
Appendix B. Dynamical systems in infinite dimensional

spaces

B.1. Banach spaces

An abstract ”linear space” X over IR (or C ; unless explicitly stated
we shall always refer to IR ) is a collection of elements such that for each
z1, z2 ∈ X the sum z1 + z2 ∈ X is defined such that

(i) z1 + z2 = z2 + z1

and an element 0 ∈ X exists such that

(ii) 0 + z = z + 0 = z for all z ∈ X .

Also, for any number a ∈ IR and any element z ∈ X the scalar multi-
plication is defined az ∈ X such that

(iii) 1 z = z , for all z ∈ X

(iv) a(bz) = (ab)z = b(az) , for all a, b ∈ IR and all z ∈ X

(v) (a+ b)z = az + bz , for all a, b ∈ IR and all z ∈ X.

A linear space X is a ”normed linear space” if to each z ∈ X there
corresponds a nonnegative real number ‖z‖ called the ”norm” of z which
satisfies

(a) ‖z‖ = 0 ⇐⇒ z = 0

(b) ‖z1 + z2‖ ≤ ‖z1‖+ ‖z2‖ for all z1, z2 ∈ X

(c) ‖az‖ = |a| ‖z‖ for all a ∈ IR and all z ∈ X

When confusion may arise, we will write ‖ · ‖X for the norm on X .
A norm on a linear space X induces a metric via the following distance

dist(z1, z2) = ‖z1 − z2‖ , for all z1 , z2 ∈ X .

It is such that

(d1) dist(z1, z2) = 0 ⇐⇒ z1 = z2



(d2) dist(z1, z2) = dist(z2, z1)

(d3) dist(z1, z3) ≤ dist(z1, z2) + dist(z2, z3)

for all z1, z2, z3 ∈ X.
X endowed with dist is a ”metric space”.
A sequence (zn)n∈IN in a normed linear space X converges in X if a

z ∈ X exists such that lim
n→∞

‖zn − z‖ = 0.

A sequence (zn)n∈IN is a Cauchy sequence in X if for every ε > 0 a
ν ∈ IN exists such that for any n, m ∈ IN n, m > ν : ‖zn − zm‖ < ε.

The space X is ”complete” if every Cauchy sequence in X is convergent
in X .

A ”Banach space” X is a complete normed linear space.
For z ∈ X , a normed linear space, the ”open ball” about z0 ∈ X with

radius ρ > 0 is the set Bρ(z0) := {z ∈ X | ‖z − z0‖ < ρ} . If A ⊂ X then z

is an ”interior point” of A if a ρ > 0 exists so that Bρ(z) ⊂ A.
The set of all interior points of A is called the ”interior” of A and is

usually denoted by
◦

A . Clearly
◦

A ⊂ A . A set A ⊂ X is ”open” if A =
◦

A.
A set A ⊂ X is ”bounded” if for any z ∈ A a ρ > 0 exists such that

A ⊂ Bρ(z).
We say that z ∈ X is a ”limit point” of A if a sequence of elements of

A ⊂ X exists such that z = lim
n→∞

zn. The ”closure” A of A is the set of all

limit points of A . Clearly A ⊂ A . A set A is ”closed” if A = A . A ⊂ X is
”dense” in X if A = X .

Let X be a complete metric space and let A ⊂ X . If A = A then A is
a complete subspace of X .

A is ”precompact” in X if every sequence of elements of A contains
a Cauchy subsequence; A is ”compact” if every sequence of elements of A

contains a subsequence convergent to a point in A .
In a metric space X we say that A ⊂ X is ”relatively compact” if A

is compact. A subset A ⊂ X which is relatively compact is also precompact.
In a complete metric space X a precompact subset of X is also relatively
compact, and thus the two concepts coincide.

In a complete metric space A is compact iff A is precompact and closed.
In a metric space X , every subset A ⊂ X which is compact is also

closed. Every precompact subset A is bounded.
A normed linear space X is ”locally compact” if every closed and

bounded subset is compact.
Consider IRn equipped with the Euclidean norm. Then IRn is complete

and locally compact.
A vector space X is said to be ”finite dimensional” if there is a positive

integer n ∈ IN such that X contains a set of n linearly independent vectors
whereas any set of n + 1 or more vectors of X is linearly dependent. This
number n is called ”dimension” of the space X .
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If X is not finite dimensional then it is said to be ”infinite dimensional”.
If dimX = n any set of n linearly independent vectors of X is called a

”basis” for X .
If {e1, · · · , en} is a basis for X then any x ∈ X has a unique represen-

tation as a linear combination of the basis vectors.
If X is a finite dimensional normed space

M compact ⇐⇒ M closed and bounded.

Thus every finite dimensional normed space is ”locally compact”.
The converse is also true.

Theorem B.1. (F. Riesz) [140] A locally compact linear normed space has
finite dimension.

Every finite dimensional normed space is complete.
A norm ‖ · ‖ on a vector space X is said to be ”equivalent” to another

norm ‖ · ‖o on X if there are positive real numbers a and b such that for
all x ∈ X we have

a ‖x‖o ≤ ‖x‖ ≤ b ‖x‖o

On a finite dimensional vector space all norms are equivalent.
IRn equipped with the Euclidean norm, is a finite dimensional Banach

space.
C([0, 1]) , the set of all continuous real-valued functions defined on the

closed interval [0, 1] ⊂ IR is a real Banach space, when equipped with the
norm

‖u‖ = max
x∈[0,1]

|u(x)| , for u ∈ C([0, 1]) .

Ck([0, 1]) , the set of continuous real-valued functions having k ∈ IN
continuous derivatives on [0, 1] ⊂ IR , with norm

‖u‖k =

k
∑

s=0

max
x∈[0,1]

∣

∣

∣u
(s)(x)

∣

∣

∣

is a real Banach space (u(s) denotes the derivative of order s of the function
u ).
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B.1.1. Ordered Banach spaces

Let E be a real vector space.
An ordering ≤ on E is called linear if

(i) x ≤ y =⇒ x+ z ≤ y + z for all x, y, z ∈ E

(ii) x ≤ y =⇒ αx ≤ αy for all x, y ∈ E , α ∈ IR+.

