
6. Age structure

In this section we introduce a dependence of the force of infection upon
the chronological age of individuals participating in the epidemic.

Age has been recognized as an important factor in the dynamics of epi-
demic processes since 1760 by Bernoulli [32] when reporting the data of a
smallpox epidemic .

Age dependent models have been analyzed in [70, 121], and great atten-
tion has been paid in connection with the analysis of real epidemics by Dietz
and Schenzle [84].

From the mathematical point of view a good reference is the monograph
[168].

A stochastic version of age-dependent epidemic systems has been pro-
posed more recently in [47] which allows, by means of martingale theory for
point processes, the statistical analysis of age-dependent epidemic data.

Here we shall report about the results obtained by Busenberg et al. [41]
about the existence and stability of nontrivial endemic states for SIS epidemic
systems with constant total population. This is also to show the mathematical
methods employed for the analysis of age-dependent epidemic systems.

The total population has an age structure expressed in terms of its age
density p(a; t), a ∈ IR+, t ∈ IR+. It is divided into two classes; the suscepti-
ble population with age density s(a; t) and the infective population with age
density i(a; t), so that

(6.1) p(a; t) = s(a; t) + i(a; t), a, t ∈ IR+.

Each individual is subject to an age-dependent death rate µ(a). New
individuals are produced at an age-dependent birth rate β(a).

The deterministic mathematical model currently accepted for the evolu-
tion of the age-dependent populations is based on the so called McKendrick-
van Foerster equation [167, 214]

(6.2)
∂

∂t
p(a; t) +

∂

∂a
p(a; t) + µ(a) p(a; t) = 0

for a, t ∈ IR+, subject to the boundary condition

(6.3) p(0; t) =

∫

∞

0

β(a)p(a; t) da, t ≥ 0

and to the initial condition

(6.4) p(a; 0) = p
o(a), a ≥ 0

where po(a), a ∈ IR+ is the initial age distribution of the total population.
Typical assumptions on the parameters are

(H1) β, µ, po are nonnegative, piecewise continuous functions on [0,∞).



(H2) β(a) > 0 for a ∈ (Ao, A)

β(a) = 0 for a 6∈ (Ao, A)

(H3)

∫

∞

0

exp

(

−

∫

a

0

µ(σ) dσ

)

da < ∞ .

Note that (H3) implies that

∫

∞

0

µ(σ) dσ =∞ .

Under the above assumptions, system (6.2)-(6.4) has a steady state solu-
tion (see e.g. [70, 121]) given by

(6.5) p∞(a) := bo exp

(

−

∫

a

0

µ(σ) dσ

)

, a ≥ 0 ,

iff the net population reproduction rate R equals 1:

(6.6) R :=

∫

∞

0

β(a) exp

(

−

∫

a

0

µ(σ) dσ

)

da = 1 .

(bo ≥ 0 is an arbitrary parameter related to the total population size).

By referring to the analysis carried out in [41] we shall assume that (6.6)
holds and the total population has reached its steady state age-distribution
p∞(a), a ∈ IR+.

In such a population we introduce an SIS epidemic.
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6.1. An SIS model with age structure

According to the basic definitions in Sect.2 the total population
{p∞(a), a ∈ IR+} is divided into two subgroups; the susceptible population,
with age distribution {s(a; t), a ∈ IR+}, and the infective population, with
age distribution {i(a; t), a ∈ IR+}, at time t ≥ 0 , so that

(6.7) p∞(a) = s(a; t) + i(a; t) , a ≥ 0 , t ≥ 0 .

Given (6.7), the epidemic process can be described by the evolution of
the infective population. The basic equations are given in [167] for an early
reference; a more detailed discussion can be found in [198]. In accordance with
our approach (see Sect.1 and Sect.5.1), as for the space structure the force of
infection acting on a susceptible individual of age a, g(i(·; t))(a) depends a
priori on the overall distribution of the infective population at time t, i(·; t).

A possible choice, suggested by Schenzle [198] is the following

(6.8) g(i(·; t))(a) =

∫

∞

0

k(a, a
′) i(a′; t) da

′

where k(a, a′) describes the action of the infectives of age a′ ∈ IR+ on the
susceptibles of age a ∈ IR+.

