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Abstract-In this paper a general ODE model is proposed to deseribe epidemie systems. The mathe-
matieal strueture oCsueh a model is so general that it inc1udes many epidemie systems already analyzed
via different methods by various authors. The asymptotie analysis oC the general system is earried out
with applieations to several models.

l. INTRODUCTION

The history of mathematical models for infectious diseases is quite long now and may be traced
backat least up to the 1920s when the work by Kermack and McKendrick appeared[8].

Since then many attempts of generalization have been made to introduce more realistic
situations (see [2] for a rather extensive account).

Some authors have also tried general approaches to the analysis of the asymptotic behaviour
of such systems (see, e.g. [7]).

To the authors' knowledge anyway no attempt has been made up to now to analyze the
generalstructure of epidemie systems. In this paper the authors propose a general ODE system
which aetually includes many of the models proposed up to now, by different authors.

This general model aIlows an asymptotie analysis based on the strueture of the ODE system
by means of the Lyapunov funetional proposed by Goh[4,5] for a generalized Lotka-Volterra
system.

The main result of the paper, based on a previous paper by Solimano and Beretta[ 14],
gives sufficient conditions for the global asymptotie stability (henee uniqueness) of the non-
trivial equilibrium solution of the system, whenever it exists.

An existenee result regarding the positive equilibrium solution is also given. It has to be

pointed out that also the ease in which the total population is a dynamie variable is analyzed.
In See. 3 the results are applied to several models.
Sec. 4 is devoted to analyze the eases in which the total population of the epidemie system

is adynamical variable. In this ease we are able, by our methods, to give global stability results
of the feasible or partially feasible equilibrium.

2. THE GENERAL MODEL

Let us eonsider first a so-ealled SIR model with vital dynamics[7]. Ii one denotes as usual

by S the suseeptible population, by I the infeetive population and by R the removed population,
this model may be written as follows:

dS/dt = -kSl - J.LS+ J.L,

dl/d t = kSl - J.LI- Al,

dR/dt = Al - J.LR,

(2.1)

for t > O, subjeet to suitable initial conditions.
Sinee clearly (2.1) implies that S(t) + I(t) + R(t) = l, we mayignorethe last equation
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678 E. BERETIAand V. CAPASSO

in (2.1) and eonsider the redueed system

dS/dt = -kSl - ILS+ IL,
dl/dt = kSl - (IL + 'A)/,

(2.2)

for t> O, subjeet to initial eonditions such that O < S(O) + 1(0) < 1.
We may write system (2.2) in a more general form if we introduee matrix notations as

follows; we set

_ (O -k
)

_
(

-IL
)

_
(

IL
)A - k O ' e - -(IL + 'A) , c - O'

(2.3)

and system (2.2) beeomes

dz/dt = diag(z)(e+ Az) + c, t > O, (2.4)

where we have also set z = (S, I)T.
Consider now the simple gonorrhea model proposed in [3] and [15]. It ean be seen as an

SIS model for two interaeting populations; if we denote by Sh II and by S2' 12the suseeptible
and the infective populations for the two groups (males and females), we have

dSl/dt = -k12S1/2+ al/h

dll/dt = kl2S1/2- al/h

dS2/dt = -k2IS2/1 + a2/2'

dl2/dt = k21S2/1 - a2/2'

t> O. (2.5)

Again, sinee c1earlySI + II = CI(const) and S2 + /2 = C2(eonst), we may analyze only
the system (let kl2 = k21 = l, forsimplicity)

dll/dt = -/1/2 - al/l + c1/2,

dl2/dt= -/1/2 - a2/2+ C2/h
t> O, (2.6)

which can be now written in the general form

dz/dt = diag(z)(e+ Az) + Bz, t> O, (2.7)

(
O -1

)A = -1 O' (2.8)

Altogether, we may state that both models (2.1) and (2.5) may be rewritten in the general
form

dz/dt = diag(z)(e+ Az) + b(z), t> O, (2.9)

where

b(z) = c + Bz, z E Rn,

where n E N - {O}for sake of generality.
In Sec. 3 we have analyzed many other examples of epidemie systems, already studied

with different tools by various authors; all of them may be eonsidered, along with models (2.1)

..
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and(2.5), as partieular cases of the fonowing general ODE model:

dz/dt = diag(z)(e+ Az) + b(z), t> O, (2.9)

in R', n E N - {O}, or better in

R~:= {zE R'lzj;;;?;O, i = I,... ,n}

(thenon-negativeorthantof R'), if we take intoaccount that our systems arepositivity preserving,
in accordancewith the meaning of z.

In (2.9) we usually have

(i) e ER', a constant vector;
(ii) A = (aij)jJ=I , a real constant matrix;
(iii) b(z) = c + Bz, a non-negative vector function defined for z E R~; here c E R~ is

a constant non-negative vector, and B = (bjj)jJ=I is a real constant matrix such that bij ;;;?;O
for any i, j = I, . . . , n, and bij = Ofor any i = l, . . . , n.

Hence it is worth analyzing the general qualitative properties of system (2.9) under the
above assumptions (i)-(iii), and applying the results to the various different models.

