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ON AN EPIDEMIC IN A STRATIFIED POPULATION 

R. K. WATSON, University of Melbourne 

Abstract 

Most epidemic models previously studied have assumed a homogeneously 
mixing population. Instead of making this assumption, a population divided 
into classes is considered; and it is assumed that the degree of mixing between 
classes is less than that within classes. The stochastic model in this form is 
intractable and approximations are made, yielding results in reasonable agree- 
ment with simulation trials. 
STOCHASTIC EPIDEMIC MODEL; NONHOMOGENEOUS MIXING; DETERMINISTIC 

APPROXIMATION; STOCHASTIC APPROXIMATION; SIMULATION 

1. Introduction 

Of the assumptions commonly used in continuous infection models, the least 
likely to be even approximately true in large populations, is that of homogeneous 
mixing. In this paper, we investigate a model for the spread of infection amongst 
a population which is divided into classes, such that the individuals of each 
class mix homogeneously amongst themselves, but mix to a lesser degree with 
individuals of other classes. A class could be thought of either as a group of 
friends or associates, or as a collection of individuals in a certain region of the 
community. 

An assumption of this kind appears to be a quite realistic substitute for the 
homogeneous mixing assumption. That such a model is appropriate is also sug- 
gested by observed epidemic behaviour. It is known that epidemics in large popu- 
lations can often be broken down into smaller outbreaks which are in general 
not in phase, and which interact with each other to some extent, as envisaged 
in the present model. 

Simple models of this kind have been put forward by Haskey (1957), who 
studied the case of a simple epidemic (i.e., no removal) in two classes, and Rushton 
and Mautner (1955) who studied the case of a deterministic simple epidemic 
in m equivalent classes. Also, Bailey (1957) made mention of the possibility of 
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660 R. K. WATSON 

such a model, and Bartlett (1957) simulated a recurrent epidemic model using 
a similar assumption. 

Although the primary purpose of this model is to provide an alternative to the 
homogeneous mixing assumption, non-homogeneous behaviour with respect to 
the infection may also be taken into account. Thus, for example, this may be 
useful in dealing with the case of a community which includes a region, such 
as a slum area, the individuals of which, for some reason or other, are more 
prone to infection. 

Further, by suitable amendment of the interpretation given to the parameters, 
the model can be used to describe another important situation: that of a popu- 
lation consisting of a number of distinct types of individuals exhibiting differing 
susceptibility and rates of recovery. The division of the population into age 
groups is a possible classification for which the model is applicable. 

As is perhaps to be expected, the resulting stochastic model presents as yet 
insurmountable difficulties, but nevertheless, some useful results can be obtained 
by means of approximating processes. 

2. Definition of the model 

We consider a population of size N, divided into m distinct classes or sub- 
populations, C, of size N, (1 < r <i m). The essential features of the process 
insofar as infection and removal are concerned are the same as for the general 
stochastic epidemic. We make the following definitions: 

X, = number of susceptibles in C,, X = E X,; 
Y, = number of infectives in C,, Y = E Y,; 
Z, = number of removed cases in C,, Z = I Z,; 

flr = infection rate in C, due to infectives in C,, (1 < r, s < m); 
Yr, = removal rate in C,, (1 

_ 
r ? m). 

The process is then defined by the transition rates: 
rate of infection in C, (X, -+ X,-1, Y,-+ Y,. + 1) = X, • •,IM 

rsY,; 
rate of removal in C, (Y, -+ Y, - 1, Z, -+ Z, + 1) = y,Y,. 

The initial conditions are 

(1) (X,,Y,,Z,) = (n,,a,, 0); 

and it is usually assumed that the outbreak is started in one class, C, say, so 
that only a, is non-zero. The final state of the process is given by 

(X,, Y,,Z,) = (n,- r,O,,, + a,), 

with 0, = (,/n, = the severity of the outbreak in C,. 
In the case of a population subdivided into a number of classes such that 

the members of each class mix homogeneously amongst themselves, but to a 
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lesser degree with individuals of other classes, the fl,, can be expressed in terms 
of more meaningful parameters as follows: 

flrs = fprsN,/Ns, 
where 

i, = infection rate in C,, and 

p,, = degree of mixing between C, and Cs. 

There are certain constraints on the p,, inherent in their meaning: 

Psr =Prs, p,, = 1, O p,r, 1. 

It should be noted that p,, = 1 gives homogeneous mixing, while p,, = 0 gives 
m completely separate populations. Thus, the process under consideration is 
bounded by these two known extremes. 

