
Chapter 9

Continuous-Time Age-Structured
Models in Population Dynamics
and Epidemiology

Jia Li and Fred Brauer

Abstract We present continuous-time models for age-structured populations
and disease transmission. We show how to use the method of character-
istic lines to analyze the model dynamics and to write an age-structured
population model as an integral equation model. We then extend to an age-
structured SIR epidemic model. As an example we describe an age-structured
model for AIDS, derive a formula for the reproductive number of infection,
and show how important a role pair-formation plays in the modeling process.
In particular, we outline the semi-group method used in an age-structured
AIDS model with non-random mixing. We also discuss models for populations
and disease spread with discrete age structure.

9.1 Why Age-Structured Models?

In the simplest models for a single population all members are assumed to be
interchangeable. However, even the simplest models for disease transmission
include structuring the population by disease state (susceptible, exposed,
infective, or removed).

More advanced population models add some structure to the population
such as specification of spatial location or age. Age is one of the most impor-
tant characteristics in the modeling of populations and infectious diseases.
Individuals with different ages may have different reproduction and survival
capacities. Diseases may have different infection rates and mortality rates for
different age groups [1].
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Individuals of different ages may also have different behaviours, and be-
havioural changes are crucial in control and prevention of many infectious
diseases. Young individuals tend to be more active in interactions with or
between populations, and in disease transmissions.

Sexually-transmitted diseases (STDs) are spread through partner interac-
tions with pair-formations, and the pair-formations are clearly age-dependent
in most cases. For example, most AIDS cases occur in the group of young
adults.

Childhood diseases, such as measles, chicken pox, and rubella, are spread
mainly by contacts between children of similar ages. More than half of the
deaths attributed to malaria are in children under five years of age due to
their weaker immune systems. This suggests that in models for disease trans-
mission in an age structured population it is necessary to allow the contact
rates between two members of the population to depend on the ages of both
members.

In order to describe age-structured models for disease transmission we
must first develop the theory of age-structured populations. In fact, the first
models for age-structured populations [34] were designed for the study of
disease transmission in such populations.

9.2 Modeling Populations with Age Structure

Let ρ(t, a) be the age-density function at time t with a ∈ [0, a+], where
a+ < ∞ is the maximum age of individuals, or with a ∈ [0,∞) for convenience

of mathematical description. Then
a2∫

a1

ρ(t, a)da is the number of individuals

having ages in the interval [a1, a2] at time t, and
∞∫

0

ρ(t, a)da = P (t) is the

total population size at t. Let β be the age specific fertility rate, or birth

rate, so that
a2∫

a1

βρ(t, a)da is the number of offspring produced by individuals

with ages in [a1, a2] in unit time at time t. Then
∞∫

0

βρ(t, a)da = B(t) is the

total number of newborns, at time t. The age specific fertility may depend
on the population density so that β = β(a, ρ(t, a)), or may depend on the
total population so that β = β(a, P ). The reader should note that here β
is not related to the contact rate for disease transmission in compartmental
models introduced in earlier chapters. Here we assume the fertility to be
time-independent. Let µ be the age specific mortality, or death rate, so that
∞∫

0

µρ(t, a)da is the total number of deaths at time t, occurring in one unit

time. Similarly, the age specific mortality may depend on the population
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density so that µ = µ(a, ρ(t, a)), or may depend on the total population size
so that µ = µ(a, P ). Again we assume the mortality to be time-independent.
In this chapter we consider the case in which both the fertility and mortality
depend on the total population size rather than on the age-specific population
density.

Suppose that the population changes from time t to t + h, with h > 0.
The number of newborns in the time interval [t, t + h] is

∫ t+h

t
B(s)ds =

∫ t+h

t

∫∞
0

β(σ, P )ρ(s, σ)dσds. Note that the number of individuals who die
at time t + s, having age less than or equal to a + s, is

∫ a+s

0
µ(σ, P )ρ(t +

s, σ)dσ. Then the total number of deaths in the time interval [t, t + h] is
∫ h

0

∫ a+s

0
µ(σ, P )ρ(t + s, σ)dσds.

Let N(t, a) =
∫ a

0
ρ(t, σ)dσ be the number of individuals having ages less

than or equal to a at time t, and assume that there is no migration. Then
the change in the population size from time t to t + h is the total number of
births minus the total number of deaths during the time interval [t, t + h],
that is,

N(t + h, a + h) − N(t, a) =
∫ t+h

t

B(s)ds −
∫ h

0

∫ a+s

0

µ(σ, P )ρ(t + s, σ)dσds.

(9.1)
The instantaneous rate of change of the population size is

lim
h→0

N(t + h, a + h) − N(t, a)
h

= Nt(t, a) + Na(t, a) =
∫ a

0

ρt(t, σ)dσ + ρ(t, a).

