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Abstract—In this paper a general ODE model is proposed to describe epidemic systems. The mathe-
matical structure of such a model is so general that it includes many epidemic systems already analyzed
via different methods by various authors. The asymptotic analysis of the general system is carried out
with applications to several models.

1. INTRODUCTION

The history of mathematical models for infectious diseases is quite long now and may be traced
back at least up to the 1920s when the work by Kermack and McKendrick appeared[8].

Since then many attempts of generalization have been made to introduce more realistic
situations (see [2] for a rather extensive account).

Some authors have also tried general approaches to the analysis of the asymptotic behaviour
of such systems (see, e.g. [7]).

To the authors’ knowledge anyway no atternpt has been made up to now to analyze the
general structure of epidemic systems. In this paper the authors propose a general ODE system
which actually includes many of the models proposed up to now, by different authors.

This general model allows an asymptotic analysis based on the structure of the ODE system
by means of the Lyapunov functional proposed by Goh[4,5] for a generalized Lotka—Volterra
system.

The main result of the paper, based on a prevnous paper by Solimano and Beretta[14],
gives sufficient conditions for the global asymptotic stability (hence uniqueness) of the non-
trivial equilibrium solution of the system, whenever it exists.

An existence result regarding the positive equilibrium solution is also given. It has to be
pointed out that also the case in which the total population is a dynamic variable is analyzed.

In Sec. 3 the results are applied to several models.

Sec. 4 is devoted to analyze the cases in which the total population of the epidemic system
is a dynamical variable. In this case we are able, by our methods, to give global stability results
of the feasible or partially feasible equilibrium.

2. THE GENERAL MODEL

Let us consider first a so-called SIR model with vital dynamics[7]. If one denotes as usual
by § the susceptible population, by / the infective population and by R the removed population,
this model may be written as follows:

dStde.= < KSE — S -+ s,
dl/dr = kSI — I — M, @.1)
dR/dt = N — pR,

for t > 0, subject to suitable initial conditions.
Since clearly (2.1) implies that S(r) + I(r) + R(z) = 1, we may ignore the last equation
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678 E. BERETTA and V. CAPASSO
in (2.1) and consider the reduced system

dS/dt = —kSI — pS + [T (2.2)
dI/dt = k&SI — (n + N,

for ¢t > 0, subject to initial conditions such that 0 < S(0) + 7(0) < 1.
We may write system (2.2) in a more general form if we introduce matrix notations as

follows; we set
e L B _ [~
e iy e N 29

and system (2.2) becomes
dz/dt = diag(z)(e + Az) + ¢, t>0, (2.4)

where we have also set z = (S, I)".
Consider now the simple gonorrhea model proposed in [3] and [15]. It can be seen as an
SIS model for two interacting populations; if we denote by §,, I, and by S,, I, the susceptible
and the infective populations for the two groups (males and females), we have
dSlJth = _knsllz + 0’.|l|,
dflfdf —= kl}_sllz = 0'.|1|,
t>0. 75
dSz:"rdI = _k21321| + Q‘.z!g_, ( )
dsz'rdf = kﬂS;!l =y 0‘.212,

Again, since clearly §; + I, = ¢, (const) and §; + I, = ¢, (const), we may analyze only
the system (let k;, = k;; = 1, for simplicity)

d1|f!dr — *1112 — Ct.[l = C|12,

>0, (2.6)
df;.l"dr = _1112 = CI'.:IZ + Czt’h
which can be now written in the general form
dz/dt = diag(z)(e + Az) + Bz, t>0, 2.7

if we set z = (I, I,)7, and

2o 0 = I ol e Cf.l o 0 C1
(2D a8 e

Altogether, we may state that both models (2.1) and (2.5) may be rewritten in the general
form

dz/dt = diag(z)(e + Az) + b(z), t>0, (2.9)
where
bz) =c¢c + Bz, z€ER",
where n € N — {0} for sake of generality.

In Sec. 3 we have analyzed many other examples of epidemic systems, already studied
with different tools by various authors; all of them may be considered, along with models (2.1)

.

|
|
-



General structure of epidemic systems 679

and (2.5), as particular cases of the following general ODE model:

dz/dt = diag(z)(e + Az) + b(z), t>0, 2.9
inR", n € N — {0}, or better in

Ry :={z€R*|z=20, i=1,...,n}

(the non-negative orthant of R"), if we take into account that our systems are positivity preserving,
in accordance with the meaning of z.
In (2.9) we usually have

(i) e € R", a constant vector;

(i) A = (@;)ij-, > a real constant matrix;

(iii) b(z) = ¢ + Bz, a non-negative vector function defined for z € R"; here ¢ € R" is
a constant non-negative vector, and B = (b;);;-,, ., is a real constant matrix such that b; = 0
foranyi,j=1,...,nandb; = Oforanyi =1,...,n.

Hence it is worth analyzing the general qualitative properties of system (2.9) under the
above assumptions (i)—(iii), and applying the results to the various different models.

Let us remark that usually epidemic systems are considered to have constant total popu-
lations, as in the above examples; this implies in particular that in (2.2) 0 < S(t) + I(1) = 1
for any ¢+ = 0; while in (2.6) 0 < [,(¢) < ¢, and 0 < I,(¢) < ¢, for any ¢t = 0.