As a consequence the infection process is described by

(6.9) g(i(·; t))(a) s(a; t) .

For the case k(a, a′) = δ(a − a′) ko(a) ( δ is the Dirac function) we get
[40.1]

(6.10) g(i(·; t))(a) = ko(a) i(a; t)

The case (6.10) is known as ”intracohort” infection process; while (6.8)
is better known as ”intercohort” infection process.

We may wish to remind here that the case k(a, a′) = k, constant, has been
investigated in [80, 98]; k(a, a′) = k(a), in [101, 220]; k(a, a′) = k1(a) k2(a

′),
in [84, 99].

If we consider an SIS model, the evolution of the age distribution {i(a; t),
a ∈ IR+}, t ∈ IR+, is described by

(6.11)
∂

∂t
i(a; t) +

∂

∂a
i(a; t) + µ(a) i(a; t) = g(i(· ; t))(a) s(a; t)− γ(a) i(a; t)

(6.12) i(0; t) = q

∫

∞

0

β(a)i(a; t) da

(6.13) i(a; 0) = i
o(a)
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where γ(a), a ∈ IR+ is the recovery rate of infectives (going back into the
susceptible class).

The parameter 0 ≤ q ≤ 1 in (6.12) is the probability for the disease to be
vertically transmitted from infective parents to newborns. When q = 0 there
is no vertical transmission and hence condition (6.12) becomes

(6.12′) i(0; t) = 0

that is all newborns are susceptible.
We shall report here the analytical results obtained in [41] about the

threshold theorems.

6.1.1. The intracohort case

If we choose the case (6.10) equation (6.11) becomes

(6.14)
∂

∂t
i(a; t) +

∂

∂a
i(a; t) + µ(a) i(a; t) = ko(a) i(a; t)(p∞(a)− i(a; t))

−γ(a) i(a; t)

where we have taken (6.7) into account.
We shall make the further assumption that

(H4) γ and ko are nonnegative piecewise continuous functions on [0,+∞) and
ko is bounded.

System (6.14), (6.12), (6.13) can be explicitly solved along the character-
istic lines t− a = const, and we obtain the following :

(6.15) i(a; t) =

{

i1(a; t) , if a ≥ t

i2(a; t) , if a < t

where

i1(a; t) =

io(a− t) exp

(∫

t

0

α(a− t+ σ) dσ

)

1 + io(a− t)

∫

t

0

exp

(∫

τ

0

α(a− t+ σ) dσ

)

ko(a− t+ τ) dτ

i2(a; t) =

i(0, t− a) exp

(∫

a

0

α(σ) dσ

)

1 + i(0, t− a)

∫

a

0

exp

(∫

τ

0

α(σ) dσ

)

ko(τ) dτ
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and

(6.16) α(σ) = −µ(σ)− γ(σ) + ko(σ)p∞(σ) , σ ≥ 0

To completely explicit i(a; t) we need to take into account the boundary
condition (6.12).

6.1.1.1. The case q = 0

For the case q = 0 (no vertical transmission), we apply (6.12’) to get

(6.17) i(a; t) =

{

i1(a; t) , if a ≥ t

0 if a < t

where i1(a; t) is defined in the Eqn. (6.15) and following.
If we denote, for a ≥ 0,

(6.18) E(a) := exp

(∫

a

0

α(σ) dσ

)

=
p∞(a)

bo

exp

(∫

a

0

[−γ(σ) + ko(σ)p∞(σ)] dσ

)

from (6.17) we get, for the cohort ao = a− t ≥ 0

(6.19) i(ao + t; t) =

io(ao)
E(ao + t)

E(ao)

1 + io(ao)

∫

t

o

(

E(ao + τ)

E(ao)

)

ko(ao + τ) dτ

, t ≥ 0

Since

(6.20) lim
a→∞

E(a) = 0 ;

∫

∞

0

E(a) da < +∞

from (6.19) we get, for any cohort ao ≥ 0 ,

(6.21) lim
t→∞

i(ao + t; t) = 0 .