Let us remark that usuany epidemie systems are considered to have constant total popu-
lations, as in the above examples; this implies in particular that in (2.2) O :s;;S(t) + I(t) :s;;l
for any t ;;;?;O;while in (2.6) O :s;;II(t) :s;;CI>and O :s;;12(t) :s;;C2for any t ;;;?;O,

Referring to our general model (2.9), we shall assume at first that either

07:=
{ Z E R~ It Zj :s;; l }.=1

(2.10)

or

O~:= {zE R~ IZj:s;;l, i = l, . . . , n} (2.11)

o o
is positively invariant, as wen as their interiors 07 or O~, respectively. From now on w~ shall
denote both 07 and O~ by O,,

We shall make then the assumption

(iv) O' is positively invariant.

Remark, It may be pointed out that in concrete models assumption (iv) is always satisfied
due to the particular structure of the ODE systems whieh describe epidemie models.

Because of the structure of

F(z) := diag(z)(e + Az) + b(z), (2.12)

it is elear that F E C1(R~), and therefore F E C1(0').
We shall denote by Dj the hyperplane of R': Dj = {z E R'I Zj = O}.
Clearly, Dj n O. will be positively invariant if bjlDi= O,whileDj n O. willbe a repulsive

set whenever F(z) is pointing inside O. on Di>Le. b,w.> O.

Because of the invariance of O. and the fact that F E C1(0'), fixed point theorems[12]
assure the existence of at least one equilibrium solution of (2.9), within O'.

As stated in the introduction, our aim here is to show that, under suitable conditions, the
general system (2.9) is such that, whenever a strictly positive equilibrium z* exists in O~ :=
{z E O. IZj > O, i = l, . . . , n}, then it is globallyasymptoticallystablewith respectto
O~. Uniqueness of the equilibrium within O~ elearly fonows.
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Let z* = (Zr, . . . , z:) be a strietly positive equilibnum of (2.9); then

e = -Az* - diag(z*-I)b(z*), (2.13)

where we have denoted Z*-I : = (l/zr, . . . , IIz:)T.
By substitutionin (2.9), we have

dz/dt = diag(z)[A+ diag(z*-I)B](z- z*) - diag(z - z*~diag(z*-')b(z). (2.14)

Sinee, without the veetor b(z), system (2.9) is a generalized Volterra system, in order to
study the global asymptotic stability of z* we shall make use of the Lyapunov funetion
V:Rn;- R+ proposed by Goh[4,5] (here Rn; := {z E Roi Zi> O,i = 1, . . . , n),

V(z):= i Wi (Zi - z'f - z'f In z~)
,

i=1 Zi
(2.15)

where Wi > O are real eonstants.
We introduee now some definitions.

DEANITION 2.1

Let B be a real n x n matrix. We say that B E Sw (resp. B E Sw) iff there exists a
positive diagonal real matrix W sueh that WB + BTW is positive definite (resp. non-negative
definite).

DEANITION 2.2

B is W-skew symmetnzable (resp. W-symmetrizable) iff there exists a positive diagonal
real matrix W sueh that WB is skew-symmetrie (resp. symmetrie).

The strueture of the ODE system (2.14) stimulates the analysis of the matrix
A.:= A + diag(z*-I)B.

As we shall see in See. 3, many epidemie systems are sueh that either

(v) A. is W-skew symmetrizable

or

where bi(z), i = I, . . . , n are the eomponents of the veetor funetion b(z), defined in (iii).
For example model (2.2) belongs to ease (v) while model (2.6) belongs to ease (v').
Henee we shall analyze these two eases in detail.
Consider fiest the ease (v), and let R be the following subset of n~,

R := {zE n~ IZi = z'f, for any i = 1, . . . , n S.t. b;(z)> O}. (2.16)

On R, system (2.14) beeomes

dz/dt IR = diag(z)A.(z - z*), (2.17)

which has the same strueture as predator-prey Volterra systems when looking for the largest
invariant set for sueh systems, where the diagonal elements of the eommunity matrix in the
Volterra system play the same role as the positive eomponents of b(z) in our system. We may
then state that the suffieient eonditions given in [13] and [14] in order that the largest invariant
set of predator-prey Volterra systems reduees to the strietly positive equilibnum {z*}, give us
suffieient eonditions for the largest invariant subset of (2.9) in R reduee to {z*}.
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In order to state these conditions we need to introduce some graph nomenclature.
Under the assumption (v), the elements of Ahave a skew-symmetric sign distribution.

Then we associate a graph with Aby the following rules:

~ (A) each component of z, say the ith, is represented by the labeled knot rif b;(z) =O;by
i otherwise.

(B) each pair of elements iii/iji< O is represented by an arc connecting knots "i" and
"j".

The following result holds[3,4]:

LEMMA 2.1

Assume that Ais W-skew symmetrizable. If the associated graph is either (a) a tree and
p - l of the p terminal knots are~, or (b) a chain and two consecutive internal knots are fi
or (c) a cycle and two consecutive knots are ~ then M = {z*} withinR.

