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PREFACE

La prefazione occupa una posizione privilegiata rispetto al testo cui si riferisce;
mi sia concesso quindi usare qui la mia lingua per poche parole in apertura di
questa monografia. Non per dire dei suoi contenuti e obiettivi, cosa che faccio
nell’introduzione, ma per aggiungere al contorno qualche osservazione di tono
piu personale. .

Una prima introduzione agli argomenti svolti in questo libro faceva parte
del programma del corso di Biomatematica, da me tenuto a Trento nel triennio
1988/91, ed ¢ in quest’ambito che ¢ nata Pesigenza di una monografia che svi-
luppasse tali argomenti oltre gli scopi di un corso di curriculum. Questa esigen-
za si coniugava anche al mio desiderio di sistemare ed esporre i contenuti di una
teoria che si ¢ andata sviluppando notevolmente negli ultimi venti anni e della
quale mi sono occupato ampiamente nelle mie ricerche: ho quindi raccolio con
piacere Uinvito del Comitato a contribuire alla collana di monografie di Mate-
matica Applicata.

Ora che ho finalmente posto il punto finale al lavoro (e giad mi accorgo che
desidererei andare oltre questa introduzione per trattare piu specialisticamente
alcuni degli argomenti discussi} mi rendo conto che, in questi venti anni, i meto-
di matematici che sottendono la teoria delle popolazioni con struttura di eta si
sono sviluppati sempre pit nella direzione delle equazioni di evoluzione astratte
confermando la necessita di una saldatura tra I’ Analisi Funzionale e le Applica-
zioni. Cio é per me di una certa soddisfazione perché di tale necessitd sono
sempre stato convinto e mi sono trovato spesso a difenderla di fronte a qualche
attivo sostenitore delle spavalde tendenze dei nostri tempi.

Di venti anni di ricerche non restano soltanto i risultati (quelli compiuti e
quelli lasciati a meta, per pigrizia o incapacita), ma anche i segni del quotidiano
e del personale che accompagnano ['elaborazione del lavoro: non per nulla i
libri che si scrivono sono dedicati alle mogli e ai figli per la loro presenza pa-
ziente e discreta. Nel mio caso, e stando solo agli ultimi tre anni che mi hanno
visto (irregolarmente) impegnato nella stesura di questa monografia, molti
eventi personali, felici e infelici, sono inscritti tra le righe e al bordo di ogni
pagina. Tra tutti questi la scomparsa di Stravros Busenberg, amico fraterno e
collaboratore per tanti anni, segna particolarmente questo libro il cui contenuto
ruota intorno alle ricerche che abbiamo svolto insieme: cosi questa prefazione si
dipana nell’amarezza e nel rammarico di non poter commentare con lui il risul-
tato del lavoro, festeggiandone la conclusione e facendo progetti per il futuro.



Introduction

The first step when modeling a population is to consider some significant vari-
ables that allow to divide the population into internally homogeneous sub-
groups, in order to describe the dynamics as the interaction of these groups,
ruled by mechanisms that depend on those variables.

Thus, depending on the phenomenon that has to be modeled, the popula-
tion is given a structure that is often responsible for special behaviors not
occurning when the structure is absent, i.e. when the population can be consi-
dered homogeneous with respect to the parameters that determine the struc-
ture.

Age is one of the most natural and important parameters structuring a
population. In fact many internal variables, at the level of the single indi-
vidual, are strictly depending on the age because different ages mean different
r__productlon and survival capacities and, also, different behawors T'hen,
though for a long time the interest for age structure has been restricted to
demography, nowadays it plays a fundamental role in fields like ecology,
epidemiology, cell growth etc.

Demographic documents reporting data that group individuals by their
age can be found very far in the past (see [61] where examples concerning
Stone Age, Bronze Age and Roman Age are quoted), but the very first
population model that considers age structure seems to appear in the famous
Liber Abaci by Leonardo Pisano called the Fibonacci (1228). Actually in the
rabbit problem, generating the celebrated sequence of Fibonacci numbers, it
is assumed that the rabbits start reproducing only two months after their birth,
i.e. their fertility window opens at the age of two months.

We quote this example just to show that age structure occurs in a natural
way within the context of population problems. However the theory we are
going to present in this book is rather recent and stems from the basic models
of population dynamics. These latter consider the different interacting species
as internally homogeneous and should be our reference mark in order to show
the effect of age structure. Thus, when needed, we will spend a few words to
recall our comparison prototype.

Among all population models, the simplest one is entitled from T. R.
Malthus who wrote a famous treatise {77] on the growth of the human popula-
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tion, predicting that it would be exponential in time with all the catastrophic
consequences that one can imagine.

To introduce this medel we consider a single homogeneous population;
that is, we assume that all individuals of the-population are identical so that
the on]y varzable that we have to deal w1th is the number of the mdmduals asa

In addxtxon@g_e_ suppose that thé pOpulatlon fﬁ’m}m an invariant
habitat with.no limit to 7ésources, Thus the population is subject.to constant
ferrzlzry and mortahty rates that we- respectlvely call § and p (thelr dlfference
a=p- u is usually called the Malthuszan parameter of the populatlon) and
the growth is govemed by the followmg equatlon O SO

d

(1 1) "'"‘3“ P(r) = ﬁP(t) = qu = aP(r) A
T-h‘us Lo s RGBT e 7 |
(1 2) P(r)= r(we

In Chapter I we W111 startour theory mtmducmg a mode} that is° stnctly ana]o-
gous:to the ‘Malthus: model. . RELERN G 2 = : -
“.~Our:aim through this book isto: present the basm theory of age’ structured
populations-and the related mathematical methods.: Since: our: intention was to
give an introduction to the subject we have not touched many topiesthat coiild
be of some interest; on‘the other hand we have tiied'to give a'compléte-intro-
ductive” presentation. Actlally-we have tried to: ‘present-the ‘essentials of the
theory' with the: purpose of ¢nabling the'reader to-go- further: and work on
current problems with-more sophisticated: mathematical: methods. ¢ '
‘Thus :we “have focused ‘out exposition’ first on-the- modehng of a smglc
species:and then; in the last tworchapter, - on simple-epidemics.-; ctg ly we
have. dlsregarded all that part of the theory that is concerned: with cracting,
species or with multizgroup dynamics (see for instance [11}, {22]; [ 51,1273,
[45]; [48], {79], [86], [87]) thoughy it is a subject that has received some atten-
tion. Also-we have not censidered the direct extension of the theory to size-
structured-populations [79] not-have we considered diffusion of age structured
populations ([12], [44], [47], [50], [51]; [71], [72]); moreover we havé not men-
tioned ‘the numencal ana}ysas of the- problems that presents some speelﬁc

Concerning  the mathematics, we have hmlted ourselves to (1{_{@9;,«}

Imethods , that are based on the theory of Volterra mtegraﬁgﬂuahons disre-
Eardmg the functlonal analytic approach. that in fecent years has provided a




natural and powerful framework to the theory ([18}-{20], [29], [64], [79], [99])- -
[101]). Doing so, it has not been possible to prove some of the most recent
results that arise within that framework, and we have limited ourselves to
quote the results. But, as we have already said, our purpose was to provide
Just an introduction, taking the reader to the more advanced theory, to moti-
vate the latter both biologically and mathematically. We are in fact convinced
that in order to be able to work with the tools provided by an abstract setting it
is necessary to have full knowledge of the direct methods that can give answers
to special problems,

In conclusion, if we have fulfilled our intentions, the outcome of this book

is a systematic introduction to the classic theory, providing a first step in the
field. _
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The basic linear theory

The linear theory we are going to develop in this chapter applies to the ideal-
ized situation which, when age structure is disregarded, corresponds to the
- Malthus model mentioned in the introduction. Actually we will deal with a
strict analogue of the latter model: we consider a single popuiation living iso-
lated, in an invariant habitat, all of its individuals being perfectly equal but for
their age, in particular we assume that there are no sex differences.

In accordance with this phenomenological setting, fertility and mortality
are mntrinsic parameters of the population growth and do not depend on time,
nor on the population size: they are functions of age only.

This chapter is devoted to the introduction of the classical Lotka-

McKendrick system for the description of such a population and to its analysis

through the renewal equation: though extremely simple as a model, it pro-
vides a fundamental insight into age structured phenomena.

‘1 Introduction of the basic parameters

With the premises presented above, the evolution of the population is de-
scribed by its age density function at time 1

pla,t) aef0,a;], t=0

where a ; denotes the maximum age which we assume to be finite (see section
I1.4 for some considerations about the case ¢, = +). Thus the integral:

az

/a, pfa, t)d

gives the number of individuals that, at time ¢, have age in the interval [a;, a,/f;
and
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(1.1) P(t) = /Op(a, tda

i1s the 1otal population at time ¢.
Concerning fertility and mortality we first introduce:

Bla) = age specific fertility,

which can be defined as the number of newborn, in one time unit, com-
ing from a single individual whose’ age 18 in the 1nf1n1teszmal age interval
[a a-+ da]. Thus

/a ,azp.(‘a)p (@, yda

¥

gives the w in one time unit; commg from’ md1v1duals w1th
age in fa,, 02] We also conszder thegtoml btrth rate

12 By = f ﬁ(a)p(a r)da

which gives the total number of newborn in one time unit.
We also introduce '

. #(a) = age specific mortality.

It is the death rate of people having age in [a, a -+ da]; then the total death rate
18: ‘ :

(1.3) D) = /O w(a)p(a, y)da

and gives the total number of deaths occurring in one time unit.

‘The functions B(-) and u(-) are, of course, non negative: they are also
called vital rates and are viewed as deterministic rates; in practice they are
determined on a statistical basis. In figures 1.1 and 1.2 we show some classical
examples of these functions, drawn from demography.
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B(a)

B [ o e o — - -

Figure 1.1 > '

Other meaningful quantities are derived from f(-) and u(-); namely

e (14 H{a) = e““/”u“("’d", ael0, a;]

denotes thefsurvwal 'al.probabill @ the probability for an individual to sur-
. vive to age a; thus it must be Il(a;) = 0; moreover the function

ﬁ (15) K{(a) = p(a)Il(a), ae [0, ayf

15 called the[r"mazemi;‘y mnatign_fgnd syntesizes the dynamics of the population;
it is related to the parameter

- (16  R= /0 Bla)Il(a) da

" which is called thejner reproduction ratd and gives the number of the newborn
that an individual is expected to produce during his reproductive life. We will
see that this parameter will play a role in the discussion of the asymptotic
behavior of the population; in fact we expect the population to show an in-
creasing trend when R > I, decreasing if R < I, stable when R = [.
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Figore 1.2

Finally we consider theEex’é‘_c_fqtegi_”lgtejEj ‘
(1.7) L = /o Il(a) da ,

This is the mean value of the life of an individual: actually (1.7) can be betier
understood if we note that #a)I(a)da is the probabilijty for an infi_iyic{ual to

survive to age @ and then- die infa, a'+ da ;- thus: =

RN

e ( Uede A, a0 Y
I gl Lafd[p)e
L= | auten@da= [2%0" o <) (A gy
' : b}

B Sy

Y el ¢ "w[ﬁ):

= '—_/0 a %H(a) da = —all{a) Jo"_fﬂ- /o IX(a). da = /0 H(a) da

where we have used IH{a;) = 0.

2 The Lotka-McKendrick equation
We now derive the basic equations which describe the evolution of the populs-
tion under the phenomenologica! assumptions of the previous section, Thes
" - %% -
equations arise as a consequence of the balance of births-and deaths alory
time. — -
| 2 ﬁfa\ + g;%::ﬁﬁj
ER R
. e o
- A CaH ) de - VT fehem
- a Eiml - ?’(9\,:;5»4 F




Consider first the function:

Nia t) = /0 plo, )do

which represents the number of individuals that, at time ¢, have age less than
or equal to 4. Then we have, for k > 0

(2.1) N(a+ht+h)=N(@t+ / B(s)ds —

A a+s R
- [0 [0 u(o)p(a; t + s)do ds

In fact, in (2.1), the second term on the right gives the input of all newborn in
the time interval ft, 1 + h/: these have age less-than or equal to k and, conse-
quently have to be included in the number N (a + h, ¢ + k). Moreover, since;

/ . u{@)p(o, 1 + s)do

is the number of individuals who die at the time ¢ + s, havmg age less than or
equal to.a + s, the third terms on the right of (2.1) gives the loss from the

initial group of N (a, 1) individuals and from the newborn, through the time
interval {1, t + hj.

Now we differentiate (2.1) with respect to A, and set A = 0:

22)  plan+ /0 p(0, )do = B(1) — /0 u(o)p(o, 1)do
From this, putting a = 0, we get:

(2.3) p(0,1) = B(1)

and, differentiating (2.2) with respect to a:

(2.4) pda, 1) + p(a, 1) + pla)p(a, 1) = 0
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Thus (see also (1.2)) we arrive at the following system

opda, 1) + paa, 1) + majp(a, t) =0

i
9 i 20,9 = | Bolp(o gao
L i) pla, 0) = pofa)

~ where we have added-the initial condition (31). :

' The system (2.5) is the basic model which describes the evolution of a
single population under the phenomenological conditions specified at the be-
ginning of this chapter. Below we Jist the assumptions that the basic function

~ B(-) and (-) are supposed to fulfill in order to be biologically significan_'_t andto

. allow the mathematical treatment of (2.5).
. (2.6) B s fzon-negati-ve a_ﬁd belongs. 10 L=(0, ai) -
' 5 (2.7) u(-) is hon-negative and belongs to L. (fo, ai}),
«»‘J(ZQ) paeLJ(O, a,c), po(a) =0 a.'e..,-ih:[O,;.af]'

Here a, is the maximum age an individual of the population may reach and: as
already ndted,*ﬁé‘;assume—af < +. Condition (2.8) is necessary for the suz-_
vival probébility Ilfa) to vanish at the age dy. = Tig,y = S o) L e

The treatment of problem (2.5), under these assumptions; will b& g,
veloped through the sibsequent. sections; actually, instead of Areating (2.5)
directly, it will be transformed into a Volterra integral equation which is de-

rived in the next section,

3 The renewal equation

We now derive a different formulation of problem (2.5). To this purpose we
set: o

(3.1) g{a, 1) = ef"a““’"’"p(a,r)

4

I3
S L e |, g
ol J

€,
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This new variable satisfies:

‘T') q1(a.\ t) + qa(a! I) = 0
32) i) q(0, 1) = B(1)
i) q(a, 0) = ¢/*#9% py(a) = qofa)
If we assume B(z) is given, g can be viewed as the solution of the first order
partial differential equation (3.2, i) in the strip {a < [0, a;/, t = 0} with the

boundary conditions (3.2, i) and (3.2, iif) on the halfline {a = 0, ¢ > 0} and on
{a e [0, a;], t = 0}, respectively. Thus g has the form:

qla, t) = ¢la — 1)
where ¢ is determined by the boundary cenditions; actually we have

gola — t) if a=t
qla, t) = { .
Bt - a) if a<t

which in turn, via (3.1), provides the following formula for pfa, 1):

: _ IT(a)
Pola t) m

B{(t — a) Il(a) if a<t

: if a=t
(3.3) pla, t) =

Now, formula (3.3) allows us to get an equation for the birth rate B(1). In fact,
plugging (3.3) into (2.5, &) (see (2.3)) we have, for 1 < a;:

B(t) = /0 Bla)p(a, t)da = /0 Bla)TI(a)B(1 — a)da +

" I(a) _
+ /z B(a) —m‘ pola — tyda

and, for 1 > ay

B(1) = /0 B(ajII(a)B(t — a)da
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Thus B(1) satisfies the following Volterra integral equation of the second kind:

(3.4} B(t) = F(1) + /0 K(t — s)B(s)ds

with:

SONNNCE / b D pofa = ) =

ey M@+
J, pasvg Hetd

. R E
pofa)da e

(3.6) K1) = I

where ¢ = 0, and the functions 8, I1, p, are extended by zero outside the
interval [0, a,]. g ' IR SO S

Equation (3.4) is known as the renewal equation and also as the Lotka
equation; we see that the kernel X(z) is the maternity function defined in (1.5).
Our procedure above shows that, albeit only formally, (3.4) is equivalent to
problem (2.5); actually (3.4) is the main tool to investigate this problem, the
connection being provided by (3.5) and (3.6) together with formula (3.3). The
following proposition states some properties of (3.4) on the basis of the

assumptions (2.6)-(2.9).

Proposition 3.1, Let (2.6)-(2.9)-be satisfied, then:

(3.7) K1) = 0ae, K= 0 fort> a, Kell (R,) N L*(R,)
(G8)  FY=0 F)=0 fort>a, FeCR,)

If moreover Vs _

B9 poe W (0,a) and ul)pol) = L' (0, a,)

then F e W'™(R,).

Proof:

(3.7) and the first part of (3.8} are obvious. To prove that F ¢ C(R, ) tale
o = 0 then we have
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F(r)_f fia) ()) (pola — 1) — ppla — 1)) da +

f Bla) —(”(—3—) po (@ = to)da

where, since py ¢ L'(R):

l / Pla ) (Po( t) ~pola — b)) da | <
< {Ble- /0 lpo(a — 1) — pola — 1) da— 0

as t — !y, so that:

Il(a)

Tia = 1) pofa — ty)da = Flty)

lim F(t) = | b

Finally, in a similar way we can prove that the conditions in (3.9) imply
Fe WEo(R,). =

4 Anélysis of the Lotka-McKendrick equation |

Now we study problem (2.5) by considering the renewal equation (3.4) with
(3.5) and (3.6). First we have the following theorem which is actually part of
the standard theory of Volterra equations (see Appendix IT): here we give the
proof of the theorem for the sake of completeness:

Theorem 4.1. Ler (2.6)-(2.9) be satisfied, then equation (3.4), with (3.5) and

(3.6), has a unique solution B € C(R ) such that B(t) = 0 for all t. If in addition
Do Sattsﬁesxﬁ Q)Dthen Be W,OC (R,) and:

(4.1) B'(t) = F’(z) + K(1)B(0) + fo K(t — s)B'(s)ds

Proof:

Assume first that

(42) |K|I_.’(R+) = /0 K(S)dS << ]



-

fﬁxenr the sé)]ution"of, (3.4) is obtained via the'standard iteration procedure
B = Fy)
(4.3) . :
L B = ) + /0 K(t — s)B*(s)ds.

In fact, take any T > ¢, then by (3.7) and (3.8) we have B*

C([0, T]) and
B(1) = p; moreover o

) ‘. : . .
B0 - B0l < | k0= )1 Bs) — Bt ap
and
|B*+ Bk,cq@,rj) SIIK’L’(R,,) !Bk, ;er—]lcl([o,T])-

Thus by (4.2) the séquence B¥(s) converges, uniformly on /0, 77, to 4 soluti n
B(t)of (3.4), suchithat B &' (fo; TD) and By) > 0 wivn i s
5 COncérning uniqueness of this s'oI_ution we see that if B(t)-;apd Bf(t)‘ are two

solutions of (3.4) 'We must have

R I e oty n b
B TEY L faii ol Eay el e

- B- Blcr/orj)SlKlLfm,)’B“Efcr/orj) b st e mavige s

I in‘addition Posatisfies (3.9) then » by Proposition 3.1.and {4.3), we. haye

B c Wi=mR), and, se‘ttiﬁg::_:
R 7 T d ARG L e
VY= 2 p (1) ae.,
R

we have V¥« LR, ) and

(4.4) V() = F'(1) + K(1)F(0) + /0 .K(r - S)Vk(;)ds,

which yields

[Vh+2 _ karrm) = ,K!LI(R,,) V¥ "—VkiflL(RJ'
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Thus, again by (4.2), the sequence V* converges in L™(R.) to V(1) = i
B(t) a.e. Of course (4.1) follows from (4.4). di
Finally, if (4.2) is not fulfilled, take a such that

o0

/0 e” “K(t)dr < 1

Setting B = e~ “B(1), F(1) = ¢ “F(1), K(1) = e~ “'K(1) equation (3.4) is trans-
formed mto the equivalent one:

Bty = F(r) + /0 K(t — s)B(s)ds

which, because K(1) satisfies (4.2), can be solved with the previous argument.
’ »

The preceding theorem allows us to state results for problem (2.5) via formula
(3.3). In fact we have:

Theorem 4.2. Let (2.6)-(2.9) and (3.9) be satisfied. Assume also that:
(4.5)  po(0) = /g Bla)po(a)da

and let p(a, t) be defined by (3.3) where B(1) is the solution of (3.4)-(3.6). Then:

@.6)  peCl[0, ajxRy), pla, =0, ul)p(,)eli(0,a) V>0
@7 Py, P g existae in [0, a] x [0, +]
ot ca

and problem (2.5) is satisfied. Moreover pla, 1) is the only solution in the sense
of (4.6}, (4.7).

Proof:

The proof of (4.6)-(4.7) is quite straightforward and follows from the prop-
erties of B(t), stated in theorem 4.1. We only note the following inequality
concerning the last part of (4.6):
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é ajp(a, tyda =

Il
/0 Ma)B(1 — &)11(a) da + /,\ ., H(@pofa - " m(—f% da <

[/\ar

= e |5 / H@)II(e) da +

(Vay)—r1

ar S TR
+els #(CﬂdUJPO’C(IO,aJ) /m ; wa)ll(a) da <

[tVeay)~¢ R -
S e B(s)| + &/ o " utarac Pol (0.4,

and stress the fact that (4.5)1s intended to guarantee the continuity of p(a, ¢)
thrpu_gh the line @ =1 in fact - L

B0~ | Hepolajda = pyo).

As far as uniqueness is concerned, we have already seen (formally, but now
the procedure can be repeated rigorously) that a solution of (2.5) must be of
the form (3.3) with By ) satisfying (3.4)-(3.6): ‘the uniquenéss of the solution of
this latter problem yields uniqueness for (2.5). : -
We have seen that, with the assumptions (3.9) and (4.5), formula (3.3) pro-
vides:us a. solution- whichiwe can call: classical; actuaily,’ this formula is

provide a solution in the sense stated m the following:

Theorem 4.3, ] . (2.6)-(2.9) be satisfied, then p(a, 1), defined by (3.3 ), has the
Jollowing properties: _ L e e ,

“8  pt,yecqo, 1) LYo, 1)), p(a, ) = 0 ace. in [0, a,] x R,
(49) LD(': I)fL‘ = e‘t'ﬂ,Lm IPGIL’!
(4.10) pla, t) is continuous for'a < t and satisfies (2.5, i} fort > 0,: _

1) % lp(@thith)=p(a,0)2 —u@p(a,) de. in ) d;JxR.,
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Proof:

Let us prove (4.9) first. From (3.5) we have:

F(1) < |Ble=lpoirs, K(1) = |Ble=
then, from (3.4):

.

B < Bl oo + 1Bles [, BOJGS
Thus, by Gronwall's inequality |
(4.12) B(t) < 1Bl,- €7 |py|Lr
“From this estimate, formula (3.3) yields:

mH(a + 1)

Pl Ol = | B~ a)i(a)da + ha

pofa)da <

!
= ( 18]~ [0 eClBk" dg + ] ) ol =

= ¢lBles 2%

Now (4.8) follows easily from (4.9); in fact, for a given pg e L'(0, a;), let pg be
a sequence such that:

pé satisfy (3.9) and (4.5), lim_ lpd = pol = 0,

and let p" be the solution of (2.5) corresponding to pg'. Thus p e C([O T/;
L’(0, a;)) and, by (4.9) and linearity, we have:

(-, 1) = p(, Ol < P17 |pgd — polus
so that p is the limit of the sequence p” in the space C(/[0, T]; L0, a,)) i.e.
(4.8) is true.
Finally, (4.10) and (4.11) are straightforward. =

The previous thecrem shows that even when the initial datum py is not regular
the solution p(a, ) still has some regularity. We also note that the estimate
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(4.9) provides continuity of the solution P with respect to the injtial datum p,
(hence wellposedness), in the norm of the space L/(0, a,): this is a main fea-
ture of the problem and it is in agreement ‘with the biological meaning of the
population density pla, 1.