Referring to our general model (2.9), we shall assume at first that either

gr.= {zERﬁ|zzf£1} (2.10)

i=1

or

s eRrRiIE=1"9=1....,n 2.11)

o o
is positively invariant, as well as their interiors 7 or ()%, respectively. From now on we shall

denote both 0} and (% by Q".
We shall make then the assumption

(iv) " is positively invariant.

Remark. It may be pointed out that in concrete models assumption (iv) is always satisfied
due to the particular structure of the ODE systems which describe epidemic models.
Because of the structure of

F(z) := diag(z)(e + Az) + b(2), 2.12)

it is clear that F € C'(R"), and therefore F € C'({}").

We shall denote by D; the hyperplane of R™ D, = {z € R" | z; = 0}.

Clearly, D; N Q" will be positively invariant if b;p, = 0, while D; N Q" will be a repulsive
set whenever F(z) is pointing inside ()" on D,, i.e. byp, > 0.

Because of the invariance of ()" and the fact that F € C'(£2"), fixed point theorems[12]
assure the existence of at least one equilibrium solution of (2.9), within ("

As stated in the introduction, our aim here is to show that, under suitable conditions, the
general system (2.9) is such that, whenever a strictly positive equilibrium z* exists in Q7 :=
{z€Q"|z,>0,i =1, ..., n} then it is globally asymptotically stable with respect to
.. Uniqueness of the equilibrium within (" clearly follows.
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Let z* = (zf, . . . , zF) be a strictly positive equilibrium of (2.9); then
e = —Az* — diag(z*")b(z¥), 2:13)
where we have denoted z*~' := (1/z¥, ..., 1/z¥)7.

By substitution in (2.9), we have
dz/dt = diag(z)[A + diag(z* ")B](z — z*) — diag(z — z*bdiag(z*")b(z). (2.14)

Since, without the vector b(z), system (2.9) is a generalized Volterra system, in order to
study the global asymptotic stability of z* we shall make use of the Lyapunov function
V:R%Y — R, proposed by Goh[4,5] (here R% := z ER"[z,>0,i=1,...,n),

Vi) = S W, (z,— —z¢ — z*In ;—*) (2.15)
i=1 '

i

where W; > 0 are real constants.
We introduce now some definitions.

DEFINITION 2.1

Let B be a real n X n matrix. We say that B € Sy, (resp. B € Sw) iff there exists a
positive diagonal real matrix W such that WB + B™W is positive definite (resp. non-negative
definite).

DEFINITION 2.2
B is W-skew symmetrizable (resp. W-symmetrizable) iff there exists a positive diagonal
real matrix W such that WB is skew-symmetric (resp. symmetric).

_ The structure of the ODE system (2.14) stimulates the analysis of the matrix
A := A + diag(z* ")B.

As we shall see in Sec. 3, many epidemic systems are such that either

(v) A is W-skew symmetrizable

or
e ; bi(2) b,(2)
(v") [A + diag (—E, T “E):I e Sy,
where b(z),i = 1, ..., n are the components of the vector function b(z), defined in (iii).

For example model (2.2) belongs to case (v) while model (2.6) belongs to case (v').
Hence we shall analyze these two cases in detail.
Consider first the case (v), and let R be the following subset of ()%,

Ri=Leliz=z2, foamyi=1,... 18t bz > 0. (2.16)
On R, system (2.14) becomes
dz/dt |, = diag(z)A(z — z%), 2.17)

which has the same structure as predator—prey Volterra systems when looking for the largest
invariant set for such systems, where the diagonal elements of the community matrix in the
Volterra system play the same role as the positive components of b(z) in our system. We may
then state that the sufficient conditions given in [13] and [14] in order that the largest invariant
set of predator—prey Volterra systems reduces to the strictly positive equilibrium {z*}, give us
sufficient conditions for the largest invariant subset of (2.9) in R reduce to {z*}.
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In order to state these conditions we need to introduce some graph nomenclature.
Under the assumption (v), the elements of A have a skew-symmetric sign distribution.
Then we associate a graph with A by the following rules:

(A) each component of z, say the ith, is represented by the labeled knot :’if b(z) = 0; by
i otherwise.
(B) each pair of elements d;d; < 0 is represented by an arc connecting knots *‘i’’ and

(T2

J

The following result holds[3,4]:

LeMMa 2.1 8 s
Assume that A is W-skew symmetrizable. If the associated graph is either (a) a tree and

p — 1 of the p terminal knots arely, or (b) a chain and two consecutive internal knots are
or (c) a cycle and two consecutive knots are ¢ then M = {z*} within R.
Hence we can prove the following:

THEOREM 2.1

If system (2.9) has a positive equilibrium z* € ()", and case (v) holds true under one of
the hypotheses of Lemma 2.1 or, otherwise, case (v') holds true, then the positive equilibrium
z* is globally asymptotically stable within 0" . The uniqueness of z* within Q" follows from
its global asymptotic stability.