Hence we can prove the following:

THEOREM 2.1

If system (2.9) has a positive equilibrium z* E O~ and case (v) holds true under one of
the hypotheses of Lemma 2.1 or, otherwise, case (v') holds true, then the positive equilibrium
z* is globally asymptotically stable within O~. The uniqueness of z* within O~ follows from
its global asymptotic stability.

Prooj. Consider the scalar function (2.15). It has the property of positive defmiteness of
a Lyapunov function: V(z) ~ O and V(z) = O if and only if z = z*. Moreover, V(z) -+ + 00
when Zi-+ + 00or Zi-+ 0+ for some i. Its time derivative along the trajectories of (2.9) is

V(z) = (z - Z*)TW diag(z-I)z, (2.18)

where W = diag(W1, . . . , Wn), Wi being the positive real numbers occurring in definition
(2.15) of V(z). On account of (2.14), (2.18) becomes

. - ~ W-b.(z)
V(z) = (z - z*)TWA(z - z*) - .tJ ~ (Zi - zn2,

i-I ZiZi

where within O~ we have Zi> O, b;(z) ~ O for all i. Let us write

.

[
- . "( b.(z) biZ»

) ]V(z) = (z - Z*)TW A + dlag -~,..., -~ (z - z*).Z.ZI ZnZn
(2.19)

In case (v'), from (2.19) it follows that V(z) ~ O and the equality applies if and only if
z = Z*. Hence the global asymptotic stability of z* within O~ follows. In case (v), since WA
is skew-symmetric, (2.18) reads

. ~ W-b.(z)
V(z) = -.tJ ~ (Zi - zn2,

i=1 ZiZi
(2.20)

. where the nonpositive definitenessof V(z) within O~ follows from the assumptionthat b;(z) ~ O
for all i. LetR be the set of all pointswithinO~ whereV(z) = O,Le. the set (2.16), andM
be the largest invariant set in R. Owing to Lemma 2.1 we have M = {z*}.

As a consequence we may state, that every solution z(t) in O~ tends to z* as t -+ + 00.
This is due to the following extension of Lyapunov's stability theorem: If dV/dt is negative
semidefinite, then every solution tends to the largest invariant subset of the set of all points in
Rn for which dV/dt = 0[10] (see also [9]). Hence the global asymptotic stability of z* within
O~ is proven for both cases (v) and(v').

-
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COROLLARY 2.1

If the vector C in (iii) is positive definite, then system (2.9) has a positive equilibrium
z* E O~. In case (v) or (v'), the positive equilibrium z* is globally asymptotically stabIe (and
therefore unique) with respect to O~.

Proof Conceming the existence of a positive equilibrium, we can observe that, by ar-
guments of positive invariance of O", at Ieast one equilibrium belonging to O" exists. However,
if cis positive definite, system (2.9) cannot have equilibria with some vanishing components.
Hence a positive equilibrium z* E O~ exists. In case (v), since A is W-skew symmetrizabIe
and b(z) is positive definite, by (2.20) V(z) ~ O and V(z) = O if, and only if, z = Z*. This
gives the global asymptoticstability (anduniqueness)of z*within O~. In case (v') the asymptotic
stability (and uniqueness) of z* within O~ directly follows from (2.19).

Some epidemie models, described by the ODE system (2.9), differ from usual epidemie
models in that n(t) = ~f=I Zj(t) is adynamical variable rather than a specified constant (see,
e.g. [II)).

Accordingly, we must drop assumption (iv). For these models, the accessible space is the
whole non-negative orthant R~ of the Euc1ideanspace, and Theorem 2.1 can be reformulated
by substituting the bounded set O~ with the positive orthant R~*. Furthermore, it has to be
notieed that we cannot apply fixed point theorems even when vector cis positive definite. Hence
Corollary 2.1 cannot be applied to these models. However, the structure of system (2.9) is such
that the positive invariance of the non-negative orthant R~ is assured. When vector c in (iii)
has some identieally vanishing components, system (2.9) may have equilibria z* with some
vanishing components. LeLVbe the set of indices.."Y= {I, . . . , n} and l the subsetoL V
such that zt = O when i E l. According to Goh[ 4] if l "#-~, we say that z* is partially feasible
and we can study the sectorial stability of z* with respect to

(2.21)

The definition of sectorial stability can be found in [4]. By sectorial stability we mean that
z* is globally asymptotically stable with respect to R7. If l = ~, then z* is feasible and we
can study its global asymptotie stability with respect to R~ by Theorem 2.1.

Assume that z* is a partially feasible equilibrium of (2.9), i.e. zt = O, i E l, l "#-~.
Define the matrix A = (ajj)jj= I " as

otherwise,
(2.22)

where ajjare the elements of the matrix A in (2.9) and bijare the elements of B defined in (iii).
Let R be the subset of R7 such that

R = {z E R7 IZj = O, for all i E l, Zj= zt, for all i E v V - l S.t. bj(z) > O} (2.23)

and let M be the largest invariant set within R. By using the scalar function suggested by Goh
in studying sectorial stability

(2.24)

we prove the following: .

