
so that p(N) = 0. These are not initial conditions but an
example of two-point conditions; that is, conditions pre-
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scribed at two arbitrary points. Such problems not always
have a solution.

1.2 Difference equations of population theory

1.2.1 Single equations for unstructured population

models

In many fields of human endeavour it is important to know
how populations grow and what factors influence their growth.
Knowledge of this kind is important in studies of bacterial
growth, wildlife management, ecology and harvesting.

Many animals tend to breed only during a short, well-
defined, breeding season. It is then natural to thing of the
population changing from season to season and therefore
time is measured discretely with positive integers denoting
breeding seasons. Hence the obvious approach for describ-
ing the growth of such a population is to write down a
suitable difference equation. Later we shall also look at
populations that breed continuously (e.g. human popula-
tions).

We start with population models that are very simple
and discuss some of their more realistic variants.

1.2.1.1 Exponential growth – linear first order difference
equations

Let us start with insect-type (so-called semelparous) popu-
lations. Insects often have well-defined annual non-overlapping
generations - adults lay eggs in spring/summer and then
die. The eggs hatch into larvae which eat and grow and
then overwinter in a pupal stage. The adults emerge from
the pupae in spring. We take the census of adults in the
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breeding seasons. It is then natural to describe the popu-
lation as the sequence of numbers

N0, N1, . . . , Nk

where Nk is the number of adults in the k-th breeding sea-
son.

The simplest assumption to make is that there is a func-
tional dependence between subsequent generations

Nn+1 = f(Nn), n = 0, 1, . . . (1.14)

Let us introduce the number R0, which is the average num-
ber of eggs laid by an adult. R0 is called the basic re-
productive ratio or the intrinsic growth rate. The simplest
functional dependence in (1.14) is

Nn+1 = R0Nn, n = 0, 1, . . . (1.15)

which describes the situation that the size of the population
is determined only by its fertility.

The exponential (or Malthusian) equation (1.15) has a
much larger range of applications. In general, in popula-
tion theory the generations can overlap. Looking at large
populations in which individuals give birth to new offspring
but also die after some time, we can treat population as a
whole and assume that the population growth is governed
by the average behaviour of its individual members. Thus,
we make the following assumptions:

• Each member of the population produces in average the
same number of offspring.

• Each member has an equal chance of dying (or surviving)
before the next breeding season.
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• The ratio of females to males remains the same in each
breeding season

We also assume

• Age differences between members of the population can
be ignored.

• The population is isolated - there is no immigration or
emigration.

Suppose that on average each member of the population
gives birth to the same number of offspring, β, each season.
The constant β is called per-capita birth rate. We also
define µ as the probability that an individual will die before
the next breeding season and call it the per-capita death
rate. Thus:

(a) the number of individuals born in a particular breeding
season is directly proportional to the population at the start
of the breeding season, and
(b) the number of individuals who have died during the
interval between the end of consecutive breeding seasons is
directly proportional to the population at the start of the
breeding season.

Denoting by Nk the number of individuals of the popu-
lation at the start of the kth breeding season, we obtain

Nk+1 = Nk − µNk + βNk,

that is

Nk+1 = (1 + β − µ)Nk. (1.16)

This equation reduces to (1.15) by putting µ = 1 (so that
the whole adult population dies) and β = R0.
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Equation (1.15) is easily solvable yielding

Nk = Rk
0N0, k = 0, 1, 2 . . . (1.17)

We see that the behaviour of the model depends on R0 If
R0 < 1, then the population decreases towards extinction,
but with R0 > 1 it grows indefinitely. Such a behaviour
over long periods of time is not observed in any population
so that we see that the model is over-simplified and requires
corrections.

1.2.1.2 Models leading to nonlinear difference equations

In a real populations, some of the R0 offspring produced by
each adult will not survive to be counted as adults in the
next census. If we denote by S(N) the survival rate; that
is, fraction that survives, then the Malthusian equation is
replaced by

Nk+1 = R0S(Nk)Nk, k = 0, 1, . . . (1.18)

which may be alternatively written as

Nk+1 = F (Nk)Nk = f(Nk), k = 0, 1, . . . (1.19)

where F (N) is per capita production of a population of size
N . Such models, with density dependent growth rate, lead
to nonlinear equations.

We introduce most typical nonlinear models.
Beverton-Holt type models.

Let us look at the model (1.19)

Nk+1 = F (Nk)Nk, k = 0, 1, . . . ,

where F (Nk) = R0S(Nk). We would like the model to dis-
play a compensatory behaviour; that is, mortality should
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balance the increase in numbers. For this we should have
NS(N) ≈ const. Also, for small N , S(N) should be ap-
proximately 1 as we expect very small intra-species compe-
tition and thus the growth should be exponential with the
growth rate R0. A simple function of this form is

S(N) =
1

1 + aN

leading to

Nk+1 =
R0Nk

1 + aNk
.

If we introduce the concept of carrying capacity of the envi-
ronment K and assume that the population having reached
K, will stay there; that is, if Nk = K for some k, then
Nk+m = K for all m ≥ 0, then

K(1 + aK) = R0K

leading to a = (R0 − 1)/K and the resulting model, called
the Beverton-Holt model, takes the form

Nk+1 =
R0Nk

1 + R0−1
K Nk

. (1.20)

As we said earlier, this model is compensatory.
A generalization of this model is called the Hassell or

again Beverton-Holt model, and reads

Nk+1 =
R0Nk

(1 + aNk)b
. (1.21)

Substitution xk = aNk reduces the number of parameters
giving

xk+1 =
R0xk

(1 + xk)b
(1.22)
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which will be analysed later.
The logistic equation.

The Beverton-Holt models are best applied to semelparous
insect populations but was also used in the context of fish-
eries. For populations surviving to the next cycle it it more
informative to write the difference equation in the form

Nk+1 = Nk + R(Nk)Nk, (1.23)

so that the increase in the population is given by R(N) =
R0S(N)N . Here we assume that no adults die (death can
be incorporated by introducing factor d < 1 in front of
the first Nk or modifying S(N) which would lead to the
equation of the same form).

As before, the function R can have different forms but
must satisfy the requirements:

(a) Due to overcrowding, R(N) must decrease as N in-
creases until N equals the carrying capacity K; then R(K) =
0 and, as above, N = K stops changing.
(b) Since for N much smaller than K there is small intra-
species competition, we should observe an exponential growth
of the population so that R(N) ≈ R0 as N → 0; here R0 is
called the unrestricted growth rate of the population.

Constants R0 and K are usually determined experimen-
tally.

In the spirit of mathematical modelling we start with
the simplest function satisfying these requirements. The
simplest function is a linear function which, to satisfy (a)
and (b), must be chosen as

R(N) = −R0

K
N + R0.

Substituting this formula into (1.23) yields the so-called
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discrete logistic equation

Nk+1 = Nk + R0Nk

(
1− Nk

K

)
, (1.24)

which is still one of the most often used discrete equations
of population dynamics.

While the above arguments may seem to be of bunny-out-
of-the-hat type, it could be justified by generalizing (1.16).
Indeed, assume that the mortality µ is not constant but
equals

µ = µ0 + µ1N,

where µ0 corresponds to death of natural caused and µ1

could be attributed to cannibalism where one adult eats/kills
on average µ1 portion of the population. Then (1.16) can
be written as

Nk+1 = Nk + (β − µ0)Nk

(
1− Nk

β−µ0
µ1

)
(1.25)

which is (1.24) with R0 = β − µ0 and K = (β − µ0)/µ1.
In the context of insect population, where there are no

survivors from the previous generation, the above equation
reduces to

Nk+1 = R0Nk

(
1− Nk

K

)
. (1.26)

By substitution

xn =
1

1 + R0

Nk

K
, µ = 1 + R0

we can reduce (1.24) to a simpler form

xn+1 = µxn(1− xn) (1.27)



1.2 Difference equations of population theory 15

We observe that the logistic equation, especially with S

given by (1.28) is an extreme example of the scramble com-
petition.

The Ricker equation
The problem with the discrete logistic equation is that large
(close to K) populations can become negative in the next
step. Although we could interpret a negative populations as
extinct, this may not be the behaviour that would actually
happen. Indeed, the model was constructed so as to have
N = K as a stationary population. Thus, if we happen to
hit exactly K, then the population survives but if we even
marginally overshot, the population becomes extinct.

One way to avoid such problems with negative population
is to replace the density dependent survival rate by

S(Nk) =
(

1− Nk

K

)

+

. (1.28)

to take into account that S cannot be negative. However,
this model also leads to extinction of the population if it
exceeds K which is not always realistic.

Another approach is to try to find a model in which large
values of Nk produce very small, but still positive, values of
Nk+1. Thus, a population well over the carrying capacity
crashes to very low levels but survives. Let us find a way
in which this can be modelled. Consider the per capita
population change

∆N

N
= f(N).

First we note that it is impossible for f to be less than
−1 – this would mean that an individual could die more
than once. We also need a decreasing f which is non-zero
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Fig. 1.1. The function f(x) = er(1−x/K)

(= R0) at 0. One such function can be recovered from the
Beverton-Holt model, another simple choice is an exponen-
tial shifted down by 1:

∆N

N
= ae−bN − 1,

which leads to

Nk+1 = aNke−bNk .

If, as before, we introduce the carrying capacity K and
require it give stationary population, we obtain

b =
ln a

K

and, letting for simplicity r = ln a, we obtain the so-called
Ricker equation

Nk+1 = Nker(1−Nk
K ). (1.29)
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Fig. 1.2. The relation xn+1 = xner(1−xn/K)

We note that if Nk > K, then Nk+1 < Nk and if Nk < K,
then Nk+1 > Nk. The intrinsic growth rate R0 is given by
R0 = er − 1 but, using the Maclaurin formula, for small r

we have R0 ≈ r.
Allee type equations

In all previous models with density dependent growth rates
the bigger the population (or the higher the density), the
slower the growth. However, in 1931 Warder Clyde Allee
noticed that in small, or dispersed, populations individual
chances of survival decrease which can lead to extinction
of the populations. This could be due to the difficulties of
finding a mating partner or more difficult cooperation in
e.g., organizing defence against predators. Models having
this property can also be built within the considered frame-
work by introducing two thresholds: the carrying capacity
K and a parameter 0 < L < K at which the behaviour of
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Fig. 1.3. The function 1− Nk
K
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1+BNk

the population changes so that ∆N/N < 0 for 0 < N < L

and N > K and ∆N/N > 0 for L < N < K. If

∆N/N = f(N),

then the resulting difference equation is

Nk+1 = Nk + Nkf(Nk)

and the required properties can be obtained by taking
f(N) ≤ 0 for 0 < N < L and N > K and f(N) ≥ 0
for L < N < K. A simple model like that is offered by
choosing f(N) = (L−N)(N −K) so that

Nk+1 = Nk(1 + (L−Nk)(Nk −K)). (1.30)

Another model of this type, see [?], which can be justified
by modelling looking of a mating partner or introducing a
generalized predator (that is, preying also on other species),
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Fig. 1.4. The relation Nk+1 = Nk +Nkf(Nk) for an Allee model

has the form

Nk+1 = Nk

(
1 + λ

(
1− Nk

K
− A

1 + BNk

))
(1.31)

where λ > 0 and

1 < A <
(BK + 1)2

4KB
, BK > 1. (1.32)

However, since x → (x + 1)2/4x is an increasing function
for x > 1 and equals 1 for x = 1, the second condition is
redundant.

1.2.2 Structured populations and linear systems of

difference equations

There are two main problems with models introduced above.
One is that all individuals in the population have the same
age, the other is that the described population does not
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interact with others. Trying to remedy these deficiencies
leads to systems of equations.

1.2.2.1 Fibonacci rabbits and related models

We start with what possibly is the first formulated problem
related to populations with age structure. Leonardo of Pisa,
called Fibonacci, in his famous book Liber abaci, published
in 1202, formulated the following problem:

A certain man put a pair of rabbits in a place surrounded on
all sides by a wall. How many rabbits can be produced from
that pair in a year if it is supposed that every month each pair
begets a new pair which from the second month on becomes
productive?

To formulate the mathematical model we also assume that
no deaths occur in the period of observation. Also the
monthly census of the population is taken just before births
for this month take place; that is, we count the end of
the given month, when the births are taking place, to this
month. Then, for the end of month k + 1 we can write

{
number present
in month k + 1

}
=

{
number present

in month k

}

+
{

number born
in month k

}

Since rabbits become productive only two months after
birth and produce only one pair per month, we can write

{
number born
in month k

}
=

{
number present
in month k − 1

}
.

To justify the last statement, we recall that the census is
taken just before the end of the month (when the births
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occur). Thus, pairs present by the end of month k − 1
were born a month earlier, in month k − 2, and thus two
month later, at the end of month k, will give births to pairs
observed in the census taken in month Nk+1.

Denoting by Nk the number of pairs at the end of month
k and combining the two equations above, we obtain the
so-called Fibonacci equation

Nk+1 = Nk + Nk−1, k = 1, 2, . . . . (1.33)

This is a linear difference equation of second order since it
gives the value of Nk at time k in terms of its values at two
times immediately preceding k.

It is clear that (1.33) as a model describing a popula-
tion of rabbits is oversimplified. Later we introduce more
adequate population models. Here we note that there are
biological phenomena for which (1.33) provides an exact
fit. One of them is family tree of honeybees. Honeybees
live in colonies and one of the unusual features of them is
that not every bee has two parents. To be more precise,
let us describe a colony in more detail. First, in any colony
there is one special female called the queen. Further, there
are worker bees who are female but they produce no eggs.
Finally, there are drones, who are male and do no work,
but fertilize the queen’s eggs. Drone are borne from the
queen’s unfertilised eggs and thus they have a mother but
no father. On the other hand, the females are born when
the queen has mated with a male and so have two parents.
In Fig. 1.5 we present a family tree of a drone. It is clear
that the number of ancestors kth generations earlier exactly
satisfies (1.33).
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Fig. 1.5. The family tree of a drone

1.2.2.2 Models with age structure

Writing the Fibonacci model in the form of a single equa-
tion makes it neat and compact some information, however,
is lost. In particular, it is impossible to find long time ra-
tio between adults and juveniles. Such a question is of
paramount importance in population theory where the de-
termination of stable age structure of the population is vital
for designing e.g. pension funds and health care systems.

It is possibly to re-write the Fibonacci model to make
such a detailed analysis feasible. We note that each month
the population is represented by two classes of rabbits,
adults v1(k) and juveniles v0(k) and thus the state of the
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population is described by the vector

v(k) =
(

v0(k)
v1(k)

)

Since the number of juvenile (one-month old) pairs in month
k+1 is equal to the number of adults in month n (remember,
we take the census before birth cycle in a given month, so
these are newborns from a month before) and the number
of adults is the number of adults from the month before and
the number of juveniles from the month ago who became
adults. In other words

v0(k + 1) = v1(k)

v1(k + 1) = v0(k) + v1(k) (1.34)

or, in a more compact form

v(k + 1) = Lv(k) :=
(

0 1
1 1

)
v(k). (1.35)

We note formal similarity with the the exponential growth
equation (1.15) which suggest that the solution can be writ-
ten in the same form as (1.17):

v(k) = Lkv(0). (1.36)

However, at this moment we do not have efficient tools for
calculation powers of matrices–these will be developed in
Chapter ??.

The idea leading to (1.35) immediately lends itself to gen-
eralization. Assume that instead of pairs of individuals, we
are tracking only females and that the census is taken im-
mediately before the reproductive period. Further, assume
that there is an oldest age class n and if no individual can
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stay in an age class for more than one time period (which
means that all females who are of age n at the beginning
of the time period die during this period). Note that it is
not the case for Fibonacci rabbits. We introduce the sur-
vival rate si and the age dependent maternity function mi;
that is, si is probability of survival from age i − 1 to age
i (or conditional probability of survival of a female to age
i provided she survived till i − 1), and each female of age
i produces mi offspring in average. Hence, s1mi is the av-
erage number of female offspring produced by each female
of the age i who survived to the census. In this case, the
evolution of the population can be described by the system
of difference equations

v(n + 1) = Lv(n)

where L is the n× n matrix

L :=




s1m1 s1m2 · · · s1mn−1 s1mn

s2 0 · · · 0 0
0 s3 · · · 0 0
...

... · · · ...
...

0 0 · · · sn 0




, (1.37)

The matrix of the form (1.37) is referred to as a Leslie
matrix. To shorten notation we often denote fi = s1mi

and are referred to as the (effective) age specific fertility.
A generalization of the Leslie matrix can be obtained by

assuming that a fraction τi of i-th population stays in the
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same population. This gives the matrix

L :=




f1 + τ1 f2 · · · fn−1 fn

s2 τ2 · · · 0 0
0 s3 · · · 0 0
...

... · · · ...
...

0 0 · · · sn τn




, (1.38)

Such matrices are called Usher matrices.
In most cases fi 6= 0 only if α ≤ i ≤ β where [α, β]

is the fertile period. For example, for a typical mammal
population we have three stages: immature (pre-breeding),
breeding and post-breeding. If we perform census every
year, then naturally a fraction of each class remains in the
same class. Thus, the transition matrix in this case is given
by

L :=




τ1 f2 0
s2 τ2 0
0 s3 τ3


 , (1.39)

On the other hand, in many insect populations, reproduc-
tion occurs only in the final stage of life and in such a case
fi = 0 unless i = n.

1.2.3 General structured population models

Leslie matrices fit into a more general mathematical struc-
ture describing evolution of populations divided in states,
or subpopulations, not necessarily related to age. For ex-
ample, we can consider clusters of cells divided into classes
with respect to their size, cancer cells divided into classes
on the basis of the number of copies of a particular gene
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responsible for its drug resistance, or a population divided
into subpopulations depending on the geographical patch
they occupy in a particular moment of time. Let us sup-
pose we have n states. Each individual in a given state j

contributes on average, say, aij individuals in state i. Typ-
ically, this is due to the state j individual:

• migrating to i-th subpopulation with probability pij ;

• contributing to a birth of an individual in i-th subpopu-
lation with probability bij ;

• surviving with probability 1 − dj (thus dj is probability
of dying),

other choices and interpretations are, however, also possi-
ble.

If we assume that the evolution follows the above rules,
then we can write the balance of individuals in population
i at time k + 1:

vi(k+1) = (1−di)vi(k)+
n∑

j=1
j 6=i

pijvj(k)+
n∑

j=1

bijvj(k), (1.40)

where, as before, vi(k) is the number of individuals at time
k in state i. Hence, aij are non-negative but otherwise ar-
bitrary numbers. Denoting with v(k) = (v1(k), . . . , vn(k))
we can write (1.40) in the matrix form

vk+1 = Avk, (1.41)
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where

A :=




a11 a12 · · · a1 n−1 a1n

a21 a22 · · · a2 n−1 a2n

...
... · · · ...

...
an1 an2 · · · an n−1 ann


 . (1.42)

Thus

vk = Akv0,

where v0 is the initial distribution of the population be-
tween the subpopulations.

Example 1.1 [?] Any chromosome ends with a telomer
which protects it agains damage during the DNA replication
process. Recurring divisions of cells can shorten the length
of telomers and this process is considered to be responsible
for cell’s aging. If telomer is too short, the cell cannot
divide which explains why many cell types can undergo only
a finite number of divisions. Let us consider a simplified
model of telomer shortening. The length of a telomer is a
natural number from 0 to n, so cells with telomer of length
i are in subpopulation i. A cell from subpopulation i can
die with probability µi and divide (into 2 daughters). Any
daughter can have a telomer of length i with probability ai

and of length i− 1 with probability 1− ai. Cells of 0 length
telomer cannot divide and thus will die some time later.
To find coefficients of the transition matrix, we see that the
average production of offspring with telomer of length i by
a parent of the same class is

2a2
i + 2ai(1− ai) = 2ai,
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(2 daughters with telomer of length i produced with probabil-
ity a2

i and 1 daughter with telomer of length i− 1 produced
with probability 2ai(1− ai)). Similarly, average production
of an daughters with length i−1 telomer is 2(1−ai). How-
ever, to have offspring, the cell must survived from one cen-
sus to another which happens with probability 1−µi. Hence,
defining ri = 2ai(1−µi) and di = 2(1−ai)(1−µi), we have

A :=




0 d1 0 · · · 0
0 r1 d2 · · · 0
...

...
... · · · ...

0 0 0 · · · rn


 . (1.43)

The model can be modified to make it closer to reality by
allowing, for instance, shortening of telomers by different
lengthes or consider models with more telomers in a cell and
with probabilities depending on the length of all of them.

1.2.4 Markov chains

A particular version of (1.42) is obtained when we assume
that the total population has constant size so that no indi-
vidual dies and no new individual can appear, so that the
the only changes occur due to migration between states. In
other words, bij = dj = 0 for any 1 ≤ i, j ≤ n and thus
aij = pij is the fraction of j-th subpopulation which, on
average, moves to the i-th subpopulation or, using a prob-
abilistic language, probabilities of such a migration. Then,
in addition to the constraint pij ≥ 0 we must have pij ≤ 1
and, since the total number of individuals contributed by
the state j to all other states must equal to the number of
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individuals in this state, we must have

vj =
∑

1≤i≤n

pijvj

we obtain

∑

1≤i≤n

pij = 1,

or

pii = 1−
n∑

j=1
j 6=i

pij , i = 1, . . . , n, (1.44)

In words, the sum of entries in each column must be equal
to 1. This expresses the fact that each individual must be
in one of the n states at any time.

Matrices of this form are called Markov matrices.
We can check that, indeed, this condition ensures that

the size of the population is constant. Indeed, the size of
the population at time k is N(k) = v1(k) + . . . + vn(k) so
that

N(k + 1) =
∑

1≤i≤n

vi(k + 1) =
∑

1≤i≤n


 ∑

1≤j≤n

pijvj(k)




=
∑

1≤j≤n

vj(k)


 ∑

1≤i≤n

pij


 =

∑

1≤j≤n

vj(k)

= N(k). (1.45)
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1.2.5 Interacting populations and nonlinear

systems of difference equations

1.2.5.1 Models of an epidemic: system of difference
equations

SI model
In nature, various population interact with each other co-

existing in the same environment. This leads to systems of
difference equations. As an illustration we consider a model
for spreading of measles epidemic.

Measles is a highly contagious disease, caused by a virus
and spread by effective contact between individuals. It af-
fects mainly children. Epidemic of measles have been ob-
served in Britain and the US roughly every two or three
years.

Let us look at the development of measles in a single
child. A child who has not yet been exposed to measles
is called a susceptible. Immediately after the child first
catches the disease, there is a latent period where the child
is not contagious and does not exhibit any symptoms of the
disease. The latent period lasts, on average, 5 to 7 days.
After this the child enters the contagious period. The child
is now called infective since it is possible for another child
who comes in contact with the infective to catch the disease.
This period last approximately one week. After this the
child recovers, becomes immune to the disease and cannot
be reinfected.

For simplicity we assume that both latent and contagious
periods last one week. Suppose also that most interactions
between children occur on weekend so that the numbers of
susceptibles and infectives remains constant over the rest of
the week. Since the typical time in the model is one week,
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we shall model the spread of the disease using one week as
the unit of time.

To write down the equations we denote

I(k) =
{

number of
infectives in week k

}

and

S(k) =
{

number of
susceptibles during week k

}

To develop an equation for the number of infectives we con-
sider the number of infectives in week k+1. Since the recu-
peration period is one week after which an infective stops
to be infective, no infectives from week k will be present in
week k + 1. Thus we have

I(k + 1) =
{

number of
infectives in week k + 1

}

=
{

number of susceptibles
who caught measles in week k

}

It is generally thought that the number of new births is an
important factor in measles epidemic. Thus

S(k + 1)

=
{

number of
births in week k

}
+

{
number of

susceptibles in week k

}

−
{

number of susceptibles
who caught measles in week k

}

We assume further that the number of births each week is
a constant B. Finally, to find the number of susceptibles
infected in a week it is assumed that a single infective infects
a constant fraction f of the total number of susceptibles.
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Thus, if fSk is the number of susceptibles infected by a
single infective so, with a total of Ik infectives, then

{
number of susceptibles

who caught measles in week k

}
= fS(k)I(k).

This kind of assumption presupposing random encounters
is known as the mass action law and is one of the simplest
and therefore most used nonlinear models of interactions.
Combining the obtained equations we obtain the system

I(k + 1) = fS(k)I(k),

S(k + 1) = S(k)− fS(k)I(k) + B, (1.46)

where B and f are constant parameters of the model.
SIR model

The model (1.46) can be generalized in various ways to
cater for different scenarios. One of typical generaliza-
tion is introducing explicitly one more class R (from re-
moved/recovered) describing individuals who had contracted
the disease but either died or recovered. Note that this class
is implicitly present in the SI model but since we assumed
that individuals became immune after recovery, this class
did not have any effect on classes S and I and can be dis-
carded from the model. The SIR model discussed below
allows for various scenarios after infection.

Let us consider the population divided into three classes:
susceptibles S, infectives I and removed (recovered or dead)
R. We assume that the model is closed; that is we do not
consider any births in the process. Thus the total pop-
ulation N = S + I + R is constant. This allows a better
characterization of the ‘infectiveness’ coefficient f in (1.46).
Namely, if the probability of an individual meeting some-
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one within one cycle from time k to time k + 1 is α′ , then
meeting a susceptible is α′S/N . Further, assume that a
fraction α′′ of these encounters results in an infection. We
denote α = α′α′′. Thus the number of encounters resulting
in infection within one cycle is αSI/N . Moreover, we as-
sume that a fraction β of individuals (except from class S)
can become susceptible (could be reinfected) and a fraction
γ of infectives move to R. Reasoning as in the previous
paragraph we obtain the system

S(k + 1) = S(k)− α

N
I(k)S(k) + β(I(k) + R(k))

I(k + 1) = I(k) +
α

N
I(k)S(k)− γI(k)− βI(k)

R(k + 1) = R(k)− βR(k) + γI(k) (1.47)

We observe that

S(k+1)+I(k+1)+R(k+1) = S(k)+I(k)+R(k) = const = N

in accordance with the assumption.
This can be used to reduce (1.47) to a two dimensional

(SI-type) system

S(k + 1) = S(k)− α

N
I(k)S(k) + β(N − S(k))

I(k + 1) = I(k)(1− γ − β) +
α

N
I(k)S(k). (1.48)

The modelling indicates that we need to assume 0 < γ+β <

1 and 0 < α < 1.

1.2.5.2 Host-parasitoid system

Discrete difference equation models apply most readily to
groups such as insect population where there is rather nat-
ural division of time into discrete generations. A model
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which has received a considerable attention from experi-
mental and theoretical biologists is the host-parasitoid sys-
tem. Let us begin by introducing definition of a parasitoid.
Predators kill their prey, typically for food. Parasites live
in or on a host and draw food, shelter, or other require-
ments from that host, often without killing it. Female par-
asitoids, in turn, typically search and kill, but do not con-
sume, their hosts. Rather, they oviposit (deposit eggs) on,
in, or near the host and use it as a source of food and shelter
for the developing youngs. There are around 50000 species
of wasp-like parasitoids, 15000 of fly-type parasitoids and
3000 species of other orders.

Typical of insect species, both host and parasitoid have
a number of life-stages that include eggs, larvae, pupae and
adults. In most cases eggs are attached to the outer surface
of the host during its larval or pupal stage, or injected into
the host’s flesh. The larval parasitoids develop and grow
at the expense of their host, consuming it and eventually
killing it before they pupate.

A simple model for this system has the following set of
assumptions:

(i) Hosts that have been parasitized will give rise to the
next generation of parasitoids.

(ii) Hosts that have not been parasitized will give rise
to their own prodigy.

(iii) The fraction of hosts that are parasitized depends
on the rate of encounter of the two species; in gen-
eral, this fraction may depend on the densities of
one or both species.
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It is instructive to consider this minimal set of interactions
first and examine their consequences. We define:

• N(k) – density (number) of host species in generation k,
• P (k) – density (number) of parasitoid in generation k,
• f = f(N(k), P (k)) – fraction of hosts not parasitized,
• λ – host reproductive rate,
• c – average number of viable eggs laid by parasitoid on a

single host.

Then our assumptions 1)–3) lead to:

N(k + 1) = λN(k)f(N(k), P (k)),

P (k + 1) = cN(k)(1− f(N(k), P (k)). (1.49)

To proceed we have to specify the rate of encounter f . One
of the earliest models is the Nicholson-Bailey model. The
Nicholson-Bailey model
Nicholson and Bailey added two assumptions to to the list
(i)-(iii).

(iv) Encounters occur randomly. The number of en-
counters Ne of the host with the parasitoid is there-
fore proportional to the product of their densisties
(numbers):

Ne = αNP,

where α is a constant, which represents the search-
ing efficiency of the parasitoids (law of mass ac-
tion).

(v) Only the first encounter between a host and para-
sitoid is significant (once the host has been para-
sitized it gives rise exactly c parasitoid progeny; a
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second encounter with an egg laying parasitoid will
not increase or decrease this number.

Based on the latter assumption, we have to distinguish only
between those hosts that have had no encounters and those
that had n encounters, n ≥ 1. Because the encounters are
random, one can represent the probability of r encounters
by some distribution based on the average number of en-
counters that take place per unit time.

Interlude-the Poisson distribution. One of the sim-
plest distributions used in such a context is the Poisson
distribution. It is a limiting case of the binomial distribu-
tion: if the probability of an event occurring in a single trial
is p and we perform n trials, then the probability of exactly
r events is

b(n, p; r) =
(

n

r

)
pr(1− p)n−r.

Average number of events in µ = np. If we assume that
the number of trials n grows to infinity in such a way that
the average number of events µ stays constant (so p goes to
zero), then the probability of exactly r events is given by

p(r) = lim
n→∞

b(n, µ/n; r) = lim
n→∞

n!
r!(n− r)!

µr

nr

(
1− µ

n

)n−r

=
e−µµr

r!
,

which is the Poisson distribution. In the case of host-
parasitoid interaction, the average number of encounters
per host per unit time is

µ =
Ne

N
,
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that is, by 4.,

µ = aP.

Hence, the probability of a host not having any encounter
with parasitoid in a period of time from k to k + 1 is

p(0) = e−aP (k).

Assuming that the parasitoids search independently and
their searching efficiency is constant a, leads to the Nicholson-
Bailey system

N(k + 1) = λN(k)e−aP (k),

P (k + 1) = cN(k)(1− e−aP (k)) (1.50)



2

Basic differential equations models

As we observed in the previous section, the difference equa-
tion can be used to model quite a diverse phenomena but
their applicability is limited by the fact that the system
should not change between subsequent time steps. These
steps can vary from fraction of a second to years or cen-
turies but they must stay fixed in the model. There are
however numerous situations when the changes can occur
instantaneously. These include growth of populations in
which breeding is not restricted to specific seasons, motion
of objects where the velocity and acceleration changes every
instant, spread of epidemic with no restriction on infection
times, and many others. In such cases it is not feasible to
model the process by relating the state of the system at
a particular instant to the earlier states (though this part
remains as an intermediate stage of the modelling process)
but we have to find relations between the rates of change
of quantities relevant to the process. Rates of change are
typically expressed as derivatives and thus continuous time
modelling leads to differential equations that express re-

38
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lations between the derivatives rather than to difference
equations that express relations between the states of the
system in subsequent moments of time.

In what follows we shall derive basic differential equations
trying to provide continuous counterparts of some discrete
systems described above.

2.1 Equations related to financial mathematics

2.1.1 Continuously compounded interest and loan

repayment

Many banks now advertise continuous compounding of in-
terest which means that the conversion period α of Subsec-
tion 1.1 tends to zero so that the interest is added to the
account on the continual basis. If we measure now time in
years, that is, ∆t becomes the conversion period, and p is
the annual interest rate, then the increase in the deposit
between time instants t and t + ∆t will be

S(t + ∆t) = S(t) + ∆t
p

100
S(t). (2.1)

which, dividing by ∆t and passing with ∆t to zero, as sug-
gested by the definition of continuously compounded inter-
est, yields the differential equation

dS

dt
= p̄S, (2.2)

where p̄ = p/100. This is a first order (only the first order
derivative of the unknown function occurs) linear (the un-
known function appears only by itself, not as an argument
of any function) equation. It is easy to check that it has
the solution

S(t) = S0e
p̄t (2.3)
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where S0 is the initial deposit made at time t = 0.
To compare this formula with the discrete one (1.1) we

note that in t years we have k = t/α conversion periods

S(t) = Nk = (1+p̄α)kS0 = (1+p̄α)t/αS0 =
(
(1 + p̄α)1/p̄α

)p̄t

.

From calculus we know that

lim
x→0+

(1 + x)1/x = e,

and that the sequence is monotonically increasing. Thus,
if the interest is compounded very often (almost continu-
ously), then practically

S(t) ≈ S0e
p̄t,

which is exactly (2.3). It is clear that after 1 year the initial
investment will increase by the factor ep̄ and, recalling (1.3),
we have the identity

1 + reff = ep̄, (2.4)

which can serve as the definition of the effective interest
rate when the interest is compounded continuously. This
relation can be of course obtained by passing with α to 0
in (1.3). Typically, the exponential can be calculated even
on a simple calculator, contrary to (1.1). Due to monotonic
property of the limit, the continuously compounded interest
rate is the best one can get. However, the differences in
return are negligible. A short calculation reveals that if one
invests R10000 at p = 15% in banks with conversion periods
1 year, 1 day and with continuously compounded interest,
then the return will be, respectively, R11500, R11618 and
R11618.3. That is why the continuous formula (2.3) can be
used as a good approximation for the real return.
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Similar argument can be used for the loan repayment.
Assume that the loan is being paid off continuously, a rate
ρ > 0 per annum. Then, after short period of time ∆t the
change in the debt D can be written, similarly to (1.4, as

D(t + δt) = D(t) + ∆tp̄D(t)− ρ∆t

where α = 1/Deltat is the conversion period (time unit is 1
year so that ∆t is a fraction of 1 year) and p̄ = p/100 with
p being the annual interest rate (in percents) . As before,
we divide by ∆t and, taking ∆t → 0 we obtain

dD

dt
− p̄D = −ρ (2.5)

with the initial condition D(0) = D0 corresponding to the
initial debt. Eq. (4.10) is an example of nonhomogeneous
linear differential equation which are discussed in Appendix
A2.2.2. Discussion of this equation will be carried on in
Chapter ??.

2.1.2 Continuous models in economical

applications

A Keynesian model
A continuous variant of the discrete Keynesian model dis-
cussed earlier is offered by the following argument. We
define the aggregate demand D as D = C + I + G where,
as before, C is the individual consumption, I is private in-
vestment and G is the government expenditure; Y is the
national income. If Y = D, then the economy is in equilib-
rium, but if Y 6= D, then an adjustment of the income is
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required. It is assumed that

dY

dt
= k(D − Y )

for some constant k > 0; that is, the national economy re-
sponds positively for an excess demand. For a simple closed
economy with investment I(t) = Ī and government spend-
ing G(t) = Ḡ constant, we can write D(t) = C(t) + Ī + Ḡ.
In general, C is an increasing function of Y : C(Y ) = f(Y )
with C ′(Y ) > 0. Therefore the equation can be written in
the form

Y ′ = k(C(Y )− Y + Ī + Ḡ) = kfY (2.6)

where f(Y ) = C(Y )−Y + Ī + Ḡ. Often the affine function
C is used: C(Y ) = c0 + cY with c, c0 > 0. In this case we
obtain

Y ′ = k(c− 1)Y + k(c0Ī + Ḡ). (2.7)

As in the loan repayment, this is a nonhomogeneous first
order linear differential equation.

The Neo-classical Model of Economic Growth
More sophisticated models of economic growth involve a
production function Y which is a function of capital input
K and labour input L:

Y = Y (K,L).

P is the total production; that is, the monetary value of all
goods produced in a year. A widely used form of P is the
Cobb-Douglas production function

Y (K,L) = AKαLβ ,

for some constants A,α, β. The model we consider here is
based on [2, 3]. It is assumed that
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• the labour input grows at a constant rate:

L′ = nL

for some constant n;
• All savings S (which are a fraction of the total production

Y : S = sY ) are invested into the capital K formation
I. Investment is assumed to follow the equation K ′ =
I − δK. Thus

sY = K ′ + δK

with s, δ > 0;
• Production takes place under so-called constant return

condition; that is, if both K and L increase by a factor
a, then Y will increase by a.

let us first consider the last point. Writing it in a mathe-
matical language we obtain

Y (aK, aL) = aY (K, L)

and taking a = 1/L we have

Y (K, L) = LY

(
K

L
, 1

)
= Lf

(
K

L

)

for some function of one variable f . Note that for the Cobb-
Douglas production function we must have aαaβ = a which
yields α + β = 1 or β = 1− α; that is

Y (K, L) = KαL1−α = L

(
K

L

)α

.

Denote k = K/L. Using this information, we differentiate
k to get

k′ =
K ′

L
−KL′

L2
=

sY − δK

L
−kn = s

Y

L
−δ = sf(k)−(δ+n)k.
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Using the Cobb-Douglas function, we arrive at

k′ = skα − λk (2.8)

where λ = δ + n. The final equation is a nonlinear first
order equation which is called the Bernoulli equation. Such
equations are considered in Appendix A2.2.3 and also con-
sidered later in the book.

2.2 Other models leading to exponential growth
formula

Exponential growth models appear in numerous applica-
tions where the rate of change of some quantity is propor-
tional the the amount present. We briefly describe two
often used models of this type.

Radioactive decay
Radioactive substances undergo a spontaneous decay due
to the emission of α particles. The mass of α particles
is small in comparison with the sample of the radioactive
material so it is reasonable to assume that the decrease of
mass happens continuously. Experiments indicate that

rate of decrease is proportional to mass of the sample still present

This principle immediately leads to the equation

N ′ = −kN, (2.9)

where N is the number of radioactive particles present in
the sample and k is the proportionality constant.

Absorption of drugs
Another important process which also leads to an exponen-
tial decay model is the absorption of drugs from the blood-
stream into the body tissues. The significant quantity to
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monitor is the concentration of the drug in the bloodstream,
which is defined as the amount of drug per unit volume of
blood. Observations show that the rate of absorption of the
drug, which is equal to the rate of decrease of the concen-
tration of the drug in the bloodstream, is proportional to
the concentration of the drug in the bloodstream. Thus

{rate of decrese of concentration} is proportional to {concentration}
As before, the concentration c of the drug in the blood-
stream satisfies

c′ = −γc, (2.10)

with γ being the proportionality constant.

2.3 Continuous population models: first order
equations

In this subsection we will study first order differential equa-
tions which appear in the population growth theory. At
first glance it appears that it is impossible to model the
growth of species by differential equations since the pop-
ulation of any species always change by integer amounts.
Hence the population of any species can never be a dif-
ferentiable function of time. However, if the population is
large and it increases by one, then the change is very small
compared to a given population. Thus we make the approx-
imation that large populations changes continuously (and
even differentiable)in time and, if the final answer is not an
integer, we shall round it to the nearest integer. A similar
justification applies to our use of t as a real variable: in ab-
sence of specific breeding seasons, reproduction can occur
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at any time and for sufficiently large population it is then
natural to think of reproduction as occurring continuously.

Let N(t) denote the size of a population of a given iso-
lated species at time t and let ∆t be a small time interval.
Then the population at time t + ∆t can be expressed as

N(t + ∆t)−N(t) = number of births in ∆t

−number of deaths in ∆t.

It is reasonable to assume that the number of births and
deaths in a short time interval is proportional to the popu-
lation at the beginning of this interval and proportional to
the length of this interval, thus

N(t + ∆t)−N(t) = β(t,N(t))N(t)∆t− µ(t,N(t))N(t)∆t.

(2.11)
Taking r(t,N) to be the difference between the birth and
death rate coefficients at time t for the population of size
N we obtain

N(t + ∆t)−N(t) = r(t, N(t))∆tN(t).

Dividing by ∆t and passing with ∆t → 0 gives the equation

dN

dt
= r(t,N)N. (2.12)

Because of the unknown coefficient r(t,N), depending on
the unknown function N , this equation is impossible to
solve. The form of r has to be deduced by other means.

2.3.1 Exponential growth

The simplest possible r(t,N) is a constant and in fact such
a model is used in a short-term population forecasting. So
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let us assume that r(t,N(t)) = r so that

dN

dt
= rN. (2.13)

It is exactly the same equation as (2.2). A little more gen-
eral solution to it is given by

N(t) = N(t0)er(t−t0), (2.14)

where N(t0) is the size of the population at some fixed
initial time t0.

To be able to give some numerical illustration to this
equation we need the coefficient r and the population at
some time t0. We use the data of the U.S. Department of
Commerce: it was estimated that the Earth population in
1965 was 3.34 billion and that the population was increasing
at an average rate of 2% per year during the decade 1960-
1970. Thus N(t0) = N(1965) = 3.34 × 109 with r = 0.02,
and (2.14) takes the form

N(t) = 3.34× 109e0.02(t−1965). (2.15)

To test the accuracy of this formula let us calculate when
the population of the Earth is expected to double. To do
this we solve the equation

N(T + t0) = 2N(t0) = N(t0)e0.02T ,

thus

2 = e0.02T

and

T = 50 ln 2 ≈ 34.6 years.

This is in an excellent agreement with the present observed
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value of the Earth population and also gives a good agree-
ment with the observed data if we don’t go too far into the
past. On the other hand, if we try to extrapolate this model
into a distant future, then we see that, say, in the year 2515,
the population will reach 199980 ≈ 200000 billion. To real-
ize what it means, let us recall that the Earth total surface
area 167400 billion square meters, 80% of which is covered
by water, thus we have only 3380 billion square meters to
our disposal and there will be only 0.16m2 (40cm× 40cm)
per person. Therefore we can only hope that this model is
not valid for all times.