Proof. Consider the scalar function (2.15). It has the property of positive definiteness of
a Lyapunov function: V(z) = 0 and V(z) = 0 if and only if z = z*. Moreover, V(z) — +
when z; — +% or z; — 0% for some i. Its time derivative along the trajectories of (2.9) is

V(z) = (z — z%)W diag(z ™))z, (2.18)

where W = diag(W,, . . . , W,), W, being the positive real numbers occurring in definition
(2.15) of V(z). On account of (2.14), (2.18) becomes

V@) = (z — 2)"WAGE — %) - &ff) @ = ¥,

i=1 =i
where within (0" we have z; > 0, b;(z) = 0 for all i. Let us write

1) _5®

BT
2z} Za2yt

V(i) = (z — z2%)™W [[\ + diag (— )] (z — z%). (2.19)

In case (v'), from (2.19) it follows that V(z) < 0 and the equality applies if and only i_f
z = z*. Hence the global asymptotic stability of z* within 0% follows. In case (v), since WA
is skew-symmetric, (2.18) reads

Vo = -3 220 ¢, - oy, (2.20)

where the nonpositive definiteness of V(z) within Q~. follows from the assumption that b;(z) = 0
for all i. Let R be the set of all points within " where V(z) = 0, i.e. the set (2.16), and M
be the largest invariant set in R. Owing to Lemma 2.1 we have M = {z*}.

As a consequence we may state, that every solution z(f) in (% tends to z* as t = +.
This is due to the following extension of Lyapunov’s stability theorem: If dV/dt is negative
semidefinite, then every solution tends to the largest invariant subset of the set of all points in
R" for which dV/dt = 0[10] (see also [9]). Hence the global asymptotic stability of z* within
" is proven for both cases (v) and (v').
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COROLLARY 2.1

If the vector ¢ in (iii) is positive definite, then system (2.9) has a positive equilibrium
z* € Q" . In case (v) or (v'), the positive equilibrium z* is globally asymptotically stable (and
therefore unique) with respect to ).

Proof. Concerning the existence of a positive equilibrium, we can observe that, by ar-
guments of positive invariance of ()", at least one equilibrium belonging to ()" exists. However,
if ¢ is positive definite, system (2.9) cannot have equilibria with some vanishing components.
Hence a positive equilibrium z* € )7, exists. In case (v), since A is W-skew symmetrizable
and b(z) is positive definite, by (2.20) V(z) < 0 and V(z) = 0 if, and only if, z = z*. This
gives the global asymptotic stability (and uniqueness) of z* within £}, . In case (v") the asymptotic
stability (and uniqueness) of z* within (0", directly follows from (2.19).

Some epidemic models, described by the ODE system (2.9), differ from usual epidemic
models in that n(f) = Z}_, z(¢) is a dynamical variable rather than a specified constant (see,
e.g. [11]).

Accordingly, we must drop assumption (iv). For these models, the accessible space is the
whole non-negative orthant R” of the Euclidean space, and Theorem 2.1 can be reformulated
by substituting the bounded set )7 with the positive orthant R*. Furthermore, it has to be
noticed that we cannot apply fixed point theorems even when vector ¢ is positive definite. Hence
Corollary 2.1 cannot be applied to these models. However, the structure of system (2.9) is such
that the positive invariance of the non-negative orthant R”, is assured. When vector ¢ in (iii)
has some identically vanishing components, system (2.9) may have equilibria z* with some
vanishing components. Let. | be the set of indices 1" = Jl. ..., n}and I the subset of 1~
such that z¥ = 0 when i € I. According to Goh[4] if / # @, we say that z* is partially feasible
and we can study the sectorial stability of z* with respect to

Ri={i€ER|z>0, ieV-=I z=0, icl}. (2.21)

The definition of sectorial stability can be found in [4]. By sectorial stability we mean that
z* is globally asymptotically stable with respect to R}. If I = ff , then z* is feasible and we
can study its global asymptotic stability with respect to R by Theorem 2.1.

Assume that z* is a partially feasible equilibrium of (2.9), i.e. z¥ = 0, i €1, [ # ﬂ

ﬁ;‘j a,-j--l-b‘-jf"sz, fOl‘alle‘f‘-I, jE.[;

{2:22)
a = a; otherwise,

where a; are the elements of the matrix A in (2.9) and b;; are the elements of B defined in (iii).
Let R be the subset of R} such that

R={z€R}|z =0, foralliE€l, z =z¥ foralli E.N — Is.t b(z) >0} (2.23)

and let M be the largest invariant set within R. By using the scalar function suggested by Goh
in studying sectorial stability

Vo = S W, [z,- —z¢ —z¥In zz—*] + 3 Wz, W,>0, (2.24)

et =TI i il

we prove the following:

THEOREM 2.2

Let z* be a partially feasible equilibrium of (2.9) and assume that A is W-skew sym-
metrizable. If (a) e; + Zjc - a;zF <Oforalli €1, (b) b(z) =0foralli €1, (c) M = {z*},
then z* is globally asymptotically stable with respect to Rj.

