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Demographic models with either continuous age or age groups are de-
veloped and then extended to MSEIR and SEIR endemic models for the
spread of infectious diseases in populations. Expressions for the basic
reproduction number R0 are obtained and threshold theorems are ob-
tained. Values of R0 and the contact number σ are estimated for measles
in Niger and pertussis in the United States.
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3.1. Introduction

In Chapters 1 and 2 we found that the threshold for many epidemiology
models is the basic reproduction number R0, which determines when an
infection can invade and persist in a new host population. In this chapter
we extend these results to epidemiology models with age structure based
on either continuous age or age groups. The definitions and notation here
are the same as in Chapters 1 and 2, as shown in Table 1. For example,
the variables M, S, E, I, and R are used for the passively immune, sus-
ceptible, exposed (latent), infectious, and removed epidemiological classes,
respectively. This chapter is based on the last part of the paper [36].

Realistic infectious disease models include both time t and age a as inde-
pendent variables, because age is often an important factor in the transmis-
sion process. For example, age groups mix heterogeneously, the recovered
fraction usually increases with age, risks from an infection may be related
to age, vaccination programs often focus on specific ages, and epidemiologic
data is often age specific. First, demographic models with either continu-
ous age or age groups are formulated and analyzed. These two demographic
models demonstrate the role of the population reproduction numbers in de-
termining when the population grows asymptotically exponentially. Then
the MSEIR with continuous age structure is formulated and analyzed. Gen-
eral expressions for the basic reproduction number R0 and the average age
of infection A are obtained. Special expressions for these quantities are
found in the cases when the survival function of the population is a neg-
ative exponential and a step function. In addition the endemic threshold
and the average age of infection are obtained when vaccination occurs at
age Av. Then the SEIR model with age groups is formulated and analyzed.
The expressions for the basic reproduction number R0 and the average age
of infection A are analogous to those obtained for the MSEIR model with
continuous age structure.

The theoretical expressions for the basic reproduction number R0 are
used to obtain estimates of the basic reproduction number R0 and the av-
erage age of infection A for measles in Niger, Africa. These estimates are
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affected by the very rapid 3.3% growth of the population in Niger. Esti-
mates of the basic reproduction number R0 and the contact number σ are
obtained for pertussis (whooping cough) in the United States. Because per-
tussis infectives with lower infectivity occur in previously infected people,
the contact number σ at the endemic steady state is less than the basic
reproduction number R0.

3.2. Three threshold quantities: R0, σ, and R

In Chapters 1 and 2, we defined the basic reproduction number R0 as the
average number of secondary infections that occur when one infective is
introduced into a completely susceptible host population [16]. The contact
number σ is defined as the average number of adequate contacts of a typical
infective during the infectious period [28, 39]. An adequate contact is one
that is sufficient for transmission, if the individual contacted by the suscep-
tible is an infective. The replacement number R is defined to be the average
number of secondary infections produced by a typical infective during the
entire period of infectiousness [28]. We noted that these three quantities R0,
σ, and R are all equal at the beginning of the spread of an infectious disease
when the entire population (except the infective invader) is susceptible.

Table 1. Summary of notation.

symbol quantity (number, fraction, rate, or period)

M passively-immune infants
S susceptibles
E exposed people in the latent period
I infectives
R recovered people with immunity
m, s, e, i, r fractions of the population in the classes above
β contact rate
1/δ average period of passive immunity
1/ε average latent period
1/γ average infectious period
R0 basic reproduction number
σ contact number
R replacement number

Although R0 is only defined at the time of invasion into a completely
susceptible population, σ and R are defined at all times. For most models,
the contact number σ remains constant as the infection spreads, so it is then
equal to the basic reproduction number R0. In these models σ and R0 can
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be used interchangeably and invasion theorems can be stated in terms of
either quantity. But for some models such as the pertussis models considered
in Section 7, the contact number σ is a function of time and becomes
less than the basic reproduction number R0 after the invasion, because
new classes of infectives with lower infectivity appear when the disease has
entered the population. The replacement number R, which is the actual
number of secondary cases from a typical infective, is always a function
of time. After the infection has invaded a population and everyone is no
longer susceptible, the replacement number R is always less than the basic
reproduction number R0. Also after the invasion, the susceptible fraction is
less than one, so that not all adequate contacts result in a new case. Thus
the replacement number R is always less than the contact number σ after
the invasion. Combining these results we observe that

R0 ≥ σ ≥ R,

with equality of the three quantities at the time of invasion. Note that
R0 = σ for most models, and σ > R after the invasion for all models.

3.3. Two demographic models

Before formulating the age-structured epidemiological models, we present
two underlying demographic models, that describe the changing size and
age structure of a population over time. These demographic models are a
standard partial differential equations model with continuous age and an
analogous ordinary differential equations model with age groups.

3.3.1. The demographic model with continuous age

The demographic model consists of an initial-boundary value problem with
a partial differential equation for age-dependent population growth [40]. Let
U(a, t) be the age distribution of the total population, so that the number
of individuals at time t in the age interval [a1, a2] is the integral of U(a, t)
from a1 to a2. The partial differential equation for the population growth
is

∂U

∂a
+

∂U

∂t
= −d(a)U, (3.3.1)

where d(a) is the age-specific death rate. Note that the partial derivative
combination occurs because the derivative of U(a(t), t) with respect to t is
∂U
∂a

da
dt + ∂U

∂t , and da
dt = 1. Let f(a) be the fertility per person of age a, so
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that the births at time t are given by

B(t) = U(0, t) =
∫ ∞

0

f(a)U(a, t)da. (3.3.2)

The initial age distribution is given by U(a, 0) = U0(a) with U0(0) = B(0).
This model was used by Lotka [47] in 1922 for population modeling, by
McKendrick [48] in 1926 in conjunction with epidemic models, and by
von Foerster [60] for cell proliferation, so it is sometimes called the Lotka–
McKendrick model or the McKendrick–von Foerster model.

We briefly sketch the proof ideas for analyzing the asymptotic behavior
of U(a, t) when d(a) and f(a) are reasonably smooth [40, 41]. Solving along
characteristics with slope 1, we find U(a, t) = B(t− a)e−

∫ a
0 d(v)dv for t ≥ a,

and U(a, t) = u0(a − t)e−
∫ a

a−t
d(v)dv for t < a. If the integral in (3.3.2) is

subdivided at a = t, then substitution of the expressions for U(a, t) on the
intervals yields

B(t) = U(0, t)

=
∫ t

0

f(a)B(t − a)e−
∫

a
0 d(v)dvda +

∫ ∞

t

f(a)U0(a)e−
∫ a

a−t
d(v)dvda.

This equation with a kernel K(a) in the first integral and g(t) for the second
integral becomes the renewal equation B(t) =

∫ t

0
K(a)B(t−a)da+g(t). To

analyze this convolution integral equation for B(t), take Laplace transforms
and evaluate the contour integral form of the inverse Laplace transform
by a residue series. As t → ∞, the residue for the extreme right pole
dominates, which leads to U(a, t) → eqtA(a) as t → ∞. Thus the population
age distribution approaches the steady state A(a), and the population size
approaches exponential growth or decay of the form eqt.

To learn more about the asymptotic age distribution A(a), assume a sep-
aration of variables form given by U(a, t) = T (t)A(a). Substituting this into
the partial differential equation (3.3.1) and solving the separated differential
equations yields U(a, t) = T (0)eqtA(0)e−D(a)−qa, where D(a) =

∫ a

0 d(v)dv.
Substituting this expression for U(a, t) into the birth equation (3.3.2), we
obtain the Lotka characteristic equation given by

1 =
∫ ∞

0

f(a) exp[−D(a) − qa]da. (3.3.3)

If the population reproduction number given by

Rpop =
∫ ∞

0

f(a) exp[−D(a)]da (3.3.4)
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is less than, equal to, or greater than 1, then the solution q of (3.3.3) is
negative, zero, or positive, respectively, so that the population is decaying,
constant, or growing, respectively.

In order to simplify the demographic aspects of the epidemiological mod-
els, so there is no dependence on the initial population age distribution, we
assume that the age distribution in the epidemiology models has reached
a steady state age distribution with the total population size at time 0
normalized to 1, so that

U(a, t) = ρeqte−D(a)−qa, with ρ = 1
/∫ ∞

0

e−D(a)−qada . (3.3.5)

In this case the birth equation (3.3.2) is equivalent to the characteristic
equation (3.3.3).

If the age-specific death rate d(a) is constant, then (3.3.5) is U(a, t) =
eqt(d + q)e−(d+q)a. Intuitively, when q > 0, the age distribution is (d +
q)e−(d+q)a, because the increasing inflow of newborns gives a constantly in-
creasing young population, so that the age distribution decreases with age
faster than de−da, corresponding to q = 0. Note that the negative exponen-
tial age structure may be a reasonable approximation in some developing
countries, but it is generally not realistic in developed countries, where a
better approximation would be that everyone lives until a fixed age L such
as 75 years and then dies. In this case, d(a) is zero until age L and infinite
after age L, so that D(a) is zero until age L and is infinite after age L. These
two approximate survival functions given by the step function and the neg-
ative exponential are called Type I and Type II mortality, respectively, by
Anderson and May [4]. Of course, the best approximation for any country
is found by using death rate information for that country to estimate d(a).
This approach is used in the models with age groups in Sections 3.6 and
3.7.

The factor w(a) = e−D(a) gives the fraction of a birth cohort surviving
until age a, so it is called the survival function. The rate of death is −w′(a),
so that the expected age a of death is L = E[a] =

∫∞
0 a[−w′(a)]da =∫∞

0 wda. When the death rate coefficient d(a) is constant, then w(a) = e−da

and the mean lifetime L is 1/d. For a step survival function, the mean
lifetime is the fixed lifetime L.