2.3.2 Logistic differential equation

Indeed, as for discrete models, it is observed that the linear
model for the population growth is satisfactory as long as
the population is not too large. When the population gets
very large (with regard to its habitat), these models cannot
be very accurate, since they don’t reflect the fact that the
individual members have to compete with each other for
the limited living space, resources and food available. It
is reasonable that a given habitat can sustain only a finite
number K of individuals, and the closer the population is
to this number, the slower is it growth. Again, the simplest
way to take this into account is to take r(t,N) = r(K−N)
and then we obtain the so-called continuous logistic model

dN

dt
= rN

(
1− N

K

)
, (2.16)

which proved to be one of the most successful models for
describing a single species population. This equation is still
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Fig. 2.1. Comparison of actual population figures (points) with
those obtained from equation (2.15)

first order equation but a non-linear one (the unknown func-
tion appears as an argument of the non-linear (quadratic)
function rx(1− x/K). Eq. (2.16) is an example of a sepa-
rable equation methods of solution of which are introduced
in Appendix A2.2.1.

2.3.2.1 Interlude: spread of information

The logistic equation found numerous application in vari-
ous contexts. We describe one such application in modelling
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the spread of information in a fixed size community. Let us
suppose that we have a community of constant size C and
N members of this community have some important infor-
mation. How fast this information is spreading? To find
an equation governing this process we adopt the following
assumptions:

• the information is passed when a person knowing it meets
a person that does not know it;

• the rate at which one person meets other people is a
constant f

Hence in a time interval ∆t a person knowing the news
meets f∆t people and, in average, ∆tf(C − N)/C people
who do not know it. If N people had the information at
time t, then the increase in the time ∆t will be

N(t + ∆t)−N(t) = fN(t)
(

1− N(t)
C

)
∆t

so that, as before,

dN

dt
= fN

(
1− N

C

)
.

As in the discrete case, Eq. (2.16) can be generalized in
many ways.

2.3.3 Other population models with restricted

growth

Alternatively, as in the discrete case, we can obtain (2.16)
by taking in (2.11) constant birth rate β but introduce den-
sity dependent mortality rate

µ(N) = µ0 + µ1N.
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Then the increase in the population over a time interval ∆t

is given by

N(t + ∆t)−N(t) = βN(t)∆t− µ0N(t)∆t− µ1N
2(t)∆t

which, upon dividing by ∆t and passing with it to the limit,
gives

dN

dt
= (β − µ0)N − µ1N

2

which is another form of (2.16).
In general, we can obtain various models suitable for par-

ticular applications by appropriately choosing β and µ in
(2.11). In particular, by again taking β constant and

µ(N) = µ0 + µ1N
θ

for some positive constant θ. The same argument as above
results in the Bernoulli equation

dN

dt
= (β − µ0)N − µ1N

θ+1. (2.17)

We have already encountered this equation in the economic
model (2.8).

2.4 Equations of motion: second order equations

Second order differential equations appear often as equa-
tions of motion. This is due to the Newton’s law of motion
that relates the acceleration of the body, that is, the second
derivative of the position y with respect to time t, to the
(constant) body’s mass m and the forces F acting on it:

d2y

dt2
=

F

m
. (2.18)
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We confined ourselves here to a scalar, one dimensional case
with time independent mass. The modelling in such cases
concern the form of the force acting on the body. We shall
consider two such cases in detail.

2.4.1 A waste disposal problem

In many countries toxic or radioactive waste is disposed by
placing it in tightly sealed drums that are then dumped at
sea. The problem is that these drums could crack from the
impact of hitting the sea floor. Experiments confirmed that
the drums can indeed crack if the velocity exceeds 12m/s

at the moment of impact. The question now is to find out
the velocity of a drum when it hits the sea floor. Since
typically the waste disposal takes place at deep sea, direct
measurement is rather expensive but the problem can be
solved by mathematical modelling.

As a drum descends through the water, it is acted upon
by three forces W,B,D. The force W is the weight of the
drum pulling it down and is given by mg, where g is the
acceleration of gravity and m is the mass of the drum. The
buoyancy force B is the force of displaced water acting on
the drum and its magnitude is equal to the weight of the
displaced water, that is, B = gρV , where ρ is the den-
sity of the sea water and V is the volume of the drum.
If the density of the drum (together with its content) is
smaller that the density of the water, then of course the
drum will be floating. It is thus reasonable to assume that
the drum is heavier than the displaced water and therefore
it will start drowning with constant acceleration. Exper-
iments (and also common sense) tell us that any object
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moving through a medium like water, air, etc. experiences
some resistance, called the drag. Clearly, the drag force
acts always in the opposite direction to the motion and its
magnitude increases with the increasing velocity. Experi-
ments show that in a medium like water for small velocities
the drag force is proportional to the velocity, thus D = cV .
If we now set y = 0 at the sea level and let the direction of
increasing y be downwards, then from (2.18)

d2y

dt2
=

1
m

(
W −B − c

dy

dt

)
. (2.19)

This is a second order (the highest derivative of the un-
known function is of second order) and linear differential
equation.

2.4.2 Motion in a changing gravitational field

According to Newton’s law of gravitation, two objects of
masses m and M attract each other with force of magnitude

F = G
mM

d2

where G is the gravitational constant and d is the distance
between the objects’ centres. Since at the Earth’s surface
the force is equal (by definition) to F = mg, the gravita-
tional force exerted on a body of mass m at a distance y

above the surface is given by

F = − mgR2

(y + R)2
,

where the minus sign indicates that the force acts towards
Earth’s centre. Thus the equation of motion of an object
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of mass m projected upward from the surface is

m
d2y

dt2
= − mgR2

(y + R)2
− c

(
dy

dt

)2

where the last term represents the air resistance which, in
this case, is taken to be proportional to the square of the
velocity of the object. This is a second order nonlinear
differential equation.

2.5 Equations coming from geometrical modelling

2.5.1 Satellite dishes

In many applications, like radar or TV/radio transmission
it is important to find the shape of a surface that reflects
parallel incoming rays into a single point, called the focus.
Conversely, constructing a spot-light one needs a surface
reflecting light rays coming from a point source to create
a beam of parallel rays. To find an equation for a surface
satisfying this requirement we set the coordinate system so
that the rays are parallel to the x-axis and the focus is at
the origin. The sought surface must have axial symmetry,
that is, it must be a surface of revolution obtained by ro-
tating some curve C about the x-axis. We have to find the
equation y = y(x) of C. Using the notation of the figure,
we let M(x, y) be an arbitrary point on the curve and de-
note by T the point at which the tangent to the curve at
M intersects the x-axis. It follows that the triangle TOM

is isosceles and

tan ^OTM = tan^TMO =
dy

dx
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Fig. 2.2. Geometry of a reflecting surface

where the derivative is evaluated at M . By symmetry, we
can assume that y > 0. Thus we can write

tan ^OTM =
|MP |
|TP | ,

but |MP | = y and, since the triangle is isosceles, |TP | =
|OT |±|OP | = |OM |±|OP | =

√
x2 + y2 +x, irrespectively

of the sign of x. Thus, the differential equation of the curve
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C is
dy

dx
=

y√
x2 + y2 + x

. (2.20)

This is a nonlinear, so-called homogeneous, first order dif-
ferential equation. As we shall see later, it is not difficult
to solve, if one knows appropriate techniques, yielding a
parabola, as expected from the Calculus course.

2.5.2 The pursuit curve

What is the path of a dog chasing a rabbit or the trajectory
of self-guided missile trying to intercept an enemy plane?
To answer this question we must first realize the principle
used in controlling the chase. This principle is that at any
instant the direction of motion (that is the velocity vector)
is directed towards the chased object.

To avoid technicalities, we assume that the target moves
with a constant speed v along a straight line so that the
pursuit takes place on a plane. We introduce the coordinate
system in such a way that the target moves along the y-
axis in the positive direction, starting from the origin at
the time t = 0, and the pursuer starts from a point at the
negative half of the x-axis, see Fig. 2.3. We also assume
that the pursuer moves with a constant speed u. Let M =
M(x(t), y(t)) be a point at the curve C, having the equation
y = y(x), corresponding to the time t of the pursuit at
which x = x(t). At this moment the position of the target is
(0, vt). Denoting y′ = dy

dx , from the principle of the pursuit
we obtain

y′ = −vt− y

x
, (2.21)
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Fig. 2.3. The pursuit curve

where we have taken into account that x < 0. In this
equation we have too many variables and we shall eliminate
t as we are looking for the equation of the trajectory in x, y

variables. Solving (2.21) with respect to x we obtain

x = −vt− y

y′
, (2.22)

whereupon, using the assumption that v is a constant and
remembering that x = x(t), y = y(x(t)) and y′ = y′(x(t),



58 Basic differential equations models

differentiating with respect to t we get

dx

dt
=

(−v + y′ dx
dt

)
y′ + (vt− y)y′′ dx

dt

(y′)2
.

Multiplying out and simplifying we get

0 = −vy′ + (vt− y)y′′
dx

dt

whereupon, using (2.22) and solving for dx
dt , we obtain

dx

dt
= − v

xy′′
. (2.23)

On the other hand, since we know that the speed of an
object moving according to parametric equation (x(t), y(t))
is given by

u =

√(
dx

dt

)2

+
(

dy

dt

)2

=
√

1 + (y′)2
∣∣∣∣
dx

dt

∣∣∣∣ , (2.24)

where we used the formula for parametric curves

dy

dx
=

dy
dt
dx
dt

,

whenever dx/dt 6= 0. From the formulation of the prob-
lem it follows that dx/dt > 0 (it would be unreasonable for
the dog to start running away from the rabbit) hence we
can drop the absolute value bars in (2.23). Thus, combin-
ing (2.23) and (2.24) we obtain the equation of the pursuit
curve

xy′′ = − v

u

√
1 + (y′)2. (2.25)

This is a nonlinear second order equation having, however,
a nice property of being reducible to a first order equation
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and thus yielding a closed form solutions. We shall analyse
this equation in Chapter ??. deal with such equations later
on.

2.6 Modelling interacting quantities – systems of
differential equations

In many situations we have to model evolutions of two (or
more) quantities that are coupled in the sense that the state
of one of them influences the other and conversely. We have
seen this type of interactions in the discrete case when we
modelled spread of a measles epidemic. It resulted then in a
system of difference equations. Similarly, in the continuous
case the evolution of interacting populations will lead to a
system of differential equations. In this subsection we shall
discuss modelling of such systems that results in both linear
and non-linear systems.

2.6.1 Two compartment mixing – a system of

linear equations

Let us consider a system consisting of two vats of equal ca-
pacity containing a diluted dye: the concentration at some
time t of the dye in the first vat is c1(t) and in the second
is c2(t). Suppose that the pure dye is flowing into the first
vat at a constant rate r1 and water is flowing into the sec-
ond vat at a constant rate r2 (in, say, litres per minute).
Assume further that two pumps exchange the contents of
both vats at constant rates: p1 from vat 1 to vat 2 and
conversely at p2. Moreover, the diluted mixture is drawn
off vat 2 at a rate R2. The flow rates are chosen so that the
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volumes of mixture in each vat remain constant, equal to
V , that is r1 + p2− p1 = r2− p2−R2 = 0. We have to find
how the dye concentration in each vat changes in time.

Let x1(t) and x2(t) be the volumes of dye in each tank
at t ≥ 0. Thus, the concentrations c1 and c2 are defined by
c1 = x1/V and c2 = x2/V . We shall consider what happens
to the volume of the dye in each vat during a small time
interval from t to ∆t. In vat 1

x1(t + ∆t)− x1(t) =





volume of
of pure dye

flowing into vat 1





+





volume of
dye in mixture 2

flowing into vat 1



−





volume of
dye in mixture 1

flowing out of vat 1





= r1∆t + p2
x2(t)

V
∆t− p1

x1(t)
V

∆t,

and in vat 2, similarly,

x2(t + ∆t)− x2(t) =





volume of
dye in mixture 1

flowing into vat 2





−




volume of
dye in mixture 2

flowing out of vat 2



−





volume of dye in
mixture 2 flowing
from vat 2 vat 1





= p1
x1(t)

V
∆t−R2

x2(t)
V

∆t− p2
x2(t)

V
∆t.

As before, we dividing by ∆t and passing with it to zero
we obtain the following simultaneous system of linear dif-
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ferential equations

dx1

dt
= r1 + p2

x2

V
− p1

x1

V
dx2

dt
= p1

x1

V
− (R2 + p2)

x2

V
. (2.26)

2.6.2 Continuous population models

Let us consider a model with population divided into n

subpopulations, as in Subsection 1.2.3, but with transitions
between occurring very quickly. This warrants describing
the process in continuous time. Note that this in natural
way excludes age structured populations discussed earlier
as those models were constructed assuming discrete time.
Continuous time age structure population models require
a different approach leading to partial differential equation
and thus are beyond the scope of this lecture notes.

Let vi(t) denotes the number of individuals in subpopu-
lation i at time t and consider the change of the size of this
population in a small time interval ∆t. Over this interval,
an individual from a j-th subpopulation can undergo the
same processes as in the discrete case; that is,

• move to i-th subpopulation with (approximate) proba-
bility pij∆t;

• contribute to the birth of an individual in i-th subpopu-
lation with probability bij∆t;

• die with probability dj∆t.

Thus, the number of individuals in class i at time t+∆t is:

the number of individuals in class i at time t - the number of
deaths in class i + the number of births in class i do to inter-
actions with individuals in all other classes + the number of



62 Basic differential equations models

individuals who migrated to class i from all other classes - the
number of individuals who migrated from class i to all other
classes,

or, mathematically,

vi(t + ∆t) = vi(t)− di∆tvi(t) +
n∑

j=1

bij∆tvj(t)

=
n∑

j=1
j 6=i

(pij∆tvj(t)− pji∆tvi(t)) , i = 1, . . . , n.(2.27)

To make the notation more compact, we denote qij = bij +
pij for i 6= j and

qii = bii − di −
n∑

j=1
j 6=i

pji.

Using this notation in (2.27), dividing by ∆t and passing
to the limit with ∆t → 0 we obtain

v′i(t) =
n∑

j=1

qijvj(t), , i = 1, . . . , n, (2.28)

or

v′ = Qv, (2.29)

where Q = {qij}1≤i,j≤n.
Let us reflect for a moment on similarities and differences

between continuous and discrete time models. To simplify
the discussion we shall focus on processes with no births or
deaths events: bij = dj = 0 for 1 ≤ i, j ≤ n. As in the
discrete time model, the total size of the population at any
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given time t is given by N(t) = v1(t) + . . . + vn(t). Then,
the rate of change of N is given by

dN

dt
=

∑

1≤i≤n

dvi(t)
dt

=
n∑

i=1




n∑

j=1

qijvj(t)


 (2.30)

=
n∑

i=1

qiivi(t) +
n∑

i=1




n∑
j=1
j 6=1

qijvj(t)




= −
n∑

i=1

vi(t)




n∑
j=1
j 6=i

pji


 +

n∑

i=1




n∑
j=1
j 6=i

pijvj(t)




= −
n∑

i=1

vi(t)




n∑
j=1
j 6=i

pji


 +

n∑

j=1

vj(t)




n∑
i=1
i 6=j

pij




= −
n∑

i=1

vi(t)




n∑
j=1
j 6=i

pji


 +

n∑

i=1

vi(t)




n∑
j=1
j 6=i

pji


 = 0,

where we used the fact that i, j are dummy variables.

Remark 2.1 The change of order of summation can be
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justified as follows

n∑

i=1




n∑
j=1
j 6=i

pijvj


 =

n∑

i=1




n∑

j=1

pijvj


−

n∑

i=1

piivi

=
n∑

j=1

(
n∑

i=1

pijvj

)
−

n∑

j=1

pjjvj =
n∑

j=1

vj

(
n∑

i=1

pij − pjj

)

=
n∑

j=1

vj




n∑
i=1
i 6=j

pij


 .

Hence, N(t) = N(0) for all time and the process is conser-
vative.

The continuous process to certain extent can compared
to analysis of the period increments in the discrete time
process:

v(k + 1)− v(k) = (−I + P)v(k) (2.31)

=




−1 + p11 p12 · · · p1n

p21 −1 + p22 · · · p2n

...
... · · · ...

pn1 pn2 · · · −1 + pnn


v(k),

The the ‘increment’ matrix has the property that each row
adds up to zero due to (1.44). However, it is important to
remember that the coefficients pij in the continuous case are
not probabilities and thus they do not add up to zero. In
fact, they can be arbitrary numbers and represent probabil-
ity rates with pij∆t being approximate interstate transition
probabilities.
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2.6.3 Continuous model of epidemics – a system

of nonlinear differential equations

The measles epidemic discussed earlier was modelled as a
system of non-linear difference equations. The reason for
the applicability of difference equations was the significant
latent period between catching the disease and becoming
contagious. If this period is very small (ideally zero) it
it more reasonable to construct a model involving coupled
differential equations. For the purpose of formulating the
model we divide the population into three groups: suscep-
tibles (who are not immune to the disease), infectives (who
are capable of infecting susceptibles) and removed (who
have previously had the disease and may not be reinfected
because they are immune, have been quarantined or have
died from the disease). The symbols S, I, R will be used to
denote the number of susceptibles, infectives and removed,
respectively, in the population at time t. We shall make the
following assumptions on the character of the disease:

(a) The disease is transmitted by close proximity or con-
tact between an infective and susceptible.

(b) A susceptible becomes an infective immediately af-
ter transmission.

(c) Infectives eventually become removed.
(d) The population of susceptibles is not altered by em-

igration, immigration, births and deaths.
(e) Each infective infects a constant fraction β of the

susceptible population per unit time (mass action
law).

(f) The number of infectives removed is proportional
to the number of infectives present.
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As mentioned earlier, it is assumption (b) that makes a dif-
ferential rather than difference equation formulation more
reasonable. Diseases for which this assumption is applicable
include diphtheria, scarlet fever and herpes. Assumption
(e) is the same that used in difference equation formula-
tion. It is valid provided the number of infectives is small
in comparison to the number of susceptibles.

To set up the differential equations, we shall follow the
standard approach writing first difference equations over
arbitrary time interval and then pass with the length of
this interval to zero. Thus, by assumptions (a), (c) and
(d), for any time t

S(t + ∆t) = S(t)−
{

number of susceptibles
infected in time ∆t

}
,

by assumptions (a), (b) and (c)

I(t + ∆t) = I(t) +
{

number of susceptibles
infected in time ∆t

}

−
{

number of infectives
removed in time ∆t

}
,

and by assumptions (a), (c) and (d)

R(t + ∆t) = R(t) +
{

number of infectives
removed in time ∆t

}
.

However, from assumptions (c) and (f)
{

number of susceptibles
infected in time ∆t

}
= βSI∆t

{
number of infectives
removed in time ∆t

}
= γI∆t.
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Combining all these equations and dividing by ∆t and pass-
ing with it to 0 we obtain the coupled system of nonlinear
differential equations

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI, (2.32)

where α, β are proportionality constants. Note that R does
not appear in the first two equations so that we can consider
separately and then find R by direct integration. The first
two equations are then a continuous analogue of the system
(1.46) with B = 0. Note that a simpler form of the equation
for I in the discrete case follows from the fact that due to
precisely one week recovering time the number of removed
each week is equal to the number of infectives the previous
week so that these two cancel each other in the equation
for I.

2.6.4 Predator–prey model – a system of

nonlinear equations

Systems of coupled nonlinear differential equations similar
to (2.32) appear in numerous applications. One of the most
famous is the Lotka-Volterra, or predator-prey model, cre-
ated to explain why in a period of reduced fishing during
the World War I, the number of sharks and other predators
substantially increased. We shall describe it on the original
example of small fish – sharks interaction.

To describe the model, we consider two populations: of
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smaller fish and sharks, with the following influencing fac-
tors taken into account.

(i) Populations of fish and sharks display an exponential
growth when considered in isolation. However, the
growth rate of sharks in absence of fish is negative
due to the lack of food.

(ii) Fish is preyed upon by sharks resulting in the decline
in fish population. It is assumed that each shark eats
a constant fraction of the fish population.

(iii) The population of sharks increases if there is more
fish. The additional number of sharks is proportional
to the number of available fish.

(iv) Fish and sharks are being fished indiscriminately,
that is, the number of sharks and fish caught by fish-
ermen is directly proportional to the present popula-
tions of fish and sharks, respectively, with the same
proportionality constant.

If we denote by x and y the sizes of fish and shark popula-
tions, then an argument, similar to that leading to (2.32),
gives the following system

dx

dt
= (r − f)x− αxy,

dy

dt
= −(s + f)y + βxy (2.33)

where α, β, r, s, f are positive constants.
We note that a more general form of (2.33):

dx

dt
= x(a + bx + cy),

dy

dt
= y(d + ey + fx) (2.34)
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with constants a, b, c, d, e, f of arbitrary sign can describe
a wide range of interactions between two populations. For
instance, if b < 0, then we have a logistic growth of the
population x in absence of y indicating an intraspecies com-
petition. If c > 0 then, contrary to the previous case, the
presence of the species y benefits x so that if both c and
f are positive we have cooperating species. On the other
hand, the situation when both f and c are negative arises
when one models populations competing for the same re-
source.



3

Solutions and applications of
discrete models

In this chapter we shall go through several difference equa-
tion introduced in Chapter 1 which admit closed form so-
lutions and describe some further applications.

3.1 Inverse problems – estimates of the growth
rate

Most population models contain parameters which are not
given and must be determined by fitting the model to the
observable data. We shall discuss two simple examples of
this type.

Growth rate in an exponential model A total of 435 bass
fish were introduced in 1979 and 1981 into a bay. In 1989,
the commercial net catch alone was 4 000 000 kg. Since the
growth of this population was so fast, it is reasonable to as-
sume that it obeyed the Malthusian law Nk+1 = R0Nk. As-
suming that the average weight of a bass fish is 1.5 kg, and
that in 1999 only 10% of the bass population was caught,
we find lower and upper bounds for r. Recalling the formula

70
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(1.17) we have

N(k) = N0R
k
0

where we measure k in years and R0 > 1 (as we have
growth). Let us denote by N1 and N2 the amounts of fish
introduced in 1979 and 1981, respectively, so that N1+N2 =
435. Thus, we can write the equation

N(1989) = N1R
1989−1979
0 +N2R

1989−1981
0 = N1R

10
0 +N2R

8
0.

Since we do not know N1 nor N2 we observe that R2
0 > 1

and thus

N(1989) ≤ N1R
10
0 + N2R

10
0 = 435R10

0 .

Similarly

N(1989) ≥ N1R
8
0 + N2R

10
0 = 435R8

0.

Hence

10

√(
N(1989)

435

)
≤ R0 ≤ 8

√(
N(1989)

435

)
.

Now, the data of the problem give as N(1989) = 10 ×
4000000/1.5 ≈ 2666666 and so

2.39 ≤ R0 ≤ 2.97.

Growth rate and capacity of the environment in the logistic
model

Suppose that a population grows according to the logistic
equation

N(k + 1) = N(k) + R0N(k)
(

1− N(k)
K

)
, (3.1)
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with r and K unknown. We easily see that if N(k + 1) =
N(k) implies N(k) = 0 or N(k) = K so that the population
is strictly growing provided it is not extinct or the largest
possible in the given environment.

It follows that to determine R0 and K it is enough to
know three subsequent measurements of the population size.
Since the model is autonomous, we can call them N0, N1

and N2. Thus

N(1) = N(0) + R0N(0)
(

1− N(0)
K

)
,

N(2) = N(1) + R0N(1)
(

1− N(1)
K

)

hence
N(1)−N(0)
N(2)−N(1)

=
N(0)(K −N(0))
N(1)(K −N(1))

.

Denoting

Q =
N(1)(N(1)−N(0))
N(0)(N(2)−N(1))

we obtain K −N(0) = Q(K −N(1)) so

K =
N(0)−QN(1)

1−Q
,

which is possible as Q 6= 1. Indeed, Q = 1 implies N(1)2 =
N(0)N(2) or N(1)/N(0) = N(2)/N(1). But then (3.1) im-
plies N(0) = N(1), contrary to the result at the beginning
of the paragraph. Having determined K, we get

R0 =
K(N(1)−N(0))
N(0)(K −N(0))

.
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3.2 Drug release

Assume that a dose D0 of a drug, that increases it’s con-
centration in the patient’s body by c0, is administered at
regular time intervals t = 0, T, 2T, 3T . . .. Between the in-
jections the concentration c of the drug decreases according
to the differential equation c′ = −γc, where γ is a positive
constant. It is convenient here to change slightly the no-
tational convention and denote by cn the concentration of
the drug just after the nth injection, that is, c0 is the con-
centration just after the initial (zeroth) injection, c1 is the
concentration just after the first injection, that is, at the
time T , etc. We are to find formula for cn and determine
whether the concentration of the drug eventually stabilizes.

In this example we have a combination of two processes:
continuous between the injections and discrete in injection
times. Firstly, we observe that the process in discontinu-
ous at injection times so we have two different values for
c(nT ): just before the injection and just after the injec-
tion (assuming that the injection is done instantaneously).
To avoid ambiguities, we denote by c(nT ) the concentra-
tion just before the nth injection and by cn the concentra-
tion just after, in accordance with the notation introduced
above. Thus, between the nth and n + 1st injection the
concentration changes according to the exponential law

c((n + 1)T ) = cne−γT

so that over each time interval between injection the con-
centration decreases by a constant fraction a = e−γT < 1.
Thus, we are able to write down the difference equation for
concentrations just after n + 1st injection as

cn+1 = acn + c0. (3.2)
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We can write down the solution using (1.7) as

cn = c0a
n + c0

an − 1
a− 1

= − c0

1− a
an+1 +

c0

1− a
.

Since a < 1, we immediately obtain that c̄ = lim
n→∞

cn =
c0

1−a = c0
1−e−γT .

Similarly, the concentration just before nth injection is

c(nT ) = cn−1e
−γT = e−γT

(
c0

e−γT − 1
e−γTn +

c0

1− e−γT

)

=
c0

1− eγT
e−γTn +

c0

eγT − 1

and for the long run c = lim
n→∞

c(nT ) = c0
eγT−1

.

For example, using c0 = 14 mg/l, γ = 1/6 and T = 6
hours we obtain that after a long series of injections the
maximal concentration, attained immediately after injec-
tions, will stabilize at around 22 mg/l. The minimal con-
centration, just before injection, will stabilize at around
c = 14/e− 1 ≈ 8.14 mg/l. This effect is illustrated at Fig.
3.1.

3.3 Mortgage repayment

In Subsection 1.1 we discussed the difference equation gov-
erning long-term loan repayment:

D(k + 1) = D(k) +
αp

100
D(k)−R = D(k)

(
1 +

αp

100

)
−R,

(3.3)
where D0 is the initial debt to be repaid, for each k, D(k) is
the outstanding debt after the kth repayment, the payment
made after each conversion period is R, p% is the annual
interest rate and α is the conversion period, that is, the
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Fig. 3.1. Long time behaviour of the concentration c(t).

number of payments in one year. To simplify notation we
denote r = αp/100

Using again (1.7) we obtain the solution

D(k) = (1 + r)k
D0 −R

k−1∑
i=0

(1 + r)k−i−1

= (1 + r)k
D0 −

(
(1 + r)k − 1

) R

r

This equation gives answers to a number of questions
relevant in taking a loan. For example, if we want to know
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what will be the monthly instalment on a loan of D0 to be
repaid in n payments, we observe that the loan is repaid in
n instalments if D(n) = 0, thus we must solve

0 = (1 + r)n
D0 − ((1 + r)n − 1)

R

r

in R, which gives

R =
rD0

1− (1 + r)−n
. (3.4)

For example, taking a mortgage of R200000 to be repaid
over 20 years in monthly instalments at the annual interest
rate of 13% we obtain α = 1/12, hence r = 0.0108, and
n = 20× 12 = 240. Therefore

R =
0.0108 · 200000
1− 1.0108−240

≈ R2343.15.

3.4 Conditions for the Walras equilibrium

Let us recall the model describing evolution of the price of
a commodity (1.6):

p(n) = −ms

md
p(n− 1) +

bd − bs

md
. (3.5)

The equilibrium would be the price such that p(n + 1) =
p(n). To find conditions for existence of such a price, let us
solve this equation. Using (1.7) we see that

p(n) =
(
−ms

md

)n

− bd − bs

md + ms

((
−ms

md

)n

− 1
)

=
(
−ms

md

)n (
1− bd − bs

md + ms

)
+

bd − bs

md + ms
.

Since md,ms > 0, we have three cases to consider:
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(i) If ms/md < 1; that is the suppliers are less sensitive
to price than consumers, then

lim
n→∞

p(n) =
bd − bs

md + ms
=: p∞.

Substituting p(n− 1) = p∞ in (3.5) we obtain

p(n + 1) = −ms

md

bd − bs

md + ms
+

bd − bs

md

=
bd − bs

md

( −ms

md + ms
+ 1

)

=
bd − bs

md + ms
= p∞ (3.6)

so that p∞ is the equilibrium price. If we start from
any other price p0, then the price of the commodity
will oscillate around p∞ tending to as n →∞. Such
an equilibrium point is called asymptotically stable

(ii) If ms = md, then p(n) will take on only two values:
p0 and

p(1) = −p0 +
bd − bs

md
.

Indeed, we have

p(2) = −
(
−p0 +

bd − bs

md

)
+

bd − bs

md
= p0

and the cycle repeats itself. Thus the price oscillates
around p∞ = (bd − bs)/2 (which is the midpoint of
the possible values of the solution) but will not get
closer to it with time. We call such an equilibrium
stable but not asymptotically stable (or not attract-
ing). In economic applications the price p∞ in both
cases is called stable.
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(iii) If md/ms > 1; that is suppliers are more sensitive to
price than consumers, then p(n) will oscillate with
|p(n)| increasing to infinity. Thus, though p∞ is an
equilibrium price by (3.6), it is not a stable price.

3.5 Some explicitly solvable nonlinear models

We recall that the Beverton-Holt-Hassel equation equation
(1.21) can be simplified to

x(n + 1) =
R0x(n)

(1 + x(n))b
. (3.7)

While for general b this equation can display a very rich
dynamics, which will be looked at later on, for b = 1 it can
be solved explicitly. So, let us consider:

x(n + 1) =
R0x(n)
1 + x(n)

(3.8)

Writing (3.8) as

x(n + 1) =
R0

1 + 1
x(n)

we see that the substitution y(n) = 1/x(n) converts it to

y(n + 1) =
1

R0
+

1
R0

y(n)

Using (1.7) we find

y(n) =
1

R0

R−n
0 − 1

R−1
0 − 1

+ R−n
0 y(0) =

1−Rn
0

Rn
0 (1−R0)

+ R−n
0 y(0)

if R0 6= 1 and

y(n) = n + y(0)
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for R0 = 1. From these equations we see that x(n) → R0−1
if R0 > 1 and x(n) → 0 if R0 ≤ 1 as n → ∞. It is maybe
unexpected that the population faces extinction if R0 = 1
(which corresponds to every individual giving on average
birth to one offspring ). However, the density depending
factor causes some individuals to die between reproductive
seasons which means the the population with R0 = 1 in
fact decreases with every cycle.

The logistic equation
In general the discrete logistic equation does not admit
closed form solution. However, some special cases can be
solved by an appropriate substitution. We shall look at two
such cases. Consider

x(n + 1) = 2x(n)(1− x(n))

and use substitution x(n) = 1/2− y(n). Then

1
2
− y(n + 1) = 2

(
1
2
− y(n)

)(
1
2

+ y(n)
)

=
1
2
− 2y2(n)

so that

y(n + 1) = 2y2(n)

Then y(n) > 0 for n > 0 provided y(0) > 0 and we can take
the logarithm of both sides getting

ln y(n + 1) = 2 ln y(n) + 2

which, upon substitution z(n) = ln y(n) becomes the inho-
mogeneous linear equation

z(n + 1) = 2z(n) + 2

which, according (1.7) has the form

z(n) = 2nz(0) + 2(2n − 1).
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Hence

x(n) =
1
2
− exp (2(2n − 1)) exp

(
2n ln

(
1
2
− x0

))

=
1
2
− exp (2(2n − 1)) exp

(
2n−1 ln

(
1
2
− x0

)2
)

where the second formula should be used if x0 > 1/2 so
that y(0) < 0. We note that for x0 = 1/2 we have

x1 = 2
1
2

1
2

=
1
2

= x0

so that we obtain a constant solution (x = 1/2 is an equi-
librium point).

Another particular logistic equation which can be solved
by substitution is

x(n + 1) = 4x(n)(1− x(n)). (3.9)

First we note that since the function f(x) = 4x(1− x) ≤ 1
for 0 ≤ x ≤ 1, 0 ≤ xn+1 ≤ 1 if x(n) has this property.
Thus, assuming 0 ≤ x0 ≤ 1, we can use the substitution

x(n) = sin2 y(n) (3.10)

so that

x(n + 1) = sin2 y(n + 1) = 4 sin2 y(n)(1− sin2 y(n))

= 4 sin2 y(n) cos2 y(n) = sin2 2y(n).

This gives a family of equations

y(n + 1) = ±2y(n) + kπ, k ∈ Z.

However, bearing in mind that our aim is to find x(n) given
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by (3.10) we can discard kπ as well as the minus sign and
focus on

y(n + 1) = 2y(n).

This is the geometric progression and we get

y(n) = C2n,

where C is an arbitrary constant, as the general solution.
Hence

x(n) = sin2 C2n

where C is to be determined from x0 = sin2 C. What is
remarkable in this example is that, as we see later, the
dynamics generated by (3.9) is chaotic despite the fact that
there is an explicit formula for the solution.
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Basic differential equation models –
solutions

In the previous chapter we have introduced several objects
which we called differential equations. Here we shall make
this concept more precise, we discuss various approaches to
solving a differential equation and provide solutions to the
models of the previous chapters. Since these notes mainly
are about modelling, we refer the reader to dedicated texts
to learn more about the theory of differential equations.
However, to make the presentation self-consistent, we pro-
vide basic facts and methods in the appendix.

4.1 What are differential equations?

What precisely do we mean by a differential equation? The
more familiar notion of an algebraic equation, like for ex-
ample the quadratic equation x2− 4x− 5 = 0, states some-
thing about a number x. It is sometimes called an open
statement since the number x is left unspecified, and the
statement’s truth depends on the value of x. Solving the

82
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equation then amounts to finding values of x for which the
open statement turns into a true statement.

Algebraic equations arise in modelling processes where
the unknown quantity is a number (or a collection of num-
bers) and all the other relevant quantities are constant. As
we observed in the first chapter, if the data appearing in
the problem are variable and we describe a changing phe-
nomenon, then the unknown will be rather a function (or
a sequence). If the changes occur over very short interval,
then the modelling usually will have to balance small incre-
ments of this function and the data of the problem and will
result typically in an equation involving the derivatives of
the unknown function. Such an equation is called a differ-
ential equation.

Differential equations are divided into several classes. The
main two classes are ordinary differential equations (ODEs)
and partial differential equations (PDEs). As suggested by
the name, ODEs are equations where the unknown func-
tion is a function of one variable and the derivatives in-
volved in the equation are ordinary derivatives of this func-
tion. A partial differential equation involves functions of
several variables and thus expresses relations between par-
tial derivatives of the unknown function.

In this course we shall be concerned solely with ODEs
and systems of ODEs. Symbolically, the general form of
ODE is

F (y(n), y(n−1), . . . y′, y, t) = 0, (4.1)

where F is a given function of n + 2 variables. For exam-
ple, the equation of exponential growth can be written as
F (y′, y, t) = y′ − ry so that the function F is a function of
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two variables (constant with respect to t) and acting into
r. Systems of differential equations can be also written in
the form (4.1) if we accept that both F and y (and all the
derivatives of y) can be vectors. For example, in the case
of the epidemic spread (2.32) we have a system of ODEs
which can be written as

F(y, t) = 0,

with three-dimensional vector y = (S, I,R) and the vector
F = (F1, F2, F3) with F1(S, I, R, t) = −βSI, F2(S, I,R, t) =
βSI − γI and F3(S, I, R, t) = γI.

What does it mean to solve a differential equation? For
algebraic equations, like the one discussed at the beginning,
we can apply the techniques learned in the high school find-
ing the discriminant of the equation ∆ = (−4)2−4·1·(−5) =
36 so that x1,2 = 0.5(4± 6) = 5,−1. Now, is this the solu-
tion to our equation? How can we check it? The answer is
given above – the solution is a number (or a collection of
numbers) that turns the equation into a true statement. In
our case, 52 − 20 − 5 = 0 and (−1)2 − 4(−1) − 5 = 0, so
both numbers are solutions to the equation.

Though presented in a simple context, this is a very im-
portant point.

To solve a problem is to find a quantity that sat-
isfies all the conditions of this problem.

This simple truth is very often forgotten as students tend
to apply mechanically steps they learned under say, ”tech-
niques for solving quadratic equations” or ”techniques of
integration” labels and look for answers or model solutions
”out there” though the correctness of the solution in most
cases can be checked directly.
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The same principle applies to differential equations. That
is, to solve the ODE (4.1) means to find an n-times contin-
uously differentiable function y(t) such that for any t (from
some interval)

F (y(n)(t), y(n−1)(t), . . . y′(t), y(t), t) ≡ 0.

Once again, there are many techniques for solving differen-
tial equations. Some of them give only possible candidates
for solutions and only checking that these suspects really
turn the equation into the identity can tell us whether we
have obtained the correct solution or not.

Example 4.1 As an example, let us consider which of these
functions y1(t) = 30e2t, y2(t) = 30e3t and y3(t) = 40e2t

solves the equation y′ = 2y. In the first case, LHS is equal
to 60e2t and RHS is 2 · 30e2t so that LHS = RHS and
we have a solution. In the second case we obtain LHS =
90e3t 6= 2 · 30e3t = RHS so that y2 is not a solution. In the
same way we find that y3 satisfies the equation.

Certainly, being able to check whether a given function is
a solution is not the same as actually finding the solution.
Thus, this example rises the following three questions.

(i) Can we be sure that a given equation possesses a
solution at all?

(ii) If we know that there is a solution, are there system-
atic methods to find it?

(iii) Having found a solution, can we be sure that there
are no other solutions?

Question 1 is usually referred to as the existence prob-
lem for differential equations, and Question 3 as the unique-
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ness problem. Unless we deal with very simple situations
these should be addressed before attempting to find a solu-
tion. After all, what is the point of trying to solve equation
if we do not know whether the solution exists, and whether
the solution we found is the one we are actually looking for,
that is, the solution of the real life problem the model of
which is the differential equation.

Let us discuss briefly Question 1 first. Roughly speaking,
we can come across the following situations.

(i) No function exists which satisfies the equation.
(ii) The equation has a solution but no one knows what

it looks like.
(iii) The equation can be solved in a closed form, either

in elementary functions,
or in quadratures.

Case 1 is not very common in mathematics and it should
never happen in mathematical modelling. In fact, if a given
equation was an exact reflection of a real life phenomenon,
then the fact that this phenomenon exists would ensure
that the solution to this equation exists also. For example,
if we have an equation describing a flow of water, then the
very fact that water flows would be sufficient to claim that
the equation must have a solution. However, in general,
models are imperfect reflections of real life and therefore
it may happen that in the modelling process we missed a
crucial fact, rendering thus the final equation unsolvable.
Thus, checking that a given equation is solvable serves as
an important first step in validation of the model. Unfortu-
nately, these problems are usually very difficult and require
quite advanced mathematics that is beyond the scope of
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this course. On the other hand, all the equations we will
be dealing with are classical and the fundamental problems
of existence and uniqueness for them have been positively
settled at the beginning of the 20th century.

Case 2 may look somewhat enigmatic but, as we said
above, there are advanced theorems allowing to ascertain
the existence of solution without actually displaying them.
This should be not surprising: after all, we know that the
Riemann integral of any continuous function exists though
in many cases we cannot evaluate it explicitly.

Even if we do not know a formula for the solution, the
situation is not hopeless. Knowing that the solution exists,
we have an array of approximate, numerical methods at
our disposal. Using them we are usually able to find the
numerical values of the solution with arbitrary accuracy.
Also, very often we can find important features of the solu-
tion without knowing it. These feature include e.g. the long
time behaviour of the solution, that is, whether it settles at
a certain equilibrium value or rather oscillates, whether it
is monotonic etc. These questions will be studied by in the
final part of our course.

Coming now to Case 3 and to an explanation of the mean-
ing of the terms used in the subitems, we note that clearly
an ideal situation is if we are able to find the solution as an
algebraic combination of elementary functions

y(t) = combination of elementary functions like :

sin t, cos t, ln t, exponentials, polynomials...

Unfortunately, this is very rare for differential equation.
Even the simplest cases of differential equations involving
only elementary functions may fail to have such solutions.
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Example 4.2 For example, consider is the equation

y′ = e−t2 .

Integrating, we find that the solution must be

y(t) =
∫

e−t2dt

but, on the other hand, it is known that this integral cannot
be expressed as a combination of elementary functions.

This brings us to the definition of quadratures. We say
that an equation is solvable in quadratures if a solution to
this equation can be written in terms of integrals of ele-
mentary functions (as above). Since we know that every
continuous function has an antiderivative (though often we
cannot find this antiderivative explicitly), it is almost as
good as finding the explicit solution to the equation.

Having dealt with Questions 1 and 2 above, that is, with
existence of solutions and solvability of differential equa-
tions, we shall move to the problem of uniqueness. We
have observed in Example 4.1 that the differential equation
by itself defines a family of solutions rather than a single
function. In this particular case this class depend on an
arbitrary parameter. Another simple example of a second
order differential equation y′′ = t, solution of which can be
obtained by a direct integration as y = 1

6 t3 + C1t + C2,
shows that in equations of the second order we expect the
class of solutions to depend on 2 arbitrary parameters. It
can be then expected that the class of solutions for an nth
order equation will contain n arbitrary parameters. Such
a full class is called the general solution of the differential
equation. By imposing the appropriate number of side con-
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ditions we can specify the constants obtaining thus a special
solution - ideally one member of the class.

A side condition may take all sorts of forms, like ”at
t = 15, y must have the value of 0.4” or ”the area under
the curve between t = 0 and t = 24 must be 100”. Very
often, however, it specifies the initial value of y(0) of the
solution and the derivatives yk(0) for k = 1, . . . , n − 1. In
this case the side conditions are called the initial conditions.

