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We introduce a graphical approach in the study of the qualitative behaviour of m species 
predator-prey systems. We prove that tree graphs imply global stability for Volterra 
models and local stability for general models; furthermore, we derive sufficient conditions 
so that loop graphs imply stability and boundedness of the solutions. 

I. Introduction. Consider the Volterra model for m species predator- 
prey systems: 

/Q~ =/V~ (b, + ~. a~iNj), 
j = l  

i, j = 1 . . . . .  m (1) 

under the assumptions aijai~ <~ 0, a, ~< 0. 
It has been proven (see, e.g., May, 1974) that in a pure predator-prey 

system with antisymmetric community matrix A = (a~j), a positive equil- 
brium state, if it exists, is globally stable. Recently, some authors studied 
models with sign-antisymmetric matrix A. Krikorian (1979) considered 
three species predator-prey systems and he proved that in the following 
cases, (1) food chains; (2) two predators competing for one prey; (3) one 
predator acting on two prey, the positive critical point, if it exists, is 
globally asymptotically stable in the positive sector. Moreover, he proved 
the boundedness of solutions for 'acyclic' loops and obtained a sufficient 
condition for the boundedness in the case of 'cyclic' loops. 

Goh (1977, 1978) proved the following: 

THEOREM. If the nontrivial equilibrium (/~1,. �9 ]Q,,) of the model (1) is 
feasible and there exists a constant positive diagonal matrix C such that 
CA + ArC is negative definite, then the Lotka-Volterra model is globally 
stable in the feasible region. 

To prove this theorem, Goh used the scalar function 

V : ~ c,(N~ -/Qi -/Vi In NJ/Vi), ci > 0 
i = l  
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already introduced by Volterra (1931) as constant of motion in con- 
servative systems. In this theorem the term 'global stability' is used by 
Goh as synonymous with global asymptotic stability. 

To avoid any ambiguity we introduce the stability's nomenclature 
followed in this note: by Liapunov function we intend a scalar function 
having the properties given by La Salle and Lefschetz (1961)�9 When these 
properties hold over the entire positive orthant of R,, we say that the 
positive equilibrium is globally stable. 

When the domain of attraction of (N~ . . . .  , Nm) is the entire positive 
orthant of R,,, we say that the equilibrium is globally asymptotically 
stable. Within the frame of Goh's theorem, Harrison (1979) proved that if 
a Lotka-Volterra food chain has a positive equilibrium, then, under the 
assumption all < 0, a, ~<0 for i >  1, the equilibrium is globally asymp- 
totically stable. We believe' that Goh's theorem leads in a natural way to a 
graphical approach to the qualitative behaviour of system (1) and the 
results of Krikorian and Harrison can be framed within such a graphical 
approach as particular cases. 

A similar graph theory has already been applied by us, together with 
Vetrano and Lazzari (Beretta et al., 1979), to systems of nonlinear 
chemical reactions. 

2. Graph Theory. First suppose that ars ~ 0 implies as,~ 0 for all r, s, 
and put 0------@ ( - - )  ar~ asr < O. 

r s 

According to Harary (1972), a loop will be an elementary chain which 
returns to the initial knot and a tree will be a connected graph without 
loops. We underline that a food chain, which is often met in literature, is 
a particular case of a tree graph. 

We will suppose that there exists a unique positive equilibrium state IV. 
The following result holds: 

THEOREM 1. I f  the system (1) is represented by a tree graph, the equili- 
brium is globally stable; if art < 0 for all r = 1 . . . . .  m, then the equilibrium 
is globally asymptotically stable. 

Proof. Let N = (N1 . . . . .  Nm) r and the equilibrium 1~1 = (]V1 . . . . .  /(rm)r 
be vectors of R,f .  The scalar function used by Goh is C 1 over R~ + and 
has an isolated minimum for N = lq, which value is V(iq) = 0. Since 

�9 1 
V = ~ (N - I~l)r (CA + ATC)(N - lq), 

if a constant positive diagonal matrix C exists such that C A + A r C  is 
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negative semidefinite, then f '  ~< 0 in R,, § Thus, according to the above 
nomenclature, V(N) is a Liapunov function and the equilibrium 1~ is 
globally stable. We define the elements of C requiring 