That is the cohort of infectives which has age ao at time t = 0 eventually
vanishes. We may then conclude that when there is no vertical transmission
of the disease, any epidemic dies off due to the aging process.
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6.1.1.2. The case q > 0

The case q > 0 requires a more elaborate treatment based on an integral
equation for the quantity

(6.22) u(t) := i(0; t) .

By substituting (6.15) into (6.12) we obtain for u(t) the integral equation

(6.23) u(t) = F (t) +

∫

t

0

G(a, u(t− a)) da , t ≥ 0

where

(6.24) F (t) :=

∫

∞

t

qβ(a)E(a) io(a− t)

E(a− t) + io(a− t)

∫

a

a−t

E(τ)ko(τ) dτ

da , t ≥ 0

(6.25) G(a, z) :=
qβ(a)E(a)z

1 + z

∫

a

0

E(τ)ko(τ) dτ

, a ≥ 0, z ≥ 0

= D(a, z) z

where we have denoted by

(6.26) D(a, z) :=
qβ(a)E(a)

1 + z
∫

a

0
E(τ)ko(τ) dτ

, a ≥ 0, z ≥ 0 .

If we make the assumptions (H1)-(H4) we get

(6.27) F (t) = 0 for t > A

(6.28)
G(a, z) > 0 for a ∈ (Ao, A)

G(a, z) = 0 for a 6∈ (Ao, A)

Furthermore for any a ∈ (Ao, A) :

(6.29) z → G(a, z) is an increasing function

(6.30) z → D(a, z) is a decreasing function.

Because of (6.27) and (6.28) the asymptotic behavior of equation (6.23)
is the following

(6.31) v(t) =

∫

A

0

G(a, v(t− a)) da , t → +∞
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so that, if we are interested in constant solutions of (6.31):

(6.32) V =

∫

A

0

G(a, V ) da

or better

(6.33) V = V

∫

A

0

D(a, V ) da .

Thus, either V = 0, or V 6= 0 as given by

(6.34) 1 =

∫

A

0

D(a, V ) da

Since the function

∆(V ) =

∫

A

0

D(a, V ) da

is decreasing with limit zero as V → ∞ ,equation (6.34) will have one and
only one solution, iff the threshold condition

(6.35) T := ∆(0) > 1

is satisfied.
The threshold parameter

(6.36) T =

∫

A

0

qβ(a)E(a) da

=
q

bo

∫

A

0

β(a)p∞(a) exp

(∫

a

0

[−γ(σ) + ko(σ)p∞(σ)] dσ

)

da

can be interpreted as a net infection-reproduction rate (number).
By summarizing the above results we get

Theorem 6.1. Let the ”threshold parameter” T be defined as in (6.36).

(a) If T ≤ 1, then equation (6.32) has only the trivial constant solution
V ≡ 0.

b) If T > 1 , then it also admits a nontrivial solution V∞ > 0 which is
obtained as a solution of (6.34).

As far as the stability of the constant solutions 0 and V∞ is concerned, the
following main theorem is shown in [41] by monotone iteraction techniques.

Theorem 6.2. Let T be defined as before.

a) If T ≤ 1 , then lim
t→∞

u(t) = 0 .

b) If T > 1 , then lim
t→∞

u(t) = V∞ .
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6.1.2. The intercohort case

The results obtained in Sect. 6.1 for the intracohort case can be extended
to the general case in which the force of infection is

(6.37) g(i(· ; t)) (a) = ko(a) i(a; t) +

∫

∞

0

k(a, a
′) i(a′; t) da

′

The pure intercohort case (ko = 0) had been analyzed in [41] obtaining
only partial local stability results. More recently in [42] a final answer has been
given to the above problem by using semigroup theoretic methods in Banach
spaces. It is interesting to report about this case here, since, as expected
from the analysis in Sect.2.3.1 and Sect. 4.3 , SIS models belong to Class
B and show a ”quasi-monotone” behavior that implies a monotone evolution
operator for which periodic solutions are ruled out (see e.g. [119]), and a
nontrivial steady state, whenever it exists, is globally asymptotically stable.
Thus showing that quasimonotone systems are ”robust” also with respect to
age structure.