Dividing (9.1) by h and then letting h → 0 yields
∫ a

0

ρt(t, σ)dσ + ρ(t, a) = B(t) −
∫ a

0

µ(σ, P )ρ(t, σ)dσ. (9.2)

Setting a = 0 in (9.2), we have ρ(t, 0) = B(t). Differentiating equation
(9.2) with respect to a, we have

ρt(t, a) + ρa(t, a) = −µ(a, P )ρ(t, a). (9.3)

Then we arrive at the following system of a first order partial differential
equation with corresponding initial and boundary conditions:

ρt(t, a) + ρa(t, a) = −µ(a, P )ρ(t, a),
ρ(t, 0) =

∫∞
0

β(a, P )ρ(t, a)da = B(t),
ρ(0, a) = φ(a),

(9.4)

where φ(a) is the initial age distribution. For continuity at (0, 0) it would be
necessary to require that
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φ(0) =
∫ ∞

0

β(a, P )φ(a)da,

but because it is possible to allow discontinuous solutions of (9.4) this re-
quirement is usually ignored.

The partial differential equation in (9.4) is commonly called the Lotka–
McKendrick equation [26,42].

9.2.1 Solutions along Characteristic Lines

Fix t0 and a0 and consider the functions ρ̄(h) := ρ(t0 +h, a0 +h) and µ̄(h) :=
µ(a0 +h, P (t0 +h)). This amounts to following the age cohort of members of
the population with age a0 at time t0. Then equation (9.3) is equivalent to

dρ̄

dh
+ µ̄(h)ρ̄ = 0. (9.5)

Solving (9.5) yields

ρ̄(h) = ρ̄(0)e−
∫ h
0 µ̄(τ)dτ , (9.6)

that is,
ρ(t0 + h, a0 + h) = ρ(t0, a0)e−

∫ h
0 µ̄(τ)dτ . (9.7)

For a > t, setting (t0, a0) = (0, a − t) and h = t, we have

ρ(t, a) = ρ(0, a − t)e−
∫ t
0 µ̄(τ)dτ = φ(a − t)e−

∫ t
0 µ(a−t+τ,P (τ))dτ , (9.8)

and for t > a, setting (t0, a0) = (t − a, 0) and h = a, we have

ρ(t, a) = ρ(t − a, 0)e−
∫ a
0 µ̄(τ)dτ = B(t − a)e−

∫ a
0 µ(τ,P (t−a+τ))dτ , (9.9)

[17,38,42]. Then, we obtain the following expressions for solutions along the
lines of characteristics for system (9.4):

ρ(t, a) =
{

φ(a − t)e−
∫ t
0 µ(a−t+τ,P (τ))dτ , a > t,

B(t − a)e−
∫ a
0 µ(τ,P (t−a+τ))dτ , t > a.

(9.10)

Thus we have obtained an expression for the population density function
for all (t, a) by following each age cohort along a characteristic line. Notice,
however, that the solutions in (9.10) involve the total population size P which
depends on ρ(t, a).
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9.2.2 Equilibria and the Characteristic Equation

One of the important properties in the study of population dynamics is the
asymptotic behavior of the steady states or equilibria of the populations. For
system (9.4), a steady state, or an equilibrium distribution, ρ∗(a), satisfies
the equations

dρ∗(a)
da

= −µ(a, P ∗)ρ∗(a),

ρ∗(0) =
∫∞
0

β(a, P ∗)ρ∗(a)da,
P ∗ =

∫∞
0

ρ∗(a)da.

(9.11)

Suppose that system (9.11) has a solution ρ∗(a). Then we can investigate
the local stability of this steady state or equilibrium by linearization of system
(9.4) about ρ∗(a) as follows.

Let y(t, a) = ρ(t, a) − ρ∗(a), and write Y (t) =
∫∞
0

y(t, a)da. Then substi-
tution into (9.4) yields

yt + ya = ρt + ρa − ρ∗a = −µ(a, Y + P ∗) (y + ρ∗) − ρ∗a,

and

y(t, 0) = ρ(t, 0) − ρ∗(0) =
∫ ∞

0

β(a, Y + P ∗) (y + ρ∗) da − ρ∗(0),

where P ∗ =
∫∞
0

ρ∗(a)da. For ρ(t, a) near ρ∗, we have, using (9.11),

yt + ya ≈ −µ(a, P ∗)y − µ(a, P ∗)ρ∗ − ρ∗µP (a, P ∗)Y − ρ∗a
= −µ(a, P ∗)y − ρ∗µP (a, P ∗)Y,