Proof. If z* is a partially feasible equilibrium of (2.9) with z¥ = 0 for all i € I, by
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hypothesis (b) the equations of (2.9) read

i
Il

2. 2f i :
Zi 2 @l —2) = ( - ) b(z), forallie ¥ — I,
e i

(2:25)

ty
I

Z; Z (e; St 2 a{jzj)a foralli €1

JEN
Consider the function (2.24). V(z) € C'(R}), and is a non-negative definite function with

a single minimum at z = z* where V(z*) = 0.
On account of (2.25), the time derivative of V(z) along the trajectories of (2.9) is

: R b
o= 3 wEL {z;- Y, &z = 7 = (——”bo}

i€ =1 j€.r i (2.26)
+ z Wiz, (er' + E ar:r'zj)-
il jEN
By the definition of the matrix A, from (2.22) we get
: I Wb,
V@) = z — z29)"WAQz — z¥) — > —!? & — Y
ie -1 ZiZi (2.2
+ 2 W"ZE (e; + E a"}'zjk).
iel jewr

Since A is W-skew symmetrizable, the first term in (2.27) vanishes. By hypothesis (a) we
have that within R7, V(z) < 0. Now we are in position to apply the already quoted extension
of Lyapunov’s stability theorem [10, Theorem VI Sec. 13].

The set R of all points within R} where V(z) = 0is given by (2.23). Since, by hypothesis
(c), the largest invariant set within R is z*, then every solution z(r) with initial conditions in
R/ tends to z*¥ as t — +%.

When z* is feasible, I = #, R = {z € %* | z, = z* for all i:b(z) > 0}. From Theorem
2.2 we obtain:

COROLLARY 2.2 :
Let z* a feasible equilibrium of (2.9) and assume that A is W-skew symmetrizable. If
M = {z*}, then z* is globally asymptotically stable within R’*.

Corollary 2.2 can be seen as a new formulation of Theorem 2.1 case (v), for epidemic
models for which assumption (iv) is dropped. Concerning Corollary 2.2, we may observe that,
if the graph associated with A by the rules (vii), (viii), satisfies one of the hypotheses of Lemma
2.1, then within R we have M = {z*}.

3. EXAMPLES

In this section we review a list of epidemic systems which exhibit the structure of general
model (2.9). Their asymptotic behaviour will be obtained then by applying the theorems proved
in the previous section.

We shall distinguish three main cases: In the first one condition (v) is satisfied; in the
second one condition (v') is satisfied; finally in the third case we shall consider epidemic models
for which the total population n(f) is a dynamical variable.

3.1 Epidemic systems for which the matrix A is W-skew symmetrizable
In the following it is assumed that all the parameters are non-negative real numbers.
3.1.1 SIR model with vital dynamics[7). This model has already been presented in (2.2).
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Since in this case B = 0, we have

A=A-= (g _0"‘), and b(z) = ¢ = (g) (3.1)

Since A is skew-symmetric and the associated graph is 9’—. Theorem 2.1 applies.
3.1.2 SIRS model with temporary immunity[7].

dS/der
dl/d:

=AIS +:® +70)-— (0 + a)§ — ol

(3.2)
NS — (y + d)I,

with§ + I < 1.
We change the variables (S, /) into (S, I) such that § = § + a/\, so that system (3.2)
becomes

dSidt = —(3 + &) — ASI + (3 + a)(1 + /M),

X (3.3)
dl/dt = —(y + 8 + o)l + A,

which can now be put in the form (2.9) by introducing

(B | (-6 +® (6 + &)1 + a/N) 5
A~(J\ 0),e—(_w+6+a)),c—( i ),B—O. (3.4)

Again A = A and b(z) = ¢, with A skew-symmetric. Also in this case the associated
graph is Q+o, and Theorem 2.1 applies.
3.1.3 SIR model with carriers[7].

dS/dt = —\N{ + C)S + & — &S,

3.5)
dI/dt = NI + C)S — yI — 8,
where S + I < 1. By the change of variables (S, I) = (S, [), [ = I + C, we have
dS/de = —8S — IS + 3,
g i . (3.6)
difdt = — (y + &I + AS + (y + 9)C,

which can be put in the form (2.9), where

_ (-3 o @ik 5 8 L
¢ = (—{v & a))' A= (x g ) €= ((v ", a}c)' B =0, 3.7

and
bz)=¢, A=A. (3.8)

Since ¢ is positive definite and A is skew-symmetric, by Corollary 2.1 a unique positive
equilibrium z* exists, which is globally asymptotically stable with respect to 3%, i.e. the interior
of B ={zS+I<1+C}

3.2 Epidemic models for which — [A + diag(—b,(z)/z,z¥, . . ., —by(z)/z,z¥)] € Sw
3.2.1 SIS model in two communities with migration[7].
dljdt = M =0 = 3, — &1, + o, = 1)IN,, I, £8, =T,

(3.9)
dl,/dt

NL(1 = L) = vl — 8,0, + 81, — I)INy, I, + S,
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In (3.9), putting 6, = 8/N,, 6, = 8/N,, we obtain

dlj/dt = (A, — v, — 8 — 8, — N7+ 6,1, (3.10)
dh/dt = (A, — v2 — 8 — 0], — MIT + 6,1,

with [; < 1, i = 1, 2. System (3.10) can be set in the form (2.9), where

= hl_v]_al-ei — _h] 0 15 b5 0 BI
e_(hz_\?z—az—ez’A 0 _}\2,0—0,3— B0 (3.11)

and
25 f_;
bz) =Bz = (0,5, 0:1)", A= o L s (3.12)
g
I} e

Let 0% be the set O* = {z € RY | [, = 1, i = 1, 2}. By our approach, the sufficient
condition for asymptotic stability of a positive equilibrium z*, with respect to Q3 is — [A +
diag(—0,L,/I 1, —6,1,/131,)] € Sy. We can observe that

L)

= Ly
- 0,1 I ! I
Cr el SR USRS LR R It (3.13)
It L /] 6.1,
I pslfh T3

+ dlag( G o A.|W], “thz).