In this case, with the force of infection (6.37), and q = 0, system (6.11)-
(6.13) becomes

(6.38)
∂

∂t
u(a, t) +

∂

∂a
u(a, t) + µ(a)u(a, t)

= g̃(u(·, t))(a) (1− u(a, t))− γ(a)u(a, t)

(6.39) u(0, t) = 0

(6.40) u(a, 0) = u
o(a)

for a ≥ 0 and t ≥ 0, where we have introduced the adimensional fraction of
infectives

(6.41) u(a, t) =
i(a; t)

p∞(a)

and

(6.42) g̃(u(·, t))(a) = ko(a)p∞(a)u(a, t) +

∫

∞

0

k(a, a
′)p∞(a′)u(a′

, t) da
′

In [42] it is assumed that a maximum age a† exists such that

(K1) β(·) is non-negative and belongs to L∞(0, a†)

(K2) µ(·) is non-negative and measurable
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(K3) R =

∫

a
†

0

β(a)e
−

∫

a

0

µ(a′) da
′

da = 1

so that we can assume that the total population has reached its steady state
{p∞(a), a ∈ IR+} given by (6.5).

Further it is assumed that

(K4) γ(·) and ko(·) are non-negative and belong to L∞(0, a†)

(K5) k(a, a′), a, a′ ∈ [0, a†] , is measurable and there exists a positive constant
ε > 0 and two non-negative functions k1, k2 ∈ L∞(0, a†) such that

α) εk1(a)k2(a
′) ≤ k(a, a′)p∞(a′) ≤ k1(a)k2(a

′), in [0, a†].

β) there exist 0 ≤ a1, a2, b1, b2 ≤ a† such that

a1 < b1, a2 < b2, a1 < b2

and
k1(a) > 0, if a1 < a < b1

k2(a) > 0, if a2 < a < b2 .

The mathematical set up which has been used to analyze this problem
refers to the Banach space L1(0, a†) so that the solutions {u(·, t), t ∈ IR+} of
problem (6.38)-(6.40) are looked for as elements of the closed convex set

(6.43) C =
{

f ∈ L
1(0, a†) | 0 ≤ f(a) ≤ 1 a.e.

}

The following theorem has been proven [42].

Theorem 6.3. Let the initial condition uo ∈ C. Then problem (6.38)- (6.40)
has a unique mild solution [179] in C. This defines a flow {S(t)uo, t ∈ IR+}

[119] which has the following properties

(6.44) S(t)C ⊂ C

(6.45) if u
o

≤ v
o then S(t)uo

≤ S(t)vo

(6.46) if 0 ≤ ξ ≤ 1 then ξS(t)uo

≤ S(t)(ξuo)

We wish to point out that a mild solution of system (6.38)-(6.40) is essen-
tially a solution of a suitable corresponding integral formulation of the same
problem [26], so that it is not required that {S(t)uo, t ∈ IR+} admits time
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derivatives (for a more detailed discussion we refer to [42] and [179]; see also
[168] and [220]).

Condition (6.45) gives the monotonicity of the evolution operator
{S(t), t ∈ IR+}, while (6.46) expresses its sublinearity.

An endemic solution u∞ of system (6.38)-(6.40) is a fixed point of the
evolution operator {S(t), t ∈ IR+} :

(6.47) S(t)u∞ = u∞ , t ∈ IR+ .

Unfortunately the threshold theorem as given in [42] refers to an abstract
formulation of system (6.38)-(6.40).

Anyway a parameter ρ , the spectral radius of a suitable operator defined
on the Banach space L

1(0, a†), is introduced so that

Theorem 6.4.

a) If ρ ≤ 1 then no nontrivial endemic states exist for system (6.38)-
(6.40).

b) if ρ > 1 then a unique nontrivial endemic state u∞ exists for system
(6.38)-(6.40), in addition to the trivial one.