A real vector space together with a linear ordering is called an ”ordered
vector space (OVS)” [0].

Let V be an OVS and let P := {x ∈ V | x ≥ 0}. Clearly P has the
following properties

(P1) P + P ⊂ P

(P2) IR+P ⊂ P

(P3) P ∩ (−P ) = {0}

A nonempty subset P of a real vector space V satisfying (P1-P3) is
called a ”cone”.

A cone P is called ”generating” if E = P − P .
Every cone P in a real vector space E induces a partial linear ordering

on E by

x ≤P y
def
⇐⇒ y − x ∈ P .

The elements in Ṗ := P − {0} are called ”positive” and P is called the
”positive cone” of the ordering.

Consequently for every linear space E there is a one-to-one correspon-
dence between the family of linear orderings and the family of cones.

A set A is said ”order convex” whenever x, y ∈ A implies [x, y] ⊂ A ,
where

[x, y] := {z ∈ E | x ≤ z ≤ y} .

A cone is order convex.
Let E = (E, ‖ · ‖) be a Banach space ordered by a cone P . Then E is

called an ”ordered Banach space (OBS)” if the positive cone is closed.

Proposition B.2. Let E be an ordered Banach space with respect to a cone

P . If
◦

P 6= ∅ then P is generating.
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The Euclidean space IRn is an ordered Banach space with respect to the
cone IK := IRn

+ := {z ∈ IRn

| zi ≥ 0 , i = 1, · · · , n}. This cone has a nonempty

interior
◦

IK = IRn∗

+ := {z ∈ IRn

| zi > 0 , i = 1, · · · , n} , hence it is generating.
Let Ω be a nonempty bounded open subset of IRm , m ≥ 1. For any

k ∈ IN , we denote by Ck(Ω) the vector space of all uniformly continuous
functions u : Ω −→ IR such that all the partial derivatives of order up to k

exist and are uniformly continuous on Ω.
Due to the uniform continuity, each of the derivatives Dαu :=

D
α1

1 · · · Dαm

m
u , α = (α1, · · · , αm) ∈ INm , |α| =

m
∑

i=1

αi ≤ k , has a unique

continuous extension over Ω.
We define

‖u‖k :=
∑

|α|≤k

max
x∈Ω

|D
α

u(x)| .

Equipped with this norm, each Ck(Ω) is a Banach space. With the
ordering induced by C+(Ω) := {u ∈ C(Ω) | u(x) ≥ 0 , x ∈ Ω} , it is an
ordered Banach space.

B.1.2. Functions

Given two sets X and Y , a function F from X to Y is a rule which
assigns to any element x of a subset D(F ) ⊂ X a unique y ∈ Y that we
denote by F (y) . This is denoted by

F : (D(F ) ⊂ X) −→ Y .

D(F ) is called the ”domain” of F and R(F ) := {y ∈ Y | y =
F (x) , for some x ∈ D(F )} is the ”range” of F .

If R(F ) = Y the function is ”onto”. If F (x) = F (x′) =⇒ x = x′ ,
then F is ”one-to-one”; in this case there exists an ”inverse function” F −1 :
(R(F ) ⊂ Y ) −→ X such that F−1F (x) = x for all x ∈ D(F ) = R(F−1)
(and FF−1(y) = y for all y ∈ D(F−1) = R(F ) ).

The set GF := {(x, y) ∈ X × Y | x ∈ D(F ) , y = F (x)} is the ”graph”
of F .

The identity on X is the function I : X −→ X defined for all x ∈ X :
I(x) = x .

If X is a linear space on IR a function F : (D(F ) ⊂ X) −→ IR is also
called a (real) functional on X .

Let X, Y be linear spaces on IR . A function F : (D(F ) ⊂ X) −→ Y

is a ”linear operator” on X if D(F ) is a linear subspace of X and

243B.1. Banach spaces



F (αx + βx
′) = αF (x) + βF (x′)

for any x , x′ ∈ D(F ) , α , β ∈ IR (for a linear function F we shall usually
write Fx for F (x) ).

The ”null space”, or ”kernel” of a linear operator F is the set

ker(F ) := {x ∈ D(F ) | Fx = 0} .

Clearly 0 ∈ ker(F ).
If F : (D(F ) ⊂ X) −→ Y is a linear operator between two real linear

spaces X and Y , then R(F ) is a vector space. If dimD(F ) = n < +∞ ,
then dimR(F ) ≤ n . The null space ker(F ) is a vector space.

The inverse of a linear operator F : (D(F ) ⊂ X) −→ Y exists iff
ker(F ) = {0} . If F

−1 exists it is itself a linear operator. If dimD(F ) = n <

+∞ , and F−1 exists, then dimR(F ) = dimD(F ).
Let F : (D(F ) ⊂ X) −→ Y , X, Y metric spaces.F is ”continu-

ous” at x0 ∈ D(F ) if for every ε > 0 there exists a δ(x0, ε) > 0 such
that distX(x, x0) < δ =⇒ distY (F (x), F (x0)) < ε. Equivalently, if for
every sequence (xn)n∈IN ⊂ D(F ) , converging to x0 ∈ D(F ) , the sequence
(F (xn))n∈IN ⊂ Y converges to F (x0) .

A function F is said to be ”continuous” if it is continuous at every
x0 ∈ D(F ) . It is said ”uniformly continuous” if, in D(F ) , δ(ε, x0) can be
chosen independently of x0 ∈ D(F ).

If S is a compact subset of D(F ) and F is continuous on S then F is
uniformly continuous on S .

A function F : (D(F ) ⊂ X) −→ X , on a metric space X is a ”contrac-
tion” if R(F ) ⊂ D(F ) and , for some real 0 ≤ α < 1 : dist(F (x), F (x′)) ≤
α dist(x, x′) for all x , x′ ∈ D(F ).

Theorem B.3. (Banach-Caccioppoli)[104] Let F : X −→ X be a contrac-
tion, X a complete metric space. Then there exists a unique ”fixed point”
x0 ∈ X such that

F (x0) = x0 .