The first matrix on the right-hand side of (3.13) is symmetric if we choose W, > 0,
W, = (08,/0,)(13#/I¥)W,. This matrix is negative semidefinite since

BEIZ 92]1 B] 82
—_—— - — = W.W, =0. 3.14
(11*11 HE OB T i

Because of the presence of the diagonal negative matrix on the right-hand side of (3.13),
the sufficient condition of Theorem 2.1 holds true provided that A; > 0, A, > 0. Under this
assumption, if a positive equilibrium z* exists, then it is globally asymptotically stable within
4.

3.2.2 SIS model for two dissimilar groups[7].

dr/de = Dy + Ma/NDLIA = 1) = ydy = 8y, L+ 8 =1, (35
dL/dt = \ply + My(NIUNDLIL — B) = Yol — 8hh, L + S, = 1.

In (3.15), by setting B, = Ao(N2/Ny), By = Au(No/N,), we get

dI,fdt S (1T Sty | 3, — ?\nﬁ = Bl + Bl (3.16)
dL/dt = (A = ¥2 — ), — Mpl3 — Balal;, + Bauly,

with /; = 1,i = 1, 2. System (3.16) can be set in the form (2.9), where

- Kii =i oubi A N "Bu) £ =(0 BIZ)
i (MZ_'YZ"SZ), - (_le —An/’ E5m i XD Bn 0 )’ Gam
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and z = (I}, Iz)r,

i —Ap % (1 If)
b(z) = Bz = (Bnols, Bul))', A = By, y (3.18)
It (1L —~18 — Az
Consider now W[A + diag(— Bylo/I¥1,, — Buli /I )]:
Bl Bi
12 gy Sl = 1w
W[;\ ; ( Bil> 33111)] - TT e I¥ L
G e = (3.19)
IF1, I3, &1(1 — IHW. _Bllll
IF )W, 51, 2

+ diag(— AWy, — A, W,),

where the first matrix on the right of (3.19) is symmetric when choosing W > 0 and W, such
that (B,,/15)(1 — IHW, = B/IH(1 — IFH)W,. Moreover, since 0 < I¥* < 1,i = 1, 2, this
matrix is negative definite. In fact,

(B_fu_ﬂ_ B

1 — IF
I, I3 ( )

= R 1;)) W, W, > 0. (3.20)
| 2

-
.

Hence, provided that A;; = 0, Ay, = 0, —[A + diag(—Bph /¥, —Bul/I}1)] € Sy,
and Theorem 2.1 assures the asymptotic stability of the positive equilibrium z* with respect to
B, P=LerR|I=<1,i=1,2}

3.2.3 Gonorrhea model|3,15].

dly/dt = =L — oyly + ¢, I + 8, = ¢, (3.21)
di/dt = —LI, — ol + ¢cfy), L + 5 = ¢,

which can be put in the form (2.9), where

o Ay s} B =1 : £ 0 ¢
e (—ﬂz)’ (—l O)’ c=0, B (Cz 0), (3.22)
and
0 Cl;f’f
b(z) = Bz = (1], &I))T, A = LA ' - (3.23)
2 2
¥ g
Consider
leg S;k
i W] W!_
= : o ly col, It ! e
+ v o Gt o -
W[A d‘ag( Iy’ fa*fz)] 2isp - akss © 0
Iy 14 i

which is a symmetric matrix if we choose W, > 0, W, such that W,(S§ /I¥) = W,(SF/IF).
The symmetric matrix (3.24) is negative definite.
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In fact, the diagonal elements are negative and

cils ol  SES# W, W,
—_———— - —= | W, W, = — — S§ESH > ¢
(I;k!t I*1, ¥l 12 [+1% (c16, S§S¥) > 0, (3.23)

where the fact that 0 < §* < ¢, is taken into account since z* is a positive equilibrium.
3.2.4 SIS model with vectors[T]. This model is obtained from **SIS model for two dissimilar
groups’” when Ay, = Ay, = O:
di/dt = —(y, + 3D, — Bplil, + Bils,
dl,/dt = —(y> + 8, — Bulod, + Baly,

(3.26)

where I; < 1, i = 1, 2. The asymptotic stability of the positive equilibrium z*, with respect
to 2%, follows as a particular case of the SIS model for two dissimilar groups (Sec. 3.2.2.).
3.2.5 Host-vector-host model[7].

dl/dr = Np(No/NDL(L = 1) — (yy + 3L, S, + 1, = 1,
dL/dt = Ny(NyNDL + Ms(Ny/NDLI(L — 1) — (v, + 8L, S + L =1, (3.27)
dl/dt = Np(Ny/NDIL(1 — I3) — (33 + 8L, S5 + I, = 1.