(9.12)

and

y(t, 0) ≈
∫∞
0

(β(a, P ∗)y + ρ∗(a)βP (a, P ∗)Y ) da
=
∫∞
0

β(a, P ∗)y(t, a)da +
∫∞
0

ρ∗(a)βP (a, P ∗)daY (t)
=
∫∞
0

K(a, ρ∗, P ∗)y(t, a)da,
(9.13)

where
K(a, ρ∗, P ∗) = β(a, P ∗) +

∫ ∞

0

ρ∗(σ)βP (σ, P ∗)dσ. (9.14)

Hence, for ρ(t, a) near ρ∗, we arrive at the linearized equation

yt + ya = −µ(a, P ∗)y − ρ∗µP (a, P ∗)
∫ ∞

0

y(t, a)da, (9.15)

with the linearized integral boundary condition

y(t, 0) =
∫ ∞

0

K(a, ρ∗, P ∗)y(t, a)da. (9.16)
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Suppose further that y(t, a) = u(a)eξ(t−a), and write w =
∫∞
0

u(a)e−ξada.
By substituting them into (9.15) and (9.16), respectively, we have

du(a)
da

= −µ(a, P ∗)u(a) − ρ∗µP (a, P ∗)eξa
∫∞
0

u(a)e−ξada

= −µ(a, P ∗)u(a) − ρ∗µP (a, P ∗)eξaw,
(9.17)

and
u(0) =

∫ ∞

0

K(a, ρ∗, P ∗)u(a)e−ξada. (9.18)

Solving (9.17), we have

u(a) = e−
∫ a
0 µ(α,P∗)dα (u(0) − E(ξ, a) w) , (9.19)

where
E(ξ, a) =

∫ a

0

e(
∫ s
0 µ(α,P∗)dα+ξs)ρ∗µP (s, P ∗)ds.

Then substituting (9.19) into (9.18) and w, we obtain the following linear
system

u(0) =
∫∞
0

Ke−(
∫ a
0 µ(α,P∗)dα+ξa)da u(0) −

∫∞
0

Ke−ξaE(ξ, a)da w,

w =
∫∞
0

e−(
∫ a
0 µ(α,P∗)dα+ξa)da u(0) −

∫∞
0

e−(
∫ a
0 µ(α,P∗)dα+ξa)E(ξ, a)da w,

or equivalently, the linear system
(
1 −
∫∞
0

Ke−(
∫ a
0 µ(α,P∗dα+ξa)da

)
u(0) +

∫∞
0

Ke−ξaE(ξ, a)da w = 0,
∫∞
0

e−(
∫ a
0 µ(α,P∗)dα+ξa)da u(0)−

(
1+
∫∞
0

e−(
∫ a
0 µ(α,P∗)dα+ξa)E(ξ, a)da

)
w=0,

(9.20)
in the unknowns u(0) and w. Hence, there exists a non-zero solution (u(0), w)
to system (9.20) if and only if
(
1 −
∫∞
0

Ke−(
∫ a
0 µ(α,P∗)dα+ξa)da

)(
1 +
∫∞
0

e−(
∫ a
0 µ(α,P∗)dα+ξa)E(ξ, a)da

)

+
∫∞
0

Ke−ξaE(ξ, a)da
∫∞
0

e−(µ+ξ)ada = 0.
(9.21)

Equation (9.21) is an equation in ξ. There exists a solution of the form
y(t, a) = u(a)eξ(t−a) of the linearization (9.15) and (9.16) if and only if there
exists a solution ξ to equation (9.21). Equation (9.21) is called the charac-
teristic equation of system (9.4) as in [9–11].
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9.3 Age-Structured Integral Equations Models

Integral equations have also been used for modeling of age-structured popu-
lations. These integral equations can be derived from system (9.4), or more
specifically from (9.10).

Write Π(a, P ) = e−
∫ a
0 µ(τ,P (t−a+τ))dτ . Then it follows from (9.10) that

B(t) =
∫ t

0
β(a, P )ρ(t, a)da +

∫∞
t

β(a, P )ρ(t, a)da

=
∫ t

0
β(a, P )Π(a, P )B(t − a)da +

∫∞
t

β(a, P )
Π(a, P )

Π(a − t, P )
φ(a − t)da,

(9.22)
and

P (t) =
∫ t

0
ρ(t, a)da +

∫∞
t

ρ(t, a)da

=
∫ t

0
Π(a, P )B(t − a)da +

∫∞
t

Π(a, P )
Π(a − t, P )

φ(a − t)da.
(9.23)

The coupled equations (9.22) and (9.23) are a system of nonlinear integral
equations. In general, it cannot be solved analytically. We consider two special
cases as follows.