5 The asymptotic behaviour

Here we investigate the asymptotic behé?iouféf the birth rate B(t}, i.e. we
discuss the asymptotic behaviour of the solution-of the renéwal equation (3:4)-

(3.6): again any result on B(1) can be transfered to p(a, 1), via formula (3.3).
First we note that, by (4.12), B(1) is absolut‘ely"Lap]a_ce.trans’fonnabl_é‘ and

(5.1) By = PO _ poys FORD) oo
| 1= K@) I= k@)

were f(A) denotes the Laplace. transform of f{1), " _

. ‘Thus we can use classical Laplace transf_or_m techniques which, relate the
asymptotic behaviour of B(1). to the singularities of B(A) {see Appendix I).
Since F(z) and K (1) vanish for ¢ > a;, their transforms £(3) and.K(A) are entire
analytical functions of ; then by (5.1) B(}) can only have poles which have to
- be found among the roots of the equation: - R e

‘With respect to this latter equatibn we hav.e;-
Theéreni 51 Equa'tio}z'(.‘i .2} has one and only onerealsolutzona* which isa
simple root. a* < ¢ if and only.if /0 Kft)dr < 1. Any other solution"a of(52)
is such that Ra < o*. Within any Strip &;' <E?M < o there is at most a ﬁnite
number of roots.

Proof :

Consider the rea] function;

oo

(53)  x— Rx) = /0 e K()di, %eR
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which, since K(1) = 0, is strictly decreasing and such that:

lim  R(x)=+=, lim K{x) =0

X—r— D x—+ @

Then there is one and only one real solution o of (5.2) and, since

=)

d - a*t .
- Coa= — dt >
R(x))es fa e~ K (tydt > 0,

o is simple. Of course a* < 0 if and only if K(0) = / Kitydt < 1.
Let abe a solution different from a*, then: 0

oo

fo e_“"K(t)dt:1=‘?R( /: e“’”K(r)dt):

f==]

= /0 e R eos(Ta ) K(t)dt < /o e~ RK (t)dt

so that, since (5.3) is strictly decreasing, it follows that Ra < a*.

Finally, since K(4) — 0 as |A| — +, all the roots within the strip 07 < RA
< ¢, must lie in some bounded subset and be finite in number because other-
wise K(4) would vanish identically. .

Now we are ready to state:

Theorem 5.2. Let p, satisfy (2.9) and let & be defined in the previous theorem.
Then

(5.4) B(t) = be®" (I + (1))
where:

b= 0 and rlii;;n Q) =0

Proof:
We first consider the last term in (5.1). We have:

FEWK(R) _

4
(A} +e0 o
Pt 1K

(5.5)
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(5.6) / j:

where 5« R is arbitrarily chosen and ¢ e R is such that the lme QRA = o does
not meet any root of (5. 2) COHdlUOH (5 5) holds because

F(o+ iy)R(o + iy)
ST IRt )
{ - K(o + zy)

dy < +

(5.7) lirn K(/U = lim F(A) =0

B>t Bbsta

in any half plane %A > 8. Concermng (5 6) we first note that (5. 7) also m-
plies . — o . ‘
My =" mf }I — K(o+ zy)] >0

yeR

Furthermore defining the functions
o) = e “Fyy Vim0 1 =0 Vi<g,

and' ‘

;_,go(z) So.vi< 0

\we see. thatr since they vamsh OUtSIde of [0 ar], thelr Founer transfomls
£ )-8t (y) belong to. L%(R) and also. - o :
fa*(y) = Flo +.iy) , g; )= K(o + iy)..
"”ms
Flo + y)K(o + iy) r ... -
68 [ZO* D)Ko+ iy) < L lerer
7 K(a " ly) . o (g ()|

and (5 6) 15 satisfied.
Now we take ¢ > a* and consider the functiop:

| ohico FINKG)
5.9 H) = SR e g
(5.9) 0= 1 /{Hm %0 °

which, by (5.5) and (5.6) is well defined and has Laplace transform

Hey — Fm){cm)

> consequently, by (5.1), we have
— K(2)
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(5.10) B(t) = F(1) + H(1) .

Finally, we consider o; < «* such that any root of (5.2), other than a*, lies
strictly on the left of the line ®A = ;. By (5.5) and (5.6) we shift the integra-
tion abscissa in (5.9), from ¢ to g; (see Appendix I); this yields:

(5.11) H(t) = e™ (by + £2(1)),
where -
L e” T'F(t)dt
(5.12) by = Res {_W_F W{((’U} /"
1 K(A ©
M /o te” 'K (t)dt
and
—a*t ortice
o,—ie 1 — 1- Ky
e—(a" o}

= !fo, lLf(R) lgﬂc, iL?(R)

a5

We sce that b, = 0 if and only if F(z) = 0 for all 1 = 0, but in this case the only
solution to (3.4) is the trivial one B(t) = 0. On the other hand if by > 0, by
(5.10) and (5.11):

B = b {1+ ______‘;F(‘) + o Qlt) )

0 a

and (5.4) is proved. -

A few comments on b, are now in order. First we want to interpret the
case b, = 0: we have seen, in the proof of the theorem, that this case occurs if
and only if F(t) = 0, that is, if and only if

f Bla + t)pola) ”(“("*")“ da=0 V=0

and, consequently, if and only if, for all 1 = 0,

(5.14) B(a + t)psla) = 0 a.e. on [0, a;].
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Now (5.14) occurs if and only-if the support of B(-) lies to the left of the
Support of p,, that is when all-of the initial individuals are too old to be able 1o
become fertile. In this case-we have ‘ e o '

o : . _.H(a)-, .
Ilfa — 1)

0_" : Cifa<t

Pof@~1) fazi

(5.15) p(fi,-t-) _

We see that the behaviour of p(a, t) can be trivial even if the initial datum pyis

not identically vanishing. An initial datum that does not satisfy condition

(5.14) is called a non-trivial datum. A : o
Another remark follows from (5.13); in fact, since

Fy= | a + tpde). 0D o< gl pi)

it follows that: _
(5.16) bo < My |poly. )'If-;,ILZ(R) 5 1149 fPOI‘L__.’ o

where M, is a constant independent of Po- Thus the estimate (4.12) can be
impm\_{cd tor - T '

G eyl e lpoles,

where M is a constant independent of p,. Actually (5.17) follows from (5.16)
because, for t > g, T S .

pla, 1) = eX 02 (b 1 Q. r - a)) Ma) .
W-e also note that formql_.'d‘ (5:’4)'impljes: o
5] 18) | Bt} is either- identically vaﬁishiiz-g or; ev'enfually"p@sitive. |
Thus we can state:

Proposition 5.3, Lt pla, 1) be the solution of (2.5) under the assumption of
Theorem 4.2 and let b, > 0 in (5.4), then SRR

P(t) = / pla, ) da>0 forall t=0
¢
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Proof:;

We first note that if we set g(a, 1) = pla, t + fp), t = 0, then g{a, 1) 1s the
solution of the same problem (2.5) with the initial condition:

g(a, 0) = p(a, o)
Thus we can argue by contradiction. In fact if P(t,) = 0 for some , then

pla, t;) =0 ae. on [0, a4
and conseqﬁently, fort =14 -
Cpa ) =0 aeon [0,a]
and this implies
Pty =0 fort=1, .

Now, if by > 0, by (5.18) and formula (5.4) we have that P(7) is eventually
positive, so that it is impossible that P(t) vanishes at t,. |

Before we end this section we go back to equation (5.2} to discuss the
meaning of a’. Actually, this equation is called the Lotka characteristic equa-
tion and « the intrinsic Malthusian parameter: they determine the growth of
the population through the birth rate B( 1), whose behavior is given in
Theorem 5.2, and are related tothe net reproduction rate defined in (1.5) by
the following statement:

R>1 if and only if o >0,
(5.19) R=1 if and only if o =0,
R<1 ifand only if o < 0.

This is part of Theorem 5.1 because R = K(0): thus the natural connection
between the two parameters R and o is made precise.

6 Comments and references

Though it is nice to go far into the past, jooking for vestiges of the concepts
and ideas which we are interested in, the origin of the theory we have pre-
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sented in this chapter has to be dated many centuries after the rabbits of Fibo-
nacci (see also [6] and [36]). In fact this theory starts in 1911 with the work of
Alfred Lotka ([87], [74]-[76]) and with the paper by McKendrick [78] where
the system is formulated in the form that we have presented and its connection
with the renewal equation is stressed. Actually some important aspects of the
theory are part of the theory of Volterra integral equations and have been
clarified somewhat later by Feller [37]. .

This linear description of the growth of an age structured populationis a
basic mathematical tool in demography and has been largely used since 1911.
Monographs like Coale [21], Impagliazzo [61], Keyfitz [68], contain the fun-
damentals of the theory, also formulated in a discrete age-time setting: in
these texts the reader can find a rich documentation of the application of the
theory to demographic data.

More attention to the theory has been paid starting in 1974, when age
structure was recognized as a fundamental aspect in the context of population
ecology (see [46], [57], [89]). Since then the mathematical tools have been also
developed and the results are nowadays set in a functional analytic framework
within which nonlinear problems can also be approached throught the
methods of abstract evolution.equations ([18]-{20], [29], [99]-[101]).
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Further developments of
the linear theory

This chapter is devoted to some developments of the linear theory; namely we
discuss a few aspects of the model introduced in the previous chapter so as to
treat some basic questions that are relevant in the description of changing
populations. :

In Section 1 we are concerned with the relation between the overall
growth of the population and the evolution of how individuals are distributed
through the age classes: this allows a comparison with the simple Malthus
model which disregards age structure. Later, in Section 2 we modify the model
in order to allow the vital rates to change in time and we examine the asympto-
tic behavior in the new situation so that we can deal with the special question
. of ergodicity (Section 3). Finally in Section 4 we treat the case of inifinite

maximum age gy = +«. '

1 The age proﬁle

In this section we point out some of the features of problem (1.2.5) in order to
give a complementary interpretation of the asymptotic behaviour of the solu-
tion. We consider the following variables by which we will describe the evolu-
tion of the population:

pfa, t)

(1.1) age profile: w(a, 1) = 0

(1.2) total population: P(t) = /0 pla, t)da .
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The previous description is recovered by the formula

(1.3) pla, 1) = P(hwla, 1) |

Proceeding formally, by (1.1) and (1.2.5) we get

(1.4) w(a, t) + w(a, ) + u{a)w(a z) +. co(a 0. _(“) - P(t) 0
and also, by (1.2.5)

g_P(t) =/ pr(a t)da = — / pa(a I)a'a—m / ,u(a)p(a t)da =

(r.5) - -“”‘=*-—p(af, 1) +p(0 r) - / u(a)p(a f)da =

| */ [ﬁ(a)‘= ua)]p(a t)da’,— P(t)/ [ﬁ(a) #(a)]w(a ‘)d“

where we have used p(a,, t) =0. Thus puttmg (1 4) and’ (1 5) together and’ by
the definition of: P(t) and cu(a t) 1tself we arnve at the fol}owmg two sets Of
equations: :

'm,(a, 1) + wu(a, ) + pa)w(a, 1) +

+ ol ) |, (B0~ uojol do=0

ay

(1.6) w0, 9 = / Bla)ors, gda; /0 o(a, t)da = 1
a)(a 0) = cug(a) ' " V'
4 P(t) = aft)P(1)
(1.7) dt

P(0) = P,

where:
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wela) = -—WM , Pp= /Ompa(o)do
and

aff) = /:[/3(0) — (o) wla, 1)do .
We see that the age profile w(a, t) satisfies an equation of its own which is not
coupled with the other variable P(1), so its evolution is determined only by the

initial age profile wy(a). Once that the evolution of the age profile is known,
we can find the behaviour of the total population P(z) which is influenced

through the coefficient a(t) in equation (1.7}; a(t) can be viewed as a transient

Malthusian coefficient.

It is interesting to treat problem (1.6} in itself, also in view of some de-
velopments that we will treat in Chapter V; clearly any result on problem (1.6)
is strictly dependent on the previous theorems on problem (1.2.5). First we
have to rule out trivial initial profiles, that is those wy that, having support
beyond the maximum reproductive age, satisty the following condition (see
1.5.14)

Bla + tywola) = 0 a.e. forae [0, a;] and for all t=0.
Then we have
Theorem 1.1 Let w, be non-trivial and such that:

Wy & WLJ (0, a‘f): P(')wo() = LI (0’ a‘f‘)

(18) ' ar ar
wela) = 0, we(0) = /o Blajwy(ajda, /g wola)da = 1

Then there exists one and only one w e C([0, a;] X R) such that

wla, t} = 0, / u{a)wla, thda < +0, /0 w(a, t)da = 1
0

(1.9)

2w 3w
— (a, t}, —
ot (4, 1) da

(a, t) exist a.e. in [0, a;] X R,

and problem (1.6) is satisfied.
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Proof:

Consider problem (1.2.5) with Po = wp and let gfa, 1) be its solution given by
Theorem 1.4.2, then set

(1.10) wfa, () = __9@ 1
‘ é-q__(a r)dé

solution of (1.6) (in the sense specifie

| a@ = /0'.[/3:(0) - u@)(o, gag

0 @ ) = e teloateias.

where =t 4 SOIVES propien
(1.2.5) with p, = @y and consequently it is uniquely determined becaiise the
- solution of this problem is unique. Moreover, since by (1.11):

./o q(0, t)do = ¢l ats)ds i

then also efo atsids 4 uniquely determined, consequently aw(a, 1) is uniquely
determined by:

(@, 1) ='q(a, t)e~ o aris

and the proof is complete.” ' | ' n
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) 0@ p@ofe) o | [Bo)-uo)wlojdo = 0

(1.12) ¢ i w) = [0 Blo)w(o)do

ar

iii) /0 w(o)do = 1 .

This problem has a unique non trivial solution whose form can be determined
as follows. Let w*(a) be a solution of (1.12) and set

h= | 180y oy (oo

then by (1.12, 1) and (1.12, i)

e~ *I(a)

ar

€ ATI(o)do.

w*(a) =

and, since w*(a) must satisfy {(1.12, ii) we get the following condition on A:
1= /0 e * B(o)I(o)do

This is exactly the Lotka equation (1.5.2) that we have already dealt with; thus
"it must be A = o* and a possible solution of (1.12) must be:

e~ %I1{a)

ay

, e~ “ I(o)do

(1.13) w*(a) =

On the other hand, w*(a), as defined in (1.13), is a solution of (1.12): this fact
is easy to check, we merely need to note that
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/ " 1Bt0) — o @ =
=1/ Bla)e“*Ia)da- / @e—wan(a)da] /| ngpton
(1.14) =[1+/; L e |/ [ et e
. *[1 * [ )y + ot f ""“““H(a)da:l/ / i g)do=
—a. -

Thus we have proved the following:

Theorem 1.2. Problem (1.12) has one and only one non trivial solution given
by (1.13) T Sosn grven

The stationary solution w*(a) is the asymptotic ‘age -profile of wf, t) as
— +, unless the initial profile w, is trivial. Ts fact we-have:

Theorem 1.3. Ler o, be non ;riﬁiql_, Vthen:
(1.15) 1?--'211'12- /0 Jola; 1)'= w*(a)lda = 0

Proof: .

We first recall that, by the proof of theorem 1.1., wi(a, .t) is given by(1.10).
Morcover -by Theorem. 1, 3.2 S , L

9(a, 1) = goe™ “IIIa)(1 + Q(r - a)) "fbr t>a;
where tlz'm £2(t) = 0 and q, > 0, since Wp-is non trivial. Then:

e” ““I(a)(I + Q(t — a))

(1.16) wfa, 1) = fort> a,
/0 e“"“"’ﬂ(a)(] + Q(t_— a))da

and (1.15) follows easily. - o 7 .
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Turning to equation (1.7) we first note that in correspondence with the sta-
tionary profile w*(a) we have aff) = o (see (1.14)) and that, again by (1.16),
if w, 1s not trivial, it is easy to prove that:

(1.17) ;HTm aft) = a*

Thus, when the age-profile stays at the stationary profile w*(a), equation (1.7)
becomes

(1.18) %P(f = &*P(t); P(0) = P,

and the total population undergoés pure exponential growth:
P(I = Ecmpg

Moreover, in the general case, when w, is not trivial, because of (1.17) equa-
tion (1.18) plays the role of limiting equation of (1.7). Finally we note that,
when the age profile is stationary, by (1.3), we have the so called persistent
solution of (1.2.5):

(1L19)  p*(a, 1) = pee™I(a) = P 0" (a)

2 Time dependent rates

The model that has been treated in chapter I assumes that the fertility and the
mortality rates B(-) and p(-) do not vary explicitly with the time, here we want
to consider an extension of the model by considering time dependent rates
B(a, t) and p(a, t), so that we can account for environmental variations such as
permanent changes in the life conditions or periodic changes due to seasonal
fluctuations. We will also introduce possible migration by a function m(a, t)
which is assumed to be known.

With these changes in the model, (1.2.5) is modified into the following
non autonomous system:

i) pia, 1) + pa(a, 1) + pfa, )pla, 1) = m(a, 1)

(2-1) i} p(0, 1) = /0 B(o, w(a, t)p(o, t)do

i) pla, 0) = po(a)
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For this problem we will at least assume that for each fixed t, the functions
B4 and u(-1) satisfy (1.2.6), (1.2.7), (1.2.8); further assumptions will be
specified when needed. Proceeding formally, we can treat (2.1) via the same

procedure followed in section 1.3; this leads to the following integrated form
of (2.1): '

pole—0)II(a,t 1) + /o (a1, 0)m(a-oi—c)dg if az1
2.2) play) = a
p(O,t—a)H(a,t,a,)-F/a .'H(a,f,o)m(a-.—qr‘-.—d)da ifa<t

where

(2.3) H(a, t, x) — é—/ox}l(a“ql—q&o

is defined for x ¢ f0, a A t]. We note that (2.3) can be interpreted as the
probability that an individual &f age (@ —x) at the time (¢ — xJ will survive up
to time 1 (with age ¢). =~ A R
_**Moreover, via (2.2) we gét the following integral equation for ‘the ‘birth
rate B(1) = p(0, 1) : S

(2.4) B(t) = F(t) + "fo‘-'kfz,*: - $)B(s)ds

25 K s) = { Bls, 9II(s,ts)  ifo<s<tAa, "
: 0 . elsewhere
ahd.” : | ’ . _,
Ft) = /o Bla + tpo(@)li(a + 1, 1, Yda +
2.6) o

/o B(a, 1) /0 (a, 1, o)m(a — o,t - o)doda
where the functions g, Po and IT are extended by zero. .
Thus the study of (2.1) depends on the analysis of the non-convoluti on
equation (2.4). We will make the following main assumptions:
ﬁ e C (R-!—: LW(OJ ar)), He C (R+, Lm(o} A)) VA € [OJ E)")
(2.7) _ _ : '
me(C (R+.v LI(Or aT))J Py e LI(Or aT)

which guarantee existence and uniqueness of a solution. Namely we have
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Theorem 2.1. Let (2.7) be satisfied, then equazzon (2.4) has a unique con-
tinuous solution B(1). u

We do not go through the proof of this theorem which is quite similar to that
given in section 1.4 for equation (I.3.4), and we also omit all the comments on
the solution of (2.1} which is obtained via formula (2.2). We focus instead on
the problem of the asymptotic behavior of B(t) which actually depend on how
the vital rates vary with ¢ we will examine two particular cases of main in-
terest, namely the case of vital rates presenting a converging trend as time
goes on, and the case of vital rates which are periodic with respect to time. In
both cases we have to exclude trivial initial data Do such that

(2.8) Bla + 1, hpyla) = 0 a.e. for a c [0, a;] andfor all t = 0.

In fact this condition would give F(z) = 0 V¢ = 0 and, consequently, B(t) = 0
Yi=0.
With respect to the case of converging rates we have the following resuits:

Theorem 2.2. Let B(1) be the solution of (2.4), (2.5), (2.6). Assume m(a, t) =0
and let K* € L™(R,) be such that K*(t) = 0 for t > a; and

@9)  dim |K(t ) = K*()|prga, = 0

(2.10) -/0 K1, -} = K*()iLop.0, dt < +
Then B(t) can be written as
(2.11) B(t}) = B*(1) (b, + Q(1))

where b, = 0, Izm (1) = 0 and B*(1) is the solution of the limiting equation:

(2.12) B*(t) = F(1) + /0 K* (t — s)B*(s)ds

Proof:

If the injtial datum p, satisfies (2.8) then (2.11) is trivial, thus we assume that
(2.8) is not true,

Let R*(1) be the resolvent kernel of equation (2.12). We recall that (see
Appendix II)
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Q1) B =Fy - /0 R (t — 5)F(s)ds

and that, by the results of Theorem 1.5.2 (also applied to ‘the fesolifént' equa-
tlon (1 3) of Appendlx II) we- have ST T .

(2 14) B*(t) = boe“’f (1 T Q,(r)) R*{r) = g (1 ¥ .Qz(t))

where: b0> 075> 0, lzm Q,( Ilu_;_w :':-sz(:')?i*:-' 0‘-iar';dfa*fis the (uniqil'eg
real solution of the equatlon ' R R

/ﬂ e*?ffK*(z)dzmz -

Beg_'_c_i_és, we wri_'tc (24) ‘a'sf"m

where e(t, 5) = K{(t,s) — K *(s) and, using the resoIvent kemel R*(t), we get
B(t) = Fft) + f s(t s)B(t - s)ds 40

- /0 g—*(t_—f)'F(s)ds-fo R*(t'—s)_"'/é_ £(s, 6) B(s— o)dods

(2.15) |
= B*(1) + /o &(t, s)B(t — 5) ds +

o _é R*(t— s) [0 5(3, d)jé(s —'a)dc}ds
We first prove that
(2-16) ’B(f)] SMe*
In fact by (2 14) let C.. be a constant such that C., > ™% B*(1) + e

R*(t)forallt = 0, and let T > a; be suffi(:icntly large so that (see (2 9) and
(2.10) |
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u ~lalar
/ﬁ |le(t, 5)| ds < fort=T,
o0 ap *laﬂﬂr
e
dods <
/T /0 |es, 0)| do il

Then, setting M, 5 = max le” " B(t)}, we have for t e [T, 7

le” " B(y)] < le™ ™ B*(p)l+e' "l (Mp 7+ My,) [o |le(t,s)|ds+
T ,a:
+ C.elv™ler M, £ /0 /0 |e(s,0)| dods+
+ C el (My 7+Mr) fT fo |es, 0)} dods
so that, forallt> T,
T .ar
My, <2C.+ (1+zcme'a*|“f fo fo kg(s,o)ldads) M ¢
which implies that e~ *"* B(t) is bounded on [0, +% ], that is (2.16).
Now, by (2.9) and (2.10) we have that: '
¢ ay
(2.17) l g fg g(t, s)B(t — s)ds l < el@’lar /0 |lect, s} ds Z20

and also
4

ey /0 R*(t—s) /0 &(s,0)B(s—o)dods = /Or*o(f‘?Qz(f“S))g(S)dS

where the function:
gls) = e °7° /o' g(s,0)B(s— o)do
belongs to LY(0, +) because:

g6l < M=o [ lefs, o)l do
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Thus we have:
(2.18) e” /GR(I*—S) /0 E(S,U)B(s~o)éods r~—> -.rg_. /0 :g_(s)aiy

Taking (2.17) and (2.18) into (2.15) we have (2.11) with

R

hy

2 g(s)ds
by = (1 _ /o . )

The previous result rests upon assumptions (29)(210) which state that the
kernel K(t, s5) “rapidly converges” to K*(s} as t—s+ oo that is a condition on
how the rates B(a, t).and yfa; 1) evolve converging to a limiting vital dynamics.