The stability properties of the endemic equilibria are established by the
following

Theorem 6.5. Assume no nontrivial endemic equilibrium exists, then for
any initial condition uo ∈ C we have

lim
t→∞

S(t)uo = 0 .

To consider the nontrivial case, we introduce the concept of nontrivial
initial condition, i.e. a uo ∈ C such that

∫

a
†

t

k2(a)u
o(a− t) da > 0, for some t ≥ 0 .

Theorem 6.6. Let u∞ be the unique nontrivial equilibrium. Then for any
nontrivial initial condition uo we have

lim
t→∞

S(t)uo = u∞ .

If uo is not nontrivial then

S(t)uo = 0 , for any t ≥ a
†

.

The monotonicity of the evolution operators {S(t), t ∈ IR+} implies the
GAS of the trivial endemic state in Theorem 6.5 and of the nontrivial endemic
state in Theorem 6.6.

Further extension to the case of vertically transmitted diseases is consid-
ered in [43].
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6.2. An SIR model with age structure [123]

In this section we report the results obtained recently by Inaba [123] about
the existence and stability of an SIR model with age structure as formulated
by Greenhalgh [99].

The total population has an age structure expressed in terms of its age
density p(a; t), a ∈

[

0, a†
]

, t ≥ 0 (it is assumed a maximum demographic
age a† > 0 ).

It is divided into three classes; the susceptible class, with age density
s(a; t); the infective class with age density i(a; t), and the removed (immune)
class, with age density r(a; t), so that

(6.48) p(a; t) = s(a; t) + i(a; t) + r(a; t) , a ∈
[

0, a†
]

, t ≥ 0 .

As in Sect. 6.1, each individual is subject to an age-dependent death rate
µ(a); new individuals are produced at an age dependent birth rate β(a), 0 ≤
a ≤ a†.

The evolution of the total density p(a; t) is then governed by system (6.2)
for a ∈

[

0, a†
]

, t ≥ 0, subject to the boundary condition

(6.49) p(0; t) =

∫

a
†

0

β(a) p(a; t) da , t ≥ 0

and to an initial condition (6.4).
Assumptions (H1)-(H2) are kept but (H3) now is

(H3′)

∫

a
†

0

exp

(

−

∫

a

0

µ(σ) dσ

)

da < +∞

and that

(6.50)

∫

a
†

0

µ(σ) dσ = +∞ .

System (6.2), (6.49), (6.4) has a steady state solution given by

(6.51) p∞(a) = bo exp

(

−

∫

a

0

µ(σ) dσ

)

, a ∈
[

0, a†
]

iff the net population reproduction rate R equals one,

(6.52) R =

∫

a
†

0

β(a) exp

(

−

∫

a

0

µ(σ) dσ

)

da = 1 .

We shall assume, as in Sect. 6.1, that the total population has reached
its stationary demographic state (6.51).
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In such a population we introduce an SIR epidemic, so that (6.48) has to
be rewritten as

(6.53) p∞(a) = s(a; t) + i(a; t) + r(a; t) , a ∈
[

0, a†
]

, t ≥ 0 .

If we consider for the force of infection the same form as in (6.8), and
a removal rate γ > 0, which now is assumed age independent, the evolution
equations for the epidemic system are

(6.54a)

(

∂

∂t
+

∂

∂a

)

s(a; t) = −g(i(·, t))(a) s(a; t)− µ(a) s(a; t)

(6.54b)

(

∂

∂t
+

∂

∂a

)

i(a; t) = −g(i(·, t))(a) s(a; t)− (µ(a) + γ) i(a; t)

(6.54c)

(

∂

∂t
+

∂

∂a

)

r(a; t) = γ i(a; t)− µ(a) r(a; t)

for a ∈
]

0, a†
[

, t > 0, subject to the boundary conditions

(6.55a) s(0; t) =

∫

a
†

0

β(a) p(a; t) da

(6.55b) i(0; t) = 0

(6.55c) r(0; t) = 0

Under the assumption of demographic equilibrium

∫

a
†

0

β(a) p(a; t) da =

∫

a
†

0

β(a) p∞(a) da =

= bo

∫

a
†

0

β(a) exp

(

−

∫

a

0

µ(σ) dσ

)

da = boR = bo ,

so that the boundary condition (6.55a) can be rewritten as

(6.55a′) s(0; t) = bo .