3.3.2. The demographic model with age groups

This demographic model with age groups has been developed from the
initial-boundary value problem in the previous section for use in age struc-



August 27, 2008 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) LNSVol16-chapters1-3

Age-Structured Epidemiology Models 97

tured epidemiologic models for pertussis [34]. It consists of a system of n

ordinary differential equations for the sizes of the n age groups defined by
the age intervals [ai−1, ai] where 0 = a0 < a1 < a2 < · · · < an−1 < an = ∞.

A maximum age is not assumed, so the last age interval [an−1,∞) corre-
sponds to all people over age an−1. For a ∈ [ai−1, ai], assume that the death
rates and fertilities are constant with d (a) = di and f(a) = fi. We also as-
sume that the population has reached an equilibrium age distribution with
exponential growth in the form U(a, t) = eqtA(a) given by (3.3.5), so that
the number of individuals in the age bracket [ai−1, ai] is given by

Ni(t) =
∫ ai

ai−1

U(a, t)da = eqt

∫ ai

ai−1

A(a)da = eqtPi, (3.3.6)

where Pi is the size of the ith age group at time 0.
Substituting U(a, t) = eqtA(a) into (3.3.1) yields the ordinary differen-

tial equation dA/da = −[d(a) + q]A, which can be solved on the interval
[ai−1, ai] to obtain

A(a) = A(ai−1) exp[−(di + q)(a − ai−1)]. (3.3.7)

Integrate this A(a) over the interval [ai−1, ai] to get

Pi = A(ai−1){1 − exp[−(di + q)(ai − ai−1)]}/(di + q). (3.3.8)

For i = 1, 2, . . . , n−1, it is convenient to define the constants ci by A(ai) =
ciPi. Use this definition of the constants ci with (3.3.7) and (3.3.8) to obtain

ci =
A(ai)

Pi
=

di + q

exp[(di + q)(ai − ai−1)] − 1
. (3.3.9)

Integration of (3.3.1) on the intervals [ai−1, ai] and (3.3.6) yields

dN1/dt =
n∑

j=1

fjNj − (c1 + d1)N1,

dNi/dt = ci−1Ni−1 − (ci + di)Ni, 2 ≤ i ≤ n − 1,

dNn/dt = cn−1Nn−1 − dnNn.

(3.3.10)

Thus the constants ci are the transfer rate constants between the successive
age groups.

Equations (3.3.7) and (3.3.8) imply A(ai) − A(ai−1) = −[di + q]Pi.
Substituting A(ai) = ciPi leads to Pi = ci−1Pi−1/(ci + di + q) for i ≥ 2.

Iterative use of this equation leads to the following equation for Pi in terms
of P1:

Pi =
ci−1 · · · c1P1

(ci + di + q) · · · (c2 + d2 + q)
. (3.3.11)
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The birth equation A(0) =
∑n

i=1 fiPi, A(0) = (c1 + d1 + q)P1, and (3.3.11)
lead to the age-group form of the Lotka characteristic equation (3.3.3) given
by

1 =
f1 + f2

c1

(c2 + d2 + q)
+ · · · + fn

cn−1 · · · c1

(cn + dn + q) · · · (c2 + d2 + q)
(c1 + d1 + q)

.

(3.3.12)
For this demographic model with n age groups, the population reproduction
number is given by

Rpop = f1
1

(c1 + d1)
+ f2

c1

(c2 + d2)(c1 + d1)

+ · · · + fn
cn−1 · · · c1

(cn + dn + q) · · · (c1 + d1)
. (3.3.13)

If the fertility constants fi and the death rate constants di for the age
groups are known, then the equation (3.3.12) with each ci given by (3.3.9)
can be solved for the exponential growth rate constant q. If the population
reproduction number Rpop is less than, equal to, or greater than 1, then
the q solution of (3.3.12) is negative, zero, or positive, respectively, so that
the population is decaying, constant, or growing, respectively. As in the
continuous demographic model, it is assumed that the population starts
at a steady state age distribution with total size 1 at time 0, so that the
group sizes Pi remain fixed and add up to 1. See [34] for more details on
the derivation of this demographic model for age groups.

3.4. The MSEIR model with continuous age structure

For many endemic models the basic reproduction number can be deter-
mined analytically by either of two methods. One method is to find the
threshold condition above which a positive (endemic) equilibrium exists for
the model and to interpret this threshold condition as R0 > 1. The second
method is to do a local stability analysis of the disease-free equilibrium and
to interpret the threshold condition at which this equilibrium switches from
asymptotic stability to instability as R0 > 1. As shown in Chapter 1, both
of these methods give the same R0 for the basic SIR endemic model, because
the two equilibria exchange stability with each other in the sense that as the
contact rate increases, the unstable, nontrivial equilibrium with a negative
coordinate moves from outside the feasible region through the disease-free
equilibrium at R0 = 1 and into the feasible region, where it becomes a pos-
itive, stable endemic equilibrium. Similar methods work to obtain the basic
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reproduction number for age-structured epidemiological models; both are
demonstrated for an SIR model with continuous age-dependence in [13].
Here we use the appearance of an endemic steady state age distribution to
identify expressions for the basic reproduction number R0, and then show
that the disease-free steady state is globally asymptotically stable if and
only if R0 ≤ 1.

M

�
births

�δM

�deaths

S

�
births

�λS

�deaths

E �εE

�deaths

I �γI

�deaths

R

�deaths

Fig. 1. Transfer diagram for the MSEIR model with the passively-immune class M, the
susceptible class S, the exposed class E, the infective class I, and the recovered class R.

This age-structured MSEIR model uses the transfer diagram of Figure
1 and the notation in Tables 1 and 2. The age distributions of the numbers
in the classes are denoted by M(a, t), S(a, t), E(a, t), I(a, t), and R(a, t),
where a is age and t is time, so that, for example, the number of susceptible
individuals at time t in the age interval [a1, a2] is the integral of S(a, t) from
a1 to a2. Because information on age-related fertilities and death rates are
available for most countries and because mixing is generally heterogeneous,
epidemiology models with age groups are now used frequently when ana-
lyzing specific diseases. However, special cases with homogeneous mixing
and asymptotic age distributions that are a negative exponential or a step
function are considered later. These special cases of the continuous MSEIR
model are often used as approximate models. For example, the negative
exponential age distribution is used for measles in Niger in Section 3.6.

3.4.1. Formulation of the MSEIR model

The rate constants δ, ε, and γ are the transfer rates out of the M , E,
and I classes. Here it is assumed that the contact rate between people
of age a and age ã is separable in the form b(a)b̃(ã), so that the force of
infection λ is the integral over all ages of the contact rate times the in-
fectious fraction I(ã, t)/

∫∞
0 U(ã, t)dã at time t. The division by the total

population size
∫∞
0 U(a, t)da makes the contact rate λ(a, t) independent of

the population size, so the contact number is independent of the popula-
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Table 2. Summary of notation.

symbol function or parameter

f(a), fi fertilities for continuous age, age groups

d(a), di death rate coefficients for continuous age, age groups

L average lifetime

Rpop population reproduction number

q population growth rate constant

U(a, t) distribution of the total population for continuous age

A(a) steady state age distribution for continuous age

N1(t), . . . , Nn(t) distribution of total population at time t for age groups

P1, . . . , Pn steady state age distribution for age groups

ci rate constant for transfer from ith age class

λ(a, t), λi force of infections on susceptibles of age a, in age group i

b(a)b̃(ã) contact rate between people of ages a and ã

bib̃j contact rate between people in age groups i and j

R0 basic reproduction number

A average age of infection

tion size [15, 29, 32, 49]. One example of separable mixing is proportionate
mixing, in which the contacts of a person of age are distributed over those
of other ages in proportion to the activity levels of the other ages [33, 52].
If l(a) is the average number of people contacted by a person of age a per
unit time, u(a) is the steady state age distribution for the population, and
D =

∫∞
0 l(a)u(a)da is the total number of contacts per unit time of all

people, then b(a) = l(a)/D1/2 and b(ã) = l(ã)/D1/2. Another example of
separable mixing is age-independent mixing given by b(a) = 1 and b̃(ã) = β.

The system of partial integro-differential equations for the age distribu-
tions are:

∂M/∂a + ∂M/∂t = −(δ + d(a))M,

∂S/∂a + ∂S/∂t = δM − (λ(a, t) + d(a))S,

with λ(a, t) =
∫ ∞

0

b(a)b̃(ã)I(ã, t)dã

/∫ ∞

0

U(ã, t)dã ,

∂E/∂a + ∂E/∂t = λ(a, t)S − (ε + d(a))E,

∂I/∂a + ∂I/∂t = εE − (γ + d(a))I,

∂R/∂a + ∂R/∂t = γI − d(a)R.

(3.4.1)

Note that M + S + E + I + R = U(a, t). As in the MSEIR model without
age structure, infants born to mothers in the classes M, E, I, and R have
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passive immunity. Thus the boundary conditions at age 0 are

M(0, t) =
∫ ∞

0

f(a)[M + E + I + R]da,

S(0, t) =
∫ ∞

0

f(a)Sda,

while the other distributions at age 0 are zero. Initial age distributions at
time 0 complete the initial-boundary value problem for this MSEIR model.