A contraction on a metric space X is uniformly continuous on X .
A function F : (D(F ) ⊂ X) −→ Y , X , Y normed linear spaces, is

”Lipschitz continuous” at x0 ∈ D(F ) if a real α(x0) > 0 exists such that
‖F (x)− F (x0)‖Y ≤ α ‖x− x0‖X for all x ∈ Bρ(x0) , for some ρ > 0.

A function F is said to be Lipschitz continuous on S ⊂ D(F ) if it is
Lipschitz continuous at each x0 ∈ S .

F is ”uniformly Lipschitz continuous on S”⊂ D(F ) if α(x0) can be
chosen independent of x0 ∈ S.
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If S is precompact, Lipschitz continuity on S implies uniform Lipschitz
continuity on S .

A contraction on a normed linear space X is uniformly Lipschitz contin-
uous on X .

If F : X −→ Y is one-to-one and continuous together with its inverse
then we say that F is an ”homeomorphism” of X onto Y .

Theorem B.4. (Brower)[104] Any continuous function of the closed unit ball
in IRn into itself must have a fixed point.

Corollary B.5. [104] If A ⊂ IRn is homeomorphic to the closed unit ball in
IRn and f is continuous from A into A , then f has a fixed point in A .

A subset A of a Banach space is ”convex” if for any x , y ∈ A it follows
that tx + (1− t)y ∈ A for any t ∈ [0, 1].

Theorem B.6. (Schauder) [104] If A is a convex, compact subset of a Ba-
nach space X and f : A −→ A is continuous, then f has a fixed point in
A .

A function F : (D(F ) ⊂ X) −→ Y , X and Y metric spaces, is
”bounded” (resp. ”compact”) if F maps bounded sets in D(F ) into bounded
sets (resp. precompact sets) in Y .

If X and Y are Banach spaces F is compact iff for every bounded set
A ⊂ D(F ) , F (A) is compact in Y . If in addition F is continuous it is
called ”completely continuous”.

Corollary B.7. [104] If A is a closed, convex, bounded subset of a Banach
space X and f : A −→ A is completely continuous, then F has a fixed
point in A .

If X , Y are metric spaces, F : (D(F ) ⊂ X) −→ Y , D(F ) is compact
and F is continuous on D(F ) , then F is uniformly continuous and R(F ) is
compact in Y .

Let F : (D(F ) ⊂ X) −→ Y be linear, X , Y normed linear spaces.
Then F is bounded iff

sup
06=x∈D(F )

‖Fx‖Y

‖x‖X

= α < +∞ .

In this case the quantity α will be called the ”norm” of F and shall be
denoted by ‖F‖ .

Clearly, for any x ∈ D(F ) :

‖Fx‖Y ≤ ‖F‖ ‖x‖X .
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A real n× n matrix A is a bounded linear operator on IRn .

If a normed linear space X is finite dimensional, then every linear operator
on X is bounded.

Let F : (D(F ) ⊂ X) −→ Y be a linear operator, X , Y normed linear
spaces. Then F is continuous iff F is bounded. If F is continuous at a
point x0 ∈ D(F ) , then F is continuous, uniformly continuous and uniformly
Lipschitz continuous on D(F ) .

If F is a bounded linear operator then ker(F ) is closed in X .

Let F : (D(F ) ⊂ X) −→ Y , X , Y complete metric spaces. We say
that F is a ”closed operator” if its graph is a closed set in X × Y equipped
with the product metric

distX×Y ((x, y) , (x′
, y

′)) := distX(x, x
′) + distY (y, y

′) .

Equivalently if given a Cauchy sequence (xn)n∈IN in D(F ) ⊂ X such
that (Fxn)n∈IN is Cauchy in Y , then xn −→ x0 ∈ D(F ) and Fxn −→ Fx0

in Y .

B.1.3. Linear operators on Banach spaces

Let now X be a complex Banach space.

For a linear operator F : (D(F ) ⊂ X) −→ X , the resolvent set ρ(F )
consists of all those λ ∈ C such that

(R1) λI − F is one-to-one

(R2)R(λI − F ) is dense in X

(R3) (λI − F )−1 is bounded.

Because of (R2) and (R3), for λ ∈ ρ(F ) , there exists a unique extension
R(λ, F ) of (λI−F )−1 to all of X ; we shall call this extension the ”resolvent”
of F at λ ∈ ρ(F ) .

We notice that if λ ∈ ρ(F ) then F is a closed operator iff R(λI −F ) =
X , since (λI −F )−1 is then closed bounded and densely defined. In this case
R(λ, F ) = (λI − F )−1 .

The ”spectrum” of F is σ(F ) := {λ ∈ C | λ 6∈ ρ(F )}. . If is seen that
the spectrum may be partitioned as

σ(F ) = σp(F ) ∪ σc(F ) ∪ σr(F ) .
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The ”point spectrum” σp(F ) consists of those λ ∈ σ(F ) such that (λI−

F ) is not one-to-one; i.e. (λI−F ) g = 0 for some nonzero g ∈ D(F ) ; then we
say that λ is an ”eigenvalue” of F and g is a corresponding ”eigenvector”.

The space ker(λI − F ) is called the eigenspace of λ and its dimension
is known as the ”geometric multiplicity” of λ . The ”generalized eigenspace”
of λ , M(λI − F ) is the smallest closed linear subspace of X that contains
ker((λI − F )j) for j ∈ IN∗ ; its dimension is called the ”algebraic multiplic-
ity” of λ . Evidently the geometric multiplicity of λ is at most equal to its
algebraic multiplicity. F is called ”semisimple” if these two multiplicities
agree for all λ ∈ σp(F ) . An eigenvalue is ”simple” if its algebraic multiplicity
equals 1 .

The ”continuous spectrum” σc(F ) is the set of those λ ∈ σ(F ) for which
ker(λI−F ) = {0} and R(λI−F ) is dense in X but R(λ, F ) is unbounded.

Finally the ”residual spectrum” σr(F ) is the set of those λ ∈ σ(F ) for
which ker(λI − F ) = {0} but R(λI − F ) is not dense in X .