THEOREM 2.2

Let z* be a partially feasible equilibrium of (2.9) and assume that A is W-skew sym-
metrizable. If (a) ej + ~je.l' aijzj ~ Ofor all i E l, (b) bj(z) == Ofor all i E l, (c) M == {z*},
then z* is globally asymptotically stable with respect to R7.

Proof If z* is a partially feasible equilibrium of (2.9) with zt = O for all i E l, by
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hypothesis (b) the equations of (2.9) read

..
z'. = z.'" a-..(z . - Z"' )

- (Zj - zr
)

b.(z) ~or allz' E1 i - I
I I f~/l' IJ J J zr " l' ~, (2.25)

i. = z.
(

e. + '" a..z.
)l l , L.J 'Jl'

jE. I'

for alI i E I.

Consider the funetion (2.24). V(z) E C1(R7),and is a non-negative definite funetion with

a single minimum at Z = z* where V(z*) = O.
On aeeount of (2.25), the time derivative of V(z) along the trajeetories of (2.9) is

. (Zi- zn
{

_ (Zj - zn
}V(z) = 2: Wj Zi 2: aij(zj - zl) - * bi(z)

iE.I'-1 Zi jE. I' Zi

+ 2: WjZi (ei + 2: ajjZj )
,

iEI jE. I'

(2.26)

By the definition of the matrix A, from (2.22) we get

. - '" W~.W
V(z) = (z - Z*)TWA(z - z*) - L.J ~ (Zi - zn2

iE.I'-1 ZiZi

+ 2: WiZi (ei + 2: aijzt)
.

iEI jE.I'

(2.27)

Il
Sinee Ais W-skewsymmetrizable,the firsttermin (2.27)vanishes.By hypothesis(a)we

have that within R7,V(z) :s;;O. Now we are in position to apply the already quoted extension
of Lyapunov's stability theorem [10, Theorem VI See. 13].

The set R of all points within R7 where V(z) = O is given by (2.23). Sinee, by hypothesis
(c), the largest invariant set within R is z*, then every solution z(t) with initial eonditions in
R7 tends to z* as t ~ + 00.

Whenz* is feasible,I = ~, R = {zE ~*IZj = zr for all i:b;(z)> O}. FromTheorem
2.2 we obtain:

COROLLARY 2.2

Let z* a feasible equilibrium of (2.9) and assume that A is W-skew symmetrizable. If
M == {z*}, then z* is globalIy asymptotiealIy stable within R~*.

Corollary 2.2 ean be seen as a new formulation of Theorem 2.1 ease (v), for epidemie
models for which assumption (iv) is dropped. Coneeming Corollary 2.2, we may observe that,
if the graph associatedwith Aby the rules (vii), (viii), satisfies one of the hypotheses of Lemma
2.1, thenwithinR we haveM =={z*}.

3. EXAMPLES

In this seetion we review a list of epidemie systems whieh exhibit the strueture of general

model (2.9). Their asymptotie behaviour will be obtained then by applying the theorems proved
in the previous seetion.

We shall distinguish three main eases: In the first one eondition (v) is satisfied; in the
seeond one eondition (v') is satisfied; finalIy in the third ease we shalI eonsider epidemie models
for whieh the total population n(t) is adynamieal variable.

3.1 Epidem1c systems for which the matrix A is W -skew symmetrizable
In the folIowing it is assumed that alI the parameters are non-negative real numbers.
3.1.1 SIR model with vital dynamics[7]. This model has already been presented in (2.2).
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Since in this case B = O, we have

A = A = (~ ~k), andb(z)= c = (~).
(3.1)

SinceAis skew-symmetric and the associated graph is~, Theorem 2.1 applies.
3.1.2 SIRS model with temporary immunity[7].

dS/dt = -AIS + (8 + a) - (8 + a)S - al,

dl/dt = AIS - (-y + 8)/,
(3.2)

with S + I ~ l.

We change the variabies (S, l) into (S, I) such that S = S + a/A, so that system (3.2)
becomes

dS/dt = -(8 + a)S - ASI + (8 + a)(1 + a/A),

dl/dt = -(-y + 8 + a)1 + ASI,
(3.3)

which can now be put in the form (2.9) by introducing

A = (O -A
)

=
(

-(8 + a)
)

= (
8 + a)(1 + (1./A»

)
B = O

A O ' e -(-y + 8 + a) , C O ' . (3.4)

AgainA = A and b(z) = c, with A skew-symmetric. Also in this case the associated
graph ish, and Theorem 2.1 applies.

3.1.3 .SIR model with earriers[7].

dS/dt = -MI + C)S + 8 - 8S,

dl/dt = MI + C)S - -yl - 8/,
(3.5)

whereS + I ~ l. By the change of variabies (S, I) - (S, i), i = I + C, we have

dS/dt = -8S - Ais + 8,

M/dt = - (-y+ 8)i + Ais + (-y+ 8)C,
(3.6)

which can be put in the form (2.9), where

and

. b(z) == c, A== A. (3.8)
I

Since c is positive definite and A is skew-symmetric, by Corollary 2.1 a unique positive
equilibnum z* exists, which is globally asymptoticallystable with respect to fi~, Le. the intenor
of fi2 = {z:S + i ~ l + C}.