We note that (2.11) is not quite satisfactory because itis not clear whether b, is
strictly positive., Actually (2.11) is not really significant if bo. ;ﬁo,'ébu“tl‘,gur‘_gr_qqf_
does not give informations on the value of b, P

Concerning the case of periodic rates, we have the following result due to
H. Thieme ([91]; [92]). = .- A I S

Theorem 2.3, [.¢ B(1) be the Solutlon0f(24), (2.5),
and suppose that there exists q period T.>.0, such thats.

»(2:6)-Assumem(a, i = 0

219 Ke+Ts) = K(6:5); Y= 05 o, ajl.

Then there exist q :unique a* ¢ R aid a uniqL;; T~peribdic. function
b*(-) € C(R, ) that solve the functional equation, o

o

(220) - by = /0 e® Kt s)b(t ~s5) ds :

and such that B(1) can be written as

(2.21) B(®) = e"o*(t) (1 + Qq)

where [im Q1) = 0. _ -

>+

'The proof of this theorem requires concepts and tools that go beyondthe
purposes-of this presentation, thus it must be omitted; we have neverthdess
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presented this result because the statements of Theorem 2.2 and 2.3 are im-
portant examples for the concept of ergodicity that we will discuss in the next
section.

3 Strong and weak ergogidicity

A main principle concerning the demographic evolution of a population is the
staternent that any population eventually forgets its initial age distribution. This
phenomenological claim, that should be valid independently of the particular
dynamics which is responsible for the population growth, is known as the ergo-
dic behavior of the population and is precisely formulated by the two concepts
of strong ergodicity and weak ergodicity.

Actually, the term “strong ergodicity” has been traditionally intended as
concerning the case of fixed vital rates and was just a different enunciation of
Theorem 1.5.2. with its consequences exposed in section 1. In fact in Theorem
1.3 and in (1.17) we have seen that the age profile w(a, t) and the Malthusian
rate aft) respectively attain the asymptotic profile w*(a) and the intrinsic rate
o*, which are both independent of the initial distribution pofa). Presently we
need to extend the concept to any population, whenever a similar situation
occurs: namely we adopt the following '

Definition 3.1. An age structured population is said to be strongly ergodic if the

age-profile w(a, t) and the malthusian coefficient a(t) = /0 [B(o, 1} — uo, -

1}jw(o, 1)do have asymptotic limits that are independent of the initial datum
pola). b

This definition is still somewhat vague because it does not specify what kind of
asymptotic limits occur, but this point must be specified case by case. Actually
this definition applies to the time dependent cases studied in section 2; in fact
we have the following two theorems that are just corollaries of Theorem 2.2
and Theorem 2.3: '

Theorem 3.2. Consider problem (2.1) with m(a, 1) = 0 and let the vital rates
satisfy:

rlfizlm B(: t) = ﬁ*() in Lm(o) a?‘)

dimp(, ) = () in L ([0, a)) -
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Suppose also that -the maternity function K(i, -"a)--sari;s'ﬁe'si*-(*?.IO)' and ihat in
(2.11) by > 0. Then the population-is strongly ergodic. -~ = - S om

Theorem 3.3, Consider problem (2.1) with m(a, 1) = 0 and let the maternity
Junction satisfy (2.19), then the population is strongly ergodic. .. =

The proof of these results is already contained in the previous section. Namely

for Theorem 3.2 we are under. the assumptions (2.9),-(2.10) and also we have

tote

so:that, by (2.11) ,

- e_‘.f‘?

OO i e 2ol = _CTT@ e

Py = Ppehis 2 g +Q@)

whereco - Oand ,Ilino., 'Q( f)": OThlsylelds Lo oy

3-2 N P = *
( - ) . l_”” g /0 ia_ (S)d S =qa .-

. )
Concerning Theorem 3.3, using (2‘20) and (2.21) it Is easy to see t I-]at ST
o i sup '}w(-,'t +5) — w*(, SNee=0
R et - L
where

€ ““b*(t~ a)ll(a, 1, a) .

Cw*a, 1) ="

ay

/ e~ " bt ~ o)I(o,t g, o)do
o S R ,

and that (3.2) is true also in this case.
Passing to the concept of weak ergodicity we have:"
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Definition 3.4. An age structured population is said (o be weakly ergodic if,
letting ' (a, 1) and w’(a, 1) be the age-profiles corresponding 1o initial data p}
and p? respectively, we have:

dim o', ) = &P i =0 .
Of course, strong ergodicity implies weak ergodicity. However, the latter con-
cept is enough to interprete the idea of a population that forgets its initial age
distribution.
We have seen that in the strongly ergodic cases considered in theorems
3.2 and 3.3, in order to identify the limit distribution of p(a, t), we must
assume some specific limit behavior of the rates; weak ergodicity, in turn, can
be stated under fairly general assumptions on system (2.1). This is done by H.
Inaba {62] with methods that we cannot introduce here, thus we limit
ourselves to present the following sufficient conditions:

Theorem 3.4. Consider problem (2.1} with m{a, t) = 0 and suppose that
Kfa, 1) =b>0, (a t)efa; a] X [0, +%]

for some interval [a;, ay], and
/0 Bla + st + s)Ha+ st +s5,5)ds>0 ae in [0, a.] x [0, +c°)

Then the population is weakly ergodic. -

4 Infinite maximum age

‘The theory presented throughout the previous sections always assumes that
the maximum age a is finite and that, consequently, condition (1.2.8) 18 satis-
fied. This assumption, which is rather realistic, can however be disregarded if
we consider time ranges that are comparable with the life span of the popula-
tion: actually the early models considering age structure did not even pose the
problem, letting age assume any non-negative value, but implicitly assuming
some hypotheses (such as finite fertility windows) which allow a mathematical
treatment analogous to the one that we have given. As a matter of fact, if we
let a; = -+ we have to be careful with the behavior of the rates at inifinity in
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order to perform the;asymptotic,-ana]ys_is of section 1.5: In this section we will
not go through this point but will rather show that with @, = + we canuse

some specific form for the rates Bfa) and p(a) such that it is-possible to trans-
form the renewal €quation into a system of ordinary differential equations.
Let us assume the following constitutive equations .

@10 . Bla) = Pue*, p(a) = u,.

whefé .)30),' Q;l Uy éfe préscn'bed ﬁoéﬁtiﬁé pérémetérs. Then the renéwal équati_éh
(1.3.4) has the form: . e D

L UBOER | e apgs

+ 503_ Yt( I-fo- ‘e ®pyla)da + /0- ae:"*_g‘?pé(a)da). .y
where 7’}" =gt ,uaNow wé introduce the éu%i'lﬁi'éfy vaiiable:

43 0W=F | e IBsyas + pe [, e epufada _

so that, by a straighforward calculatio

hfor . n, (4.2) is tranformed into the following
systemr-for the couple (B(1);:Qff): = = - . .. S e

B0 = <vBO + 00, Bo)=p, o, aerepa
(4.4)

o

2 00) = BB - von), 0(0) = ﬁQ_L e~ pofa)ds

and weget the following ‘_gexj;;}k;ijt,f(jfrp for B(): '

(45 - B(1) = byeo -('1 + b;,-e—Z-\.@r) |

@6  a*= —'y+ Vg,

and by, b, are constants depending on B(0) and 0(0).
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We note that B(z), as given by (4.5), has the same form as in (1.5.4)
though the rates (4.1) do not fit into the theory of the previous sections. We
also note the following formula for p(a, 1)

47 t #{e‘“"‘po(a—t) ifazt
@7 PIGY = poedt (1 4 b2V (-0l o(o-VR)e ifa<t

where pg € L' (0, +o). Using this formula, it is possible to show the following
result concerning the age profile

(4.8) If (VE — p)<0 then ,ETL w(a,t)=w*(a)=(V By~ 0) el Vo)
(4.9) If (VB, — 0)>0 then ;ETm wfa, t) =0 |

The limit in (4.8) is in L7(0, +o0) while that in (4.9) occurs pointwise. We
remark that this latter result is anomalous with respect to the case with
a < 400,

5 (Comments and references

The results that we have shown in this chapter continue the basic linear theory
of Chapter 1. The description of the evolution through the age profile and the
total population is just a presentation of the same results from a different point
of view, but gives some further understanding which is of some use when
considering erogidicity and also when treating some special class of non linear
models that we will consider later.

The time dependent case is not of secondary importance though it has not
been studied very much. First attention to this case was given by Langhaar in
{70}, but mathematical results are quite recent, also in connection with the
question of ergodicity. The latter is of great interest in demography and has
attracted much attention in the context of discrete models ([21], [68], [73]): an
extended discussion can be found in [62] where also some historical remarks
can be found. Actually, a general mathematical definition of ergodicity, which
can be applied in all circumstances, does not seem to exist, thus we have
adopted those given in Definitions 3.1 and 3.4 and shown some significant
examples. Theorems 2.2 and 3.4 are due to Inaba ([62], [64])-

Finally, concerning the case of a; = +9%, we have mentioned some diffi-
culties arising in the asymptotic analysis, first remarked by Feller in [37] where



However, while such pathologies can be disregarded because they do not add
anything biologically significant to the models, the example of Section 4shows
that with g, = + Wwe can take advantage of reduction to ordinary differential
€quations, in correspondence with some special constitutive assumptions on
the vital rates. This reduction has been Systematically used ({45], [48]) to in-
vestigate nonlinear models: we will go back to this point in Chapter V.,
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Nonlinear models

The linear model we have been dealing with in the previous chapters has been
presented as the age structured version of the so called Malthus model; thus
the criticisms of the latter also apply to the former. In fact, the simple Malthus
model is niot realistic, unless we want to follow the growth of the population
for a limited time until the rough assumptions that we have made are satisfied.
Actually, even if we disregard the external habitat variations, we have to con-
sider that the population itself causes modifications of its own condition of life,
thus-we must assume that fertility and mortality depend on the population size
and the linear equation of the Malthus model must be replaced by a non-linear
one

g— P(1) = a(P(t)) P(1)

where the function a(x) : [0, +«) — R must describe the effect of the popula-
tion size on fertility and mortality. Usually ofx) is supposed to satisfy the
following assumptions:

i) a'(x) >0 if 0<x<xg
i) a'(x) <0 if x> xg
iii} lirfm a(x) <0

where x, = 0 (if x, = 0 only ii) and i) are meaningful). These assumptions
contain the main phenomenology of the single population growth, in fact i)
shapes the so called Allee effect stating that, at a low population density, an
increase of the population size has a positive effect on the population growth;
assumptions ii) and iii), conversely, introduce the logistic effect claiming that
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at high population densities an increase of the size has a negative fnﬂuence on
the population growth. A special case is the following Verhuist model [98],

a(x)=a0(l~—%)

which is purely logistic.

Such models prevent the population to growth.to infinity; in fact P(1)
always converges monotonically to an equilibrium size. The solution of the
special Verhulst case is reported in Figure 0.1. In this case P(1) always tends to
the so called carrying capacity K.

N

1
‘N,

I

Figure 0.1

Thus, going back to our age-structured model, to describe the effert of
crowding on the population growth we should take into account a posible
dependence of the age specific vital rates on the population itself, considirin £
mechanisms such as the logistic effect and the Allee effect, but here, beause
of age structure, a large variety of ways by which these mechanisms are real-
ized can be envisaged. : '

In this chapter we will consider a fairly general model and some spicial
cases of it, which are mathematically tractable, though we are aware ol the
fact that it is not exhaustive of the many possible mechanisms.
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1 A general nonlinear model

We consider a single population and assume that fertility and mortality de-
pend on a set of n significant variables (sizes) which represent different ways
of weighing the age distribution:

(1.1) Si(t) = /0 y{a)p(a, )da, 17 1, ..., n

thus B(a) and p(a) are replaced by

ﬁ(ar SJ'(I)f sy Sn(t))) ,u(a, S}(t), [RRS Sn(t))

and the linear model of the previous chapter is modified into the following
OoDne:

¢ pia, 1) + pafa, 1) + (@, Si(t)-es S.{)p(a, 1) =0

b0, 9= | Bo St SHOIP(G: 40
@y ) el =p@

. Si(t) = /0 y{olp(o, )do, i=1,..,n

In the next section we will provide a general theorem stating existence and
uniqueness of solutions to this problem, here we introduce the assumptions
that we will make throughout this chapter on f3, ¢ and v;.

(1.3) Y (x,,...,X,) € R" the functions B(-,x1,--»Xy) and Ul Xy s Xn)
belong to L'(0, a;) and LL, ([0, a;)), respectively.

(1.4) Y (x;,...,x,) € R” it is 0<B(a,xp,..»Xn) = B, a.e in[0, aif

(1.5) Y (xg,...,x,) € RMitis pa,xg,....x.) = 0 a.e. in [0, a;] and

/0 U(e,xg,...,xX,)d0 = +°
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(1.6) V' M > 0 there exists a constant H(M) > 0 such that, if |x] < M ang
%] = M, fori= 1,2, n then: '

i

x; — ]

,ﬁ(a:xl)"'Jxrl) - ﬁ(a)jl:"‘:frJl = H(M) .

i

=1
n

lu(a,xp,ox) = plax,,. 5] < HM) ol - %

(1.7) The functions v () belong to L>(0, a;) and y(a) = 0 a.e. info, a,

We note that conditions (1.3), (1.4), (1.5) mean that, for a fixed set 6f the

variables x;, the rates § and pu satisfy the assumptions of the linear case-
T ’ E

moreover, by (1.6) they are Lipschitz continuous with respect to the x;s, uni-
formly in a € [0, a,/. ’ ‘
2 Existence and uniqueness

Existence and uniqueness of the solution to (1.2) will be proved via a fixed
point argument which is based on an integrated form of the problem. To
establish this formula we consider the variables S;(z) as a given functions of IS0
that problem (1.2) can be viewed as a rion autonomous linear problem (see
section 11.2); then integration along characteristics yields: T

_ [ Pola ~ t)II(a, 1, 1 S) ifa=t
(21) P(a; t) - [ b(t — a’. S)H(a, t, a; S) .L:'fa <

where . § stays for (S,(1), S.(1), ..., S(¢)) and belongs to the space
C(/0, T]; R"); moreover we have set (see 11.2.3): ' _

Q2 M@y xS) =ep| - [ wta- o500, .0t = oo
and b(1; S) is the solution of the equation:
(2.3) ut) = F(1;, S) + /0 K(1, 1 - o S)u(o)do

where:
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F(; §) = / Bla, S;(1),..., S(t))Tl{a, t, £ S)pela —~ t}da
(2.4) °°
= /o Bla + t, Si(t),..., S{)IIla + 1, 4 & Sipo(ajda

and

(2.5) K(t, 0; S) = B(o, Sy(t),..., SH())I1(0, 1, 07 S)

Note that, for a given S e C(/0, T]; R”) the function F(-, §) is continuous and,
by the results of section I1.2, also b(-, S) is continuous. Finally we note that the
function t — p(-, t), defined by (2.1) belongs to C([0, T}, L1(0, a;)).

Before going through the proof of existence and uniqueness of a solut-
ion to problem (1.2) we need to state some estimates. First we note that for
S, §  C({0, T]); R") such that [S{t)] < M, |S(0)| <M, fori=1,..,nandte
[0, T], we have : :

@6)  1B@Si Oy Sul) (@ Ss(0) S| < HM) 2 1S(9=Si0)]
e Merss)-TansS)<HM) § | 15(0-Scoldo

We then obtain

Lemma 2.1. Let S, § € C(J0, TJ; R") such that |S(0)] < M, |S)] < M,
fori=1, .., nandte[0, T], then:

(2-8) bt; S) < B.e’polv:
and there exists L(M) > 0 such that:
(2.9)

w165)-b =L e $ [ I80-S01 + | 150)-S(ollda

Proof:

To prove (2.8) one can proceed as in the proof of Theorem 1.4.3, in fact we
only need to note that F(1; §) = B.lpolL and K(i, o; S) =< f..

RO SRS SR
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Concerning (2.9) we have from (2.3)-(2.7):
b(t; Sj—b(1; $)| <

=

/! ,ﬂ(ﬂ, SI ({)}' . .,Sn(t))_ﬁ(a, S]([), .- Sn(t))!p(?(a_t)da_!_

o

+ B, /0 lH(a—i—t,t,t,'S)“ﬂ(a-kt,t,r,'f)]pa(a)da—i—
+ /G fﬁ(@‘sf(l‘),---,Sn(f))—ﬁ(U,SJ(t)',---,Sn(l))lb(f—o’;s)do‘f'
+ 8. /0 \{0,1,6:8) ~ IT{a,s, o 8)|b(1—a;8)do+

+ 8, /o 16(3;8) ~ b(0;$)ldo

<HM)plu £ Isi) - )] +
B HMpol £ [ I540) ~ Syoplaos

+BHM) [ P 2ol £ 180 - S| +

+ﬁiH(M),P0,U é‘] /0 eﬁ+0/0 ,Si(’)_Si(")ld" do+

By ) Ibter S) = bias $yldo

SO0 o, £ [ Isy-siofs | (0= Si(o)lo]

B 1ba 5) = b(o; Sldo

SO that, by the Gronwall inequality, (2.9) holds with L(M) = 2(] +
B+ )H(M)e AT,
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We now consider the space E = C{ [0, Tl LY(0, a;)) and the set
(2.10) %= {geE]|qla =0 lg = M)

which is a closed set in E. Then, for g e % we set:

Q1) 0= (@ Q) O = [, vi@ata e
and define the mapping I : X C E — E (see (2.1)) by:

pO(a - t)H(a: A Q) zfa =1
b(t — a; Q)1(a, 1, a;. Q) ifa<t

where p,e L'(0, a;) is fixed.

We look for a fixed point of this mapping in order to provide an existence
and uniqueness proof for problem (1.2). To this aim, for a fixed initial datum
po e L'(0, a;) we take M such that: '

) (Foe =]

(213) M>e mT!po‘L:

Then we have:

Lemma 2.2. Let % be defined in (2.10) with M satisying (2.13), then the map-
ping J, defined in (2.11)-(2.12), maps X into itself and for q, ge ¥, t [0, T]
we have S ‘ E '

(214) . l(g Q)f'; t) - (9- C?)(‘: lf)lL’ = C(M, T) : /0 ‘q(: U)”ﬁf(', U)IL’dO

where C(M, T) is a constant (depending on Mand T)
Proof:

Let g € ¥, then by the remarks on formula (2.1), (9 g)(a, t) = 0, and by (2.8):

/0 (T g){a,t)da= /0 b(t—a;Q)  (a,1,a,Q)da+ /r pola—t) Il (a, t,t;Q)da =

= /0 b{a;Q)da+ /po(a_r)da£65+’|po]L;<M
!
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Thus J (%) C K. Let now g, 4 = K, then, since:

Qi) <y, /0 qla,)da =y, |q(- ), < y. M
where

Y+ = _maxn h’ilL"

we have:

ar

|, 199600 -~ @it da <
< /0r lb(t ~ a; Q) — b(t — a; O)| da +
+ /o l bt —a; O)IX(a, 1, a; Q) — IN(a, 1, a; )] da +
+ / pofa — DT, ¢ 4 Q) ~ (a, 1, 1; 0)] da
< L(y:M)lpol1s P /0 t[IQ,-(a)—Q,-(a)H fo |Q:(0)—0:(0)|dojda
* BoHyM)pols 2 /0 e / II_Q,-(a)—Q.-(a)fdoda
+H Mo £ [ 1000, oo
S {IHDLy M)+e " THy .M)] lpol,, £ /0 I 1Q:(0)—~0i(0)|de
S Y+ [(I+T)L(y .M)+ePTH(y . M)] |p,|,. /g | l9(-,0)=4(", 9} .4c

and (2.14) follows. n
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Thus we are ready to prove the following:

Theorem 2.3. Letpye L'(0, a;), then thereis one and only one p € ¥ such that:

pola — )1I(a, t, 1, S) ifazt
.(2.15) pla, 1) = [ bt — a: $)II(a, 1, a; S) o<t

(2.16) Si(t) = /0 y{a)pla, tyda, i=1, ..., 1n

Moreover, p(a, 1) has the following properties:

@17 lim % [p(a+h,1+h)—p(@t]=—u(a)p(a) a.e. in [0, at] <R
(2.18) (-, i < e P ipol i
(2.19) lp(-, ) — B, Yl < e C™M-Dp, — Polps

where p(-, t) is the solution relative to the initial datum pyp.

Proof:
A straightforward consequence of (2.14) is that for any integér N> 0

C(M, TNTY l

2200 I - TGl < g~ dle
so that, if N is sufficiently large, & N is a contraction and, consequently, J has
a unique fixed point in ¥. Thus, the first part of the thesis is proven and, also,
(2.18) is a consequence of the choice (2.13). Finally, to prove (2.19), we call
9 ,, and J 5 the mappings defined by (2.12),relative to po and po, respectively;

then:
p('! t) = (g—pop)('r I), p(’ t) = (?}_po)ﬁ)(‘: t)

and, by (2.14):
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,p(; l) _"'ﬁ(, I)ILJ =
SUTop) 8 = (T p) 90T 5 p)(- D—=(T5,5)(- 1), <

</ Iooa~ 9-puta ~ laa + c, 7 [ o o) = pt, Olpdo

s0 that (2.19) follows from the Gronwall inequality. L

We omit here the discussion of the regularity of the solution to problem (1.2);
this depends on the regularity of p, and on how the rates depend on the vari-

3 The search for equilibria

We now consider problem (1.2) with the assumptions (1.3)-(1.7) and look for
equilibria, i.e. for Stationary solutions of the form pla, 1) = v(a). Namely, such
solutions must satisfy the system:

Va(a) + p(a, V..., Vu(a) = 0

(3.1) J v(0) = /0 Bla, V..., V.)v(a)da

| V= | v@veda

that at least has the trivia} solution vfa) = 0. Nontrivial solutions of this prob-
lem can be found as follows: the first of the equations in (3.1) yields:

G vle) = v0) e Soutaviviae om0y

where V = (Vis-.., V,); then, setting Il(a; V) = Ii(a, 0, a; V), we plug (3.2)
into the other equations:
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v(0) = v(0) /0 B(a, V,,..., V) I(o; V)do
V= v@) [ vio) Mo V)da

and get the following system on the Vi's:

(3.3) fa B(a, V,,..., V) H{a; V)do = 1

VI ) — VZ = ere —

/OVJ(CT)U(U; V)do [}’z(ﬂ)ﬂ(ﬁ; V)do
o

(G.4)
Va

| vutommo; vido

Thus we see that any set (V;,..., V,) which solves (3.3)-(3.4) determines a
solution of (3.1) via formula (3.2) where v(0) > 0 is given by '

3.5) (0) = Vi

dr

 vi(0)[I(c; V)do

As a consequence we can state the following:

Theorem 3.1. Let (1.3)-(1.7) be satisfied, then v(a) is a nontrivial station-
ary solution of problem (1.2) if and only if it has the form (3.2), where
V = (V,,..., V,) satisfies (3.3), (3.4) and v(0) is given by (3.5). L]

Equations (3.3)-(3.4) are the main tool to investigate existence of equilibria,
we can understand that they may provide a large variety of situations such that
existence of multiple equilibria occurs. In the following sections we will con-
sider some simple examples that show how this can happen, depending on the
vital parameters of the population.

