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Global stability is established in a class of prey-predator models. This includes a prey-predator 
model in which the predator has Type 2 functional response and no intraspecific interactions. 
Two simple examples demonstrate that Kolmogoroff's theorem does not apply to some members 
of this class of models. 

1. Introductionl By global stability in an ecological model we mean stability 
relative to initial states in which the density of each species is positive. It follows 
that ifa perturbation shifts the state of the system from a feasible equilibrium to 
a feasible state and the system is thereafter left alone the natural dynamics of the 
system will drive the state of the system into a neighbourhood of the 
equilibrium. If a perturbation causes the extinction of a species it is convenient 
to consider the disturbed system as a new ecosystem of lower dimension. In the 
absence of immigration the missing species remains extinct. Such catastrophic 
perturbations of the initial state are excluded in this analysis. 

In the literature Kolmogoroffs  theorem (1936) has been a very versatile tool 
for the qualitative analysis of two species interactions. It was used very 
successfully by Rescigno and Richardson (1973) and May (1974) in their 
analyses of two species interactions. Recently, Goh (1977) proposed a two- 
sided energy principle for the construction of Lyapunov functions for 
population models. This principle states that a viable single species population 
must on balance absorb energy at low densities and dissipate energy at high 
densities. In a viable multispecies community there must be a balance in the 
energy exchanges between the member species and between the species and 
their environment. The construction of biologically meaningful Lyapunov and 
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Lyapunov-l ike functions (Goh, 1978) provides a new tool which is more 
versatile than Kolmogorof f s  theorem. We shall examine examples of two 
species interactions in which Kolmogorof f s  theorem does not apply but  in 
which global stability can be established by means of a Lyapunov  function. 
More  important ly  the direct method  of Lyapunov  is applicable to interactions 
between any number  of species but  Kolmogorof fs  theorem is limited to two 
species interactions. 

2. Lyapunov Functions Jor Population Models. In a model  of a viable 
ecosystem the densities of the interacting species should remain positive as the 
time variable tends to infinity. But in the s tandard theory (LaSalle and 
Lefschetz, 1961) global stability is defined relative to initial states which belong 
to R"={xI(x~,x2,...,x,) }. Therefore in order to utilize Lyapunov  functions 
from the s tandard stability theory we may have to subject them to a 
preliminary transformation.  

Let Q be a symmetric positive matrix. The quadratic function 

V(x)=xTQx (2.1) 

is a popular  Lyapunov function in the s tandard  stability theory. Let a model  of 
m interacting species be 

Ni =NiFi(N1, N2,. . . ,  Nm) (2.2) 

where Ni is the density of the ith species. Let it have a feasible equilibrium at 
(N~', N*, ..., N*). To use the function (2.1) as a Lyapunov  function of model  
(2.2) we must  first subject it to either one of the transformations,  

xi=ln(Ni/N*), i =  1, 2,..., m, (2.3) 

X i = N  i -  ( N ~ ) 2 / N , ,  i =  1, 2, . . . ,  m, (2.4) 

or another  t ransformat ion which maps the positive or thant  {NINi>0 , i 
= 1, 2,..., m} into the whole of R". F r o m  this exercise we note that  a Lyapunov  
function for a popula t ion  model  must  tend to infinity as N i ~ 0 +  or N~---, oo 
for i =  1,2, . . . ,m.  

Example 1. A Lyapunov  function for the logistic model  N=(r/K)N 
( K - N ) i s  

V(N) = [In (N/K)] 2. 
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Along solutions of the model, we have 
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I/(N) = 2r[ln (N/K)] (K - N). 

Clearly f/(N) < 0 for K > N > 0 and N >K. This implies that the logistic model is 
globally stable. 

Let cl,c2 .... ,Cm be positive constants. A Lyapunov function which is 
particularly effective for a population model is 

V (N) = ~, c,[N, - N *  - In (N,/N*)3. 
i=1  

(2.5) 

This function and similar functions (Goh, 1978) are developed specially for 
population models. Hence by applying the inverse mappings of the 
transformations, (2.3) and (2.4), we get new Lyapunov functions for problems 
in which xeR". 

The Lyapunov function V(N) in (2.5) may be used to establish a region of 
attraction of an equilibrium of (2.2). It and similar functions may also be used 
to determine a region of ultimate confinement. If it is used for this purpose it is 
called a Lyapunov-like function. 