For each age a the fractional age distributions of the population in
the epidemiological classes at time t are m(a, t) = M(a, t)/U(a, t), s(a, t) =
S(a, t)/U(a, t), etc., where U(a, t) is given by (3.3.5) in the previous section.
Because the numerators and denominator contain the asymptotic growth
factor eqt, these fractional distributions do not grow exponentially. The
partial differential equations for m, s, e, i, and r found from (3.4.1) are

∂m/∂a + ∂m/∂t = −δm,

∂s/∂a + ∂s/∂t = δm − λ(a, t)s,

with λ(a, t) = b(a)
∫ ∞

0

b̃(ã)i(ã, t)ρe−D(ã)−qãdã,

∂e/∂a + ∂e/∂t = λ(a, t)s − εe,

∂i/∂a + ∂i/∂t = εe − γi,

∂r/∂a + ∂r/∂t = γi,

(3.4.2)

and the boundary conditions at age 0 are zero except for

m(0, t) =
∫ ∞

0

f(a)[1 − s(a, t)]e−D(a)−qada,

s(0, t) =
∫ ∞

0

f(a)s(a, t)e−D(a)−qada,

(3.4.3)

where m(0, t) + s(0, t) = 1 by (3.3.3).
For this endemic MSEIR model, the steady state age distributions m(a),

s(a), e(a), i(a), and r(a) add up to 1 and satisfy the ordinary differential
equations corresponding to the equations (3.4.2) with the time derivatives
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set equal to zero. The steady state solutions m(a), s(a), e(a), and i(a) are

m(a) = (1 − s0)e−δa,

s(a) = e−Λ(a)

[
s0 + δ(1 − s0)

∫ a

0

e−δx+Λ(x)dx

]
,

e(a) = e−εa

∫ a

0

λ(y)eεy−Λ(y)

[
s0 + δ(1 − s0)

∫ y

0

e−δx+Λ(x)dx

]
dy,

i(a) = e−γa

∫ a

0

εe(γ−ε)z

×
∫ z

0

λ(y)eεy−Λ(y)

[
s0 + δ(1 − s0)

∫ y

0

e−δx+Λ(x)dx

]
dydz,

(3.4.4)

where Λ(a) =
∫ a

0
λ(α)dα with λ = kb(a) for some constant k. At the

disease-free steady state, k is zero, s = 1, and m = e = i = r = 0. The
endemic steady state corresponds to k being a positive constant.

3.4.2. The basic reproduction number R0 and stability

We now use the solutions of the MSEIR model to examine the basic repro-
duction number R0. Substituting the steady state solution i(a) in (3.4.4)
into the expression for λ in (3.4.2) yields

λ(a) = b(a)
∫ ∞

0

b̃(ã)ρe−D(ã)−qã−γã

∫ ã

0

εe(γ−ε)z

×
∫ z

0

λ(y)eεy−Λ(y)

[
s0 + δ(1 − s0)

∫ y

0

e−δx+Λ(x)dx

]
dydzdã. (3.4.5)

Using the definition of s0 and (3.4.4), we find that

s0 = s0Fλ + δ(1 − s0)F∗, (3.4.6)

where Fλ =
∫∞
0 f(a)e−Λ(a)−D(a)−qada and

F∗ =
∫ ∞

0

f(a)e−Λ(a)−D(a)−qa

∫ a

0

e−δx+Λ(x)dxda. (3.4.7)

Substituting the solution s0 in (3.4.6) into (3.4.5) and cancelling λ(a) =
kb(a) yields

1 =
∫ ∞

0

b̃(ã)ρe−D(ã)−qã−γã

∫ ã

0

εe(γ−ε)z

∫ z

0

b(y)eεy

[
δF∗e−k

∫
y
0 b(α)dα

+ δ(1 − Fλ)
∫ y

0

e−δx−k
∫ y

x
b(α)dαdx

]/
(δF∗ + 1 − Fλ)dydzdã. (3.4.8)
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The right side of this equation can be shown to be a decreasing function of
k, so that (3.4.8) has a positive solution k corresponding to a positive force
of infection λ(a) = kb(a) if and only if R0 > 1, where the basic reproduction
number R0 below is found by setting k = 0 in the right side of equation
(3.4.8):

R0 =
∫ ∞

0

b̃(ã)ρe−D(ã)−qã−γã

∫ ã

0

εe(γ−ε)z

∫ z

0

b(y)eεydydzdã. (3.4.9)

Note that R0 > 1 implies that (3.4.8) has a positive solution k, which gives
a positive force of infection λ(a) = kb(a) and Λ(a) = k

∫ a

0
b(α)dα defining

the endemic steady state solution (3.4.4). This expression (3.4.9) for the
basic reproduction number in the MSEIR model seems to be new.

Determining the local stability of the disease-free steady state (at which
λ = kb(a) = 0 and s = 1) by linearization is possible following the method
in [13], but we can construct a Liapunov function to show the global stability
of the disease-free steady state when R0 ≤ 1. The feasible set for (3.4.2)
consists of nonnegative fractions that add to 1. Consider the Liapunov
function

V =
∫ ∞

0

[α(a)e(a, t) + β(a)i(a, t)]da,

where the positive, bounded functions α(a) and β(a) are to be determined.
The formal Liapunov derivative is

V̇ =
∫ ∞

0

{α(a)[λs − εe − ∂e/∂a] + β(a)[εe − γi − ∂i/∂a]}da,

=
∫ ∞

0

{λsα(a) + e[α′(a) − εα(a) + εβ(a)] + [β′(a) − γβ(a)]i}da.

Choose α(a) so that the coefficient of the e term is zero. Then

V̇ =
∫ ∞

0

sb(a)εeεa

∫ ∞

a

e−εzβ(z)dzda

∫ ∞

0

b̃(ã)iρe−D(ã)−qãdã

+
∫ ∞

0

[β′ − γβ]ida.

Choose β(y) so that the last integral is the negative of the next to last
integral. Then

V̇ =
[∫ ∞

0

sb(a)εeεa

∫ ∞

a

e(γ−ε)z

∫ ∞

z

b̃(x)ρe−D(x)−qx−γxdxdzda − 1
]

×
∫ ∞

0

b̃(ã)i(ã, t)ρe−D(ã)−qãdã.
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Now s ≤ 1 and the triple integral in the first factor in V̇ above with s = 1
is equal to R0 in (3.4.9) after changing the order of integration. Thus

V̇ ≤ (R0 − 1)
∫ ∞

0

b̃(ã)i(ã, t)ρe−D(ã)−qãdã ≤ 0 if R0 ≤ 1.

Hence solutions of (3.4.2) move downward through the level sets of V as
long as they do not stall on the set where V̇ = 0. The set with V̇ = 0 is
the boundary of the feasible region with i = 0, but di(a(t), t)/dt = εe on
this boundary, so that i moves off this boundary unless e = 0. If e = i = 0
so there are no exposed or infectious people, then (3.4.1) implies that there
would be no removed people or infants with passive immunity after several
generations, so everyone would be susceptible. Thus the disease-free steady
state is the only positively invariant subset of the set with V̇ = 0. If there
is a finite maximum age (so that all forward paths have compact closure),
then either Corollary 2.3 in [50] or Corollary 18.5 in [1] (Liapunov-Lasalle
theorems for semiflows) implies that all paths in the feasible region approach
the disease-free steady state.

If R0 > 1, then we have V̇ > 0 for points sufficiently close to the
disease-free steady state with s close to 1 and i > 0 for some age, so
that the disease-free steady state is unstable. This implies that the system
(3.4.2) is uniformly persistent when R0 > 1, as for the ordinary differential
equation models in the basic SIR and MSEIR endemic models in Chapter
1, but the assumption of a finite maximum age seems to be necessary to
satisfy the condition in Theorem 4.6 in [57] that there is a compact set that
attracts all solutions. Although the endemic steady state would usually be
stable, this may not be true in unusual cases. For example, the endemic
steady state can be unstable in the age-structured SIR model when b(a)
is decreasing and b̃(ã) is constant [7] and when b̃(ã) is concentrated at a
certain age while b(a) is constant [56]. Some types of mixing cannot be
written in the separable form b(a)b̃(ã). For example, in preferred mixing,
certain age groups are more likely to mix with their own age group [33]. For
more general mixing, the endemic steady state might not be unique, but
some conditions that guarantee existence, uniqueness, and local stability
have been given [14, 43].

Because the basic reproduction number for the MSEIR model does not
depend on δ or on whether recovered people have no, temporary, or perma-
nent immunity, the expression (3.4.9) for R0 also works for the MSEIRS,
SEIR, SEIRS, and SEIS models, but the equations (3.4.8) for k would be
different. For example, in the SEIR model all newborns are susceptible, so
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s0 = 1 and the equation for k is (3.4.8) with Fλ = 1. For the SIR model with
no passively immune or latent classes, an analysis similar to that above for
the MSEIR model leads to an equation for the force of infection constant
k given by

1 =
∫ ∞

0

b̃(ã)ρe−D(ã)−qã−γã

∫ ã

0

b(y)eγy−k
∫

y
0 b(α)dαdydã (3.4.10)

and a basic reproduction number given by

R0 =
∫ ∞

0

b̃(ã)ρe−D(ã)−qã−γã

∫ ã

0

b(y)eγydydã. (3.4.11)

This expression is similar to previous R0 expressions for SIR models with
constant population size [13, 18]. The expression (3.4.11) for R0 can also
be used for SIRS and SIS models, but the equations for the positive k when
R0 > 1 would be different. Proofs of stability and persistence for the models
in this paragraph are similar to those for the MSEIR model.