Crlarsl : c,[a,r[ r, s = 1 , . . . ,  m (2) 

so that C A + A T C = d i a g  (c~a.  . . . .  ,cma,.,~), where c~>0 for all i :  
1 . . . .  , m and a,  ~< 0 for all i = 1 . . . .  , m. Therefore, CA + ArC is negative 
semidefinite. Hearon (1953) proved that system (2) is solvable without 
requiring any condition among the elements ars if m - 1 equations alone 
of (2) are not identically vanishing. Since a system with associated tree 
has exactly m - 1 non-vanishing coefficients among a,,, r < s, system (2) 
is always solvable for tree graphs. Let  us number by '1' a terminal knot 
of the tree. Every other knot 'k '  of the graph is reached from '1' by one, 
and only one, elementary chain ~ .  Then the elements of C may be 
defined by 

c l = l ,  Ck=illaiill  I k = 2  . . . . .  m, (3) 
lajil ' 

where the 'a~j' are the flows related to the branches of the elementary 
chain ~k from knot 1 to knot k. The first part of Theorem 1 is therefore 
proven. Suppose now that aji < 0 for all i - -1 ,  . . . .  m. Therefore, CA + 
ArC is negative definite, that  is, V(N)~< 0 and f ' (N)= 0 iff N = 1~1. This 
completes the proof. 

For tree graphs, using (3), it follows that 

: c , a , , ( / V ,  - 
i = 1  

Let ~ be the set of points for which V = 0 .  When some diagonal 
elements of A are zero, one may apply the La Salle-Lefschetz (1961) 
extension theorem to look for the conditions on A by which the largest 
invariant subset of ~ reduces to equilibrium. Then the following holds: 

COROLLARY 1. A tree graph with 'p'  terminal knots is globally asymptotic-  
ally stable if  'p - l' o f  the ' a , / c o n c e r n i n g  the terminal knots are different 
f rom zero. 

Since the proof is an easy generalization of that provided by Krikorian 
(1979) for three species and by Harrison (1979) for food chains, it will be 
omitted. 
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If a pair of indices (r, s), so that  ars = 0 and asr~  0 occurs in A, the 
irreversible branch O-~z-Q will be associated to (r, s). 

r 

The proof of Theorem ] may be extended to the case in which one or 
more irreversible branches occur in a tree graph. 

COROLLARY 2. I f  the a s soc ia t ed  graph  o f  (1) is a tree in which  one  or  more  
irreversible branches  0 - ~ - 0  occur,  then the equi l ibr ium is g lobal ly  s table  
prov ided  that  arrays ~ 0 f o r  each  irreversible branch.  

Proo f .  For the case of a single irreversible branch O--~z-Q, according 
to Theorem 1, we can take C so that CA is skew symmetric with 
reference to the reversible components of the graph. Then CA + A r C  
will have a diagonal structure, with the exception of the diagonal block: 

Csasr ] 
Crarr 2 I 

I 
I 

I I 
I 
I 

Csasr J 
2 c,a~,. I ! 

I 
I 

Since 's '  is the first knot of the second reversible component of the graph, 
cs is arbitrary in C and therefore may be chosen so that the diagonal 
block is negative definite. This procedure can be extended to any number 
of irreversible branches. 

Now, suppose that the graph associated with system (1) is a loop 

1 2 

m - 1  

Then, system (2) has m equations, whose ruth is Cmlamlt = clla. l, where 
cl and c~ are defined in (3). Then 

Cm = Cl I I  = Cl ; 
i = 1  I a i + l ,  i i 

and, therefore, a sufficient condition for global stability is 

lalzaz3" " " a,,,-L,,,I = la2,a3z " ' "  a,,,,,,-,I. (4) 
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Furthermore, if there exist at least two consecutive species for which a~r 
are different from zero, the equilibrium is globally asymptotically stable. 
When (4) is not satisfied, a sufficient condition for global asymptotic 
stability is 

a,,am.C > m'I I 4 , cm= II ai.i+l . (5) 
i=l l a i + l , i l  

We can observe that in case of loops the conditions (4) or (5) are to be 
satisfied for stability, while for tree graphs the stability of equilibrium 
immediately follows. 