We will consider in some detail the case of equivalent classes, for which we have 

(2) Nr= N, , =, ,, = (r s), = q (r s), 

where 0 ? q 
?_ 

1. This model corresponds to the general stochastic epidemic 
except in regard to the homogeneous mixing assumption-we have a uniform 
population divided into m classes. 

3. Deterministic approximation for the severity 

The deterministic approximations are obtained as the solutions of the differen- 
tial equations which result when the second moments are neglected from the 
equations satisfied by the stochastic means. They do not reflect the detailed 
behaviour of the process, particularly in regard to extinctions, and are best regarded 
as approximations to the means. The deterministic approximations then, which 
we denote by (Xd, Yrd,Zrd) satisfy the following equations: 

dX"d m 

(d3) 
- Xrd C rsYsd, 

dt s=1 

dY, 
_ 

dZrd (5) dZd YrYrd, 

with initial conditions (1), and final state 

(Xrd, Yrd, Zrd) = (nr - ~rd, 0, 'rd + a,); 

with ,d = ~rd/n, = the deterministic approximation to the severity of the out- 
break in C,. 
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We now derive equations for the rd,. From (5) we obtain 

d Mm 
(6) dt I - s1 Zsd rsYsd 

Then, we derive from (3) and (6), using initial conditions (1), 

(7) Xrd = nrexp - 
• 'Zsd 

So, letting t -+ oo in (7) we are led to 

m m (8) log(1 nsflrs asflrs (8) log(l- ord)+ I asd + 0. 
s=1 l s s=1 l s 

Thus, we have a set of m equations in m unknowns for the rda. No explicit 
solution is available, but in any particular case, solutions may be found by an 
iterative procedure. For example, if o•) is the estimate of ord after the ithitera- 
tion, then we define 

r-1 
nsflrs,(i+1M) nsfirsd m 

asfl 
,?e+x) 1 - p e - 

• 

m 

• (i) 
s=1 Ys sr s =1 Ys 

with dO) = 1, say. Such a method is easily programmed, and high accuracy 
can be obtained quite quickly-for example, with m = 50, four decimal accuracy 
is obtained in less than ten seconds on an IBM 7044 machine. 

In the case of equivalent classes, the Equations (8) for the ard become 

log(1 - rd) + -1'(N -ar.[)rd + q asd + flY-1[ar + q as = 0. 
s~r I L s~r 

If we neglect the ar, then 0rd = a, where ad satisfies 

(9) log(1- a) + QN0Py- lad = 0, 

with Q = 1 + (m- 1)q. 

4. The equivalent classes model 

For this model, defined by (2), since X, < No, we have 
m m 

Pr{Y-- 
Y+ 1 in (t, t + At)} = flrsXrYAt + o(At) ? QflNoYAt + o(At), 

r=l s=l 

m 

Pr(Y-- 
Y- 1 in (t,t + At)) = 1 yYAt + o(At) = yYAt + o(At). 

r=1 

So, the linear birth and death process, Y,(t), having birth rate QflNo and death 
rate y, is an upper bounding process which approximates Y(t) in the early stages. 
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It is known, e.g., Karlin ((1966), ch. 7), that Y,(t) becomes extinct with probability 
equal to Po = min{1,(y/pQNo)Y"U()}; and this corresponds to early extinction 
of Y(t), i.e., a minor outbreak. Otherwise, Yu(t) explodes, corresponding to a 
major outbreak. 

Thus, as might be expected from (9), we find a threshold such that a major 
outbreak is possible only if fQNo > y. But, the nature of this outbreak has yet 
to be specified. It is to be expected that if q is large, the outbreak will include a 
majority of the classes, while if q is small, only a few of the classes will be affected; 
assuming the outbreak to be initiated from only one of the classes. So, we now 
envisage three types of outbreak: 

localized outbreak - minor outbreak in initially infected class; 
restricted outbreak - major outbreak in a few classes; 
generalized outbreak - major outbreak in most classes. 

Which one of these types of outbreak will be exhibited is dependent on the 
parameters of the model. Figure 1 indicates the probability of the three types of 
outbreak, as a function of 0 = PNo/ly. 

Probability 

localized 

(1 - 
Po)PG 

generalized 

Po 

restricted 

01 02 

Figure 1 

The probabilities of the three types of outbreak, as functions of 0 = /Noly 
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Here, 01 and 02 are functions of m, q. From the expression for Po, we see that 

01(m, q) = 1/Q = 1/(1 + q(m-1)). 