If the birth rate is age-independent and density-dependent, that is, if β =
β(P ), then the equation for the total number of newborns becomes

B(t) =
∫ ∞

0

β(P (t))ρ(t, a)da = P (t)β(P (t)). (9.24)

Substituting (9.24) into (9.23), we have

P (t) =
∫ ∞

t

Π(a, P (t))
Π(a − t, P (t))

φ(a− t)da +
∫ t

0

Π(a, P (t))P (t− a)β(P (t− a))da.

(9.25)
Equation (9.25) is a delayed integral equation.

If the death rate is age-independent and density-dependent, that is, if
µ = µ(P ), then integration of the partial differential equation in (9.4) yields
the nonlinear ordinary differential equation

P ′(t) + P (t)µ(P (t)) = B(t), (9.26)

where ′ denotes d/dt, which is coupled with the following integral equation
for B derived from (9.22):

B(t) =
∫ ∞

t

β(a, P )
Π(a, P )

Π(a − t, P )
φ(a − t)da +

∫ t

0

β(a, P )Π(a, P )B(t − a)da.

(9.27)
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Under further assumptions, systems (9.24) and (9.25), or (9.26) and (9.27)
may become analytically solvable. For example, if β and µ are both functions
of total population size only, then P (t) is obtained by solving the ordinary
differential equation (9.26) with B(t) given by (9.24).

Whereas system (9.22) and (9.23) cannot in general be solved analytically,
the equilibrium age distributions provide useful information for the popula-
tion dynamics.

At an equilibrium age distribution, ρ∗(a), we write

P ∗ =
∫ ∞

0

ρ∗(a)da, B∗ =
∫ ∞

0

β(a, P ∗)ρ∗(a)da, (9.28)

which are constant. It follows from (9.11) that

ρ∗(a) = ρ∗(0)e−
∫ a
0 µ(a,P∗)da = B∗Π(a, P ∗). (9.29)

Substituting (9.29) into B∗ in (9.28), we can solve for B∗ to get

B∗ =
∫ ∞

0

β(a, P ∗)ρ∗(a)da = B∗
∫ ∞

0

β(a, P ∗)Π(a, P ∗)da. (9.30)

Then there exists a positive solution B∗ to equation (9.30) if and only if there
exists positive P ∗ such that

∫ ∞

0

β(a, P ∗)Π(a, P ∗)da = 1. (9.31)

Define R(P ) =
∫∞
0

β(a, P )Π(a, P )da, which is called the reproduction num-
ber and is an expected number of newborns that an individual produces
over its lifetime when the total population size is P . At an equilibrium age
distribution P ∗, the reproduction number is equal to one.

Substituting (9.29) into P ∗ in (9.28), we have

P ∗ = B∗
∫ ∞

0

Π(a, P ∗)da.

Notice that
∫∞
0

Π(a, P ∗)da is the average life expectancy of individuals, when
the population is at the equilibrium P ∗. Then the total population size P ∗

equals the total number of surviving newborns at the equilibrium.

9.3.1 The Renewal Equation

We consider a special case where the birth and death rates are density-
independent such that β = β(a) and µ = µ(a). In this case
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Π(a, P ) = e−
∫ a
0 µ(σ)dσ

is a function of a only. Then equation (9.22) becomes the linear integral
equation

B(t) = F (t) +
∫ t

0

L(t − a)B(a)da, (9.32)

where

F (t) =
∫ ∞

t

β(a)
Π(a)

Π(a − t)
φ(a − t)da, L(t) = β(t)Π(t).

Equation (9.32) is a linear Volterra integral equation of the second kind. It
is called the renewal equation or Lotka equation for the population [4, 26].

Because of the linearity of equation (9.32), we can use Laplace transfor-
mation techniques to investigate the properties of the dynamics of the pop-
ulation. Let B̂(s), F̂ (s), and L̂(s) be the Laplace transforms of B(t), F (t),
and L(t), respectively. Notice that the integral in (9.32) is the convolution of
K and B. Then taking the Laplace transform of each term in (9.22), we have

B̂(s) = F̂ (s) + L̂(s)B̂(s).

Solving for B̂(s), we obtain

B̂(s) =
F̂ (s)

1 − L̂(s)
= F̂ (s) +

F̂ (s)L̂(s)

1 − L̂(s)
. (9.33)

Since F̂ (s) and L̂(s) are analytic functions, the properties of B̂(s) are
determined by the property of 1 − L̂(s).

It follows from
L̂(s) =

∫ ∞

0

β(a)Π(a)e−sada

that
L̂(0) =

∫ ∞

0

β(a)Π(a)da = R(0),

dL̂(s)
ds

= −
∫ ∞

0

aβ(a)Π(a)da < 0,

and
lim

s→−∞
L̂(s) = +∞, lim

s→+∞
L̂(s) = 0.

Hence there exists a unique s0 ∈ IR such that L̂(s0) = 1. Whether s0 is
positive, zero, or negative, depends on whether R(0) is greater than, equal
to, or less than one.