After these preliminaries we shall narrow our considera-
tion to a particular class of problems for ODEs.

4.2 Cauchy problem for first order equations

In this section we shall be concerned with first order or-
dinary differential equations which are solved with respect
to the derivative of the unknown function, that is, with
equations which can be written as

dy

dt
= f(t, y), (4.2)

where f is a given function of two variables.
In accordance with the discussion of the previous session,

we shall be looking for solutions to the following Cauchy
problem

y′ = f(t, y),

y(t0) = y0 (4.3)

where we abbreviated dy
dt = y′, and t0 and y0 are some given

numbers.
Several comments are in place here. Firstly, even though

in such a simplified form, the question of solvability of the
problem (4.3) is almost as difficult as that of (4.1). Before
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we embark on studying this problem, we again emphasize
that to solve (4.3) is to find a function y(t) that is contin-
uously differentiable at least in some interval (t1, t2) con-
taining t0, that satisfies

y′(t) ≡ f(t, y(t)) for all t ∈ (t1, t2)

y(t0) = y0.

Let consider the following example.

Example 4.3 Check that the function y(t) = sin t is a
solution to the problem

y′ =
√

1− y2, t ∈ (0, π/2),

y(π/2) = 1

Solution. LHS: y′(t) = cos t, RHS:
√

1− y2 =
√

1− sin2 t =
| cos t| = cos t as t ∈ (0, π/2). Thus the equation is satisfied.
Also sin π/2 = 1 so the ”initial” condition is satisfied.

Note that the function y(t) = sin t is not a solution to
this equation on a larger interval (0, a) with a > π/2 as
for π/2 < t > 3π/2 we have LHS: y′(t) = cos t but RHS:√

1− y2 = | cos t| = − cos t, since cos t < 0.

How do we know that a given equation has a solution?
For an equation in the (4.2) form the answer can be given in
relatively straightforward terms, though it is still not easy
to prove.

Theorem 4.1 [Peano] If the function f in (4.3) is con-
tinuous in some neighbourhood of the point (t0, y0), then
the problem (4.3) has at least one solution in some interval
(t1, t2) containing t0.
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Thus, we can safely talk about solutions to a large class of
ODEs of the form (4.2) even without knowing their explicit
formulae.

As far as uniqueness is concerned, we know that the equa-
tion itself determines a class of solutions; for first order
ODE this class is a family of functions depending on one
arbitrary parameter. Thus, in principle, imposing one ad-
ditional condition, as e.g. in (4.3), we should be able to
determine this constant so that the Cauchy problem (4.3)
should have only one solution. Unfortunately, in general
this is no so as demonstrated in the following example.

Example 4.4 The Cauchy problem

y′ =
√

y, t > 0

y(0) = 0,

has at least two solutions: y ≡ 0 and y = 1
4 t2.

Fortunately, there is a large class of functions f for which
(4.3) has exactly one solution. This result is known as the
Picard Theorem which we state below.

Theorem 4.2 [Picard] Let the function f in (4.3) be con-
tinuous in the rectangle R : |t − t0| ≤ a, |y − y0| ≤ b for
some a, b > 0 and satisfy there the Lipschitz condition with
respect to y :

∃0≤L<+∞∀(t,y1),(t,y2)∈R|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|
(4.4)

Compute

M = max
(t,y)∈R

|f(t, y)|
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and define α = min{a, b/M}. Then the initial value prob-
lem (4.3) has exactly one solution at least on the interval
t0 − α ≤ t ≤ t0 + α.

Remark 4.1 If f is such that fy is bounded in R, then
(4.4) is satisfied.

Picard’s theorem gives local uniqueness; that is, for any
point (t0, y0) around which the assumptions are satisfied,
there is an interval over which there is only one solution of
the given Cauchy problem. However, taking a more global
view, it is possible that we have two solutions y1(t) and y2(t)
which coincide over the interval of uniqueness mentioned
above but branching for larger times. If we assume that any
point of the plane is the uniqueness point, such a scenario
is impossible. In fact, if y1(t) = y2(t) over some interval
I, then by continuity of solutions, there is the largest t,
say t1, having this property. Thus, y1(t1) = y2(t1) with
y1(t) 6= y2(t) for some t > t1. Thus, the point (t1, y1(t1))
would be the point violating Picard’s theorem, contrary to
the assumption.

An important consequence of the above is that we can
glue solutions together to obtain solution defined on a pos-
sibly larger interval. If y(t) is a solution to (4.3) defined
on an interval [t0 − α, t0 + α] and (t0 + α, y(t0 + α)) is a
point around which the assumption of Picard’s theorem is
satisfied, then there is a solutio passing through this point
defined on some interval [t0 + α − α′, t0 + α + α′], α′ > 0.
These two solutions coincide on [t0+α−α′, t0+α] and there-
fore, by the first part, they must coincide over the whole
interval of their common existence and therefore constitute
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a solution of the original Cauchy problem defined at least
on [t0 − α, t0 + α + α′].

In many applications it is important to determine whether
the solution exists for all times. To provide a relevant re-
sult first we introduce the maximal interval of existence of
a solution of the differential equation: [t0, t0 +α∗) is said to
be the (forward) maximal interval of existence for a solu-
tion y(t) to (4.3) if there is no solution y1(t) on an interval
[t0, t0 + α+), where α+ > α∗, satisfying y(t) = y1(t) for
t ∈ [t0, t0 + α∗). We can also consider backward intervals
trying to extend the solution for t < t0. We note that the
forward (backward) interval of existence is open from the
right (left).

Theorem 4.3 If we assume that f in (4.3) satisfies the
assumptions of Picard’s theorem on any rectangle R ⊂ R2,
then [t0, t0 + α∗) is a finite forward maximal interval of
existence of y(t) if and only if

lim
t→t0+α∗

|y(t)| = ∞. (4.5)

Proof. See e.g. [?].
The above theorems are of utmost importance, both the-

oretical and practical. We illustrate some applications be-
low.

Example 4.5 We consider one of the simplest differential
equations, introduced in (2.2) and (2.13)

dy

dt
= ay. (4.6)

This is a separable equation discussed in more details in
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(A2.2.1) and thus can be solved easily. Assuming that y(t) 6=
0 for any t, we have

1
y(t)

dy

dt
=

d

dt
ln |y(t)|,

so that
d

dt
ln |y(t)| = a,

and, by direct integration,

ln |y(t)| = at + c1

where c1 is an arbitrary constant of integration. Taking
exponentials of both sides yields

|y(t)| = exp (at + c1) = c2 exp (at)

where c2 is an arbitrary positive constant: c2 = exp c1 > 0.
We have to get rid of the absolute value bars at y(t). To do
this observe that in the derivation we required that y(t) 6= 0
for any t, thus y, being a continuous function, must be of a
constant sign. Hence,

y(t) = ±c2 exp (at) = c3 exp (at) (4.7)

where this time c3 can be either positive or negative.
Are these all the possible solutions to (4.6)? Solution

(4.7) was derived under provision that y 6= 0. We clearly
see that y ≡ 0 is a solution to (4.6) but, fortunately, this
solution can be incorporated into (4.7) by allowing c3 to be
zero.

However, we still have not ruled out the possibility that
the solution can cross the x-axis at one or more points. To
prove that this is impossible, we must resort to the Picard
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theorem. First of all we note that the function f(t, y) is
here given by

f(t, y) = ay

and |f(t, y1) − f(t, y2)| = a|y1 − y2| so that, if f satisfies
assumptions of the Picard theorem on any closed rectangle
R ⊂ R2 with Lipschitz constant L = a. If there were a
solution satisfying y(t0) = 0 for some t0, then from the
uniqueness part of Picard’s theorem, this solution should be
identically zero, as y(t) ≡ 0 is a solution to this problem.
In other words, if a solution to (4.6) is zero at some point,
then it is identically zero.

Example 4.6 Another example of a nonuniqueness than
in Example 4.4 is offered by

y′ = (sin 2t)y1/3, t ≥ 0

y(0) = 0, (4.8)

Direct substitution shows that we have at least 3 different
solutions to this problem: y1 ≡ 0, y2 =

√
8/27 sin3 t and

y3 = −
√

8/27 sin3 t. These are shown in the figure 4.6.

To illustrate applications of Theorem 4.3 let us consider the
following two examples.

Example 4.7 The solution of the initial value problem

y′ = 1 + y2,

y(0) = 0,

is given by y(t) = tan t. This solution is defined only for
−π/2 < t < π/2. Let us check this equation against the
Picard Theorem. We have f(t, y) = 1+y2 and fy(t, y) = 2y
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Fig 2.1 Multiple solutions of the problem (4.8).

and both functions are continuous on the whole plane. Let
R be the rectangle |t| ≤ a, |y| ≤ b, then

M = max
(t,y)∈R

|f(t, y)| = 1 + b2,

and the solution exists for

|t| ≤ α = min{a,
b

1 + b2
}.

Since a can be arbitrary, the maximal interval of existence
predicted by the Picard Theorem is the maximum of b/(1 +
b2) which is equal to 1/2.

This shows that it may happen that the Picard theorem
does not give the best possible answer - that is why it is
sometimes called ”the local existence theorem”. On the
other hand, the right hand side of the equation satisfies the
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assumptions of the Picard theorem everywhere and thus the
solution ends its existence at finite t = +π/2 with ”a bang”
in accordance with Theorem 4.3.

Example 4.8 Find the solution to the following initial
value problem

y′ = −y−1(1 + y2) sin t, y(0) = 1.

In a standard way we obtain
y∫

1

rdr

1 + r2
= −

t∫

0

sin sds,

which gives

1
2

ln(1 + y2)− 1
2

ln 2 = cos t− 1.

Solving this equation for y(t) gives

y(t) = ±(2e−4 sin2 t/2 − 1)1/2.

To determine which sign we should take we note that y(0) =
1 > 0, thus the solution is given by

y(t) = (2e−4 sin2 t/2 − 1)1/2.

Clearly, this solution is only defined when

2e−4 sin2 t/2 − 1 ≥ 0,

that is

e4 sin2 t/2 ≤ 2.

Since the natural logarithm is increasing we may take log-
arithms of both sides preserving the direction of inequality.
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Fig 2.2 The graph of the solution in Example 4.8.

We get this way

4 sin2 t/2 ≤ ln 2

and consequently
∣∣∣∣
t

2

∣∣∣∣ ≤ sin−1

√
ln 2
2

.

Therefore, the solution y(t) exists only on the open inter-
val (−2 sin−1

√
ln 2
2 , 2 sin−1

√
ln 2
2 ). However, contrary to the

previous example, the solution does not blow up at the end-
points, but simply vanishes. We note that this does not
violate Theorem 4.3 as at the point the solution vanishes
(y(t) → 0 as 2 sin−1

√
ln 2
2 ) the right hand side is not Lips-

chitz continuous.

It is equally important to have easy to use criteria ensuring
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that solutions of (4.3) are defined for all t ∈ R. Theorem
4.3 combined with the Gronwall lemma (see Lemma 2.1)
allows to give quite a general result of this type.

Example 4.9 We say that f appearing in (4.3) is glob-
ally Lipschitz if the constant L in (4.4) can be chosen for
all (t, y1), (t, y2) ∈ R2. Hence, assume that f satisfies as-
sumptions of the Picard theorem in any rectangle R ⊂ R2

and is globally Lipschitz. Let [t0, tmax) is the forward max-
imal interval of existence for a solution to (4.3). Then for
t ≤ tmax,

|y(t)| ≤ |y0|+
t∫

t0

|f(s, y(s)|ds

≤ |y0|+
t∫

t0

|f(s, y(s))− f(s, y0)|ds +

t∫

t0

|f(s, y0)|ds

≤ |y0|+
t∫

t0

|f(s, y0)|ds + L

t∫

t0

|y(s)− y0)|ds

≤ |y0|+
t∫

t0

|f(s, y0)|ds + L

t∫

t0

|y0|ds + L

t∫

t0

|y(s)|ds

≤ |y0|+
t∫

t0

|f(s, y0)|ds + L(t− t0)|y0|+ L

t∫

t0

|y(s)|ds

If y(t) were not defined for all t, then by Proposition 4.3,
|y(t)| would become unbounded as t → tmax for some tmax.
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Denoting

c = |y0|+
tmax∫

t0

|f(s, y0)|ds + L(tmax − t0)|y0|

which is finite as f is continuous for all t, we can write the
above inequality as

|y(t)| ≤ c + L

t∫

t0

|y(s)|ds

for any t0 ≤ t ≤ tmax. Using now Gronwall’s lemma, we
obtain

|y(t)| ≤ c expL(t− tmax) ≤ c expL(tmax − t0)

contradicting thus the definition of tmax.

4.3 Miscellaneous applications

4.3.1 Exponential growth

One of the best known applications of the exponential growth/decay
equation is the so-called radiocarbon dating used for dating
of samples which contain once living matter, like fossils etc.
The so-called radiocarbon dating is based on the observa-
tion that the element carbon appears in nature as a mixture
of stable Carbon-12 (C12) and radioactive Carbon-14 (C14)
and the ratio between them remains constant throughout
history. Thus, while an animal or a plant is living, the
ratio C12/C14 in its tissue is a known constant. When it
dies, however, there is no new carbon absorbed by tissues
and, since the radioactive C14 decays, the ratio C14/C12

decreases as the amount of C14 decreases.
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To be able to use the equation (2.9):

N ′ = −kN,

and its solution N(t) = N(t0)e−k(t−t0 , where t0 is the ini-
tial time of measurement, we must find a way to determine
the value of k for C14. What can be directly measured
is the amount of particles which remain in a sample after
some time (through the mass of the sample). The parame-
ter which is most often used when dealing with radioactive
materials is the so-called half-life defined as the time T after
which only half of the original amount of particles remains.
This is a constant depending only on the material and not
on the original amount of particles or the moment in time
we start to observe the sample. Indeed, by definition, the
relation between k and T is found from the equation

N(T + t0) = 0.5N(t0) = N(t0)e−kT

that is kT = ln 2 so that the solution is given by

N(t) = N(t0)e−(t−t0) ln 2/T . (4.9)

It is clear that after time T the amount of radioactive parti-
cles in a sample halves, irrespectively of the initial amount
of particles and initial time t0; so that indeed the amount
of particles halves after every period of length T .

To demonstrate how this formula is applied in concrete
case, let us estimate the age of a of charcoal found in 2003
in a prehistoric cave in which the ratio C12/C14 was deter-
mined to be 14.5% of its original value. The half-life of C14

is 5730 years.
The crucial step here is to translate the absolute numbers

of C14 appearing in (4.9) into ratio C14/C12 which is the
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only information available from the experiment. Imagine a
reference sample containing certain amount N14(t0) of C14

and N12(t0) of C12 at some time t0. Then, at time t we
will have N14(t) of C14 but for C12 the amount does not
change: N12(t) = N12(t0). Thus, dividing

N14(2003) = N(t0)e−(2003−t0) ln 2/5730

by constant N12 we will get the equation governing the
evolution of the ratio C14/C12

0.145
N14(t0)
N12(t0)

=
N14(2003)
N12(2003)

=
N14(2003)
N12(t0)

=
N14(t0)
N12(t0)

e−(2003−t0 ln 2/5730

Thus

0.145 = e−(2003−t0) ln 2/5730

or

t0 = 2003 +
5730 ln 0.145

ln 2
.

Numerically, we obtain t0 = −13960; that is, 13 960 BC.

4.3.2 Continuous loan repayment

Let us begin with the equation for the continuous loan re-
payment

dD

dt
− p̄D = −ρ (4.10)

with the initial condition D(0) = D0 which represents the
original amount borrowed from a bank. Following the ap-
proach of Subsection A2.2.2, we can write the equation as

d

dt
(De−p̄t) = −ρe−p̄t
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which, upon integration from 0 to t and using the initial
condition, gives

D(t)e−p̄t −D0 =
ρ

p̄
(e−p̄t − 1)

hence

D(t) = D0e
p̄t +

ρ

p̄
(1− ep̄t).

As in Section 3.3, we are interested is determining the in-
stalments for a given loan D0, annual interest rate p and the
repayment period T . As before, we must have D(T ) = 0;
that is

ρ =
p̄D0e

p̄T

ep̄T − 1
. (4.11)

Let us test this formula against the numerical data used
in Section 3.3. We have D0 = R200000, p̄ = 0.013 and
T = 20 (remember we use years as a unit of time and not
the conversion period as in the discrete case). We get

ρ =
0.13× 200000 exp(0.13× 20)

exp(0.13× 20)− 1
= 28086.1.

We must remember that this is the annual rate of payment,
thus the amount paid per month is R = 2340.5. As in
the case of continuously compounded interest, it it slightly
better rate than if instalments were paid on the monthly
basis but clearly the much simpler formula (4.11) can be
used as a good approximation of the exact one.

This numerical observation can be confirmed mathemat-
ically by noting that (4.11) is the limit of (3.4) as α → 0.
Indeed, taking into account that the annual payment ρα =
R/α and n = T/α where T is time in years and 1/α is the
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number of payments in a year, we get

lim
α→0

ρα = lim
α→0

p̄D0

(1− (1 + αp̄)1/αp̄)−T p̄
=

p̄D0e
p̄T

1− e−p̄T
,

which, after simple algebra, becomes exactly (4.11). More-
over, the limit is monotonic, so that indeed ρα < ρ for any
α > 0.

4.3.3 The Neo-classical model of Economic

Growth

Let us return to the Bernoulli equation (2.8) describing the
evolution of the ratio of the capital to the labour k = K/L

k′ = skα − λk (4.12)

where α and λ are parameters of the models. Following the
procedure outlined in Subsection A2.2.3 we define x = k1−α

which gives and substituting gives

x′ = −(1a)λx + (1− a)s.

which is a linear equation of the form (2.7). The solution
is

x(t) =
(
x0 − s

λ

)
e−(1−α)λt +

s

λ

or, in the original variable k,

k1−α =
(
k1−α
0 − s

λ

)
e−(1−α)λt +

s

λ
.

Since λ > 0 and 0 < α < 1, we see that

lim
t→0

k(t) =
( s

λ

) 1
1−α

so that the model is asymptotically stable.



4.3 Miscellaneous applications 105

4.3.4 Logistic equation

Let us consider the Cauchy problem for the logistic equa-
tion:

dN

dt
= R0N

(
1− N

K

)
,

N(t0) = N0, (4.13)

where R0 denotes the unrestricted growth rate and K the
carrying capacity of the environment. Since the right-hand
side of the equation does not contain t, we immediately rec-
ognize it as a separable equation. Hence, separating vari-
ables and integrating we obtain

K

R0

N∫

N0

ds

(K − s)s
= t− t0.

To integrate the left-hand side we use partial fractions

1
(K − s)s

=
1
K

(
1
s

+
1

K − s

)

which gives

K

R0

N∫

N0

ds

(K − s)s
=

1
R0

t∫

t0

(
1
s

+
1

K − s

)
ds

=
1

R0
ln

N

N0

∣∣∣∣
K −N0

K −N

∣∣∣∣ .

Since N = K and N = 0 are solution of the logistic equa-
tion, the Picard theorem ensures that N(t) cannot reach K

in any finite time, so if N0 < K, then N(t) < K for any
t, and if N0 > K, then N(t) > K for all t > 0. Therefore
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(K −N0)/(K −N(t)) is always positive and

R0(t− t0) = ln
N

N0

K −N0

K −N
.

Exponentiating, we get

eR0(t−t0) =
N(t)
N0

K −N0

K −N(t)

or

N0(K −N(t))eR0(t−t0) = N(t)(K −N0).

Bringing all the terms involving N to the left-hand side and
multiplying by −1 we get

N(t)
(
N0e

R0(t−t0) + K −N0

)
= N0KeR0(t−t0),

thus finally

N(t) =
N0K

N0 + (K −N0)e−R0(t−t0)
. (4.14)

Let us examine (4.14) to see what kind of population be-
haviour it predicts. First observe that we have

lim
t→∞

N(t) = K,

hence our model correctly reflects the initial assumption
that K is the maximal capacity of the habitat. Next, we
obtain

dN

dt
=

R0N0K(K −N0)e−R0(t−t0)

(N0 + (K −N0)e−R0(t−t0))2

thus, if N0 < K, the population monotonically increases,
whereas if we start with the population which is larger then
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the capacity of the habitat, then such a population will
decrease until it reaches K. Also
d2N

dt2
= R0

d

dt
(N(K−N)) = N ′(K−2N) = N(K−N)(K−2N)

from which it follows that, if we start from N0 < K, then
the population curve is convex down for N < K/2 and
convex up for N > K/2. Thus, as long as the population
is small (less then half of the capacity), then the rate of
growth increases, whereas for larger population the rate of
growth decreases. This results in the famous logistic or S-
shaped curve which is presented below for particular values
of parameters R0 = 0.02,K = 10 and t0 = 0 resulting in
the following function:

N(t) =
10N0

N0 + (10−N0)e−0.2t
.

To show how this curve compare with the real data and
with the exponential growth we take the experimental coef-
ficients K = 10.76 billion and R0 = 0.029. Then the logistic
equation for the growth of the Earth population will read

N(t) =
N0(10.76× 109)

N0 + ((10.76× 109)−N0)e−0.029(t−t0)
.

We use this function with the value N0 = 3.34 × 109 at
t0 = 1965. The comparison is shown on Fig. 4.2.

4.3.5 The waste disposal problem

Let us recall that the motion of a drum of waste dumped
into the sea is governed by the equation (2.19)

d2y

dt2
=

1
m

(
W −B − c

dy

dt

)
. (4.15)
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Fig. 4.1. Logistic curves with N0 < K (dashed line) and N0 > K
(solid line) for K = 10 and R0 = 0.02

The drums are dropped into the 100m deep sea. Experi-
ments show that the drum could brake if its velocity exceeds
12m/s at the moment of impact. Thus, our aim is to de-
termine the velocity of the drum at the sea bed level. To
obtain numerical results, the mass of the drum is taken to
be 239 kg, while its volume is 0.208 m3. The density of
the sea water is 1021 kg/m3 and the drag coefficient is ex-
perimentally found to be c = 1.18kg/s. Thus, the mass of
water displaced by the drum is 212.4 kg.

Equation (4.15) can be re-written as the first order equa-
tion for the velocity V = dy/dt.

V ′ +
c

m
V = g − B

m
. (4.16)

Since the drum is simply dumped into the sea, its initial
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Fig. 4.2. Human population on Earth. Comparison of observa-
tional data (points), exponential growth (solid line) and logistic
growth (dashed line)

velocity V (0) = 0. Since (4.16) is a linear equation, we find
the integration factor µ(t) = etc/m and the general solution
of the full equation is obtained as

V (t) = e−tc/m

(
g − B

m

) ∫
etc/mdt =

mg −B

c
(1+Ce−tc/m)

for some constant C. Using the initial condition V (0) = 0,
we find C = −1 so that

V (t) =
mg −B

c
(1− e−tc/m). (4.17)

Integrating once again, we find

y(t) =
mg −B

c

(
t +

m

c
e−tc/m

)
+ C1.
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To determine C1 we recall that the coordinate system was
set up in such a way that y = 0 was at the sea surface so
we can take the initial condition to be y(0) = 0. Thus we
obtain the equation

0 = y(0) =
mg −B

c

m

c
+ C1,

so that

y(t) =
mg −B

c

(
t +

m

c
e−tc/m

)
− m(mg −B)

c2
. (4.18)

Equation (4.17) expresses the velocity of the drum as a
function of time t. To determine the impact velocity, we
must compute the velocity at time t at which the drum hits
the ocean floor, that is we have to solve for t the equation
(4.18) with y(t) = 100m. Explicit solution of this equation
is obviously impossible so let us try some other method.

As a first attempt, we notice from (4.17) that V (t) is an
increasing function of time and that it tends to a finite limit
as t →∞. This limit is called the terminal velocity and is
given by

VT =
mg −B

c
. (4.19)

Thus, for any time t the velocity is smaller that VT and if
VT < 12m/s, we can be sure that the velocity of the drum
when it hits the sea floor is also smaller that 12 m/s and
it will not crack upon the impact. Substituting the data to
(4.19) we obtain

VT =
(239− 212.4)9.81

1.18
≈ 221m/s,

which is clearly way too large.
However, the approximation that gave the above figure is
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far too crude - this is the velocity the drum would eventually
reach if it was allowed to descend indefinitely. As this is
clearly not the case, we have to find the way to express
the velocity as a function of the position y (see Subsection
A2.2.5). This velocity, denoted by v(y), is very different
from V (t) but they are related through

V (t) = v(y(t)).

By the chain rule of differentiation

dV

dt
=

dv

dy

dy

dt
= V

dv

dy
= v

dv

dy
.

Substituting this into (4.16) we obtain

mv
dv

dy
= (mg −B − cv) . (4.20)

We have to supplement this equation with an appropriate
initial condition. For this we have

v(0) = v(y(0)) = V (0) = 0.

This is a separable equation which we can solve explicitly.
Firstly, we note that since v < VT = (mg − B)/c, mg −
B − cv > 0 all the time. Thus, we can divide both sides of
(4.20) by mg −B − cv and integrate, getting

v∫

0

rdr

mg −B − cr
=

1
m

y∫

0

ds =
y

m
.

To find the left-hand side integral, we note that the degree
of the numerator is the same as the degree of the denomi-
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nator so that we have to decompose

r

mg −B − cr
= −1

c

−cr

mg −B − cr

= −1
c

−mg + B + mg −Bcr

mg −B − cr
= −1

c

( −mg + B

mg −B − cr
+ 1

)
.

Thus
v∫

0

rdr

mg −B − cr
= −1

c

v∫

0

dr +
mg −B

c

v∫

0

dr

mg −B − cr

= −v

c
− mg −B

c2
ln

mg −B − cv

mg −B
,

and we obtain the solution
y

m
= −v

c
− mg −B

c2
ln

mg −B − cv

mg −B
. (4.21)

It seems that the situation here is as hopeless as before as we
have y = y(v) and we cannot find v(y) explicitly. However,
at least we have a direct relation between the quantities of
interest, and not through intermediate parameter t that is
irrelevant for the problem, as before. Thus, we can easily
graph y as a function of v and estimate v(100) from the
graph shown at the Fig. 4.3. We can also answer the ques-
tion whether the velocity at y = 100m is higher that the
critical velocity v = 12m/s. To do this, we note that from
(4.20) and the fact that v < VT we can infer that v is an
increasing function of y. Let us find what y corresponds to
v = 12m/s. Using the numerical data, we obtain

y(12) ≈ 68.4m,

that is, the drum will reach the velocity of 12m/s already at
the depth of 68.4m. Since v is a strictly increasing function
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Fig. 4.3. The depth as a function of velocity of the drum

of y, the velocity at 100m will be much higher and therefore
the drum could crack on impact.

4.3.6 The satellite dish

In Subsection 2.5.1 we obtained the equation (2.20) for a
reflecting surface:

dy

dx
=

y√
x2 + y2 + x

. (4.22)
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Now we shall solve this equation. We observe that the
right-hand side can be written as

y
x√

1 + ( y
x )2 + 1

,

for x > 0. This suggest the substitution used for homoge-
neous equations z = y/x¿0. Since y′ = z′x + z, we obtain

z′x
√

1 + z2 + z′x + z
√

1 + z2 + z = z,

which, after a simplification, can be written as

z′
(

1
z

+
1

z
√

z2 + 1

)
= − 1

x
.

Integrating and using z, x > 0 we obtain

ln z +
∫

dz

z
√

1 + z2
= − ln x + C ′. (4.23)

There are several ways to integrate the second term. We
use the hyperbolic substitution but first we simplify it:

∫
dz

z
√

1 + z2
=

∫
dz

z2
√

1 + z−2
= −

∫
du√

1 + u2

where u = z−1. Then, taking u = sinh ξ gives du = cosh ξdξ

and
√

1 + z2 =
√

1 + sinh2 ξ =
√

cosh2 ξ = cosh ξ, as
cosh ξ is always positive. Thus we obtain

∫
du√

1 + u2
=

∫
dξ = ξ,

where we skipped the constant of integration as it already
appears in (4.23). Then

u =
eξ − e−ξ

2
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and, denoting t = eξ we transform the above into a quadratic
equation:

t2 − 2tu− 1 = 0

with solutions

t1,2 = u±
√

u2 + 1

Since eξ > 0, we must take the positive solution which gives

eξ = u +
√

u2 + 1 =
1 +

√
z2 + 1
z

and

ξ = − ln z + ln(1 +
√

z2 + 1);

that is,
∫

dz

z
√

1 + z2
= ln z − ln(1 +

√
z2 + 1)

up to an additive constant. Returning to (4.23) we obtain

ln
z2

1 +
√

z2 + 1
= − ln x/C

for some constant C > 0. Thus

z2

1 +
√

z2 + 1
=

C

x
,

and, returning to the original unknown function z = y/x,

y2

x +
√

y2 + x2
= C,

which, after some algebra, gives

y2 − 2Cx = C2. (4.24)
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Fig. 4.4. Different shapes of parabolic curves corresponding to
various values of the constant C. In each case the focus is at the
origin.

This is an equation of the parabola with the vertex at x =
−C/2 and with focus at the origin.

We note that this equation was obtained under the as-
sumption that x > 0 so, in fact, we do not have the full
parabola at this moment. The assumption x > 0 was, how-
ever, purely technical, and all calculations above, with only
minor changes, can be repeated for x < 0. Another way of
showing that (4.24) is valid for −C/2 < x < 0 (and also for
y < 0) is by direct substitution. In fact, y = ±√2Cx + C2

so that

LHS =
dy

dx
= ± C√

2Cx + C2
,
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and

RHS =
y√

y2 + x2 + x
=

±√2Cx + C2

√
x2 + 2Cx + C2 + x

=
±√2Cx + C2

√
(x + C)2 + x

= ± C√
2Cx + C2

,

where we used the fact that x ≥ −C/2 so that x + C > 0.
Thus LHS = RHS for any x ≥ −C/2 and (4.24) gives the
solution to the equation in the whole range of independent
variables.

4.3.7 Pursuit equation

In this paragraph we shall provide the solution to the pur-
suit equation

xy′′ = − v

u

√
1 + (y′)2. (4.25)

Firstly, we observe that this a second order equation that
does not contain the unknown function but only its higher
derivatives. Thus, following the approach of Subsection
A2.2.5 we introduce the new unknown z = y′ reducing
(4.25) to a first order equation:

xz′ = −k
√

1 + z2

where we denoted k = v/u. This is a separable equation
with non-vanishing right-hand side, so that we do not have
stationary solutions. Separating variables and integrating,
we obtain ∫

dz√
1 + z2

= −k ln(−C ′x)
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for some constant C ′ > 0, where we used the fact that in the
model x < 0. Integration (for example as in the previous
paragraph) gives

ln(z +
√

z2 + 1) = ln C(−x)−k,

with C = (C ′)−k, hence

z +
√

z2 + 1 = C(−x)−k,

from where, after some algebra,

z =
1
2

(
C(−x)−k − 1

C
(−x)k

)
. (4.26)

Returning to the original unknown function y, where y′ = z,
and integrating the above equation, we find

y(x) =
1
2

(
1

C(k + 1)
(−x)k+1 − C

(1− k)
(−x)−k+1

)
+ C1.

Let us express the constants C1 and C through initial condi-
tions. We assume that the pursuer started from the position
(x0, 0), x0 < 0 and that at the initial moment the target
was at the origin (0, 0). Using the principle of the pursuit,
we see that the initial direction was along the x-axis, that
is, we obtain the initial conditions in the form

y(x0) = 0, y′(x0) = 0.

Since y′ = z, substituting z = 0 and x = x0 in (4.26), we
obtain

0 = y′(x0) = z(x0) = C(−x0)−k − 1
C

(−x0)k

which gives

C = (−x0)k,
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so that

y(x) = −x0

2

(
1

k + 1

(
x

x0

)k+1

− 1
1− k

(
x

x0

)−k+1
)

+ C1.

To determine C1 we substitute x = x0 and y(x0) = 0 above
getting

0 = −x0

2

(
1

k + 1
+

1
k − 1

)
+ C1

thus

C1 =
kx0

k2 − 1
.

Finally,

y(x) = −x0

2

(
1

k + 1

(
x

x0

)k+1

− 1
1− k

(
x

x0

)−k+1
)

+
kx0

k2 − 1
.

This formula can be used to obtain two important pieces
of information: the time and the point of interception. The
interception occurs when x = 0. Thus

y(0) =
kx0

k2 − 1
=

vux0

v2 − u2
.

Since x0 < 0 and the point of interception must by on the
upper semi-axis, we see that for the interception to occur,
the speed of the target v must be smaller that the speed of
the pursuer u. This is of course clear from the model, as
the pursuer moves along a curve and has a longer distance
to cover.

The duration of the pursuit can be calculated by noting
that the target moves with a constant speed v along the y

axis from the origin to the interception point (0, y(0)) so
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Fig. 4.5. Pursuit curve for different values of k. k = 0.5 (solid
line), k = 0.9 (dashed line), k = 0.99 (dot-dashed line).

that

T =
y(0)
v

=
ux0

v2 − u2
.

4.3.8 Escape velocity

The equation of motion of an object of mass m projected
upward from the surface of a planet was derived at the end
of Subsection 2.4. The related Cauchy problem reads

m
d2y

dt2
= − mgR2

(y + R)2
− c(y)

(
dy

dt

)2

y(0) = R, y′(0) = v0,
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where the initial conditions tell us that the missile was shot
from the surface with the initial velocity v0 and we allow the
air resistance coefficient to change with height. Rather than
solve the full Cauchy problem, we shall address the question
of the existence of the escape velocity; that is, whether there
exists an initial velocity which would allow the object to
escape from planet’s gravitational field.

The equation is of the form (2.20); that is, it does not
contain explicitly the independent variable. To simplify
calculations, first we shall change the unknown function
according to z = y + R (so that z is the distance from the
centre of the planet) and next introduce F (z) = z′ so that
z′′ = FzF , see (2.21). Then the equation of motion will
take the form

FzF + C(z)F 2 = −gR2

z2
, (4.27)

where C(z) = c(z −R)/m. Noting that

FzF =
1
2

d

dz
F 2

and denoting F 2 = G we reduce (4.27) to the linear differ-
ential equation

Gz + 2C(z)G = −2gR2

z2
. (4.28)

We shall consider three forms for C.
Case 1. C(z) ≡ 0 (airless moon).

In this case (4.28) becomes

Gz = −2gR2

z2
.
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which can be immediately integrated from R to z giving

G(z)−G(R) = 2gR2

(
1
z
− 1

R

)
.

Returning to the old variables G(z) = F 2(z) = v2(z), where
v is the velocity of the missile at the distance z from the
centre of the moon, we can write

v2(z)− v2(R) = 2gR2

(
1
z
− 1

R

)
.

The missile will escape from the moon if its speed remains
positive for all times – if it stops at any finite z, then the
gravity pull will bring it back to the moon. Since v(z) is
decreasing, its minimum value will be the limit at infinity
so that, passing with z →∞, we must have

v2(R) ≥ 2gR

and the escape velocity is

v(R) =
√

2gR.

Case 2. Constant air resistance.

If we are back on Earth, it is not reasonable to assume that
there is no air resistance during motion. Let us investigate
the next simple case with c = constant. Then we have

Gz + 2CG = −2gR2

z2
, (4.29)

where C = c/m. The integrating factor equals e2cz so that
we obtain

d

dz

(
e2czG(z)

)
= −2gR2 e2Cz

z2
,
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and, upon integration,

e2Czv2(z)− e2CRv2
0 = −2gR2

z∫

R

e2Css−2ds,

or

v2(z) = e−2Cz


e2CRv2

0 − 2gR2

z∫

R

e2Css−2ds


 . (4.30)

Consider the integral

I(z) =

z∫

R

e2Css−2ds.

Since lim
s→∞

e2Css−2 = ∞, we have also

lim
s→∞

z∫

R

e2Css−2 = ∞.

Since
R∫
R

e2Css−2ds = 0 and because e2CRv2(R) is indepen-

dent of z, from the Darboux theorem we see that, no matter
what the value of v0 is, for some z0 ∈ [R,∞) the right-hand
side of (4.30) becomes 0 and thus v2(z0) = 0. Thus, there
is no initial velocity v0 for which the missile will escape the
planet.

Case 3. Variable air resistance.

By passing from no air resistance at all (c = 0) to a constant
air resistance we definitely overshot since the air becomes
thinner with height and thus its resistance decreases. Let
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us consider one more case with C(z) = k/z where k is a
proportionality constant. Then we obtain

Gz +
2k

z
G = −2gR2

z2
. (4.31)

The integrating factor equals z2k so that we obtain

d

dz

(
z2kG(z)

)
= −2gR2z2k−2,

and, upon integration,

z2kv2(z)−R2kv2
0 = −2gR2

z∫

R

s2k−2ds.

Using the same argument, we see that the escape velocity
will exist if and only if

lim
z→∞

z∫

R

s2k−2ds < +∞

and from the properties of improper integral we infer that
we must have 2k − 2 < −1 or

k <
1
2
.

Of course, from physics k ≥ 0. Thus, the escape velocity is
given by

v0 =

√
2gR

1− 2k
.

4.4 Exercises

(i) Show that if the function f in (4.3) satisfies assump-
tions of the Picard theorem on any rectangleR ⊂ R2
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additionally satisfies |f(t, y)| ≤ K on R2 then any
solution to (4.3) exists for all t ∈ R.



5

Qualitative theory for a single
equation

In most cases it is impossible to find an explicit solution to a
given differential equation. However, one can often deduce
properties of solution and answer some relevant questions
by analyzing the right-hand side of the equation. Let us
first illustrate this idea on few examples.

5.1 Direct application of difference and differential
equations

5.1.1 Sustainable harevesting

Let us consider a population of fish living in a pond, which
grows according to the logistic equation (1.24)

N(k + 1) = N(k) + R0N(k)
(

1− N(k)
K

)
.

We know that this equation only can be solved in some
particular cases. However, even without solving it we can
draw a conclusion of some importance for fisheries.

The basic idea of a sustainable economy is to find an

126
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optimal level of fishing: too much harvesting would deplete
the fish population beyond recovery and too little would
provide insufficient return from the industry. To maintain
the population at a constant level, only the increase in the
population should be harvested during any one season. In
other words, the harvest should be H(k) = N(k+1)−N(k).
Using the equation, we find

H(k) = R0N(k)
(

1− N(k)
K

)
.

Hence, to maximize the harvest at each k the population
should be kept at the size N(k) = N for which the right
hand side is the absolute maximum. We note that the right
hand side is a quadratic function:

f(N) = R0N

(
1− N

K

)

and it is easy to find that the maximum is attained at N =
K/2, that is, the population should be kept at around half
of the carrying capacity of the environment. Thus, the
maximum sustainable yield is H = R0K/4.

5.1.2 Maximal concentration of a drug in an

organ

In Section 3.2 we introduced a model describing the con-
centration of a drug in the bloodstream when the drug is
injected at discrete time intervals. If the drug is fed ex-
ternally intravenously at a constant rate a then a usual
modelling procedure leads the the following equation for
the concentration c

u′ = −γu + a, (5.1)
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where, as before, γ is the rate of the drug’s absorption.
Let the initial concentration is c(0) = c0. Though it is
easy to solve this equation, we present its qualitative anal-
ysis providing quick answers to several natural questions.
The employed techniques can be used for more complicated
problems and the answers can be tested against the known
solution.

Let us find the maximum concentration of the drug if the
original concentration satisfies c0 < a/γ. First, note that
u = a/γ is a solution to (5.1) (an equilibrium solution).
Thus, by the Picard theorem, any solution either stays be-
low or above the line u = a/γ. But if u(t) < a/γ, then
u′(t) > 0 (and u(t) > a/γ, then u′(t) < 0). Summarizing,
if c0 < a/γ, then u(t) is increasing and u(t) < a/γ for all
t ≥ 0. Thus, there is a limit limt→∞ u(t) = u∞ ≤ a/γ.
Using the Mean Value Theorem for any t and some fixed h

we can write

u(t + h)− u(t) = u′(t + θth)h = −γu(t + θth)h + ah

for some 0 ≤ θt ≤ 1. Passing to the limit as t →∞, we get
u∞ = γ/a so that the (asymptotic) maximum concentra-
tion of the drug is γ/a.

We note that the argument used above is a particular
case of reasoning employed in the proof of Theorem 6.1.

5.1.3 A nonlinear pendulum

Consider the equation

u′′ + sin u = 0 (5.2)

which is the ‘non-linearized’ version of the well-known har-
monic oscillator equation u′′+u = 0. Suppose 0 < u(0) < π
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and u′(0) < 0. We shall prove that u steadily decreases un-
til it reaches 0. First, since u′(0) < 0 and, as a solution
of a second order equation, u′(t) is continuous, we have
u′(t) < 0 on [0, T ) for some T > 0. If u(t) stops decreasing
without reaching 0, then it must attain a local minimum
at some t0 satisfying 0 < u(t0) < π and u′(t0) = 0. But
at this point − sin u(t0) > 0 so u′′(t0) > 0 and hence u has
a local maximum at t = t0. This contradiction proves the
thesis.

In the remaining part of the chapter we shall formalize
and generalize the ideas used in the previous three exam-
ples.

5.2 Equilibria of first order equations

Most equations cannot be solved in closed form. However,
as we have seen above, a number of pertinent questions
can be answered by a careful analysis of the equation it-
self, without solving it. One of the typical problems is to
determine whether the system is stable; that is, whether
if we allow it to run for sufficiently long time (which, in
the case of difference equations, means many iterations) it
eventually will settle at some state, which clearly should be
an equilibrium.

To explain, in both cases of difference and differential
equation, by an equilibrium point, or an equilibrium so-
lution, we understand a solution which does not change;
that is, which is constant with respect to the independent
variable. Since, however, in the differential equation

x′ = f(x) (5.3)
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the right hand side describes the rate of change of a given
quantity whereas in the difference equation

x(n + 1) = f(x(n)) (5.4)

the right hand side gives the amount of the quantity in
the state n + 1 in relation to the amount present in the
previous state, the theories are different and will be treated
in separate subsections.