Example 2. We shall demonstrate the use of Lyapunov-like functions to 
determine a region of ultimate confinement in a model with three state 
variables. For  models with more than two variables the concept of a region of 
ultimate confinement is more important  than the concept of a limit cycle. 

Consider the model, 

/V1 = N 1  [In N 2  + (1 - S 2 ) ( S  2 - -  2 )  In N1] 

/~2 = N 2 [  - I n  N1 + (1 - $2)(S 2 - 2 )  In NE] 

/~/3 = S3[(1 - $2)( $2 - 2) In N3] 

where 

S 2 = (In N1 )2 + (In N 2 )2 h- (In N 3 )2. 

A Lyapunov-like function for this model is V(N)= S 2. Along solutions of this 
model, 

f /(N) = 2S 2 (1 - S 2 )(S z - 2). (2.6) 

This model has a cont inuum of limit cycles. On the hypersurface S 2 -~- 1 there is 
one limit cycle for each value of N 3. 



528 B . S .  GOH  

From (2.6) the region, RUC={NIV(N)<I }, is a region of ultimate 
confinement and its region of attraction is {N] V (N) < 2}. This means that every 
trajectory of the model which initiates in the region RUC will remain 
indefinitely in it. Moreover every trajectory which initiates in the region {N I 1 
< V ( N ) <  2} wilt ultimately enter and remain in the RUC region. 

For convenience we state the main results in this paper as theorems. Let 
V(N) denote the function in (2.5). 

Theorem 1. Model (Z2) is globally stable in the positive orthant of the 
state space if (i) it has a feasible equilibrium at N*, (ii) there exists positive 
constants q ,  c2, ..., cm such that 

12(N)= ~ c,(N~-N*)F~(N)<=O (2.7) 
i = l  

in the positive orthant and (iii) 12(N) does not vanish identically along any 
solution of the model Other than the equilibrium, N*. 

This theorem follows immediately by using the Lyapunov function V(N) in 
(2.5) and LaSalle's extension of the direct method of Lyapunov (see p. 58 of 
LaSalle and Lefschetz, 1961). It provides a set of sufficient conditions for global 
stability. 

Let fl be a positive number. If the conditions of Theorem 1 are only satisfied 
in the region, RAS={NIV(N)<fl}, then RAS is a region of asymptotic 
stability. 

Consider the generalized Lotka-Volterra  model, 

lq,=Ni aoN j , i= 1, 2,..., m. (2.8) 

The non-trivial equilibrium N* satisfies the equation AN*+b=O where A 
= (aij) and b = (hi). Substitute this equation into (2.8) we get 

fili=N ~ ~ ao(N~--N*), i= 1,2,..., m. (2.9) 
j = l  

Along solutions of (2.9), inequality (2.7) implies that 

f/(N) = (1/2)(N -N*)(CA + ATC)(N -N*)<O (2.10) 

where C=diag(ct,c2,...,c,,). It follows that the Lotka--Volterra model is 
globally stable if (i) it has a feasible equilibrium, (ii) there exists a positive 
diagonal matrix C such that CA + ATc is negative semidefinite and (iii) 12(N) 
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does not vanish identically along any solution of the model other than the 
equilibrium. 

Example 3. Let P and H denote predator and prey densities respectively. 
We shall examine a model of a predator which provides a robust control of a 
pest (prey). Let b, d, e, ea2, e22 be positive constants. Consider the Lotka-  
Volterra model, 

I:t = H[b - (x I 2 P ]  

/~ = P[  - d + e0~ a 2 H - -  0~2 2 P ' ] .  

The parameter e is the conversion efficiency of prey into predator; b is the per 
capita birth rate of the prey and d is the per capita death rate of the predator. 

In the absence of the predator, the pest (prey) population is unstable. The 
above model has a unique feasible equilibrium at 

H* = (b0~22 +do~12)/(eo~22), P* =b0~12. 

Let ca = e and c2 = 1. Condition (2.10) becomes 

V= - ~ 2 2 ( P - P * )  2. 

Clearly f'is negative for all (H, P) such that P > 0, H > 0 and P @ P*. Hence the 
model is globally stable. 