3.4.3. Expressions for the average age of infection A

We now find an expression for the average age of infection for the MSEIR
model at the endemic steady state age distribution. Although the steady
state age distribution of the population is ρe−D(a)−qa, the age distribution
for a specific birth cohort is e−D(a)/

∫∞
0

e−D(a)da. Thus the rate that in-
dividuals in a birth cohort leave the susceptible class due to an infection
is λ(a)s(a)e−D(a)/

∫∞
0 e−D(a)da, where s(a) is given in (3.4.4). Hence the

expected age A for leaving the susceptible class is

A = E[a]

=

∫∞
0 aλ(a)e−D(a)[δF∗e−Λ(a) + δ(1 − Fλ)

∫ a

0 e−δx−Λ(a)+Λ(x)dx]da∫∞
0 λ(a)e−D(a)[δF∗e−Λ(a) + δ(1 − Fλ)

∫ a

0 e−δx−Λ(a)+Λ(x)dx]da
.

(3.4.12)

This expression assumes that the force of infection λ(a) = kb(a) at the
endemic steady state age distribution has already been determined, so that
Λ(a), Fλ, and F∗ are known. For the SEIR and SIR models, s(a) = e−Λ(a),
so that the expression for the average age of infection is

A = E[a] =

∫∞
0 aλ(a)e−Λ(a)−D(a)da∫∞
0

λ(a)e−Λ(a)−D(a)da
. (3.4.13)
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3.4.4. Expressions for R0 and A with negative exponential

survival

When the death rate coefficient d(a) is independent of the age a, the age
distribution (3.3.5) becomes U(a, t) = eqt(d + q)e−(d+q)a. Also the waiting
times in M , E, and I have negative exponential distributions, so that, after
adjusting for changes in the population size, the average period of passive
immunity, the average latent period, and the average infectious period are
1/(δ + d + q), 1/(ε + d + q), and 1/(γ + d + q), respectively. Here it is also
assumed that the contact rate is independent of the ages of the infectives
and susceptibles, so we let b(a) = 1 and b̃(ã) = β. In this case (3.4.9)
defining the basic reproduction number becomes

R0 = βε/[(γ + d + q)(ε + d + q)], (3.4.14)

which has the same interpretation as R0 in the MSEIR model without age
structure.

With the assumptions above, λ is a constant and the equation (3.4.5)
for λ becomes

1 =
(d + q)R0

λ + d + q

[
s0 +

δ(1 − s0)
δ + d + q

]
. (3.4.15)

If s̄ is the integral average of the susceptible steady state age distribution
s(a)(d + q)e−(d+q)a over all ages, then using the endemic steady state solu-
tion s(a) given in (3.4.4), we find that R0s̄ = 1 is equivalent to the equation
(3.4.15). Thus the infective replacement number R0s̄ is one at the endemic
equilibrium for this model. This is not generally true, so it is not valid to
use R0 = 1/s̄ to derive an expression for the basic reproduction number.

Using the definition of s0 and the solutions (3.4.4), we find that

s0 =
δ − λs0

δ − λ
Fλ − δ(1 − s0)

δ − λ
Fδ, (3.4.16)

where Fλ =
∫∞
0 f(a)e−(λ+d+q)ada and Fδ =

∫∞
0 f(a)e−(δ+d+q)ada. Note

that F∗ in (3.4.7) is equal to (Fλ −Fδ)/(δ−λ), so that (3.4.6) is equivalent
to (3.4.16). Here the equations (3.4.15) and (3.4.16) are two simultaneous
equations in the unknowns R0, s0, and λ. One can solve (3.4.16) for s0 to
obtain

s0 = δ(Fλ − Fδ)/[δ(1 − Fδ) − λ(1 − Fλ)]. (3.4.17)

The right side of (3.4.17) is a decreasing function of λ with Fλ = 1 and
s0 = 1 at λ = 0. Substituting (3.4.17) into (3.4.15) yields the equation
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corresponding to equation (3.4.8) given by

1 =
R0(d + q)δ

[
Fλ − Fδ +

(δ − λ)(1 − Fλ)
δ + d + q

]
(λ + d + q)[δ(1 − Fδ) − λ(1 − Fλ)]

, (3.4.18)

which relates R0 and λ. Because the right side of (3.4.18) is a decreasing
function of λ that goes from R0 at λ = 0 to zero as λ → ∞, the equation
(3.4.18) has a positive solution λ if and only if R0 > 1. If d(a) = d and
f(a) = b = d + q, then equation (3.4.18) reduces to a simple equation for
λ in an ordinary differential equations MSEIR model ([36], p. 620). When
R0 ≤ 1, solutions of (3.4.2) approach the disease-free steady state (3.4.4)
with λ = 0, and for fixed R0 > 1, we expect solutions to approach the
endemic steady state (3.4.4) with the constant λ determined by solving
either (3.4.18) or the combination of (3.4.15) and (3.4.16).

We now find an expression for the average age of infection for this
MSEIR model. Here the steady state age distribution of the population
is (d + q)e−(d+q)a, and the age distribution for a specific birth cohort is
de−da. Thus the rate that individuals in a birth cohort leave the suscepti-
ble class due to an infection is λs(a)de−da, where s(a) is given in (3.4.4).
Here the equation for the expected age A for leaving the susceptible class
is

A = E[a] =
λd
∫∞
0

a[c1e
−(λ+d)a + c2e

−(δ+d)a]da

λd
∫∞
0 [c1e−(λ+d)a + c2e−(δ+d)a]da

=

δ − λs0

(λ + d)2
− δ(1 − s0)

(δ + d)2

δ − λs0

(λ + d)
− δ(1 − s0)

(δ + d)

. (3.4.19)

It is useful to consider limiting cases of the model and the corresponding
limiting equations for R0 and A. If δ → ∞, the M class disappears, so that
the MSEIR model becomes an SEIR model with s0 = 1, and the equations
above reduce to λ = (d + q)(R0 − 1) and A = 1/(λ + d), where R0 is still
given by (3.4.14). These same equations also hold for the SIR model, but
R0 = β/(γ+d+q) for this model. For the SEIR and SIR models it is possible
to solve explicitly for R0 in terms of the average lifetime L = 1/d and the
average age of infection A to obtain R0 = (q + 1/A)/(q + 1/L). When
the population has constant size with q = 0, the R0 expression reduces
to R0 = L/A which is the usual formula for the SEIR and SIR models
[34]. By not including the death factor e−da when considering the rate
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of leaving the susceptible class, one obtains the widely-cited approximate
formula R0 ≈ 1 + L/A for the SEIR and SIR models [16]. But the death
factor really should be included, since we want to calculate the average age
for those who survive long enough to become infected.

As another limiting case, consider the MSEIR model for a very virulent
disease in which almost every mother has been infected. In the limiting
situation every newborn infant has passive immunity, so that m0 → 1 and
s0 → 0. In this case λ = (d + q)[R0δ/(δ + d + q) − 1] and

A = 1/(δ + d) + 1/(λ + d).

Note that the formula for λ is for an endemic steady state for a virulent
disease, so it does not imply that R0δ/(δ + d + q) > 1 is the threshold
condition for existence of a positive endemic steady state age distribution;
compare with [4] (p. 81). The formula for A is plausible since it is the sum
of the average period p = 1/(δ+d) of passive immunity and the average age
of attack 1/(λ + d) from the SEIR model. Thus for a very virulent disease,
adding a passively immune class to a model increases the average age of
attack by the mean period of passive immunity. Solving for R0 in terms of
the average period p of passive immunity and the average lifetime L = 1/d,
we obtain

R0 =
[q + 1/(A − p)](1 + pq)

(q + 1/L)(1 − p/L)
. (3.4.20)

For a constant population size with q = 0, we have R0 = L/[(A − p)(1 −
p/L)]. For q = 0 and p 	 L, we obtain the approximation R0 ≈ (L +
p)/(A − p). For this MSEIR model with constant size, it seems naively
that one could just subtract off the average period p of passive immunity
from the average age A of infection and the average lifetime L to obtain
the approximation R0 ≈ (L − p)/(A − p) used in [4] (p. 79, p. 658), [31],
but our careful analysis here shows that this naive formula does not work.
Of course, when q = 0 and p = 0, the expression (3.4.20) reduces to the
previous expression R0 = L/A for the SEIR model with constant population
size.

3.4.5. The MSEIR model with vaccination at age Av

Now we modify the age structured MSEIR endemic model above with con-
stant coefficients to include vaccination at age Av. The results using this
approximate model for measles in Niger are compared with the correspond-
ing results for the MSEIR model with age groups in Section 3.6. Let g be the
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fraction of the population vaccinated successfully at age Av (i.e. the frac-
tion of the population which has permanent immunity after vaccination). In
epidemiological terminology, g is the product of the fraction vaccinated and
the vaccine efficacy. This vaccination at age Av causes a jump discontinuity
in the susceptible age distribution given by s(Av + 0) = (1 − g)s(Av − 0),
where s(Av − 0) is the limit from the left and s(Av + 0) is the limit from
the right.