_If we introduce the new parameters B, = )\.Z(N'zfﬁl), B, = )\21@,;@2), By =
Ass(N3/N), Bsz = Asa(No/Ns), and the new variables §; = 1 — I,, i = 1, 2, 3, system (3.27)
reads

dSy/dt = [—Bip — (v + IS, + BuSiS: + (v + 3)),
dSy/de = [—Bay — B — (v2 + 8IS, + BuSaSi + BuSS; + (v2 + 8y), (3.28)
dS;de = {_sz b ('Yj + 83)133 + BSZSSS2 T {73 T 83)

Let 3 betheset O = {z€R% |S;=<1,i = 1, 2, 3}. System (3.28) can be put in the
form (2.9), where

=B — (v +3) 0 B O
e=|—-By—Ba—-—(V:+3)|, A=[Bx 0 PBul
—Bxn — (v; +3) 0 Bn O (3.29)
Y+ 9
¢ = ‘Yz + 82 . B — U
Y: + 8
and
biz)=¢c, A=A. (3.30)

By Corollary 2.1, since ¢ is a positive definite vector, one positive equilibrium
z* € (O3 exists. A has a symmetric sign structure. Hence, by Corollary 2.1, if —[A +
diag(—(y, + 8))/8,S¥, — (v, + 8,)/8,5%, —(y; + 8;)/5:5%)] € Sy, then z* is asymptotically
stable within {°.. If we take into account that §; < 1, i = 1, 2, 3 from (2.19) we see that a
sufficient condition for the asymptotic stability of z* is —[A + diag(—(y, + &), —(y, +
d,), —(y; + 83))] € Sy. Accordingly, let us take

WIA + diag(—(y; + &), —(y2 + &), —(y3 + &))]

—(v + )W, B W, 0
= B2 W, —(y, + )W, BxW, (3.3
0 Ba W5 —(y; + )W,
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This matrix is symmetric if we choose W, > 0, W, = (B2/B2)W,, Wi = (Baa/B)(Bra/
B, )W,. It is negative definite if

[(y; + 8)(y, + 8) — BpBalW,W, >0,
—[(y; + 3)(y2 + 8)(ys + &) — (y; + 8:)Bubau +
= (y1 + 3)BxuB]W, W, W, < 0. (3.32)

We can observe that, if inequalities in (3.32) hold true, then
[(v2 + 8)(ys + 83) — BusPs]W, W5 > 0. (3.33)
Hence (3.32) is the sufficient condition for the asymptotic stability (and uniqueness) of

the positive equilibrium z* within (3.
From (3.28), the positive equilibrium z* has the following components:

i+ 8 Y: + 8
S* = P S (3.34)
PRl = SH A+ (n + 8 Ball — SP) + (vs + &)
where S¥ is a solution of
(1-8Hpd -5 +q(1 -85)+r}=0, (3.35)

and

P = BuBul(Ba + Bx) + (v2 + 8],

g = Baul(y; + 3)(y: + 8) — BiBal + Bul(y: + 3)(ys + 8;) — BsPx  (3.36)
+ BuBalys + 83) + BauBn(y + 8),

r=(y+3)y: + &)y + 8) — (v3 + 8)BuBa — (Vi + 8)BxP.

It is to be noticed that when (3.32) holds true, then ¢ > 0, r > 0, thus assuring that the
unique asymptotically stable equilibrium is such that S5 = 1, i.e. z* = (I, 1, ). When (3.32)
fails to hold, by (3.35) we have another positive equilibrium for which S¥ < 1 and its remaining
components are given by (3.34).

To study the asymptotic stability of this equilibrium we can remember that I; + §;, = 1,
i = 1, 2, 3, thus assuring to have a positive equilibrium z* = (I¥, If, IH)T, 0 < I* < 1,
i = 1,2, 3 within the subset O* = {z € R%:[, <0, i = 1, 2, 3}. In the old variables [;, i =
1, 2, 3 the positive equilibrium (1, 1, 1)” becomes the origin and the ODE system (3.27) can
be arranged in this form:

dly/dt = —(y, + 31, — Bhil, + Bl
di,/dt = —(y, + 3, — Bulaly, — Bully + (Buly + Buly), (3.37)
di/dt = —(y; + 8); — Balals + Bala,

where, concerning (2.9), we have

—(y1 + 8) 0 —Bn 0
e=|—-(v+8&| A=|-Ba 0 —Bax |,
—(vs + &) 0 B2 O (3.38)
0 B O
c=0, B= ﬁzl 0 Bn .