3. A Class of Prey-Predator Models. We shall establish sufficient conditions 
for global stability in two prey-predator models in which the predator has a 
Type 2 functional response to changes in the prey density (Holling, 1966; 
Maynard Smith, 1974). According to Hassell et al. (1976), Type 2 functional 
response is the most common type of functional response among arthropod 
predators. Another object of this analysis is to provide a warning of the 
danger which exists in an uncritical application of the statement that Type 2 
functionaLl response is destabilizing. 

Let P and H be predator and prey densities respectively. Let a, d, e, w be 
positive constants and g(H) be the rate of change of the prey density per prey in 
the absence of the predator. The parameter e is the conversion efficiency of prey 
into predator and d is the mortality rate of the predator. The expression aH/(1 
+wH) is the rate at which the prey is taken by a predator. It is a Type 2 
functional response of the predator to prey density. Consider the model, 

/ : /= H[g(H) - aP/(1 + wH)] 

[~=P[-d+eaH/(1  + wH)]. 
(3.1) 

G* 
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By definition (H*, P*) is a feasible equilibrium of the model if H* > 0, P* > 0 
and 

g ( H * ) - a P * / ( 1  + wH*) = 0 

-d+eaH*/(1  + wH*) =0. 
(3.2) 

It follows that H*=d/ (ea -wd)  and P*=g(H*)(1 +wH*)/a. Hence in order 
that the equilibrium is feasible we must have ea>wd and g(H*)>0.  For 
convenience, let 

S = 1/[(1 + wH*)(1 + wH)]. (3.3) 

Theorem 2. Model (3.1) is globally stable in the feasible region if it has a 
unique feasible equilibrium at (H*, P*) and 

(H - H* )[g(H ) -  g(H* ) + awSP* ( H -  H* )] <0  (3.4) 

for all (H,P) such that H > 0 ,  P > 0  and H r  

Proof This theorem follows directly from Theorem 1. Substitute (3.2) into 
(3.1); we get 

/:/= H [ g ( H ) -  g(H*) - aP/(1 + wH) + aP*/(1 + wH* )], 

[:' = P[eaH/(1 + wH) - eaH*/(1 + wH* )]. 

(3.5) 

Let cl = (1 + wH*)/e and c2 = 1. After some manipulations, condition (2.7) 
becomes 

V(H, P ) =  (U - H * ) [ g ( H ) - g ( H * ) + a w S P * ( H - H * ) ] .  (3.6) 

Condition (3.4) implies that (/(H, P) is negative for all (H, P) such that H > 0, P 
> 0 and H =p H*. By assumption there is only a single equilibrium in the positive 
quadrant. It follows that the invariant set in the positive quadrant consists of 
only the equilibrium point. Hence by LaSalle's extension of the direct method 
of Lyapunov, model (3.1) is globally stable. 

Corollary 2.1. Let fl be a positive number. If condition (3.4) is satisfied 
only in the region V(H,P)<fi,  then a region of attraction of (H*,P*) is 
{(H, P)I V(H, P) < fi}. 
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We show by a simple example that  it is possible to have global stability when 
the per capita prey birth rate is not a monoton ic  decreasing function of prey 
density. In this case the prey popula t ion  sustains an Allee effect. It is shown that  
the same example does not  satisfy Kolmogoroff ' s  theorem for global stability. 

Example 4. Consider  the prey-preda tor  model, 

/ : /= HEg(H) - P/(1 + 0.05 H)]  

/~ = P[  - 6/13 + 0.1 H/(1 + 0.05 H)],  
(3.7) 

where g ( H ) =  2 + H(4- / - / ) / (1  + 2 H). This function has a single h u m p  with the 
max imum at H = 1. The model  has an equilibrium at (6, 1.4). 

Condi t ion (3.6) gives 

f,= _ (H - 6 )  2 (0.65 H 2 + 11.7 H + 1.3 ) 

13(1 + 2H)(1 +0.05 H) 
(3.8) 

Hence (,'is negative for all (H, P)  such that  H > 0 and P > 0 and H # H * =  6. It 
can be shown that  there is only a unique equilibrium in the positive quadrant .  It 
follows that  the only invariant point  on the line H = 6  and P > 0  is the 
equilibrium at (6, 1.4). Therefore the model  is globally stable. 