With this jump condition, the ordinary differential equations corre-
sponding to (3.4.2) without time derivatives, but with constant d and λ,
are solved first on the interval [0, Av] and then on the interval [Av,∞). The
details are omitted, but substituting the steady state solutions i(a) on these
intervals into the expression for λ yields

1 =
R0(d + q)
λ + d + q

[
s0 +

δ(1 − s0)
δ + d + q

− g[c1e
−(λ+d+q)Av + c2e

−(δ+d+q)Av ]
]

,

(3.4.21)
where c1 = (δ−λs0)/(δ−λ) and c2 = −δ(1−s0)/(δ−λ). Note that equation
(3.4.21) reduces to (3.4.15) when g = 0. The analog here of (3.4.16) is

s0 = c1Fλ + c2Fδ − g
[
c1 + c2e

(λ−δ)Av

]
FAv , (3.4.22)

where FAv =
∫∞

Av
f(a)e−(λ+d+q)ada, and Fλ and Fδ are given in the previous

subsection. Given g, Av, and the values for the parameters β, γ, ε, δ, d,
and q, the equations (3.4.21) and (3.4.22) are two simultaneous equations
in the unknowns R0, s0, and λ. It is possible to solve (3.4.22) for s0 and
then substitute into (3.4.21), but we do not present the resulting, rather
complicated expression, which relates R0 and λ. For an SEIR and SIR
models, s0 = 1, so that (3.4.21) reduces to

1 =
R0(d + q)
λ + d + q

[
1 − ge−(λ+d+q)Av

]
. (3.4.23)

For fixed parameters and R0 > 1, it is interesting to find how large
the successfully vaccinated fraction g must be in order to achieve herd
immunity. Recall that a population has herd immunity if a large enough
fraction is immune, so that the disease would not spread if an outside
infective were introduced into the population. To determine this threshold
we consider the situation when the disease is at a very low level with λ nearly
zero, so that almost no one is infected. Thus the initial passively immune
fraction m0 is very small and the initial susceptible fraction s0 is nearly 1.
In the limit as s0 → 1, equation (3.4.21) for the MSEIR model reduces to
λ = (d + q)(R0[1 − ge−(λ+d+q)Av ] − 1), which has a positive solution λ if
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and only if ge−(d+q)Av < 1− 1/R0. If the successfully-vaccinated fraction g

at age Av is large enough so that

ge−(d+q)Av ≥ 1 − 1/R0, (3.4.24)

then the population has herd immunity and the disease cannot spread in
this population. It may seem surprising that this condition is the same for
the SEIR and the MSEIR models, but for very low disease levels, almost
no newborn children have passive immunity, so that the passively immune
class M has no influence on the threshold condition. A similar criterion for
herd immunity with vaccination at two ages in a constant population is
given in [30].

If the condition (3.4.24) is satisfied, then we expect solutions of (3.4.2)
to approach the steady state age distribution with λ = 0, s(a) = 1, and all
other distributions equal to zero, so that the disease disappears. Intuitively,
there are so many immunes that the average infective cannot replace itself
with at least one new infective during the infectious period and, conse-
quently, the disease dies out. If the inequality above is not satisfied and
there are some infecteds initially, then we expect the susceptible fraction
to approach the stable age distribution given by the jump solution with a
positive, constant λ that satisfies (3.4.21) and (3.4.22).

For an MSEIR model an expression for the average age of infection is

A =
1

λ + d
−

gAv[c1e
−(λ+d)Av + c2e

−(δ+d)Av ] + c2
δ−λ

(δ+d)2

c1[1 − ge−(λ+d)Av ] + c2[λ+d
δ+d − ge−(δ+d)Av ]

.

The analogous expression for an SEIR or SIR model has c2 = 0. The neg-
ative signs in the expression for A makes it seem as if A is a decreasing
function of the successfully vaccinated fraction g, but this is not true since
the force of infection λ is a decreasing function of g.

3.4.6. Expressions for R0 and A for a step survival

function

For the demographic model in which everyone survives until age L and then
dies, d(a) is zero until age L and infinite after age L, so that D(a) is zero
until age L and is infinite after age L. It is assumed that the population
is constant, so q = 0 and ρ = 1/L in (3.3.5). Mixing is homogeneous,
so b(a) = 1 and b̃(ã) = β. For the MSEIR and SEIR models the basic
reproduction number found from (3.4.9) is

R0 =
β

γ

[
1 +

γ

ε − γ

1 − e−εL

εL
− ε

(ε − γ)
1 − e−γL

γL

]
. (3.4.25)
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An epidemiological interpretation is that the right side of (3.4.25) except
for the contact rate β is the average infectious period. For the SEIR model
the equation (3.4.8) for the constant λ at the endemic steady state age
distribution becomes

1 = βε

[
1 − e−λL

(γ − λ)(ε − λ)λL
+

1 − e−εL

(ε − λ)(ε − γ)εL
− 1 − e−γL

(γ − λ)(ε − γ)γL

]
.

(3.4.26)
For the MSEIR model the integrals in the equation (3.4.8) do not simplify
very much, so this equation for the constant λ is not presented. The basic
reproduction numbers for the MSEIRS and SEIRS models are also given by
(3.4.25), but the equations for the constant λ at the endemic steady state
age distributions would be different for these models.

For the analogous SIR model R0 found from (3.4.11) is given by

R0 =
β

γ

[
1 − 1 − e−γL

γL

]
, (3.4.27)

and the equation (3.4.10) for the constant λ at the endemic steady state
age distribution is

1 =
β

γ − λ

[
1 − e−λL

λL
− 1 − e−γL

γL

]
. (3.4.28)

These expressions can also be found heuristically by letting ε → ∞ in
(3.4.25) and (3.4.26), so that the exposed class E disappears.

For the SEIR and SIR models equation (3.4.13) for the average age of
attack becomes

A =
1
λ
− Le−λL

1 − e−λL
. (3.4.29)

The analogous equation for the MSEIR model does not simplify as much.
For the SEIR and SIR models, the average susceptible fraction is

s̄ =
∫ L

0

e−λa

L
da =

1 − e−λL

λL
. (3.4.30)

It is easy to see from (3.4.25) and (3.4.27) that R0s̄ �= 1 for the SEIR
and SIR models, so using R0 = 1/s̄ gives incorrect expressions for R0.
Expressions similar to those in this section can be found for a nonconstant
population with ρ = q/(1 − e−qL), but they are not presented here.

Typically the lifetime L is larger than the average age of attack A ≈ 1/λ,
and both are much larger than the average latent period 1/ε and the average
infectious period 1/γ. Thus for typical directly transmitted diseases, λL is
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larger than 5 and γL, εL, γ/λ, and ε/λ are larger than 50. Hence R0 ≈ β/γ

from (3.4.25) and (3.4.27), 1 = β(1−e−λL)/γλL from (3.4.26) and (3.4.28),
and A ≈ 1/λ from (3.4.29). Thus R0 ≈ λL/(1 − e−λL) ≈ λL ≈ L/A,
and R0s̄ ≈ 1. Hence many of the formulas for Type I mortality in the
Anderson and May book ([4], Ch. 4, App. A) are either correct or reasonable
approximations.

3.5. The SEIR model with age groups

Here we develop an expression for the basic reproduction number R0 in
an SEIR model with n separate age groups. This SEIR model is similar to
the MSEIR model shown in Figure 1, but there is no class M for passively
immune infants. In Sections 3.6 and 3.7 we estimate the basic reproduction
number in models with age groups for measles in Niger and pertussis in the
United States.

3.5.1. Formulation of the SEIR model with age groups

The SEIR model uses the same notation as the MSEIR model. The initial-
boundary value problem for this model is given below.

∂S/∂a + ∂S/∂t = −λ(a, t)S − d(a)S,

λ(a, t) =
∫ ∞

0

b(a)b̃(ã)I(ã, t)dã

/∫ ∞

0

U(ã, t)dã ,

∂E/∂a + ∂E/∂t = λ(a, t)S − εI − d(a)E,

∂I/∂a + ∂I/∂t = εI − γI − d(a)I,

∂R/∂a + ∂R/∂t = γI − d(a)R.

(3.5.1)

The initial conditions are the values of the age distributions at time 0.
The boundary values at age 0 are all zero except for the births given by
S(0, t) =

∫∞
0

f(a)U(a, t)da.
The population is partitioned into n age groups as in the demographic

model with age groups. The subscripts i denote the parts of the epidemio-
logic classes in the ith age interval [ai−1, ai], so that Si(t) =

∫ ai

ai−1
S(a, t)da,

etc. Assume that the transfer rate coefficients on the age intervals are εi

and γi. Also assume that the separable contact rate is constant for the
interactions between age groups, so that b(a) = bi for a ∈ [ai−1, ai] and
b̃(ã) = b̃j for ã ∈ [aj−1, aj ]. By integrating the partial differential equations
(3.5.1) on the age intervals [ai−1, ai], using

∑n
j=1 fiPi = (c1 + d1 + q)P1,

S(ai, t) = ciSi, E(ai, t) = ciEi, etc. as in the demographic model, and
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using the boundary conditions, we obtain an initial value problem for 4n
ordinary differential equations for the sizes of the epidemiological classes
in the ith age group. The total in the four epidemiologic classes for the
ith age group is the size Ni(t) = eqtPi of the ith group, which is growing
exponentially, but the age distribution P1, P2, ..., Pn remains at a steady
state and

∑n
i=1 Pi = 1.

Because the numbers are all growing exponentially by eqt, the fractions
of the population in the epidemiologic classes are of more interest than the
numbers in these epidemiologic classes. These fractions are given by si(t) =
Si(t)/eqt, etc., so that the fractions si, ei, ii,and ri add up to the age group
size Pi. The derivatives of these fractions satisfy s′i(t) = S′

i(t)/eqt − qsi,
etc., so that the differential equations for these fractions are

ds1/dt = (c1 + d1 + q)P1 − [λ1 + c1 + d1 + q]s1,

dsi/dt = ci−1si−1 − [λi + ci + di + q]si, i ≥ 2,

λi = bi

∑n
j=1 b̃jij ,

de1/dt = λ1s1 − [ε1 + c1 + d1 + q]e1,

dei/dt = λisi + ci−1ei−1 − [εi + ci + di + q]ei, i ≥ 2,

di1/dt = ε1e1 − [γ1 + c1 + d1 + q]i1,

dii/dt = εiei + ci−1ii−1 − [γi + ci + di + q]ii, i ≥ 2,

dr1/dt = γ1i1 − [c1 + d1 + q]r1,

dri/dt = γiii + ci−1ri−1 − [ci + di + q]ri, i ≥ 2.