3.2 Epidemie models for whieh - [A + diag(- b.(z)/zlzf, . . . , - bn(z)/Znz:>}E Sw
3.2.1 SIS model in two eommunities with migration[7].

dll/dt = AI/IO - II) - 'YI/I - 81/1 + 6(/2 - II)/N(o II + SI = l,

dl2/dt = A2/2(1- 12)- -Y2/2- 82/2 + 6(11 - 12)/N2, 12 + S2 = l.
(3.9)

--L.
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In (3.9), putting 61 = MNI, 62 = 6/N2, we obtain

685

d/I/dt = (Al - 'VI - &1 - 61)/1 - Al/i + 61/2,

d/2/dt = (A2- 'V2 - &2 - 62)/2 - A2/i + 62/10
(3.10)

with li:OS;;l, i = 1,2. System (3.10) can be set in the fonn (2.9), where

e = (Al - 'VI - &1- 61
)

, A = (-Al O ), C = O, B =
(

O 61
)

(3.li)
A2- 'V2 - &2- 62 O - A2 62 O

and

(3.12)

Let 02 be the set 02 = {z E R~ Iii :os;;l, i = l, 2}. By our approach, the sufficient
condition for asymptotic stability of a positive equilibrium z*, with respect to O~ is - [A. +
diag(-61/2/Itllo -62/I/lr/2)] E Sw.Wecan observethat

il

(3.13)

The first matrix on the right-hand side of (3.13) is symmetric if we choose WI > O,
W2 = (61/62)(lr/lf)WI. This matrix is negative semidefinite since

(3.14)

Because of the presence of the diagonal negative matrix on the right-hand side of (3.13),
the sufficient condition of Theorem 2.1 holds true provided that Al > O, A2> O. Under this
assumption, if a positive equilibrium z* exists, then it is globally asymptotically stable within
O~.

3.2.2 SIS model/or two dissimilar groups[7].

d/I/dt = [Allil + AI2(N2/NI)/2](I - II) - 'VIII - &1/10 II + SI = l,

d/2/dt = [A22/2+ A21(NI/N2)/d(l - 12) - 'V2/2 - &2/2' 12 + S2 = l.
(3.15)

d/l/dt = (Ali - 'VI - &1)/1 - All/i - ~12M2 + ~12/2'

d/2/dt = (A22- 'V2 - &2)/2- A22/~ - ~2IMI + ~21/1o

(3.16)

with li:OS;;l, i = 1,2. System (3.16) can be set in the fonn (2.9), where

(A - "V- &

) (
-A - R

) (
O

e = II 11 I, A = II 1-'12, C = O, B =
A22- 'V2- &2 - ~21 - A22 ~21

(3.17)

-
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and z = (II, 12V,
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(

-Ali

~21(l - 11)n
(3.18)

(3.19)

where the first matrix on the right of (3.19) is symmetric when choosing W> Oand W2such
that (~21111)(1 - I1)W2 = (~12/a)(1 - a)WI. Moreover,since0< If < l, i = 1,2, this
matrix is negative definite. In fact,

(3.20)

Hence, provided that Ali ;;:::O, A22 ;;:::O, - [A + diag( - ~12/2/1rII' - ~21/1/n/2)] E Sw,
and Theorem 2.1 assures the asymptotic stability of the positive equilibrium z* with respect to
{}~, {}2= {z E R~ IIi::::;l, i = 1,2}.

3.2.3 Gonorrhea model[3,15].

d/l/dr = -/1/2 - 0.111+ c1/2, II + SI = CI'

d/2/dr = -/2/1 - 0.212+ C2/1>12 + S2 = C2,
(3.21)

which can be put in the form (2.9), where

and

(

O CI - n

)

n
C2 - n .

n O

(3.23)

Consider

(3.24)

which is a symmetric matrix if we choose W1 > O, W2 such that W2(Sr111) = WI(Sr lIn.
The symmetric matrix (3.24) is negative definite.
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In fact, the diagonal elements are negative and
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(3.25)

where the fact that O < Sr < Ci' is taken into account since z* is a positive equilibrium.
3.2.4 SISmodel with vectors[7].This model is obtainedfrom "SIS model for two dissimilar

groups" when Ali = A22= O:

d/l/dt = -('YI + 81)/1 - 1312/1/2 + 1312/2,

d/2/dt = -('Y2 + 82)/2 - 1321/2/1 + 1321/(>

(3.26)

where li ~ l, i = l, 2. The asymptotic stability of the positive equilibrium z*, with respect
to O~, follows as a particular case of the SIS model for two dissimilar groups (Sec. 3.2.2.).

3.2.5 Host-vector-host model[7].

dll/dt = AdN/NI)12(1 - II) - ('YI + 81)/1, SI + II = l,

d/2/dt = [A21(NI/N2)11+ A23(N3/N2)/3](1- 12) - ('Y2 + 82)/2, S2 + 12 = l, (3.27)

d/3/dt = A32(N2/N3)12(1- 13) - ('Y3 + 83)13, S3 + 13 = l.