Concerning condition (3.3) we note that
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(3.6) R(Vy,.., V) = /D Blo, Vi,..., V) I(o; Vydo

is the net growth rate at the constant sizes V..., V,: thus, condition (3.3)
means that at the equilibrium, the net rate must be equal to 1 (see [.5.17).

4 The Allee-logistic model with a single size

First we consider the modeling of a population with vita] rates depending on
the single variable

(4.1) S(t) = /0 Y(olp(o, )da

In this case we have the system:.
PA@ 1) + pafa,t) + u(a, S(t))p(a, 1) = 0

(42) p0,9= | B0 St)p(o, ydo

p(a, 0) = py(a)

and the search for equilibria leads to analyze only equation (3.3) for the et
reproduction rate:

(4.3) R(V) = /0 Bla, 'V)e“[;'u(qV)dada

whose behavior as a function of V depends on the mechanism of growth. Asa
matter of fact, in order to model the growth we can introduce constitutive
assumptions, directly on R( V), namely, a realistic behaviour of the net rae
versus V is described by the following assumptions:

i} R (V)>0 fo0<V<y,
(4.4) i} R'(V)< o0 fVv>v,
i) lim RV) =0

Voot
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where V, = 0 (if V, = 0, only ii) is meaningful). These are the standard
assumptions on the single population growth, including both the Allee effect
and the logistic effect that we have mentioned at the beginning of this chapter.

) )

R(V) /‘\ R(V) R(OV)
|
I
1 /r\

P IR

Vo

Figure 4.1

With respect to equation (3.3), the assumption- (4.4) leads to different-
possible conclusions depending on the values R(0) and R( V,), in fact, when Vy
> (), we have (see figure 4.1):

Exactly one nontrivial solution  if R(0) > 1. -
(4.5) Exactly two nontrivial solutions if R(0) < I and R(V,) > 1.
No nontrivial solution if R(Vy) < 1.

-If, instead, V, = 0 we are in the purely logistic case and we have:

4.6 Exactly one nontrivial solution if R(O) > 1.
-6) No nontrivial solution if R(0O) < 1.

We note that the behaviour of R(V), described in (4.4) is accomplished, for
instance, if we assume that (g, V) and p(a, V) are, respectively, increasing

and decreasing for 0 < V <V, and, conversely, respectively decreasmg and
mcreasing for V > V.

As a concrete example we consider the following form for the vital rates:

_ 5
@7 Bl S) = fola) e ) ua S) = @
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where K is a parameter and Bo(-), 1e(*) play the role of intrinsic vital rates
satisfying the usual conditions (1.2.6)-(1.2.8). Assuming (4.7) we have:

av(f— -E)
R(V) = RO e K
with
(4-8) R, = /0 Bsla) Iy(a)da
where we have set
Myfa) = ¢~Jowlado

Thus R(V) satisfies (4.4) with V, = ; and a solution V* of (3.3) must satis-
fy

*

ev* (1 - ;_) = —In(R,)

so that we have:

One nontrivial solution if Rp>1
e K
(4.9) Two nontrivial solutions if e * <R,<1
1.9
No nontrivial solution if 0<Ry<e *

The relative bifurcation graph is shown in figure 4.2 where the size V* of tle
equilibrium is plotted versus R,

4

o R

g vy Ro

Figure 4.2
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In correspondence with each equifibrium size V* we have the stationary
solution

p*(a) = V* HG(a)

| omutopas

Now we might be interested in analyzing how equilibria change as the vital
rates vary in some significant way: for instance we introduce a parameter
m > 0 and change the intrinsic fertility into:

I R At

This parameter can be interpreted as the maturation age; in fact, if we suppose
that for some n > 0

(4.11) Bola) > 0 a.e. on [0, 7;;]

m is viewed as the age at which individuals become fertile. Now we discuss
equilibria as m increases, i.¢. as fy(-) translates to the right; to this purpose we
note that the function

(4.12) Ro(m) = /m Bofa — m) Ilp(a) da

is decreasing with respect to m and Ry(a,) = 0, so that, defining m, and m; as
follows:

{ =0 R0 <1
Mo | = the (unique) solution of Re(m) = 1 if Ry(0) > 1
. ek
=0 if Rp(0)e * < 1
= the (unique) solution of Ro(m) = ¢ * if Ro(0)e *

we have one single equilibrium if 0 < m < my,, two equilibria if m, < m < m;,
no equilibria if m > m; (see figure 4.3). Of course, some of the previous claims
can be void if either my = 0 m; > 0 or my = m;,.
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Figure 4.3

Concerning single size models we mention the following further example:

(4.13) Bla, S) = Bola), ufa, S) = py(a) + p(a)s

where we suppose again that Bol-), uy(-) satisfy the usual conditions (1.2.6)-
(1.2.8) and :

(4.14)  w()e LT(O, as), wfa) =0 a.e. in [0, a;]

‘Moreover we assume:

(4.15) meas ({alBo(a) > 0} N [a,, a;]) >0

where

a, = sup {alp,(a) = 0 a.e. in [0, a])

In this case we have
(4.16) R(V) = /0 Bola) Il(a)e~ M@V 4,
where

(4.17) M(a) = /0 wio) do
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and we see that, thanks to (4.15)

(4.18) /0 By(a)M(a) da > 0

so that R(V) is decreasing and we have a purely logistic model (see (4.6)) with
existence of a unigue non trivial equilibrium if and only if the following condi-
tion is satistied '

(4.19) | R(0) = ]C Bo(a}Ty(a) da > 1 .

When this nontrivial equilibrium does exists, the stationary solution has the
form

(4.20) p*(a) = V* LG

at

/g Ya)Iy{a)e= M@V dg

The mechanism of growth occurring in this last example, which falls within the
purely logistic framework, is produced by a direct increase of mortality, prop-
ortional to the population size. This mechanism can be interpreted as the pre-
sence of cannibalism: in this case the weights y{a) and g;( a), respectively, have
the role of selecting cannibals and cannibalized individuals.

5 Two size models

As a first example we consider a population whose vital rates depend on the
-two variables

ay

(5.1) S(t) = /A pla, t)da, P(t) = /0 pla, f)dq.

The first variable S(1} selects adult individuals, the second one takes the total
population. We assume the following forms for § and s

P

52 B S P =@ el 5 S B = wlo)
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defined for 0 < § < P, where we suppose that fy(-), piof-) satisfy (1.2.6)-
(1.2.8).

The form of B(a, S, P) is similar to that considered in (4.7): here the use
of the two variables accounts for the fact that the Aliee effect is supposed to
depend on the presence of adults, while the logistic effect is considered as due
to all individuals without distinction; in fact we have:

3 B N
a_S(a,S,P)—ﬁ(a,S,P)(] _..K_)>a for P<K

%g(a, S, P) = —B(a, S, P)% <0 for $>0

With the form (5.2) equilibria (S*, P*) must satisfy the equations:

sof1- £
(5.4) 5 - P
/ e—foa#é(ﬁﬂdoda / e“[aa.uo(@dada
A_ o ’

where R, is still given by (4.8). Now (5.3)-(5.4) 1ead to

ar

e~ omeladoy,

P (1-» P_K) = ~in(R;) 2

/ ¢~ lonotaday,
A

and we can have two, one, or no solutions according to the value of the right
hand size. Precisely, we have that if R, = ] there is only one solution and, if R,
< I we can discuss existence of equilibria versus the parameter A: in fact w:
have the situation that is shown in the bifurcation graph shown in figure 5.1,
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P*.

P e e e e am

Figure 5.1

We also consider a two size version of the cannibalism model assuming

kS

K
1+C

(5.5) Bla, K, C)=Pola), wufa, K, C)=po(a)+u,(a)

where By(-), po(-) are still the intrinsic rates satisfying (1.2.6)-(1.2.8) and ;(a)
fulfills (4.14) and (4.15). Concerning the sizes

(5.6) Kt} = /0 k(a)p(a,t)dar, C(y = /0 c(a)Q(a)p(a,t)da

they respectively represent the size of cannibals and that of potential victims: '
in their definition the weights k(a), c(a}, Qfa) respectively represent canniba-
listic activity, attack rate and handling time as functions of age. We also note

that in the definition of ufa, K, C} the term 1 gives a limit to possible
predation. 1+C
With these assumptions an equilibrium (K*, C*) must satisfy

a —Mia) 2
(5.7) R(K*, C*) = /0 Baywe  1*Cda=1
and
5.8 K* _ C

ar ay K*

M@ —ME e
. k{a)Ily{a)e da , c(a)Ofa)lly(a)e da

where M(a) is defined as in (4.16).
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Now we consider the following function
P(A) = /o Bola)IIy(a)e M@ da, A e R

which, thanks to (4.16), is strictly decreasing and ¢f—) = 4o, p(+o) = 0.
Thus there exists one and only one solution A* of the equation

D) =1

As a consequence, once that A* is found, any equilibrium (K*, C*) is deter-
mined by the following equations

5.9 =)
(5.9) 3

* *
(5.10) K _ C

that is, by the equation

c* [ k@i da

1+C

i

(5.11) .
/oc(a)Q(a_)Ho(a)e-“M(“Wda

Thus we see that a unique nontrivial equilibrium exists if and only if the right
hand side of (5.11) is positive and less than 1.

6 Comments and references .

|
The first attention to non-linear models was paid by Gurtin and McCamy in
[46], where they considered a general model with the rates depending on tie
total population. Since then many different versions of the model have bem
considered, for general purposes and for specific modeling as well. The ve-
sion that we have presented in section 1 was essentially the same as the Gurtn
I\f{:Camy one, extended to consider many size dependence; the proof of exig-
Al
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ence and uniqueness that we have given in section 2 tries to be general enough
to be possibly adopted in other versions of the model.

Specific models have been the subject of several papers, mostly with the
purpose of analyzing the behavior of the solutions. We will go through such
kind of problems in the following chapters; presently we have been concerned
with the preliminary problem of the search for equilibria. The general proce-
dure that we have presented for this latter is also essentially contained in [46].
The examples that we have discussed are of basic importance for the modeling
of a single population. In particular the model for cannibalism has attracted
the interest of several authors: the version that we have considered is con-
tained in [31] and we refer to this paper for an extended discussion of the
modeling aspects {(see also {38]).

" A few monographies have appeared on non linear structured models. An
abstract formulation of the nonlinear case has been developed in [101], with
the methods of monotonic operators; an extended treatment of both the mod-
eling aspects and the mathematical methods has been provided in [79]. In this
latter text modeling goes beyond the particular case of age structure, consider-
ing a more general parameter (size structured models) which evolves with time
is some assigned way possibly depending on all the variables of the population:
a typical case is the modeling of cell growth. '






v
Stability of equilibria

In this chapter we will treat the stability of the equilibria whose existence was
previously discussed. The main tool for this analysis is the characteristic equa-
tion that we will derive in Section 2 within the framework of the theory of
Volterra integral equations, using the result of this theory as they are pre-
sented in Appendix II.

However we must remark that by this approach we are able to state oniy a
sufficient condition for stability while the complete result provides also a con-
dition for instability. The problem is that a proof of the complete result needs
a functional analytic setting that cannot be presented here, thus we must limit
ourselves to state the condition and use it through the models that we discuss
as examples. Some comments on this points are provided in Section 7.

1 Definitions and assumptions

Here we investigate the behavior of the solutions to problem (II1.1.2) when
initial data are close to equilibria. In particular, we will analyze stability,
according to the following definition:

Definition 1.1. The stationary solution p*(-) is sa:d to be stable if Ve > 0 there
exists & > O such that, if p,(-) satisfies:

o — pHlp <o

then the corresponding solution p(-, t) satisfies:

\%
>

p, 1) ~p*()<e Vi
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1t is said asymprotically stable if it is stable and & can be chosen such that

Jim Ap( g~ p*() = 0.
Finally, it is said 10 be unstable if it is not stable. N

Of course, from the point of view of population theory, the behavior of solu-
tions close to the trivial equilibrium is of some special interest because it is
related to the problem of sustained growth or extinction.

In the following sections we will be concerned with the analysis of the
stability of equilibria, via a linearization procedure of the integral equatjon
(I11.2.3). In order to perform this procedure we first need to suppose that, in
addition to the main assumptions (111.1.3)-(I11.1.7) introduced in the previous
chapter, the basic parameters 3 and u satisfy the following technical condi-
tions:

(1.1) Ba,x;,...,x,)=B(a,x5,.. x°)+ :”:} Dif(a,x5,...,x%) (x;~x%+

!

+ Rgfa,x’,x)

(12) Ju(aij-"an)zlu’(a,x?:'“x(r)i)-f. él‘] Di#(arxg;---;x?z)(xi—-x?)—*—-

I

+ R, (a,x%x)
where R and R, satisfy: -
(1.3) |Rp(a,x°,x)| + IR, (a,x°,x)] < M(x — x°)

with M(-) : R" — R such that:

0.

(1.4) lim M) _

< T

We will assume these conditions throughout the. chapter.

2 The basic characteristic equation

The main tool that we use in the stability analysis, is the characteristic equa-
tion that arises in the linearization procedure of a system of integral equations
onginated by our problem (I11.1.2). Actually, we consider this systern in order
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to use the theory sketched in Appendix II and finally get results concerning
(I11.1.2).

First we transform problem (I11.1.2) considering the following set of
(n + 1) variables:

bty =p(0, 1), St} i=1,...,n
Namely, we use formulas (111.2.15)-(IT1.2.16); in fact we start with:

_ | pofe — YI(a, t, 1; §) ifa=t
en  pa = e s ro

and plug it into:

b(t) = /0 Bla, Si(1),..., Sa(1))p(a, 1)da

s0) = | viapta, yda

getting to the system:

b(t) = fo K(t, t — o; S)b(o)do + F(t; S)

(2.2) St = fo H{t, t — o; S)b(o)do + G,—(t,I S)

where K(t; o; S), F(t; S) are defined as in (IIL.2.4), (II1.2.5) and:

Hit, o; S) = v:{0) I{o, 1, o; )

Gi(t; S) /t yd{a)Il(a, t, &; S) po(a — t)da =

+ow '
= /o yia + t) Ma + 1, 1, t; S) polajda .

Here all the functions are extended as zero outside of [0, a,/.
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am_:a,-j=0 VI:?EO

g = v’ /g Dif(o; V..., V Il(o; V¥)do Yj=1,..,n

*

Blo, V..., Vojll(o; V*)  for oe [0, a;]
0

2.7 Aoaf0) = for o> a;

(o) I(c; V*) for o e [0, ar]

Vi=1,..n
for o > ay

Ajlo) = —v* /0 Dju(s, V..., V) Ap(ots)ds Y j+# 0
and each of the non linear functional terms %

(Us()rees Un()s qo-)) = P Uo()soos Un()s Qo))

maps Cyp ([0, +]; R} x L! ({0, a]; R) into C, ([0, +=]; R), satisfying the
conditions (3.2)-(3.4) stated in the Appendix II. Thus the system (2.6) is under
the form of equation (3.1) of the Appendix II and we are led to study the
characteristic equation:

(2.8) det ((Sii — a; = Ay(A))) = 0

As a matter of fact, this equation is the tool for the study of the stability of the
constant solution (v*, V7,..., V}) to problem (2.3), but it also allows to study.
the stability of the corresponding solution to the original problem: this point
will be discussed in the next section.

3 Stability and instability

The characteristic equation (2.8), introduced in the previous section, is the
main tool to investigate stability of equilibria of problem (11I.1.2). First we
apply the theory of Appendix II and get the following result:

Theorem 3.1. Let p*(a) = v*II{a; V*) be a stationary solution of (I11.1.2).
Then, if the corresponding characteristic equation (2.8) has only roots with
negative real part, p*(-) is asymptotically stable.
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Now it is easy to show that (2.2) has the following limiting syétem:

vt} = /0 K(t, o: V)u(t — g)do

2.3 Vi = | B, 6 Vv - oo

and that the search for a nontrivial constant solution (v*, V),..., V" ) Of this
system, leads to the equations

1= /0 Blo, V..., V)II(a; V¥)do
(2-4) Vi=v' | violo vido

where Il{a; V) is the same as in section 1I1.3. As it might be expected,
(2.4) corresponds to the systems (II1.3.3)-(II1.3.4): note that here u*
plays the same role as v(0); in fact, by (2.1), from any nontrivial solution
(v* V..., Vi) of (2.4) we get the stationary solution:

(2.5) p*(a) = v*Ii(a; V*)

while the trivial solution p* = 0 corresponds to v * = 0,Vi=0. :
Then we linearize (2.2) at constant solutions of (2.3) (we include also the
trivial solution v* = g, V; = ¢); actually, we set:
Uo(th = B(t) — v*
Uy =8) -V, i=1,..n
dofa) = py(a) — r(a)

and we get the system:

Uft) = }én‘o [a,-j Ui(t) + /0 Aylt — G)Uj(o)do:' +
(2.6)
+ @f[UG(');---; Un()r QO()] (t), I = 01"‘: n

where:
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Proof:

Let (v*, V},..., V) be the constant solution of (2.3) corresponding to p*(-),
and consider the linearization (2.6). Then, by Theorem 3.1 of Appendix I1, for
any & >  there exists n > ¢ such that

(3.1) Ipo — P= g0l < Ui
implies
(3.2) Ul <e Viz0, tim U =9

Now, if (3.1) is satisfied, by (2.1) we have
(3.3) sup PC)~D* () <lpo—p*|+2a, 01 tatHM)] 2 sup [Uy1)
=f0,a, =0 =0

and, for ¢t > g,

I3

SOt Ospran i 8 [ o) ao

and
M p() =p*) in L0, ay)

so that, since ¢is arbitrary and 5 can be chosen arbitrarily small, the thesis is
proved. : B

The result stated in the previous theorem is actually incomplete because the
location of the roots of the characteristic equation provides a condition for
instability. In fact, in addition to Theorem 3.1 we have

Theorem 3.2, e p*(a) = v*Ifa; V) be q stationary solution of (111.1.2).
Then, if the corresponding characterisric equation (2.8} has a root with positive
real part, p*(-} is unstable =
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However, the proof of this result is not directly feasible by the theory of integ-
ral equations that we have sketched in Appendix 11, but we would rather need
to work within the functional analytic framework of infinite dimensional dyna-
mical systems (see [29]). Thus we must omit the proof of this result though it is

of great imporstance in the analysis of the models and will be used in the fol- -

lowing sections.
We can soon have a first general result concerning the trivial equilibrium:

Proposition 3.3. Let the net rate (111.3.6) satisfy R(0,..., 0) < 1. Then the trivial
equilibrium p*(a) = 0 is asymptotically stable. If instead R(0,...; 0) > 1, then
p*(a) = 0 is unstable.

Proof:

We first note that for the trivial solution it is v* = 0 so that equation (2.8)
reduces to

o

(35) : _Aﬁoo(j_) = /0 e—ltrﬁ(o., 0’_“’ 0) e""_t{r.i ual....0Mda g — |

Then, since Agy(0) = 0, by the argument used in Theorem 1.5.1 we have that,
if Agp(0) < 1, all the roots of this equation have negative real part; if Ago(0) >
I there is at least one real positive root. Since Anf0) = R(0,..., 0), the thesis
follows. ‘ -

The result of this proposition concerning the trivial equilibrium is quite
simple and we see that in this case the net rate is the key parameter for stabil-
ity. Thus we are left with the analysis of how the net rate changes as a function
of the significant constants of the model. When considering non trivial equilib-

ria the characteristic equation may be more complicated than (3.5) and we
need to perform some study on the location of its roots; moreover we are
interested in looking at how this location changes when some significant para-
meters of the model vary. The next section is devoted to a preliminary study of
some basic results that can be used in the discussion of the specific models.

4 Some results about the characteristic equation

In view of the applications to the study of stability, we consider the following
equation in the complex plane

(4.1) KA+ F(, 1) =1

T
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where Ky(*) - [0, + =] — R is such that
(4.2) Kolth 20, Ko(t) =0 t>T, /0 Koft) dt = 1

and F(A, t) : C x R - C satisfies

4.3) F(A, ©) is continuously differentiable on C x R
_ JF :
(4.4) F(A,0) =0 VieC, = (0, 0) >0
T
(4.5) There exist M > 0, 8 < 0 such that

[F(4, o)l < M|t for RA =B and for T sufficiently small .

We are interested in the location of the roots of (4.1) with respect to the
imaginary axis. We note that in Theorem I1.5.1 we have essentially treated the
particular case 7 = 0; now we have

Proposition 4.1. There exists & such that, if T < [0, 8], equation (4.1 ) has a real |
positive root; if T e [~ 8, 0], all the roots of (4.1) have negative real part.

Proef:

We first recall that the equation
(4.6) Ky()) =1

has the real root 4, = 0 which is the unique one in the half plane R A = « for |
some a e (B, (). Besides we set:

m=inf |I — Ky(a + iy)| > 0

y<R

and take L > (0 such that

1

5 < U — KoM for Al > L, Ri>a
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‘Then, If 71s sufficiently small and such that

( m A _]_ )
< ’
T e s
M
we have
[F(2, Ol < |1 — Kyf2)|
on the contour of any domain X, such as that shown in figure 3.1, with o> L.

Consequently, by the Rouché theorem, equation (4.1} has one and only one
root in the half plane R A = a.

Figure 4.1

In order to locate this root, let A(7), be the differentiable path in the
complex plane, originating from A(0) = 0, such that A(7) is a root of (4.1}.
Then from (4.1) :

oF

— (0,0

= (0, 0)
— >0
/ tKy(t)dt

?

and we see that the path starting from A(0) = 0 goes to the right of the imagin-
ary axis as T increases from 0, while 1t goes to the left if T decreases. n

dA
dr

T={}
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The previous result is only local and we are interested in the crossihg of the
roots through the immaginary axis, thus we define:

(4.7) t_ = inf {6| for Te [8, 0) any root of (4.1} has negative real part}
(4.8) 1. =sup {8l forte (0, §] at least one root of (4.1) has positive real
part}

As a particular case of (4.1) we consider the equation:

49 RN+ tRy(d) =1
where K;(-} satisfies
(4.10) K=0 K ()=0 t>T /0 K1) dt = 1

With respect to positive values of t we have

Propesition 4.2. If © > 0, equation (4.9) has a real positive root, consequently
T, = 4o,

Pfoof:
First we set
L(t) = Ko(t) + TK,(1)
and write (4.9) as
L) =1
Now, since by the assumptions we have L(t)z0and L(0) =] + 1, proceeding
as in the proof of Theorem 1.5.1 we see that this equation has a unique real

root which is positive. =

Concerning 7_ the following result states a sufficient condition in order that
the roots of (4.9) have negative real part for any T < 0:
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Proposition 4.3. Let K;{t) be such that:

(4.11) /0 K;(o) cos{wa) do = 0 VwekR
then 1. = — @,

Proof:

Suppose, by contraddiction, that T_ > —oo; then, in correspondence with 7 _
equation (4.9) must have a purely immaginary root A _ = i @ because, other-
wise, proceeding as in the proof of Proposition 4.1, we could prove that the
roots of (4.9) have negative real part also for tin some interval {6, T_]. Then,
“from (4.9):

1= /0 K,(0) cos{wo) do + T _ /a K, (o) cos(wo) do

and this is impoésibie because, if w = 0, it implies
I=1+71.<1

if, instead, w > 0, by (4.11)
1= /0 Ky(o) cos(wo) do < 1 =
Condition (4.11) is verified in some particular cases such as the following one:

Proposition 4.4. Let K,(-) « C?[0, +] be such that:
(4.12) Ki(t) <0, Ki(t)=0
then condition (4.11) is satisfied.