Note that the spectrum of a linear operator on a finite dimensional space
is a pure point spectrum , so that the spectrum is made of only eigenvalues.

If X 6= {0} is a complex Banach space and F is a linear bounded
operator on X , then σ(F ) 6= 0 .

The spectrum σ(F ) of a bounded linear operator on a complex Banach
space X is compact and lies in the disk given by

|λ| ≤ ‖F‖ .

The ”spectral radius” r(F ) of a bounded linear operator F on a complex
Banach space is the quantity

r(F ) := sup
λ∈σ(F )

|λ| .

For a bounded linear operator F we have

r(F ) ≤ ‖F‖

It can be shown further that

r(F ) = lim
n→∞

‖F
n

‖
1/n

Let X , Y be normed linear spaces and F : (D(F ) ⊂ X) −→ Y a
linear operator. Then if F is bounded and dimR(F ) < +∞ , the operator
F is compact. If dim(X) < +∞ , the operator F is compact.
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Theorem B.8. [140] A compact linear operator F on a normed linear space
X has the following properties.

a) Every spectral value λ 6= 0 is an eigenvalue. If dimX = +∞ then
0 ∈ σ(F ) (but may belong to either σp(F ) or σc(F ) or even σr(F ) ).

b) The set of all eigenvalues of F is countable. λ = 0 is the only possible
point of accumulation of that set.

c) For λ 6= 0 the dimension of any eigenspace of F is finite.

Let X , Y be OBS’s with positive cones P and Q respectively.

A linear operator F : X −→ Y is called ”positive” if F (P ) ⊂ Q , and
”strictly positive” if F (Ṗ ) ⊂ Q̇ .

If Y is an OBS with respect to Q , and Q has nonempty interior, then

F is called ”strongly positive” if F (Ṗ ) ⊂
◦

Q .

The following extends Perron-Frobenius theorem to the infinite dimen-
sional case.

Theorem B.9. (Krein-Rutman) [1] Let E be an OBS whose positive cone P

has nonempty interior. Let F be a strongly positive compact linear operator
on E . Then the following is true :

(i) The spectral radius r(F ) is positive.

(ii) r(F ) is a simple eigenvalue of F having a positive eigenvector and there
is no other eigenvalue with a positive eigenvector.

(iii) for every y ∈ Ṗ the equation

(λI − F )x = y

has exactly one positive solution x if λ > r(F ) , and no positive solution

for λ ≤ r(F ) .
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B.1.4. Dynamical systems and Co-semigroups

For X a Banach space, a family of continuous operators {S(t) , t ∈ IR+}

on X is a strongly continuous semigroup of continuous operators if

(i) S(0) = I

(ii) S(t+ τ) = S(t)S(τ) for all t , τ ∈ IR+

(iii) S(·)x : IR+ −→ X is continuous for any x ∈ X .

Such a family is usually called a Co-semigroup ((i) and (ii) define a semi-
group; Co refers to (iii)).

Clearly, every Co-semigroup determines a dynamical system in X , and
conversely, by the definition

u(t;x) := S(t)x , t ∈ IR+ , x ∈ X .

Hence these two concepts are equivalent [215].
A dynamical system {S(t) , t ∈ IR+} is linear if S(t) is a linear bounded

operator on X for every t ∈ IR+ .
If {S(t) , t ∈ IR+} is a linear dynamical system on a Banach space X ,

there exist numbers M ≥ 1 , ω ∈ IR such that

‖S(t)‖ ≤ M e
ωt

, t ∈ IR+

With each linear dynamical system {S(t) , t ∈ IR+} on a Banach space
X there is associated a certain linear operator A : (D(A) ⊂ X) −→ X

called its ”infinitesimal generator” defined as follows

D(A) :=

{

x ∈ X

∣

∣

∣

∣

there exists the limit lim
t→0+

1

t
[S(t)x− x]

}

Ax := lim
t→0+

1

t
[S(t)x− x] .

Theorem B.10. [179, 26] Let A : (D(A) ⊂ X) −→ X , X a Banach space,
be the infinitesimal generator of a linear dynamical system {S(t) , t ∈ IR+}.
Then

(i) A is a closed linear operator and D(A) is dense
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(ii) D(A) is positive invariant and for every x ∈ D(A)

d

dt
S(t)x = AS(t)x = S(t)Ax , t ∈ IR+ .

Theorem B.11. (Hille-Phillips) [129, 26] A linear operator A : (D(A) ⊂
X) −→ X on a complex Banach space X , is the infinitesimal generator of a
linear dynamical system {S(t) , t ∈ IR+} satisfying ‖S(t)‖ ≤ M eωt for all
t ∈ IR+ , iff

(i) A is closed and D(A) is dense

(ii) every real µ > ω is in the resolvent set ρ(A)

(iii) ‖R(µ,A)n‖ ≤
M

(µ− ω)n
for all µ > ω, n = 1, 2, · · · .

Notice that condition (iii) is ”easy” only if ‖R(µ,A)‖ ≤
1

(µ− ω)
for all

µ > ω .
Here M > 0, and ω ∈ IR.

Let {S(t) , t ∈ IR+} be a linear dynamical system on a complex Banach
space with infinitesimal generator A : (D(A) ⊂ X) −→ X .

The following necessary conditions can be stated

Theorem B.12. [215] If the equilibrium x∗ = 0 is stable, then no eigenvalue
of A has positive real part. If x∗ = 0 is asymptotically stable, then every
eigenvalue has negative real part.

Remark. The above theorem cannot be reversed into sufficient conditions
for stability and asymptotic stability in the infinite dimensional case.

On the other hand for linear systems on a Banach space the following
statements are equivalent [215]:

(i) the equilibrium x
∗ = 0 is stable

(ii) every motion is stable

(iii) every positive orbit is bounded.

Further, the following statements are equivalent [215]:

(i) the equilibrium x
∗ = 0 is asymptotically stable

250 Appendix B. Dynamical systems in infinite dimensional spaces



(ii) every motion is GAS.