Moreover, it is easy to check that if there exits a complex number s = α+iγ
such that L̂(s) = 1, then it follows from the real part of L̂(s) = 1,
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∫ ∞

0

β(a)Π(a)e−αa cos γada = 1 =
∫ ∞

0

β(a)Π(a)e−s0ada,

that α ≤ s0.
Hence s0 is a dominant root of L̂(s) = 1. With this dominant root, s0, it

can be shown that

B(t) = b0e
s0t (1 + Ω1(t)) , P (t) = p0e

s0t (1 + Ω2(t)) ,

where b0 ≥ 0 and p0 ≥ 0 are real numbers, and lim
t→∞

Ωk(t) = 0, k = 1, 2. (See,

e.g., [26, Sect. I, 5].)
Therefore, the location of s0 determines the asymptotic behavior of the

population. Equation K̂(s) = 1 is called the Lotka characteristic equation for
the renewal equation (9.32).

Now that we have an understanding of age-structured population models,
we can begin to study age-structured disease transmission models.

9.4 Age-Structured Epidemic Models

Suppose that we have an age-structured population described by (9.4) in
which there is an infectious disease of SIR type. We introduce functions
S(t, a), I(t, a), R(t, a) representing the age distribution at time t of suscepti-
ble, infective, and removed members, respectively, so that

S(t, a) + I(t, a) + R(t, a) = ρ(t, a).

As we have seen, the rate of change in time of a function X(t, a) of time and
age is

Xt(t, a) + Xa(t, a).

Thus we may write a system of equations

St(t, a) + Sa(t, a) = − (µ(a) + λ(t, a)) S(t, a),
It(t, a) + Ia(t, a) = λ(t, a)S(t, a) − (µ(a) + γ(a) + δ(a)) I(t, a),

Rt(t, a) + Ra(t, a) = − µ(a)R(t, a) + γ(a)I(t, a),

to describe the transmission dynamics of the disease in the age-structured
population. Here µ(a) is the natural death rate in each class, γ(a) is the re-
covery rate, δ(a) is the disease death rate, and λ(t, a) represents the infection
rate. To this system of partial differential equations we must add the initial
conditions

S(0, a) = Φ(a), I(0, a) = Ψ(a), R(0, a) = 0, (9.34)
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where Φ and Ψ are the initial distributions of susceptibles and infectives,
respectively. In addition there is the birth or renewal condition (assuming
that the age-dependent birth rate does not depend on disease status and
that all newborns are in the susceptible class).

S(t, 0) =
∫ ∞

0

β(a)ρ(t, a)da. (9.35)

Further analysis requires some assumption on the nature of the infection
term λ(t, a). One possibility is intracohort mixing,

λ(t, a) = f(a)I(t, a),

corresponding to the assumption that infection can be transmitted only be-
tween individuals of the same age. Another possibility is intercohort mixing,

λ(t, a) =
∫ ∞

0

b(a, α)I(t, α)dα,

with b(a, α) giving the rate of infection from contacts between an infective
of age α with a susceptible of age a. For intercohort mixing it is necessary
to make further assumptions on the mixing, that is, on the nature of the
function b(a, α). One possibility here would be separable pair formation,

b(a, α) = b1(a)b2(α).

Rather than pursuing the general analysis further here, we refer the reader
to more advanced references such as [26], and turn to an example that will
illustrate the main ideas.

9.5 A Simple Age-Structured AIDS Model

Consider a simple age-structured epidemic model in which HIV/AIDS is
spread in a homosexual population of ages in [a0,∞], where a0 is the minimal
sexually active age. We divide the population into the groups of susceptible
individuals, infective individuals, and AIDS cases, denoted by S, I, and A,
respectively.

Assume that there is an input flow, Λ(a) for all ages a, entering only
the susceptible group. For this simple model, we further assume that the
number of susceptible individuals of age a0 is a constant B, and that no
individuals with age a0 are infected yet. Let µ(a) be the natural death rate
of all individuals in the population, γ(a) the HIV developing rate for infective
individuals, and δ(a) the AIDS induced death rate of AIDS cases. Then the
transmission dynamics of the disease are governed by the following system of
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equations [24]:

St(t, a) + Sa(t, a) = Λ(a) − (µ(a) + λ(t, a)) S(t, a), (9.36a)
S(t, a0) = B, (9.36b)
S(0, a) = Φ(a), (9.36c)

It(t, a) + Ia(t, a) = − (µ(a) + γ(a)) I(t, a) + λ(t, a)S(t, a), (9.36d)
I(t, a0) = 0, (9.36e)
I(0, a) = Ψ(a), (9.36f)

At(t, a) + Aa(t, a) = − δ(a)A(t, a) + γ(a)I(t, a), (9.36g)
A(t, a0) = 0, (9.36h)
A(0, a) = 0, (9.36i)

where Φ and Ψ are the initial distributions of susceptibles and infectives,
respectively.