Model  (3.7) is of the f o r m / : / =  HF(H, P) and P = PG (H, P). For  this model  
one of the condit ions in Kolmogoroff 's  theorem is 

H(OF/OH) + P(OF/t~P) < O. (3.9) 

For  (3.7) this inequality requires that  

H[g'(H)+O.O5P/(1 +O.05H)2]-p/(1 +0.05 H ) < 0 .  (3.10) 

At the point  (0.5, 0.3) the value of the expression on the left hand  side of (3.10) is 
approximately equal to 0.0269. Hence this inequality is violated. 

Example 5. We shall now demonstra te  how Corollary 2.1 may be used to 
determine a conservative estimate of the region of at tract ion of a feasible 
equilibrium in a model.  

Let d, go, gl, g2 be positive constants.  Consider  the prey--predator model, 

1:1 =H[d + go + glH - g 2 H  2 - P ] ,  

P = P [ - d + H ] .  
(3.11) 
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This is a special case of model  (3.1) with w = 0. It has a feasible equil ibrium at 
(H*, P* ) where H* = d and P* = d + go - gld - g 2  d 2 .  

For  this model  condit ion (3.6) becomes 

P(H, P)  = (H - -  d ) 2 [ g l  - gzd - g z H ] .  (3.12) 

If d > gl/g2, V (H, P)  < 0 for H > 0 and H :p d. In this case model  (3.11) is globally 
stable. If gl/g2 > d > gl/(2g2), I)'(H, P)  < 0 for H > (gl - g2d)/g2 and H ~ d. In 
this case a region of at traction of the equilibrium at (H*, P*) consists of the set 
of points which satisfy the inequality, 

V(H,P)<(g~-g2d)/g2-d-dln[(gl-g2d)/(g2d)] .  (3.13) 

This follows because in this region f '(H, P)  is negative i fH  4:d. 
We shall establish simple sufficient condit ions for global stability in a prey-- 

predator  model  in which the per capita death rate of the predator  is a nonlinear 
function of its density. In this model  the per capita survival rate of the 
predators,  up to a certain density can increase with density because of 
aggregation which results in enhanced survival from predat ion by another  
predator.  If this is the case, Kolmogoroff ' s  theorem does not  apply because it 
requires that  the per capita rate of increase of the predator  decreases 
monotonical ly  with density. 

Consider  the prey-preda tor  model, 

/ : /= H[g (H)  - aP/(1 + wH)], 

f' = P I f  (P) + eaH/(1 + wH)]. 
(3.14) 

Let (H*,P*) be a feasible equilibrium of this model  and let S denote  the 
function in (3.3). 

Theorem 3. Model  (3.14) is globally stable in the feasible region if it has a 
feasible equilibrium at (H*, P*) and if 

(H - H* )[g (H) - g (H*)  + a w S P *  (H - H*  )] 
+ (P - P* )[(1 + wH*)/e][f(P) - f (P*)]  < 0 (3.15) 

for all (H,P) such that  H >0,  P > 0  and (H,P)~ (H*,P*). 
This theorem follows directly from Theorem 1 with cl = (1 + wH*)/e and cz 

=1.  The expression in (3.15) is none other than ( / (H,P)  computed  along 
solutions of (3.14). Hence when it is negative for H > 0 ,  P > 0  and 
(H, P)  r (H*, P*), model  (3.14) is globally stable. 
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Example 6. Consider the prey--predator model 
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/:it = H [ g ( H )  - P/(1 + 0.05 H ) ]  

P=PEf(P) +0.1 H/(1 +0.05 H)] 
(3.16) 

where f ( P ) =  -0.4156 +P(1 -P) / (1  + 8 P) and g(H)=2+H(4-H)/(1 +2H).  
The function f(P) has a maximum at P=0.25. For 0.25 > P > 0 ,  the function 
f(P) is monotonic increasing and hence the second expression in (3.16) violates 
one of the conditions in Kolmogoroff's theorem. 

Model (3.16) has a feasible equilibrium at (6, 1.4). We have 

f'= (H-6)z(o'65H2+ll '7H+l'3)  - (P-l '4)2(0"4+12"2P).  (3.17) 
13(1 +2 H)(1 +0.05 H) (1 +8 P) 

Clearly ~ is negative in the positive quadrant other than at the equilibrium 
(6, 1.4). Hence model (3.16) is globally stable in the feasible region. 

The author wishes to thank Professor H. D. Landahl for constructive 
comments. 
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