0 iPni O
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Thus
BiS¥
0 Ir 0
i B, S¥ By S¥
b(z) =Bz, A = % 0 %1 : (3.39)
BxnS¥
0 It 0

For the asymptotic stability of z* = (I¥, I¥, I§)" within 3 we can apply Theorem 2.1
by requiring that —[A + diag(—b,(2)/1,[¥, —by(2)/ 1%, —bs(2)/I;I¥)] € Sy.
Hence consider

- : bi(z) by(z) by(2)
W [A + diag ( .'11*’127; !;,*)]

BIZ"Z B12S,Ik
-2 W —Lw
LIt :° e g
B S? Bul, + Buly) ., BnSE
= e ;
I”zk 2 1'2!‘? W2 1,{ W2 ] (3'40)
0 BxS¥ r Bxlz
T L1%

this matrix is symmetric if we choose W, > 0, W, = (BnSF/BuSH)IF/ITF)W,, W5 = (BxsS¥/
BSHUF/IHHW,.

To apply Theorem 2.1, we must require that the symmetric matrix (3.40) be negative
definite. Since the diagonal elements are negative, the sufficient condition is

Bl (Buly + Basly) W,
[ I, I, = Pudt Bzis,{:l I ¥ =40,
[_ B}zfz (Bl :' Basls) B;zlz [33212 B,S¥B, ¥
I 2 3
B I W, W,W.
22 B2 S¥ B:zss] ﬁ <0. (341

Now we observe that the sufficient condition (3.41) is always met by a positive equilibrium
z* € ()3, In fact,

T R L Bal
Bily Buli + Bals — BuSFBuSE > =2 Buly Baly _ BBy =0
I, I I L
and
s SR 1 R O 0y I ! ! I I
Bialz Baili Brls Bsz 2B,,S¥BySF — Bialz Basls Balz by Bizl By S¥B5S¥

I, L, &L L L L 1,

BIZ 2

= ‘(_;Bn(_BIIBZl it B}IS?:BZIS;) = ( BBBH 4 BZSS?BHS*) < 0

where, proving the inequalities, we have taken into account that §* < 1,i = 1, 2, 3. Hence
we can conclude for the host-vector-host model that

COROLLARY 3.1
If the sufficient condition (3.32) holds true, then the origin is asymptotically stable with
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respect to (). Otherwise besides the origin a positive equilibrium N* € ()3 exists which is
asymptotically stable within (.

4. EPIDEMIC MODELS WITH NONCONSTANT TOTAL POPULATION

In this section we deal with some epidemic models, described by the ODE system (2.9),
which differ from the usual epidemic models presented in Section 3 in that n(f) = 2, z,(1)
is a dynamical variable, rather than a specified constant. Furthermore, these models admit either
a feasible or a partially feasible equilibrium (see Sec. 2). We shall consider two specific
examples.

4.1 Parasite-host system[11]
The epidemic model is

de/dt = (r —k)x — Cxy — Cxv + ry + rv,
dy/dt = —(B + k)y + Cxy — CSyv, 4.1
dv/dt = =B + k + o)v + Cxv + CSyv.

As discussed in [11] the two cases r < k and r > B + k + o do not give rise to non-
trivial equilibrium solutions. We shall then restrict our analysistothecase  + o + k> r >k
in which there is an equilibrium at

o i BEREE L.l L 1. Bk

i
Celsir—n 7 cs s S cs

5 nallit—

(4.2)

Local stability results were already given in [11]. According to the aim of this paper, we
shall study global asymptotic stability of the feasible or partially feasible equilibrium.
The equilibrium z* = (x*, y*, v*)7 is feasible, i.e. its components are positive if

r S(tr — k) r
e 0 < : 4.3
B+k+o [s) B+ k S
If ¢ < o,, where o, is such that
r Str= k)
— =i, 4.4
B+k+ o g, G

the first inequality in (4.3) is violated and only a partially feasible equilibrium is present given
by

+ k% — k
SBEEEO eng e @.5)

g -
B+k+o—r

sincer < B + k + o. If o = oy, then (4.2) coalesces in (4.5).
If r<B + kand o > o,, where o, is such that

St =8 0
1 ) Y (4.6)
then the second inequality in (4.3) is violated and only a partially feasible equilibrium is present,
given by

B+ k Fi—k
i , yEF= ———————x¥  p¥ = (, o7
i T T T @7

since r > k. If ¢ = o, then (4.2) coalesces in (4.7).
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Concerning model (4.1), we can put it in the matrix form (2.9), where

r—k g ~C =€ 0
o= -B + k) o A=yl € 50 -CS|, e=0, B=|0 0 O (4.8)
—B -k +:0) SIS 1. 0 0 0O

Now consider the case in which the equilibrium (4.2) is feasible, i.e. z* € R%. Then

b(z) =Bz, A = A 4.9)
(i
(& CS 0
where z is a vectorz = (x, y, v)” belonging to the non-negative orthant R3.Since C — r/x* =

CS(r — k)/o, provided that r > k, matrix A is W-skew symmetrizable by the diagonal positive
matrix W = diag(W,, W,, W), where W, = o/S(r — k), W, = W; = 1. In fact, we obtain

[0 -c -C
wisde ! 0 =cBl (4.10)
€ 208 50

Now we are in position to apply Cor'ollary 2.2. Since b(z) = (r(y + z), 0, 0)7, the subset
of all points within R%* where we have V(z) = 0, is

R=eER: [x =2 4.11)

Now we look for the largest invariant subset M within R. Since x = x* for all 1,
dx/dt|z = 0, and from the first of the Eqns. (4.1) we obtain

r—k o
+ == — 2 4.
(v + vz PR for all ¢ (4.12)