The infection rate, λ, is determined by

λ(t, a) = r(a)
∫ ∞

a0

β(a, a′)ρ(t, a, a′)
I(t, a′)
T (t, a′)

da′, (9.37)

where T (t, a) = S(t, a) + I(t, a) is the total number of sexually active in-
dividuals, r(a) the number of partners that an individual of age a has per
unit time, β(a, a′) the transmission probability of a susceptible individual
of age a infected by an infected partner of age a′, and ρ(a, a′, t) the rate of
pair-formation between individuals of ages a and a′.

The transmission probability can be further described by

β(a, a′) = f(a)g(a′),

where f(a) is the susceptibility of individuals of age a, and g(a′) is the infec-
tiousness of individuals of age a′. Then

λ(t, a) = r(a)f(a)
∫ ∞

a0

g(a′)ρ(t, a, a′)
I(t, a′)
T (t, a′)

da′. (9.38)

9.5.1 The Reproduction Number

One of the fundamental questions of mathematical epidemiology is to find
the reproduction number, which determines whether an infectious disease
spreads in a susceptible population when the disease is introduced into the
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population [1,13–15,19,21,23,37,41]. A possible formula for the reproduction
number can be derived by determination of the condition for local stability
of the infection-free equilibrium [4,25,28].

Model (9.36) has an infection-free equilibrium, (S, I,A) = (S0(a), 0, 0),
where

S0(a) = Be−M(a) + e−M(a)

∫ a

a0

eM(x)Λ(x)dx

with M(a) =
∫ a

a0
µ(s)ds.

We assume a separable pair-formation such that

ρ(t, a, a′) = p1(a)p2(a′).

Then we perturb the infection-free equilibrium by letting u(t, a) = S(t, a) −
S0(a). Substitution into (9.37) leads to

λ(t, a) = r(a)f(a)p1(a)
∫∞

a0
g(a′)p2(a′)

I(t, a′)
T (t, a′)

da′

≈ r(a)f(a)p1(a)
∫∞

a0

g(a′)p2(a′)
S0(a′)

I(t, a′)da′ := λ̃(t, a).

Then linearizing system (9.36) yields the linear system:

ut + ua = −µ(a)u − λ̃(t, a)S0(a),
It + Ia = − (µ(a) + γ(a)) I + λ̃(t, a)S0(a),

At + Aa = −δ(a)A + γ(a)I.

(9.39)

Assume
u(t, a) = ũ(a)ec(t−a), I(t, a) = Ĩ(a)ec(t−a).

Then ũ(a) and Ĩ(a) satisfy the following system of ordinary differential equa-
tions:

dũ(a)
da

= − µ(a)ũ(a) − b(a)ecaW, (9.40)

dĨ(a)
da

= − (µ(a) + γ(a)) Ĩ(a) + b(a)ecaW, (9.41)

where b(a) = S0(a)r(a)f(a)p1(a), and

W =
∫ ∞

a0

g(a′)p2(a′)
S0(a′)

e−ca′
Ĩ(a′)da′. (9.42)

Solving (9.41), we have

Ĩ(a) = We−M(a)−Γ (a)

∫ a

a0

eM(s)+Γ (s)b(s)ecsds, (9.43)
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with Γ (a) =
∫ a

a0
γ(v)dv. Substituting (9.43) into (9.42), we obtain

W = W

∫ ∞

a0

g(a′)p2(a′)
S0(a′)

e−M(a′)−Γ (a′)

∫ a′

a0

eM(s)+Γ (s)b(s)e−c(a′−s)dsda′.

(9.44)
Define

H(c) =
∫ ∞

a0

g(a′)p2(a′)
S0(a′)

e−M(a′)−Γ (a′)

∫ a′

a0

eM(s)+Γ (s)b(s)e−c(a′−s)dsda′.

(9.45)
Then there exists a nonzero solution W to equation (9.44) if and only if there
exists a real or complex number c such that

H(c) = 1. (9.46)

For all real numbers c, we have limc→∞ H(c) = 0. Then it follows from

dH(c)
dc = −

∫∞
a0

g(a′)p2(a′)
S0(a′)

e−M(a′)−Γ (a′)

·
∫ a′

a0
(a′ − s)eM(s)+Γ (s)b(s)e−c(a′−s)dsda′ < 0,

that H(c) is a decreasing function. Hence, if c is a real solution of equation
(9.46), then c > 0, provided H(0) > 1, and c < 0, provided H(0) < 1.