Proof:

Note that K,(1) = K’(t) = 0 for t = T; then integrating by parts we have:
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/ K;(0) cos{wa) do= [i K;(0) sin(wo) J .
7] [43] o=0

- j._/ K'i(o) sin(wo)do=
93] 0

oc=7

= {_w]z_ K'i(0) cos(wa) J - afi /o Ki(o) cos(wo)do=

o=

= a)zi[ - K% (0) — /omK'}(a) Cés(wa)do J=

= .a_fz_ fa Ki(a) [1 ~ cos(wo)]do = 0 | | "

However, condition (4.11) is rather restrictive and in general we have
t— > —oo: the following example is rather special, but somewhat realistic in
the applications:

(4.13) Ko(t)=K,(t)= ;f sin (-J;_r) : forte [0, T]

Ko(t)=K;(1)=0 forte [T, +o]

To discuss this case we first note that, for the unique reason that K, and K,
coincide, we have 7_ < —2; in fact (4.9) becomes

(4.14) (1 + 1) Ko(A) =1

and, f RA = 0 and te (-2, 0), we have
(1 + 1) By(A)] < 1

so that A cannot be a root of (4.9).

Next we look for those values of 7 that allow for imaginary roots of equa-
tion (4.9). This equation, with the special choice of (4.13), becomes

I;H: 1+ e 27T -7
2
2
1+ (’LT)
b
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Actually, setting A = iw, we get the equivalent system

sin (wT) =0
I+1 I+cos(wT) _ J

2 2
71— (“’_T)
i

which has solutions if and only if t= —4k° (k=1,2, ...) with the correspond-
ing roots A, = =+ 2_? i

Thus we have 7. = —4; moreover we can also see that at any 7= —4k*
two toots actually cross the imaginary axis to the right when 1 decreases: in
fact it is easy to check that

4 Rex <0
dr = — k2

so that, for T < -4, there are at least two roots with positive real part.

5 Back to the Allee-logistic model

We now go back to the Allee-logistic model that we have considered in
(111.4.1)-(111.4.2) and apply the results stated in the previous section to analy-
ze the stability of equilibria. We will consider some specific cases and will
discuss how stability changes depending on some significant parameters. Asa
main assumption we will consider S-independent mortality:

(5.1) ula, S) = wola) .

In this case, in correspondence with a non trivial equilibrium V™, the
linearization procedure gives (see (2.7))
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V*R'(V*)

) v)T(s)ds

dog = Agp = a3; = 0, ay =

_ { Blo, V*}II(0) for oe [0, ay)
Aoof0) = { 0 for o> ay
(5.2)

Aplo) = { (ol I(a} for o e [0, a]
* 0 foro>a,

Agi(o) = Aol =0
where we have set

Hg(f — e_/olﬁioqudc"

Thus the characteristic equation has the form (4.9) with:

(5.3) Ko()) = Agolt),  Kyft) = - Ase(t)

(5.4) V* RV /0 ¥(s) Ip(s)ds
. = s

Now, under the assumption (HI.4.4) we have that, if there exists a unique
nontrivial equilibrium V *, it follows that

R(0)>1, R(V*) <0
and, if there are two equilibria V; < V3, it is
R(O) <1, R/(V})>0 R(Vy)<0.
Thus, using also Proposition 3.3, we get the following preliminary result:

Prﬁpositibn 5.1. Consider the Allee-logistic model (111.4.1)-(111.4.2) and et
(I11.4.4) and (5.1) be satisfied; then:

(5.5) If there is no nontrivial equilibrium, the trivial one is stable;
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(5.6} if there is only one nontrivial equilibrium, the trivial one is unstable;
(5.7) if there are two nontrivial equilibria, one of them is unstable and the
trivial one is stable u

In this Proposition the nature of the equilibrium V', for which R'(V3) <0is
still undecided, but the result can be implemented if, in addition to (5.1), we
assume a more specific form for f(a, S). In this direction, we consider the
purely logistic model that we tephrase with the following special assumptions:

(5.8) Bla, S) = Rofo(@)P(S), ula, S) = pola)

so that we have the system
( pda, 1) + pola, 1) + pola)pla, 1) =0

p(0, 1) = Rop(5(1)) /o Bo(0)p(o, t)do
(5.9) pla, 0) = po(a)

L s = [ ap(o, ndo

where we assume that ¢ : [0, + ) — (0, +) satisfies:

(510)  ¢0) =1, ¢ <0, lm (x)=0

and
(5.11) /0 Bola)I1y(a) da = 1

With these assumptions, the net rate is given by
(512)  R(V) = Reg(V)

and it is decreasing so that, concerning existence of equilibria, we have (see
(HL.4.6)):

If Ry < 1 there exists no non-trivial equilibrium

(5.13) {

If Ry > 1 there exists one and only one non-trivial equilibrium

|
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Proposition 5.2. Consider the logistic model (5.8)-(5.11) and moreover assume
that

(5.17) the function y(a)ITy(a) is non increasing and convex.
Then the niontrivial equilibrium is stable for all Ry > 1. ]

The proof of this result is a direct consequence of Proposition 4.4 which im-
plies T~ = —«. We note that (5.17) is satisfied if:

(5.18) va) =1, wla) < pi(a)

Then we consider special kernels based on the example (4.13), for which
7. = —4, and special cases of ¢p. We have :

Proposition 5.3. Consider the logistic model (5.8)-(5.11) and, moreover,
assurrie that

(5.19) . @(x) = e, Bola) = y(a), Pola)IIp(a) = ‘_?_,gw sin ( E ) .

t ay
Then R, = €*. =
In.fact, for p(x) = e * we have 1(R;) = —In(Ry). Moreover

Proposition 5.4. Consider the logistic model (5.8)-(5.11) and moréover assume

that
I | .
520) ¢ = L B@=via), Fo@T@ = = sin ™).
I“’f"x 2(17!- (/33
Thern the nontrivial equilibrium is stable for all Ry > 1.
“This latter result follows because for ¢fx) = ]T-i—i we  have
X
o(Ry) = .}g_ -1
0
" We note that assumption fy(a} = vy(a) is equivalent to assuming

S(1) = B(t},1.e. to assuming that the vital parameters depend on the birth rate.
We also consider the cannibalism model (I1X.4.13)-(111.4.15) defined at
the end of Section I11.4, setting
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First we note that by Proposition 3.3 we have
(5.14) The trivial equilibrium is stable if Rg < 1, unstable if R, > 1
Then we consider the case R, > I and perform the linearization at the nontri-

vial equilibrium V * = ¢! (i ) In this case, in (5.2) a,, and Agp take the
form: Ry

(4] ¢ (o (L))

/o Y(sHIp(s)ds

dgy =

— | Polo) IIy(0) for o e [0, ay]
Aoof©) = { 00 ’ for o> ay

and, for the characteristic equation in the form (4.9), we have

G15)  Kolt) = Aw(t), K) = —__Aul¥)
| | [ vomas
(5-16) T = 7(Ry) = Roﬁb_!(é) o (d’_"(}%))

We see that both K, and X stay unchanged as R, varies. Then in the charac-
teristic equation (4.9) 1 is the only variable that depends on R, and we can
trace the stability of the nontrivial equilibrium, as R, ranges from I to +w, by
looking at the range of 7 as a function of R,.

In particular we note that 7 is negative and (1) = 0. Thus if R, is close to
1 the nontrivial equilibrium is stable, and the problem is to identify the maxim-
al interval {1, R ] prior to the crossing of some root through the imaginary
axis, i.c. to find R, such that t_ = (R ).

Of course R, will depend both on the function ¢ and on the nature of the
kernels K, and K,. The following results are based on some special assump-
tions which allow a full knowledge of the situation. ‘
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(5.21) pla. S) = Bola), ula, S) = polaj + w(a)ke(S)
where we have introduced the parameter & and the function @(-) which we

suppose increasing.
Now we define the function

Ix) = /0 Bo(a) Ip(a)e™ " da

which is decreasing and

I{0) = R, = /0 Bola)Ily(a)da, I(+w) = 0

so that, if R, > 1, there is one and only one x* such that I'(x*) = 1. Then we
note that

R(V) = I'tkg(V))

.so that the unique non trivial equilibrium size V * is given by

V*m¢—1(’;c_*).

Concerning the characteristic equation at this equilibrium size we have

ag =10 for all i and j

Ao(a) = { Bo(0)ITo(0)e™ ¥ for g e [0, ay]
% 0 foro> a;

Anfo) = | VO for o [0, a
1 0 for o> a;
Agi(o) = TAgJ(U); Ao} = TA?J(O)
where kgb“f (x*) " ( q’f*’ (x*) )
k- k-
T =

/) Bofomiae > aq




83

and

Apo) = /0 .‘«LJ(S)AOO(S‘*’U)dSa A?}(C’): /0 HJ(S)A10(5+G)dS

Thus the characteristic equation takes the form (see (4.1))
Ro(h) + TF(A) =1
with
Kooh=uoh Fl)= | A+ Aso DB+ 850

We see that, since x* depends only on Bo, por tr, both K,(t) and F(3) do not
depend on the parameter k nor on the function ¢(-); then we can discuss
stability versus these latters, via the parameter 7 given in (5.22), using the
results of Section 4 (note that the assumptions (4.2)-(4.5) are satisfied).

¢ Bifurcations

In the previous section we have seen examples for which the stationary state
Jooses its stability when, at certain values of some varying parameter, a couple
of roots of the characteristic equation Crosses the imaginary axis to the right.
When this occurs a periodic solution 1 generated and we have Hopf bifurca-
tion for our model. :

A rigorous treatment of this matter would again involve concepis and
methods that we cannot use here (see 131] for a reference) so that we just

mention the possibility of bifurcations and present a simulated example ¢
show evidence of the phenomenon.
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1.4
1.2
Vo1 .
0.8 ’
0.8 T l ¥
1 1.5 :
Re
Figure 6.1

In Figures 6.1 and 6.2 we show the simulations for the logistic model (5.9)
with the following choices:

1
—

(6.1) Hofa)=

—, Bol@)TTy(a)= é— Sin a, $(x)=e™" y(a)=PFo(a)

where a; = 7z and ¢ is a fixed parameter.

0 10 ; 20 30
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Precisely, in Figure 6.1 we can see the bifurcation graph where the size of

the stationary state and the amplitude of the bifurcating solution are reported
4

as R, varies (the bifurcation occurs at Ry = ¢ © ). In Figure 6.2 the behavior of
a solution js shown at a value of R, such that a stable periodic solution exists:
we see that the solution is attracted by this periodic solution. Note that the
period is approximately equal to a; = 7.

7 Comments and references

One of the crucial points in modeling a population is of course the local stabil-
ity of equilibria: in the previous sections we have seen that age structure pro-
duces various phenomena in the behavior of a single population, including
existence of periodic solutions that bifurcate from an equilibrium becoming
unstable.

Thus age-structure is responsible for behaviors that the models for a sing-
le homogeneous population are not able to produce. This fact was soon
pointed out by Gurtin and MacCamy in their paper [48}], by the use of special
cases that can be reduced to a system of ordinary differential equations. The
analysis performed in Section 5 is then representative of what can happen with
age structure.

Stability of equilibria has been considered in many papers ([46]-{49], [52],
{53], [82]-[84], [90]); the example (4.13) comes from [83] and the cannibalism
model is inspired in [31] (see also [38]) where the characteristic equation is
studied for a simplified version of the model described in Section III.5.

In Section 6 we have considered bifurcation of periodic solutions: in this
matter we have to give up again and refer to the theory of dynamical systems.
The numerical simulations presented in Figures 6.1 and 6.2 show rather well

what happens; these have been performed by a discretization scheme prop-
osed m [35], [81].
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Global behavior

This chayter is focused on the study of the global behavior of the nonlinear
model dicussed in the previous chapters. Generally speaking, the problem of
deterrninng the global behavior of a system is not systematically settled but,
usuall y, my approach takes advantage of some special property presented by
the sy stem and rests upon metodologies that provide sufficient conditions for
the analsis of the behavior. .

Concerning our model, the most usual technology is to take advantage of
some spicific feature that allows a reduction to those classes of equations for
which kiown methods are available. In this respect, the most natural way to
approach the problem is to Jook at the system of Volterra equations that ori-
ginate fom the model and use methods drawn for the theory of these equa-
tions , brt more satisfactory results can be drawn for those particular cases that
allow reduction to O.D.E.

1 A general approach to a special class of models

Here we consider the single size model of section I11.4 and IV.5, with the
special assumption of size-independent mortality:

(1.1 u(a, S} = pofa)

Namely, we are dealing with the particular casc

( pJa, 1) + pala, 1) + pela)pla, ) =0

p(0,1) = /D B(o, S{1))p(o, 1)do
(12) ﬁ p(a, 0) = Po(a)

L S{t) = /0 y(o)p(o, t)do
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and with the net reproduction rate
(13) - Rv) = / Bla, V)e”/" wolo)dogy
4

We have already discussed local stability of equilibria via the equivalent sys-
tem (IV.2.2) that in the present case becomes:

b(t) = /0 K(a, S(t)b(t — ajda + F(1, S(1))

(1.4) S(t) = /0 H(a)b(t — a)da + G(1)

where we have set:

K(a,x)=B(a,x)ITy(a), F(t,x) = /; K(a:x)%z%da
0

H{a)=y(a)Hy(a), G(t) = f! H(a)—gp(?—a}%da
o

and
My(a) = e—/oayo(a)a‘o

Now we consider the problem of finding conditions in order that the soi-
ution be attracted by a given equilibrium. To this purpose, for a fixed
equilibrium size V* = 0 we consider the following function defined for
(a, x) « [0, a,] x [0, +oo):

K(a, x) + H(a) (Rﬁ‘)‘;f

) vt forx#V*
x

(1.5) Ly (a,x}) =
K(a,V*)+H(a)R'(V *)y* forx=V*

where we recall that V* = ¢ * /0 H{a)da. We also recall that the correspond-

mg equilibrium solution is given by p*(a) = v*Il,(a) and note that:
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b(t) — v* = /0 Ly (a,S())(b(t—a) — v*)da +

(16) | = ®

pola—t)—p*(a—1)
+ /, L (a,5(1)) ( g Toia=1) )da
Sit) - V* = fo H{a}{b(t—a) — v*)da +

(1.7) - -

pola—1)—p *(a—1)
| + /; H{a) ( Toa=0) )da
Then we define the continuous function
(1.8) Ly = f Ly (a, x)| da x e [0, +]

and give the following preliminary result:

Proposition 1.1. Let b(1) and S(1) be the solution of (1.4) and suppose that:

(1.9) A =sup Ly (S(t) <1

=T

for some T = 0. Then

(1.10) lim b(y) = v*, lim S()=V"

Proof:
Let:
In = [nab (H +-1)af]> Mn = m}gzx lb(f - U*‘
IV .

Then, by (1.6), forte I,,; and n > 1:

ay
|b(t) — v < A (M. V M)

that 1s
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My <A (M VM)
which, since A < 7, yieids
My, <M,
From this, by induction we get:
M, < A"V M,

where n > _.];; thus
ay
lim M, =0

H—>+ o

and the thesis follows. . L]
Concerning Problem (1.2) we then have

Corollary 1.2, Ler p*(a) = v* ITy(a) be an equilibrium solution to (1.2). Then,
if S(1) satisfies (1 .9), we have :

lim Ip(t,1) ~ p*(-)|- = 0 e

N ol

The previous result can be used to estimate the initial datum Po in order that
the solution be attracted by a stationary state, we have:

Proposition 1.3. Let r > 0 be such that
(1.11) Ly-(x) <1 Jorxe (V¥ —r, V* 4 p)

then if 0 < 8 < r and

(L12)  |pofa) - pr()] < 8 THofa)
. H{a)da
we have

(1.13) lim ip(+8) ~ p*()|p- =

I—r o0
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Proof:

First we prove that, if & e (6, r), then we have:
(1.14) IS(1) —V*| =6 Vi=zo0

In fact, since

1S(0)—V *| = ’ /:H(a) (PG(“_;;U_(ZZ‘)‘_” )da \ <6=<8,

if (1.14) is not true there exists #; > ¢ such that
S(t)=V* = 8, [S()-V*|< 8 forts[0, 1)

Now, if 0 < T < t,, from (1.6) we have V t e [0, T]

6
—p* . —y*
b-vel<Lyiso) | max b@—vi)v| 2
H(a)da
and, consequently: v
" ok
(1.15) max, ibla)—v*i < p (a’e’}éf% |b(a)—v [)V —
H(a)da
where. ’
{1.16) 0= max Ly (x) <1

xefV =8,V +5]
Now (1.15) and (1.16) imply that

117 |p-vs 0 Ve[0T

oo

Hf{a)da
0

and, since T is arbitrary, this estimate is true for all 1 e [0, t,]. In conclusion,
plugging (1.17) into (1.7) we get:

5=1S(y) —V*=6<b
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which is impossible.
Once (1.14) is proved the thesis follows from proposition 1.1 because (see

(1.16)):

A= sup Ly (S(t) < o< 1. ' =

1=0
The results of this section are rather general, but can be easily used to investi-

gate special cases of the model. In the next section we will consider one of
these cases.

2 The purely logistic model

We now consider again the purely logistic model of section IV.5. Namely, we
examine the global behavior of problem IV.5.9 with the assumption (IV.5.10)-
(IV.5.11).

First we must take care of the following condition on the initial datum Po
(see 1.5.14)
(2.1) Forallt =20 Byla)psla+t) =0 ae. forae [0, a,]
in fact, if this is satisﬁed, in (1.4) we have:
F(t, 5t}) =0 forallt=0
and, consequently:

b(t) = 0 forallt = 0.

An initial datum satisfying (2.1) is said to be a trivial initial datum. In fact we
have: '

Proposition 2.1. Ler (IV.5.10)-(IV.5.11 ) be satisfied and suppose that p, is a
trivial initial datum, then the corresponding solution satisfies:

(2.2) p(t,a) =0  fort>a, u

Further we have:
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Theorem 2.2. Let (IV.5.10)-(IV.5.11) be satisfied and suppose Ry < 1, then the
irivial equilibrium is globally attractive, ie.

(2.3) Jim Ap(t)l- =0 Vpoe L0, ay)
Proof:
Since we have
Lo(x) = Rop(x) <1 V=0
then condition (1.9) is satisfied and the thesis follows from Corollary 1.2. ®

In order to treat the case Rp > 1, when there exists one and only one nontrivial
equilibrium, we have 10 make some more assumptions, namely:

(2.4) Bypla) = 0 a.e. in [a;, a;]

(2.5) goﬁg(a) = v(@) a.e. in [0, a;]
. Y 0)Ily(0)do

(2.6) The function x — x¢(x) is non-decreasing

The last two assumptions have the following direct consequence:

Lemma 2.3. Let (IV.5.10), (IV.5.11), (2.5)-(2.6) be satisfied. Suppose Ry > 1,
and let V* be the non-trivial equilibrium size. Then

(2.7) Ly (x)<1 forx>0
Proof:
From (2.5) it necessarily follows:

Rod(x)~Rop(V*) _
x-V=

Ly-(a,x) = Rofo(a) o(a) p(x) + v " v(a) TTo(@)

=Rfo(a)I1y(a) (¢(x)+V* M) _
. v
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=RobfTy(e ( x¢(x):/;?(v*)) =0

and consequently, since ¢(-) is decreasing, for x > 0 we have:
LV'(X) = /0 LV(QJX) da =

— — L4 Ed
=R(x) + V* R(x)-1 .. YR(x)-V R(V?*) <
x—V* x—-V*

1 |

Moreover we have

Lemma 2.4. [.er (IV.5.10), (IV.5.1]), (2.4)-(2.6) be satisfied and suppose
Ry > 1 Ifp,is non-trivial, then

n(2.8) lim inf S(t) > 0

=+ o

Proof:
We consider the system (1.4) and prove that:

(2.9) liminf b(t) >0

—>-+ o0

from which (2.8) follows via (Iv.2.1). ,
Since p, is non-trivial F(t, S(1) is not identically vanishing and so is b(J.
Thus let ¢ < a < B be such that

b(t) >0 forte la, B

thenforse fa + a;, B + ay/, by (2.4) we have

b(t) = Ryp(S(1)) /0 Bo(t—a) ITy(t~a)b(a)da =

AR
= Rop(S) min. (@) | folt-apITyt—ajda =

= Ro9(SO) min b@) [ pitha T ada > 0
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in fact (a5, ;) N OV (t — p), t — o) # @ and $(S(1)) > 0.

Iteraﬁng this argument we prove that:
b(t) >0 fortefa+ na,f+ na,/
for any positive integer n. Finally, since for n sufficiently large we have that
a+ (n+ 1a; < p + na,
then, for some 15

U fa+ na;, B+ nay] D [ty +®)

and we see that b(1) is eventually positive.
Let now"

In = [nah ("’ + I)af‘], m, = ’2{” b(t)
and take ngp > Yo 4 7. To prove (2.9) we will show that:
az
210) myzm=my AL forn>n
. z 0
For this purpose, we note that, by (2.5):
S(t) = y{, /0 v()ITy(0)do fo Bo(a)Iyfa)b(t—a) da ¥ t> a;

so that

by=Rot (N |, v@ifoko [ Bamabi-a) da)

/o Bo(a)IIy(a)b(t—a) da.

Further, by (2.6), fort e [, +;:
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b0=Rg (R || (@(@dom, Am,,.,)) (m, A, )
thus

Mp,+; 2 Rog (RQ /0 }’(G)HO(G)dU(mna/\mng+1)) (mng/\mngw)
. v* v*
Now, either M, v1 = o4 =M oOr My g < . In this latter case
*
(M, A m, ) < % and
Foth (Re | v@ofordotm, A ) > Rotv) = 1
so that

mn0+]. > (mna A mn,,+])

which implies
Mpg+1 = My = M

Thus we have proved (2.10) for n = n, + 1 and iterating the argument we
prove if for all n > n,. »

In conclusion by Lemma 2.3 and Lemma 2.4 condition (1.9) is satisfied and we
have:

Theorem 2.5, Let (1V.5.10), (IV.5.11), (2.4)-(2.6) be satisfied. Suppose
Ry > 1 and let p*(-) be the non trivial equilibrium. If p, is non-trivial, then

Q1) m o) = pr)le = 0 .