We also note that, since finding equilibria is considerably
easier than solving the equation, knowing that the system
will converge to a particular equilibrium allows to regard
the latter as an approximate solution.

We start with presenting a stability theory for differential
equations as it is much simpler than in the case of difference
equations.

5.2.1 Equilibria for differential equations

In this section we shall focus on autonomous differential
equations (5.3). We recall that the word autonomous refers
to the fact that f does not explicitly depend on time. To fix
attention we shall assume that f is an everywhere defined
function satisfying assumptions of the Picard theorem on
the whole real line.

By x(t, t0, x0) we denote the flow of (5.3) which is the
solution of the Cauchy problem

d

dt
x(t, t0, x0) = f(x(t, t0, x0)), x(t0, t0, x0) = x0.

In most cases we take t0 = 0 and then we shall write
x(t, 0, x0) = x(t, x0). y(t, y0).

Let us specify the notion the equilibrium point or the
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stationary solution in the present context. We note that
if (5.3) has a solution that is constant in time, x(t) ≡ x0,
called a stationary solution, then such a solution satisfies
x′(t) = 0 and consequently

f(x0) = 0. (5.5)

Conversely, if the equation f(x) = 0 has a solution, which
we call an equilibrium point, then, since f is independent
of time, such a solution is a number, say x0. If we now
consider a function defined by x(t) = x0, then x′(t) ≡ 0
and consequently

0 = x′(t) = x′0 = f(x0)

and such a solution is a stationary solution. Summarizing,
equilibrium points are solutions to the algebraic equation
(5.5) and, treated as constant functions, they are (the only)
stationary solutions to (5.3).

Equilibrium points play another important rôle for dif-
ferential equations – they are the only limiting points of
bounded solutions as t → ∞. Let us first note the follow-
ing lemma.

Lemma 5.1 If x0 is not an equilibrium point of (5.3), then
y(t, x0) is never equal to equilibrium point. In other words,

f(x(t, x0)) 6= 0

for any t for which the solution exists.

Proof. An equilibrium point x∗ generates a time indepen-
dent solution given by x(t) = x∗. Thus, if x(t1, x0) = x∗

for some t1, then (t1, x0) belongs to two different solutions
which contradicts the uniqueness which is ensured by the
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assumption that at each point of the plane the assumptions
of the Picard theorem are satisfied.

From the above lemma it follows that if f has several
equilibrium points, then the stationary solutions correspond-
ing to these points divide the (t, x) plane into horizontal
strips such that any solution remains always confined to
one of them. We shall formulate and prove a theorem that
strengthens this observation.

Theorem 5.1 Let x(t, x0) be a non-stationary solution of
(5.3) with x0 ∈ R and Imax = (t−, t+) be its maximal inter-
val of existence. Then x(t, x0) is either a strictly decreasing
or a strictly increasing function of t. Moreover x(t, x0) ei-
ther diverges to +∞ or −∞ or converges to an equilibrium
point, as t → t±. In the latter case t± = ±∞.

Proof. Assume that for some t∗ ∈ Imax the solution
x(t) := x(t, x0) has a local maximum or minimum x∗ =
x(t∗). Since x(t) is differentiable, we must have x′(t∗) = 0
but then f(x∗) = 0 which makes x∗ the equilibrium point of
f . This means that a non-stationary solution x(t) reaches
an equilibrium in finite time which contradicts Lemma 5.1.
Thus, if x(t) is not a stationary solution, then it cannot
attain local maxima or minima and thus must be either
strictly increasing or strictly decreasing.

Since the solution is monotonic it either diverges to ±∞
(depending on whether it decreases or increases) or con-
verges to finite limits as t → t±. Let us focus on the right
end point t+ of Imax. If x(t) converges as t → t+ then
t+ = ∞ by Theorem 4.3. Thus

lim
t→∞

x(t, x0) = x̄.
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Without compromising generality, we assume further that
x is an increasing function. If x̄ is not an equilibrium point,
then from continuity (the Darboux property) the values of
x(t) must fill the interval [x0, x̄) and this interval cannot
contain any equilibrium point as the existence of such would
violate the Picard theorem. Thus, for any x̃ ≤ x̄, f(x̃) is
strictly positive and, integrating the equation, we obtain

t(x)− t(x0) =

x∫

x0

ds

f(s)
. (5.6)

Passing with t to infinity (since t(x̄) = ∞), we see that the
left-hand side becomes infinite and so

x̄∫

x0

ds

f(s)
= ∞.

By assumption, the interval of integration is finite so that
the only way the integral could become infinite is if 1/f(s̄) =
∞ or f(s̄) = 0 for some s ∈ [x0, x̄]. The only point which
can have this property is s = x̄, thus x̄ is an equilibrium
point.

Remark 5.1 The proof that the only finite limit point of
a solution is an equilibrium can be carried out also as in
Subsection 5.1.2. However, Eq. (5.6) is of independent
value as it gives a formula for the ‘blow-up’ time of the
solution x(t, x0). To wit, let the interval [x0,∞) be free of
equilibria and that x(t, x0) is increasing for t > 0. Then
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limt→t+ x(t, x0) = ∞ so that, by (5.6)

t+ − t(x0) =

∞∫

x0

ds

f(s)

and, in particular, we see that if 1/f is integrable at +∞,
then the maximal existence time is finite and we have the
so-called blow-up of the solution in finite time. On the other
hand, if 1/f is not integrable, then tmax = +∞. We note
that the latter occurs if f(s) grows not faster that z as s →
∞ giving thus another proof of the result of Example 4.9.
If f(s) behaves, say, as s2 as s → ∞, then the integral of
the right hand side is finite and thus tmax < ∞ – we have
seen this in Example 4.7.

Remark 5.2 It is important to emphasize that the assump-
tion that f satisfies assumptions of the Picard theorem ev-
erywhere on R2 is crucial. If there are non-Lipschitzian
points, then the behaviour of solutions close to such points
is not covered by Theorem 6.1 as we have seen in Example
4.8.

Let us summarize the possible scenarios for an autonomous
equation (5.3). Assume that y∗ is a single equilibrium point
of f with f(y) < 0 for y < y∗ and f(y) > 0 for y > y∗. If
the initial condition satisfies y0 < y∗, then the solution
y(t, y0) decreases so it diverges either to −∞ or to an equi-
librium point. Since there is no equilibrium point smaller
than y0, the solution must diverge to −∞. Similarly, for
y0 > y∗ we see that y(t, y0) must diverge to infinity. Con-
versely, assuming that y∗ is a single stationary point of f

with f(y) > 0 for y < y∗ and f(y) < 0 for y > y∗, we
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see that if y0 < y∗, then the solution y(t, y0) increases so it
converges to y∗. Similarly, for y0 > y∗, we see that y(t, y0)
must decreases converging again to y∗. If there are more
then one equilibrium point, then the behaviour of the solu-
tion is a combination of the above scenarios. Assume, for
example, that f has two equilibrium points y1 < y2 and
is positive for y < y1, negative for y1 < y < y2 and again
positive for y > y2. Thus, for y0 < y1, y(t, y0) increases
converging to y1, for y1 < y0 < y2 we have y(t, y0) decreas-
ing and converging to y1 and, finally, for y0 > y2, y(t, y0)
increases to infinity.

Example 5.1 Let us consider the Cauchy problem for the
logistic equation

y′ = y(1− y), u(0) = t0. (5.7)

We have solved this problem in Section 4.3. Let us now
get as many information as possible about the solutions to
this problem without actually solving it. Firstly, we observe
that the right-hand side is given by f(y) = y(1 − y) which
is a polynomial and therefore at each point of R2 the as-
sumptions of Picard’s theorem are satisfied, that is, through
each point (t0, y0) there passes only one solution of (5.7).
However, f is not a globally Lipschitz function so that this
solutions may be defined only locally, on small time inter-
vals.

The second step is to determine equilibrium points and
stationary solutions. From

y(1− y) = 0.

we see that y ≡ 0 and y ≡ 1 are the only equilibrium so-
lutions. Moreover, f(y) < 0 for y < 0 and y > 0 and
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f(y) > 0 for 0 < y < 1. From Picard’s theorem (unique-
ness) it follows then that solutions staring from y0 < 0 will
stay strictly negative, starting from 0 < y0 < 1 will stay
in this interval and, finally those with y0 > 1 will be larger
than 1, for all times of their respective existence, as they
cannot cross equilibrium solutions. Then, from Theorem
6.1, we see that the solutions with negative initial condi-
tion are decreasing and therefore tend to −∞ for increas-
ing times (in fact, they blow-up (become infinite) for finite
times) as integrating the equation, we obtain

t(y) =

y∫

y0

dη

η(1− η)

and we see that passing with y to −∞ on the right-hand
side we obtain a finite number (the improper integral exists)
giving the time of blow-up.

Next, solutions with 0 < y0 < 1 are bounded and thus
defined for all times by Proposition 4.3. They are increasing
and thus must converge to the larger equilibrium point, that
is

lim
t→∞

y(t, y0) = 1.

Finally, if we start with y0 > 1, then the solution y(t, y0)
will be decreasing and thus bounded, satisfying again

lim
t→∞

y(t, y0) = 1.

We can learn even more about the shape of the solution
curves. Differentiating the equation with respect to time
and using the product rule, we obtain

y′′ = y′(1− y)− yy′ = y′(1− 2y).
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Since for each solution (apart from the stationary ones), y′

has fixed sign, we see that the inflection points can exist only
on solutions staring at y0 ∈ (0, 1) and occur precisely at
y = 1/2 - for this value of y the solution changes from being
convex downward to being convex upward. In the two other
cases, the second derivative is of constant sign, giving the
solution convex upward for negative solutions and convex
downward for solutions larger than 1.

We see that we got essentially the same picture as by
solving the equation with much less work.

5.2.2 Crystal growth–a case study

In many applications, such as photographic film produc-
tion, it is important to be able to manufacture crystals of a
given size. The methods is based on a process called ‘Ost-
wald ripening’. The process begins by adding a mixture of
small crystals of various sizes to a certain solvent and kept
mixed. Ostwald ripening is based on the following observa-
tion: if one allows the process to continue for a long time,
either all crystal grains will dissolve into solution, or all the
grains will become the same size. Hence, technologically,
one has to arrange the conditions, such as the concentra-
tion, so that the second possibility occurs.

To start our modelling process, we will make some sim-
plifying assumptions. First we assume that all crystals are
of the same shape and differ only in size which can be de-
scribed by a single real parameter, i.g, they may be boxes
with edges (La, Lb, Lc) where a, b, c are fixed, reference,
positive numbers and L is a real positive variable. If, in-
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stead of to crystals, we apply the model to aerosols, we can
think about balls with radius L.

Consider a volume of fluid containing an amount of dis-
solved matter (solute) with (uniform) concentration c(t) at
time t. There is a saturation concentration c∗, which is the
maximum solute per unit volume that the fluid can hold.
If C(t) > c∗, then the excess solute precipitates out in solid
form; that is, in crystal form. Actually, for the precipitation
c(t) must be bigger that a certain quantity cL > c∗ which
depends on the size of precipitating grains. The threshold
constant cL is given by the Gibbs-Thomson relation

cL = c∗eΓ/L

where Γ is a physical quantity that depends on the shape of
the crystals, its material properties and temperature (which
here is assumed fixed). Hence, if c(t) > cL, then material
will come out of the solution and deposit onto the crys-
tals, characterized by the size L, and if c(t) < cL, then
the material will dissolve back from the crystals. Using the
Gibbs-Thomsn relation, we define

L∗(t) =
Γ

log c(t)
c∗

, (5.8)

Note that function L∗(t) < L if and only if c(t) > cL so
that L∗(t) if L∗(t) < L, then the crystals will grow. A
semi-empirical law taking into account this observation is

dL

dt
= G(L, c(t)), (5.9)
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where

G(L, c(t)) =





kg

(
c(t)− c∗e

Γ
L

)g

if L > L∗(t),

−kd

(
c∗e

Γ
L − c(t)

)d

if L < L∗(t),
(5.10)

and where kg, kd, g, d are positive constants with

1 ≤ g, d ≤ 2. (5.11)

As expected, for c(t) > c∗ we have dL/dt > 0; that is, the
crystal grows. Conversely, c(t) < c∗ we have dL/dt < 0 and
the crystal shrinks.

We assume that initially there are N different crystal
sizes characterized by sizes Lj = x∗j with µ∗j crystals of size
x∗j per unit volume, j = 1, . . . , N , ordered as

0 < x∗1 < . . . < x∗N .

We assume that the crystals do no coalesce or split. More-
over, according to (5.10), crystals which of the same size
grow at the same rate. Hence, at any time t we will have
N classes of crystals with sizes x1(t), . . . , xN (t) (some xj(t)
may be, however, zero if the crystals of this size completely
dissolve. Thus we obtain the system of N equations

dxj

dt
= G(xj , c(t)), j = 1, . . . , N, (5.12)

which is coupled through the unknown concentration c(t).
The formula for c(t) can be obtained as the sum of the
initial concentration c0 and the amount which was dissolved
from the crystals initially present (in a unit volume):

c(t) = c0 + ρkv

N∑

j=1

µ∗j (x
∗
j )

3 − ρkv

N∑

j=1

µ∗j (xj(t))3, (5.13)
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where kv is a geometric parameter relating L3 to the crystal
volume (kv = abc in the case of a box discussed earlier or
kv = 4π/3 in the case of a sphere), and ρ is the mass density
of the solid phase of the material. With this, we can write
(5.12) in a more explicit form:

dxj

dt
= Gj(x1, . . . , xN ), j = 1, . . . , N (5.14)

For further use we introduce

µj = ρkvµ∗j , c1 = c0 +
N∑

j=1

µj(x∗j )
3. (5.15)

Note that c1 is the total amount of the material per unit
volume in either crystal of solution form.

5.2.2.1 The case of one crystal size

In the case when N = 1 we have
dx

dt
= G(x), x(0) = x∗, (5.16)

where

G(x) =





kg

(
c1 − µx3 − c∗e

Γ
x

)g

if c1 − µx3 > c∗e
Γ
x ,

−kd

(
c∗e

Γ
x − (c1 − µx3)

)d

if c1 − µx3 < c∗e
Γ
x ,

(5.17)
We observe that since g, d ≥ 1, G is continuously differ-
entiable on each set {x > 0 ; c1 − µx3 − c∗e

Γ
x

<
>0}. Thus,

it is Lipschitz continuous for x > 0. The first question
is to determine points at which G changes sign. Denote
f(x) = c1 − µx3 − c∗e

Γ
x so that (5.16) can be written as

dx

dt
=

{
kg(f(x))g if f(x) > 0,

−kd(−f(x))d if f(x) < 0,
(5.18)
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Lemma 5.2 There exist at most two positive solutions of
the equation

f(x) = c1 − µx3 − c∗e
Γ
x = 0. (5.19)

Proof. We have limx→0+ f(x) = limx→∞ f(x) = −∞.
Further

f ′(x) = −3µx2 +
Γc∗

x2
e

Γ
x

and

f ′′(x) = −6µx− Γc∗

x3
e

Γ
x − Γ2c∗

x4
e

Γ
x

so that f ′′(x) < 0 for all x > 0. Therefore f ′ has at most
one zero and thus, by the Rolle theorem, f can have at
most two solutions. ¤

In what follows we focus on the case when we have exactly
two solutions denote 0 < ξ1 < x2. Note that in practice this
can be always achieved by taking the initial concentration
c0 large enough, so that f(x0) > 0 for some chosen x0.
Then ξ1 < x0 < ξ2.

We can apply Theorem ?? to describe the evolution of
the crystal’s size depending on the initial condition.

Proposition 5.1

(i) x(t) = ξ1 and x(t) = ξ2 are stationary solutions of
(5.18);

(ii) If x∗ > ξ2, then x(t) is decreasing with limt→∞ x(t) =
ξ2;

(iii) If ξ1 < x∗ > ξ2, then x(t) is increasing with limt→∞ x(t) =
ξ2;

(iv) If x∗ < ξ1, then x(t) is decreasing and there is finite
time t0 such that x(t0) = 0.
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Proof. Items (i)-(iii) follow directly from Theorem ??
(note that the solutions exists for all positive times as they
are bounded). We have to reflect on (iv) as Theorem ?? is
not directly applicable here (G does not satisfy assumptions
of the Picard theorem on the whole real line, in fact, x = 0
clearly is not the point of Lipschitz continuity). However,
the idea of the proof still is applicable. Indeed, clearly x(t)
decreases, that is x(t) ≤ x∗ < ξ1 for all t ∈ [0, tmax) and, as
f increases for x < ξ1 we have dx/dt = G(x(t)) ≤ G(x∗) =
c < 0. Thus, x(t) ≤ ct + x∗ and x(t0) = 0 for t ≤ −x∗/c.
Alternatively, we have

t = − 1
kd

x(t)∫

x∗

ds

(c∗eΓ/s − c1 + µs3)d

and the time t0 at which x(t0) = 0 is given by

t0 =
1
kd

x∗∫

0

ds

(c∗eΓ/s − c1 + µs3)d

Since

lim
s→0+

c∗edΓ/s

(c∗eΓ/s − c1 + µs3)d
= 1

and
∫ x∗

0
e−dΓ/sds < +∞, the improper integral above con-

verges giving t0 < +∞. ¤

5.2.2.2 The case of multiple crystal sizes

Now let us consider the general case of crystals with N

sizes. We start with the following observation:
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Lemma 5.3 If

c0 > c∗, (5.20)

then c(t) > c∗ for all t > 0. Moreover

xj(t) ≤
(

c1

µj

) 1
3

. (5.21)

Proof. Since c(t) is a continuous function, the set {t >

0; c(t) = c0} is closed and bounded from below and thus it
contains the smallest element t0; that is, t0 is the first time
at which c(t0) = 0. Hence c(t) > 0 for t < t0 and, since c is
differentiable, dc

dt |t=t0 ≤ 0. On the other hand, by (5.12),

dc

dt
|t=t0 = −3

N∑

i=1

µjxj(t0)2
dxj

dt
|t=t0 = −3

N∑

i=1

µjx
2
j (t0)G(xj(t0), c∗) > 0

as by (5.10), G(xj , c
∗) < 0 unless xj(t0) = 0 for all j =

1, . . . , N . But in the latter case we would have, by (5.13),

c∗ = c(t0) = c0 +
N∑

j=1

µj(x∗j )
3 ≥ c0,

which contradicts (5.20).
To prove (5.21) we note that, again by (5.13),

0 < c(t) < c1 −
N∑

j=1

µ
(
jxj(t))3,

so that
N∑

j=1

µ
(
jxj(t))3 < c1
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which yields (5.21) since all summands are nonnegative.
This completes the proof of the lemma. ¤

In the next lemma we show that the difference between
sizes of crystals increases in time.

Lemma 5.4 If x∗j+1 > x∗j , then xj+1(t) > xj(t) for all t as
long as xj(t) > 0.

Proof. First we observe that G(x, c) is an increasing func-
tion of x, hence if xj+1(t) > xj(t) at some time t, then

d

dt
(xj+1(t)− xj(t)) = G(xj+1(t), c(t))−G(xj(t), c(t)) > 0.

To shorten notation, let f(t) = xj+1(t) − xj(t) and g(t) =
G(xj+1(t), c(t))−G(xj(t), c(t)) and fix t for which f(t) > 0.
We have the situation that f ′(t) = g(t) > 0 and g(t) > 0 as
long as f(t) > 0. Since f ′ is continuous, we can argue as in
the previous lemma that if f ′(τ) = 0 for some τ > t, then
there must be the first time t0 > t for which this happens.
Then

0 = g(t0) = G(xj+1(t0), c(t0))−G(xj(t0), c(t0)).

Since G is monotonic in x, this means that xj+1(t0) =
xj(t0).

Since xj+1(t) > xj(t), with f ′(t) > 0, then there must
be a point t < t̄ < t0 at which f ′(t̄) = 0 which contradicts
the assumption that t0 is the first such time (precisely, by
the Mean Value Theorem, there is point 0 ≤ t′ ≤ t0 such
that f ′(t′) < 0 but by continuity of f ′ and the Darboux
property f ′(t′′) = 0 for some t′′ < t′.

Let us recall that the curve L∗(t) determines whether
a crystal grows or shrinks: if xj(t) > L∗j (t), then xj(t) is
growing and if xj(t) < L∗j (t), then xj(t) shrinks.
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As we noted earlier, some crystals can completely dissolve
if finite time. Let us denote by k the number of all crystal
sizes that have disappeared in finite time. Since the number
of crystal classes is finite, we can say that after a certain
time t0 only the crystals of sizes

xk+1(t), xk+2(t), . . . , xN (t), t > t0,

are present in the system. Clearly, it is possible that k = 0.
We present the main theorem of this section.

Theorem 5.2 All crystals which do not belong to the largest
cohort xN will dissolve in finite time.

Proof. We begin by noting that during their lifetime a
crystal can grow and shrink in various periods of time. The
change occurs when xj(t) crosses the line L∗(t). It follows
that, while xj(t), k + 1 ≤ j < N , can cross L∗(t) several
times, xN (t) can do at most once. Indeed, at the point of
intersection we have dxN/dt = G(xN , c(t∗)) = 0 but

dL∗

dt
= − Γ

log c(t)
c∗

1
c(t)

dc

dt
< 0

since at t = t∗ we have

dc

dt
= −3

N∑

j=k+1

µjxj(t∗)G(xj(t∗), c(t∗)) > 0

as G(xj(t∗), c(t∗)) < 0 on account of xj(t∗) < xN (t∗) =
L∗(t∗).
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5.2.3 Equilibrium points of difference equations

Definition 5.1 A point x∗ in the domain of f is said to be
an equilibrium point of (5.4) if it is a fixed point of f ; that
is, if f(x∗) = x∗.

In other words, x∗ is a constant solution of (5.4).
Graphically, an equilibrium point is the the x-coordinate

of the point where the graph of f intersects the diagonal
y = x. This is the basis of the so-called cobweb method
of finding equilibria and analyse their stability, which is
described later.

Definition 5.2

(i) The equilibrium x∗ is stable if for given ε > 0 there
is δ > 0 such that for any x and for any n > 0,
|x − x∗| < δ implies |fn(x) − x∗| < ε for all n > 0.
If x∗ is not stable, then it is called unstable (that
is, x∗ is unstable if there is ε > such that for any
δ > 0 there are x and n such that |x − x∗| < δ and
|fn(x)− x∗| ≥ ε.)

(ii) A point x∗ is called attracting if there is η > 0 such
that

|x(0)− x∗| < η implies lim
n→∞

x(n) = x∗.

If η = ∞, x∗ is called a global attractor or globally
attracting.

(iii) The point x∗ is called an asymptotically stable equi-
librium if it is stable and attracting. If η = ∞, then
x∗ is said to be globally asymptotically stable equi-
librium.
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Example 5.2 Consider the logistic equation

x(n + 1) = 3x(n)(1− x(n)). (5.22)

The equation for the equilibrium points reads

x = 3x(1− x)

which gives x0 = 0 and x1 = 2/3.

5.2.3.1 The Cobweb Diagrams

We start with an important graphical method for analysing
the stability of equilibrium (and periodic) points of (5.4).
Since x(n + 1) = f(x(n)), we may draw a graph of f in
the (x(n), x(n + 1)) system of coordinates. Then, given
x(0), we pinpoint the value x(1) by drawing the vertical
line through x(0) so that it also intersects the graph of f at
(x(0), x(1)). Next, draw a horizontal line from (x(0), x(1))
to meet the diagonal line y = x at the point (x(1), x(1)).
A vertical line drawn from the point (x(1), x(1)) will meet
the graph of f at the point (x(1), x(2)). In this way we
may find x(n). This is illustrated in Fig. 5.1 where we
presented several steps of drawing the cobweb diagram for
the logistic equation (5.22) with x0 = 0.2. On the basis
of the diagaram we can conjecture that x1 = 2/3 is an
asymptotically stable equilibrium as the solution converges
to it as n becomes large. However, to be sure, we need to
develop analytical tools.

5.2.3.2 Analytic criterion for stability

Theorem 5.3 Let x∗ be an equilibrium point of the differ-
ence equation

x(n + 1) = f(x(n)) (5.23)
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Fig. 5.1. Cobweb diagram of a logistic difference equation

where f is continuously differentiable at x∗. Then:

(i) If |f ′(x∗)| < 1, then x∗ is asymptotically stable;
(ii) If |f ′(x∗)| > 1, then x∗ is unstable.

Proof. Suppose |f ′(x∗)| < M < 1. Then |f ′(x)| ≤ M < 1
over some interval J = (x∗ − γ, x∗ + γ) by the property of
local preservation of sign for continuous function. Now, we
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have

|x(1)− x∗| = |f(x(0))− f(x∗)|.
By the Mean Value Theorem, there is ξ ∈ [x(0), x∗] such
that

|f(x(0))− f(x∗)| = |f ′(ξ)||x(0)− x∗|.
Hence

|f(x(0))− f(x∗)| ≤ M |x(0)− x∗|,
and therefore

|x(1)− x∗| ≤ M |x(0)− x∗|.
Since M < 1, the inequality above shows that x(1) is closer
to x∗ than x(0) and consequently x(1) ∈ J . By induction,

|x(n)− x∗| ≤ Mn|x(0)− x∗|.
For given ε, define δ = ε/2M . Then |x(n) − x∗| < ε for
n > 0 provided |x(0)−x∗| < δ (since M < 1). Furthermore
x(n) → x∗ and n →∞ so that x∗ is asymptotically stable.

To prove the second part of the theorem, we observe that,
as in the first part, there is ε > 0 such that on J = (x∗ −
ε, x∗ + ε) on which |f ′(x)| ≥ M > 1. Take arbitrary δ > 0
smaller than ε and x satisfying |x − x∗| < δ. Using again
the Mean Value Theorem

|f(x)− x∗| = |f ′(ξ)||x− x∗|
for some ξ between x∗ and x so that

|f(x)− x∗| ≥ M |x− x∗|.
If f(x) is outside J , then we are done. If not, we can
repeat the argument getting |f2(x) − x∗| ≥ M2|x − x∗|,
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that is, f2(x) which is further away from x∗ than f(x). If
it is in J we can continue the procedure till |fn(x)− x∗| ≥
Mn|x− x∗| > ε for some n. ¤

Equilibrium points with |f ′(x∗)| 6= 1 are called hyper-
bolic.

What happens if the equilibrium point is non-hyperbolic?
Before we give the answer to this question, let us reflect on
the geometry of the preceding theorem. In this discussion
we assume that f ′(x∗) > 0. The equilibrium x∗ is stable
if the graph of y = f(x) is less steep that the graph of
y = x; that is, the graph of f crosses the line y = x from
above to below as x increases. This ensures that the cobweb
iterations from the left are increasing and from the right are
decreasing converging to x∗. On the contrary, x∗ is unstable
if the graph of f crosses y = x from below–then the cobweb
iterations will move away from x∗. If f ′(x∗) = 1, then
the graph of f is tangent to the line y = x at x = x∗

but the stability properties follow from the geometry. If
f ′′(x∗) 6= 0, then the graph of f will be (locally) either
entirely above or entirely below the line y = x and then the
picture will be the same as in the unstable case either to
the left, or to the right, of x∗. Hence x∗ is unstable in this
case (remember that for instability it is sufficient to display,
for any neighbourhood of x∗, only one diverging sequence
of iterations emanating from this neighbourhood). On the
other hand, if f ′′(x∗) = 0, then x∗ is an inflection point and
the graph of f crosses the line y = 0. This case is essentially
the same as when |f ′(x∗)| 6= 1 – the equilibrium is stable if
the graph of f crosses y = x from above and unstable if it
does it from below. A quick reflection ascertains that the
former occurs when f ′′′(x∗) < 0 and the latter if f ′′′(x∗).



5.2 Equilibria of first order equations 151

Summarizing, the following theorem holds.

Theorem 5.4 Let x∗ be an isolated equilibrium with f ′(x∗) =
1. Then

(i) If f ′′(x∗) 6= 0, then x∗ is unstable.
(ii) If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is unstable.
(iii) If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is asymptoti-

cally stable.

The case of f ′(x∗) = −1 is more difficult. First we note,
that if f(x) = −x + 2x∗; that is f is the linear function
passing producing equilibrium at x = x∗ with f ′(x∗) = −1,
then iterations starting from x0 6= x∗ produce solution tak-
ing only two values (compare item (ii) of Section 3.4) oscil-
lating around x∗. Thus, if −1 < f ′(x∗) < 0, then f passes
from below of y = −x + 2x∗ to above as x increases and
so the stability follows from the fact that subsequent iter-
ations oscillate around x∗ getting closer to x∗ with each
iteration. On the contrary, if f ′(x∗) < −1 the oscillat-
ing iterations move away from x∗. If f ′(x∗) = −1, then
the graph of f crosses the line y = x at the right angle.
Hence, the stability depends on fine details of the shape
of f close to x∗. Unfortunately, using an argument similar
to the case with f ′(x∗) = 1 and considering the relation
of the graph of f with the graph of y = −x + 2x∗ pro-
duces only partial result: x∗ will be stable if f ′′(x∗) = 0
and f ′′′(x∗) > 0 (as then the graph of f will have the same
shape as in the stable case, crossing the line y = −x + 2x∗

from below. However, the stability of x∗ can be achieved
in a more general situation. First we note that x∗ is an
equilibrium of g(x) := f(f(x)) as well and it is a stable
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equilibrium of f if and only if it is stable for g. This state-
ment follows from continuity of f : if x∗ is stable for g, then
|gn(x0)−x∗| = |f2n(x0)−x∗| is small for x0 sufficiently close
to x∗. But then |f2n+1(x0)− x∗| = |f(f2n)(x0)− f(x∗)| is
also small by continuity of f . The reverse is obvious. We
have

g(x)′ = f ′(f(x))f ′(x)

so g′(x∗) = 1 and we can apply Theorem 5.3 to g. Hence

g′′(x) = f ′′(f(x))[f ′(x)]2 + f ′(f(x))f ′′(x)

and, since f(x∗) = x∗ and f ′(x∗) = −1,

g′′(x∗) = 0.

Using the chain rule once again, we find

g′′′(x∗) = −2f ′′′(x∗)− 3[f ′′(x∗)]2.

Hence, we can note

Theorem 5.5 Suppose that at an equilibrium point x∗ we
have f ′(x∗) = −1. Define

S(x∗) = −f ′′′(x∗)− 3
2
(f ′′(x∗))2. (5.24)

Then x∗ is asymptotically stable if S(x∗) < 0 and unstable
if S(x∗) > 0.

Example 5.3 Consider the equation

x(n + 1) = x2(n) + 3x(n).

Solving f(x) = x2 + 3x = x, we find that x = 0 and x =
−2 are the equilibrium points. Since f ′(0) = 3 > 1, we
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Fig. 5.2. Unstable character of the equilibrium x = 0. Initial
point x0 = 0.5

conclude that the equilibrium at x = 0 is unstable. Next,
f ′(−2) = −1. We calculate f ′′(−2) = 2 and f ′′′(−2) = 0 so
that S(−2) = −12 < 0. Hence, x = −2 is an asymptotically
stable equilibrium.

Remark 5.3 Analysing cob-web diagrams (or otherwise)
we observe that we can provide a further fine-tuning of the
stability. Clearly, if f ′(x∗) < 0, then the solution behaves in
an oscillatory way around x∗ and if f ′(x∗) > 0, it is mono-
tonic. Indeed, consider (in a neighourhood of x∗ where
f ′(x) < 0) f(x) − f(x∗) = f(x) − x∗ = f ′(ξ)(x − x∗),
where ξ is between x∗ and x. Since f ′ < 0, f(x) > x∗ if
x < x∗ and f(x) < x∗ if x > x∗, which means that each
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Fig. 5.3. Stable character of the equilibrium x = −2. Initial
point x0 = −2.9

iteration move the point to the other side of x∗. If |f ′| < 1
over this interval, then fn(x) converge to x∗ in an oscilla-
tory way, while if |f ′| > 1, the iterations will move away
from the interval, also in an oscillatory way.

Based on on this observation, we may say that the equi-
librium is oscillatory unstable or stable if f ′(x∗) < −1
or −1 < f ′(x∗) < 0, respectively, and monotonically sta-
ble or unstable depending on whether 0 < f ′(x∗) < 1 or
f ′(x∗) > 1, respectively.

Periodic points and cycles

Definition 5.3 Let b be in the domain of f . Then:
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(i) b is called a periodic point of f if fk(b) = b for some k ∈
N. The periodic orbit of b, O(b) = {b, f(b), f2(b), . . . , fk−1(b)}
is called a k-cycle.

(ii) b is called eventually k-periodic if, for some integer m,
fm(b) is a k-periodic point.

Example 5.4 The Tent Map revisited. Consider

x(n + 1) = T 2x(n)

where we have

T 2(x) =





4x for 0 ≤ x ≤ 1/4,

2(1− 2x) for 1/4 < x ≤ 1/2,

2x− 1 for 1/2 < x ≤ 3/4,

4(1− x) for 3/4 < x ≤ 1.

There are four equilibrium points, 0, 0.4, 2/3 and 0.8, two
of which are equilibria of T . Hence {0, 4, 0.8} is the only
2-cycle of T . x∗ = 0.8 is not stable. Calculation for T 3

shows that {2/7, 4/7, 6/7} is a 3-cycle. There is a famous
theorem by Šarkowski (rediscovered by Li and Yorke) that
if a map has a 3-cycle, then it has k-cycles for arbitrary k.
This is one of symptoms of chaotic behaviour.

Definition 5.4 Let b be a k-periodic point of f . Then b is
said to be:

(i) stable if it is a stable fixed point of fk;
(ii) asymptotically stable if it is an asymptotically stable

fixed point of fk;
(iii) unstable if it is an unstable fixed point of fk.

It follows that if b is k-periodic, then every point of its k-
cycle {x(0) = b, x(1) = f(b), . . . , x(k − 1) = fk−1(b)} is
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Fig. 5.4. 2-cycle for the tent map

also k-periodic. This follows from fk(fr(b)) = fr(fk(b)) =
fr(b), r = 0, 1, . . . , k − 1. Moreover, each such point pos-
sesses the same stability property as b. Here, the stability
of b means that |fnk(x) − b| < ε for all n, provided x is
close enough to b. To prove the statement, we have to show
that for any ε there is δ such that |fnk(x) − fr(b)| < ε for
any fixed r = 0, 1, . . . , k − 1 and n ∈ N, if |x − fr(b)| < δ.
Let us take arbitrary ε > 0. From continuity of f (at thus
of fk), there is δ1 such that |x − fr(b)| < δ1 implies, by
fk+r(b) = fr(fk(b)) = fr(b), that

|fk(x)− fr(b)| = |fk(x)− fk+r(b)| < ε. (5.25)

With the same ε, using continuity of fr we find δ2 such that
|fr(z) − fr(b)| < ε, provided |z − b| < δ2. For this δ2, we
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Fig. 5.5. 3-cycle for the tent map

find δ3 such that if |y − b| < δ3, then |fnk(y) − b| < δ2 for
any n. Hence, for |y−b| < δ3, taking z = fnk(y), we obtain

|fr+nk(y)− fr(b)| < ε (5.26)

for any n. On the other hand, for this δ3 we find δ4 such that
if |x−fr(b)| < δ4, then |fk−r(x)−fk(b)| = |fk−r(x)− b| <
δ3 and, using y = fk−r(x) in (5.26), we obtain

|f (n+1)k(x)− fr(b)| < ε (5.27)

for any n ≥ 1. Taking |x − fr(b)| < δ5 = min{δ4, δ1} and
combining (5.25) with (5.27), we get

|fnk(x)− fr(b)| < ε,

for any n ≥ 1.
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The definition together with Theorem 5.2 yield the fol-
lowing classification of stability of k-cycles.

Theorem 5.6 Let O(b) = {x(0) = b, x(1) = f(b), . . . , x(k−
1) = fk−1(b)} be a k-cycle of a continuously differentiable
function f . Then

(i) The k-cycle O(b) is asymptotically stable if

|f ′(x(0))f ′(x(1)) . . . f ′(x(k − 1))| < 1.

(ii) The k-cycle O(b) is unstable if

|f ′(x(0))f ′(x(1)) . . . f ′(x(k − 1))| > 1.

Proof. Follow from Theorem 5.2 by the Chain Rule applied
to fk. ¤

The Logistic Equation and Bifurcations Consider the
logistic equation

x(n + 1) = µx(n)(1− x(n)), x ∈ [0, 1], µ > 0 (5.28)

which arises from iterating Fµ(x) = µx(1 − x). To find
equilibrium point, we solve

Fµ(x∗) = x∗

which gives x∗ = 0, (µ− 1)/µ.
We investigate stability of each point separately.

(a) For x∗ = 0, we have F ′µ(0) = µ and thus x∗ = 0 is
asymptotically stable for 0 < µ < 1 and unstable
for µ > 1. To investigate the stability for µ = 1, we
find F ′′µ (0) = −2 6= 0 and thus x∗ = 0 is unstable in
this case. However, instability comes from negative
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Fig. 5.6. Asymptotically stable equilibrium x = 2/3 for µ = 3.

values of x which we discarded from the domain. If
we restrict our attention to the domain [0, 1], then
x∗ = 0 is stable. Such points are called semi-stable.

(b) The equilibrium point x∗ = (µ − 1)/µ belongs to the
domain [0, 1] only if µ > 1. Here, F ′((µ− 1)/µ) =
2−µ and F ′′((µ− 1)/µ) = −2µ. Thus, using The-
orems 5.2 and 5.3 we obtain:

(i) x∗ is asymptotically stable if 1 < µ ≤ 3,
(ii) x∗ is unstable if 3 < µ.

We observe further that for 1 < µ < 2 the population ap-
proaches the carrying capacity monotonically from below.
However, for 2 < µ ≤ 3 the population can go over the
carrying capacity but eventually stabilizes around it.
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What happens for µ = 3? Consider 2-cycles. We have
F 2

µ(x) = µ2x(1 − x)(1− µx(1 − x)) so that we are looking
for solutions to

µ2x(1− x)(1− µx(1− x)) = x

We can re-write this equation as

x(µ3x3 − 2µ3x2 + µ2(1 + µ)x + (1− µ2) = 0.

To simplify the considerations, we observe that any equi-
librium is also a 2-cycle (and any k-cycle for that matter).
Thus, we can divide this equation by x and x− (µ− 1)/µ,
getting

µ2x2 − µ(µ + 1)x + µ + 1 = 0.

Solving this quadratic equation, we obtain 2-cycle

x(0) =
(1 + µ)−

√
(µ− 3)(µ + 1)
2µ

x(1) =
(1 + µ) +

√
(µ− 3)(µ + 1)
2µ

. (5.29)

Clearly, these points determine 2-cycle provided µ > 3 (in
fact, for µ = 3 these two points collapse into the equilibrium
point x∗ = 2/3. Thus, we see that when the parameter
µ passes through µ = 3, the stable equilibrium becomes
unstable and bifurcates into two 2-cycles.

The stability of 2-cycles can be determined by Theorem
5.5. We have F ′(x) = µ(1 − 2x) so the 2-cycle is stable
provided

−1 < µ2(1− 2x(0))(1− 2x(1)) < 1.
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Fig. 5.7. 2-cycle for x ≈ 0.765 and µ = 3.1.

Using Viete’s formulae we find that the above yields

−1 < µ2 + 2µ + 4 < 1

and solving this we see that this is satisfied if µ < −1 or
µ > 3 and 1−√6 < µ < 1+

√
6 which yields 3 < µ < 1+

√
6.

In similar fashion we can determine that for µ1 = 1+
√

6
the 2-cycle is still attracting but becomes unstable for µ >

µ1.

Remark 5.4 To find 4-cycles, we solve F 4
µ(x). However, in

this case algebra becomes unbearable and one should resort
to a computer. It turns out that there is 4-cycle when µ >

1+
√

6 which is attracting for 1+
√

6 < µ < 3.544090 . . . =:
µ2. When µ = µ2, then 22-cycle bifurcates into a 23-cycle,
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Fig. 5.8. Asymptotic stability of the 2-cycle for x ≈ 0.765 and
µ = 3.1.

which is stable for µ2 ≤ µ ≤ µ3 := 3.564407.. Continuing,
we obtain a sequence of numbers (µn)n∈N such that the 2n-
cycle bifurcates into 2n+1-cycle passing through µn. In this
particular case, limn→∞ µn = µ∞ = 3.57.... A remarkable
observation is

Theorem 5.7 (Feigenbaum, 1978) For sufficiently smooth
families Fµ of mapping of an interval into itself, the number

δ = lim
n→∞

µn − µn−1

µn+1 − µn
= 4.6692016...

in general does not depend on the family of maps, provided
they have single maximum.

This theorem expresses the fact that the bifurcation dia-
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Fig. 5.9. Chaotic orbit for x = 0.9 and µ = 4.

grams for such maps are equivalent to the bifurcation di-
agram of a unique mapping for which it is exactly self-
similar.

What happens for µ∞? Here we find a densely interwo-
ven region with both periodic and chaotic orbits. In partic-
ular, a 3-cycle appears and, as we mentioned earlier, pe-
riod 3 implies existence of orbits of any period. We can
easily prove that 3-cycles appear if µ = 4. Consider first
F4(x). We have F4(0) = F4(1) = 0 and F4(0.5) = 1. This
shows that F 2

4 (0.5) = F4(1) = 0. From the Darboux prop-
erty, there are a1 ∈ (0, 0.5) and a2 ∈ (0.5, 1) such that
F4(ai) = 0.5 and F 2

4 (ai) = 1. Thus we have graph with
two peaks at 1 and attaining zero in between. This shows
that F 2

4 (x) = x has four solutions, two of which are (unsta-
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ble) equilibria and two are (unstable) 2-cycles. Repeating
the argument there is b1 ∈ (0, a1) such that F4(b1) = a1

(since the graph is steeper than that of y = x) and thus
F 3

4 (b1) = F 2
4 (a1) = 1. Similarly, we get 3 other points in

which F 3
4 = 1 and clearly F 3

4 (ai) = F 3
4 (0.5) = 0. This

means that y = x meets F 3
4 (x) at 8 points, two of which

are equilibria (2-cycles are not 3-cycles). So, we obtain two
3-cycles.