Suppose c = α + iγ is a complex solution of equation (9.46). Then substi-
tuting it into (9.46) and separating the real and imaginary parts yields

1 = ReH(c) =
∫∞

a0

g(a′)p2(a′)
S0(a′)

e−M(a′)−Γ (a′)

·
∫ a′

a0
eM(s)+Γ (s)b(s)e−α(a′−s) cos γ(a′ − s)dsda′ ≤ H(α).

If H(0) < 1, then α < 0. Hence H(0) = 1 is a threshold for the stability
of the infection-free equilibrium. Define R0 = H(0). Then R0 is the repro-
duction number of infection for system (9.36). Equation (9.46) is called the
characteristic equation.

9.5.2 Pair-Formation in Age-Structured Epidemic
Models

Sexually transmitted diseases (STDs) spread through sexual activities be-
tween partners. The pair-formation, or mixing, is one of the key terms in
modeling of STDs [18, 23]. In Sect. 9.5.1, we assume the function describing
pair-formation in model (9.36) to be separable, which makes the mathematical
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analysis more tractable. However, it has been shown that the assumption of
a separable pair-formation function is equivalent to assuming a total propor-
tionate or random partnership formation [2, 3, 5–7]. We briefly explain it as
follows.

Let ρ(t, a, a′) be the pair-formation or mixing, which is the proportion of
partners with age a′ that an individual of age a has at time t. Let r(t, a) be
the average number of partners that an individual of age a has per unit of
time, and let T (t, a) be the total number of individuals of age a at time t.
Then the function ρ(t, a, a′) has the properties

1. 0 ≤ ρ(t, a, a′) ≤ 1,
2.
∫∞
0

ρ(t, a, a′)da′ = 1,
3. ρ(t, a, a′)r(t, a)T (t, a) = ρ(t, a′, a)r(t, a′)T (t, a′),
4. r(t, a)T (t, a)r(t, a′)T (t, a′) = 0 =⇒ ρ(t, a, a′) = 0.

Properties (1) and (2) follow from the fact that ρ(t, a, a′) is a proportion so
that it is always between zero and one, and its total sum equals one. Property
(3) comes from the fact that the total number of pairs of individuals of age
a with individuals of age a′ needs to be equal to the total number of pairs of
individuals of age a′ with individuals of age a. Moreover, if there are no active
individuals, then there is no pair-formation, which leads to property (4).

9.5.2.1 Total Proportionate Mixing

Suppose that the pair-formation is a separable function such that

ρ(t, a, a′) = ρ1(t, a)ρ2(t, a′). (9.47)

It follows from property 2) that
∫ ∞

0

ρ(t, a, a′)da′ =
∫ ∞

0

ρ1(t, a)ρ2(t, a′)da′ = ρ1(t, a)
∫ ∞

0

ρ2(t, a′)da′ = 1,

for all t. Hence
ρ1(t, a) =

1
∫∞
0

ρ2(t, a′)da′

is independent of a. Denote it by L(t). Then

ρ(t, a, a′) = L(t)ρ2(t, a′). (9.48)

It follows from property 3) and (9.48) that

L(t)ρ2(t, a′)r(t, a)T (t, a) = ρ(t, a′, a)r(t, a′)T (t, a′). (9.49)

Integrating (9.49) with respect to a from 0 to ∞ yields
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L(t)ρ2(t, a′)
∫ ∞

0

r(t, a)T (t, a)da = r(t, a′)T (t, a′). (9.50)

Hence

L(t)ρ2(t, a′) =
r(t, a′)T (t, a′)

∫∞
0

r(t, a)T (t, a)da
, (9.51)

which implies that ρ(t, a, a′) satisfies

ρ(t, a, a′) =
r(t, a′)T (t, a′)

∫∞
0

r(t, a)T (t, a)da
. (9.52)

Notice that the right-hand side in (9.52) is the fraction of the total partners
of age a′ in the population, or the availability of partners of age a′. A pair-
formation or mixing function satisfying (9.49) is called a total proportionate
mixing. Such a mixing depends completely on the availability of partners
and is a kind of random mixing. While it may be appropriate to assume a
proportionate mixing or random mixing in special cases such as modeling
of HIV/AIDS for homosexual men, in general, it is necessary to assume the
pair-formation or mixing function to be non-separable.

9.5.3 The Semigroup Method

As we have suggested in Sect. 9.5.2.1, in general the mixing function should
be assumed non-separable. The mathematical analysis then becomes more
difficult. A possible way to investigate dynamical behavior of models with
non-separable mixing is to utilize the semigroup method. We outline the
method for a simplified age-structured HIV/AIDS model with non-separable
mixing as follows.

Consider ages in a finite interval [0, ω], where ω is the maximal sexually
active age and assume the infection rate has the form

λ(t, a) = h(a)
∫ ω

0

ρ(a, a′)
I(t, a′)
T (t, a′)

da′.