Therefore, d(y + v)/df[z = 0, and by the last two Eqns. (4.1) we obtain

*

X

B+ k

1 1
e IO — + 3 = — [Cx* — + k)] == — 4.13
Zlg CIr{[ x B NIy + vk} CS[ x B )] S Cs (4.13)
Then, taking into account (4.2), we have z|; = z*. Immediately follows
=a_*=[3+k+0_x* 4.14
Yh =25~V Cs s’ Wkl

i.e. ¥l = y*. Then the largest invariant set M within R is z*. From Corollary 2.2 follows the
global asymptotic stability of the feasible equilibrium (4.2) within R3*.
It is to be noticed that the only assumptions made in this proof are r > k and that equilibrium
(4.2) is feasible. Under these assumptions we exclude that unbounded solutions may exist.
Suppose that o < o, i.e. the equilibrium (4.2) is not feasible and we get the partially
feasible equilibrium (4.5) which belongs to

RR=0LER|g>0;i=1,3;2=0,i = 2} (4.15)

In order to apply Theorem 2.2 hypotheses (a) and (b) must be verified. Concerning hy-
pothesis (a), we have

-B+k +cx*—cSv¥r=0, (4.16)

CAMWALZ:6A-F
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from which, taking into account (4.5), we obtain

_S(r—k}ﬂ r

: . B+kie

(4.17)

Inequality (4.17) is satisfied in the whole range o =< o, within which the partially feasible
equilibrium (4.5) occurs. When o = o, the equality applies in (4.17). Hypothesis (b) is satisfied
because b(z) = (r(y + v), 0, 0)7 and therefore b,(z) = 0. Concerning hypothesis (c), consider
first the case ¢ < o, i.e. the inequality applies in (4.16). Then the subset (2.23) is

R={z€ER}|y=0, x=x*. (4.18)

Now we look for the largest invariant subset M within R.
Since x = x*, y = 0 for all ¢, dx/df|; = 0, and from the first of equations (4.1) we get

— + k&
=t e B XD T

C = {""x*’ C (4.19)

Therefore, we obtain vz = [(r — k)/(B + k + & — r)] - x*, i.e. vz = v*. Thus the
largest invariant set within R is

B+k+o r—k !
ok g (e TR * e i) 4.20
% (x 6 Vil %Y B+k+0—rx ( )

When ¢ = o, then equality applies in (4.17) and (2.23) becomes
R={z€R:|x=x*}
In this case, we have already proven that M = {z*}. Hence hypothesis (c) is satisfied.
Then by Theorem 2.2 the partially feasible equilibrium (4.5) is globally asymptotically stable
with respect to R3.

If r < B + kand o = 0,, then the partially feasible equilibrium (4.7) occurs. This equi-
librium belongs to

Ri={z€R:|z>0, i=1,2,2=0, =13} (4.21)
Hypothesis (a) of Theorem 2.2 requires
=(Porbsk o) 4Gk +CSyh =0, (4.22)
from which, taking into account (4.7), we obtain

_S{r—k)} r

1 = =
a B+ k

(4.23)

This inequality is satisfied in the whole range of existence of the equilibrium (4.7), i.e.

for all o = 0,. When o = 03, the equality applies in (4.23). Hypothesis (b) of Theorem 2.2

is obviously satisfied. Concerning hypothesis (c), at first we consider the case in which o > 0.
Therefore, the inequality applies in (4.22) and the subset (2.23) of R} is

R={€R|v=0 x=ux*. (4.24)

From (4.7), we are ready to prove that M = {z*}. When o = o, R becomes

R={€R}|x=1x"
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and we have already proven that M = {z*}. Hypothesis (c) is satisfied. Also, in this case Theorem
2.2 assures the global asymptotic stability of the partially feasible equilibrium (4.7) with respect
to R3.

4.2 SIS model with vital dynamics[1]

dS/dt = (r — b)S — pSI + (. + 1),

(4.25)
difdt = —(0 + b + p) + pSI,
where, denoting by n = § + I, we have
dn/dt = (r — b)n — 0I. (4.26)

Provided that r > b, 8 > r — b, system (4.25) has the feasible equilibrium z* € R%*:

0 +b+ b
s* = T"‘ LR e 4.27)

Whenr < b,orr > 6 + b, the equilibrium (4.27) is not feasible and the only equilibrium
of (4.25) is the origin. System (4.25) may be put in the form (2.9), where

i r S L T i T o
e_(—(9+b+u))’ A‘(p o)’ B‘(o 0 ) I i

and b(z) = Bz = ((n + r), 0)". When z* is a feasible equilibrium the matrix A = A +
diag(z*~")B is given by

g 0 = _ w
A= P S* . (4.29)

p 0

Since $* = (8 + b + w)/p, provided that & > r —_b the matrix Ais skew-symmetriz-
able. Because b,(z) = 0, the graph associated with A is &—e and by Corollary 2.2 the glo-
bal asymptotic stability of z* with respect to R%, follows.

When r < b, r > 6 + b Theorem 2.2 cannot be applied to study attractivity of the origin
because hypothesis (b) is violated.
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