However, interesting results can be obtained regarding boundedness of 
the loop's solutions, by orientating the loop as follows: 
according to Krikorian (1979) we put e~---~-O if ar, > 0, and suppose that in 
system (1) s 

b~ # 0, and br > 0~a,~ < 0. (6) 

The loop is called 'cyclic' if all the branches are orientated in the same 
direction, and called 'acyclic' in any other case. 

We can prove that: 

THEOREM 2. I f  the graph associated with the system is an 'acyclic' 
loop, then the solutions are bounded; if the graph is a 'cyclic' loop, and, 
for  example, am1 < 0, then the solutions are bounded if 

! 

aEla32" �9 " a i m  [ < 1. (7) i 

az2a23 aml I 

Proof. Let S : ~ CrN  r. In order that S(t) be upper bounded, it is 
r = l  

sufficient that there exists a real constant M so that S + eS < M when 
e > 0. Substituting (1) in S and applying the assumption (6), it follows 
that a sufficient condition for boundedness is 

crarsNrNs < O. 
r#s 

Then, we require 

ciai,  i+ 1 + c i+la i+l ,  i ~ O  i ~ 1 . . . . .  m -  1 (8) 
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cla~,,  + c,,a,,~ < O. (9) 

If a,n,m-i and a , ,  have the same sign, that is, the branches (m - 1, m) and 
(m, 1) are orientated in an opposite direction, then inequalities (8), (9) are 
satisfied without requiring any other condition among the elements at,. 
Therefore the solutions are bounded. However, that is not generally true 
for cyclic loops because am, re-1 and a,,~ have opposite signs. In such a 

m 1 

case, applying the equality in (8) and substituting c,, = I I  I(a~,i+Jai§ in 
i=1 

(9), we obtain (7), which is the extension to ra species of the condition 
obtained by Krikorian for three species. 

3. G e n e r a l  M o d e l s .  Now, consider a very general predator-prey system 
described by 

1Q~ = N~K~ (N] ,  . ., N , , ) , .  i = 1 . . . .  , m,  (lo) 

where K~ are continuous functions with their first derivatives, and 
(~gKi/o1Vj) ( ~ K / ~ N ~ ) J O .  Suppose that there exists an isolated positive 
equilibrium point N and let Kij = (c~K~/c~Nj)s=~ be the elements of the 
community matrix A. Then, the Jacobian matrix of (10) evaluated at 
equilibrium is given by 

J = diag(f/~, . . . ,  .N~)A = []Q~K~j]. (]]) 

i i 
For any pair of indices (i, j), i #  L of J we put 0-------0 if either K~j or Ki~ 
is different from zero. Owing to (11), the graph associated with J and A is 
the same. 

If the graph is a tree (or a balanced loop) and K~i < 0 for all i, then a 
constant diagonal positive matrix C exists such that C J + J T C  is a 
negative diagonal matrix; therefore, J has eigenvalues with negative real 
part, that is, the equilibrium is locally asymptotically stable. 

The same result can be obtained by the Liapunov function W = 
(N-I~I)rC(N-I~I), of which the time derivative W is approximated by 
( N -  1~1) T (CJ + JTC)(N-  ~l) when taking the linear part of (10) around the 
equilibrium 1~1. Because of this approximation on "t~V, the La Salle- 
Lefschetz extension theorem does not readily apply to general models. 

Thus, we can conclude that for general models Theorem 1 and Corol- 
lary 2 still hold in the local sense, while Corollary 1 does not. 

Concerning systems represented by trees, the local asymptotic stability 
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m a y  also be der ived f rom a result  of  Quirk and Rupper t  (1965) about  sign 
stability. 

It is also to be quoted the Goh's  (1977) cri terion for global asymptot ic  
stability, in which the Jacobian matrix of (10) is evaluated in some point 
N* be tween  N and 1~. However ,  since N* implicitly depends  on time, we 
believe that, unless the part icular  case in which J + J ~  is negative 
definite, it is hard to find the constant  matrix C which assures negative 
definiteness of CJ + J r C .  

We wish to thank Prof.  G. W. Harr ison for  his helpful comments  on this 
note. This work  was pe r fo rmed  within the f rame of Gruppo Nazionale 
per la Fisica Matemat ica ,  C. N. R., Italy. 
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