For nonlinear dynamical systems such coincidences are not generally true.
The next step is to explore the behavior of a linear Co-semigroup

{S(t) , t ∈ IR+} for large t that can be anyway drawn from the knowledge
of the spectrum of its infinitesimal generator A : (D(A) ⊂ X) −→ X .

Theorem B.13. [168] Under the above assumptions, for any t ∈ IR+

(i) etσ(A) ⊂ σ(S(t))

(ii) etσp(A) ⊂ σp(S(t)) ⊂
(

etσp(A) ∪ {0}
)

.

Theorem B.14. [168] If we define

ω0 := inf
t>0

1

t
ln ‖S(t)‖

we have

(i) lim
t→+∞

1

t
ln ‖S(t)‖ = ω0

(ii) for any ω > ω0 an M(ω) > 0 exists such that ‖S(t)‖ ≤ M(ω) eωt ,

t ∈ IR+.

(iii) r(S(t)) = eωot , t ∈ IR+.

The quantity ω0(S) is usually called the ”growth bound” of the Co-
semigroup {S(t) , t ∈ IR+} . For compact semigroups we may relate ω0 to
s(A) := sup {Re λ | λ ∈ σ(A)} as a consequence of Theorem B.8 p.248.

Theorem B.15. [168, 215] Suppose that for some t0 > 0 , S(t0) is compact.
Then

ω0 = s(A) .

Theorem B.16. [215]Under the above assumptions if the resolvent R(µ,A)
= (I − µA)−1 is compact for some µ ∈ (0, λ0) , λ0 > 0 then every bounded
orbit is precompact.

251B.1. Banach spaces



B.2. The initial value problem for systems of semilinear parabolic

equations (reaction-diffusion systems)

We shall consider now dynamical systems in Banach spaces defined by
systems of semilinear parabolic equations of the form

(B.1)
∂

∂t
u = D∆u+ f(u) , in Ω× IR+

subject to boundary conditions

(B.1b) βi

∂

∂ν
ui + αiui = 0 , in ∂Ω× IR+ ,

for i = 1, · · · , n, and initial conditions

(B.1o) u(0) = u0 , in Ω .

(here ∂/∂ν denotes the outward normal derivative).
We shall assume that

(H1) f : G ⊂ IRn

−→ IRn is a locally Lipschitz continuous function on an
open subset G of IRn

.

(H2) Ω is a bounded open connected subset of IRm

, m ∈ IN − {0} with a
sufficiently smooth boundary ∂Ω.

(H3) βi , αi are sufficiently smooth nonnegative functions on ∂Ω such that
αi + βi > 0 on ∂Ω . βi = 0 means homogeneous Dirichlet boundary
conditions, while αi = 0 means homogeneous Neumann boundary con-
ditions.

(H4)D = diag(di) , di > 0.

Denote by X the real Banach space C(Ω) of continuous vector valued
functions u : Ω −→ IRn , endowed with the norm

‖u‖ =

n
∑

i=1

sup
x∈Ω

|ui(x)| .
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The space X is a (partially) ordered Banach space with respect to the
cone

X+ :=
{

v ∈ X | 0 ≤ v(x) , x ∈ Ω
}

Note that the order ≤ induced on X by the cone X+ , is compatible
with the order ≤ induced on IRn by the cone IK ; i.e.

u ≤ v in X ⇐⇒ u(x) ≤ v(x) in IRn

, for any x ∈ Ω .

In an analogous way we may then define u < v and u ¿ v in X , by
the correspondence in IRn .

As for the finite dimensional case, in the Banach space X we may define
a ”(local) semiflow” as a mapping

ϕ : S ⊂ IR+ ×X −→ X

where

S =
{

(t, u) ∈ IR+ ×X
∣

∣ t ∈ J(u) :=
[

0, τ+(u)
) }

( 0 < τ+(u) ≤ +∞ ), having the following properties

(i) ϕ(0;u) = u , for any u ∈ X

(ii) ϕ(t+s;u) = ϕ(t;ϕ(s;u)), for any u ∈ X and for all s ∈ J(u) , and t ∈

J(ϕ(s;u))

(iii) the mapping t −→ ϕ(t;u) is continuous on J(u) , for any u ∈ X

(iv) the mapping u −→ ϕ(t;u) is continuous in X , for any t ∈ J(u) .

Theorem B.17. [169] Assume conditions (H1)-(H4) hold. Then problem
(B.1), (B.1b), (B.1o) defines a (local) semiflow ϕ on the Banach space X . For
any u0 ∈ X , {ϕ(t;u0) , t ∈ J(u)} provides the unique solution of the problem
(B.1), (B.1b), (B.1o) (for homogeneous Dirichlet boundary conditions X :=
{

u ∈ C(Ω) | u = 0 on ∂Ω
}

). This semiflow satisfies the following properties.

(a) (Maximality) For any u0 ∈ X , such that τ+(u0) < +∞ , we have

lim
t→τ

+(u0)
‖ϕ(t;u0)‖ = +∞ .
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(b) (Compactness) If u0 ∈ X is such that the positive orbit Γ+(u0) :=
{ϕ(t;u0) | t ∈ IR+} is bounded in X , then Γ+(u0) is relatively compact.

A boundary operator B may be defined as

(Bu)i := βi

∂

∂ν
ui + αiui , i = 1, · · · , n on ∂Ω .

Global boundedness of solutions of (B.1), (B.1b) may follow e.g. from
the existence of a bounded invariant region.

A positively invariant region for the local semiflow defined by (B.1),
(B.1b) is a closed subset Σ ⊂ IRn such that for every initial state u0 ∈ X ,
having u0(x) ∈ Σ for any x ∈ Ω , ϕ(t;u0)(x) remains in Σ for any x ∈ Ω
and t ∈ J(u0).

Actually when we deal with general third type boundary conditions we
need to be more precise; an invariant region for the initial-boundary value
problem (B1), (B1b) is a set Σ ⊂ IRn such that if

{

u(x; t) , x ∈ Ω , t ≥ 0
}

is a solution of (B1) with u0(x) ∈ Σ , for x ∈ Ω , and Bu ∈ αΣ on
∂Ω × IR+ then u(x; t) ∈ Σ for x ∈ Ω , t ∈ IR+ [39, 204]; here αΣ :=
{

(α1v1, · · · , αnvn)
T | v ∈ Σ

}

.
Typically we consider regions Σ of the form

Σ :=

p
⋂

j=1

{z ∈ IRn

| Gj(z) ≤ 0}

where Gj are suitable smooth functions on G .