We note that (2.5)-(2.6) are special sufficient conditions that could be
weakened in particular cases. For instance, with the special choice

1
2.12 ¢ = __._
( ) ) I+x
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condition (2.5) can be replaced by

(2.13) Ryfyfa) = v*y(a) a.e in [0, a;]

Actually, Lemma 2.3 and Lemma 2.4 can be proved under these conditions to
~ get the same result of Theorem 2.5

3 Separable models

A special class of models which allows a complete description of the global
behaviour of the solution, is characterized by the following assumptions on B
and u:

(31) [ B(as Xpseees xn) = ﬁ@(a)

W, Xpyeeny Xn) = po(@) + M(Xp,ee, Xn)
where By(-) and py(-) satisfy the basic assumptions (111.1.3)-(T11.1.7) and

~M(x),.., x ) S MY < inf  ua).
. aef0,a,]

Thus we have the problem:

¢ pda, D+pa(a, D+iol@)p(a, +M(S;(t),..., Salt))p(a, =0

p0, t) = /0 Bo(a)p(a, t)da

3-2) } pa ) = pofa)

L Sit) = /0 vi{a)pla, t}da i=1 .. n

The constitutive form (3.1) leads to separate the analysis of age structure
from that of the total population size; it can be interpreted as saying that By
and p, rule an intrinsic birth-death process which is age dependent,
while M(S,(t),..., S,(t)) models an external mortality which is the same for all

ages and depends on the weighted sizes Si(t) = /G y{a)pla, thda.
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The key for the treatment of problem (3.2) is to consider the age profile

wla, 1) = ‘%ga_’q and recognize that it obeys the same equation as for the
t

linear problem (1.2.5) with parameters By and p,. Namely we have that w{a, t)
satisfies (see (11.1.6))

[ @da, ) + wufa, ) + py(a)wra, t) + wfa, 1) /o {Bo(0)—
~ Ho(0)]w(a, )do = 0

(3.3) 4 w(0, 1) = /0 Bola)w(a, t)da; /o w(a, t)da = |

wla, 0) = wy(a) wfa;, 1) = 0

This system can be checked proceeding as in (I1.1), using the fact that the
external mortality M (S:(1),-.., 8,(1)) does not depend explicitly on the age a:
this implies that the evolution of the age profile is not affected by M.

In addition, concerning the total population P = / p(a, t)da, it is easy
to show that it satisfies the nop autonomous problem: ¢ :

| — P = F(, P
(3.4) ar
P0) = Py= | pofa)da

with:

(3.5) F(1, x) = [a(r) — M(Ly(yx, ..., I",,(t)x)]x

where:

(3.6) aft) = /0 [Bo(a) — uo(a)]w(a, t)da

6D o= | et g
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In fact

Sit) = /a vd{a)p(a, t)da = Li()P(1)

Now, since the behaviour of w(a, 1) is completely known by the analysis of

section {I1.1), we are left with problem (3.4) where we also know that (see
IL1)

68 lim a=a"= | [8(0) ~ mo(o)o" (0)do

(3.9)  lim T()=Ti= /0 y(o)w* (a)do
where
(310) o*@ = 0@ —tim wa, ), M,(a) = e~/omtao

ai 1—>00

o€ @ oI, (o)do

and a* satisfies:
3.1y  I= fo e~ % By(a)I(o)do
As a matter of fact'(3.4) has the following limiting equation:
J _
(3.12) T Q1) = Fo, (Q(1))
with
(3.13) Fo(x) = [a* — M(T'x, ..., Ix)] x = lim F(t, x)

where the limit is uniform for x in any bounded interval. By this equation, as
we will see below, we can determine the asymptotic behaviour of P(t) and
finally recover the behaviour of p(a, 1), through the formula

(3.14) pla, 1) = P{t}w(a, t)
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We first have to note that equilibria of (3.2) are strictly related to those of
(3.12). We have

Proposition 3.1. Let assumption (3.1) be satisfied, then Q* is a non trivial
equilibrium for (3.13) if and only if

(3.15)  p*(a) = O*w*(a)

18 a non trivial equilibrium of (3.2). Moreover letting

G1e  ar==f 1 X o, ey

both Q* and p*(a) are a&ymptozically siable if A* < 0, unstable if A* > (.
Proof:

First of all the search for non trivial equilibria for (3.2) gives the equation (see
(I11.3.3))

(3.17) R(Vy,..., V.) = /0 Bo(a)y(a)e= MV Vg = |

so that it must be

(3.18) —  M(V,.., V)= qa*
where a* is given by (3.11). Moreover, equations (I11.3.4) become

Vi - - Va

f(JVJ(a)e““““'Uo(a)da ' [)Yn(a)e_““*no(a)da

and we see thatfori = 1,..., n

ar 7 ar
Vi= /0 vi{a)e *“ Iy(a)da = v*T; /0 e~ "“ I1y{a)da

where v* is such that Q* = p* /0 e My(a}da is an equilibrium for (3.12).




101

Thus the first part of the thesis is proved.

Regarding stability, we note that A*, defined in (3.16), is the key para-
meter relative to an equilibrium Q" of problem (3.12); in fact

¥ dFe e
G19) QA= T2 ()

On the other hand the charactenstic equation (IV.2.8) for the equilibrium
(3.15) takes the following form

(3.20) iﬂ;ﬁ‘i(a'+ 0* A*)
and the thesis is proved. ) - [

Concerning the global behavior of (3.4) we have

Theorem 3.2. Assume that the equation (3.12) has exactly k + 1 = 1 isolated
stationary points 0 = Qp < Q7 < ... < Q) < +c, and suppose that

(3.21) F.(x) < 0 for x sufficiently large.

Then we have:
@322 lim P =0,

for some h =0, 1, ..., k. Consequently

G2 tim [ b0,y = pilldo = 0

where

(3.24) pula) = Qrw*(a) i=0,1 ..,k

Proof:

Let P(1) be the solution of (3.4); of course P(1) = 0 and moreover, thanks 10

(3.21), P(1} is bounded. Let now O be the w-limit set of P(1): we will show that
Q contains a single point. In fact, if this is not true, £ must contain a whole
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interval /4, B} such that no point Q; (i=0,1, ..., k) belongs to it. Conse-
quently F_(x) does not vanish on (A, B] and we can find 1 such that

F(t, x) + 0 fort> Tyand x € [A, B].

Suppose for instance (the other case would be similar) that:

Ft, x) >0 fort> Tyand x € [A, B]

and let T, > T, be such that P(T;) € (A, B); then it must be:

(25 PO>PT)>A forall t>T,

In fact P'(t) > 0 for ¢ > T; as far as P(1) stays in sufficiently small neighbour-
hood of P(T)); thus by (3.22) we have the contradiction that /A, P(T,)] does
not belong to £,

Thus, since © contains a single point P,,, and P(t} is bounded, it must be

lim  P@) = P,

—+

and, consequently:
Fu(P.) =0

Thatis P, = O for some h = 0, 1, ey K.
Finally, (3.23) follows from (3.10), (3.14), (3.22). "

The previous theorem shows in particular that, within the class of models that
We are considering, the total population has an asymptotic behaviour that
excludes existence of periodic solutions. ,

We note that, since a(1) and I'(1) depend on the initial age distribution
Pola), equation (3.4) will also depend on Pofa) and, in general, if we know
only the total initial population Py, it is not possible to determine which (]
will be attained by P(1). Of course, if in particular pol(a) = Pyw*(a), then
aft) = a*, I'(t) = I, and equation (3.4) coincides with the lmit equation
(3.12). _
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4 Thecasea;, = +x

As a final class of reducible models, we consider the case a; = +¢. In section
11.4 we have already considered this case within the context of the linear
theory; actually we have shown that special constitutive forms of the vital rates
allow reduction of the equations to a system of 0.D.E.’s; here we want to use
similar assumptions for the non-linear case.

As a first model we consider the case of a single size, assuming:

(4.1) Bla, x) = B(x)e= e >0, pfa, x) = p(x) >0, yv(a) =1

where a > 0, i.e. we consider the model:

pda, 1)+paa, )+p(P(t))p(a, ) =0
p(o, 1 =_ﬁ(P(t)) /o e *plo, t)do
p(a, 0) = pola)

P(t) = /o pla, t}do

(4.2)

These constitutive assumptions describe a very simple phenomenological
situation: the fertility function is decreasing with respect to age, while mortal-

jty is independent of it; moreover all the rates depend on the total population
size.

Now, to perform the reduction we consider the two following variables:

at

(4.3) Pt = [Op(or, t)do, Qf(t) = [0 e “p(o, t)do

Then we have:

Lpy= | pfa gda=- | puta da — RPWIP() =

dt

1l

B(P(1)Q(t) — A(P1))P(Y)

and:
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G

3‘}@(:)= | e a1y da =

= — /o e “p.(a, 1) a‘a- - ﬂ(P(z)) /0 e “pla, t) da =

= BP(D)Q(1) — aQ() - a(P(1))Q(1)

Thus we get the system:

PO = BPOIOY - PPy, pio)—r,
(4.4) d : - |
a Q0= BPW) ~ a - gPw)] 01),  0(0)=0,

where P, = /a Pola) daand Q, = fo e ““pofa} da.

This system is equivalent to the original problem because if the couple
(P(t), Q1) solves (4.4), then by setting:

5() = p(0, v = BP)0()

we get p(a, 1) via the usual formula

pola — t)e*/" MP(a)do o>y

play = b(t — a)e~/i-a WP(A)da ifa <t

Thus, in order to determine the behav

analysis of (4.4); in particular, if the rates satisfy the assumption considered in

ior of the model we can focus on the -

A L T R et e e ST
3 A A R A B 3 1 o,
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_ B
"

and we see that non-trivial stationary sizes V* must satisfy:
@5 BV =a+ p(v?)

Moreover, each of the stationary sizes V* corresponds to an isocline of the
system, having the form P = V*. The other isocline is given by

(46)  Q=wp = HOP
B(P)
so that, for any V* we have a stationary point (P*, Q*) of (4.4}, given by:
Pr=V, Q= y(V)

Further we note that in (4.4) we are interested only in initial data (Po, Qo)
such that P, > (y > 0; in this respect we have:

Proposition 4.1. Let (P(t), Q(t)) be the solution of (4 4), relative to the initial
'datum (Py, Qp) such that Py > Q, > 0 then:

P)>0()>0 Vi>0

Proof:

Since Qg > 0, from the second equation in (4.4) we see that Q(t) > 0 for all
t > 0. Besides, setting W(t) = P(t) — Q(1) we have:

LW = ~pPOW() + aQ(t), W(0) >0

that implies W(t) > 0 for all t > 0. _ "

Thus we see that, in the phase plane of the system we are interested only in
the open region A = {P, Q)|0 < Q < P}, we note that since (4.5) yields B(V*)
> u(V*) then any (P*, O*) belongs to A.

We now introduce assumptions on f{-) and fi{-) so as to consider the
purely logistic model of section I11.4: namely we want
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R{(V) < 0 and vlmi R(V) =0
The first of these conditions implies:
(4.7) BVi{a+ a(V)) = BV)E(V) <0 YV =0

and, as for the second condition, we assume that it is fulfilled via the following
assumptions

B(-) is eventually decreasing and vlmi B(vV) =0
£(-) is eventually increasing and Vlmi V) >0

Note that these assumptions imply that [B(-) — a(-)] is eventually nega-
tive: it follows that if P(t) is large then Ed_ P(t) < 0so that the trajectory re--
mains bounded. Moreover, according to the statement (111.4.6) the system has

one and only one non-trivial equilibrium point in the interior of the region 4
if:

B(0) > a + @(0)

otherwise there is only the trivial equﬂlbnum Let us study the stability of
these equilibria. First we consider the trivial one (0, 0) and the Jacobian of the
system at this point:

—4(0) B(0) )
J(0, 0) = ( - _
©.0 0 B - a- )
Thus we see that:
(4.8)  If there exists only the trivial equilibrium, it is a globally attractive

node. If there exists also the non-trivial equilibrium the trivial one i
a saddle point.

Concerning the non-trivial equilibrium (P*, 0*) a simple calculation shows
that the Jacobian at this point has the eigenvalues:
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Ay = 35 (AiVA2+4B)
where |
a9 A7 BVIQ - /VOVT = iVY)
' B =BV BV — @V @

Now, by (4.5) and (4.7) it is always B < 0 so that the stability of the point
(P*, Q%) is determined by the sign of A. Precisely we have:

(4.10) If A < /) then the equilibrium point
(P*, Q%) is stable. If A > 0 then the equilibrium point Is unstable
and there exists at least one periodic solution

We note that the following condition

g(v*) <0, g(v')>=0
implies A < 0 while the following one
BvHVE > B(VF), m(V*) <0
implies A > 0; this latter condition can be easily produced in simple examples.
Before closing this section we mention more general models that can be

treated with the same procedure we have used for the constitutive form (4.2).
Namely, the following form,

@11y Pax=ec 2 dp), wa x)=ak, v@=

can be treated by reducing the problem to a system of n + 2 variables.

5§ (Comments and references

The first part of this chapter is based on the strict relation between the P.D.E.
system (111.1.2) and the functional equation (111.2.3). This has been the first

approach to the study of the asymptotic behavior, and in particular to the
study of global results.
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First results can be found in Rorres [82], [83] from which we have drawn
the contents of Section 1 and Section 2. Similar methods have been used in
[30] and {69]; the latter paper deals with the special case (2.12)-(2.13).

The results that we have presented are not exhaustive of the use that can
be done of reduction to integral equations, however, though this approach can
take advantage of any technique concerning this type of equations, there are
hot many results available.

The class of separable models treated in Section 3, has been studied in
[11). This is a very special class of models which, as we have already noticed,
in the case of a single population do not allow existence of a periodic solution,

Finally, the models of Section 4 are somewhat classic and the constitutive
form (4.11) has been sistematically used in many papers (1481, [49])




VI

Epidemics through
an age structured population

The present chapter and the subsequent one are concerned with the modeling

of epidemics with age structure. '
Without age structure, the basic models of the theory of epidemics (see

for instance [55]) assume that, apart from the differences due to the disease,

the population is homogeneous; then for the description of the epidemics it is
divided into three main subclasses:

susceptible individuals: this class includes those individuals who are not
sick and can be infected; '

infective individuals: it includes those individuals who have the disease
and can transmit it to others;

removed individuals: it is formed by those individuals who have been
infective and are now immune, dead or isolated.

We will denote by S(z), I(t) R(t) the number of individuals that, at the time ¢,
respectively belong to the three classes listed above. Of course, any model
must provide the following equality

S(t) + I{t) + R(1) = P()

where P(f) is the total population size.

A fairly general model for the dynamics of a disease assumes that the

~ population is constant, disregarding the vital rates; then the model is repre-
sented by the following system:

iS(r) = —Mt)S(1) + &I(1)
dt
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0.1) L1ty = A0S - (v + 910

LR = vt

S(0) = So, 1(0) = Iy, R(0) = R,

where Sy + I, + R, = P and the parameters have the following meaning

the force of infection A(t): this is the rate at which susceptibles catch the
disease, thus entering the infective class;

the recovery rate &: this is the rate at which infectives leave their class and
80 back to the susceptible one;

the removal rate y: this is the rate at which infectives leave their class to
enter the removed one. ‘

Concerning the force of infection A(t), we need to assume some constitutive
law that translates into a mathematical form the infection mechanism of the
specific disease. The simplest constitutive form for Alt) is: -

02) A1) = co f_gl = kI(y)

where the constants ¢ and ¢ have the following meaning:

€ = contact rate = the number of contacts that a single individual has,
per unit time, with other individuals of the population;

¢ = infectiveness = the probability that a contact with an infected indi-
vidual will transmit the disease. )

We note that in (0.2) the term Ij(?t) stands for the probability that the con-

tacted individual is infective. The form (0.2) rests upon the assumption that
the population is homogeneously mixing, that the whole population is active
(instead, for some disease either part or all of the removed class does not

participate in the mixing) and that the contact rate is dependent of the size of
the active population.
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AL SO

— I(t)

Figure 0.1

Concerning the nature of the disease we may distinguish those which can
be caught several times (these are diseases that are not lethal and do not
impart immunity such as common cold, influenza and gonorrhea) from those
which can instead be caught only one and lead to removal of the infected -
individual (to this group belong measles, rubella, mumps and other childhood
diseases which give immunity, but also lethal diseases such as the recent HIV
infection for which the removed class corresponds to individuals who have
developed AIDS). In the first case ¥ = 0 and the model is called an S-1-S
model, because the individual path through the disease is represented by the

scheme in Figure 0.1; in the other case 5 = 0 and we have a SIR model (see
Figure 0.2). ' :

ML) S(t) I(t)
S(t) I(t) — R(t)

Figure 0.2

The two cases are somewhat alternative and the different conclusions are
reported in Figure 0.3 and Figure 0.4 respectively. We see that in both cases

we have a threshold phenomenon, in fact the value of the parameter 9 = c¢

is responsible for an endemic state ot for the outbreak of the epidemics.
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endemic state (P - v/k)

Figure 0.3

In this chapter we want to model the spreading of an epidemic, taking
care of the age structure of the population. The importance of considering the
age of the individuals in an epidemic model arises from the fact that for many
diseases the rate of infection varies significantly with age. In fact, if we consid-
er exanthematic diseases we see that the transmission mainly involves early
ages, while for sexual diseases the principal mechanism of infection involves
mature individuals. Thus we expect that the vital dynamics of the population
and the infection mechanism, interact to produce non trivial behaviors.

I(r)

S,p> P

Sopo < P

A 4

Figure 0.4
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~ Inthe following sections we will first extend the general model (0.1) and
then we will focus on some special cases that can be mathematically treated by
the methods of the previous chapters. Actually we will see that the models

arising within this setting, though presenting different features, can be treated
by the same procedures and methods.

1 A general model for epidemics

We consider a population that, in the absence of the epidemic that we aré
going to consider, can be described by the linear model discussed in chapter 1,
i.e. we consider a population which is isolated, in an invariant habitat, struc-
tured by age, with the vital rates B(a) and pfa) satisfying the assumptions
(1.2.6)-(1.2.8). '

Because of the epidemics, the population is partitioned into the three
classes of susceptibles, infectives and removed which are described by their
respective age-densities s(a, 1), i(a, t), r(a; 1), at time ¢. Thus the age-density
p(a, t} of the whole population must satisty

(1.1) pla, t) = s(a, 1) + i(a, 1) + r(a, t)

Denoting by v(a), 6(a), Afa, t}, the age specific removal rate, cure rate and
infection rate respectively, we have the following equations describing the
transmission dynamics of the disease: - '

. Q o CL

e sfa, t)+5,(a, 1)+ ua)s(a, )= Aa, t)s(a, t)+8(aji(a, 1)

i(a, 1) +i(a, )+p(a)i(a, )=Na, 1)s(a, t)—(y(a)+6(a))i(a, 1)

(1.2)

S

1@, -+ra(a, ) +pa)r(a, ) =Y(@)i(@ 9

0, 1) = bt 10,0 = baf), 70, 0 = BsfD)

Actually, each class undergoes the same demographic evolution determined
by the vital rates B(a) and p(a), while the passage from a class to another is
ruled by the rates y(a), Sa), Ma, t).

Together with system (1.2), we must consider the initial conditions
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(1-3) s(a, ) = Solaj, i(a, 0)1 = ig(aj, rfa, 0} = ro(a)

and constitutive equations for the birth rates b,(1), b,(1), bsi(t). Concerning
these latter we assume

bitt) = /o A(@) Is(a, )+(1=q)i(a, )+ (1—w)r(a, 1}da
(1.9) { b)) =g /o Bla)i(a, 1)da

\ bi(t) = w /0 Bla)r(a, t}da

where g e (0, 1 L we [b, 1] are the vertical transmission parameters of infec-
tiveness and immunity, respectively. These parameters indicate the fraction of 7
newborn who are born in the class of their parents; thus if g = w = ¢ ajp
newborn are susceptible. . '

- In this model we assume that the intrinsic fertility Bfa} and mortality u(a)
are not (significantly) affected by the disease, so we €xpect that the total -
population (1.1) undergoes the same demographic process of the model of
- chapter 1. In fact, if we add the equations in (1.2) we obtain the following
problem for pla, 1)

pia, 1) + P.la, t) + pla)p(a, 1) = ¢

(1.5) P0.9= | Bap(a yaa
P 0) = pof@) = 5o(a) + in(@) + o)

that is, we obtaip problem (1.2.5). In this respect we make the following
hypothesis on the demography of the Population

(1.6) R = /0 Bla)Il(a)da = |

i.e. we assume that the population is at zero growth (a* = () and consequently
it exists the Stationary solution
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(1.7) p=fa) = Pow*(a) = byI1(a)

Moreover, we suppose that

(1.8) pla, 1) = pyla) = p=(a)

i.e. we suppose that the population has reached the steady-state distribution
p={a).

Finally, we must give a constitutive form to the infection rate A{a, t}; to
this it is usually given the linear form

(1.9) Ma, ©) = Ky(a)i(a, 1) + fg K(a, a')ifa’, )da’

where the two terms on the right hand side are called the intracohort term and
intercohart term respectively. The following special cases .

(1.10) Ma, 1) = Ko(a)i(a, t)
(1.11) Afa, t) = K(a} /o i(a, t)da

correspond to two extreme mechanisms of contagion; in fact (1.10) represents
the situation in which individuals can be infected only by those of their own
age, while in (1.11) they can be infected by those of any age. When consider-
ing these constitutive forms, we will assume

(1.12) Ko(a) = 0 a.e. in [0, aif, Ko(*) € L7(0, a;)
(1.13) K(a) =0 a.e. in[0,ar], K()eLl™(0, as)

A substantial reduction of the problem occurs when we consider the S-I-5
epidemic, modeling a disease that does not impart immunity. In fact, when we
specialize problem (1.2)-(1.4) assuming y(a) = 0, rg(a) = 0, we have

s{a, +s.(a, 1j+u(a)s(a, t)=—A(a, 1)s(a, t)+0(a)i(a, t)
ifa, )+i(a, t)+p(a)ifa, )=Ma, 1)s(a, 1)—o(a)ifa, t)
(1.14) a
s(0, 1)= /0 B(a)fs(a, )+(I-q)i(a, )]da, s(a, 0)=s(a)



116

i(0, 1) =g /0 Bla)i(a, )da, i(a, 0) = iy(a)

Since, by (1.8),
(1.15) s(a, 1) + i{a, t) = p.(a)

we can set s(a, 1) = p..(a) — i(a, t) in the second equation of (1.14) getting the
following problem on the single variable i(a, 1)

L(a, t)+i(a, t)+ufa)i(a, t)=Aa, t)[pm(a)—i(a., 1)]—d(a)i(a, v

(1.16) i0, 1) =q /0 ﬁ(a)i(a,_ t)da
i(a, 0) = iy(a)

and we can limit ourselves to the study of this system. _
Another reduction concerns the S-I-R case which corresponds to the
assumptions 6(a) = 0 and w = [; in this case we have the following systen

540, 1) + s,(a, 1) + w(@s(a, ) = —Aa, 1s(a, 1)

i(a, t)+i(a, t)+ufa)i(a, )=A(a, )s(a, t}—y(a)i(a, 1)
) 509 = [ ) (6, o+ (1-gita, Jda

i0,1) = g /0 Bla)i(a, )da

s{a, 0) = sofa)
. i(a, 0) = iy(a)

Actually, we can disregard the third equation in (1.2) because the first two ze
enough to determine the evolution of the two classes of susceptibles and infec-
tives; however, because of the presence of the class of removed individuas,
(1.15) is not true and we cannot further reduce the system.
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In the coming sections, we will prove some results for (1.16) with the

:nfection rates (1.10) and (1.11). Together with the assumptions (1.12) and
(1.13) we will assume

(1.18) S(a) =0 ae. inf0, as, () eL7(0,as)

2 Endemic states for the S-1-S model

' Here we consider the S-I-S case (1.14) and discuss existence of endemic states,
i . non trivial stationary states of the problem.