(3.5.2)

3.5.2. The basic reproduction number R0 and stability

Here we follow the same procedure used in the continuous model to find
an expression for the basic reproduction number R0. Note that the steady
state age distribution for the differential equations (3.5.2) is the equilibrium
with

s1 = ĉ1P1/λ̂1, si = ci−1si−1/λ̂i, for i ≥ 2,

e1 = λ1s1/ε̂1, ei = (λisi + ci−1ei−1)/ε̂i, for i ≥ 2,

i1 = ε1e1/γ̂1, ii = (εiei + ci−1ii−1)/γ̂i, for i ≥ 2,

(3.5.3)

where we use λ̂i for λi +ci+di+q, ε̂i for εi+ci+di+q, γ̂i for γi+ci+di+q,
and ĉ1 for c1 + d1 + q. Substituting si−1 successively, we find that si =
Ci−1/[λ̂i · · · λ̂1] for i ≥ 2, where Ci−1 stands for ci−1 · · · c1ĉ1P1. Next we
substitute the si−1 and ei−1 successively into the ei quotient in (3.5.3) to
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obtain e1 = λ1ĉ1P1/(ε̂1λ̂1), and

ei =
λiCi−1

ε̂iλ̂i · · · λ̂1

+
λi−1Ci−1

ε̂iε̂i−1λ̂i−1 · · · λ̂1

+
λi−2Ci−1

ε̂iε̂i−1ε̂i−2λ̂i−2 · · · λ̂1

+ · · ·+ λ1Ci−1

ε̂i · · · ε̂1λ̂1

for i ≥ 2. When the expressions for ei and ii−1 are substituted into the
expression for ii in (3.5.3), we obtain i1 = ε1λ1ĉ1P1/(γ̂1ε̂1λ̂1), and for
i ≥ 2,

ii
Ci−1

=
εi

γ̂i

(
λi

ε̂iλ̂i · · · λ̂1

+
λi−1

ε̂iε̂i−1λ̂i−1 · · · λ̂1

+ · · · + λ1

ε̂i · · · ε̂1λ̂1

)

+
εi−1

γ̂iγ̂i−1

(
λi−1

ε̂i−1λ̂i−1 · · · λ̂1

+
λi−2

ε̂i−1ε̂i−2λ̂i−2 · · · λ̂1

+ · · · + λ1

ε̂i−1 · · · ε̂1λ̂1

)

+ · · · + ε2

γ̂i · · · γ̂2

(
λ2

ε̂2λ̂2λ̂1

+
λ1

ε̂2ε̂1λ̂1

)
+

ε1

γ̂i · · · γ̂1

(
λ1

ε̂1λ̂1

)
. (3.5.4)

From (3.5.2), we observe that λi = kbi, where k is a constant given by
k =

∑n
j=1 b̃jij. Now the expressions for ii and λi = kbi can be substituted

into this last summation to obtain

1 =
n∑

j=1

b̃jCj−1

[
εj

γ̂j

(
bj

ε̂j b̂j · · · b̂1

+
bj−1

ε̂j ε̂j−1b̂j−1 · · · b̂1

+ · · · + b1

ε̂j · · · ε̂1b̂1

)

+
εj−1

γ̂j γ̂j−1

(
bj−1

ε̂j−1b̂j−1 · · · b̂1

+
bj−2

ε̂j−1ε̂j−2b̂j−2 · · · b̂1

+ · · · + b1

ε̂j−1 · · · ε̂1b̂1

)

+ · · · + ε2

γ̂j · · · γ̂2

(
b2

ε̂2b̂2b̂1

+
b1

ε̂2ε̂1b̂1

)
+

ε1

γ̂j · · · γ̂1

(
b1

ε̂1b̂1

)]
, (3.5.5)

where b̂j = bjk + ci + di + q and C0 = ĉ1P1.
The right side of (3.5.5) is a decreasing function of k, so that it has

a solution for a positive k if and only if R0 > 1, where R0 is the basic
reproduction number below defined by setting k = 0 in (3.5.5).

R0 =
n∑

j=1

b̃jCj−1

[
εj

γ̂j

(
bj

ε̂j ĉj · · · ĉ1
+

bj−1

ε̂j ε̂j−1ĉj−1 · · · ĉ1
+ · · · + b1

ε̂j · · · ε̂1ĉ1

)

+
εj−1

γ̂j γ̂j−1

(
bj−1

ε̂j−1ĉj−1 · · · ĉ1
+

bj−2

ε̂j−1ε̂j−2ĉj−2 · · · ĉ1
+ · · · + b1

ε̂j−1 · · · ε̂1ĉ1

)

+ · · · + ε2

γ̂j · · · γ̂2

(
b2

ε̂2ĉ2ĉ1
+

b1

ε̂2ε̂1ĉ1

)
+

ε1

γ̂j · · · γ̂1

(
b1

ε̂1ĉ1

)]
, (3.5.6)

where ĉi = ci+di+q. The expression (3.5.6) for R0 is the discrete age group
analog of the triple integral expression (3.4.9) of R0 for the SEIR model
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with continuous age. As for the continuous age model, the expression (3.5.6)
for R0 is also valid for the analogous MSEIR, MSEIRS, SEIRS, and SEIS
models with age groups, but the equations involving the force of infection
constant k would be different from (3.5.5) for these other models. The
equation for k for the MSEIR model could be found by tedious calculations
following the method used above.

If R0 > 1 for the SEIR model, then equation (3.5.5) has a solution with
a positive k that gives the forces of infection λi = kbi, which in turn give the
unique endemic equilibrium in the age groups from (3.5.3). Determining the
stability of the disease-free equilibrium (at which everyone is susceptible)
by linearization is intractable except for small n, but we can construct a Li-
apunov function to prove the global stability of the disease-free equilibrium
when R0 ≤ 1 by taking a linear combination of the exposed and infectious
fractions. Here the feasible region is the subset of the nonnegative orthant in
the 4n dimensional space with the class fractions in the ith group summing
to Pi. Let V =

∑
(αiei + βiii), where the coefficients are to be determined.

In the Liapunov derivative V̇ , choose the αi coefficients so that the ei terms
cancel out by letting αn = βnεn/ε̂n and αj−1 = (βj−1εj−1 + cj−1αj)/ε̂j−1

for αn−1, . . . , α1. Then

V̇ =
∑

αibisi

∑
b̃jij − (β1γ̂1 − β2c1)i1

− · · · − (βn−1γ̂n−1 − βncn−1)in−1 − βnγ̂nin.

Now choose the βi so that the coefficients of the ij in the last n terms are −b̃j

by letting βn = b̃n/γ̂n and βj−1 = (b̃j−1 + βjcj−1)/γ̂j−1 for βn−1, . . . , β1.
Using si ≤ Pi, we obtain V̇ ≤ (R0 − 1)

∑
b̃jij ≤ 0 if R0 ≤ 1. The set

where V̇ = 0 is the boundary of the feasible region with ij = 0 for every
j, but dij/dt = εjej on this boundary, so that ij moves off this boundary
unless ej = 0. When ej = ij = 0, drj/dt = −ĉjrj , so that rj → 0. Thus
the disease-free equilibrium is the only positively invariant subset of the set
with V̇ = 0, so that all paths in the feasible region approach the disease-
free equilibrium by the Liapunov–Lasalle theorem ([25], p. 296). Thus if
R0 ≤ 1, then the disease-free equilibrium is asymptotically stable in the
feasible region. If R0 > 1, then we have V̇ > 0 for points sufficiently close
to the disease-free equilibrium with si close to Pi and ij > 0 for some j,
so that the disease-free equilibrium is unstable. The system (3.5.2) can be
defined to be uniformly persistent if lim inft→∞ ij(t) ≥ c for some c > 0 for
all j and all initial points such that ej(0)+ ij(0) > 0 for some j. The insta-
bility of the disease-free equilibrium and Theorem 4.5 in [57] imply that the
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system (3.5.2) is uniformly persistent if R0 > 1. The endemic equilibrium
(3.5.3) corresponding to positive k would usually be asymptotically stable
in specific applications, but as for the continuous age model, it could be
unstable for unusual or asymmetric choices of bi and b̃i.

Using the same methods for an SIR model, the equation for the k in the
forces of infection λi = kbi is

1 =
n∑

j=1

b̃jCj−1

[
bj

γ̂j b̂j · · · b̂1

+
bj−1

γ̂j γ̂j−1b̂j−1 · · · b̂1

+ · · · + b2

γ̂j · · · γ̂2b̂2b̂1

+
b1

γ̂j · · · γ̂1b̂1

]
, (3.5.7)

and the equation for the basic reproduction number is

R0 =
n∑

j=1

b̃jCj−1

[
bj

γ̂j ĉj · · · ĉ1
+

bj−1

γ̂j γ̂j−1ĉj−1 · · · ĉ1

+ · · · + b2

γ̂j · · · γ̂2ĉ2ĉ1
+

b1

γ̂j · · · γ̂1ĉ1

]
. (3.5.8)

These equations can be also derived heuristically from those for the SEIR
model by letting εi → ∞ for every i. The R0 formula (3.5.8) also works
for the SIRS and SIS models with age groups, but the equations for k

would be different. Proofs of stability and persistence for the models in this
paragraph are similar to those for the SEIR model.

3.5.3. Expressions for the average age of infection A

From Section 3.4.3 we know that the average age of infection A is given by

A = E[a] =

∫∞
0 aλ(a)s(a)e−D(a)da∫∞
0

λ(a)s(a)e−D(a)da
=

∑n
i=1

∫ ai

ai−1
aλ(a)s(a)e−D(a)da∑n

i=1

∫ ai

ai−1
λ(a)s(a)e−D(a)da

.