The Beverton-Holt-Hassell equation We conclude with
a brief description of stability of equilibrium points for the
Hassell equation.

Let us recall the equation

x(n + 1) = f(xn, R0, b) =
R0xn

(1 + xn)b
.

Writing

x∗(1 + x∗)b = R0x
∗

we find steady state x∗ = 0 and we observe that if R0 ≤ 1,
then this is the only steady state (at least for positive values
of x). If R0 > 1, the there is another steady state given by

x∗ = R
1/b
0 − 1.

Evaluating the derivative, we have

f ′(x∗, R0, b) =
R0

(1 + x∗)b
− R0bx

∗

(1 + x∗)b+1
= 1− b +

b

R
1/b
0

Clearly, with R0 > 1, we always have f ′ < 1, so for the
monotone stability we must have

1− b +
b

R
1/b
0

> 0



5.2 Equilibria of first order equations 165

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 5.10. Monotonic stability of the equilibrium for the
Beverton-Holt model with b = 3 and R0 = 2; see Eqn (5.30).
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Fig. 5.11. Oscillatory stability of the equilibrium for the
Beverton-Holt model with b = 2 and R0 = 8; see Eqn (5.31).

and for oscillatory stability

−1 < 1− b +
b

R
1/b
0

< 0.

Solving this inequalities, we obtain that the borderlines
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Fig. 5.12. Regions of stability of the Beverton-Holt model de-
scribed by (5.30) and (5.31)

between different behaviours are given by

R0 =
(

b

b− 1

)b

(5.30)

and

R0 =
(

b

b− 2

)b

. (5.31)

Let us consider existence of 2-cycles. The second iteration
of the map

Hx =
R0x

(1 + x)b

is given by

H(H(x)) =
R2

0x(1 + x)b2−b

((1 + x)b + R0x)b

so that 2-cycles can be obtained from H(H(x)) = x which
can be rewritten as

xR2
0(1 + x)b2−b = x((1 + x)b + R0x)b,
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Fig. 5.13. 2-cycles for the Beverton-Holt model with b = 3 and
R0 = 28; see Eqn (5.31).

or, discarding the trivial equilibrium x = 0 and taking the
bth root:

(1 + x)R
2
b
0 = (1 + x)b + R0x.

Introducing the change of variables z = 1 + x, we see that
we have to investigate existence of positive roots of

f(z) = zb − zb−1R
2
b
0 + R0z −R0.

Clearly we have f(R
1
b
0 ) = 0 as any equilibrium of H is also

an equilibrium of H2. First let us consider 1 < b < 2 (the
case b = 1 yields explicit solution (see Example ??) whereas
the case b = 2 can be investigated directly and is referred
to the tutorial problems).

We have

f ′(z) = bzb−1 − (b− 1)zb−2R
2
b
0 + R0

and

f ′′(z) = (b− 1)zb−3(bz + (2− b)R
2
b
0 )
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and we see that f ′′ > 0 for all z > 0. Furthermore, f(0) =
−R0 < 0. Hence, the region Ω bounded from the left by
the axis z = 0 and lying above the graph of f for z > 0
is convex. Thus, the z axis, being transversal to the axis
z = 0 cuts the boundary of Ω in exactly two points, one
being (0, 0) and the other (R

1
b
0 , 0). Hence, there are no

additional equilibria of H2 and therefore H does not have
2-cycles for b ≤ 2.

Let us consider b > 3 (the case b = 3 is again referred to
tutorials). In this case f has exactly one inflection point

zi =
b− 2

b
R

2
b
0

The fact that the equilibrium x∗ = R
1
b
0 − 1 loses stability

at R0 = (b/b− 2)b suggests that a 2-cycle can appear when
R0 increases passing through this point. Let us first discuss
the stable region R0 ≤ (b/b− 2)b. Then

zi ≤ b

b− 2
< 1,

that is, the inflection point occurs in the nonphysical region
x = z − 1 < 0. For z = 1 we have f(1) = 1 − R

2
b
0 < 0 and

we can argue as above, using the line z = 1 instead of the
axis z = 0. Thus, when the equilibrium x∗ = R

1
b
0 − 1 is

stable, there are no 2-cycles. Let us consider the case with
R0 > (b/b− 2)b. At the equilibrium we find

f ′(R
1
b
0 ) = bR

b−1
b

0 − (b− 1)R
b−2

b
0 R

2
b
0 + R0

= bR
b−1

b
0 − (b− 2)R0 = R0(bR

− 1
b

0 − (b− 2))

and f ′(R
1
b
0 ) > 0 provided R0 > (b/b − 2)b. So, f takes

negative values for z > R
1
b
0 but, on the other hand, f(z)
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Fig. 5.14. Function f for b = 3 and, from top to bottom, R0 =
8, 27, 30 Notice the emergence of 2-cycles represented here by
new zeros of f besides z = 3

√
R0.

tends to +∞ for z →∞ and therefore there must be z∗ >

R
1
b
0 for which f(z∗). Since R

1
b
0 − 1 and 0 were the only

equilibria of H, z∗ must give a 2-cycle.
With much more, mainly computer aided, work we can

establish that, as with the logistic equation, we obtain pe-
riod doubling and transition to chaos.

Experimental results are in quite good agreement with
the model. Most models fell into the stable region. It
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is interesting to note that laboratory populations are usu-
ally less stable then the field ones. This is because scram-
ble for resources is confined and more homogeneous and
low density-independent mortality (high R0). Also, it is
obvious that high reproductive ratio R0 and highly over-
compensating density dependence (large b) are capable of
provoking periodic or chaotic fluctuations in population
density. This can be demonstrated mathematically (before
the advent of mathematical theory of chaos it was assumed
that these irregularities are of stochastic nature) and is ob-
served in the fluctuations of the population of the Colorado
beetle.

The question whether chaotic behaviour do exist in ecol-
ogy is still an area of active debate. Observational time
series are always finite and inherently noisy and it can
be argued that regular models can be found to fit these
data. However, several laboratory host-parasitoit systems
do seem to exhibit chaos as good fits were obtained between
the data and chaotic mathematical models.



6

From discrete to continuous models
and back

Unless a given phenomenon occurs indeed at well defined
and evenly spaced time intervals, usually it is op to us
wether we describe it using difference or differential equa-
tions. Each choice has its advantages and disadvantages
in the modelling process, however, both are closely inter-
twined. Indeed, as we have seen, continuous models are
obtained using the same principles as corresponding dis-
crete models. In fact, a discrete model, represented by a
difference equation, is an intermediate step in deriving a
relevant differential equation. Furthermore, since most in-
teresting differential equations cannot be solved explicitly,
we have to resort to numerical methods to deliver a testable
solution and numerics involves discretization of the differ-
ential equations which usually leads to a difference equation
which often different from the one we began with.

Thus, an important question is whether, under reason-
able circumstances, discrete and continuous models are equiv-
alent in the sense that they give the same solutions (or
at least, solutions with the same qualitative features) and

171
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whether there is a correspondence between continuous and
discrete models of the same type.

6.1 Discretizing differential equations

There are several ways of discretization of differential equa-
tions. We shall discuss two commonly used methods.

6.1.1 The Euler method

The first one is the standard in numerical analysis practice
of replacing the derivative by the difference quotient:

df

dt
≈ f(t + ∆t)− f(t)

∆t
.

For instance, for the exponential growth equation

N ′ = rN,

this discretization gives

N(t + ∆t) ≈ N(t) + rN(t)∆t

or, denoting for a fixed t, n(k) = N(t + k∆t)

n(k + 1) ≈ N(t + (k + 1)∆t) = N(t + k∆t + ∆t)

≈ N(t + k∆t) + rN(t + k∆t)∆t ≈ n(k) + trn(k)∆t

we get a difference equation giving us (approximate) value
of N at t + k∆t, k = 1, 2, . . . provided the initial value at
k = 0 is given. Note, however, that here we do not have
any guarantee that at any time step n(k) = N(t + k∆t).
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6.1.2 The time-one map

The second method is based on the observation that solu-
tions of autonomous differential equations display the so-
called semigroup property: if x(t, x0) is the solution to the
Cauchy problem

x′ = g(x), x(0) = x0, (6.1)

then

x(t1 + t2, x0) = x(t1, x(t2, x0)).

In other words, the process can be stopped and any time
and re-started again using the final state of the first time
interval as the initial state of the next time interval without
changing the final output. The semigroup property some-
times is referred to as the causality property.

Using this property, we can write

x((n + 1)∆t, x0) = x(∆t, x(n∆t, x0)). (6.2)

This amounts to saying that the solution after n + 1 time
steps can be obtained as the solution after one time step
with initial condition given as the solution after n time
steps. In other words, denoting x(n) = x(n∆t, x0) we have

x(n + 1) = f∆t(x(n))

where by f∆ we denoted the operation of getting solution
of the Cauchy problem (6.1) at t = ∆t with the initial
condition which appear as its argument.

We note that, contrary to the Euler method, the time-one
map method is exact that is x(n + 1) = x(n∆, x0) but its
drawback is that we have to now the solution of (6.1) and
thus its practical value is limited. We shall discuss these
two methods on two examples.
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In further discussion for simplicity we shall take ∆t = 1.

6.1.3 Discrete and continuous exponential growth

Let us consider the Cauchy problem for the equation of
exponential growth.

N ′ = rN, N(0) = N0

having the solution

N(t) = N0e
rt.

As we have see above, the Euler discretization gives

n(k + 1)− n(k) = rn(k)

with the solution

n(k) = (1 + r)kN0

and, contrary to the remark made at the end of Subsec-
tion 6.1.1, for this model the Euler discretization gives a
perfect agreement with the discrete model. However, one
must remember to re-scale the growth rate from discrete to
continuous using the formula R0 = 1 + r.

On the other hand, consider the time-one discretization
which amounts to assuming that we take census of the
population in evenly spaced time moments t0 = 0, t1 =
1, . . . , tk = k, . . . so that

N(k) = erkN0 = (er)k
N0.

Comparing this equation with (1.17), we see that it corre-
sponds to the discrete model with intrinsic growth rate

R0 = er.
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Thus we can state that if we observe a continuously grow-
ing population in discrete time intervals and the observed
(discrete) intrinsic growth rate is R0, then the real (contin-
uous) growth rate is given by r = ln(1+R0). However, the
qualitative features are preserved as in the Euler discretiza-
tion.

6.1.4 Logistic growth in discrete and continuous

time

Consider the logistic differential equation

y′ = ay(1− y), y(0) = y0. (6.3)

Euler discretization (with ∆t = 1) gives

y(n+1) = y(n)+ay(n)(1−y(n)) = (1+a)y(n)
(

1− y(n)
1+a

a

)
,

(6.4)
which is a discrete logistic equation. We have already solved
(6.3) and we know that its solutions monotonically converge
to the equilibrium y = 1. However, if we plot solutions to
(6.4) with, say, a = 4, we obtain the picture presented
in Fig. 6.1. Hence, in general it seems unlikely that we
can use the Euler discretization as an approximation to the
continuous model.

Let us, however, write down the complete Euler scheme:

y(n + 1) = y(n) + a∆ty(n)(1− y(n)), (6.5)

where y(n) = y(n∆t) and y(0) = y0. Then

y(n + 1) = (1 + a∆t)y(n)
(

1− a∆t

1 + a∆t
y(n)

)
.
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Fig. 6.1. Comparison of solutions to (6.3) and (6.4) with a = 4.

Substitution

x(n) =
a∆t

1 + a∆t
y(n) (6.6)

reduces (6.5) to

x(n + 1) = µx(n)(1− x(n)). (6.7)

Thus, the parameter µ which controls the long time be-
haviour of solutions to the discrete equation (6.7) depends
on ∆t and, by choosing a suitably small ∆t we can get solu-
tions of (6.7) to mimic the behaviour of solutions to (6.3).
Indeed, by taking 1 + a∆t < 3 we obtain convergence of
solutions x(n) to the equilibrium

x =
a∆t

1 + a∆t

which, reverting (6.6 ), gives the discrete approximation
y(n) which converges to 1, as the solution to (6.3). However,
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Fig. 6.2. Comparison of solutions to (6.3) with a = 4 and (6.7)
with µ = 3 (∆t = 0.5).

as seen on Fig 6.2, this convergence is not monotonic which
shows that the approximation is rather poor. This can be
remedied by taking 1+a∆t < 2 in which case the qualitative
features of y(t) and y(n) are the same, see Fig. 6.3).

We note that above problems can be also solved by intro-
ducing the so-called non-standard difference schemes which
consists in replacing the derivatives and/or nonlinear terms
by more sophisticated expressions which, though equivalent
when the time step goes to 0 produce, nevertheless, quali-
tatively different discrete picture. In the case of the logistic
equation such a non-standard scheme can be constructed
replacing y2 not by y2(n) but by y(n)y(n + 1).

y(n + 1) = y(n) = a∆t(y(n)− y(n)y(n + 1)).

In general, such a substitution yields an implicit scheme
but in our case the resulting recurrence can be solved for
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Fig. 6.3. Comparison of solutions to (6.3) with a = 4 and (6.7)
with µ = 2 (∆t = 0.25).

y(n + 1) producing

y(n + 1) =
(1 + a∆t)y(n)
1 + a∆ty(n)

and we recognize the Beverton-Holt-Hassel equation with
R0 = 1 + a∆t (and K = 1).

Consider now the logistic equation

N ′ = rN

(
1− N

K

)
.

The first type of discretization immediately produces the
discrete logistic equation (1.24)

Nk+1 = Nk + rNk

(
1− Nk

K

)
,

solutions of which, as we shall see later, behave in a dramat-
ically different way that those of the continuous equation.
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This is in contrast to the exponential growth equation dis-
cussed earlier.

To use the time-one map discretization, we re-write (4.14)
as

N(t) =
N0e

rt

1 + ert−1
K N0

.

which, upon denoting er = R0 gives the time-one map

N(1, N0) =
N0R0

1 + R0−1
K N0

,

which, according to the discussion above, yields the Beverton-
Holt model

Nk+1 =
NkR0

1 + R0−1
K Nk

,

with the discrete intrinsic growth rate related to the con-
tinuous one in the same way as in the exponential growth
equation.

6.1.5 Discrete models of seasonally changing

population

So far we have considered models in which laws of nature
are independent of time. In many real processes we have to
take into account phenomena which depend on time such as
seasons of the year. The starting point of modelling is as be-
fore the balance equation. If we denote by B(t), D(t), E(t)
and I(t) rates of birth, death, emigration and immigration,
so that e.g, the number of births in time interval [t1, t2]

equals
t2∫
t1

B(s)ds. Then, the change in the size of the popu-
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lation in this interval is

N(t2)−N(t1) =

t2∫

t1

(B(s)−D(s) + I(s)− E(s))ds,

or, in differential form

dN(t)
dt

= B(t)−D(s) + I(t)− E(t).

Processes of birth, death and emigration are often pro-
portional to the size of the population and thus it makes
sense to introduce per capita coefficients so that B(t) =
b(t)N(t), D(t) = d(t)N(t), E(t) = e(t)N(t). Typically, it
would be unreasonable to assume that immigration is pro-
portional to the number of the target population (possibly
rather to the inverse unless we consider processes like gold
rush), so that we leave I(t) unchanged and thus write the
rate equation as

dN(t)
dt

= (b(t)− d(s) + e(t))N(t) + I(t). (6.8)

This equation provides good description of small popula-
tions in which birth and death coefficients are not influ-
enced by the size of the population.

Our interest is in populations in which the coefficients
change periodically e.g. with seasons of the year. We start
with closed populations; that is we do not consider emigra-
tion and immigration. Then we define λ(t) = b(t)− d(t) to
be the net growth rate of the population and assume that
it is a periodic function with period T . Under this assump-
tion we introduce the average growth rate of the population
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by

λ̄ =
1
T

T∫

0

λ(t)dt. (6.9)

Thus, let us consider the initial value problem

dN(t)
dt

= λ(t)N(t), N(t0) = N0, (6.10)

where λ(t) is a continuous periodic function with period T .
Clearly, the solution is given by

N(t) = N0e

t∫
t0

λ(s)ds

. (6.11)

It would be tempting to believe that a population with
periodically changing growth rate also changes in a periodic
way. However, we have

r(t+T ) :=

t+T∫

t0

λ(s)ds =

t∫

t0

λ(s)ds+

t+T∫

t

λ(s)ds = r(t)+

T∫

0

λ(s)ds = r(t)+λ̄T

so that

N(t + T ) = N(t)eλ̄T

and we do not have periodicity in the solution. However,
we may provide a better description of the evolution. Let
us try to find what is ‘missing’ in the function r so that it
is not periodic. Assume that r̃(t) = r(t) + φ(t), where φ is
as yet an unspecified function, is periodic hence

r̃(t+T ) = r(t+T )+φ(t+T ) = r(t)+λ̄T+φ(t+T ) = r̃(t)+λ̄T+φ(t+T )−φ(t)

thus

φ(t + T ) = φ(t)− λ̄T.
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This shows that ψ = φ′ is a periodic function. To recon-
struct φ from its periodic derivative, first we assume that

the average of ψ is zero. Then F (t) =
t∫

t0

ψ(s)ds is peri-

odic. Indeed, F (t+T ) =
t+T∫
t0

ψ(s)ds = F (t)+
t+T∫
t

ψ(s)ds =

F (t)+
T∫
0

ψ(s)ds = F (t). Next, if the average of ψ is ψ̄, then

ψ − ψ̄ has zero average. Indeed,

t0+T∫

t0

(ψ(s)− ψ̄)ds = T ψ̄ − T ψ̄ = 0

Hence
t∫

t0

ψ(s)ds = g(t) + (t− t0)ψ̄

where g(t) is a periodic function. Returning to function φ,
we see that

ψ(t) = g(t) + c(t− t0)

for some constant c and periodic function g. As we are
interested in the simplest representation, we put g(t) = 0
and so ψ(t) becomes a linear function and

−λ̄T = φ(t + T )− φ(t) = c(t + T − t0)− c(t− t0)

and so c = λ̄.
Using this result we write

N(t) = N0e

t∫
t0

λ(s)ds

= N0e
λ̄(t−t0)Q(t)
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where

Q(t) = e

t∫
t0

λ(s)ds−λ̄(t−t0)

(6.12)

is a periodic function.
In particular, if we observe the population in discrete

time intervals of the length of the period T , we get

N(k) = N(t0+kT ) = N0e
λ̄T Q(t0+kT ) = N0e

λ̄kT Q(t0) = N0[eλ̄T ]k,

which is the expected difference equation with growth rate
given by eλ̄T .

6.2 A comparison of stability results for
differential and difference equations

Let us consider a phenomenon is a static environment which
can be described in both continuous and discrete time. In
the first case we have an (autonomous) differential equation

y′ = f(y), y(0) = y0, (6.13)

and in the second case a difference equation

y(n + 1) = g(y(n)), y(0) = y0. (6.14)

In all considerations of this section we assume that both
f and g are sufficiently regular functions so as not to have
any problems with existence, uniqueness etc.

First we note that while in both cases y is the number
of individuals in the population, the equations (6.13) and
(6.14) refer to two different aspects of the process. In fact,
while (6.13) describes the (instantaneous) rate of change
of the population’s size, (6.14) give the size of the popula-
tion after each cycle. To be more easily comparable, (6.14)
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should be written as

y(n+1)−y(n) = −y(n)+g(y(n)) =: f̄(y(n)), y(0) = y0,

(6.15)
which would describe the rate of change of the population
size per unit cycle. However, difference equations typically
are written and analysed in the form (6.14).

Let us recall the general result describing dynamics of
(6.13). As mentioned above, we assume that f is at least a
Lipschitz continuous function on R and the solutions exist
for all t. An equilibrium solution is any solution y(t) ≡ y

satisfying f(y) = 0.

Theorem 6.1 (i) If y0 is not an equilibrium point, then
y(t) never equals an equilibrium point.
(ii) All non-stationary solutions are either strictly decreas-
ing or strictly increasing functions of t.
(iii) For any y0 ∈ R, the solution y(y) either diverges
to +∞ or −∞, or converges to an equilibrium point, as
t →∞.

From this theorem it follows that if f has several equilib-
rium points, then the stationary solutions corresponding
to these points divide the (t, y) plane into strips such that
any solution remains always confined to one of them. If we
look at this from the point of phase space and orbits, first
we note that the phase space in the 1 dimensional case is
the real line R, divided by equilibrium points and thus and
orbits are open segments (possibly stretching to infinity)
between equilibrium points.

Furthermore, we observe that if f(y) > 0, then the solu-
tion y(t) is increasing at any point t when y(t) = y; con-
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Fig. 6.4. Monotonic behaviour of solutions to (6.13) depends on
the right hand side f of the equation.

versely, f(y) < 0 implies that the solution y(t) is decreas-
ing when y(t) = y. This also implies that any equilibrium
point y∗ with f ′(y∗) < 0 is asymptotically stable and with
f ′(y∗) > 0 is unstable; there are no stable, but not asymp-
totically stable, equilibria.

If we look now at the difference equation (6.14), then at
first we note some similarities. Equilibria are defined as

g(y) = y,
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(or f̄(y) = 0) and, as in the continuous case we compared
f with zero, in the discrete case we compare g(x) with x:
g(y) > y means that y(n + 1) = g(y(n)) > y(n) so that
the iterates are increasing while if g(x) < x, then they are
decreasing. Also, stability of equilibria is characterized in
a similar way: if |g′(y∗)| < 1, then y∗ asymptotically stable
and if |g′(y∗)| > 1, then y∗ unstable. In fact, if g′(y∗) >

0, then we have exact equivalence: y∗ is stable provided
f̄ ′(y∗) < 0 and unstable if f̄ ′(y∗) > 0. Indeed, in such a
case, if we start on a one side of an equilibrium y∗, then no
iteration can overshot this equilibrium as for, say y < y∗ we
have f(y) < f(y∗) = y∗. Thus, as in the continuous case,
the solutions are confined to intervals between successive
equilibria.

However, similarities end here as the dynamics of differ-
ence equation is much richer that that of the corresponding
differential equation as the behaviour of the solution near
an equilibrium is also governed the sign of g itself.

First, contrary to Theorem 6.1 (i), solutions can reach an
equilibrium in a finite time, as demonstrated in Example
6.1.

In differential equations, an equilibrium cannot be reached
in finite time. Difference equations do not share this prop-
erty. This leads to the definition:

Definition 6.1 A point x in the domain of f is said to be an
eventual equilibrium of (5.4) if there is an equilibrium point
x∗ of (5.4) and a positive integer r such that x∗ = fr(x)
and fr−1(x) 6= x∗.
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Example 6.1 The Tent Map. Consider

x(n + 1) = Tx(n)

where

T (x) =
{

2x for 0 ≤ x ≤ 1/2,

2(1− x) for 1/2 < x ≤ 1.

There are two equilibrium points, 0 and 2/3. Looking for
eventual equilibria is not as simple. Taking x(0) = 1/8, we
find x(1) = 1/4, x(2) = 1/2, x(3) = 1 and x(4) = 0, and
hence 1/8 (as well as 1/4, 1/2 and 1) are eventual equilibria.
It can be checked that all points of the form x = n/2k, where
n, k ∈ N satisfy 0 < n/2k < 1 are eventual equilibria.

Further, recalling Remark 5.3, we see that if−1 < g′(y∗) <

0, then the solution can overshoot the equilibrium creating
damped oscillations towards equilibrium, whereas any re-
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Fig. 6.6. Eventual equilibrium x = 1/8 for the tent map.

versal of the direction of motion is impossible in autonomous
scalar differential equations. Also, as we have seen, differ-
ence equations may have periodic solutions which are pre-
cluded from occurring in the continuous case. Finally, no
chaotic behaviour can occur in scalar differential equations
(partly because they do not admit periodic solutions abun-
dance of which is a signature of chaos). In fact, in can be
proved that chaos in differential equations may occur only
if the dimension of the state space exceeds 3.
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Fig. 6.7. Change of the type of convergence to the equilib-
rium from monotonic if 0 < g′(y∗) < 1 to oscillatory for
−1 < g′(y∗) < 0 .



7

Simultaneous systems of equations
and higher order equations

7.1 Systems of equations

7.1.1 Why systems?

Two possible generalizations of the first order scalar equa-
tion

y′ = f(t, y)

are: a differential equation of a higher order

y(n) = F (t, y′, y′′, . . . , y(n−1)) = 0, (7.1)

(where, for simplicity, we consider only equations solved
with respect to the highest derivative), or a system of first
order equations, that is,

y′ = f(t,y) (7.2)

where,

y(t) =




y1(t)
...

yn(t)


 ,

190
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and

f(t,y) =




f1(t, y1, . . . , yn)
...

fn(t, y1, . . . , yn)


 ,

is a nonlinear function of t and y. It turns out that, at least
from the theoretical point of view, there is no need to con-
sider these two cases separately as any equation of a higher
order can be always written as a system (the converse, in
general, is not true). To see how this can be accomplished,
we introduce new unknown variables z1(t) = y(t), z2(t) =
y′(t), zn = y(n−1)(t) so that z′1(t) = y′(t) = z2(t), z′2(t) =
y′′(t) = z3(t), . . . and (7.1) converts into

z′1 = z2,

z′2 = z3,

...
...

...

z′n = F (t, z1, . . . , zn)

Clearly, solving this system, we obtain simultaneously the
solution of (7.1) by taking y(t) = z1(t).

7.1.2 Linear systems

At the beginning we shall consider only systems of first
order differential equations that are solved with respect to
the derivatives of all unknown functions. The systems we
deal with in this section are linear, that is, they can be
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written as

y′1 = a11y1 + a12y2 + . . . + a1nyn + g1(t),
...

...
..., (7.3)

y′n = an1y1 + an2y2 + . . . + annyn + gn(t),

where y1, . . . , yn are unknown functions, a11, . . . ann are
constant coefficients and g1(t) . . . , gn(t) are known continu-
ous functions. If g1 = . . . = gn = 0, then the corresponding
system (7.3) is called the associated homogeneous system.
The structure of (7.3) suggest that a more economical way
of writing it is to use the vector-matrix notation. Denoting
y = (y1, . . . , yn), g = (g1, . . . , gn) and A = {aij}1≤i,j≤n,
that is

A =




a11 . . . a1n

...
...

an1 . . . ann


 ,

we can write (7.3) in a more concise way as

y′ = Ay + g. (7.4)

Here we have n unknown functions and the system involves
first derivative of each of them so that it is natural to con-
sider (7.4) in conjunction with the following initial condi-
tions

y(t0) = y0, (7.5)

or, in the expanded form,

y1(t0) = y0
1 , . . . , yn(t0) = y0

n, (7.6)

where t0 is a given argument and y0 = (y0
1 , . . . , y0

n) is a
given vector.
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As we noted in the introduction, systems of first order
equations are closely related to higher order equations. In
particular, any nth order linear equation

y(n) + an−1y
(n−1) + . . . + a1y

′ + a0y = g(t) (7.7)

can be written as a linear system of n first order equations
by introducing new variables z1 = y, z2 = y′ = z′1, z3 =
y′′ = z′2, . . . zn = y(n−1) = z′n−1 so that z′n = y(n) and (7.7)
turns into

z′1 = z2,

z′2 = z3,

...
...

z′n = −an−1zn − an−2zn−1 − . . .− a0z1 + g(t).

Note that if (7.7) was supplemented with the initial condi-
tions y(t0) = y0, y

′(t0) = y1, . . . y
(n−1) = yn−1, then these

conditions will become natural initial conditions for the sys-
tem as z1(t0) = y0, z2(t0) = y1, . . . zn(t0) = yn−1. There-
fore, all the results we shall prove here are relevant also for
nth order equations.

In some cases, especially when faced with simple systems
of differential equations, it pays to revert the procedure and
to transform a system into a single, higher order, equation
rather than to apply directly a heavy procedure for full
systems. We illustrate this remark in the following example.

Example 7.1 Consider the system

y′1 = a11y1 + a12y2,

y′2 = a21y1 + a22y2. (7.8)
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Firstly, note that if either a12 or a21 equal zero, then the
equations are uncoupled, e.g., if a12 = 0, then the first equa-
tion does not contain y2 and can be solved for y1 and this
solution can be inserted into the second equation which then
becomes a first order nonhomogeneous equation for y2.

Assume then that a12 6= 0. We proceed by eliminating y2

from the first equation. Differentiating it, we obtain

y′′1 = a11y
′
1 + a12y

′
2,

so that, using the second equation,

y′′1 = a11y
′
1 + a12(a21y1 + a22y2).

To get rid of the remaining y2, we use the first equation
once again obtaining

y2 = a−1
12 (y′1 − a11y1), (7.9)

y′′1 = (a11 + a22)y′1 + (a12a21 − a22a11)y1

which is a second order linear equation. If we are able to
solve it to obtain y1, we use again (7.9) to obtain y2.

However, for larger systems this procedure becomes quite
cumbersome unless the matrix A of coefficients has a simple
structure.

7.1.3 Algebraic properties of systems

In this subsection we shall prove several results related to
the algebraic structure of the set of solutions to

y′ = Ay, y(t0) = y0. (7.10)
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An extremely important rôle here is played by the unique-
ness of solutions. In Section 4.2 we discussed Picard’ theo-
rem, Theorem 4.2, that dealt with the existence and unique-
ness of solution to the Cauchy problem

y′ = f(t, y), y(t0) = y0

where y and f were scalar valued functions. It turns out
that this theorem can be easily generalized to the vector
case, that is to the case where f is a vector valued function
f(t,y) of a vector valued argument y. In particular, it can
be applied to the case when f(t,y) = Ay + g(t). Thus, we
can state

Theorem 7.1 Let g(t) be a continuous function from R
to Rn. Then there exists one and only one solution of the
initial value problem

y′ = Ay + g(t), y(t0) = y0. (7.11)

Moreover, this solution exists for all t ∈ R.

One of the important implications of this theorem is that
if y is a non-trivial, that is, not identically equal to zero,
solution to the homogeneous equation

y′ = Ay, (7.12)

then y(t) 6= 0 for any t. In fact, as y∗ ≡ 0 is a solution to
(7.12) and by definition y∗(t̄) = 0 for any t̄, the existence of
other solution satisfying y(t̄) = 0 for some t̄ would violate
Theorem 7.1.

Let us denote by X the set of all solutions to (7.12). Due
to linearity of differentiation and multiplication by A, it is
easy to see that X is a vector space. Moreover
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Theorem 7.2 The dimension of X is equal to n.

Proof. We must exhibit a basis of X that contains exactly
n elements. Thus, let zj(t), j = 1, . . . , n be solutions of
special Cauchy problems

y′ = Ay, y(0) = ej, (7.13)

where ej = (0, 0, . . . , 1, . . . , 0) with 1 at jth place is a ver-
sor of the coordinate system. To determine whether the
set {z1(t), . . . , zn(t)} is linearly dependent, we ask whether
from

c1z1(t) + . . . + cnzn(t) = 0,

it follows that c1 = . . . = cn = 0. If the linear combination
vanishes for any t, then it must vanish in particular for
t = 0. Thus, using the initial conditions zj(0) = ej we see
that we would have

c1e1 + . . . + cne2 = 0,

but since the set {e1, . . . , en} is a basis in Rn, we see that
necessarily c1 = . . . = cn = 0. Thus {z1(t), . . . , zn(t)}
is linearly independent and dimX ≥ n. To show that
dimX = n we must show that X is spanned by {z1(t), . . . , zn(t)},
that is, that any solution y(t) can be written as

y(t) = c1z1(t) + . . . + cnzn(t)

for some constants c1, . . . , cn. Let y(t) be any solution to
(7.12) and define y0 = y(0) ∈ Rn. Since {e1, . . . , en} is a
basis Rn, there are constants c1, . . . , cn such that

y0 = c1e1 + . . . + cne2.
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Consider

x(t) = c1z1(t) + . . . + cnzn(t).

Clearly, x(t) is a solution to (7.12), as a linear combination
of solutions, and x(0) = c1e1 + . . . + cnen = y0 = y(0).
Thus, x(t) and y(t) are both solutions to (7.12) satisfying
the same initial condition and therefore x(t) = y(t) by
Theorem 7.1. Hence,

y(t) = c1z1(t) + . . . + cnzn(t).

and the set {z1(t), . . . , zn(t)} is a basis for X.
Next we present a convenient way of determining whether

solutions to (7.12) are linearly independent.

Theorem 7.3 Let y1, . . . ,yk be k linearly independent so-
lutions of y′ = Ay and let t0 ∈ R be an arbitrary number.
Then, {y1(t), . . . ,yk(t)} form a linearly independent set of
functions if and only if {y1(t0), . . . ,yk(t0)} is a linearly
independent set of vectors in Rn.

Proof. If {y1(t), . . . ,yk(t)} are linearly dependent func-
tions, then there exist constants c1, . . . , ck, not all zero,
such that for all t

c1y1(t) + . . . + cnyk(t) = 0.

Taking this at a particular value of t, t = t0, we obtain that

c1y1(t0) + . . . + cnyk(t0) = 0,

with not all ci vanishing. Thus the set {y1(t0), . . . ,yk(t0)}
is a set of linearly dependent vectors in Rn.
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Conversely, suppose that {y1(t0), . . . ,yk(t0)} is a lin-
early dependent set of vectors. Then for some constants

c1y1(t0) + . . . + cnyk(t0) = 0,

where not all ci are equal to zero. Taking these constants
we construct the function

y(t) = c1y1(t) + . . . + cnyk(t),

which is a solution to (7.12) as a linear combination of solu-
tions. However, since y(t0) = 0, by the uniqueness theorem
we obtain that y(t) = 0 for all t so that {y1(t), . . . ,yk(t)}
is a linearly dependent set of functions.

Remark 7.1 To check whether a set of n vectors of Rn

is linearly independent, we can use the determinant test:
{y1, . . . ,yk} is linearly independent if and only if

det{y1, . . . ,yk} =

∣∣∣∣∣∣∣

y1
1 . . . yn

1
...

...
y1

n . . . yn
n

∣∣∣∣∣∣∣
6= 0.

If {y1(t), . . . ,yk(t)} is a set of solution of the homogeneous
system, then the determinant

det{y1(t), . . . ,yk(t)} =

∣∣∣∣∣∣∣

y1
1(t) . . . yn

1 (t)
...

...
y1

n(t) . . . yn
n(t)

∣∣∣∣∣∣∣

is called wronskian. The theorems proved above can be
rephrased by saying that the wronskian is non-zero if it is
constructed with independent solutions of a system of equa-
tions and, in such a case, it is non-zero if and only if it is
non-zero at some point.
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Example 7.2 Consider the system of differential equations

y′1 = y2,

y′2 = −y1 − 2y2, (7.14)

or, in matrix notation

y′ =
(

0 1
−1 −2

)
y.

Let us take two solutions:

y1(t) = (y1
1(t), y1

2(t)) = (φ(t), φ′(t)) = (e−t,−e−t) = e−t(1,−1)

and

y2(t) = (y2
1(t), y2

2(t)) = (ψ(t), ψ′(t)) = (te−t, (1−t)e−t) = e−t(t, 1−t).

To check whether these are linearly in dependent solutions
to the system and thus whether they span the space of all
solutions, we use Theorem 7.3 and check the linear depen-
dence of vectors y1(0) = (1,−1) and y2(0) = (0, 1). Using
e.g. the determinant test for linear dependence we evaluate

∣∣∣∣
1 −1
0 1

∣∣∣∣ = 1 6= 0,

thus the vectors are linearly independent. Consequently, all
solutions to (7.14) can be written in the form

y(t) = C1

(
e−t

−e−t

)
+C2

(
te−t

(1− t)e−t

)
=

(
(C1 + C2t)e−t

(C2 − C1 − C2t)e−t

)
.

Assume now that we are given this y(t) as a solution to
the system. The system is equivalent to the second order
equation

y′′ + 2y′ + y = 0 (7.15)
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under identification y(t) = y1(t) and y′(t) = y2(t). How
can we recover the general solution to (7.15) from y(t)?
Remembering that y solves (7.15) if and only if y(t) =
(y1(t), y2(t)) = (y(t), y′(t)) solves the system (7.14), we see
that the general solution to (7.15) can be obtained by tak-
ing first components of the solution of the associated system
(7.14). We also note the fact that if y1(t) = (y1

1(t), y1
2(t)) =

(y1(t), dy1

dt (t)) and y1(t) = (y2
1(t), y2

2(t)) = (y2(t), dy2

dt (t))
are two linearly independent solutions to (7.14), then y1(t)
and y2(t) are linearly independent solutions to (7.15). In
fact, otherwise we would have y1(t) = Cy2(t) for some con-
stant C and therefore also dy1

dt (t) = C dy2

dt (t) so that the
wronskian, having the second column as a scalar multiple
of the first one, would be zero, contrary to the assumption
that y1(t) and y2(t) are linearly independent.

7.1.4 The eigenvalue-eigenvector method of

finding solutions

We start with a brief survey of eigenvalues and eigenvectors
of matrices. Let A be an n × n matrix. We say that a
number λ (real or complex) is an eigenvalue of A is there
exist a non-zero solution of the equation

Av = λv. (7.16)

Such a solution is called an eigenvector of A. The set of
eigenvectors corresponding to a given eigenvalue is a vector
subspace. Eq. (7.16) is equivalent to the homogeneous sys-
tem (A−λI)v = 0, where I is the identity matrix, therefore
λ is an eigenvalue of A if and only if the determinant of A
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satisfies

det(A− λI) =

∣∣∣∣∣∣∣

a11 − λ . . . a1n

...
...

an1 . . . ann − λ

∣∣∣∣∣∣∣
= 0. (7.17)

Evaluating the determinant we obtain a polynomial in λ of
degree n. This polynomial is also called the characteristic
polynomial of the system (7.3) (if (7.3) arises from a second
order equation, then this is the same polynomial as the
characteristic polynomial of the equation). We shall denote
this polynomial by p(λ). From algebra we know that there
are exactly n, possibly complex, roots of p(λ). Some of
them may be multiple, so that in general p(λ) factorizes
into

p(λ) = (λ1 − λ)n1 · . . . · (λk − λ)nk , (7.18)

with n1 + . . . + nk = n. It is also worthwhile to note
that since the coefficients of the polynomial are real, then
complex roots appear always in conjugate pairs, that is, if
λj = ξj+iωj is a characteristic root, then so is λ̄j = ξj−iωj .
Thus, eigenvalues are roots of the characteristic polynomial
of A. The exponent ni appearing in the factorization (7.18)
is called the algebraic multiplicity of λi. For each eigenvalue
λi there corresponds an eigenvector vi and eigenvectors cor-
responding to distinct eigenvalues are linearly independent.
The set of all eigenvectors corresponding to λi spans a sub-
space, called the eigenspace corresponding to λi which we
will denote by Eλi . The dimension of Eλi is called the geo-
metric multiplicity of λi. In general, algebraic and geomet-
ric multiplicities are different with geometric multiplicity
being at most equal to the algebraic one. Thus, in partic-
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ular, if λi is a single root of the characteristic polynomial,
then the eigenspace corresponding to λ1 is one-dimensional.

If the geometric multiplicities of eigenvalues add up to n,
that is, if we have n linearly independent eigenvectors, then
these eigenvectors form a basis for Rn. In particular, this
happens if all eigenvalues are single roots of the character-
istic polynomial. If this is not the case, then we do not have
sufficiently many eigenvectors to span Rn and if we need a
basis for Rn, then we have to find additional linearly inde-
pendent vectors. A procedure that can be employed here
and that will be very useful in our treatment of systems
of differential equations is to find solutions to equations of
the form (A − λiI)kv = 0 for 1 < k ≤ ni, where ni is the
algebraic multiplicity of λi. Precisely speaking, if λi has
algebraic multiplicity ni and if

(A− λiI)v = 0

has only νi < ni linearly independent solutions, then we
consider the equation

(A− λiI)2v = 0.

It follows that all the solutions of the preceding equation
solve this equation but there is at least one more indepen-
dent solution so that we have at least νi + 1 independent
vectors (note that these new vectors are no longer eigen-
vectors). If the number of independent solutions is still less
than ni, we consider

(A− λiI)3v = 0,

and so on, till we get a sufficient number of them. Note,
that to make sure that in the step j we select solutions that
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are independent of the solutions obtained in step j − 1 it
is enough to find solutions to (A− λiI)jv = 0 that satisfy
(A− λiI)j−1v 6= 0.

Now we show how to apply the concepts discussed above
to solve systems of differential equations. Consider again
the homogeneous system

y′ = Ay. (7.19)

Our goal is to find n linearly independent solutions of (7.19).
We have seen that solutions of the form eλt play a basic
rôle in solving first order linear equations so let us consider
y(t) = eλtv for some vector v ∈ Rn. Since

d

dt
eλtv = λeλtv

and

A(eλtv) = eλtAv

as eλt is a scalar, y(t) = eλtv is a solution to (7.19) if and
only if

Av = λv. (7.20)

Thus y(t) = eλtv is a solution if and only if v is an eigen-
vector of A corresponding to the eigenvalue λ.

Thus, for each eigenvector vj of A with eigenvalue λj

we have a solution yj(t) = eλjtvj. By Theorem 7.3 these
solutions are linearly independent if and only if the eigen-
vectors vj are linearly independent in Rn. Thus, if we can
find n linearly independent eigenvectors of A with eigenval-
ues λ1, . . . , λn (not necessarily distinct), then the general
solution of (7.19) is of the form

y(t) = C1e
λ1tv1 + . . . + Cneλntvn. (7.21)
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Distinct real eigenvalues
The simplest situation is of course if the characteristic

polynomial p(λ) has n distinct roots, that is, all roots are
single and in this case the eigenvectors corresponding to
different eigenvalues (roots) are linearly independent, as we
mentioned earlier. However, this can also happen if some
eigenvalues are multiple ones but the algebraic and geomet-
ric multiplicity of each is the same. In this case to each root
of multiplicity n1 there correspond n1 linearly independent
eigenvectors.