First we investigate (1.14) assuming the purely intracohort form (1.10) for
the infection rate. With this assumption (1.14) becomes

ifa, ) +is(a, 1)+ pa)ifa, )=Ko(@)[p<(a)=ila, 1]i(@, 1)—8(aji(a, 1)

(21) Y0, 1) =g fo B(a)i(a, t)da
i(a, 0) = iofa)

and a stationary state i*(a) must satisfy

E‘f-; i* (a)+ W(@)i* (@)= Ko(@)[p=(@) —i* (@)]i* (a) ()" (@)

(2.2) | ar
*(0) =g /0 B(a)i* (a)da

We first note that (2.2) admits the trivial solution i*(a) = 0 and that, if ¢ = 0
(i.e. when the disease is not vertically transmitted) this is the only solution.

Then, letting g > 0 and setting i* (0) = v* > 0, we see that the first equation in
(2.2) yields:

-t

-F
@3 e = vh@

a

1+ /0 K (o)E(o)do
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where we have set:
(2.4) E(z) = e~ /o 1#9+ 50 Ke(op-(jdo

P]uggmg (2.3) into the second equation in (2.2) we get the following equation
for v*

(25) ] = q /af ' Bga)E(a) da
o I+v* / Ko(o)E(o)do

Of course, solving this equation is equivalent to solving (2.2), via formula
(2.3).

We note that the right hand side of (2.5) is a decreasmg function of vt
unless the following condition is satisfied:

(2.6) Bla) /0 Ko(0)do =0 a.e. fora < [0, a,]

Then we state the following theorem which gives a threshold condition for the _
existence of endemic states.

Theorem 2.1. Let g > 0 and assume that (2.6) is not true, then (2. 2) has one
non trivial solution if and only if

UM e

and, if such a solution exists, it is unigue. Moreover, if (2.6) is satisfied, then
(2.2) has either no nontrivial solutions or we have

, o ,.
(28) q f ﬁ(a)e“/o“lfﬂ)"'é(a)]doda = ]

0
In this last case there is an infinite number of solutions.

Proof:

Suppose that (2.6) is not true, then the function:
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d(x) =g /f_____f_(fi)__,_ﬂm——— da, xe [0, + o]
0 I+x /0 Ko(o)E(c)do

is strictly decreasing and:

lim ®(x) =4 [0 f(a)E(a)da = q fa ﬁ(a)e"/"[““’)*a(")”"da <

x—++®

= / ﬁ(a)e—foﬂu(ojdc< [ B(a)e'*[‘:'“(")d"da = ]
0 0
where:
g, =supfa| Ko =0 ae in [0, a]}
Then there exists v* > 0 satisfying (2.5) if and only if &(0) > 1, and this

solution is unique. The threshold condition ®(0) > 1 is exactly (2.7) and the
first part of the theorem is proved.

Finally,if (2.6) is satisfied then @(x) is constant, that is:

d(x) = g /0 aoﬁ(a)E%da, x e [0, +] [><:] E ()

and equatién (2.5) has infinitely many solutions if and only if (2.8) is accom-
plished.

"
We remark that condition (2.6) means that

B(a) = 0 a.e fora> ap

i.e. the fertility window lies pelow the infectiveness one. Moreover we note
that (2.8) is fulfilled if and only if:

g=1 &a)=10 ac on $ = {a| p(a) > 0}

This is a very special situation that will be disregarded.

Now we consider the purely intercohort case without vertical transmission,
that is we assume (1.11) and g = 0. Then from (1.14) we get the problem
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(2.9)

b(a, ) +io(a, )+ p(a)ia, )=K(a)[p..(a)~i(a, )]1(1)- 8(a)i(a, 1)

I(t) = /0 i(a, t)da
(0,1 =0, i(a, 0) = ipfa)

and the following one concerming stationary states

(2.10)

~ % *(0) H1(@)i* (@)= K(@) o (3) ~i* (@) ]I~ 8(a)i* (a)

I*:/o *(a)da, * (0) =9

From the first €quation in (2.10) and the condition i*(0)= 0 we get

(2.11)
with

(2.12)

Then, putting (2.11) into the second e
equation for J*

(2.13)

*(a) = I* /0 H(a, o)~ -Kmasy,,

H(a, g) = K(O’)pm(g)e_/a[lv(-!‘)+(5(5)]d_y
quation of (2.10), we get the following

I =/ / H(a, gje=T/okwidsgoq,
0 )

and we arrive at the following resuit

Theorem 2.2. Problem (2.10) has one non trivial solution if and only if

(2.14)

/ / Ha, o)doda > 1
o ‘o
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and, if such a solution exisis, it is unigue.

Proof:

The proof is similar to that of Theorem 2.1; we just note that the function
d(x) =[{) /0 H{a, O’)E—I/ Kis)Edgda

is strictly decreasing since

K(o) /0 K(s)ds
o €.

does not vanish(on the set {(a, )0 < o< a=<ay}. , .

In the following section we will consider some results concerning stability for
the intra-cohort case.

3 Asymptotic behavior for the intra-cohort case

We are now ready to investigate the asymptotic behaviour of problem (2.1).
To do this we integrate the first equation in (2.1) along the characteristic
t — a = const, obtaining the following formula

( | : io(a“I)E(é)

‘ ifazt
E(a—t)+io(a—r)/0Ko(a—-r)E(a—r)d‘r
(3.1 i =
o o W i(0, t—a)E(aj
’ ifa<t

k 1+i(0, 1—a) /0 K,(z)E(t)dT

where E(a) is defined in (2.4). In fact, setting Uf(s) = ifag + 5, fp + 5) withs =
0, we have
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a%_ Uls) = [~ufa, + 5) — Say + s) + Kolay + s)pa(ay + 5) —

~ Kofap + s)U(s)]U(s)

so that

Hag + 5, 4y + 5) = i(ap, t,)E(ay + s)

E(ag)+i(ag, to) /0 Ka(ao + O)E(ag + O)do

from which (3.1) easily follows.
Formula (3.1) is the starting point for the analysis of the model. First we

rule out the case ¢ = 0 that is the case with no vertical transmission of the
disease. In fact, with this condition we have i(0, 1) = 0 and consequently
(3.2) i{a, ) =0 for t> a,

thus the disease dies out.

Next we consider ¢ > 0. To treat this case we must transform the problem
into a Volterra integral equation on the infectives birth rate

(3.3) u(t) = i(0, t)

In fact, putting (3.1) into the second equation of (2.1) we get a non-lirear
integral equation of the form ‘ '

(3.4) (1) = F1) + fg G(a, v(t — a))da

where (we extend all the functions by zero outside of /0, a,))

3.5) o= / T 1PathEarne 0 o,
g E(a)+ig(a)/ Ko(t)E(t)dr

(3.6) Gla, z) = q Pla)E(a)z az

I+z /0 Ko(t)E(1)dt
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By this reduction to an integral equation, we first prove existence and unique-
ness of a solution to the problem. Actually we have

Theorem 3.1, Let (1.12), (1.14) be satisfied and let g € L.,/0, a], then equation
(3.4) has a unique continuous solution v(1).

Proof:

The solution can be obtained as a fixed point in the space C[0, T] (for any
T > 0). In fact the mapping J . [0, T} — C[0, T] defined as

(3.7) (T v} (1) = F(t + /0 Gla, v(t — a))da
leaves the set

U(-) =3 C[O’ T]’ 0 = ’U([) =< lF\C[O,TJ‘eQIﬁ[

unchanged and, moreover, for v and ¥ belonging to this set,

o N ar V. | CNTN
TNy — TVl o,y < N7 lv— Bicro1s
where C is a constant. Thus existence and uniqueness follow. ' =

Of course, the previous theorem provides existence and uniqueness of a solu-
tion to problem (2.1), via formulas (3.1) and (3.3).
We note that, if we consider the limiting equation of (3.4),

(733 )

(3.8) u(t) = /0 G(a, v(t — s))ds

we see that its constant solutions v* > 0 must satisfy
v = /o G(a, v*)da

that is the same equation (2.5) which has already been discussed.
We are now able to give a complete description of the asympiotic be-
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haviour of v(t}. We suppose that the assumptions of Theorem 3.1 are satisfied _
and start with the following preliminary result

Proposition 3.2. Suppose

(3.9 Bla) > 0 a.e in[a;, a;]

and let iy be such that
(3.10) /0 Bla + t)igla)da > 0 for some t = 0.
Then the solution of (3.4) is eventually positive.

Proof:
If (2.19) is fulfilled then F(#) and consequently u(r) are not identically

zero on [0, as]. Suppose that v(t) > 0 for t € [a, B] C [0, a.]; then for
tefa+ a;, B+ a,]

(Y =\//01 G(t — s, v(s))ds =

i—a
> min (1) / 9 ﬁi")E(") da >0
ovE—B) 1 + v(t—a) /0 Ko(1)E(t)dr

because (a;, a,) N (O V (t - B), t — a) # @. Thus iterating this argument we
get

(1) >0 for tefa+ na;, B+ nayl
for any positive integer n and, since

U [a + na;, B+ nas] D [t +®)
n

for some 1, > 0, we have v(t) > 0 for t > 1, ' |

Note that condition (3.9) means that the initial datum i, has a support which, i




125

iransiated to the right, hits the fertility window: if this condition Is not satisfied

then F(1) is identically zero and consequently also v(1) vanishes for r = 0.
Now we analyse the behaviour of v(t) under conditions (3.8), (3.9): this

behaviour depends on the threshold condition (2.7). First we have

Theorem 3.3. Let (3.8), (3.9) be satisfied and assume

(3.11) q /Oafﬁ(a.&:@?@da < ] L>< E @)

then

lim u(t) =0

— 4o
Proof:
Let I, = {na;, (n + 1)ay] for any integer n = 0, then define:

(3.12) M, = max v(t), M, = max{M, M,._1)

Note that, by the proof of Proposition 3.2, we have M, > 0foranyn=0; then
if 1 e I, with n > 0 we have '

(3.13) v(t) = [0 G'(s; u(t — 5))ds s. fo G(s, My)ds = M, ®(M,)

where ®(z) is the function defined in the proof of Theorem 2.1. In fact since

sef0 awehavet = sel UL and, for a [0, a;], G(a, z) is anon X,
decreasing function of z. From (3,1?? we get

(3.14) M, <M, ®M,) Yn>0

and, since P(z) is strictly decreasing and ®(0) < I, we have

M, < M, (0) < M,

thatis, M, < M,;.
Thus the sequence {M,} is decreasing and, setting Mo = lim M, we

have, going to the limit in (3.1@: i X
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M.< M., D(M,)
If M., > 0 we would have the contradiction
1@ (0)

which is absurd because @ (0) < 1. So it must be M.. = 0 and the proof is
complete, .

Besides we have

Theorem 3.4. Let (3.8), (3. 9) be Satisﬁed and assume

(3.15) g /0 arﬂ(aéwj}ia > 1.
Then

lim  w(1) = v*

=+
Proof:
Let I,, M,, M, be defined as before. We first prove the foHowing statement
(3.16) i M,<v* then M, ;< v*
In fact, we recall the fol]owing inequality already stated in (3.1&)_
(3.17) M, <M, @(Mn-u) n=0;
then if M,.,, > v* we have M,,; = M, ., and consequently
Mps1 < My ) @M, ;) < M, P(v*)=M,,,

which is absurd.
Next we prove that

(3.18) if My>v* for n>N then My, <M, forn>N

and
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im M, =v*

fi—s+ o

In fact, if M, > 'E‘rand consequently M, ., > v*, we have from (3.133
Mn+1 = Mn+I(D(Mn+J) < M,H.](D(U*) = Mn+1

Thatis M,,; < M,. Then, letting M. = lim M,=uv*, wegolo the limit in
(3.16) e

M. < M.PM..)

so that, if M. > v* we have Mo < M.., which is absurd and then necessarily
M, = v*.

In addition we define

m, = ;Z}in u(t), m, = min{mg, m,_1}

"

and, noticing that the sequence {m,) must eventually be positive by Proposi-
tion 3.2, we can also prove (the proof is similar to that of (3.15) and 3.17)

(3.19) if m,=vuv* then My =0
(3.20) if m,<v* forn>N then My,yp > My
for n>N and lin:m = y*

[
Finally, putting together (.3.15), (3.12), (3.15), (3.29), we get the proof of the
theorem. u

4 Comments and references

The spread of an epidemic through an age structured population has received
attention in connection with the modeling of childhood diseases like measles,
mumps, rubella, chickenpox. The general model that we have presented is
essentially due to Anderson-May [1]-[2], Dietz {33] and Schenzle [88], but the
mathematical results on these models are rather recent (13], (41, I8}-{101], 13§,
(14], [17], [39), [40], {54}, (58], [63], [93], [96)).

The S-I-S model that we have presented has been studied in [9] where
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also local stability results for the inter-cohort case were given. Actually, in
some subsequent papers ([13}, {14]) more general results have been given,
showing that the main result concerning the existence of a unique endemic
state, attracting all solutions, is true for the general form (1.9) of the infection
rate. The methods to prove these results actually belong to the theory of posi-
tive operators and cannot be presented here.

Though the analysis of the S-I-S case is sufficiently settled and shows a
simple behavior of the model, this is not the case for the S-I-R model. Many
partial results exist, but the situation is far from clear. Some sufficient condi-
~tions for existence, uniqueness and stability of endemic states have been given
in [4], [63], while in [3] and [93] some cases in which the endemic equilibrium
is unstable are shown. Some partial results on the simple intra-cohort case has

been given in [17}, but even the question of uniqueness of an endemic state is
not settled.




Vil

Class-age structure
for epidemics

In the previous chapter we have considered the spread of an epidemic stres-
sing the interaction between the demographic processes and the epidemiolo-
gical mechanisms. To that purpose we have considered the age of the indi-
viduals of the population as the main structure operating this interaction.
However, this demographic age, or chronologicala age as it is often called, 1§
not the only age that is necessary to consider when modeling epidemics. In fact
we can also consider the age of the disease (class age), i.e. the time elapsed
since an individual has become infected. The very first and celebrated
epidemic model by Kermack and McKendrick ([65)-[67]), that we considered
in Section 1, is actually structured by class-age: this is important when modell-
ing a disease for which an infected individual has a variable chance of recovery
or death and his infectiveness also depend on the time spent as an infected.
The recent epidemics by HIV/AIDS infection well represents this latter phe-

nomenology and in Sections 5 and 6 we will be concerned with a model that is
inspired by this disease. '

1 The Kermack McKendrick model

Let us consider a closed population in which no migration is present and no-
births or deaths occur by natural reasons. This assumption, of course, is realis-
tic as long as we want to describe the single outbreak of an epidemic through a
period of time such that demographic changes can be disregarded. Thus, the
population size 1s constant with time and the total number of individuals, that
we denote by P, is as usual partitioned into the three subclasses of suscepti-
bles, infectives and removed individuals.

For a member of the infected class we will denote by & e [0, ¥, the time
elapsed since infection (+#; denotes a maximum age of infection}; then the
situation is described by the following vanables
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S(t) = number of susceptible individuals at time 1
(Y, 1) = -density of infected individuals at time t
R(r) = number of removed individuals at time t

Of course we must have

o

(1.1) S(t) + /o i(%, )d® + R(t) = P

In addition we consider the following parameters:

¥(8) = age-specific removal rate
Aft) = Infection rate (force of infection)

thus

y()i(8, t)didt
denotes the number of infected individuals, with class age in the interval
{8, # + di}, that pass into the removed class during the time interval
{t, t + dt]; moreover

A(t)S(t)dt

~is the number of susceptible individuals becoming infected during the time
interval ft, t + dyj.

Actually the force of infection A(f) must be given a constitutive form de-
scribing the mechanism of infection. The simplest form for A(t) is the follow-
ing:

L
(1.2) At) = /0 K(®)i(9, t)dd

which we will use here, while in a subsequent section we will discuss more
general and significant constitutive laws for Al1).
With all these preliminaries, the equations of the model turn out to be:

) LS = —amse
pr
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i) Q0 1)+ (Y + v(9)i(8, 1) = 0
(1.3) i) i(0, 1) = M)S(t)

d ”
) R = fo SO, dD

with the initial conditions:

(1.4 S(0) = S, i(8, 0) = io(®), R(0) = Ro

In (1.3) equations i), iii} are derived by a similar argument as in Section 1.2.
Actually, in the present case, we can start from the balance (see 1.2.1)

#+h g

t+h
/0 i(o, 1+ h)do= /o ifo, ydo + /‘ A(0)S(o)do —

h s
/0 /0 y(0)i(0, t + s)dods

We note that, with the constitutive form (1.2) the equations i}, ii), iii) of
“system (1.3) are decoupled from i), so that for the study of the system, it is
enough to consider the first three equations.
1n the following section we will treat problem (1.2), (1.3) under the fol-
lowing assumptions on the parameters:

15  y®=0 K@®=0 aeinlo, 8]
i)
16) 1) eLhe(® ) | rloMo= +e

a7 K() e L7(0, 8;); K(®) >0 ae in[t, 8,/

2 Reduction of the system

We will reduce (1.3) into a system. of integro-differential equations, starting
from the integrated formula '
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e B(§) :
@ (% — 1) B9=1) fd=t
{0, t — 9} B(H) if <t
where we have set
22)  B(9) = e orodo

Formula (2.1) follows by integration of (1.3, ii) using the initial datum i,(3}.
Then, we consider the following variable

23) « wy = MSW) = i(0, 1

from which we can get i(#, 1), using formula (2.1). We have (see (1.2))

i)
ut) = fo K(9i(8, 1)d9 S(1) =

T/ . Cerar B oo
- [ /0 K(9)B(®)v(t—9)dd+ /, K(9) By o r)d.a] S(1)

where K(9), B(9), io(9) are cxtended by zero outside of [0, #,]. Thus we have
the following system on the variables v(t) and S(t)

2.5 = —u()
(2.4) ‘

u(t) = [/0 At — s)uls)ds + F(t)} S(t)
where

At} = K(t) B(1)
(2.5)

F1) = /0 K(t+s) Bg(;s) ig(s)ds
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with the initial condition:
(2.6) 5(0) = 5,> 0

Concerning existence and uniqueness of a global solution t0 (2.4)-(2.6) we
have

Theorem 2.1. Let (1.5)-(1.7) be verified and let iy € 1.1[0, 9], then problem
(2.4) with (2.5), (2.6) has a unique solution (v(t), S(1)) with:

v(t) = 0, v(-) continuous on [0, +=)
Si) =0, S(-), §'(-) continuous on [0, +)
Proof:

To prove the thesis of the theorem it is convenient to transform (2.4) into a
single equation, in fact, since

%S(r = - Ugt At - s)u(s)ds + F(t)] S(t)
we have
@7 S(t) = S oe—[/o'Ar(r—dIJ(O)da+F;(r)]
where A,m = fﬂ ’ A(a)do, Fy(t) = /0 LF(o)do; then (2.4) is equivalent to
(2.8) u(t) = So[ fg t Aft — c)v(o)do + F(:)]f[fv'mf'—oﬁv(fffdﬁﬂw]

Now F(t), F;(t) are non negative continuous and bounded on [0, +®), wh.ile
A(1)}, A;(t) are non negative a.c. and belong to L7(0, +); thus the mapping
9+ Cf0, T] defined as

(2'9) (7 v)(t) = So[/g At — O)‘U(U)do + F(1) ]e“{fol&(t“dv{ddo%—}’;(r)]

leaves the set
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v() e C[0, T]; 0< vt) < SF|,, ¢Sk
unchanged and moreover, for v and @ belonging to this set,

vy

TNy — TNl o, < . v — Ol eqo, 7y

where Cis a constant, Thus, existence and uniqueness of a continuous solution
to (2.8) follow as a fixed point of .
- Finally, by (2.7) we get S(1). N

In the following section we will use (2.4) for analyzing the asymptotic behavior
of (1.3).

3 Behavior of the solution

Concerning the behaviour of the epidemic we first have;

Theorem 3.1. Let (v(1), S(t})) be the solution 0 (2.4) by Theorem 2.1; then wé
have

(3.1 ;ETW v(t) = 0,7 :_IE‘T@ S(t) = S,
where S, satisfies
(3.2) S = Sy exp [Sm /0 A(o}do + /0 Floldo — So]

Proof:

We first note that, from (2.4)
S(t) =8, — /0 v(s)ds > 0

so that

an

(3.3} /0 ufs)ds < S,
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and

lim S(1) = 8o = 8; — /0 u(s)ds = 0

f—+ o

Also

F(t) =0 for t> 1
Aft) =0 for 1>

so that, since by (3.3) v e L/(0, +=), we have
t

lim ) At = sju(s)ds = 0

f—> 4

In conclusion, going to the limit in (2.4), (3.1) is proved.

Concerning the final size of the susceptible class, since ut) = — _;_S(t),
from (2.7) we get : _ !

Sy =8, exp[[o At — 0 %(o)da + Fl(t)] =

= S, exp [/; A(0)S(t — o)do + Fy(t) ~ SO] '

so that passing to the limit we have (3.2). u

The previous theorem states two main facts about the single epidemic: the

infection eventually dies out but the susceptible class is not depleted by the
epidemic. In fact

&

(3.4)  lim 1) = lim fo i(9, 9dd = lim_ /0 u(t—9)B(8)d9=0

and also, by (3.2), it must be S.. > 0.
Another important aspect of the dynamics of an epidemic is the existence

of a threshold in order that the infection be sustained. To introduce this
threshold we must first prove:
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Proposition 3.2. Under the conditions of Theorem 2.1, v(1) is either identically
zero or eventually positive. If, in addition :

(3.5) K(¥) >0 a.e in[0, 9J

then u(t) is positive for all 1 = 0.

Proof:

The proofis close to that of Proposition V1.3.2. In fact, if v(z) is not identically
Zero, let

vt} >0 for tefa, ]
then fort e fa + &, B + 3] (see (1.7)

AR

ut) = S(1) /0 A(t—9)u(8)d® = S(1) / A(t—9)u(§)dd =

a
NS

=z S(f+8,) ﬂer?i‘r%] v(d) / -A(t“l?)dﬁ =

= S(B+3) jmin u(d) / iy KOB(B)A9>0
in fact (9, &) N OV (t—B)t—a)+ @ and S+ %) > 0.

Iterating this argument we prove that:
v(t) >0 for tefa+ nd, B+ nt,]
for any positive integer n and comsequently v(2) is eventually positive.
Let now (3.5) be satisfied, then F(0) > ¢ and consequently v(0) > 0. If
v(t) vanishes somewhere there must exist Io such that

Utp) = 0, v(t) >0 for te [0, 1))

Then we must have:
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0 = v(ty) = S(ty) [/0 Aty — o)v(o)do + F(ro)] =
Iy
= S(ty) /0 Aty — o)ulo)ds > 0
which is impossible; so it must be v(t) > 0 for all ¢ = 0. n

If we now set I;, = [k, (k + 1)84] (k = 1, 2...) and define

(3.6) my = trgin u(t), M, = max v{t), Sp= Skt

we have the following immediate consequence of the previous proposition

Proposition 3.3.

M,>0 forallk=0 andm,>0 eventually

If (3.5) is satisfied, then my > 0 for all k = 0.

Proof:

First we note that, since F(z) is not identically zero on [0, &/, neither is v(t)
and we have M, > 0. Besides, assume M, > 0 and let [a, 8] C I, be such that
v(t) > 0 on [a, B]; then, by the proof of Proposition 3.2 v(t) > 0on [a+nth, B
+ nd,]. Since it is possible to find » such that (k + DY < a+ nd <(k+
2)8,, it is also v(1) > 0 somewhere in I;,; and consequently also My; > 0.