We may renormalize all densities so that

(6.56) s(a; t) + i(a; t) + r(a; t) = 1 , a ∈
[

0, a†
]

, t ≥ 0 ,
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in which case

(6.55a′′) s(0; t) = 1 , t ≥ 0 .

The force of infection, under condition (6.56) will be given by

(6.57) g(i(·; t))(a) =

∫

a
†

0

k(a, a
′) p∞(a′) i(a′; t) da

′

with p∞(a) given by (6.51).
System (6.54), (6.55) has to be supplemented by suitable initial conditions

(6.58) s(a; 0) = s
o(a); i(a; 0) = i

o(a); r(a; 0) = r
o(a), a ∈

[

0, a†
]

.

We shall assume in the sequel that

(H4′) k(·, ·) ∈ L
∞
([

0, a†
]

×
[

0, a†
])

.

We note that due to condition (6.56) it suffices to analyze system (6.54a),
(6.54b) with the boundary conditions (6.55a”), (6.55b) subject to the initial
conditions (6.58).

Under these assumptions (H1), (H2), (H3’), (H4’) it is possible to show, by
semigroup theoretical methods that this problem is well posed in the Banach
space X := L1

(

0, a†; IR2
+

)

.
In fact, if we define

(6.59) Ωo :=
{

f = (f1, f2)
T

∈ X | 0 ≤ fi ≤ 1, a.e. i = 1, 2
}

the following theorem holds [123]

Theorem 6.7. Let the initial condition uo := (so(·), io(·)) ∈ Ωo. Then prob-
lem (6.54 a,b), (6.55 a”,b), (6.58) has a unique mild solution [26, 179] in Ωo.
If we further assume that the initial conditions are absolutely continuous in
[

0, a†
]

, then the initial value problem admits a unique global classical solution
in Ωo.

Let us now look for steady states u∗ := (s∗(·), i∗(·))T of our system. It
is not difficult to show that it must satisfy the following

(6.60a) s
∗(a) = exp

(

−

∫

a

0

g(i∗)(σ) dσ

)

(6.60b) i
∗(a) =

∫

a

0

exp(−γ(a− σ)) g(i∗)(σ) exp

(

−

∫

σ

0

g(i∗)(η) dη

)

dσ

(6.60c) λ
∗(a) := g(i∗)(a) =

∫

a
†

0

k(a, σ) p∞(σ) i∗(σ) dσ .
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From (6.60b) and (6.60c) we obtain an equation for λ∗(a) :

(6.61) λ
∗(a) =

∫

a
†

0

φ(a, σ)λ∗(σ) exp(

(

−

∫

σ

0

λ
∗(η) dη

)

dσ ,

where

φ(a, σ) :=

∫

a
†

σ

k(a, τ) p∞(τ) exp(−γ(τ − σ)) dτ .

It is clear that (6.61) always admits the trivial solution λ∗(a) ≡ 0 in
[

0, a†
]

,
which corresponds to a disease-free steady state u∗ := (1, 0)T . So we look for
nontrivial solutions of (6.61).

If we denote by Φ the nonlinear operator

(6.62) x ∈ E −→ Φ(x)(a) :=

∫

a
†

0

φ(a, σ)x(σ) exp

(

−

∫

σ

0

x(η) dη

)

dσ

with a ∈
[

0, a†
]

, and defined in the Banach space E := L1
(

0, a†
)

, equation
(6.61) is equivalent to a fixed point problem for Φ:

λ
∗ = Φ(λ∗)

(Note that L∞
(

0, a†
)

⊂ E).
The nonlinear operator Φ has a linear majorant T : E −→ E defined by

(6.63) x ∈ E −→ T (x)(a) :=

∫

a
†

0

φ(a, σ)x(σ) dσ , a ∈
[

0, a†
]

which is positive with respect to the cone E+ := {x ∈ E | 0 ≤ x}, i.e.