Further we expect that 02 -01,, PG 1 except when q is small. We approximate 
to PG, 02 in this case below. 

The class to class spread of infection, when q is small, may be approximated 
by a model similar to one considered by Daley (1967). This model may be des- 
cribed as follows. A class, once infected, remains infective for a random positive 
time, at the end of which the infection is transmitted to a number of other classes, 
each of which have a probability p of being contacted. A susceptible class becomes 
infective with probability n after contact, while any infective or removed class 
contacted is unaffected. 

Here, we apply the following interpretations. 
(i) One class contacts another if an infective in the one infects at least one 

susceptible in the other. 
(ii) A class is susceptible if there has been no major outbreak in the class. 
(iii) A class is infected if a major outbreak occurs in the class. 
(iv) A class is removed if a major outbreak has occurred in the class. 
Corresponding to the original model, it is assumed that initially there is only 

one infective, in class C1 say. 
For this model, Daley's results are modified to the following. 
(i) Threshold. A generalized outbreak is possible only if 

(m - 1)pn > 1. 

(ii) Severity. If there is a generalized outbreak the number of classes affected 
is approximated by ?G = 1 + (m-l1)o, where aG satisfies 

log(1 - ar) + (m- l)pPrac = 0. 

(iii) Probability of generalized outbreak. The probability of generalized 
outbreak is (1-Po)PR, where PG is the larger solution of 

1-x = 1 - pnx"- , 
0<x=< 

1; 

and P0 = min{1, y/?No). 
All that is required then, is to find expressions for n, p in terms of the param- 

eters of the model. Exact expressions have not been derived, but reasonable 
and simple approximations are easily found for the case when q is small, and m 
moderately large, (say m > 10), so that distinction between restricted and genera- 
lized outbreaks is possible. 

If Lis the number of individuals in a given class infected from another infected 
class, then, assuming q sufficiently small, L has a distribution which is approxi- 
mately negative binomial. Thus, if L* is such that 
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Pr{L* = j} = .) ( + qNo (-' 1 + q (j >0), 

where C is the size of the outbreak in the infected class; then L* is an upper 
approximation for L. If, instead of the random variable C, we use the determi- 
nistic approximation 'd, the solution of the equation 

log(1 - (d/No)) + Qfld- 1 = 0, 

then we find the following approximations: 

p = Pr{L > 0} - 1 - (1 + qflNo0y-)- 

7c 
= Pr{major outbreak IL > 0} 

•- 
' {1 - (1 - qQ-' + qflNol)-d}. 

Note that 02 is determined as the solution of 

(m - 1)p(8)nt(8)= 1, 

which gives, using the above approximations 

02 -01 + q-l {(1 + 1/(m -2))lfCd - 1 

Two numerical examples are given in Tables 1 and 2 to illustrate the variation 
of p, , CG', PG with q. 

TABLE 1 

m = 10, No = 100, y = 0.06, P = 0.001 

qCd P PG 

0.100 95 1.00 1.00 10.0 1.00 

0.050 88 1.00 0.99 10.0 1.00 

0.010 74 0.71 0.60 9.9 0.99 

0.006 72 0.51 0.52 9.2 0.92 

0.005 71 0.44 0.50 8.7 0.85 

0.004 70 0.37 0.48 7.8 0.70 

0.003 70 0.29 0.46 6.0 0.36 

0.0025 69 0.25 0.45 4.7 0.09 

0.002 69 0.21 0.44 3.3 0.00 

0.001 68 0.11 0.42 1.6 0.00 
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TABLE 2 

m = 50, No = 50, y = 0.03. fl= 0.001 

q d P C r PG 

0.1000 50 1.00 1.00 50.0 1.00 

0.0100 45 0.52 0.68 50.0 1.00 

0.0050 41 0.29 0.56 50.0 1.00 

0.0020 37 0.12 0.47 46.0 0.92 

0.0015 36 0.09 0.45 39.7 0.79 

0.0012 36 0.07 0.44 31.1 0.59 

0.0010 36 0.06 0.44 21.2 0.35 

0.0008 35 0.05 0.43 8.8 0.04 

0.0006 35 0.03 0.42 3.2 0.00 

0.0003 34 0.02 0.41 1.5 0.00 

Further, a series of simulations of the epidemic process has been done for 
populations of size 1000 and 2500 with various values of m, No, q, and p =y/fl; 
and the results obtained are in reasonable agreement with the theoretical pre- 
dictions. Details of the simulation series may be obtained on application to the 
author. 
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