Jf.:!'e introduce .!!te_new parameters 1312= AliN2/NI), 1321= A21(NI/N2), 1323=
A23(N3/N2), 1332= A32(N2/N3), and tbe new variabies Sj = 1 - li> i = 1, 2, 3, system (3.27)
reads

. dSI/dt = [-1312 - ('YI + 81)]SI + 1312SIS2+ ('YI+ 81),

dS2/dt = [-1321 - 1323- ('Y2+ 82)]S2+ 1321S2S1+ 1323S2S3+ ('Y2+ 82), (3.28)

dS3/dt = [-1332 - ('Y3+ 83)]S3+ 1332S3S2+ ('Y3+ 83),

Let 03 be the set 03 = {z E R~ ISj ~ 1, i = 1, 2, 3}. System (3.28) can be put in the
form (2.9), where

(

O 1312 O

)
A = 1321 O 1323,

O 1332 O (3.29)

and

b(z) == c, A == A. (3.30)

By Corollary 2.1, since c is a positive definite vector, one positive equilibrium
z* E O~ exists. A bas a symmetric sign structure. Hence, by Corollary 2.1, if - [A +
diag(-('YI + 81)/SISr, -('Y2 + 82)/S2S~, -('Y3 + 83)/S3Sf)]E Sw, then z* is asymptotically
stable within O~. If we take into account tbat Si ~ 1, i = 1, 2, 3 from (2.19) we see that a

sufficient condition for the asymptotic stability of z* is - [A + diag( - ('YI + 81), - ('Y2+
82), -('Y3 + 83))]E Sw.Accordingly,let us take

--
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This matrix is symmetric if we choose WI > 0, W2 = (1312/1321)WhW3 = (1323/1332)(1312/
(321)WI' It is negative definite if

[('YI+ 81)('Y2+ 82) - 1312132dWIW2 > 0,
- [('YI+ 81)('Y2+ 82)('Y3+ 83) - ('Y3 + 83)13121321+

- ('YI + 81)1323l3nJW1W2W3 < O. (3.32)

We can observe that, if inequalities in (3.32) hold true, then

(3.33)

Hence (3.32) is the sufficient condition for the asymptotic stability (and uniqueness) of
the positive equilibrium z* within O~.

From (3.28), the positive equilibrium z* has the following components:

where Sf is a solution of

(3.35)

and

p = 131213d(1321+ (323)+ ('Y2 + 82)],

q = 1332[('Y1+ 81)('Y2 + 82) - 13121321]+ I3d('Y2+ 82)('Y3+ 83) - 13231332(3.36)

+ 13121321('Y3+ 83) + 13231332('YI + 81),

r = ('Y1 + 81)('Y2+ 82)('Y3+ 83) - ('Y3+ 83)13121321- ('YI + 81)13231332'

It is to be noticed that when (3.32) holds true, then q > 0, r > 0, thus assuring that the
unique asymptoticallystable equilibrium is such that Sf = I, Le. z* = (1, 1, 1)T.When (3.32)
failstohold,by (3.35)wehaveanotherpositiveequilibriumforwhichSf < 1anditsremaining
components are given by (3.34).

To study the asymptotic stability of this equilibrium we can remember that Ij + Sj = 1,
i = 1, 2, 3, thus assuring to have a positive equilibrium z* = ut, If, Ifl, ° < Jf < 1,
i = 1, 2, 3 within the subset Ó3 = {z E R~ :/j ~ 0, i = 1, 2, 3}. In the old variabies Ij, i =
1,2,3 the positive equilibrium (1, 1, 1)Tbecomes the origin and the ODE system (3.27) can
be arranged in this form:

dIl/dt = - ('YI + 81)/1 - 1312/1/2 + 1312/2,

dI2/dt = -('Y2 + 82)/2 - 1321/2/1- 1323/2/3+ (132111+ (323/3)' (3.37)

d/3/dt = - ('Y3 + 83)/3 - 133212/3 + 1332/2,

where, conceming (2.9), we have

(3.38)
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Thus

(3.39)

For the asymptotic stability of z* = (If, If, If)T withinf1~ we can applyTheorem2.1
by requiringthat - [A + diag(- bl(z)/lIn. - b2(z)/121f, - biz)/13/f)J E Sw.

Hence consider

(3.40)

thismatrixis symmetricif we chooseWI > O,W2= (1312Sf/132ISf)(lf/lf)Wh W3= (I323Sf/
I332Sf)(lf/1 f)W2.