The last part of the thesis is a straighforward consequence of Proposition
32 |

Now we define the following threshold value:

_ 1
(3.7) r= 1

. A()d?
then:

Theorem 3.4. Let (3.5) be satisfied. Then for k > 0:
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(38) lf Sk << T IhErl Mk < Mk—]
(39) lf Sk-}-] > T Ihen' mk > mk_I
moreover we have
(3.10) Sa<T
Proof;
“Lett e I, with k > 0, then
& '
v(t) = S(1) [0 A(s}u(t — s)ds

Since (t — 5) e‘Ik U I._; for 5 € [0, 9] we have

i
v(t) = S(1) /o A(s)ds max{M;, M,_,]

M, < -“;; max{My, Myr]

so that, since M, > 0 we have

My < max{M;, M_;]

and (3.8) is proved. The proof of (3.9) is analogous. Concerning (3.10),
assume by contradiction that S, > T for all k, then, by (3.9) the sequence my, is

increasing, which is impossible by (3.1).

The previous theorem allows to give a detailed description of how -the
epidemic evolves through the sequence of time steps whose length is #;. For
instance we see that, if at the end of the first step the number of susceptibles is
under the threshold T, then the epidemics will not be sustained. Also by (3.10)
we see that the number of susceptibles will eventually go under this threshold.
In general, if S, > T, let f I} be such that S(7}) = T, then if £ > 0 we will have

mk+1>mk forkﬂo, 1, ,k"‘]
Mk+1’<MK fork?k
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In conclusion we have the following gross description of the epidemic process

The infection blows up and goes on increasing for a finite period of time,
as long as the number of susceptibles keeps over the threshold, then it
starts decreasing to finally die out.

4 On the constitutive form of the infection rate

In the previous section we have assumed (1.2) as the constitutive form of the
infection rate A(7); actually (1.2) is the form adopted by Kermack and McKen-
drick in their model, but a more realistic assumption for A(?) should include a
description of the mechanism of contagion. Thus we consider the general form

& .
@(i(®, ¥

0
S(1) + I(t) + aR(1)

(4.1) A1) = CIS(O)+1()+aR(1)]

Here the function C[x] : R, — R, denotes the number of contacts that an
individual has in the unit time when the total size of the active population is x.
By active we mean those individuals who take part in the usual life. In fact, in
(4.1) the term S(¢) + I(t) + aR(1) accounts for the total active population at
time ¢: the constant a e [0, 1] is the fraction of removed people who is still
active, namely it denotes those removed individuals for whom the disease
ended into immunity and, consequently, have a standard behaviour.
Concerning the form of the function C[x], it must reflect the social be-

haviour and the way people mixe together; the simple assumption of mere
proportionality:

(42)  Clx]=Cox (C;>0)

leads to the form (1.2) with K(%#) = C,@(9). In the general case Clx] is
assumed to be a non decreasing function of x. _

Moreover, in (4.1) the function @() denotes the age specific infective-
ness, i.e. the probability of being infected through a contact with an infected
individual of age ¢, thus the term:

i
/n @(B(d, tdi
S(t) + I(t) + aR(1)
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(5.5) ge L¥(0, ay), @(0)>0 ae inft, &)
and the functioh C{-] is continuously differentiable and such that
(5.6) Cl0}=0, ClxJj=0, Cf0]>0

(5.7) the function x — Clx/ is non-increasing
x

Note that, since a = 0, we are dealing again with the case in which the first
three equations in (5.1) do not depend on R(t), so that the equation for this
last can be neglected.

For the analysis of (5.1), (5.2) we proceed as before. Integration along
characteristic gives

: _u B _
: ¢ — H 4=
(5.8) (%) = 0= e B(#-~-1) v '
vt — e *? B(®) ifo<t

where B(# and v(1) are defined as in Section 2; then the prob}cm is trans-
formed into the following system

d = —_— —
praail *IA uS(t) — v(1)
co 4 0= B swa+

o) = sy SISOHI]

\ ST [/0 A;(t — s)ufs)ds + F:(t)]

with

By(1) = e "'B(1), Ay1) = e *op(t)B(1)

Fit) = e /0 ot + 5) Bg(‘:)” iofs)ds
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Gy = e | ng—)s) io(s)ds

where, as usual, ¢, B, iy are extended by zero outside [0, 34/

Here again, the standard theory provides existence of a global solution to
(5.9), such that

S)=0, I()=0 vi)=0
S(t), S'(t), I{t), v(t) arecontinuous

We omit the details but for some estimates which imply globality of the solu-
tion and will also be used later. First we note the following equality

H

(5.10) St} = Spe* + _E._ (I—e *) — /0 e F=Sly(s)ds
From this
N i
(5.11) lim sup / e~ HShy(s)ds < A
e ‘ H

Moreover, since by (5.9) and (5.10) we have

S() + I() = S(1) + /0 B,(t—s)v(s)ds + G(t) <

i

= S(1) + /0 e~ Ht=ly(s)ds + G(1) <

<Set+ A 1-e + G
i
we get

(5.12) lim sup (S(t) + I(1)) <

— o

A
u

Finally
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lim Sup/ Alt=s)u(s)ds < |¢|. lim sup/o e Hyis)ds < gl
0

I—» 40 {— +oo

implies

(5.13) lim sup v(t) < 400

I—-+co

From these we get

Theorem 5.1. Let

9

' A _
(5.14) C{?] /o e "p(3)B(9)dd < 1,
then
(5.15) ,_IETm v(t) =0

Proof:

By (5.9) we have

ut) < C/S(1) + I)] [ /0 A, (t=5)u(s)ds + F,(t)}

and, since

e [==}
fim sup / A (t—sjv(s)ds< /0 A (s)ds lim sup v(t)
t—+ oo 4 >+

we get

limsupuft) < C {A] /o Ay(s)ds Iim sup v(f)
u

I—+ =0 — 4oz

so that (5.15) necessarily follows from (5.13) and (5.14)

Condition (5.14) is a threshold condition and the parameter

A
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G

(5.16) R():C[_:H /0 e P ($)B(9)dD

is called the basic reproductive number of the epidemic. It can be interpreted
as the average number of new cases that an infective individual can produce

when the active population size is f_‘_ Actually, §* = i i*(H =0isa

U
staticnary state for the system (5.1) and it is called the disease free state. By
(5.10), Theorem 5.1 yields

If Ry < 1, the epidemics goes extinct and the susceptible class attains the

. A
stationary state —— .

Note that, with the special assumption (4.2) and p = 0, R, is the same as the
threshold for the model of section 3; when R, > 1, existence of non trivial
stationary states in the present model occurs (endemic states of the
epidemics): we will investigate this point in the next section.

6 Endemic states

We now look for stationary states of problem (5.1), (5.3); namely we look fo
a solution ($*, i*(#)) of the problem '

A—pS*— 8 =0
i (8)+Y(8)i*(8) + wi*($) = 0
i*(0) = A*S* i

ORI [ e an
B e At R

i

= fo i (8)dD

We remark that the disease free equilibrium (_A_., 0) is actually a solution

of (6.1), as we have already noted in the previous section. In order to investi-

e e R LN L e
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gate existence of other solutions such that i*(%) # @ (i.e. endemic states of the

disease) we have to transform (6.1). Actually, since from the second equation
in (6.1) we have

(6.2) i*(8) = v* e " B(D)

where we have set v* = i*(0) > 0, it is easy to see that via {6.2) problem (6.1)
is equivalent to

.
A—-pS*—vt=0
B

6.3) { r=uv /0 e *? B(8)dD

s /0’ .
= _ % Cst+r He™ # OB(S)d D
T / 1 J, ede (%)

\

Comparing this with (5.9), we also see that (v*, §*, I*) is a constant solution
of this latter. To solve (6.3) we introduce the variable

I*
6.4 =1
(6-4) ey

so that
(6.5) I'=§S8*+1I7), §*=(1-&5(5*+1I)

From the first two equation in (6.3) we get

A = p(I-E(ST+I) — — 3 (S* +1*) =0
, ¢~ FOB(9)dd
that is
(6.6) (S*+1*) = A
FEL — ! —pn|é

[ ermas )
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Thus, plugging (6.6) and (6.5) into the third equation we finally get
i B
A Y
(6.7) 1=(1-§C I / @(%)e” *IB(B)dD
' ut 5 -uiELe
L fo e~ *B()dd ]

This last equation is equivalent to (6.3) via formulas (6.5), (6.6) so that we are
left with the search of a £ e (0, 1) satisfying (6.7) (note that £ = 0 would give
the disease free equilibrium). Now, since Cfx/] is non decreasing and

Oy

[ e pwas< L
o I

the whole right hand side of (6.7) is a decreasing function of £ with values Ry
and 0 at £ = 0 and & = I respectively; this implies that

" Equation (6.7) has a solution §* (0, 1) if and only if Ro > I. This
solution is unique.

Thus the threshold parameter R, is responsible for the existence of endemic
states. We collect the previous results in the following:

Theorem 6.1. If Ry, < 1 the system (5.1), (5.3) admits only the disease
free stationary state ( _.{‘__, 0). If Ry > 1 there is also another stationary state
u

(5% y* e-n® B(D)) with $* < v > 0. »
u

We have already seen that Ry < I implies the extinction of the epidemics
(Theorem 6.1);if R, > I the behaviour of the solution to (5.1) is not complete-
ly known. A detailed analysis of this behavior has been performed in [95]-[96],
showing that with R, > 1 the epidemic is persistent and the endemic state can
be stable or unstable according with the properties of the various parameters
involved in the system. In particular it is shown that periodic solutions may
arise when the endemic state loses its stability.
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7 Comments and references

With this last chapter we have gone back again to the very first age structured
models. In fact the Kermack-McKendrick model presented in Section 1 is part
of the earliest production in the field together with the papers by Lotka.
Though this first step in the description of epidemics included age structured
in the model, the names of the authors have been usually associated with the
simplified version that disregards age structure.

Later on, class age for epidemics has been considered in [56] where a
general model is formulated including both chronological and class age. Re-
sults on this kind of models have been stated by several authors, but only
recently, in connection with the HIV/AIDS epidemics, it has received more
serious attention. The model of Section 5 was introduced and widely analyzed
in [15], [94]}, [95], while in [59], [60] it was numerically implemented and used
to attempt a description of the AIDS epidemic in Italy.




Appendix 1

Laplace transform

In this Appendix we present some definitions and results concerning Laplace
transform theory. They are of course well known, but we think it useful to
collect them here so as to have some precise statements to refer to, when
needed in the text. We will not go through the proof of these results, but will
refer to textbooks on the theory; in particular we suggest the monography by
G. Doetsch [34] to which this appendix 1s inspired.

1 Definitions and properties

Letf(-)eLi,. (Ry;R)andieC. Then f(-) is said to be Laplace transformable
at A, if the integral :

o

an  fw= [ e

exists as an improper integral i.e. if the following limit exists

T

. Y
Jm_ ], e

Moreover f(-) is said to be absolutely Laplace transformable at A, if the integral
in (1.1) is absolutely convergent.

1t is easy to see that if fis Laplace transformable (resp. absolutely Laplace
transformable) at A,, then it is Laplace transformable (resp. absolutely La-

place transformable) at any A such that A > RA,. Thus we can define the
abscissa of convergence

o = inf {Ag € R|f is Laplace transformable at Ao}
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so that (1.1) defines a complex function in the half plane S, = {AlReA > o};
this function turns out to be analytical in S,. Thus '

The analytic function f"(l), defined by (1.1) on S, is called the Laplace
transform of f. :

The Laplace transform, thanks to its properties, is a useful tool to treat dif-
ferential and integral problems; here we list some basic statements

Theorem 1.1. Let f(t) be Laplace transformable at Ao > 0 and consider
i
F() = fo fls)ds: for t=0
Then F(t) is absolutely Laplace transformable for RA > A, and

Fp) = f%ll for RA> 1A, =

Theorem 1.2. Let f(t) be absolutely continuous and suppose that f'(t) is La-

place transformable at A, > 0. Then f(1) is absolutely Laplace transformable for
RA > Ay and

FO) =) —f0%) foror>2, .

Theorem 1.3. Let f(t) be Laplace transformable at 1, > 0 and g(t) be absolutely
Laplace transformable at A, > 0. Consider the convolution

F(1) = /o I ft = s)g(s)ds for 1= 0.

Then F(1) is Laplace transformable for RA > A, and
F(}) = fWgM)  for @A > A

2 The invefsion formula

A central problem in the theory of the Laplace transform is that of recovering
the original function f(t) when its transform f{A) is known; a main result in this
respect 1s the following
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31 fW= 3 oh- i)
Suppose in addirion that there exists a; < RAg such that
(2 L jm f0 =0

o,=Ri=<o
Then there exists 6 < RA, such that
t‘._] 1 O i

33)  fiy=e* F oo, 0+ e f(A)dA m
63 o= B e v 5o, iAo

Of course (3.3) determines the asmptotic behavior of f(t) provided we are able

to determine the behavior of the last integral; however the following reason-
able assumption

4o

G4 [ le+imldy <o

is enough to have

Stieo

lim e ™ [

>4 S—jceo

e™ f(A)dh = 0

A repeated application of the previous theorem can provide an asymptotic
expansion-of the original function.






Appendix 11

Integral equations theory

This Appendix is devoted to present some results from the theory of Volterra
integral equations and is intended to introduce, in a somewhat complete form,
those aspects of the theory that underlie the methods used in this book. Thus
the outcome of this presentation is a rather special collection of results, includ-
ing a few that are not easy to find in the literature and that will be presented in
some detail. As a reference we suggest the book by Miller [80] and the more.
recent treatise by Gripenberg, Londen and Staffans [41]. '

1 The linear theory

Here we consider the linear Volterra convolution system
: _
(1.1) u(t) = /0 K(t — s)u(s)ds + f(t)

where the unknown u(z) and the input datum f(z) are n-vectors, while K(2) is
an n X n matrix. We assume

- (1.2) K(-) e L'([0, =); £ (R,)), f(:) e L'([0, ©); R")

Some special results on {1.1), in the one dimensional case, have been discus-
sed in Chapter I; here we want to present a general treatment of the problem
based on the use of the resolvent equations

(1.3) R(r)=—K(t)+/0 K(t — s)R(s) ds

(1.4) R(1) = —K(1) + /0 R(t — s)K(s) ds
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In fact, concerning these equations we have

Theorem 1.1. Let K(-) satisfy (1.2), then there exists a unique R(:) € L.
([0, c7&?.51[}!5]‘”yt}zg (1.3)-(1.4} and such that for any f(-) satisfying (1.2)

a-E) uy ~ ) - /g R(t — s)f(s) ds

is the unique solution of (1.1). L

The proof of this theorem is based on the usual iterative procedure (see 1.4)
which yields the solution of (1.3)-(1.4) in the following form

(16) Ri=- 5 (KxK+K+'T+K))

=

Where * denote convolution and the series converges in Li. ([0, «); £(R,)).

loc

The main interest of the theorem, besides existence and unigueness of a solu-
tion to (1.1), is the representation formula (1.5) which gives this solution ver-
sus the input function f{-) and allow to get properties of the solution in connec-
tion with those of f{-). In this respect a special situation occurs when the resol-
~ vent kernel R(-) is integrable over the whole semiline [0, =); in fact we have

Proposition 1.2. Let

A7) R()e (0, =) £ (RY)

then, if f(-)  Ca([0, ©); R") we have

(1.8) lu(t)] < (1 + |Ri) fle YVI>0

If moreover HT f(t) = 0 then

(1.9) [Iirizm uft) = 0 n

The previous Proposition is actually a stability result for the trivial solution
u(t) = ( of (1.1) (corresponding to the trivial input f(1} = 0, according with the
following definition
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Definition 1.3. The trivial solution of (1.1) is said 0 be stable if ¥ € > 0 there
exists & > U such that

(1.10) if |fle <O then |uje <€
It is said to be asymptotically stable if it is stable and
(1.11) if ,ﬁ’ﬁo f(t}) =0 then ;HT u(t) =0 u

This definition, which is relative to the case of continuous inputs, is the con-
cept of stability that we need for our purposes and that we will extend to the
nonlinear case. Here we want to stress a crucial point concerning condition
(1.7). In fact Proposition 1.2 states that this condition implies asymptotic sta-
bility of (1.1); actually we have more

Theorem 1.4. The trivial solution. of (1.1} is stable if and only if R(+) satisfies
(1.7).

Proof:

We give the proof for the scalar case, since the extension to the general case 1$
trivial. First we note that, by (1.8), condition (1.7) implies stability. Then we
suppose that stability occurs and prove (1.7). :

To this purpose, by Definition 1.3, we let & be such that for
fe Cg(f0, »), R) and |fl. < & the solution u(z) to (1.1) satisfies lu(e)} < 1.

Then for anyfe Cp(f0, =), R} we set g(1) = i f(t) so that, since

Ifle
112)  (R*H () = f(1) - % [g() ~ (R * g) (0]

and the square bracket term is the solution to (1.1) with input g(-), we con-
clude

1
a1 Awepol<(r+ L)

Now we suppose by contraddiction that (1.7) is not satisfied and let ¢, be such
that
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Iim 1, = +o, /0 IR(s}{ ds > n

[—r 0

Next we set
¢, (s) = sign (R(1, —5)), YVsel0, 1]
so that
/0 R(t, = s)p.(s) ds > n, |pu(s)| <1 ae in [0,1]

Then, for any fixed n we consider the sequence {¢%(s)}, of continuous func-
tions on [0, t,] such that

lon(s)| <1, ¢h(r) = 0, lim ¢5(s) = ¢u(5) ace in [0, 1]

and choose & such that
tn -
(1.14) L R(1, — s)¢% (s) ds > n

Finally, setting

k() forte [0, ]

fort>t,

= {8
we have f, € Cx([0, =), R), {f.]~ =< 1 and, by (1;13),
1
Refyl<(1+ L)
which contradicts (1.14). u

-As a consequence of this theorem and of Proposition 1.2, we also have

Corollary 1.5. The trivial solution of (1.1) is stable if and only if it is asymptoti-
cally stable. n
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2 The Paley-Wiener theorem

In the previous section we have seen that in order to study the asymptotic
stability of (1.1) we are led to consider conditions on the kernel K(-) so that
(1.7) be satisfied: here we present a classical result that is usually known as the
Paley-Wiener Theorem and that is basic tool for investigating stability of in-
tegral equations (see [80]). In this respect let

oo

K(}) = /0 eMK(t) dt

denote the Laplace transform of K(-) which, by (1.2), exists absolutely for
9RA = 0; then we have

Theorem 2.1. The following condition
(2.1) det (I — K(A)) #0 for RA=0

" is necessary and sufficient in order that (1.7) be satisfied.

Proof:

We prove the theorem in the scalar case since the general case is analogous
(note that in the scalar case the two equations (1.3)-(1.4) coincide). Let us first
prove that (2.1) is necessary. In fact, (1.7) implies that R(-) is absolutely La-

place transformable for A = ¢ and, moreover, from (1.3) we have

R(A) — R(A)R(A) = —K(A), RA=0

that is

(1-KMA)((1~RHA)=1 RrA=0

so that (2.1) must be satisfied.

To prove that (2.1) is sufficient we first prove that R(-) is absolutely La-

place transformable for RA sufficiently large. In fact, let 1 > 0 be sufficiently
large in order that

o

a= /0 e MK () dt < 1
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Then, from (1.3)
T ' T 1
— At — At —
/0 e MR@)| dt < a + /O e /0 |K(t—s)|IR(s)| ds dt

T T
<a-+ /0 e **|R(s)| /s e =K (t—5)| dt ds

T

<a+a /0 e *|R(s)| ds

and

T

[ e M|R(s}| ds <
o

which implies absolute Laplace transformability of R(:) for RA sufﬁaenﬂy
large. We also note that by (1.3) we also have

R
K(W)-1

(2.2) R(A) = for RA sufficienlty large

We now need a basic result from Fourier transformation theory, name]y, de-
notmg by f*(x) the Fourier transform of fe L*’ (R)

) = / e f() d, xeR
we recall

(2.3) Let F(z) be analytic in the connected open set A s 0 and such tha

F(0) = 0. Let f e L'(R) be such that f*(x) e A for x e R. Then there
exists g € L' (R) such that -

g*(x) = F(f*(x)) VxeR.

Then we call K(-) the extension of K(-} by setting K(t) = 0 for t < 0; of course, -

by (2.1) we have

R*(x)=K(x)#1, YVxeR
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so that, since F{(z) = z

that z=

- is analytic in C — {1}, there exists g e L'(R) such

(2.4) gt = K L oR
: K(ix)—1
Now we consider the two functions

0

P,(z) = /_w e " g(t) dt in the half plane Rz < 0

K(z)

a(z) = —
K(z})—1

- / e *'g(t) dt in the half plane Rz =0
0
These are analytic in their respective domains, moreover by (1.16) they satisfy
¢:(ix) = ¢po(ix) xeR
P(z) = ¢;(z) for Rz <0
P(z) = Px(z) for Rz <O

Now, ¢ is bounded because so are ¢; and ¢,, consequently jt is constant and,
since lim  ¢(x) = 0, itis ¢(z) = 0 V z e C. This yields

80)= EX_ for qrz0
R()—1
which, compared with (1.15) implies R(z) = g(t) and (1.7} is proved. L

3 A class of non-linear functional perturbations
Now we consider the following perturbation of equation (1.1)

(3.1) u(t) = /o K(t — s)u(s) ds + Pfu(-), c(-)](1)

where the kernel K(-) is supposed to verify the assumption (1.2) and the non-
linear functional term
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@ - CO ([01 +m)7 Rn) x LI([aJ b_]) Rm) - CO ([0) +OO)) Rn)
satisfies the following conditions
(3.2) @0, 0] =0

(3.3) There exists a function R — L(R), ‘éin% L(R) = 0 such that

[Pluc-), o)] = PLa(), o()]lo < LR)u~al
for jule, lil, |c|i <R
(3.4) There exists a constant K > 0 such that
P[0, ¢(-)]le < K |c|s Y ce L ([a, b]; R
In equation (3.1) the term ¢ € L’ (fa, bJ; R™) acts as an input variable and is

supposed to be assigned.

We let R(-) be the resolvent kernel relative to K(-) and transform (3.1)
into '

(3.5) u(t) = Plu(-), c(-)J(1] - /0 R(t=s) Plu("), c(-)] (s) ds

The following result is strictly related to the condition (2.1) of the Paley-
Wiener Theorem

Theorem 3.1. Let K and P satisfy the assumptions (1.2), (3.2)-(3.4) and
suppose that (1.7) holds. Then for any € > 0 there exist & such that for any
¢ e L' ([a, b]; R™) satisfying |c|.. < & equation (3.1) has one and only one
solution u € Cy ([0, +=]; R"} such that |u], < e.

Proof:

Take & > 0; then, since R(-) € L ([0, »); £ (R"}), we can chose 7 < € such
that

I :
2(1 + K)(1 + |R|l..)

Liny <
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then we set

6= L{nn

Now we define the set

H= {u € CO ([0: +m); Rn); !uim = n}

and for any fixed ¢ € L? (fa, b]; R”’), such that |c|,; < 8, we consider the
mapping ¥ defined as

(3.6), (Tu)(t) = Plul-), o(-)](1)— /0 R(t—s)P[u(-), c()] (s)ds VueX
Actually,-_..ior any u € J we have

(Tu)lo < (I+|RILI(L(n)ulwtKlcle) < I+HR|L)(I+K)L{n)n <1

and foru, i e A
(Tw) — (T < (I+Rl) L) lu—iil. < —i- lu—i.

Thus T is a contraction such that 5 (¥) C X and, consequently, it has one and
only one fixed point in X. This proves the theorem. =
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