Example 7.3 Find the general solution to

y′ =




1 −1 4
3 2 −1
2 1 −1


y.

To obtain the eigenvalues we calculate the characteristic
polynomial

p(λ) = det(A− λI) =

∣∣∣∣∣∣

1− λ −1 4
3 2− λ −1
2 1 −1− λ

∣∣∣∣∣∣
= −(1 + λ)(1− λ)(2− λ) + 12 + 2− 8(2− λ) + (1− λ)− 3(1 + λ)

= −(1 + λ)(1− λ)(2− λ) + 4λ− 4 = (1− λ)(λ− 3)(λ + 2),

so that the eigenvalues of A are λ1 = 1, λ2 = 3 and λ3 =
−2. All the eigenvalues have algebraic multiplicity 1 so that
they should give rise to 3 linearly independent eigenvectors.

(i) λ1 = 1: we seek a nonzero vector v such that

(A−1I)v =




0 −1 4
3 1 −1
2 1 −2







v1

v2

v3


 =




0
0
0


 .
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Thus

−v2+4v3 = 0, 3v1+v2−v3 = 0, 2v1+v2−2v3 = 0

and we get v2 = 4v3 and v1 = −v3 from the first
two equations and the third is automatically satis-
fied. Thus we obtain the eigenspace corresponding
to λ1 = 1 containing all the vectors of the form

v1 = C1



−1

4
1




where C1 is any constant, and the corresponding
solutions

y1(t) = C1e
t



−1

4
1


 .

(ii) λ2 = 3: we seek a nonzero vector v such that

(A−3I)v =



−2 −1 4

3 −1 −1
2 1 −4







v1

v2

v3


 =




0
0
0


 .

Hence

−2v1−v2+4v3 = 0, 3v1−v2−v3 = 0, 2v1+v2−4v3 = 0.

Solving for v1 and v2 in terms of v3 from the first
two equations gives v1 = v3 and v2 = 2v3. Conse-
quently, vectors of the form

v2 = C2




1
2
1



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are eigenvectors corresponding to the eigenvalue λ2 =
3 and the function

y2(t) = e3t




1
2
1




is the second solution of the system.
(iii) λ3 = −2: We have to solve

(A+2I)v =




3 −1 4
3 4 −1
2 1 1







v1

v2

v3


 =




0
0
0


 .

Thus

3v1−v2+4v3 = 0, 3v1+4v2−v3 = 0, 2v1+v2+v3 = 0.

Again, solving for v1 and v2 in terms of v3 from
the first two equations gives v1 = −v3 and v2 = v3

so that each vector

v3 = C3



−1

1
1




is an eigenvector corresponding to the eigenvalue
λ3 = −2. Consequently, the function

y3(t) = e−2t



−1

1
1




is the third solution of the system. These solutions
are linearly independent since the vectors v1,v2,v3
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are linearly independent as eigenvectors correspond-
ing to distinct eigenvalues. Therefore, every solu-
tion is of the form

y(t) = C1e
t



−1
4
1


+C2e

3t




1
2
1


+C3e

−2t



−1
1
1


 .

Distinct complex eigenvalues
If λ = ξ + iω is a complex eigenvalue, then also its com-

plex conjugate λ̄ = ξ − iω is an eigenvalue, as the charac-
teristic polynomial p(λ) has real coefficients. Eigenvectors
v corresponding to a complex complex eigenvalue λ will
be complex vectors, that is, vectors with complex entries.
Thus, we can write

v =




v1
1 + iv2

1
...

v1
n + iv2

n


 =




v1
1
...

v1
n


 + i




v2
1
...

v2
n


 = <v + i=v.

Since (A − λI)v = 0, taking complex conjugate of both
sides and using the fact that matrices A and I have only
real entries, we see that

(A− λI)v = (A− λ̄I)v̄ = 0

so that the complex conjugate v̄ of v is an eigenvector corre-
sponding to the eigenvalue λ̄. Since λ 6= λ̄, as we assumed
that λ is complex, the eigenvectors v and v̄ are linearly
independent and thus we obtain two linearly independent
complex valued solutions

z1(t) = eλtv, z2(t) = eλ̄tv̄ = z1(t).

Since the sum and the difference of two solutions are again
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solutions, by taking

y1(t) =
z1(t) + z2(t)

2
=

z1(t) + z1(t)
2

= <z1(t)

and

y2(t) =
z1(t)− z2(t)

2i
=

z1(t)− z1(t)
2i

= =z1(t)

we obtain two real valued (and linearly independent) so-
lutions. To find explicit formulae for y1(t) and y2(t), we
write

z1(t) = eλtv = eξt(cosωt + i sin ωt)(<v + i=v)

= eξt(cos ωt<v − sin ωt=v) + ieξt(cos ωt=v + sin ωt<v)

= y1(t) + iy2(t)

Summarizing, if λ and λ̄ are single complex roots of the
characteristic equation with complex eigenvectors v and v̄,
respectively, then the we can use two real linearly indepen-
dent solutions

y1(t) = eξt(cos ωt<v − sinωt=v)

y2(t) = eξt(cos ωt=v + sin ωt<v) (7.22)

Example 7.4 Solve the initial value problem

y′ =




1 0 0
0 1 −1
0 1 1


y, y(0) =




1
1
1



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The characteristic polynomial is given by

p(λ) = det(A− λI) =

∣∣∣∣∣∣

1− λ 0 0
0 1− λ −1
0 1 1− λ

∣∣∣∣∣∣
= (1− λ)3 + (1− λ) = (1− λ)(λ2 − 2λ + 2)

so that we have eigenvalues λ1 = 1 and λ2,3 = 1± i.
It is immediate that

v =




1
0
0




is an eigenvector corresponding to λ1 = 1 and thus we ob-
tain a solution to the system in the form

y1(t) = et




1
0
0


 .

Let us take now the complex eigenvalue λ2 = 1 + i. We
have to solve

(A− (1 + i)I)v =



−i 0 0
0 −i −1
0 1 −i







v1

v2

v3


 =




0
0
0


 .

Thus

−iv1 = 0, −iv2 − v3 = 0, v2 − iv3 = 0.

The first equation gives v1 = 0 and the other two yield
v2 = iv3 so that each vector

v2 = C2




0
i

1



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is an eigenvector corresponding to the eigenvalue λ2 = 1+i.
Consequently, we obtain a complex valued solution

z(t) = e(1+i)t




0
i

1


 .

To obtain real valued solutions, we separate z into real and
imaginary parts:

e(1+i)t




0
i

1


 = et(cos t + i sin t)







0
0
1


 + i




0
1
0







= et


cos t




0
0
1


− sin t




0
1
0


 + i sin t




0
0
1


 + i cos t




0
1
0







= et




0
− sin t

cos t


 + iet




0
cos t

sin t


 .

Thus, we obtain two real solutions

y1(t) = et




0
− sin t

cos t




y2(t) = et




0
cos t

sin t




and the general solution to our original system is given by

y(t) = C1e
t




1
0
0


 + C2e

t




0
− sin t

cos t


 + C3e

t




0
cos t

sin t


 .
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We can check that all these solutions are independent as
their initial values




1
0
0


 ,




0
0
1


 ,




0
1
0


 ,

are independent. To find the solution to our initial value
problem we set t = 0 and we have to solve for C1, C2 and
C3 the system



1
1
1


 = C1




1
0
0


 +




0
0
1


 + C3




0
1
0


 =




C1

C2

C3


 .

Thus C1 = C2 = C3 = 1 and finally

y(t) = et




1
0
0


+et




0
− sin t

cos t


+et




0
cos t

sin t


 = et




1
cos t− sin t

cos t + sin t


 .

Multiple eigenvalues
If not all roots of the characteristic polynomial of A are

distinct, that is, there are multiple eigenvalues of A, then
it may happen that A has less than n linearly independent
eigenvectors. Precisely, let us suppose that an n×n matrix
A has only k < n linearly independent solutions. Then,
the differential equation y′ = Ay has only k linearly in-
dependent solutions of the form eλtv. Our aim is to find
additional n − k independent solutions. We approach this
problem by introducing an abstract framework for solving
systems of differential equations.

Recall that for a single equation y′ = ay, where a is
a constant, the general solution is given by y(t) = eatC,
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where C is a constant. In a similar way, we would like to
say that the general solution to

y′ = Ay,

where A is an n × n matrix, is y = eAtv, where v is any
constant vector in Rn. The problem is that we do not
know what it means to evaluate the exponential of a matrix.
However, if we reflect for a moment that the exponential of
a number can be evaluated as the power (Maclaurin) series

ex = 1 + x +
x2

2
+

x3

3!
+ . . . +

xk

k!
+ . . . ,

where the only involved operations on the argument x are
additions, scalar multiplications and taking integer powers,
we come to the conclusion that the above expression can
be written also for a matrix, that is, we can define

eA = I +A+
1
2
A2 +

1
3!
A3 + . . . +

1
k!
Ak + . . . . (7.23)

It can be shown that if A is a matrix, then the above series
always converges and the sum is a matrix. For example, if
we take

A =




λ 0 0
0 λ 0
0 0 λ


 = λI,

then

Ak = λkIk = λkI,
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and

eA = I + λI +
λ2

2
I +

λ3

3!
I + . . . +

λk

k!
+ . . .

=
(

1 + λ +
λ2

2
+

λ3

3!
+ . . . +

λk

k!
+ . . .

)
I

= eλI. (7.24)

Unfortunately, in most cases finding the explicit form for
eA directly is impossible.

Matrix exponentials have the following algebraic proper-
ties

(
eA

)−1
= e−A

and

eA+B = eAeB (7.25)

provided the matrices A and B commute: AB = BA.
Let us define a function of t by

etA = I + tA+
t2

2
A2 +

t3

3!
A3 + . . . +

tk

k!
Ak + . . . . (7.26)

It follows that this function can be differentiated with re-
spect to t by termwise differentiation of the series, as in the
scalar case, that is,

d

dt
eAt = A+ tA2 +

t2

2!
A3 + . . . +

tk−1

(k − 1)!
Ak + . . .

= A
(
I + tA+

t2

2!
A2 + . . . +

tk−1

(k − 1)!
Ak−1 + . . .

)

= AetA = etAA,

proving thus that y(t) = etAv is a solution to our system
of equations for any constant vector v.
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As we mentioned earlier, in general it is difficult to find
directly the explicit form of etA. However, we can always
find n linearly independent vectors v for which the series
etAv can be summed exactly. This is based on the following
two observations. Firstly, since λI and A − λI commute,
we have by (7.24) and (7.25)

etAv = et(A−λI)etλIv = eλtet(A−λI)v.

Secondly, if (A− λI)mv = 0 for some m, then

(A− λI)rv = 0, (7.27)

for all r ≥ m. This follows from

(A− λI)rv = (A− λI)r−m[(A− λI)mv] = 0.

Consequently, for such a v

et(A−λI)v = v+ t(A−λI)v+ . . .+
tm−1

(m− 1)!
(A−λI)m−1v.

and

etAv = eλtet(A−λI)v = eλt

(
v + t(A− λI)v + . . . +

tm−1

(m− 1)!
(A− λI)m−1v

)
.

(7.28)
Thus, to find all solutions to y′ = Ay it is sufficient to find
n independent vectors v satisfying (7.27) for some scalars
λ. To check consistency of this method with our previ-
ous consideration we observe that if λ = λ1 is a single
eigenvalue of A with a corresponding eigenvector v1, then
(A − λ1I)v1 = 0, thus m of (7.27) is equal to 1. Conse-
quently, the sum in (7.28) terminates after the first term
and we obtain

y1(t) = eλ1tv1
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in accordance with (7.21). From our discussion of eigen-
values and eigenvectors it follows that if λi is a multiple
eigenvalue of A of algebraic multiplicity ni and the geo-
metric multiplicity is less then ni, that is, there is less than
ni linearly independent eigenvectors corresponding to λi,
then the missing independent vectors can be found by solv-
ing successively equations (A− λiI)kv = 0 with k running
at most up to n1. Thus, we have the following algorithm
for finding n linearly independent solutions to y′ = Ay:

(i) Find all eigenvalues of A;
(ii) If λ is a single real eigenvalue, then there is an eigen-

vector v so that the solution is given by

y(t) = eλtv (7.29)

(iii) If λ is a single complex eigenvalue λ = ξ + iω, then
there is a complex eigenvector v = <v + i=v such
that two solutions corresponding to λ (and λ̄) are
given by

y1(t) = eξt(cos ωt<v − sinωt=v)

y2(t) = eξt(cos ωt=v + sin ωt<v) (7.30)

(iv) If λ is a multiple eigenvalue with algebraic multiplic-
ity k (that is, λ is a multiple root of the character-
istic equation of multiplicity k), then we first find
eigenvectors by solving (A − λI)v = 0. For these
eigenvectors the solution is again given by (7.29) (or
(7.30), if λ is complex). If we found k independent
eigenvectors, then our work with this eigenvalue is
finished. If not, then we look for vectors that sat-
isfy (A− λI)2v = 0 but (A− λI)v 6= 0. For these
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vectors we have the solutions

etAv = eλt (v + t(A− λI)v) .

If we still do not have k independent solutions, then
we find vectors for which (A− λI)3v = 0 and (A−
λI)2v 6= 0, and for such vectors we construct solu-
tions

etAv = eλt

(
v + t(A− λI)v +

t2

2
(A− λI)2v

)
.

This procedure is continued till we have k solutions
(by the properties of eigenvalues we have to repeat
this procedure at most k times).

If λ is a complex eigenvalue of multiplicity k, then
also λ̄ is an eigenvalue of multiplicity k and we obtain
pairs of real solutions by taking real and imaginary
parts of the formulae presented above.

Remark 7.2 Once we know that all solutions must be of
the form (7.28) with the degree of the polynomial being at
most equal to the algebraic multiplicity of λ, we can use the
method of undetermined coefficients to find the solutions.
Namely, if λ is an eigenvalue of multiplicity k, the we can
look for a solutions in the form

y(t) = eλt
(
a0 + a1t + . . .ak−1tk−1

)

where unknown vectors a0, . . . ,ak−1 are to be determined
by inserting y(t) into the equation and solving the resulting
simultaneous systems of algebraic equations.

Example 7.5 Find three linearly independent solutions of
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the differential equation

y′ =




1 1 0
0 1 0
0 0 2


y.

To obtain the eigenvalues we calculate the characteristic
polynomial

p(λ) = det(A− λI) =

∣∣∣∣∣∣

1− λ 1 0
0 1− λ 0
0 0 2− λ

∣∣∣∣∣∣
= (1− λ)2(2− λ)

so that λ1 = 1 is eigenvalue of multiplicity 2 and λ2 = 2 is
an eigenvalue of multiplicity 1.

(i) λ = 1: We seek all non-zero vectors such that

(A− 1I)v =




0 1 0
0 0 0
0 0 1







v1

v2

v3


 =




0
0
0


 .

This implies that v2 = v3 = 0 and v1 is arbitrary
so that we obtain the corresponding solutions

y1(t) = C1e
t




1
0
0


 .

However, this is only one solution and λ1 = 1 has
algebraic multiplicity 2, so we have to look for one
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more solution. To this end we consider

(A− 1I)2v =




0 1 0
0 0 0
0 0 1







0 1 0
0 0 0
0 0 1







v1

v2

v3




=




0 0 0
0 0 0
0 0 1







v1

v2

v3


 =




0
0
0




so that v3 = 0 and both v1 and v2 arbitrary. The
set of all solutions here is a two-dimensional space
spanned by




v1

v2

0


 = v1




1
0
0


 + v2




0
1
0


 .

We have to select from this subspace a vector that
is not a solution to (A − λI)v = 0. Since for the
later the solutions are scalar multiples of the vector
(1, 0, 0) we see that the vector (0, 1, 0) is not of this
form and consequently can be taken as the second
independent vector corresponding to the eigenvalue
λ1 = 1. Hence

y2(t) = et (I + t(A− I))




0
1
0


 = et







0
1
0


 + t




0 1 0
0 0 0
0 0 1







0
1
0







= et




0
1
0


 + tet




1
0
0


 = et




t

1
0



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(ii) λ = 2: We seek solutions to

(A−2I)v =



−1 1 0
0 −1 0
0 0 0







v1

v2

v3


 =




0
0
0


 .

This implies that v1 = v2 = 0 and v3 is arbitrary
so that the corresponding solutions are of the form

y3(t) = C3e
2t




0
0
1


 .

Thus we have found three linearly independent solutions.

Fundamental solutions and nonhomogeneous problems
Let us suppose that we have n linearly independent so-

lutions y1(t), . . . ,yn(t) of the system y′ = Ay, where A is
an n × n matrix, like the ones constructed in the previous
paragraphs. Let us denote by Y(t) the matrix

Y(t) =




y1
1(t) . . . yn

1 (t)
...

...
y1

n(t) . . . yn
n(t)


 ,

that is, the columns of Y(t) are the vectors yi, i = 1, . . . , n.
Any such matrix is called a fundamental matrix of the sys-
tem y′ = Ay.

We know that for a given initial vector y0 the solution is
given by

y(t) = etAy0

on one hand, and, by Theorem 7.2, by

y(t) = C1y1(t) + . . . + Cnyn(t) = Y(t)C,
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on the other, where C = (C1, . . . , Cn) is a vector of con-
stants to be determined. By putting t = 0 above we obtain
the equation for C

y0 = Y(0)C

Since Y has independent vectors as its columns, it is invert-
ible, so that

C = Y−1(0)y0.

Thus, the solution of the initial value problem

y′ = Ay, y(0) = y0

is given by

y(t) = Y(t)Y−1(0)y0.

Since etAy0 is also a solution, by the uniqueness theorem we
obtain explicit representation of the exponential function of
a matrix

etA = Y(t)Y−1(0). (7.31)

Let us turn our attention to the non-homogeneous system
of equations

y′ = Ay + g(t). (7.32)

The general solution to the homogeneous equation (g(t) ≡
0) is given by

yh(t) = Y(t)C,

where Y(t) is a fundamental matrix and C is an arbitrary
vector. Using the technique of variation of parameters, we
will be looking for the solution in the form

y(t) = Y(t)u(t) = u1(t)y1(t) + . . . + un(t)yn(t) (7.33)
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where u(t) = (u1(t), . . . , un(t)) is a vector-function to be
determined so that (7.33) satisfies (7.32). Thus, substitut-
ing (7.33) into (7.32), we obtain

Y ′(t)u(t) + Y(t)u′(t) = AY(t)u(t) + g(t).

Since Y(t) is a fundamental matrix, Y ′(t) = AY(t) and we
find

Y(t)u′(t) = g(t).

As we observed earlier, Y(t) is invertible, hence

u′(t) = Y−1(t)g(t)

and

u(t) =

t∫
Y−1(s)g(s)ds + C.

Finally, we obtain

y(t) = Y(t)C + Y(t)

t∫
Y−1(s)g(s)ds (7.34)

This equation becomes much simpler if we take etA as
a fundamental matrix because in such a case Y−1(t) =(
etA)−1 = e−tA, that is, to calculate the inverse of etA

it is enough to replace t by −t. The solution (7.34) takes
then the form

y(t) = etAC +
∫

e(t−s)Ag(s)ds. (7.35)

Example 7.6 Find the general solution to

y′1 = 5y1 + 3y2 + 2te2t,

y′2 = −3y1 − y2 + 4.
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Writing this system in matrix notation, we obtain

y′ = Ay + g(t)

with

A =
(

5 3
−3 −1

)

and

g(t) =
(

2te2t

4

)
.

We have to find etA. The first step is to find two indepen-
dent solutions to the homogeneous system. The character-
istic polynomial is

p(λ) =
∣∣∣∣

5− λ 3
−3 −1− λ

∣∣∣∣ = λ2 − 4λ + 4 = (λ− 2)2

We have double eigenvalue λ = 2. Solving

(A− 2I)v =
(

3 3
−3 −3

)(
v1

v2

)
=

(
0
0

)
,

we obtain v1 = −v2 so that we obtain the eigenvector v1 =
(1,−1) and the corresponding solution

y1(t) = C1e
2t

(
1

−1

)
.

Since λ1 = 2 has algebraic multiplicity 2, we have to look
for another solution. To this end we consider

(A− 2I)2v =
(

3 3
−3 −3

)(
3 3

−3 −3

)(
v1

v2

)
=

(
0 0
0 0

)(
v1

v2

)

=
(

0
0

)
,
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so that v1 and v2 arbitrary. We must simply select a vector
linearly independent of y1 – to make things simple we can
take

y2 =
(

1
0

)

so that the second solution is given as

y2(t) = e2t (I + t(A− I))
(

1
0

)
= e2t

((
1
0

)
+ t

(
3 3

−3 −3

)(
1
0

))

= e2t

(
1
0

)
+ te2t

(
3

−3

)
= e2t

(
1 + 3t

−3t

)

Thus, the fundamental matrix is given by

Y(t) = e2t

(
1 1 + 3t

−1 −3t

)

with

Y(0) =
(

1 1
−1 0

)
.

The discriminant of Y(0) is equal to 1 and we immediately
obtain

Y−1(0) =
(

0 −1
1 1

)
.

so that

etA = Y(t)Y−1(0) = e2t

(
1 + 3t 3t

−3t 1− 3t

)
.

Thus

e−tA = e−2t

(
1− 3t −3t

3t 1 + 3t

)
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and

e−tAg(t) = e−2t

(
1− 3t −3t

3t 1 + 3t

)(
2te2t

4

)
=

(
2t− 6t2 − 12te−2t

6t2 + 4e−2t + 12te−2t

)
.

To find the particular solution, we integrate the above, get-
ting
∫

e−tAg(t)dt =
( ∫

(2t− 6t2 − 12te−2t)dt∫
(6t2 + 4e−2t + 12te−2t)dt

)
=

(
t2 − 2t3 + 3(2t + 1)e−2t

2t3 − (6t + 5)e−2t

)
,

and multiply the above by etA to obtain

e2t

(
1 + 3t 3t

−3t 1− 3t

)(
t2 − 2t3 + 3(2t + 1)e−2t

2t3 − (6t + 5)e−2t

)
=

(
(t2 + t3)e2t + 3
−t3e2t − 5

)
.

Therefore, the general solution is given by

y(t) = e2t

(
1 + 3t 3t

−3t 1− 3t

)(
C1

C2

)
+

(
(t2 + t3)e2t + 3
−t3e2t − 5

)

where C1 and C2 are arbitrary constants.

7.2 Second order linear equations

Second order equations occur very often in practice so that
it is useful to specify the general theory of systems for this
particular case.

d2y

dt2
+ a1

dy

dt
+ a0y = f(t) (7.36)

where a1, a0 are real constants and f is a given continuous
function. As before in what follows we shall abbreviate
d2y/dt2 = y′′ and dy/dt = y′.

As we mentioned earlier, (7.36) can be written as an
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equivalent system of 2 first order equations by introducing
new variables y1 = y, y2 = y′ = y′1,

y′1 = y2,

...
...

y′2 = −a1y2 − a0y1 + f(t).

Note that if (7.36) was supplemented with the initial con-
ditions y(t0) = y0, y′(t0) = y1, then these conditions will
become natural initial conditions for the system as y1(t0) =
y0, y2(t0) = y1.

Let us first recall the theory for first order linear equa-
tions, specified to the case of a constant coefficient a:

y′ + ay = f(t). (7.37)

By (2.11), the general solution to (7.37) is given by

y(t) = Ce−at + e−at

∫
easf(s)ds,

where the first term is the general solution of the homoge-
neous (f ≡ 0) version of (7.37) and the second is a particu-
lar solution to (7.37). This suggests that a sensible strategy
for solving (7.36) is to look first for solutions to the associ-
ated homogeneous equation

d2y

dt2
+ a1

dy

dt
+ a0y = 0. (7.38)

Let as denote by y0 the general solution to (7.38), that is,
y0 is really a class of functions depending on two constants.
Next, let yp be a particular solution of (7.36) and consider
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y(t) = yp(t) + z(t). Then

y′′ + a1y
′ + a0y = y′′p + a1y

′
p + a0yp + z′′ + a1z

′ + a0z

= f(t) + z′′ + a1z
′ + a0z,

that is, y is a solution to (7.36) if and only if z is any
solution to (7.38) or, in other words, if and only if z is the
general solution to (7.38), z = yc.

Accordingly, we shall first develop methods for finding
general solutions to homogeneous equations.

7.2.1 Homogeneous equations

Let us consider the homogeneous equation (7.38)

d2y

dt2
+ a1

dy

dt
+ a0y = 0. (7.39)

Since the space of solutions of the corresponding 2× 2 ho-
mogeneous system

y′1 = y2,

...
...

y′2 = −a1y2 − a0y1. (7.40)

is two-dimensional, the space of solutions to (7.39) is also
two-dimensional, that is, there are two independent solu-
tions of (7.39) y1(t), y2(t) such that any other solution is
given by

y(t) = C1y1(t) + C2y2(t).

How can we recover the general solution to (7.39) from
the solution y(t) of the system? A function y(t) solves
(7.39) if and only if y(t) = (y1(t), y2(t)) = (y(t), y′(t))
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solves the system (7.40), we see that the general solution
to (7.39) can be obtained by taking first components of
the solution of the associated system (7.40). We note once
again that if y1(t) = (y1

1(t), y1
2(t)) = (y1(t), dy1

dt (t)) and
y1(t) = (y2

1(t), y2
2(t)) = (y2(t), dy2

dt (t)) are two linearly in-
dependent solutions to (7.40), then y1(t) and y2(t) are lin-
early independent solutions to (7.39). In fact, otherwise
we would have y1(t) = Cy2(t) for some constant C and
therefore also dy1

dt (t) = C dy2

dt (t) so that the wronskian, hav-
ing the second column as a scalar multiple of the first one,
would be zero, contrary to the assumption that y1(t) and
y2(t) are linearly independent.

Two find explicit formulae for two linearly independent
particular solutions to (7.39) we write the equation for the
characteristic polynomial of (7.40):

∣∣∣∣
−λ 1
−a0 −a1 − λ

∣∣∣∣ = 0

that is

λ2 + a1λ + a0 = 0,

which is also called the characteristic polynomial of (7.39).
This is a quadratic equation in λ which is zero when λ = λ1

or λ = λ2 with

λ1,2 =
−a1 ±

√
∆

2

where the discriminant ∆ = a2
1 − 4a0.

If ∆ > 0, then λ1 6= λ2, and we obtain two different
solutions y1 = eλ1t and y2 = eλ2t. Thus

y(t) = C1e
λ1t + C2e

λ2t
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with two arbitrary constants is the sought general solution
to (7.39). If ∆ < 0, then λ1 and λ2 are complex conjugates:
λ1 = ξ+iω, λ2 = ξ−iω with ξ = −a1/2 and ω = −√−∆/2.
Since in many applications it is undesirable to work with
complex functions, we shall express the solution in terms
of real functions. Using the Euler formula for the complex
exponential function, we obtain

y(t) = C1e
λ1t + C2e

λ2t = C1e
ξt(cos ωt + i sin ωt) + C2e

ξt(cosωt− i sin ωt)

= (C1 + C2)eξt cosωt + i(C1 − C2)eξt sin ωt.

If as the constants C1 and C2 we take complex conjugates
C1 = (A− iB)/2 and C2 = (A + iB)/2 with arbitrary real
A and B, then we obtain y as a combination of two real
functions with two arbitrary real coefficients

y(t) = Aeξt cosωt + Beξt sin ωt.

We have left behind the case λ1 = λ2 (necessarily real). In
this case we have only one function eλ1t with one arbitrary
constant C1 so that y(t) = C1e

λ1t is not the general solution
to (7.39). Using the theory for systems, we obtain the other
solution in the form

y2(t) = teλ1t

with λ1 = −a1/2. Thus the general solution is given by

y(t) = (C1 + C2t)e−ta1/2.

Summarizing, we have the following general solutions cor-
responding to various properties of the roots of the charac-
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teristic polynomial λ1, λ2.

y(t) = C1e
λ1t + C2e

λ2t if λ1 6= λ2, λ1, λ2 real,

y(t) = C1e
ξt cos ωt + C2e

ξt sin ωt if λ1,2 = ξ ± iω,

y(t) = (C1 + C2t)e−tλ if λ1 = λ2 = λ.

7.2.2 Nonhomogeneous equations

At the beginning of this section we have shown that to find
the general solution to

d2y

dt2
+ a1

dy

dt
+ a0y = f(t) (7.41)

we have to find the general solution to the homogeneous
version (7.39) and then just one particular solution to the
full equation (7.41). In the previous subsection we have
presented the complete theory for finding the general solu-
tion to homogeneous equations. Here we shall discuss two
methods of finding solutions to nonhomogeneous equation.
We start with the so-called variation of parameters method
that is very general but sometimes rather cumbersome to
apply. The second method, of judicious guessing, can be
applied for special right-hand sides only, but then it gives
the solution really quickly.

Variation of parameters The method of variations of pa-
rameters was introduced for systems of equations, specify-
ing it for second order equations would be, however, quite
cumbersome. Thus, we shall derive it from scratch. Let

y0(t) = C1y1(t) + C2y2(t)
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be the general solution to the homogeneous version of (7.41).
We are looking for a solution to (7.41) in the form

y(t) = u(t)y1(t) + v(t)y2(t), (7.42)

that is, we allow the arbitrary parameters C1 and C2 to
depend on time. To determine v(t) and u(t) so that (7.42)
is a solution to (7.41), we substitute y(t) to the equation.
Since there is only one equation, this will give one condition
to determine two functions, giving some freedom to pick up
the second condition is such a way that the resulting equa-
tion becomes the easiest. Let us work it out. Differentiating
(7.42) we have

y′ = uy′1 + vy′2 + u′y1 + v′y2,

and

y′′ = u′y′1 + v′y′2 + uy′′1 + vy′′2 + u′′y1 + v′′y2 + u′y′1 + v′y′2.

We see that there appear second order derivatives of the
unknown functions and this is something we would like to
avoid, as we are trying to simplify a second order equation.
For the second order derivatives not to appear we simply
require that the part of y′ containing u′ and v′ to vanish,
that is,

u′y1 + v′y2 = 0.

With this, we obtain

y′ = uy′1 + vy′2,

y′′ = u′y′1 + v′y′2 + uy′′1 + vy′′2 .
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Substituting these into (7.41) we obtain

u′y′1 + v′y′2 + uy′′1 + vy′′2 + a1(uy′1 + vy′2) + a0(uy1 + vy2)

= u(y′′1 + a1y
′
1 + a0y1) + v(y′′2 + a1y

′
2 + a0y2) + u′y′1 + v′y′2

= f(t).

Since y1 and y2 are solutions of the homogeneous equation,
first two terms in the second line vanish and for y to satisfy
(7.41) we must have

u′y′1 + v′y′2 = f(t).

Summarizing, to find u and v such that (7.42) satisfies
(7.41) we must solve the following system of equations

u′y1 + v′y2 = 0, (7.43)

u′y′1 + v′y′2 = f(t) (7.44)

System (7.44) is to be solved for u′ and v′ and the solution
integrated to find u and v.

Remark 7.3 System (7.44) can be solved by determinants.
The main determinant

W (t) =
∣∣∣∣

y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ = y1(t)y′2(t)− y2(t)y′1(t) (7.45)

is the wronskian and plays an important rôle in the general
theory of differential equations. Here we shall only not that
clearly for (7.44) to be solvable, W (t) 6= 0 for all t which is
ensured by y1 and y2 being linearly independent which, as
we know, must be the case if y0 is the general solution to
the homogeneous equation, see Remark 7.1.
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Example 7.7 Find the solution to

y′′ + y = tan t

on the interval −π/2 < t < π/2 satisfying the initial con-
ditions y(0) = 1 and y′(0) = 1.

Step 1.
General solution to the homogeneous equation

y′′ + y = 0

is obtained by finding the roots of the characteristic equation

λ2 + 1 = 0.

We have λ1,2 = ±i so that ξ = 0 and ω = 1 and we obtain
two independent solutions

y1(t) = cos t, y2(t) = sin t.

Step 2.
To find a solution to the nonhomogeneous equations we first
calculate wronskian

W (t) =
∣∣∣∣

cos t sin t

− sin t cos t

∣∣∣∣ = 1.

Solving (7.44), we obtain

u′(t) = − sin t tan t, v′(t) = cos t tan t.

Then

u(t) = −
∫

sin t tan tdt = −
∫

sin2

cos t
dt = −

∫
1− cos2

cos t
dt

=
∫

cos tdt−
∫

dt

cos t
= sin t−

∫
dt

cos t

= sin t− ln | sec t + tan t| = sin t− ln(sec t + tan t),
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where the absolute value bars can be dropped as for −π/2 <

t < πt sec t + tan t > 0. Integrating the equation for v we
find

v(t) = − cos t

and a particular solution the non-homogeneous equation can
be taken to be

yp(t) = u(t)y1(t) + v(t)y2(t) = cos t(sin t− ln(sec t + tan t)) + sin t(− cos t)

= − cos t ln(sec t + tan t).

Note that we have taken the constants of integration to be
zero in each case. This is allowed as we are looking for
particular integrals and we are free to pick up the simplest
particular solution.

Thus, the general solution to the non-homogeneous equa-
tion is

y(t) = C1 cos t + C2 sin t− cos t ln(sec t + tan t).

Step 3.
To solve the initial value problem we must find the deriva-
tive of y:

y′(t) = −C1 sin t + C2 sin t + sin t ln(sec t + tan t)− 1

so that we obtain

1 = y(0) = C1, 1 = y′(0) = C2 − 1,

hence C1 = 1 and C2 = 2. Therefore

y(t) = cos t + 2 sin t− cos t ln(sec t + tan t).

Judicious guessing
The method of judicious guessing, called also the method

of undetermined coefficients, is based on the observation
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that for some functions the operations performed on the
left-hand side of the differential equation, that is, taking
derivatives, multiplying by constants and addition, does not
change the form of the function. To wit, the derivative of a
polynomial is a polynomial, the derivative of an exponen-
tial function is an exponential function and, in general the
derivative of the product of an exponential function and a
polynomial is again of the same form. Trigonometric func-
tions sin t and cos t are included into this class by Euler’s
formulae sin t = eit−e−it

2i and cos t = eit+e−it

2 . Thus, if the
right-hand side is of this form, then it makes sense to expect
that the same of the solution. Let us test this hypothesis
on the following example.

Example 7.8 Find a particular solution to

y′′ − 2y′ − 3y = 3t2.

The right-hand side is a polynomial of the second degree so
we will look for a solution amongst polynomials. To decide
polynomial of what degree we should try we note that if we
try polynomials of zero or first degree then the left-hand side
will be at most of this degree, as the differentiation lowers
the degree of a polynomial. Thus, the simplest candidate
appears to be a polynomial of second degree

y(t) = At2 + Bt + C,

where A,B, C are coefficients to be determined. Inserting
this polynomial into the equation we get

y′′ − 2y′ − 3y = 2A− 2B − 3C − (4A + 3B)t− 3At2 = 3t2,
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from which we obtain the system

−3A = 3,

−4A− 3B = 0,

2A− 2B − 3C = 0.

Solving this system, we obtain A = −1, B = 4/3 and C =
−14/9 so that the solution is

y(t) = −t2 − 4
3
t− 14

9
.

Unfortunately, there are some pitfalls in this method, as
shown in the following example.

Example 7.9 Find a particular solution to

y′′ − 2y′ − 3y = e−t.

Using our method, we take y(t) = Ae−t but inserting it into
the equation we find that

y′′ − 2y′ − 3y = Ae−t + 2Ae−t − 3Ae−t = 0 6= e−t,

so that no choice of the constant A can turn y(t) into the
solution of our equation. The reason for this is that e−t

is a solution to the homogeneous equation what could be
ascertained directly by solving the characteristic equation
λ2 − 2λ − 3 = (λ + 1)(λ − 3). A way of this trouble is
to consider y(t) = Ate−t so that y′ = Ae−t − Ate−t and
y′′ = −2Ae−t + Ate−t and

y′′ − 2y′ − 3y = −2Ae−t + Ate−t − 2(Ae−t −Ate−t)− 3Ate−t

= −4e−t,
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which agrees with e−t if A = − 1
4 . Thus we have a particular

solution

y(t) = −1
4
te−t.

In general, it can be proved that the following procedure
always produces the solution to

y′′ + a1y
′ + a0y = tmeat (7.46)

where a0 6= 0 and m is a non-negative integer.

I. When a is not a root of the characteristic equation λ2 +
a1λ + a0 = 0, then we use

y(t) = eat(Amtm + Am−1t
m−1 + . . . + A0); (7.47)

II. If a is a single root of the characteristic equation, then
use (7.47) multiplied by t and if a is a double root,
then use (7.47) multiplied by t2.

Remark 7.4 Note that if a0 = 0, then (7.46) is reducible
to a first order equation by methods of Subsection A2.2.5.

Also, equations with right-hand sides of the form

y′′ + a1y
′ + a0y = f1(t) + f2(t) . . . + fn(t), (7.48)

can be handled as if yi(t) is a particular solution to

y′′ + a1y
′ + a0y = fi(t), i = 1, . . . , n,

then the sum yp(t) = y1(t)+ y2(t) . . .+ yn(t) is a particular
solution to (7.48) as my be checked by direct substitution.

Example 7.10 Find a particular solution of

y′′ + 4y = 32t cos 2t− 8 sin 2t.
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Let us first find the characteristic roots. From the equation
λ2 + 4 = 0 we find λ = ±2i. Next we convert the RHS
of the equation to the exponential form. Since cos 2t =
(ei2t + e−i2t)/2 and sin 2t = (ei2t − e−i2t)/2i, we obtain

32t cos 2t− 8 sin 2t = (16t + 4i)ei2t + (16t− 4i)e−i2t.

In both cases we have the exponent being a single root of
the characteristic equation so that we will be looking for
solutions in the form y1(t) = t(At + B)ei2t and y2(t) =
t(Ct + D)e−i2t. For y1 we obtain y′1(t) = (2At + B)ei2t +
2it(At + B)ei2t and y′′1 (t) = 2Aei2t + 4i(2At + B)ei2t −
4t(At + B)ei2t so that inserting these into the equation we
obtain

2Aei2t+4i(2At+B)ei2t−4(At2+Bt)ei2t+4t(At+B)ei2t = (16t+4i)ei2t

which gives 2A + 4iB = 4i and 8iA = 16. Thus A = −2i

and B = 2. Similarly, C = 2i and D = 2 and we obtain
the particular solution in the form

y(t) = t(−2it+2)ei2t + t(2it+2)e−i2t = 4t2 sin 2t+4t cos t,

where we used Euler’s formula to convert exponential into
trigonometric functions once again.

7.2.3 Applications

7.2.3.1 The mixing problem

In Subsection 2.6 we have derived the system

dx1

dt
= r1 + p2

x2

V
− p1

x1

V
dx2

dt
= p1

x1

V
− (R2 + p2)

x2

V
. (7.49)
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describing mixing of components in two containers. Here,
x1 and x2 are the amount of dye in vats 1 and 2, respec-
tively. We re-write these equations using concentrations
c1 = x1/V and c2 = x2/V , getting

dc1

dt
=

r1

V
+

p2

V
c2 − p1

V
c1

dc2

dt
=

p1

V
c1 − R2 + p2

V
c1. (7.50)

We solve this equations for numerical values of the flow
rates r1/V = 0.01, p1/V = 0.04, p2/V = 0.03 and (R2 +
p2)/V = 0.05,

dc1

dt
= 0.01− 0.04c1 + 0.03c2

dc2

dt
= 0.04c1 − 0.05c2, (7.51)

and assume that at time t = 0 there was no dye in either
vat, that is, we put

c1(0) = 0, c2(0) = 0.

To practice another technique, we shall solve this system
by reducing it to a second order equations, as described in
Example 7.1. Differentiating the first equation and using
the second we have

c′′1 = −0.04c′1 + 0.03c′2
= −0.04c′1 + 0.03(0.04c1 − 0.05c2)

= −0.04c′1 + 0.03
(

0.04c1 − 0.05 · 100
3

(c′1 − 0.01 + 0.04c1)
)

so that, after some algebra,

c′′1 + 0.09c′1 + 0.008c1 = 0.005.
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We have obtained second order non-homogenous equation
with constant coefficients. To find the characteristic roots
we solve the quadratic equation

λ2 + 0.09λ + 0.008 = 0

getting λ1 = −0.08 and λ2 = −0.01. Thus, the space of so-
lutions of the homogeneous equations is spanned by e−0.01t

and e−0.08t. The right hand side is a constant and since zero
is not a characteristic root, we can look for a solution to
the nonhomogeneous problem in the form yp(t) = A, which
immediately gives yp(t) = 5/8 so that the general solution
of the non-homogeneous equation for c1 is given by

c1(t) = C1e
−0.08t + C2e

−0.01t +
5
8
,

where C1 and C2 are constants whose values are to be found
from the initial conditions.

Next we find c2 by solving the first equation with respect
to it, so that

c2 =
100
3

(c′1 + 0.04c1 − 0.01)

=
100
3

(−0.08C1e
−0.08t − 0.01C2e

−0.01t

+ 0.04
(

C1e
−0.08t + C2e

−0.01t +
5
8

)
− 0.01

)

and

c2(t) = −4
3
C1e

−0.08t + C2e
−0.01t + 0.5.

Finally, we use the initial conditions c1(0) = 0 and c2(0) = 0
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to get the system of algebraic equations for C1 and C2

C1 + C2 = −5
8
,

4
3
C1 − C2 =

1
2
.

From these equations we find C1 = −3/56 and C2 = −4/7.
Hence

c1(t) = − 3
56

e−0.08t − 4
7
e−0.01t +

5
8

c2(t) =
1
14

e−0.08t − 4
7
e−0.01t +

1
2
.