To apply Theorem 2.1, we must require that the symmetric matrix (3.40) be negative
definite. Since the diagonal elements are negative, the sufficient condition is

(3.41)

Now we observe that the sufficient condition (3.41) is always met by a positive equilibrium
z* E f1~. In fact,

and

-1312/2 132111133212+ 1332/2t:l S*t:l S* _1312/21323131332/2+ 1312/2t:l S*t:l S*
II 12 13 13 12 1 21 2 II 12 13 11 23 2 32 3

= ~ 1332(-13121321+ 1312Sr1321Sf)+ 13~:/2(-13231332+ I323Sfl332Sf)< O,

where, proving the inequalities, we have taken into account that Sf < 1, i = 1, 2, 3. Hence
we can conclude for the host-vector-host model that

COROLLARY3.1

If the sufficient condition (3.32) holds true, then the origin is asymptotically stable with

o 1312Sr O
/f

b(z) ==Dz, A = I 1321Sf O I323Sf
Jf Jf

O I332Sf O
If

_1312/2w 1312Srw O
Il/r I /f 1

=1 1321SfW (1321/1+ 1323/3)w I323Sfw
Jf 2 Mf 2 If 2

O I332SfW _1332/2W
If 3 IJf 3
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respeet to fi3. Otherwise besides the origin a positive equilibrium N* E fi~ exists whieh is
asymptoticaIly stable within fi~.

4. EPIDEMIC MODELS WITH NONCONSTANT TOTAL POPULATION

In this seetion we deal with some epidemie models, deseribed by the ODE system (2.9),
which differ from the usuaI epidemie models presented in Seetion 3 in that n(t) = ~7=1z;(t)
is a dynamicaI variable, rather than a specified eonstant. Furthermore, these models admit either
a feasible or a partially feasible equilibrium (see See. 2). We shall eonsider two specifie
examples.

4.1 Parasite-host system[11]

The epidemie model is

dx/dt = (r - k)x - Cxy - Cxv + ry + rv,

dy/dt = -(~ + k)y + Cxy - CSyv,

dv/dt = -(~ + k + u)v + Cxv + CSyv.

(4.1)

As diseussedin [11] the two easesr < k and r > ~ + k + u do not give rise to non-
triviaIequilibrium solutions. We shaIlthen restriet OUTanaIysisto the ease ~ + u + k > r > k
in whieh there is an equilibrium at

r u ~+k+u I 1 ~+k
x* = Cu _ ser _ k)' y* = CS - sx*, v* = sx* - CS' (4.2)

LocaI stability results were aIready given in [11]. Aeeording to the aim of this paper, we
shaIl study globaI asymptotie stability of the feasible or partiaIly feasible equilibrium.

The equilibrium z* = (x*, y*, V*)Tis feasible, Le. its eomponents are positive if

r S(r - k) r-<1- <-o
~+k+u u ~+k

(4.3)

If u < Ul' where Ul is sueh that

r S(r - k)-=1-
~ + k + Ul Ul

(4.4)

the first inequaIity in (4.3) is violated and only a partiaIly feasible equilibrium is present given
by

r - k *x,
y* = O, v* = ~ + k + u r

(4.5)

sinee r < ~ + k + u. If u = Uh then (4.2) eoaIesees in (4.5).
If r < ~ + k and u > U2, where U2 is sueh that

S(r - k) r1- =-
U2 ~ + k'

(4.6)

then the seeond inequaIity in (4.3) is violated and only a partiaIly feasible equilibrium is present,
given by

(.I.+ k r - k * V* = OY* = x , ,
x* = ~' ~ + k - r

(4.7)

sineer > k. If u = Uh then (4.2) eoaIesees in (4.7).
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Conceming model (4.1), we can put it in the matrix form (2.9), where
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(

r - k

) (

O -C -C

) (

O
e = -(13 + k) ,A = C ° -CS, c = 0, B = °

-(13 + k + u) C CS ° °

r r

)
° ° .
° °

(4.8)

Now consider the case in which the equilibrium (4.2) is feasible, Le. z* E R~. Then

(

(
r

) (

))

° -C-- -C-l:...
b(z)== Bz, A = x* x*C ° - cs '

C cs °
(4.9)

wherez is a vector z = (x, y, V)Tbelonging to the non-negative orthant R~. Since C - r/x* =
CS(r - k)/u, providedthat r > k, matrixAis W-skew symmetrizableby the diagonal positive
matrixW = diag(WhW2,W3),whereW. = u/S(r - k), W2= W3= l. In fact, we obtain

-C
°

CS

-C

)-;S.
(4.10)

Now we are in position to apply Corollary 2.2. Since b(z) = (r(y + z), 0, Ol, the subset
of all points within R~*where we have V(z) = 0, is

R = {zE R~ Ix = x*}. (4.11)

Now we look for the largest invariant subset M within R. Since x = x* for all t,
dx/dtlR = 0, and from the flrst of the Eqns. (4.1) we obtain

r-k u

(y + V)IR=" u'u", = CS' for all t.
(4.12)

Therefore, d(y + v)/dtIR = 0, and by the last two Eqns. (4.1) we obtain

l l x* 13 + k

ZIR = ~{[Cx* - (13 + k)][(y + V)]R} = cs [Cx* - (13+ k)] = S - ---es. (4.13)

Then, taking into account (4.2), we have ZIR== z*. Immediately follows

u l3+k+u x*
ylR = CS - v* = CS - S' (4.14)

Le. ylR = y*. Then the largest invariant set M within R is z*. From Corollary 2.2 follows the
global asymptotic stability of the feasible equilibrium (4.2) within R~*.