T (E+) ⊂ E+ .

In addition to (H4’) let us further assume that

(H5) a) lim
h→0

∫

a
†

0

|k(a+ h, σ)− k(a, σ)| da = 0 uniformly in σ ∈ IR.

(k is extended by k(a, σ) = 0 for a, σ ∈ (−∞, 0) ∪ (a†
,+∞)).

b) There exist numbers α > 0 and ε > 0 with 0 < α < a†, such that
k(a, σ) ≥ ε for a.e. (a, σ) ∈

(

0, a†
)

×
(

a† − α, a†
)

.

Under the above assumptions [123] (see [160] for the terminology):

Lemma 6.8. The linear operator T is nonsupporting and compact.
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As a consequence [160] the spectral radius r(T ) of the operator T is a
positive eigenvalue of T , and it is the only positive eigenvalue with a positive
eigenvector.

The following threshold theorem holds [123].

Theorem 6.9. Let r(T ) be the spectral radius of the operator T defined in
(6.63).

a) If r(T ) ≤ 1 , then the only nonnegative fixed point x of Φ is the trivial
solution x ≡ 0.

b) If r(T ) > 1, then Φ has at least one nontrivial positive solution.

In order to have uniqueness of the nontrivial solution, a further assump-
tion is made.

(H6) For all (a, σ) ∈
[

0, a†
]

×
[

0, a†
]

, the following inequality holds:

k(a, σ) p∞(σ)− γ

∫

a
†

σ

k(a, τ) p∞(τ) exp(−γ(τ − σ)) dτ ≥ 0 .

Now observe that, from the definition of Φ, it follows that

Φ(x) (a) =

∫

a
†

0

φ(a, σ)

(

−
d

dσ

)

exp

(

−

∫

σ

0

x(η) dη

)

dσ

= φ(a, 0)−

∫

a
†

0

[k(a, σ) p∞(σ)− γφ(a, σ)] exp

(

−

∫

σ

0

x(η) dη

)

dσ

so that Φ is monotone increasing with respect to the cone E+ .
Furthermore it can be shown [123], under the same assumption, that Φ

is strongly concave in the sense of Krasnoselskii (see Appendix A, Section
A.4.2).

As a consequence of positivity, monotonicity and strong concavity we
know that (Theorem A.36 in Appendix A) the operator Φ has at most one
positive fixed point. Thus

Theorem 6.10. Under the assumption (H6), if r(T ) > 1, then Φ admits a
unique nontrivial positive solution.

Remark. A sufficient condition for assumption (H6) to be verified is

(H6′) k(a, σ) p∞(σ) is nonincreasing with respect to σ
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A particular case of (H6’) is k(a, σ) ≡ k(a) independent of the age σ of
the infectives, since p∞(σ) is a decreasing function of σ.

Remark. Independently of the fact that (H6) holds, it can be easily shown
(see e.g. [99]) that if k(a, σ) = k1(a) k2(σ) (proportionate mixing assumption
[84]), then there exists a unique nontrivial steady state under the condition

r(T ) =

∫

a
†

0

φ(σ, σ) dσ > 1

.

In this case f(·) is the eigenvector of the operator T corresponding to the
spectral radius r(T ).

We are left now with the problem of stability of the steady states.
Since the analysis in [123] contains technicalities which go beyond the

interests of this presentation, we shall limit ourselves to reporting the main
results.

Theorem 6.11.

a) If r(T ) < 1, then the trivial equilibrium is GAS for system (6.54), (6.55)
with respect to positive initial conditions .

b) If r(T ) > 1, then the trivial solution of system (6.54), (6.55) is unstable.
If furthermore the nontrivial endemic state is such that

(H7) i∗(a†) < e−γa
†

then it is LAS.

Condition (H7), being an a priori condition on the steady state, is not
very convenient in the applications.

In [123] it is shown that (H7) holds when k(a, σ) ≡ k, a constant.
We conclude this section, by remarking that again for SIR models with

structures the problem of GAS is more difficult and in fact it left open for
many relevant cases.
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