From the solution formulae we obtain that lim
t→∞

c1(t) = 5
8

and lim
t→∞

c2(t) = 1
2 . This means that the concentrations

approach the steady state concentration as t becomes large.
This is illustrated in Figures 2.10 and 2.11



7.2 Second order linear equations 241

100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

Fig 2.10 Approach to the steady-state of the concentration c1.
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Fig 2.11 Approach to the steady state of the concentration c2.
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7.2.3.2 Forced oscillations

Second order equations appear in many applications involv-
ing oscillations occurring due to the existence of an elastic
force in the system. The reason for this is that the elastic
force, at least for small displacements, is proportional to
the displacement so that according to Newton’s second law

my′′ = −ky

where k is a constant. In general, there is a damping force
(due to the resistance of the medium) and some external
force, and then the full equation for oscillation reads

y′′ + cy′ + ky = F (t). (7.52)

We shall discuss in detail a particular example of this equa-
tion describing the so-called forced free vibrations. In this
case we have

y′′ + ω2
0y =

F0

m
cosωt, (7.53)

where we denoted ω2
0 = k/m and introduced a special pe-

riodic force F (t) = F0 cosωt with constant magnitude F0

and period ω.
The characteristic equation is λ2 + ω2

0 = 0 so that we
have imaginary roots λ1,2 = ±iω0 and the general solution
to the homogeneous equations is given by

y0(t) = C1 cos ω0t + C2 sin ω0t.

The frequency ω0 is called the natural frequency of the
system. The case ω 6= ω0 gives a particular solution in the
form

yp(t) =
F0

m(ω2
0 − ω2)

cos ωt
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Fig 2.8 Forced free vibrations: non-resonance case with
ω0 = 0.5 and ω = 0.4 (dashed line), ω = 0.45 (dotted line) and

ω = 0.49 (solid line). Note the increase in amplitude of
vibrations as the frequency of the external force approaches the

natural frequency of the system

so that the general solution is given by

y(t) = C1 cosω0t + C2 sinω0t +
F0

m(ω2
0 − ω2)

cosωt, (7.54)

that is the solution is obtained as a sum of two periodic
motions, as shown in Figure 2.8. Though there is nothing
unusual here, we can sense that a trouble is brewing – if the
the natural frequency of the system is close to the frequency
of the external force, then the amplitude of vibrations can
become very large, because the denominator in the last
term in (7.54) is very small. Let us find out what hap-
pens if ω0 = ω. In this case we convert F (t) = F0 cosωt =
F0 cos ω0t = F0(eiω0t+e−iω0t)/2 and look for the particular
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Fig 2.9 Forced free vibrations: the resonance case. The
amplitude of vibrations increases to infinity.

solution in the form yp(t) = t(Aeiω0t +Be−iω0t). We obtain
y′p(t) = Aeiω0t + Be−iω0t + tiω0(Aeiω0t −Be−iω0t) and

y′′p (t) = i2(Aeiω0t −Be−iω0t)− tω2
0(Aeiω0t + Be−iω0t).

Inserting these into the equation and comparing coefficients
we find that A = B = −F0/4iω0 so that

yp(t) =
F0

2ω0

eiω0t − e−iω0t

2i
=

F0

2ω0
t sin ω0t

and the general solution is given by

y(t) = C1 cosω0t + C2 sinω0t +
F0

2ω0
t sinω0t.

A graph of such a function is shown in Figure 2.9. The im-
portant point of this example is that even small force can
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induce very large oscillations in the system if its frequency
is equal or even only very close to the natural frequency
of the system. This phenomenon is called the resonance
and is responsible for a number of spectacular collapses
of constructions, like the collapse of Tacoma Bridge in the
USA (oscillations induced by wind) and Broughton suspen-
sion bridge in England (oscillations introduced by soldiers
marching in cadence).



8

Qualitative theory of differential and
difference equations

8.1 Introduction

In this chapter we shall consider the system of differential
equations

x′ = f(t,x) (8.1)

where, in general,

x(t) =




x1(t)
...

xn(t)


 ,

and

f(t,x) =




f1(t, x1, . . . , xn)
...

fn(t, x1, . . . , xn)


 .

is a nonlinear function of x. Our main focus will be on
autonomous systems of two equations with two unknowns

x′1 = f1(x1, x2),

x′2 = f2(x1, x2). (8.2)

246
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Unfortunately, even for such a simplified case there are no
known methods of solving (8.2) in general form. Though it
is, of course, disappointing, it turns out that knowing exact
solution to (8.2) is not really necessary. For example, let
x1(t) and x2(t) denote the populations, at time t, of two
species competing amongst themselves for the limited food
and living space in some region. Further, suppose that the
rates of growth of x1(t) and x2(t) are governed by (8.2). In
such a case, for most purposes it is irrelevant to know the
population sizes at each time t but rather it is important
to know some qualitative properties of them. Specifically,
the most important questions biologists ask are:

(i) Do there exist values ξ1 and ξ2 at which the two
species coexist in a steady state? That is to say, are
there numbers ξ1 and ξ2 such that x1(t) ≡ ξ1 and
x2(t) ≡ ξ2 is a solution to (8.2)? Such values, if they
exist, are called equilibrium points of (8.2).

(ii) Suppose that the two species are coexisting in equi-
librium and suddenly a few members of one or both
species are introduced to the environment. Will
x1(t) and x2(t) remain close to their equilibrium val-
ues for all future times? Or may be these extra few
members will give one of the species a large advan-
tage so that it will proceed to annihilate the other
species?

(iii) Suppose that x1 and x2 have arbitrary values at t =
0. What happens for large times? Will one species
ultimately emerge victorious, or will the struggle for
existence end in a draw?
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Mathematically speaking, we are interested in determining
the following properties of system (8.2).

Existence of equilibrium solutions. Do there exist constant
vectors x0 = (x0

1, x
0
2) for which x(t) ≡ x0 is a so-

lution of (8.2)?
Stability. Let x(t) and y(t) be two solutions of (8.2) with

initial values x(0) and y(0) very close to each other.
Will x(t) and y(t) remain close for all future times,
or will y(t) eventually diverge from x(t)?

Long time behaviour. What happens to solutions x(t) as
t approaches infinity. Do all solutions approach
equilibrium values? If they do not approach equi-
librium, do they at least exhibit some regular be-
haviour, like e.g. periodicity, for large times.

The first question can be answered immediately. In fact,
since x(t) is supposed to be constant, then x′(t) ≡ 0 and
therefore x0 is an equilibrium value of (8.2) if and only if

f(x0) ≡ 0, (8.3)

that is, finding equilibrium solutions is reduced to solving
a system of algebraic equations.

Example 8.1 Find all equilibrium values of the system of
differential equations

x′1 = 1− x2,

x′2 = x3
1 + x2.

We have to solve the system of algebraic equations

0 = 1− x2,

0 = x3
1 + x2.
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From the first equation we find x2 = 1 and therefore x3
1 =

−1 which gives x1 = −1 and the only equilibrium solution
is

x0 =
( −1

1

)
.

8.2 The phase-plane and orbits

In this section we shall give rudiments of the ”geometric”
theory of differential equations. The aim of this theory is to
obtain as complete a description as possible of all solutions
of the system of differential equations (8.2)

x′1 = f1(x1, x2),

x′2 = f2(x1, x2), (8.4)

without solving it but by analysing geometric properties of
its orbits. To explain the latter, we note that every solution
x1(t), x2(t) defines a curve in the three dimensional space
(t, x1, x2).

Example 8.2 The solution x1(t) = cos t and x2(t) = sin t

of the system

x′1 = −x2,

x′2 = x1

describes a helix in the (t, x1, x2) space.

The foundation of the geometric theory of differential
equations is the observation that every solution x1(t), x2(t),
t0 ≤ t ≤ t1, of (8.4) also describes a curve in the x1 − x2

plane, that is, as t runs from t0 to t1, the points (x1(t), x2(t)
trace out a curve in the x1 − x2 plane. This curve is called
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the orbit, or the trajectory, of the solution x(t) and the
x1 − x2 plane is called the phase plane of the solutions of
(8.4). Note that the orbit of an equilibrium solution reduces
to a point.

Example 8.3 The solution of the previous example, x1(t) =
cos t, x2(t) = sin t traces out the unit circle x2+y2 = 1 when
t runs from 0 to 2π, hence the unit circle is the orbit of this
solution. If t runs from 0 to ∞, then the pair (cos t, sin t)
traces out this circle infinitely often.

Example 8.4 Functions x1(t) = e−t cos t and x2(t) =
e−t sin t, −∞ < t < ∞, are a solution of the system

x′1 = −x1 − x2,

x′2 = x1 − x2.

Since r2(t) = x2
1(t) + x2

2(t) = e−2t, we see that the orbit of
this solution is a spiral traced towards the origin as t runs
towards ∞.

One of the advantages of considering the orbit of the solu-
tion rather than the solution itself is that it is often possible
to find the orbit explicitly without prior knowledge of the
solution. Let x1(t), x2(t) be a solution of (8.4) defined in a
neighbourhood of a point t̄. If e.g. x′1(t̄) 6= 0, then we can
solve x1 = x1(t) getting t = t(x1) in some neighbourhood
of x̄ = x1(t̄). Thus, for t near t̄, the orbit of the solution
x1(t), x2(t) is given as the graph of x2 = x2(t(x1)). Next,
using the chain rule and the inverse function theorem

dx2

dx1
=

dx2

dt

dt

dx1
=

x′2
x′1

=
f2(x1, x2)
f1(x1, x2)

.
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Thus, the orbits of the solution x1 = x1(t), x2(t) = x2(t) of
(8.4) are the solution curves of the first order scalar equa-
tion

dx2

dx1
=

f2(x1, x2)
f1(x1, x2)

(8.5)

and therefore to find the orbit of a solution there is no need
to solve (8.4); we have to solve only the single first-order
scalar equation (8.5).

Example 8.5 The orbits of the system of differential equa-
tions

x′1 = x2
2,

x′2 = x2
1. (8.6)

are the solution curves of the scalar equation dx2/dx1 =
x2

1/x2
2. This is a separable equation and it is easy to see

that every solution is of the form x2 = (x3
1 + c)1/3, c con-

stant. Thus, the orbits are the curves x2 = (x3
1 + c)1/3

whenever x2 = x1 6= 0 as then x′1 = x′2 6= 0 and the proce-
dure described above can be applied, see the example below.

Example 8.6 A solution curve of (8.5) is an orbit of (8.4)
if and only if x′1 6= 0 and x′2 6= 0 simultaneously along
the solution. If a solution curve of (8.5) passes through an
equilibrium point of (8.4), where x′1(t̄) = 0 and x′2(t̄) = 0
for some t̄, then the entire solution curve is not an orbit but
rather it is a union of several distinct orbits. For example,
consider the system of differential equations

x′1 = x2(1− x2
1 − x2

2), (8.7)

x′2 = −x1(1− x2
1 − x2

2). (8.8)
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The solution curves of the scalar equation

dx2

dx1
= −x1

x2

are the family of concentric circles x2
1 + x2

2 = c2. Observe
however that to get the latter equation we should have as-
sumed x2

1 + x2
2 = 1 and that each point of this circle is an

equilibrium point of (8.8). Thus, the orbits of (8.8) are the
circles x2

1 + x2
2 = c2 for c 6= 1 and each point of the unit

circle.
Similarly, the full answer for the system (8.6) of the pre-

vious example is that x2 = (x3
1+c)1/3 are orbits for c 6= 0 as

then neither solution curve passes through the only equilib-
rium point (0, 0). For c = 0 the solution curve x2 = x1 con-
sists of the equilibrium point (0, 0) and two orbits x2 = x1

for x1 > 0 and x1 < 0.

Note that in general it is impossible to solve (8.5) explic-
itly. Hence, usually we cannot find the equation of orbits
in a closed form. Nevertheless, it is still possible to obtain
an accurate description of all orbits of (8.4). In fact, the
system (8.4) provides us with an explicit information about
how fast and in which direction solution is moving at each
point of the trajectory. In fact, as the orbit of the solution
(x1(t), x2(t)) is a curve of which (x1(t), x2(t)) is a paramet-
ric description, (x′1(t), x

′
2(t)) = (f1(x1, x2), f2(x1, x2)) is

the tangent vector to the orbit at the point (x1, x2) showing,
moreover, the direction at which the orbit is traversed. In
particular, the orbit is vertical at each point (x1, x2) where
f1(x1, x2) = 0 and f2(x1, x2) 6= 0 and it is horizontal at each
point (x1, x2) where f1(x1, x2) 6= 0 and f2(x1, x2) = 0. As
we noted earlier, each point (x1, x2) where f1(x1, x2) = 0
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and f2(x1, x2) = 0 gives an equilibrium solution and the
orbit reduces to this point.

8.3 Qualitative properties of orbits

Let us consider the initial value problem for the system
(8.2):

x′1 = f1(x1, x2),

x′2 = f2(x1, x2)

x1(t0) = x0
1, x2(t0) = x0

2, (8.9)

As we have already mentioned in Subsection 7.1.3, Picard’s
theorem, Theorem 4.2, can be generalized to systems. Due
to the importance of it for the analysis of orbits, we shall
state it here in full.

Theorem 8.1 If each of the functions f1(x1, x2) and f2(x1, x2)
have continuous partial derivatives with respect to x1 and
x2. Then the initial value problem (8.9) has one and only
one solution x(t) = (x1(t), x2(t)), for every x0 = (x0

1, x
0
2) ∈

R2 defined at least for t in some neighborhood of t0.

Firstly, we prove the following result.

Lemma 8.1 If x(t) is a solution to

x′ = f(x), (8.10)

then for any c the function x̂(t) = x(t+c) also satisfies this
equation.
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Proof. Define τ = t + c and use the chain rule for x̂. We
get

dx̂(t)
dt

=
dx(t + c)

dt
=

dx(τ)
dτ

dτ

dt
=

dx(τ)
dτ

= f(x(τ)) = f(x(t+c)) = f(x̂(t)).

Example 8.7 For linear systems the result follows directly
as x(t) = etAv for arbitrary vector v, so that x̂(t) = x(t +
c) = e(t+c)Av = etAecAv = etAv′ for some other vector v′

so that x̂(t) is again a solution.

Proposition 8.1 Suppose that a solution y(t) of (8.9) ap-
proaches a vector v as t → ∞. Then v is an equilibrium
point of (8.9).

Proof. limt→∞ y(t) = v is equivalent to limt→∞ yi(t) = vi,
i = 1, . . . , n. This implies limt→∞ yi(t + h) = vi for any
fixed h. Using the mean value theorem we have

yi(t + h)− yi(t) = hy′i(τ) = hfi(y1(τ), . . . , yn(τ)),

where τ ∈ [t, t+h]. If t →∞, then also τ →∞ and passing
to the limit in the above equality, we obtain

0 = vi − vi = hfi(v1, . . . , vn), i = 1, . . . , n,

so that v is an equilibrium point.
We shall now prove two properties of orbits that are cru-

cial to analyzing system (8.2).

Theorem 8.2 Assume that the assumptions of Theorem
8.1 are satisfied. Then

(i) there exists one and only one orbit through every point
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x0 ∈ R2. In particular, if the orbits of two solu-
tions x(t) and y(t) have one point in common, then
they must be identical.

(ii) Let x(t) be a solution to (8.2). If for some T > 0 and
some t0 we have x(t0 +T ) = x(t0), then x(t+T ) =
x(t) for all t. In other words, if a solution x(t)
returns to its starting value after a time T > 0,
then it must be periodic (that is, it must repeat itself
over every time interval of length T ).

Proof. ad (i) Let x0 be any point in R2. Then from
Theorem 8.1 we know that there is a solution of the problem
x′ = f(x),x(0) = x0 and the orbit of this solution passes
through x0 from the definition of the orbit. Assume now
that there is another orbit passing through x0, that is, there
is a solution y(t) satisfying y(t0) = x0 for some t0. From
Lemma 8.1 we know that ŷ(t) = y(t+ t0) is also a solution.
However, this solution satisfies ŷ(0) = y(t0) = x0, that is,
the same initial condition as x(t). By the uniqueness part
of Theorem 8.1 we must then have x(t) = ŷ(t) = y(t + t0)
for all t for which the solutions are defined. This implies
that the orbits are identical. In fact, if ξ is an element of
the orbit of x, then for some t′ we have x(t′) = ξ. However,
we have also ξ = y(t′ + t0) so that ξ belongs to the orbit
of y(t). Conversely, if ξ belongs to the orbit of y so that
ξ = y(t′′) for some t′′, then by ξ = y(t′′) = x(t′′ − t0), we
see that ξ belongs to the orbit of x.

ad (ii) Assume that for some numbers t0 and T > 0 we
have x(t0) = x(t0 + T ). The function y(t) = x(t + T ) is
again a solution satisfying y(t0) = x(t0 + T ) = x(t0), thus
from Theorem 8.1, x(t) = y(t) for all t for which they are
defined and therefore x(t) = x(t + T ) for all such t.
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Example 8.8 A curve in the shape of a figure 8 cannot be
an orbit. In fact, suppose that the solution passes through
the intersection point at some time t0, then completing the
first loop, returns after time T , that is, we have x(t0) =
x(t0 + T ). From (ii) it follows then that this solution is
periodic, that is, it must follow the same loop again and
cannot switch to the other loop.

Corollary 8.1 A solution y(t) of (8.2) is periodic if and
only if its orbit is a closed curve in R2.

Proof. Assume that x(t) is a periodic solution of (8.2) of
period T , that is x(t) = x(t + T ). If we fix t0, then, as
t runs from t0 to t0 + T , the point x(t) = (x1(t), x2(t))
traces a curve, say C, from ξ = x(t) back to the same point
ξ without intersections and, if t runs from −∞ to ∞, the
curve C is traced infinitely many times.

Conversely, suppose that the orbit is a closed curve (con-
taining no equilibrium points). The point x(t) moves along
this curve with a speed of magnitude v(x1, x2) =

√
f2
1 (x1, x2) + f2

2 (x1, x2).
The curve is closed and, since there is no equilibrium point
on it, that is, f1 and f2 are not simultaneously zero at any
point, the speed v has a non-zero minimum on it. Moreover,
as the parametric description of this curve if differentiable,
it has a finite length. Thus, the point x(t) starting from a
point ξ = x(t0) will traverse the whole curve in finite time,
say T , that is x(t0) = x(t0+T ) and the solution is periodic.
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Example 8.9 Show that every solution z(t) of the second
order differential equation

z′′ + z + z3 = 0

is periodic. We convert this equation into a system: let
z = x1 so that

x′1 = x2,

x′2 = −x1 − x3
1.

The orbits are the solution curves of the equation

dx2

dx1
= −x1 + x3

1

x2
,

so that

x2
2

2
+

x2
1

2
+

x4
1

4
= c2

is the equation of orbits. If c 6= 0, then none of them con-
tains the unique equilibrium point (0, 0). By writing the
above equation in the form

x2
2

2
+

(
x2

1

2
+

1
2

)2

= c2 +
1
4

we see that for each c 6= 0 it describes a closed curve con-
sisting of two branches x2 = ± 1√

2

√
4c2 + 1− (x2

1 + 1)2 that

stretch between x1 = ±
√

1 +
√

4c2 + 1. Consequently, ev-
ery solution is a periodic function.
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8.4 An application to predator-prey models

8.4.1 Lotka-Volterra model

In this section we shall discuss the predator-prey model
introduced in Section 2.6. It reads

dx1

dt
= (r − f)x1 − αx1x2,

dx2

dt
= −(s + f)x2 + βx1x2 (8.11)

where α, β, r, s, f are positive constants. In the predator-
prey model x1 is the density of the prey, x2 is the density
of the predators, r is the growth rate of the prey in the
absence of predators, −s is the growth rate of predators
in the absence of prey (the population of predators dies
out without the supply of the sole food source – prey).
The quadratic terms account for predator–prey interaction
and f represents indiscriminate killing of both prey and
predators. The model was introduced in 1920s by an Ital-
ian mathematician Vito Volterra to explain why, in the pe-
riod of reduced (indiscriminate) fishing, the relative number
predators (sharks) significantly increased.

Let us consider first the model without fishing

dx1

dt
= rx1 − αx1x2,

dx2

dt
= −sx2 + βx1x2 (8.12)

Observe that there are two equilibrium solutions x1(t) =
0, x2(t) = 0 and x1(t) = s/β, x2(t) = r/α. The first so-
lution is not interesting as it corresponds to the total ex-
tinction. We observe also that we have two other solutions
x1(t) = c1e

rt, x2(t) = 0 and x1(t) = 0, x2(t) = c2e
−st
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that correspond to the situation when one of the species is
extinct. Thus, both positive x1 and x2 semi-axes are or-
bits and, by Theorem 8.2 (i), any orbit starting in the first
quadrant will stay there or, in other words, any solution
with positive initial data will remain strictly positive for all
times.

The orbits of (8.12) are the solution curves of the first
order separable equation

dx2

dx1
=

x2(−s + βx1)
x1(r − αx2)

(8.13)

Separating variables and integrating we obtain

r ln x2 − αx2 + s ln x1 − βx1 = k

which can be written as

xr
2

eαx2

xs
1

eβx1
= K. (8.14)

Next, we prove that the curves defined by (8.14) are closed.
It is not an easy task. To accomplish this we shall show that
for each x1 from a certain open interval (x1,m, x1,M ) we
have exactly two solutions x2,m(x1) and x2,M (x1) and that
these two solutions tend to common limits as x1 approaches
x1,m and x1,M .

First, let as define f(x2) = xr
2e
−αx2 and g(x1) = xs

1e
−βx1 .

We shall analyze only f as g is of the same form. Due
to positivity of all the coefficients, we see that f(0) = 0,
limx2→∞ f(x2) = 0 and also f(x2) > 0 for x2 > 0. Further

f ′(x2) = xr−1
2 e−αx2(r − αx2),

so that f is increasing from 0 to x2 = r/α where it at-
tains global maximum, say M2, and then starts to decrease
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monotonically to 0. Similarly, g(0) = limx1→∞ g(x1) = 0
and g(x1) > 0 for x1 > 0 and it attains global maximum
M1 at x1 = s/β. We have to analyze solvability of

f(x2)g(x1) = K.

Firstly, there are no solutions if K > M1M2, and for K =
M1M2 we have the equilibrium solution x1 = s/β, x2 =
r/α. Thus, we have to consider K = λM2 with λ < 1. Let
us write this equation as

f(x2) =
λ

g(x1)
M2. (8.15)

From the shape of the graph g we find that the equation
g(x1) = λ has no solution if λ > M1 but then λ/g(x1) ≥
λ/M1 > 1 so that (8.15) is not solvable. If λ = M1, then we
have again the equilibrium solution. Finally, for λ < M1

there are two solutions x1,m and x1,M satisfying x1,m <

s/β < x1,M . Now, for x1 satisfying x1,m < x1 < x1,M

we have λ/g(x1) < 1 and therefore for such x1 equation
(8.15) has two solutions x2,m(x1) and x2,M (x1) satisfying
x2,m < r/α < x2,M , again on the basis of the shape of
the graph of f . Moreover, if x1 moves towards either x1,m

or x1,M , then both solutions x2,m and x2,M move towards
r/α, that is the set of points satisfying (8.15) is a closed
curve.

Summarizing, the orbits are closed curves encircling the
equilibrium solution (s/β, r/α) and are traversed in the an-
ticlockwise direction. Thus, the solutions are periodic in
time. The evolution can be described as follows. Suppose
that we start with initial values x1 > s/β, x2 < r/α, that
is, in the lower right quarter of the orbit. Then the solu-
tion will move right and up till the prey population reaches
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maximum x1,M . Because there is a lot of prey, the number
of predators will be still growing but then the number of
prey will start decreasing, slowing down the growth of the
predator’s population. The decrease in the prey population
will eventually bring the growth of predator’s population to
stop at the maximum x2,M . From now on the number of
predators will decrease but the depletion of the prey pop-
ulation from the previous period will continue to prevail
till the population reaches the minimum x1,m, when it will
start to take advantage of the decreasing number of preda-
tors and will start to grow; this growth will, however, start
to slow down when the population of predators will reach
its minimum. However, then the number of prey will be in-
creasing beyond the point when the number of predators is
the least till the growing number of predators will eventu-
ally cause the prey population to decrease having reached
its peak at x1,M and the cycle will repeat itself.

Now we are ready to provide the explanation of the obser-
vational data. Including fishing into the model, according
to (8.11), amounts to changing parameters r and s to r− f

and s + f but the structure of the system does not change,
so that the equilibrium solution becomes

(
s + f

β
,
r − f

α

)
. (8.16)

Thus, with a moderate amount of fishing (f < r), in the
equilibrium solution there is more fish and less sharks in
comparison with no-fishing situation. Thus, if we reduce
fishing, the equilibrium moves towards larger amount of
sharks and lower amount of fish. Of course, this is true
for equilibrium situation, which not necessarily corresponds
to reality, but as the orbits are closed curves around the
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equilibrium solution, we can expect that the amounts of
fish and sharks in a non-equilibrium situation will change
in a similar pattern. We can confirm this hypothesis by
comparing average numbers of sharks and fish over the full
cycle. For any function f its average over an interval (a, b)
is defined as

f̄ =
1

b− a

b∫

a

f(t)dt,

so that the average numbers if fish and sharks over one cycle
is given by

x1 =
1
T

T∫

0

x1(t)dt, x2 =
1
T

T∫

0

x2(t)dt.

It turns out that these averages can be calculated explicitly.
Dividing the first equation of (8.12) by x1 gives x′1/x1 =
r − αx2. Integrating both sides, we get

1
T

T∫

0

x′1(t)
x1(t)

dt =
1
T

T∫

0

(r − αx2(t))dt.

The left-hand side can be evaluated as
T∫

0

x′1(t)
x1(t)

dt = ln x1(T )− ln x1(0) = 0

on account of the periodicity of x1. Hence,

1
T

T∫

0

(r − αx2(t))dt = 0,
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and

x2 =
r

α
. (8.17)

In the same way,

x1 =
s

β
, (8.18)

so that the average values of x1 and x2 are exactly the
equilibrium solutions. Thus, we can state that introducing
fishing is more beneficial to prey than predators as the av-
erage numbers of prey increases while the average number
of predators will decrease in accordance with (8.16), while
reducing fishing will have the opposite effect of increasing
the number of predators and decreasing the number of prey.

8.4.2 Modified Lotka-Volterra model

Interestingly enough, the Volterra model was not univer-
sally accepted by biologists and ecologists, despite being
able to explain the observed data for the shark-fish popu-
lation. Some researchers pointed out that the oscillatory
behaviour predicted by the Lotka-Volterra model is not ob-
served in most predator-prey systems, which rather tend
to equilibrium states as time evolves. However, one has to
have in mind that system (8.11) is not intended as a descrip-
tion of a general predator-prey system but a particular one
in which there is an abundance of food for fish that allow
them to grow at an exponential rate. In general, there is a
competition among both food fish and predators that can
be taken into account by including ”overcrowding” terms
into the system, as in the logistic model. This results in



264Qualitative theory of differential and difference equations

the following system of differential equations.

x′1 = ax1 − bx1x2 − ex2
1,

x′2 = −cx2 + dx1x2 − fx2
2, (8.19)

where a, b, e, c, d, f are positive constants. This system can
describe the population growth of two species x1 and x2 is
an environment of limited capacity, where the species x2

depends on the species x1 for its survival. Assume that
c/d > a/e. We prove that every solution (x1(t), x2(t)) of
(8.19), with x1(0), x2(0) > 0 approaches the equilibrium
solution x1 = a/e, x2 = 0, as t approaches infinity. As a
first step, we show that the solutions with positive initial
data must stay positive, that is, the orbit of any solution
originating in the first quadrant must stay in this quadrant.
Otherwise the model would not correspond to reality. First,
let us observe that putting x2(t) ≡ 0 we obtain the logistic
equation for x1 that can be solved giving

x1(t) =
ax0

ex0 + (a− ex0) exp(−at)

where x0 ≥ 0. The orbits of these solutions is the equilib-
rium point (0, 0), the segment 0 ≤ x1 < a/e, x2 = 0 for
x0 < a/e, the equilibrium point (a/e, 0) for x0 = a/e and
the segments a/e < x1 < ∞, x2 = 0 for x1 > a/e. Thus,
the positive x1-semiaxis x1 ≥ 0 is the union of these four
orbits. Similarly, putting x1(t) ≡ 0 we obtain the equation

x′2 = −cx2 − fx2
2.

To use the theory of Section 5, we observe that the equilib-
rium points of this equation are x2 = 0 and x2 = −c/f so
that there are no equilibria on the positive x2-semiaxis and
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Fig.5.1 Regions described in the analysis of 8.19

−cx2 − fx2
2 < 0 for x2 > 0. Therefore any solution with

initial value x0
2 > 0 will decrease converging to 0 and the

semiaxis x2 > 0 is a single orbit of (8.19). Thus, if a solu-
tion of (8.19) left the first quadrant, its orbit would cross
one of the orbits the positive semiaxes consist of, which is
precluded by uniqueness of orbits.

In the next step we divide the first quadrant into regions
where the derivatives x′1 and x′2 are of a fixed sign. This
is done by drawing lines l1 and l2, as in Fig. 5, across
which one of the other derivative vanishes. The line l1 is
determined by −ex1/b + a/b so that x′1 > 0 in region I
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and x′1 < in regions II and III. The line l2 is given by
x2 = dx1/f − c/f and x′2 < 0 in regions I and II, and
x′2 > 0 in region III.

We describe the behaviour of solutions in each region in
the sequence of observations.

Observation 1. Any solution to (8.19) which starts in
the region I at t = t0 will remain in this region for all t > t0
and ultimately approach the equilibrium x1 = a/e, x2 = 0.

Proof. If the solution x1(t), x2(t) leaves region I at some
time t = t∗, then x′1(t

∗) = 0, since the only way to leave
this region is to cross the line l1. Differentiation the first
equation in (8.19) gives

x′′1 = ax′1 − bx′1x2 − bx1x
′
2 − 2ex1x

′
1

so that at t = t∗ we obtain

x′′1(t∗) = −bx1(t∗)x′2(t
∗).

Since x′2(t
∗) < 0, x′′1(t∗) > 0 which means that x1(t∗) is a lo-

cal minimum. However, x1(t) reaches this point from region
I where it is increasing, which is a contradiction. Thus, the
solution (x1(t), x2(t)) stays in region I for all times t ≥ t0.
However, any solution staying in I must be bounded and
x′1 > 0 and x′2 < 0 so that x1(t) is increasing and x2(t) is
decreasing and therefore they must tend to a finite limit.
By Proposition 8.1, this limit must be an equilibrium point.
The only equilibria are (0, 0) and (a/e, 0) and the solution
cannot tend to the former as x1(t) is positive and increas-
ing. Thus, any solution starting in region I for some time
t = t0 tends to the equilibrium (a/e, 0) as t →∞.

Observation 2. Any solution of (8.19) that starts in
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region III at time t0 must leave this region at some later
time.

Proof. Suppose that a solution x1(t), x2(t) stays in re-
gion III for all time t ≥ 0. Since the sign of both derivatives
x′1 and x′2 is fixed, x1(t) decreases and x2(t) increases, thus
x1(t) must tend to a finite limit. x2(t) cannot escape to
infinity as the only way it could be achieved would be if
also x1(t) tended to infinity, which is impossible. Thus,
(x1(t), x2(t)) tend to a finite limit that, by Proposition 8.1,
has to be an equilibrium. However, there are no equilibria
to be reached from region III and thus the solution must
leave this region at some time.

Observation 3. Any solution of (8.19) that starts in
region II at time t = t0 and remains in this region for all
t ≥ 0 must approach the equilibrium solution x1 = a/e, x2 =
0.

Proof. Suppose that a solution (x1(t), x2(t)) stays in
region II for all t ≥ t0. Then both x1(t) and x2(t) are
decreasing and, since the region is bounded from below,
we see that this solution must converge to an equilibrium
point, in this case necessarily (a/e, 0).

Observation 4. A solution cannot enter region III from
region II.

Proof. This case is similar to Observation 1. Indeed,
if the solution crosses l2 from II to III at t = t∗, then
x′2(t

∗) = 0 but then, from the second equation of (8.19)

x′′2(t∗) = dx2(t∗)x′1(t
∗) < 0

so that x2(t∗) is a local maximum. This is, however, im-
possible, as x2(t) is decreasing in region II.

Summarizing, if the initial values are in regions I or II,



268Qualitative theory of differential and difference equations

then the solution tends to the equilibrium (a/e, 0) as t →
∞, by Observations 1,3 and 4. If the solution starts from
region III, then at some point it must enter region II and
we can apply the previous argument to claim again that the
solution will eventually approach the equilibrium (a/e, 0).
Finally, if a solution starts on l1, it must immediately enter
region I as x′2 < 0 and x′1 < 0 in region II (if the solution
ventured into II from l1, then either x′1 or x′2 would have to
be positive somewhere in II). Similarly, any solution start-
ing from l2 must immediately enter II. Thus, all the solution
starting in the first quadrant (with strictly positive initial
data) will converge to (a/e, 0) as t →∞.

8.5 Stability of linear systems

8.5.1 Planar linear systems

In this section we shall present a complete description of all
orbits of the linear differential system

y′ = Ay (8.20)

where y(t) = (y1(t), y2(t)) and

A =
(

a b

c d

)
.

We shall assume that A is invertible, that is, ad − bc 6= 0.
In such a case y = (0, 0) is the only equilibrium point of
(8.20).

The phase portrait is fully determined by the eigenvalues
of the matrix A. Let us briefly describe all possible cases,
as determined by the theory of Chapter 7. The general
solution can be obtained as a linear combination of two
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linearly independent solutions. To find them, we have to
find first the eigenvalues of A, that is, solutions to

(λ−λ1)(λ−λ2) = (a−λ)(d−λ)−bc = λ2−λ(d+a)+ad−bc.

Note that by the assumption on invertibility, λ = 0 is not
an eigenvalue of A. We have the following possibilities:

a) λ1 6= λ2. In this case each eigenvalue must be sim-
ple and therefore we have two linearly indepen-
dent eigenvectors v1, v2. The expansion etAvi for
i = 1, 2 terminates after the first term. We distin-
guish two cases.

¦ If λ1, λ2 are real numbers, then the general
solution is given simply by

y(t) = c1e
λ1tv1 + c2e

λ2tv2. (8.21)

¦ If λ1, λ2 are complex numbers, then the gen-
eral solution is still given by the above formula
but the functions above are complex and we would
rather prefer solution to be real. To achieve this,
we note that λ1, λ2 must be necessarily complex
conjugate λ1 = ξ + iω, λ2 = ξ − iω, where ξ and ω

are real. It can be also proved that the associated
eigenvectors v1 and v2 are also complex conjugate.
Let v1 = u+ iv; then the real-valued general solu-
tion is given by

y(t) = c1e
ξt(u cos ωt−v sin ωt)+c2e

ξt(u sin ωt+v cosωt).
(8.22)

This solution can be written in a more compact
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form

y(t) = eξt (A1 cos(ωt− φ1), A2 cos(ωt− φ2)) ,

(8.23)
for some choice of constants A1, A2 > 0 and φ1, φ2.

b) λ1 = λ2 = λ. There are two cases to distinguish.
¦ There are two linearly independent eigenvec-

tors v1 and v2 corresponding to λ. In this case the
general solution is given by

y(t) = eλt(c1v1 + c2v2). (8.24)

¦ If there is only one eigenvector, then follow-
ing the discussion above, we must find a vector
v2 satisfying (λI − A)v2 6= 0 and (λI − A)2v2 =
0. However, since we are in the two-dimensional
space, the latter is satisfied by any vector v2 and,
since the eigenspace is one dimensional, from

(λI −A)2v2 = (λI −A)(λI −A)v2 = 0

it follows that (λI−A)v2 = kv1. Thus, the formula
for eAtv2 simplifies as

etAv2 = eλt
(
v2 + t(λI −A)v2

)
= eλt

(
v2 + ktv1

)
.

Thus, the general solution in this case can be writ-
ten as

y(t) = eλt
(
(c1 + c2kt)v1 + c2v2

)
. (8.25)

Remark 8.1 Before we embark on describing phase por-
traits, let us observe that if we change the direction of time
in (8.20): τ = −t and z(τ) = y(−τ) = y(t), then we obtain

z′τ = −Az
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and the eigenvalues of −A are precisely the negatives of the
eigenvalues of A. Thus, the orbits of solutions correspond-
ing to systems governed by A and −A or, equivalently, with
eigenvalues that differ only by sign, are the same with only
difference being the direction in which they are traversed.

We are now in a position to describe all possible phase
portraits of (8.20). Again we have to go through several
cases.

i) λ2 < λ1 < 0. Let v1 and v2 be eigenvectors of A with
eigenvalues λ1 and λ2, respectively. In the y1 − y2

plane we draw four half-lines l1, l
′
1, l2, l

′
2 parallel to

v1, −v1, v2 and −v2, respectively, and emanat-
ing from the origin, as shown in Fig 2.1. Observe
first that y(t) = ceλitvi, i = 1, 2, are the solutions
to (8.20) for any choice of a non-zero constant c

and, as they are parallel to vi, the orbits are the
half-lines l1, l

′
1, l2, l2 (depending on the sign of the

constant c) and all these orbits are traced towards
the origin as t → ∞. Since every solution y(t) of
(8.20) can be written as

y(t) = c1e
λ1tv1 + c2e

λ2tv2

for some choice of constants c1 and c2 and λ1, λ2 <

0, every solution tends to (0, 0) as t → ∞, and
so every orbit approaches the origin for t → ∞.
We can prove an even stronger fact – as λ2 <

λ1, the second term becomes negligible for large
t and therefore the tangent of the orbit of y(t) ap-
proaches the direction of l1 if c1 > 0 and of l′1 if
c1 < 0. Thus, every orbit except that with c1 = 0
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Fig. 5.2 Stable node

approaches the origin along the same fixed line.
Such a type of an equilibrium point is called a sta-
ble node. If we have 0 < λ1 < λ2, then by Remark
8.1, the orbits of (8.20) will have the same shape
as in case i) but the arrows will be reversed so that
the origin will repel all the orbits and the orbits
will be unbounded as t →∞. Such an equilibrium
point is called an unstable node.

ii) λ1 = λ2 = λ < 0. In this case the phase portrait of
(8.20) depends on whether A has one or two lin-
early independent eigenvectors. In the latter case,
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the general solution in given (see b) above) by

y(t) = eλt(c1v1 + c2v2),

so that orbits are half-lines parallel to c1v1 + c2v2.
These half-lines cover every direction of the y1−y2

plane and, since λ < 0, each solution will converge
to (0, 0) along the respective line. Thus, the phase
portrait looks like in Fig. 5.3a. If there is only one
independent eigenvector corresponding to λ, then
by (8.25)

y(t) = eλt
(
(c1 + c2kt)v1 + c2v2

)

for some choice of constants c1, c2, k. Obviously,
every solution approaches (0, 0) as t →∞. Putting
c2 = 0, we obtain two half-line orbits c1e

λtv1 but,
contrary to the case i), there are no other half-line
orbits. In addition, the term c1v1 + c2v2 becomes
small in comparison with c2ktv1 as t →∞ so that
the orbits approach the origin in the direction of
±v1. The phase portrait is presented in Fig. 5.3b.
The equilibrium in both cases is called the stable
degenerate node. If λ1 = λ2 > 0, then again by
Remark 8.1, the picture in this case will be the
same as in Fig. 5.3 a-b but with the direction of
arrows reversed. Such equilibrium point is called
an unstable degenerate node.

iii) λ1 < 0 < λ2. As in case i), in the y1 − y2 plane we
draw four half-lines l1, l

′
1, l2, l

′
2 that emanate from

the origin and are parallel to v1, −v1, v2 and −v2,
respectively, as shown in Fig 2.3. Any solution is
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Fig 5.3 Stable degenerate node

given by

y(t) = c1e
λ1tv1 + c2e

λ2tv2

for some choice of c1 and c2. Again, the half-lines
are the orbits of the solutions: l1, l

′
1 for c1e

λ1tv1

with c1 > 0 and c1 < 0, and l2, l
′
2 for c2e

λ2tv2

with c2 > 0 and c2 < 0, respectively. However,
the direction of arrows is different on each pair of
half-lines: while the solution c1e

λ1tv1 converges to-
wards (0, 0) along l1 or l′1 as t → ∞, the solution
c2e

λ2tv2 becomes unbounded moving along l2 or
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Fig 5.4 A saddle point

l′2, as t → ∞. Next, we observe that if c1 6= 0,
then for large t the second term c2e

λ2tv2 becomes
negligible and so the solution becomes unbounded
as t → ∞ with asymptotes given by the half-lines
l2, l

′
2, respectively. Similarly, for t → −∞ the term

c1e
λ1tv1 becomes negligible and the solution again

escapes to infinity, but this time with asymptotes
l1, l

′
1, respectively. Thus, the phase portrait, given

in Fig. 5.4, resembles a saddle near y1 = y2 = 0
and, not surprisingly, such an equilibrium point is
called a saddle. The case λ2 < 0 < λ1 is of course
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symmetric.
iv) λ1 = ξ + iω, λ2 = ξ − iω. In (8.23) we derived the

solution in the form

y(t) = eξt (A1 cos(ωt− φ1), A2 cos(ωt− φ2)) .

We have to distinguish three cases:
α) If ξ = 0, then

y1(t) = A1 cos(ωt−φ1), y2(t) = A2 cos(ωt−φ2),

both are periodic functions with period 2π/ω and
y1 varies between −A1 and A1 while y2 varies be-
tween −A2 and A2. Consequently, the orbit of any
solution y(t) is a closed curve containing the ori-
gin inside and the phase portrait has the form pre-
sented in Fig. 5.5 a. For this reason we say that
the equilibrium point of (8.20) is a center when the
eigenvalues of A are purely imaginary. The direc-
tion of arrows must be determined from the equa-
tion. The simplest way of doing this is to check the
sign of y′2 when y2 = 0. If at y2 = 0 and y1 > 0
we have y′2 > 0, then all the orbits are traversed in
the anticlockwise direction, and conversely.