It is to be noticedthat the only assumptionsmade in this proof are r > kand that equilibrium
(4.2) is feasible. Under these assumptions we exclude that unbounded solutions may exist.

Suppose that u :o:;;;Uh i.e. the equilibrium (4.2) is not feasible and we get the partially
feasible equilibrium (4.5) which belongs to

R~ = {zE R3IZj > 0, i = l, 3, Zj ;a. 0, i = 2}. (4.15)

In order to apply Theorem 2.2 hypotheses (a) and (b) must be verifled. Conceming hy-
pothesis (a), we have

-(13 + k) + cx* - cSv* :o:;;;0, (4.16)
CAMVAl2: 6A-F.



692 E. BERETIAand V. CAPASSO

from which, taking into account (4.5), we obtain

l _ S(r - k) ~ !.. .
<1 l3+k+<1

(4.17)

Inequality (4.17) is satisfied in the whole range <1~ <11'within which the partially feasible
equilibrium(4.5) occurs. When <1= <1.,theequality applies in (4.17). Hypothesis (b) is satisfied
because b(z) = (r(y + v), O,O)Tand therefore b2(z) == O.Conceming hypothesis (c), consider
first the case<1< <1.,Le. the inequalityappliesin (4.16). Thenthe subset(2.23) is

R = {z E Rl Iy = O, x = x*}. (4.18)

Now we look for the largest invariant subset M within R.
Since x = x*, y = Ofor all t, dxldtlR = O, and from the first of equations (4.1) we get

vlR= r-k,. _ rlx"" wherex* = 13+ k + <1 (4.19)

Therefore, we obtain VIR= [(r - k)/(13+ k + <1 - r)] . x*, i.e. VIR== v*. Thus the
largestinvariantset withinR is

z*=
(
x*=I3+k+<1

C ' )

T

r - k ** - x .
y* = O, v - 13+ k + <1- r

(4.20)

When <1 = <1.,then equality applies in (4.17) and (2.23) becomes

R = {z E Rl Ix = x*}.

In this case, we have already proven that M =={z*}. Hence hypothesis (c) is satisfied.
Then by Theorem 2.2 the partially feasible equilibrium (4.5) is globally asymptotically stable
with respect to Rl.

If r < 13+ kand <1~ <12'then the partially feasible equilibrium (4.7) occurs. This equi-
librium belongs to

R~ = {z E R~ IZj > O, i = 1,2; Zj ~ O, i = 3}. (4.21)

Hypothesis (a) of Theorem 2.2 requires

- (13+ k + (1) + Cx* + CSy* ~ O, (4.22)

from which, taking into account (4.7), we obtain

1 _ S(r - k) ~~.
<1 l3+k

(4.23)

This inequality is satisfied in the whole range of existence of the equilibrium (4.7), Le.
for all <1~ <12'When <1 = <12'the equality applies in (4.23). Hypothesis (b) of Theorem 2.2
is obviously satisfied. Conceming hypothesis (c), at first we consider the case in which <1> <12'
Therefore, the inequality applies in (4.22) and the subset (2.23) of R~ is

R = {z E R~ Iv = O, x = x*}. (4.24)

Prom (4.7), we are ready to prove that M =={z*}. When <1 = <12'R becomes

R = {z E R~Ix = x*},

....



GeneralstnJetureof epidemiesystems 693

andwe have already proven thatM = {z*}.Hypothesis(c) is satisfied. Also, in this case Theorem
2.2assures the global asymptotic stability ofthe partially feasible equilibrium (4.7) with respect
to R~.

4.2 SIS model with vital dynamics[ I]

dS/dt = (r - b)S - pSI + (~ + r)/,

dl/dt = -(6 + b + ~)I + pSI,
(4.25)

where,denoting by n = S + I, we have

dn/dt = (r - b)n - 61. (4.26)

Providedthatr > b, 6 > r - b, system (4.25) has the feasible equilibrium z* E R:..*:

S* = 6 + b + ~
p ,

1* = r - b
6 + b

S*.
- r (4.27)

When r ~ b, or r > 6 + b, the equilibrium (4.27) is not feasible and the only equilibrium
of (4.25) is the origin. System (4.25) may be put in the form (2.9), where

(
r-b

) (
O

e = -(6 + b + ~) , A = p
(4.28)

and b(z) =Bz = «~ + r)/, O)T.When z* is a feasibleequilibriumthe matrixA = A +
diag(z*-I)B is given by

A ~ ( : -[. - >: T>a
(4.29)

Since S* = (6 + b + ~)/p, provided that 6 > r - b the matrix A is skew-symmetriz-
able. Because bl(z) ~ 0, the graph associated with A is ~ and by Corollary 2.2 the glo-
bal asymptotic stability of z* with respect to R:.., follows.

When r ~ b, r > 6 + b Theorem 2.2 cannot be applied to study attractivity of the origin
because hypothesis (b) is violated.
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