Theorem B.18. [204] If, at each point z ∈ ∂Σ we have

(a) ∇Gj(z) is a left eigenvector of D , j = 1, · · · , p ;

(b) ∇Gj(z) · w = 0 for any w ∈ IRn =⇒ w ·H(z)w ≥ 0 for any w ∈ IRn ,
with H the Hessian matrix of Gj , j = 1, · · · , p ;

(c) ∇Gj(z) · f(z) < 0 , j = 1, · · · , p ;

then Σ is positively invariant for (B.1), (B.1b).
Conditions (a)-(c) are also necessary conditions for the invariance of Σ , with
a weak inequality in (c).

Remark. Provided the vector field f points into Σ on ∂Σ we have : (i) if
D is a scalar matrix (D = dI , d ∈ IR∗

+ ), and Σ is convex then it is invari-
ant; (ii) otherwise Σ is invariant if and only if it is a (possibly unbounded)
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parallelogram. The edges of this parallelogram are parallel to the coordinate
axes if and only if D is a diagonal matrix. In this case then the invariance of
the positive cone X+ is allowed provided the vector field f points into IK
on ∂IK .

In the sequel we shall assume conditions on f that allow the global
existence of the semiflow for any u0 ∈ X+ . Further we shall assume that f

is smooth enough so that the solutions u of system (B.1), (B.1b) are classical
solutions, i.e.

u ∈ C
2,1 (Ω× (0,+∞) , IRn) ∩ C

1,0
(

Ω× (0,+∞) , IRn
)

and satisfies the system in a classical sense.
If we denote by {U(t)u0 , t ∈ IR+} the unique solution of system (B.1),

(B.1b), (B.1o) it can be shown [91] that the evolution operator {U(t) , t ∈

IR+} is a (nonlinear) Co-semigroup on X (see Section B.1.4).
Note that whenever we do not have global (in time) solutions, properties

(i)-(iii) of Section B.1.4 apply to the maximal interval of existence.

B.2.1. Semilinear quasimonotone parabolic autonomous systems

Here we extend comparison theorems to the parabolic case.

Theorem B.19. [39, 161, 86] Under the assumptions of Theorem B.17, let
further f in system (B.1) be quasimonotone nondecreasing (cooperative) in
IK . Let u(x; t) = (u1(x; t), · · · , un(x; t))

T and v(x; t) = (v1(x; t), · · · , vn(x; t))
T

be classical solutions of the following two inequalities, respectively,

(B.2)
∂

∂t
u ≤ D∆u + f(u)

(B.3)
∂

∂t
v ≥ D∆v + f(v) ,

in Ω× (0,+∞) , with boundary conditions

(B.4) βi

∂

∂ν
ui + αiui ≤ βi

∂

∂ν
vi + αivi , i = 1, · · · , n ,

on ∂Ω× (0,+∞) , and initial conditions such that
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(B.5) u0 ≤ v0 in Ω .

Then

(B.6) u ≤ v in Ω× IR+ .

The above theorem implies in particular the monotonicity of the evolution
operator

(B.7) u0 , v0 ∈ X+ , u0 ≤ v0 =⇒ U(t)u0 ≤ U(t) v0 , t ≥ 0 .

If we further assume for f ∈ C1(IK, IRn) the hypotheses (F1)-(F3) of
Section A.4.2, then first of all we may actually claim that for any choice of
u0 ∈ X+ , a unique global solution exists for system (B1), (B.1b) subject to
the initial condition u0 at t = 0 . Hence the family of evolution operators
{U(t) , t ∈ IR+} define a (global) flow in X+ .

Moreover we may state the following

(B.8) U(t) 0 = 0 , t ≥ 0

(B.9) U(t)X+ ⊂ X+ , t ≥ 0

Lemma B.20. [161] Under the assumptions of Lemma A.33 the evolution
operator U(t) of system (B.1), (B.1b) is strongly positive for any t > 0 ; i.e.

(B.10) U(t) (Ẋ+) ⊂
◦

X+ , t > 0

Lemma B.21. [161] Under the assumptions of Lemma A.33

(B.11) for any u0 , v0 ∈ X+

u0 ≤ v0 , u0 6= v0 =⇒ U(t)u0 ¿ U(t) v0

Lemma B.22. [161] Under the assumptions of Lemma A.34, the evolution
operator U(t) of system (B.1), (B.1b) is strongly concave, for any t > 0 .

(B.12) for any u0 ∈
◦

X+ , and for any σ ∈ (0, 1) an α = α(u0, σ) > 0
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exists such that

U(t) (σu0) ≥ (1 + α)σ U(t)u0 , t > 0 .

Thus Theorem A.36 applies also for the PDE case, excluding the existence
of more than one nontrivial equilibrium for system (B.1), (B.1b) under the
assumptions of Lemma B.22.

B.2.1.1. The linear case

Let B be a real n × n quasimonotone (cooperative) matrix, i.e. such
that bij ≥ 0 for i 6= j , i, j = 1, · · · , n , and consider the linear quasimonotone
parabolic system

(B.13)
∂

∂t
v = D∆v +Bv , in Ω× (0,+∞)

subject to the boundary conditions (B.1b).
The evolution operator associated with system (B.13), (B.1b) will be de-

noted by {T (t) , t ∈ IR+} ; it generates a (global) semiflow in X+ . Moreover,
since equation (B.13) is linear, T (t) will be, for any t ∈ IR+ , a linear operator.