In each integral above over the interval [ai−1, ai] of length ∆i, we have
the endemic equilibrium values s(a) = si, λ(a) = λi = kbi, and e−D(a) =
πi−1e

−di(a−ai−1), where πi−1 =
∏i−1

j=1e
−dj∆j . The integrals over the inter-

vals can be evaluated to obtain the following expression for the average
age of infection at the endemic equilibrium for the MSEIR, SEIR, and SIR
model with age groups.

A =
∑n

i=1 bisiπi−1[1 + diai−1 − (1 + diai)e−di∆i ]/d2
i∑n

i=1 bisiπi−1[1 − e−di∆i ]/di
. (3.5.9)



August 27, 2008 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) LNSVol16-chapters1-3

Age-Structured Epidemiology Models 117

3.6. Application to measles in Niger

A deterministic mathematical model has been developed for the study of
the effects of heterogeneous mixing and vaccination distribution on dis-
ease transmission in Africa [44]. This study focuses on vaccination against
measles in the city of Naimey, Niger, in sub-Saharan Africa. The rapidly
growing population consists of a majority group with low transmission rates
and a minority group of seasonal urban migrants with higher transmission
rates. Demographic and measles epidemiological parameters are estimated
from data on Niger.

Here we consider the MSEIR model with 16 age groups for a homoge-
neously mixing, unvaccinated population in Niger [44]. The fertility rates
and the death rates in the 16 age groups are obtained from Niger census
data. Using the Lotka equation (3.3.12) for the demographic model with
age groups, the value of q corresponds to a growth of 3.36% per year. This
is consistent with the estimate from 1988 census data of 3.3% growth per
year. From measles data, it is estimated that the average period of passive
immunity 1/δ is 6 months, the average latent period 1/ε is 14 days and
the average infectious period 1/γ is 7 days. From data on a 1995 measles
outbreak in Niamey, the force of infection λ is estimated to be the con-
stant 0.762 per year [44]. A computer calculation using the demographic
and epidemiological parameter values in the formula (3.5.6) for the basic
reproduction number yields R0 = 18.83. The average age of infection at the
endemic equilibrium found from (3.5.9) is A = 2.4 years.

We now consider two methods for finding approximations to R0, A, and
the replacement number Rend at the endemic equilibrium. The first method
finds approximate values during the computer simulations of the MSEIR
measles model. Recall that the replacement number R is the actual num-
ber of new cases per infective during the infectious period. At the endemic
equilibrium in the basic SIR endemic model, the replacement number Rend

would be the incidence divided by the quotient of the prevalence and the du-
ration. For this MSEIR model with age groups, Rend can be approximated
by computing the sum over all age groups of the daily incidence divided
by the sum over all age groups of the quotients of the prevalences and the
product of the average infectious periods times the fractions surviving the
latent periods, so that

Rend
∼=

∑16
j=1 λjsjPj∑16

j=1 ijPj

/[(
1

γj + dj + q

)(
εj

εj + dj + q

)] . (3.6.1)
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At the prevaccination endemic equilibrium, this approximation is computed
to be Rend

∼= 0.99988, which is consistent with the concept that the average
replacement number is equal to one at the endemic equilibrium.

For this MSEIR model there is only one class of infectives, so that the
basic reproduction number R0 is equal to the contact number σ at the pre-
vaccination endemic equilibrium. This contact number σ is approximated
by computing the sum of the daily incidences when all contacts are as-
sumed to be with susceptibles divided by the sum over all age groups of
the quotients of the prevalences and the product of the average infectious
periods times the fractions surviving the latent periods. When all of the
sj in the numerator in equation (3.6.1) for the replacement number Rend

are replaced by 1, then we obtain the expression for the contact number σ

given by

R0 = σ ∼=
∑16

j=1 λjPj∑16
j=1 ijPj

/[(
1

γj + dj + q

)(
εj

εj + dj + q

)] .

At the prevaccination endemic equilibrium, this yields R0
∼= 18.85, which

is very close to the formula value of 18.83. Note that the expressions for R0

and Rend given here are slightly different from those given in [36]; based on
calculations for several pertussis models, the expressions given here are the
correct ones.

The average age of infection can be crudely approximated in the measles
computer simulations by the quotient of the sum of the average age in
each age group times the incidence in that age group and the sum of the
incidences. Hence

A ∼=
∑16

j=1[
aj−1+aj

2 ]λjsjPj∑16
j=1 λjsjPj

.

This approach gives A ∼= 2.2 years, which is slightly less than the formula
value of 2.4 years.

The second approximation method is to use the formulas for the MSEIR
endemic model in Chapter 1, where the model has uniform constant mor-
tality and a negative exponential age distribution. This model is plausible
because the age distribution of the Niger population is closely approximated
by a negative exponential [44]. From census data the death rate for the pop-
ulation is 22 per thousand per year. Using this d value and the fertilities
in the Lotka characteristic equation for discrete age groups (3.3.12), we
solve iteratively to obtain q = 0.02326 per year. This q value corresponds
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to a population growth rate of 2.3% per year, which is less than the recent
census value of 3.3% growth per year, but this difference may occur be-
cause our model is a simplification of the actual demographics. The value
d + q = 0.045 per year is consistent with the Niger population surviving
fraction as a function of age, which is very close to the exponential e−0.045a

for age a in years.
Recall that the replacement number Rend is 1 at the endemic equilibrium

for this model. Using the values of d+q, δ, and λ, the equations (3.4.15) and
(3.4.16) can be solved iteratively to obtain a basic reproduction number
of R0 = 17.4 and an susceptible fraction at age 0 of s0 = 1.6 × 10−6.
Thus in this population nearly every mother is infected with measles before
childbearing age, so almost every newborn child has passive immunity. In
the limit as s0 → 0, equation (3.4.15) becomes

R0 = [1 + λ/(d + q)][1 + (d + q)/δ],

which also leads to R0 = 17.4. This value is a reasonable approximation to
the value of R0 = 18.83 estimated above in the MSEIR model with 16 age
groups. The average age of infection of A = 1.8 years can be found from
either (3.4.12) or the approximation A = 1/(δ + d) + 1/(λ + d). This value
is less than the value of A = 2.4 years estimated above using the MSEIR
model with 16 age groups; this difference may be due to the high infant
mortality that occurs in the model with age groups. Using the estimated
parameter values and a vaccination age of Av = 0.75 years (9 months) in the
herd immunity condition (3.4.24), we find that to achieve herd immunity
the successfully vaccinated fraction g at age 9 months must satisfy g ≥ 0.98.
A measles vaccine efficacy of 0.95 implies that the fraction vaccinated would
have to be 1.03, which is impossible to achieve with a program that has at
most one vaccination per person. This result is confirmed by the measles
computer simulations for Niger, in which herd immunity is not achieved
when all children are vaccinated at age 9 months.

3.7. Application to pertussis in the United States

Previous estimates ([4], p. 70) of 10 to 18 for R0 for pertussis (whooping
cough) are based on the formula R0 ≈ 1+L/A, which is derived in Chapter
1 for SEIR or SIR models of a disease that confers permanent immunity
in a uniform, homogeneously mixing population. However, these estimates
of R0 are not realistic, because pertussis gives only temporary immunity
and spreads by heterogeneous mixing. In the age structured epidemiologic
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models developed specifically for pertussis [34, 35], there are 32 age groups.
Using fertilities and death rates from United States census information for
1990, the value of q in (3.3.12) corresponds to 0.065% growth per year,
which is nearly zero. Thus the age distribution in the pertussis models
is assumed to have become stable with a constant population size. More
details and graphs of the actual and theoretical age distributions are given
in [34].

Immunity to pertussis is temporary, because the agent Bordetella per-
tussis is bacterial, in contrast to the viral agents for measles, mumps and
rubella. As the time after the most recent pertussis infection increases,
the relative immunity of a person decreases. When people become infected
again, the severity of their symptoms and, consequently, their transmission
effectiveness (i.e. their infectivity) depends on their level of immunity at
the time of infection. Thus people with lower immunity have more symp-
toms and higher infectivity. Of course, infected people who were previously
fully susceptible are generally the most effective transmitters. In the age-
structured pertussis models [34, 35], the epidemiological classes include a
susceptible class S, an infective class I, a class R4 of those removed people
with very high immunity, classes R3, R2, and R1 for those with decreasing
immunity. In the two pertussis models, there are 3 or 4 levels of infectivity
and 32 age groups, so that not all infectives are equally effective in creat-
ing new infectives [35]. Infectives in those age groups that mix more with
other age groups are more effective transmitters than those in age groups
that mix less. Thus it might seem necessary in considering R0 to define a
“typical infective” by using some type of average over all infectivities and
age groups, so that R0 would be the average number of secondary cases
produced when a “typical infective” is introduced into a completely suscep-
tible population. In the next paragraph, we explain why averaging over age
groups is necessary, but averaging over classes with different infectivities is
not appropriate.

The occurrence of the first infection in a fully susceptible population
seems to be an unpredictable process, because it depends on random intro-
ductions of infectious outsiders into the host population. The probability
that a first infection occurs in the host population depends on the infectiv-
ity of the outside invader, on how the invader (with a mixing activity level
based on its age group) mixes in the host population, and the length of
time that the invader is in the population. It is clear that outside invaders
from high infectivity classes and high mixing activity age groups are more
likely to create a first new infection in a host population, especially if they
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are in the population for their entire infectious period. We believe that the
definition of R0 should not depend on the circumstances under which an
outsider creates a first case, but on whether or not an infection with a first
case can persist in a fully susceptible population.