β) If ξ < 0, then the factor eξt forces the so-
lution to come closer to zero at every turn so that
the solution spirals into the origin giving the pic-
ture presented in Fig. 5.5 b. The orientation of
the spiral must be again determined directly from
the equation. Such an equilibrium point is called a
stable focus.

γ) If ξ > 0, then the factor eξt forces the solu-
tion to spiral outwards creating the picture shown
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Fig. 5.5 Center, stable and unstable foci

in Fig. 5. 5 c. Such an equilibrium point is called
an unstable focus.

8.6 Stability of equilibrium solutions

In this section we shall describe how the solutions of the
system (8.9) behave under small perturbations. First of
all, we have to make this concept precise. Let y(t) be a
solution of the system

y′ = f(y). (8.26)



278Qualitative theory of differential and difference equations

Definition 8.1 The solution y(t) of (8.26) is stable if every
other solution x(t) that starts sufficiently close to y(t) will
remain close to it for all times. Precisely, y(t) is stable if
for any ε there is δ such that for any solution x of (8.26)
from

‖x(t0)− y(t0)‖ ≤ δ,

it follows

‖x(t)− y(t)‖ ≤ ε.

Moreover, we say that y(t) is asymptotically stable, if it is
stable and there is δ such that if ‖x(t0)− y(t0)‖ ≤ δ, then

lim
t→∞

‖y(t)− x(t)‖ = 0.

The main interest in applications is to determine the sta-
bility of stationary solutions.

8.6.1 Linear systems

For linear systems the question of stability of solutions can
be fully resolved. Firstly, we observe that any solution y(t)
of the linear system

y′ = Ay (8.27)

is stable if and only if the stationary solution x(t) = (0, 0)
is stable. To show this, let z(t) be any other solution; then
v(t) = y(t) − z(t) is again a solution of (8.27). Therefore,
if the null solution is stable, then v(t) remains close to
zero for all t if v(t0) is small. This, however, implies that
y(t) will remain close to z(t) if y(t0) is sufficiently close
to z(t0). A similar argument applies to the asymptotic
stability. Conversely, let the null solution be unstable; then
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there is a solution h(t) such that h(t0) is small, but h(t)
becomes very large as t approaches to infinity. For any
solution y(t), the function z(t) = y(t) + h(t) is again a
solution to (8.27) which sways away from y(t) for large t.
Thus, any solution is unstable.

The discussion of phase-portraits for two-dimensional lin-
ear, given in the previous section allows to determine easily
under which conditions (0, 0) is stable. Clearly, the only
stable cases are when real parts of both eigenvalues are
non-positive with asymptotic stability offered by eigenval-
ues with strictly negative ones (the case of the centre is an
example of a stable but not asymptotically stable equilib-
rium point).

Analogous results can be formulated for linear systems
in higher dimensions. By considering formulae for solutions
we ascertain that the equilibrium point is (asymptotically
stable) if all the eigenvalues have negative real parts and
is unstable if at least one eigenvalue has positive real part.
The case of eigenvalues with zero real part is more compli-
cated as in higher dimension we can have multiple complex
eigenvalues. Here, again from the formula for solutions,
we can see that if for each eigenvalue with zero real part
of algebraic multiplicity k there is k linearly independent
eigenvectors, the solution is stable. However, if geometric
and algebraic multiplicities of at least such eigenvalue are
different, then in the solution corresponding to this eigen-
value there will appear a polynomial in t which will cause
the solution to be unstable.
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8.6.2 Nonlinear systems

The above considerations can be used to determine stability
of equilibrium points of arbitrary differential equations

y′ = f(y). (8.28)

Let us first note the following result.

Lemma 8.2 If f has continuous partial derivatives of the
first order in some neighbourhood of y0, then

f(x + y0) = f(y0) +Ax + g(x) (8.29)

where

A =




∂f1
∂x1

(y0) . . . ∂f1
∂xn

(y0)
...

...
∂f1
∂xn

(y0) . . . ∂fn

∂xn
(y0)


 ,

and g(x)/‖x‖ is continuous in some neighbourhood of y0

and vanishes at x = y0.

Proof. The matrix A has constant entries so that g defined
by

g(x) = f(x + y0)− f(y0)−Ax

is a continuous function of x. Hence, g(x)/‖x‖ is also con-
tinuous for x 6= 0. Using now Taylor’s formula for each
component of f we obtain

fi(x+y0) = fi(y0)+
∂fi

∂x1
(y0)x1+. . .+

∂fi

∂xn
xn(y0)+Ri(x), i = 1, . . . , n,

where, for each i, the remainder Ri satisfies

|Ri(x)| ≤ M(‖x‖)‖x‖
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and M tends to zero is ‖x‖ → 0. Thus,

g(x) = (R1(x), . . . , Rn(x))

and
‖g(x)‖
‖x‖ ≤ M(‖x‖) → 0

as ‖x‖ → 0 and, f(y0) = 0, the lemma is proved.
The linear system

x′ = Ax

is called the linearization of (8.28) around the equilibrium
point y0.

Theorem 8.3 Suppose that f is a twice differentiable func-
tion in some neighbourhood of the equilibrium point y0.
Then,

(i) The equilibrium point y0 is asymptotically stable if
all the eigenvalues of the matrix A have negative real
parts, that is, if the equilibrium solution x(t) = 0 of
the linearized system is asymptotically stable.

(ii) The equilibrium point y0 is unstable if at least one
eigenvalue has a positive real part.

(iii) If all the eigenvalues of A have non-negative real
part but at least one of them has real part equal to 0,
then the stability of the equilibrium point y0 of the
nonlinear system (8.28) cannot be determined from
the stability of its linearization.

Proof. To prove 1) we use the variation of constants for-
mula (7.35) applied to (8.28) written in the form of Lemma
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8.2 for y(t) = x(t) + y0:

x′ = y′ = f(y) = f(x + y0) = Ax + g(x).

Thus

x(t) = etAx(0) +

t∫

0

e(t−s)Ag(x(s))ds.

Denoting by α′ the maximum of real parts of eigenvalues
of A we observe that for any α > α′

‖etAx(0)‖ ≤ Ke−αt‖x(0)‖, t ≥ 0,

for some constant K ≥ 1. Note that in general we have
to take α > α′ to account for possible polynomial entries
in etA. Thus, since α′ < 0, then we can take also α < 0
keeping the above estimate satisfied. From the assumption
on g, for any ε we find δ > 0 such that if ‖x‖ ≤ δ, then

‖g(x)‖ ≤ ε‖x‖. (8.30)

Assuming for a moment that for 0 ≤ s ≤ t we can keep
‖x(s)‖ ≤ δ, we can write

‖x(t)‖ ≤ ‖eAtx(0)‖+

t∫

0

‖eA(t−s)g(x(s))‖ds

≤ Ke−αtx(0) + Kε

t∫

0

e−α(t−s)‖x(s)‖ds

or, multiplying both sides by eαt and setting z(t) = eαt‖x(t)‖,

z(t) ≤ K‖x(0)‖+ Kε

t∫

0

z(s)ds. (8.31)
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Using Gronwall’s lemma we obtain thus

‖x(t)‖ = e−αtz(t) ≤ K‖x(0)‖e(Kε−α)t,

providing ‖x(s)‖ ≤ δ for all 0 ≤ s ≤ t. Let us take ε ≤
α/2K, then the above can be written as

‖x(t)‖ ≤ K‖x(0)‖e−αt
2 . (8.32)

Assume now that ‖x(0)‖ < δ/K ≤ δ where δ was fixed for
ε ≤ α/2K. Then ‖x(0)‖ < δ and, by continuity, ‖x(t)‖ ≤ δ

for some time. Let x(t) be defined on some interval I and
t1 ∈ I be the first time for which ‖x(t)‖ = δ. Then for
t ≤ t1 we have ‖x(t)‖ ≤ δ so that for all t ≤ t1 we can use
(8.32) getting, in particular,

‖x(t1)‖ ≤ δe−
αt1
2 < δ,

that is a contradiction. Thus ‖x(t)‖ < δ if ‖x(0)‖ < δ1 in
the whole interval of existence but then, if the interval was
finite, then we could extend the solution to a larger interval
as the solution is bounded at the endpoint and the same
procedure would ensure that the solution remains bounded
by δ on the larger interval. Thus, the extension can be car-
ried out for all the values of t ≥ 0 and the solution exists
for all t and satisfies ‖x(t)‖ ≤ δ for all t ≥ 0. Consequently,
(8.32) holds for all t and the solution x(t) converges expo-
nentially to 0 as t →∞ proving the asymptotic stability of
the stationary solution y0.

Statement 2 follows from e.g. the Stable Manifold Theo-
rem, two-dimensional version of which is discussed later.

To prove 3, it is enough to display two systems with the
same linear part and different behaviour of solutions. Let
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us consider

y′1 = y2 − y1(y2
1 + y2

2)

y′2 = −y1 − y2(y2
1 + y2

2)

with the linearized system given by

y′1 = y2

y′2 = −y1

The eigenvalues of the linearized system are ±i. To analyze
the behaviour of the solutions to the non-linear system, let
us multiply the first equation by y1 and the second by y2

and add them together to get

1
2

d

dt
(y2

1 + y2
2) = −(y2

1 + y2
2)2.

Solving this equation we obtain

y2
1 + y2

2 =
c

1 + 2ct

where c = y2
1(0)+y2

2(0). Thus y2
1(t)+y2

2(t) approaches 0 as
t →∞ and y2

1(t)+y2
2(t) < y2

1(0)+y2
2(0) for any t > 0 and we

can conclude that the equilibrium point 0 is asymptotically
stable.

Consider now the system

y′1 = y2 + y1(y2
1 + y2

2)

y′2 = −y1 + y2(y2
1 + y2

2)

with the same linear part and thus with the same eigenval-
ues. As above we obtain that

y2
1 + y2

2 =
c

1− 2ct
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with the same meaning for c. Thus, any solution with non-
zero initial condition blows up at the time t = 1/2c and
therefore the equilibrium solution 0 is unstable.

Example 8.10 Find all equilibrium solutions of the system
of differential equations

y′1 = 1− y1y2,

y′2 = y1 − y3
2 ,

and determine, if possible, their stability.
Solving equation for equilibrium points 1− y1y2 = 0, y1−

y3
2 = we find two equilibria: y1 = y2 = 1 and y1 = y2 = −1.

To determine their stability we have to reduce each case
to the equilibrium at 0. For the first case we put u(t) =
y1(t)− 1 and v(t) = y2(t)− 1 so that

u′ = −u− v − uv,

v′ = u− 3v − 3v2 − v3,

so that the linearized system has the form

u′ = −u− v,

v′ = u− 3v,

and the perturbing term is given by g(u, v) = (−uv,−3v2 +
v3) and, as the right-hand side of the original system is in-
finitely differentiable at (0, 0) the assumptions of the stabil-
ity theorem are satisfied. The eigenvalues of the linearized
system are given by λ1,2 = −2 and therefore the equilibrium
solution y(t) ≡ (1, 1) is asymptotically stable.

For the other case we set u(t) = y1(t)+1 and v(t) = y2+1
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so that

u′ = u + v − uv,

v′ = u− 3v + 3v2 − v3,

so that the linearized system has the form

u′ = u + v,

v′ = u− 3v,

and the perturbing term is given by g(u, v) = (−uv, 3v2 −
v3). The eigenvalues of the linearized system are given by
λ1 = −1−√5 and λ2 = −1 +

√
5and therefore the equilib-

rium solution y(t) ≡ (−1,−1) is unstable.



Appendix 1

Methods of solving first order
difference equations

The general form of a first order difference equation is

x(n + 1) = f(n, x(n)), (1.1)

where f is any function of two variables defined on N0×R,
where N0 = {0, 1, 2 . . .} is the set of natural numbers en-
larged by 0. Eq. (1.1) is a recurrence formula and thus in
difference equations we do not encounter problems related
to existence and uniqueness which are often quite delicate
for differential equations. However, finding an explicit for-
mula for the solution is possible for a much more narrow
class of difference equations than in the case of differential
equations. We shall survey some typical cases.

A1.1 Solution of the first order linear difference
equation

The general first order difference equation has the form

x(n + 1) = a(n)x(n) + g(n), (1.2)

287
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where (an)n∈N and (gn)n∈N are given sequences. It is clear
that to start the recurrence we need only one initial point,
so that we supplement (1.2) with the an initial condition
x(0) = x0. It is easy to check by induction that the solution
is given by

x(n) = x0

n−1∏

k=0

a(k) +
n−1∑

k=0

g(k)
n−1∏

i=k+1

a(i) (1.3)

where we adopted the convention that
n−1∏

n
= 1. Similarly,

to simplify notation, we agree to put
j∑

k=j+1

= 0. Special

cases
There are two special cases of (1.2) that appear in many

applications. In the first, the equation is given by

x(n) = ax(n) + g(n), (1.4)

with the value x(0) = x0 given. In this case
k2∏

k=k1

a(k) =

ak2−k1+1 and (1.3) takes the form

x(n) = anx(0) +
n−1∑
k=0

an−k−1g(k). (1.5)

The second case is a simpler form of (1.4), given by

x(n) = ax(n) + g, (1.6)

with g independent of n. In this case the sum in (1.5) can
be evaluated in an explicit form giving

x(n) =
{

anx0 + g an−1
a−1 if a 6= 1,

x(0) + gn.
(1.7)



Appendix 2

Basic solution techniques in
differential equations

A2.1 Some general results

In the proof of the Picard theorem, in particular, in the
uniqueness part an essential role is played by the follow-
ing result, known as the Gronwall lemma. It is possibly
the most used auxiliary result in the theory of differential
equations.

Lemma 2.1 If f(t), g(t) are continuous and nonnegative
for t ∈ [t0, t0 + α], α > 0, and c > 0, then

f(t) ≤ c +

t∫

t0

f(s)g(s)ds (2.1)

on [t0, t0 + α] implies

f(t) ≤ c exp




t∫

t0

g(s)ds


 (2.2)

for all [t0, t0 + α].
If f satisfies (2.1) with c = 0, then f(t) = 0 on [t0, t0+α].

289
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A2.2 Some equations admitting closed form
solutions

A2.2.1 Separable equations

Consider an equation that can be written in the form

dy

dt
=

g(t)
h(y)

, (2.3)

where g and h are known functions. Equations that can be
put into this form are called separable equations. Firstly,
we note that any constant function y = y0, such that
1/h(y0) = 0, is a special solution to (2.3), as the deriva-
tive of a constant function is equal to zero. We call such
solutions stationary or equilibrium solutions.

To find a general solution, we assume that 1/h(y) 6= 0,
that is h(y) 6= ∞. Multiplying then both sides of (2.3) by
h(y) to get

h(y)
dy

dt
= g(t) (2.4)

and observe that, denoting by H(y) =
∫

h(y)dy the an-
tiderivative of h, we can write (2.3) in the form

d

dt
(H(y(t))) = g(t),

that closely resembles (??). Thus, upon integration we ob-
tain

H(y(t)) =
∫

g(t)dt + c, (2.5)

where c is an arbitrary constant of integration. The next
step depends on the properties of H: for instance, if H :
R→ R is monotonic, then we can find y explicitly for all t
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as

y(t) = H−1

(∫
g(t)dt + c

)
.

Otherwise, we have to do it locally, around the initial val-
ues. To explain this, we solve the initial value problem for
separable equation.

dy

dt
=

g(t)
h(y)

,

y(t0) = y0, (2.6)

Using the general solution (2.5) (with definite integral) we
obtain

H(y(t)) =

t∫

t0

g(s)ds + c,

we obtain

H(y(t0)) =

t0∫

t0

a(s)ds + c,

which, due
t0∫
t0

a(s)ds = 0, gives

c = H(y(t0)),

so that

H(y(t)) =

t∫

t0

g(s)ds + H(y(t0)).

We are interested in the existence of the solution at least
close to t0, which means that H should be invertible close
to y0. From the Implicit Function Theorem we obtain that
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this is possible if H is differentiable in a neighbourhood of
y0 and ∂H

∂y (y0) 6= 0. But ∂H
∂y (y0) = h(y0), so we are back at

Picard’s theorem: if h(y) is differentiable in the neighbour-
hood of y0 with h(y0) 6= 0 (if h(y0) = 0, then the equation
(2.3) does not make sense at y0, and g is continuous, then
f(t, y) = g(t)/h(y) satisfies the assumptions of the theorem
in some neighbourhood of (t0, y0).

A2.2.2 Linear ordinary differential equations of

first order

The general first order linear differential equation is

dy

dt
+ a(t)y = b(t). (2.7)

Functions a and b are known continuous functions of t. Let
us recall that we call this equation ‘linear’ because the de-
pendent variable y appears by itself in the equation. In
other words, y′ and y appear in the equation only possi-
bly multiplied by a known function and not in the form
yy′, sin y or (y′)3.

It is not immediate how to solve (2.7), therefore we shall
simplify it even further by putting b(t) = 0. The resulting
equation

dy

dt
+ a(t)y = 0, (2.8)

is called the reduced first order linear differential equation.
We observe that the reduced equation is a separable equa-
tion and thus can be solved easily. As in Example 4.5 we
obtain that if y(t) 6= 0 for any t, then

y(t) = C exp
(
−

∫
a(t)dt

)
, C ∈ R. (2.9)
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The Picard theorem ensures that these are all solutions of
(2.8). Eq. (2.9) will be used to solve (2.7). First we multiply
both sides of (2.7) by some continuous nonzero function µ

(for a time being, unknown) to get the equivalent equation

µ(t)
dy

dt
+ µ(t)a(t)y = µ(t)b(t), (2.10)

and ask the question: for which function µ the left-hand
side of (2.10) is a derivative of some simple expression? We
note that the first term on the left-hand side comes from

dµ(t)y
dt

= µ(t)
dy

dt
+

dµ(t)
dt

y,

thus, if we find µ in such a way that

µ(t)
dy

dt
+

dµ(t)
dt

y = µ(t)
dy

dt
+ µ(t)a(t)y,

that is
dµ(t)

dt
y = µ(t)a(t)y,

then we are done. Note that an immediate choice is to solve
the equation

dµ(t)
dt

= µ(t)a(t),

but this is a separable equation, the general solution of
which is given by (2.9). Since we need only one such func-
tion, we may take

µ(t) = exp
(∫

a(t)dt

)
.

The function µ is called an integrating factor of the equation
(2.7). With such function, (2.7) can be written as

d

dt
µ(t)y = µ(t)b(t),
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thus

µ(t)y =
∫

µ(t)b(t)dt + c

where c is an arbitrary constant of integration. Finally

y(t) =
1

µ(t)

(∫
µ(t)b(t)dt + c

)
(2.11)

= exp
(
−

∫
a(t)dt

)(∫
b(t) exp

(∫
a(t)dt

)
dt + c

)
.

It is worthwhile to note that the solution consists of two
parts: the general solution to the reduced equation associ-
ated with (2.7)

c exp
(
−

∫
a(t)dt

)

and, what can be checked by direct differentiation, a par-
ticular solution to the full equation.

If we want to find a particular solution satisfying y(t0) =
y0, then we write (2.11) using definite integrals

y(t) = exp


−

t∫

t0

a(s)ds







t∫

t0

b(s) exp




s∫

t0

a(r)dr


 ds + c




and use the fact that
t0∫
t0

f(s)ds = 0 for any function f . This

shows that the part of the solution satisfying the nonhomo-
geneous equation:

yb(t) = exp


−

t∫

t0

a(s)ds




t∫

t0

b(s) exp




s∫

t0

a(r)dr


 ds
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takes on the zero value at t = t0. Thus

y0 = y(t0) = c

and the solution to the initial value problem is given by

y(t) = y0 exp


−

t∫

t0

a(s)ds


 (2.12)

+ exp


−

t∫

t0

a(s)ds




t∫

t0

b(s) exp




s∫

t0

a(r)dr


 ds.

Once again we emphasize that the first term of the formula
above solves the reduced (b(t) = 0) equation with the de-
sired initial value (y(0) = y0) whereas the second solves the
full equation with the initial value equal to zero.

Again, Picard’s theorem shows that there are no more
solutions to (2.7) than those given by (2.12).

A2.2.3 Bernoulli equation

Consider the equation

y′(t) = a(t)y(t) + b(t)yα(t), (2.13)

called the Bernoulli equation. Here we assume that a and b

are continuous functions on some interval I and α is a real
number different from 0 and 1 (as in these two cases (2.13)
becomes a linear equation).

We see that y(t) ≡ 0 is a solution of (2.13) if α > 0. By
the Picard theorem, the Cauchy problem for (2.13) with
the initial condition y(t0) = y0, t0 ∈ I, has a unique solu-
tion for any y0 neq0 (y0 > 0 if α is a fraction). Precisely
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speaking, for α > 1 a unique solution (y = 0) exists also
for y0 = 0 as in this case the right hand side of (2.13) is
Lipschitz continuous. To find non-zero solutions of (2.13),
we introduce the change of the dependent variable

z = y1−α.

Thus

z′ = (1− α)y−αy′

and

y′ = (1− α)−1yαz′.

Substituting this formula into (2.13), dividing by (1−α)−1yα

and using the previous equation we arrive at

z′(t) = (1− α)a(t)z(t) + (1− α)b(t) (2.14)

which is a linear equation which can be solved by the meth-
ods introduced in the previous subsection.

A2.2.4 Equations of homogeneous type

In differential equations, as in integration, a smart sub-
stitution can often convert a complicated equation into a
manageable one. For some classes of differential equations
there are standard substitutions that transform them into
separable equations. We shall discuss one such a class in
detail.

A differential equation that can be written in the form

dy

dt
= f

(y

t

)
, (2.15)

where f is a function of the single variable z = y/t is said
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to be of homogeneous type. Note that in some textbooks
such equations are called homogeneous equations but this
often creates confusion as the name homogeneous equation
is generally used in another context.

To solve (2.15) let us make substitution

y = tz (2.16)

where z is the new unknown function. Then, by the product
rule for derivatives

dy

dt
= z + t

dz

dt

and (2.15) becomes

t
dz

dt
= f(z)− z. (2.17)

In (2.17) the variables are separable so it can be solved as
in Subsection A2.2.1.

A2.2.5 Equations that can be reduced to first

order equations

Some higher order equations can be reduced to equations of
the first order. We shall discuss two such cases for second
order equations.

Equations that do not contain the unknown function
If we have the equation of the form

F (y′′, y′, t) = 0, (2.18)

then the substitution z = y′ reduces this equation to an
equation of the first order

F (z′, z, t) = 0. (2.19)
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If we can solve this equation

z = φ(t, C),

where C is an arbitrary constant, then, returning to the
original unknown function y, we obtain another first order
equation

y′ = φ(t, C),

which is immediately solvable as

y(t) =
∫

φ(t, C)dt + C1.

Equations that do not contain the independent variable
Let us consider the equation

F (y′′, y′, y) = 0, (2.20)

that does not involve the independent variable t. Such an
equation can be also reduced to a first order equation, the
idea, however, is a little more complicated. Firstly, we note
that, as long as y′ 6= 0, the derivative y′ locally is uniquely
defined by the function y; that is, we can write y′ = g(y)
for some function g. Indeed, the function y = y(t) is locally
invertible provided y′ 6= 0 and we can write t = t(y). Thus
g(y) = y′(t(y)). Using the chain rule we obtain

y′′ =
d

dt
y′ =

dg

dy
(y)

dy

dt
= y′

dg

dy
(y) = g(y)

dg

dy
(y). (2.21)

Substituting (2.21) into (2.20) gives a first order equation
with y as an independent variable

F

(
g
dg

dy
, g, y

)
= 0. (2.22)

If we solve this equation in the form g(y) = φ(y, C), then to
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find y we have to solve one more first order equation with
t as the independent variable

dy

dt
= φ(y, C).

We note that the latter is a separable equation.
The above procedure can be best explained by interpret-

ing t as time, y as the distance travelled by a particle mov-
ing with velocity y′ and acceleration y′′. If the particle does
not reverse the direction of motion (y′ = 0 at any turning
point!), then velocity can be expressed as a function of the
distance instead of time. This is precisely what we have
done above.

A2.3 Systems of difference equations and higher
order equations

A2.3.1 Homogeneous systems of difference

equations

We start with the homogeneous system of difference equa-
tions

y1(n + 1) = a11y1(n) + a12y2(n) + . . . + a1kyk(n),
...

...
..., (2.23)

yk(n + 1) = ak1y1(n) + ak2y2(n) + . . . + akkyk(n),

where, for n ≥ 0, y1(n), . . . , yk(n) are unknown sequences,
a11, . . . , akk are constant coefficients and g1(n) . . . , gk(n)
are known. As with systems of differential equations, we
shall find it more convenient to use the matrix notation.
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Denoting y = (y1, . . . , yk), A = {aij}1≤i,j≤k, that is,

A =




a11 . . . a1k

...
...

ak1 . . . akk


 ,

(2.23) can be written as

y(n + 1) = Ay(n). (2.24)

Eq. (2.24) is usually supplemented by the initial condition
y(0) = y0. It is obvious, by induction, to see that the
solution to (2.24) is given by

y(n) = Any0. (2.25)

The problem with (2.25) is that it is rather difficult to give
an explicit form of An. We shall solve this problem in a
similar way to Subsection 7.1.4, where we were to evaluate
the exponential function of A.

To proceed, we assume that the matrix A is nonsingular.
This means, in particular, that if v1, . . . ,vk are linearly
independent vectors, then also Av1, . . . ,Avk are linearly
independent. Since Rk is k-dimensional, it is enough to
find k linearly independent vectors vi, i = 1, . . . , k for which
Anvi can be easily evaluated. Assume for a moment that
such vectors have been found. Then, for arbitrary x0 ∈ Rk

we can find constants c1, . . . , ck such that

x0 = c1v1 + . . . + c2vk.

Precisely, let V be the matrix having vectors vi as its columns,
and let c = (c1, . . . , ck), then

c = V−1x0. (2.26)
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Note, that V is invertible as the vectors vi are linearly in-
dependent.

Thus, for arbitrary x0 we have

Anx0 = An(c1v1 + . . . + c2vk) = c1Anv1 + . . . + ckAnvk.

(2.27)
Now, if we denote by An the matrix whose columns are
vectors Anv1, . . . ,Anvk, then we can write

An = AnV−1 (2.28)

Hence, the problem is to find linearly independent vectors
vi, i = 1, . . . , k, on which powers of A can be easily eval-
uated. As before, we use eigenvalues and eigenvectors for
this purpose. Firstly, note that if v1 is an eigenvector of
A corresponding to an eigenvalue λ1, that is, Av1 = λ1v1,
then by induction

Anv1 = λn
1v

1.

Therefore, if we have k linearly independent eigenvectors
v1, . . . ,vk corresponding to eigenvalues λ1, . . . , λk (not nec-
essarily distinct), then from (2.27) we obtain

Anx0 = c1λ
n
1v

1 + . . . + ckλn
kvk.

with c1, . . . , ck given by (2.26). Note that, as for systems
of differential equations, if λ is a complex eigenvalue with
eigenvector v, then both <(λnv) and =(λnv) are real val-
ued solutions. To find explicit expressions for them we write
λ = reiφ where r = |λ| and φ = Argλ. Then

λn = rneinφ = rn(cos nφ + i sin nφ)



302 Basic solution techniques in differential equations

and

<(λnv) = rn(cos nφ<v − sin nφ=v),

=(λnv) = rn(sinnφ<v + cosnφ=v).

Finally, if for some eigenvalue λi the number νi of lin-
early independent eigenvectors is smaller than its algebraic
multiplicity ni, then we follow the procedure described in
Subsection 7.1.4, that is, we find all solutions to

(A− λiI)2v = 0

that are not eigenvectors and, if we still do not have suffi-
ciently many independent vectors, we continue solving

(A− λiI)jv = 0

with j ≤ ni; it can be proven that in this way we find ni

linearly independent vectors. Let vj is found as a solution
to (A− λiI)jvj = 0 with j ≤ νi. Then, using the binomial
expansion we find

Anvj = (λiI +A− λiI)nvj =
n∑

r=0
λn−r

i

(
n

r

)
(A− λiI)rvj

=
(
λn

i I + nλn−1
i (A− λiI) + . . .

+
n!

(j − 1)!(n− j + 1)!
λn−j+1

i (A− λiI)j−1

)
vj,(2.29)

where (
n

r

)
=

n!
r!(n− r)!

is the Newton symbol. It is important to note that (2.29) is
a finite sum for any n; it always terminates at most at the
term (A − λ1I)ni−1 where ni is the algebraic multiplicity
of λi.
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We shall illustrate these considerations by the following
example.

Example 2.1 Find An for

A =




4 1 2
0 2 −4
0 1 6


 .

We start with finding eigenvalues of A:

p(λ) =

∣∣∣∣∣∣

4− λ 1 2
0 2− λ −4
0 1 6− λ

∣∣∣∣∣∣
= (4−λ)(16−8λ+λ2) = (4−λ)3 = 0

gives the eigenvalue λ = 4 of algebraic multiplicity 3. To
find eigenvectors corresponding to λ = 3, we solve

(A− 4I)v =




0 1 2
0 −2 −4
0 1 2







v1

v2

v3


 =




0
0
0


 .

Thus, v1 is arbitrary and v2 = −2v3 so that the eigenspace
is two dimensional, spanned by

v1 =




1
0
0


 , v2 =




0
−2
1


 .

Therefore

Anv1 = 4n




1
0
0


 , Anv2 = 4n




0
−2
1


 .
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To find the last vector we consider

(A− 4I)2v =




0 1 2
0 −2 −4
0 1 2







0 1 2
0 −2 −4
0 1 2







v1

v2

v3




=




0 0 0
0 0 0
0 0 0







v1

v2

v3


 =




0
0
0


 .

Any vector solves this equation so that we have to take a vec-
tor that is not an eigenvalue. Possibly the simplest choice
is

v3 =




0
0
1


 .

Thus, by (2.29)

Anv3 =
(
4nI + n4n−1(A− 4I)

)
v3

=







4n 0 0
0 4n 0
0 0 4n


 + n4n−1




0 1 2
0 −2 −4
0 1 2










0
0
1




=




2n4n−1

−n4n

4n + 2n4n−1


 .

To find explicit expression for An we use (2.28). In our
case

An =




4n 0 2n4n−1

0 −2 · 4n −n4n

0 4n 4n + 2n4n−1


 ,
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further

V =




1 0 0
0 −2 0
0 1 1


 ,

so that

V−1 =




1 0 0
0 − 1

2 0
0 1

2 1


 .

Therefore

An = AnV−1 =




4n n4n−1 2n4n−1

0 4n − 2n4n−1 −n4n

0 n4n−1 4n + 2n4n−1


 .

The next example shows how to deal with complex eigen-
values.

Example 2.2 Find An if

A =
(

1 −5
1 −1

)
.

We have ∣∣∣∣
1− λ −5

1 −1− λ

∣∣∣∣ = λ2 + 4

so that λ1,2 = ±2i. Taking λ1 = 2i, we find the correspond-
ing eigenvector by solving

(
1− 2i −5

1 −1− 2i

) (
v1

v2

)
=

(
0
0

)
;

we get

v1 =
(

1 + 2i

1

)
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and

x(n) = Anv1 = (2i)n

(
1 + 2i

1

)
.

To find real valued solutions, we have to take real and imag-
inary parts of x(n). Since i = cos π

2 + i sin π
2 , we have by

de Moivre’s formula

(2i)n = 2n
(
cos

π

2
+ i sin

π

2

)n

= 2n
(
cos

nπ

2
+ i sin

nπ

2

)
.

Therefore

<x(n) = 2n

(
cos

nπ

2

(
1
1

)
− sin

nπ

2

(
2
0

))

=x(n) = 2n

(
cos

nπ

2

(
2
0

)
+ sin

nπ

2

(
1
1

))
.

The initial values for <x(n) and =x(n) are, respectively,(
1
1

)
and

(
2
0

)
. Since An is a real matrix, we have

<Anv1 = An<v1 and =Anv1 = An=v1, thus

An

(
1
1

)
= 2n

(
cos

nπ

2

(
1
1

)
− sin

nπ

2

(
2
0

))
= 2n

(
cos nπ

2 − 2 sin nπ
2

cos nπ
2

)

and

An

(
2
0

)
= 2n

(
cos

nπ

2

(
2
0

)
+ sin

nπ

2

(
1
1

))
= 2n

(
2 cos nπ

2 + sin nπ
2

sin nπ
2

)
.

To find An we use again (2.28). In our case

An = 2n

(
cos nπ

2 − 2 sin nπ
2 2 cos nπ

2 + sin nπ
2

cos nπ
2 sin nπ

2

)
,
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further

V =
(

1 2
1 0

)
,

so that

V−1 = −1
2

(
0 −2
−1 1

)
.

Therefore

An = AnV−1 = −2n−1

( −2 cos nπ
2 − sin nπ

2 5 sin nπ
2

− sin nπ
2 −2 cos nπ

2 + sin nπ
2

)
.

A2.3.2 Nonhomogeneous systems

Here we shall discuss solvability of the nonhomogeneous
version of (2.23)

y1(n + 1) = a11y1(n) + a12y2(n) + . . . + a1kyk(n) + g1(n),
...

...
..., (2.30)

yk(n + 1) = ak1y1(n) + ak2y2(n) + . . . + akkyk(n) + gk(n),

where, for n ≥ 0, y1(n), . . . , yk(n) are unknown sequences,
a11, . . . akk are constant coefficients and g1(t) . . . , gk(n) are
known. As before, we write it using the vector-matrix no-
tation. Denoting y = (y1, . . . , yk), g = (g1, . . . , gk) and
A = {aij}1≤i,j≤k, we have

y(n + 1) = Ay(n) + g(n). (2.31)

Exactly as in Subsection A1.1 we find that the solution to
(2.31) satisfying the initial condition y(0) = y0 is given by
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the formula

y(n) = Any0 +
n−1∑
r=0

An−r−1g(r). (2.32)

Example 2.3 Solve the system

y1(n + 1) = 2y1(n) + y2(n) + n,

y2(n + 1) = 2y2(n) + 1

with y1(0) = 1, y2(0) = 0. Here

A =
(

2 1
0 2

)
, g(n) =

(
n

1

)
, y0 =

(
1
0

)
.

We see that

p(λ) =
∣∣∣∣

2− λ 1
0 2− λ

∣∣∣∣ = (2− λ)2,

so that we have double eigenvalue λ = 2. To find eigenvec-
tors corresponding to this eigenvalue, we have to solve the
system (

0 1
0 0

)(
v1

v2

)
=

(
0
0

)

so that we have one-dimensional eigenspace spanned by v1 =
(1, 0). To find the second linearly independent vector asso-
ciated with λ = 2 we observe that

(A− 2I)2 =
(

0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)

so that we can take v2 = (0, 1). Thus, we obtain two inde-
pendent solutions in the form

y1(n) = Anv1 = 2n

(
1
0

)
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and

y2(n) = Anv2 = (2I + (A− 2I)nv2 =
(

2nI + n2n−1

(
0 1
0 0

))(
0
1

)

=
(

n2n−1

2n

)
.

Since v1 and v2 happen to be the canonical basis for R2,
that is, x0 = (x0

1, x
0
2) = x0

1v
1+x0

2v
1, we obtain immediately

An =
(

2n n2n−1

0 2n

)
.

To find the solution of the nonhomogeneous equation, we
use formula (2.32). The first term is easily calculated as

Anx0 =
(

2n n2n−1

0 2n

)(
1
0

)
=

(
2n

0

)
.
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Next,

n−1∑
r=0

An−r−1g(r) =
n−1∑
r=0

(
2n−r−1 (n− r − 1)2n−r−2

0 2n−r−1

)(
r

1

)

=
n−1∑
r=0

(
r2n−r−1 + (n− r − 1)2n−r−2

2n−r−1

)

= 2n




1
4

n−1∑
r=1

r2−r + n−1
4

n−1∑
r=0

2−r

1
2

n−1∑
r=0

2−r




= 2n

(
1
2

(
1− (

1
2

)n−1
)
− (n− 1)

(
1
2

)n+1 + n−1
2

(
1− (

1
2

)n)

1− (
1
2

)n

)

= 2n

( −n
(

1
2

)n + n
2

1− (
1
2

)n

)

=
( −n + n2n

2

2n − 1

)

Remark 2.1 Above we used the following calculations

n−1∑
r=1

rar = a(1 + a + . . . + an−2) + a2(1 + a + . . . + an−3) + . . . + an−1

=
1

1− a

(
a(1− an−1) + a2(1− an−2) + . . . + an−1(1− a)

)

=
1

1− a

(
a + a2 + . . . + an−1 − (n− 1)an

)

=
a(1− an−1)− (n− 1)an(1− a)

(1− a)2
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Thus, the solution is given by

y(n) =
(

2n − n + n2n

2

2n − 1

)
.

A2.3.3 Higher order equations

Consider the linear difference equation of order k:

y(n + k) + a1y(n + k− 1) + . . . + aky(n) = g(n), n ≥ 0
(2.33)

where a1, . . . , ak are known numbers and g(n) is a known
sequence. This equation determines the values of y(N),
N > k by k preceding values of y(r). Thus, it is clear that to
be able to solve this equation, that is, to start the recurrence
procedure, we need k initial values y(0), y(1), . . . , y(k − 1).
Equation (2.33) can be written as a system of first order
equations of dimension k. We let

z1(n) = y(n),

z2(n) = y(n + 1) = z1(n + 1),

z3(n) = y(n + 2) = z2(n + 1),
...

...
...,

zk(n) = y(n + k − 1) = zk−1(n− 1), (2.34)

hence we obtain the system

z1(n + 1) = z2(n),

z2(n + 1) = z3(n),
...

...
...,

zk−1(n + 1) = zk(n),

zk(n + 1) = −a1z1(n)− a2z2(n) . . .− akzk(n) + g(n),
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or, in matrix notation,

z(n + 1) = Az(n) + g(n)

where z = (z1, . . . , zk), g(n) = (0, 0, . . . , g(n)) and

A =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

−ak −ak−1 −ak−2 . . . −a1


 .

It is clear that the initial values y(0), . . . , y(k − 1) give the
initial vector z0 = (y(0), . . . , y(k − 1)). Next we observe
that the eigenvalues of A can be obtained by solving the
equation

∣∣∣∣∣∣∣∣∣

−λ 1 0 . . . 0
0 −λ 1 . . . 0
...

...
...

...
...

−ak −ak−1 −ak−2 . . . −a1 − λ

∣∣∣∣∣∣∣∣∣
= (−1)k(λk + a1λ

k−1 + . . . + ak) = 0,

that is, the eigenvalues can be obtained by finding roots of
the characteristic polynomial. Consequently, solutions of
higher order equations can be obtained by solving the asso-
ciated first order systems but there is no need to repeat the
whole procedure. In fact, to solve a k×k system we have to
construct k linearly independent vectors v1, . . . ,vk so that
solutions are given by z1(n) = Anv1, . . . zk(n) = Anvk and
coordinates of each zi are products of λi and polynomials in
n of degree strictly smaller than the algebraic multiplicity
of λi. To obtain ni solutions of the higher order equation
corresponding to the eigenvalue λi, by (2.34) we take only
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the first coordinates of all zi(n) that correspond to λi. On
the other hand, we must have here ni linearly independent
scalar solutions of this form and therefore we can use the
set {λn

i , nλn
i , . . . , nni−1λn

i } as a basis for the set of solu-
tions corresponding to λi, and the union of such sets over
all eigenvalues to obtain a basis for the set of all solutions.

Example 2.4 Consider the Fibonacci equation (1.33), writ-
ten here as

y(n + 2) = y(n + 1) + y(n) (2.35)

to be consistent with the notation of the present chapter.
Introducing new variables z1(n) = y(n), z2(n) = y(n + 1) =
z1(n + 1) so that y(n + 2) = z2(n + 1), we re-write the
equation as the system

z1(n + 1) = z2(n),

z2(n + 1) = z1(n) + z2(n).

The eigenvalues of the matrix

A =
(

0 1
1 1

)

are obtained by solving the equation
∣∣∣∣
−λ 1

1 1− λ

∣∣∣∣ = λ2 − λ− 1 = 0;

they are λ1,2 = 1±√5
2 . Since the eigenvalues are distinct,

we immediately obtain that the general solution of (2.35) is
given by

y(n) = c1

(
1 +

√
5

2

)n

+ c2

(
1−√5

2

)n

.
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To find the solution satisfying the initial conditions y(0) =
1, y(1) = 2 (corresponding to one pair of rabbits initially)
we substitute these values and get the system of equations
for c1 and c2

1 = c1 + c2,

2 = c1
1 +

√
5

2
+ c2

1−√5
2

,

the solution of which is c1 = 1 + 3
√

5/5 and c2 = −3
√

5/5.

A2.4 Miscellaneous applications

Gambler’s ruin

The characteristic equation is given by

λ2 − 1
q
λ +

1− q

q
= 0

and the eigenvalues are λ1 = 1−q
q and λ2 = 1. Hence, if

q 6= 1/2, then the general solution can be written as

p(n) = c1 + c2

(
1− q

q

)n

and if q = 1/2, then λ1 = λ2 = 1 and

p(n) = c1 + c2n.

To find the solution for the given boundary conditions, we
denote Q = (1− q)/q so that for q 6= 1/2

1 = c1 + c2,

0 = c1 + QNc2,



A2.4 Miscellaneous applications 315

from where

c2 =
1

1−QN
, c1 = − QN

1−QN

and

p(n) =
Qn −QN

1−QN
.

Analogous considerations for q = 1/2 yield

p(n) = 1− n

N
.

For example, if q = 1/2 and the gambler starts with n = 20
rands with the target N = 1000, then

p(20) = 1− 20
1000

= 0, 98,

that is, his ruin is almost certain.
In general, if the gambler plays a long series of games,

which can be modelled here as taking N →∞, then he will
be ruined almost certainly even if the game is fair (q = 1

2 ).
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