Theorem B.23. [1] Consider the following eigenvalue problem for the Laplace
operator ∆ (actually any strongly uniformly elliptic operator)

(B.14)







∆φ+ λφ = 0 , in Ω

β
∂

∂ν
φ + αφ = 0 , on ∂Ω

where α , β are sufficiently smooth functions in ∂Ω , itself sufficiently smooth.
The eigenvalue problem (B.14) admits a smallest eigenvalue λα which is real
and nonnegative. A unique (normalized) eigenfunction φα is associated with
λα and it can be chosen strictly positive (φα À 0 in Ω ). If α ≥ 0 on ∂Ω ,
is not identically zero, then λα > 0 ; if α ≡ 0 on ∂Ω , then λα = 0 . If
β 6= 0 , φα À 0 in Ω .

Theorem B.24. (Separation of variables) [161] Consider system (B.13) sub-
ject to the same boundary conditions on both components of v :

(B.15) β
∂

∂ν
v + αv = 0 on ∂Ω× (0,+∞)
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where α , β ≥ 0 are sufficiently smooth real functions defined in ∂Ω . Suppose
that the (B.13), (B.15) is subject to an initial condition of the form

(B.16) v(x; 0) = v0(x) = φα(x) ξ , in Ω

where φα is the unique eigenfunction associated with the first eigenvalue of
problem (B.14), and ξ ∈ IK , then the solution of system (B.13), (B.15), (B.16)
is given by

(B.17) v(x; t) = [Tα(t) v0] (x) = φα(x)wξ(t)

in Ω × [0,+∞) , where wξ(t) , t ≥ 0 is the unique solution of the following
ODE system

(B.18)
d

dt
w = (−λαD +B)w , t > 0

subject to the initial condition

(B.19) w(0) = ξ .

Note that, in the above theorem, we have denoted by {Tα(t) , t ∈ IR+}

the evolution semigroup of linear operators associated with system (B.13),
(B.15).

Lemma B.25. Let v(t) = T (t) v0 , t ∈ IR+ be the solution of the linear
system (B.13), (B.1b) subject to the initial condition v0 ∈ X+ . If B is
quasimonotone (cooperative) irreducible then

(B.20) v0 ∈ X+ , v0 6= 0 =⇒ v(t) = T (t) v0 À 0 , t > 0

i.e.

(B.20′) T (t) Ẋ+ ⊂
◦

X+ .
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Theorem B.26. Consider system (B.13), (B.15).

(i) If, for any λ ∈ σ(−λαD+B) , we have Re λ < 0 , then the trivial solution
is GAS in X+ for system (B.13), (B.15)

(ii) if µ = max{Re λ | λ ∈ σ(−λα D + B)} > 0 and B is irreducible, then
the trivial solution is unstable. Moreover

(B.21) for any v0 ∈ Ẋ+ : lim inf
t→+∞

‖Tα(t) v0‖ e
−µt

> 0 .

B.2.1.2. The nonlinear case

From now on we shall denote by

αm = min
x∈∂Ω

min
1≤i≤n

{αi(x)}

βm = max
x∈∂Ω

max
1≤i≤n

{βi(x)}

and by

αM = max
x∈∂Ω

max
1≤i≤n

{αi(x)}

βM = min
x∈∂Ω

min
1≤i≤n

{βi(x)}

and by λm (φm) , and λM (φM ) the corresponding eigenvalues (eigenvectors)
of problem (B.14).

Theorem B.27. [161] Let B be a quasimonotone (cooperative) matrix such
that

(B.22) for any ξ ∈ IK : f(ξ) ≤ Bξ .

If, for any λ ∈ σ(−λmD + B) , we have Re λ < 0 , then the trivial
solution is GAS in X+ for system (B.1), (B.1b).
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Theorem B.28. [161] Let B be a quasimonotone (cooperative) irreducible
matrix such that a δ > 0 exists for which

(B.23) for any ξ ∈ IK , ‖ξ‖ < δ : f(ξ) ≥ Bξ .

If, µ = max{Re λ | λ ∈ σ(−λMD + B)} > 0 then the trivial solution is
unstable for system (B.1), (B.1b).

B.2.1.3. Lower and upper solutions.

Existence of nontrivial equilibria

If we deal with quasimonotone reaction-diffusion systems of the form
(B.1), subject to homogeneous Neumann boundary conditions (αi = 0 , βi 6=
0 , i = 1, · · · , n , in (B.1b)), space homogeneous equilibria are possible, which
are critical points of the vector function f .

Under this assumption it is not difficult to extend Theorem A.37 (Nested
Invariant Rectangles) and Theorem A.38 (Nested Contracting Rectangles) to
the PDE case [39].

When we have general boundary conditions (B.1b), space homogeneous
equilibria are not any more allowed, and we are obliged to extend the definition
of lower and upper solution to the PDE case, explicitly.

An equilibrium solution of system (B.1), (B.1b) is a classical solution
φ ∈ C2(Ω) ∩ C1(Ω) of system

(B.24) D∆φ + f(φ) = 0 , in Ω

subject to the boundary condition

(B.1b) βi

∂

∂ν
ui + αiu = 0 , i = 1, · · · , n , on ∂Ω .

A ”lower solution” of system (B.24), (B.1b) is a classical solution φ ∈

C2(Ω) ∩ C1(Ω) of the following inequalities

(B.25) D∆φ + f(φ) ≥ 0 , in Ω
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(B.25b) βi

∂

∂ν
φ

i

+ αiφ
i

≤ 0 , i = 1, · · · , n , on ∂Ω .

The notion of ”upper solution” is obtained by reversing the inequalities
in (B.25) and (B.25b).

Lemma B.29. [161] Let φ ≥ 0 be a lower solution of system (B.25), (B.25b).
Then {U(t)φ , t ∈ IR+} is monotone nondecreasing in t . Further, if we set

(B.26)
N+(φ) :=

{

ψ ∈ C
2(Ω) ∩ C

1(Ω) | ψ is an equilibrium

for (B.1), (B.1b), and φ ≤ ψ
}

and N+(φ) 6= ∅ , then a φ− = minN+(φ) exists such that

limt→+∞ dist
(

U(t)φ , φ−

)

= 0

Lemma B.30. [161] Let φ ≤ 0 be an upper solution of system (B.25),
(B.25b). Then

{

U(t)φ , t ∈ IR+

}

is monotone nonincreasing in t . Moreover,
if we set

(B.27)
N−(φ) :=

{

ψ ∈ C
2(Ω) ∩ C

1(Ω) | ψ is an equilibrium

for (B.1), (B.1b), and ψ ≤ φ
}

,

then a φ+ = maxN−(φ) exists such that

lim
t→+∞

dist
(

U(t)φ , φ+

)

= 0 .