After the first infection in the host population, the infected people in
the next generations could be less effective transmitters, so that the in-
fection would die out. Thus the definition of R0 should be based on the
circumstances under which a disease with a first case would really invade a
fully-susceptible host population more extensively. In order for an infection
to survive the first 10 or 20 generations, so that it really does invade and
persist in the new host population, the number of secondary cases produced
by infectious members of the host population must exceed one. Thus R0

should be the number of secondary cases produced by averaging over all age
groups of the infectives that have not been previously infected. Because all
of the cases in the first generations of an invasion occur in fully susceptible
people, only infectives who were previously fully susceptible are relevant.
Thus R0 is calculated for the SIR4 part of the pertussis models and it is
not necessary to average over the classes with various infectivity levels. Al-
though the SIR model formula (3.5.8) for R0 works for the pertussis models,
the formula (3.5.7) for the constant k in the forces of infection λi = kbi at
the endemic equilibrium does not work, because the pertussis models have
temporary immunity and classes with different infectivities.

The fertilities fj, death rate constants dj , and transfer rate constants cj

are determined in the demographic model. The average infectious period is
21 days, so that the rate constant γ is 1/21. The form of separable mixing
used in the pertussis model is proportionate mixing, which has activity
levels lj in each of the 32 age groups. The activity levels lj are found from
the forces of infection λj and the infective fractions ij , as explained in
Appendix C of [34]. Then bj = b̃j = lj/D1/2, where D =

∑32
j=1 ljPj is

the total number of people contacted per unit time. Using the SIR model
formula (3.5.8) for R0 in the pertussis computer simulation programs with
the baseline parameter sets, the values of the basic reproduction number R0

are 5.4 for the pertussis model in [34, 35] and 3.7 for the second pertussis
model in [35]. In the first model each pertussis booster moves the individual
back up one vaccinated or removed class, but for those in the second model
who have had a sequence of at least 4 pertussis vaccinations or have had
a previous pertussis infection, a pertussis booster raises their immunity
back up to the highest level. Thus the second model incorporates a more
optimistic view of the effectiveness of pertussis booster vaccinations. Note



August 27, 2008 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) LNSVol16-chapters1-3

122 H. W. Hethcote

that the R0 values here of 5.4 and 3.7 are much lower than the estimates
of R0 between 10 and 18 cited above.

Neither of the two methods used to find approximations of R0 for
measles in Niger work for the pertussis models. The replacement number R

at the pertussis endemic equilibrium depends on the fractions infected in
all of the 3 or 4 infective classes. For example, in the first pertussis model

R ∼=
∑32

j=1 λj(sj + r1j + r2j)Pj∑32
j=1(ij + imj + iwj)Pj/[1/(γj + dj)]

,

where ij , imj , and iwj are the infective prevalences in the full-, mild-, and
weak-disease classes I, Im, and Iw . In the computer simulations for both
pertussis models, R is 1 at the endemic equilibrium. If the expression for R

is modified by changing the factor in parentheses in the numerator to one,
which corresponds to assuming that all contacts are with susceptibles, then
we obtain the contact number

σ ∼=
∑32

j=1 λjPj∑32
j=1(ij + imj + iwj)Pj/[1/(γj + dj)]

,

which gives the average number of cases due to all infectives. At the endemic
equilibrium in the pertussis simulations, σ = 3.0 using the first model and
σ = 1.8 using the second model. Thus the basic reproduction number R0

is not equal to the contact number σ at the endemic equilibrium, because
the forces of infection λj in the approximation of σ are due to the contacts
of the infectives in the I, Im, and Iw classes instead of just the contacts
of those in the I class. Thus it is not possible to use the estimate of the
contact number σ during the computer simulations as an approximation
for R0 in the pertussis models. Since the age distribution of the population
in the United States is poorly approximated by a negative exponential and
the force of infection is not constant, the second method used for measles
in Niger also does not work to approximate R0 for pertussis in the United
States.

The ultimate goal of a pertussis vaccination program is to vaccinate
enough people to get the replacement number less than 1, so that pertussis
fades away and herd immunity is achieved. Because the mixing for per-
tussis is not homogeneous and the immunity is not permanent, we cannot
use the simple criterion for herd immunity that the fraction with vaccine-
induced or infection-induced immunity is greater than 1 − 1/R0. Indeed,
the low numerical R0 values of 5.4 and 3.7 for a disease like pertussis with
waning immunity do not indicate that herd immunity for pertussis is easy
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to achieve. None of the vaccination strategies, including those that give
booster vaccinations every five years, have achieved herd immunity in the
pertussis computer simulations [34, 35].

3.8. Discussion

Age-structured epidemiology models with either continuous age or age
groups are essential for the incorporation of age-related mixing behavior,
fertility rates, and death rates, for the estimation of R0 from age specific
data, and for the comparison of vaccination strategies with age-specific risk
groups and age-dependent vaccination rates. Indeed, some of the early epi-
demiology models incorporated continuous age structure [8, 46]. Modern
mathematical analysis of age structured models appears to have started
with Hoppensteadt [40], who formulated epidemiology models with both
continuous chronological age and infection class age (time since infection),
showed that they were well posed, and found threshold conditions for en-
demicity. Expressions for R0 for models with both chronological and in-
fection age were obtained by Dietz and Schenzle [18]. In age-structured
epidemiology models, proportionate and preferred mixing parameters can
be estimated from age-specific force of infection data [33]. Mathematical
aspects such as existence and uniqueness of solutions, steady states, stabil-
ity, and thresholds have now been analyzed for many epidemiology models
with age structure; more references are cited in the following papers. These
SIS and SIR models with continuous age structure have included vertical
transmission [9, 10, 19], age dependent disease transmission [5, 16, 24, 56],
infection class age [55, 61], cross immunity [13], intercohort transmission
[11, 12, 14, 42, 43], short infectious period [6, 7], and optimal vaccination
patterns [21, 22, 27, 45, 51, 53].

Age structured models have been used in the epidemiology modeling
of many diseases [4]. Dietz [16, 17], Hethcote [30], Anderson and May
[2, 3], and Rouderfer, Becker, and Hethcote [52] used continuous age struc-
tured models for the evaluation of measles and rubella vaccination strate-
gies. Tudor [58] found threshold conditions for a measles model with age
groups. Hethcote [31] considered optimal ages of vaccination for measles
on three continents. Halloran, Cochi, Lieu, Wharton, and Fehrs [26], Fer-
guson, Anderson, and Garnett [20], and Schuette and Hethcote [54] used
age-structured models to study the effects of varicella (chickenpox) vacci-
nation programs. Grenfell and Anderson [23] and Hethcote [34, 35, 37, 59]
have used age-structured models in evaluating pertussis (whooping cough)
vaccination programs.
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Many epidemiology models now used to study infectious diseases involve
age structures, because fertilities, death rates, and contact rates all depend
on the ages of the individuals. Thus the basic reproduction number R0

must be found for these epidemiologic-demographic models. For MSEIR,
MSEIRS, SEIR, SEIRS, and SEIS models, expressions for R0 are given by
(3.4.9) and (3.5.6) when the demographic structures are continuous age and
age groups, respectively. Analogous expressions for R0 for the SIR, SIRS,
and SIS models are given by (3.4.11) and (3.5.8). These expressions for R0

are found by examining when there is a positive (endemic) equilibrium in
the feasible region, and then it is verified that the disease persists if and
only if R0 > 1.

To illustrate the application of the theoretical formulas for R0 in models
with age groups, two applications have been included in this paper. Based
on demographic and epidemiologic estimates for measles in Niger, Africa,
the value of the basic reproduction number found from (3.5.6) is R0 = 18.8.
The interesting aspect of this measles application is that R0 is found for a
very rapidly growing population. In contrast, the current fertility and death
data in the United States suggests that the population is approaching a
stable age distribution with constant total size.

Using previously developed models for pertussis (whooping cough) in
which the immunity is temporary [34, 35], the basic reproduction numbers
are estimated to be R0 = 5.4 and R0 = 3.7 for two pertussis models. It is
interesting that these basic reproduction numbers are found using the R0

expression derived for an SIR model, even though pertussis immunity is
temporary.

Recall that the contact number σ is the average number of adequate
contacts of a typical infective during the infectious period. The interesting
aspect of the pertussis calculations is that new types of infectives with lower
infectivity occur after the invasion, because infected people who previously
had pertussis have lower infectivity when reinfected. Thus typical infectives
after the invasion include those who have lower infectivities than the infec-
tives who had been fully susceptible. Although the contact number σ is
equal to R0 when pertussis first invades the population, the new broader
collection of typical infectives implies that σ < R0 after the invasion. Us-
ing numerical approximations during the computer simulations, the contact
numbers at the endemic equilibrium are estimated to be σ = 3 for the first
age group pertussis model and σ = 1.8 for the second pertussis model. This
phenomenon that σ < R0 at the endemic equilibrium also holds for three
relatively simple pertussis models based on ordinary differential equations
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[38]. For the pertussis model with four removed groups in [38], the three
infective classes with decreasing infectivity are I, Im,and Iw, where the in-
fective classes Im and Iware non-empty as soon as pertussis has invaded.
For this model the contact number σ satisfies

σ = R0[I + ρmIm + ρwIw]/[I + Im + Iw ] < R0,

because the relative infectivities ρm and ρw are less than one. As pointed out
in Section 3.2 the basic reproduction number R0, the contact number σ, and
the replacement number R are all equal at the time when the disease invades
the population. For nearly all models R0 = σ > R after the invasion, but
for the pertussis models, R0 > σ > R after the invasion. Thus the pertussis
models have led to an entirely new way of thinking about the differences
between the contact number σ and the basic reproduction number R0.
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