Lemma B.31. [161] Let (χk)k∈IN be a monotone increasing sequence of

equilibria of system (B.1), (B.1b) such that for any k ∈ IN , χk À 0 in Ω
(in Ω for homogeneous Dirichlet boundary conditions). Then a χ À 0 in
Ω (in Ω for homogeneous Dirichlet boundary conditions) exists such that
lim

k→+∞

χk = χ, in X . χ is itself an equilibrium of system (B.1), (B.1b).

Theorem B.32. [137, 139, 161] Let f in system (B.1) satisfy the following
assumptions

(i) a quasimonotone (cooperative), irreducible matrix B exists for which a
δ > 0 exists such that
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for any ξ ∈ IK , ‖ξ‖ < δ : f(ξ) ≥ Bξ

and

µ = max {Re λ | λ ∈ σ(−λMD +B)} > 0

(ii) a quasimonotone (cooperative) matrix C exists for which a δ > 0 exists
such that

for any ξ ∈ IK , ‖ξ‖ ≥ δ : f(ξ) ≤ Cξ

and

for any λ ∈ σ(C) : Re λ < 0

(iii) (F4) and (F5) of Section A.4.2 .

Then system (B.1), (B.1b) admits a unique nontrivial equilibrium solution
φ À 0 in Ω (in Ω for homogeneous Dirichlet boundary conditions) which is
GAS in Ẋ+ .
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B.2.2. Lyapunov methods for PDE ’s, LaSalle Invariance Principle

in Banach space

Suppose we are given a semidynamical system on a closed subset D of a
Banach space X .

As we have seen in the previous sections it may be defined by a Co-
semigroup of nonlinear operators {U(t) ; t ∈ IR+} acting on D (see Section
B.1.4).

For any u ∈ D , we may define the positive orbit starting from u at
t = 0 , as usual

Γ+(u) := {U(t)u ∈ D | t ∈ IR+} .

We say that φ ∈ D is an equilibrium point for {U(t) , t ∈ IR+} if
Γ+(φ) = φ .

Stability concepts can be rephrased in a Banach space, with respect to
its norm.

A ”Lyapunov functional” for the dynamical system {U(t) ; t ∈ IR+} on
D ⊂ X is a continuous real valued function V : D ⊂ X −→ IR such that

V̇(u) := lim sup
t→0+

1

t
{V (U(t)u)− V(u)} ≤ 0

for all u ∈ D .

Theorem B.33. [108] Let {U(t) , t ∈ IR+} be a dynamical system on D ,
and let 0 be an equilibrium point in D . Suppose V is a Lyapunov function
on D which satisfies

(i) V(0) = 0

(ii) V(u) ≥ c(‖u‖) , u ∈ D where c is a continuous strictly increasing func-
tion such that c(0) = 0 and c(r) > 0 for r > 0 .

Then 0 is stable. Suppose in addition that

(iii) V̇(u) ≤ −c1(‖u‖) , u ∈ D where c1 is also continuous increasing and
positive with c1(0) = 0 .

Then 0 is uniformly asymptotically stable.

A set Σ ⊂ D is ”positively invariant” for the dynamical system
{U(t) , t ∈ IR+} if U(t)Σ ⊂ Σ , for any t ∈ IR+ .

263B.2. The initial value problem for systems of semilinear parabolic 



If u0 ∈ D and Γ+(u0) is its positive orbit, then the ω-limit set of u0 ,
or of Γ+(u0) , is

ω(u0) = ω(Γ+(u0)) :=
{

u ∈ D | a sequence tn ∈ IR+ exists such that

tn −→ ∞ , and U(tn)u0 −→ u , for n −→ ∞
}

.

Theorem B.34. [108, 215] Suppose u0 ∈ D is such that its orbit Γ+(u0) is
precompact (lies in a compact set of D ); then ω(u0) is nonempty, compact,
invariant and connected. Moreover

lim
t→+∞

dist(U(t)u0 , ω(u0)) = 0 .

Theorem B.35. (LaSalle Invariance Principle) [108, 215] Let V be a Lya-
punov functional on D (so that V̇(u) ≤ 0 on D ). Define

E :=
{

u ∈ D

∣

∣

∣ V̇(u) = 0
}

and let M be the largest (positively) invariant subset of E . If for u0 ∈ D

the orbit Γ+(u0) is precompact (lies in a compact set of D ), then

lim
t→+∞

dist(U(t)u0 , M) = 0 .

Remark. For dynamical systems generated by evolution equations

d

dt
u = Au + f(u)

where A is a strongly elliptic operator, bounded orbits are generally precom-
pact [108, 219], and boundedness of orbits frequently follows from the existence
of a Lyapunov functional such that {u ∈ D | V(u) < k} is a bounded set for
a suitable choice of k > 0 .
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Notation

IN := {0, 1, 2, · · ·} is the set of all natural numbers

IN∗ := IN− {0}

IR is the set of all real numbers

C is the set of all complex numbers

IR+ := [0,+∞) is the set of all nonnegative real numbers

IR∗

+ := IR+ − {0} = (0,+∞) is the set of all positive real
numbers

IRn := IR× · · · × IR (n times) is the n-dimensional Euclidean
space

IK := IRn

+ = IR+ × · · · × IR+ is the positive cone of the
n-dimensional Euclidean space

IRn∗

+ := IR∗

+ × · · · × IR∗

+ (n times) =
◦

IK

‖ · ‖ denotes in general the Euclidean norm in IRn, but it can
also denote the norm in an arbitrary normed vector space
(depending upon the context)

Bρ(z0) := {z ∈ E | ‖z − z0‖ < ρ} denotes the open ball with
center z0 ∈ E and radius ρ > 0 in a normed vector space
E

AT denotes the transpose of the matrix A
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