Let x = S/T and y = I/T . Then the dynamics of the age-structured epidemic
model can be determined by the equation

yt(t, a) + ya(t, a) = (−γ(a)y + λ(t, a)) (9.53)

with infection rate

λ(t, a) = h(a)
∫ ω

0

ρ(a, a′)y(t, a′)da′. (9.54)
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Linearizing equation (9.53) with (9.54), we have

yt + ya = −γ(a)y + h(a)
∫ ω

0

ρ(a, a′)y(t, a′)da′. (9.55)

Define linear operators B and P by

(Bf)(a) = −df(a)
da

− γ(a)f(a),

(Pf)(a) = h(a)
∫ ω

0
ρ(a, a′)f(a′)da′.

Then equation (9.55) can be written as

dy

dt
= (B + P) y. (9.56)

The operator B + P generates a C0 semigroup T (t), for t ≥ 0, and the
semigroup T (t) is eventually uniformly continuous. The growth bound of
T (t) is the spectral bound of B + P. It can be shown [27, 29, 33] that the
resolvent of B + P, denoted by R(λ;B + P), is equal to (Sλ − I)−1G where

(Gf)(a) =
∫ a

0

e−λ(a−σ)Γ (a)Γ−1(σ)f(σ)dσ,

(Sλf)(a) =
∫ ω

0

∫ a

0

e−λ(a−σ)Γ (a)Γ−1(σ)h(σ)p(σ, ξ)dσf(ξ)dξ.

Here we write Γ (a) = e−
∫ a
0 γ(s)ds. Therefore, we can define the reproduction

number of the epidemic, R0, as the spectral radius of the operator

(Sf)(a) =
∫ ω

0

∫ a

0

Γ (a)Γ−1(σ)h(σ)p(σ, ξ)dσf(ξ)dξ.

Consider a special case where the pair-formation is a finite sum of separable
functions given by

ρ(a, a′) =
n∑

j=1

pj(a)qj(a′).

Then the reproduction number, R0, is the largest positive eigenvalue λ1 of
the nonnegative matrix

K̂ =

⎛

⎜
⎝

∫ ω

0
q1(a)H1(a)da · · ·

∫ ω

0
q1(a)Hn(a)da

...∫ ω

0
qn(a)H1(a)da · · ·

∫ ω

0
qn(a)Hn(a)da

⎞

⎟
⎠ ,

where
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Hj(a) = Γ (a)

a∫

0

h(σ)Γ−1(σ)pi(σ)dσ.

In particular, for n = 2, we have the explicit expression

R0 =
1
2
∫ ω

0
(q1H1 + q2H2) da

+
1
2

√(∫ ω

0
(q1H1 − q2H2) da

)2
+ 4
∫ ω

0
q1H2da

∫ ω

0
q2H1da

for the reproduction number of infection [33].

9.6 Modeling with Discrete Age Groups

Under certain conditions, the age-structured partial differential equation
model (9.4) can be reduced to a system of ordinary differential equations
[22,32,40].

Partition the age interval into a finite number n of subintervals [a0, a1),
[a1, a2), · · · , [an−1, an), where a0 = 0 and an ≤ ∞. Denote the number of indi-
viduals with ages in interval [ai−1, ai] by Hi(t), so that Hi(t) =

∫ ai

ai−1
ρ(t, a)da,

i = 1, · · · , n. Then integrating the partial differential equation in (9.3) from
a0 to a1, we have

dH1(t)
dt

+ ρ(t, a1) − ρ(t, a0) +
∫ a1

a0

µ(a, P )ρ(t, a)da = 0. (9.57)

Assume that individuals with ages in each interval have the same vital
rates such that β(a, P ) = βi, µ(a, P ) = µi, for a in [ai−1, ai], i = 1, · · · , n.
Here βi and µi are age-independent, but may be density-dependent. Then,
in the age interval [0, a1], we have

ρ(t, 0) =
n∑

1

βi Hi(t),
∫ a1

a0

µ ρ(t, a)da = µ1 H1(t),

which leads to
dH1

dt
=

n∑

1

βi Hi − (m1 + µ1)H1. (9.58)

Here m1 is the progression rate from groups 1 to 2, defined by m1 =
ρ(t, a1)/H1(t), and we assume it is time-independent.

Integrating (9.3) from ai−1 to ai for 2 ≤ i ≤ ∞, we have

dHi

dt
= mi−1 Hi−1 − (mi + µi) Hi, i = 2, · · · , n, (9.59)
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where mi is the age progression rate from groups i to i+1, and we let mn = 0.
Then the system in (9.4) is reduced into a system of n ordinary differential
equations.

9.6.1 Examples

We provide two simple examples to demonstrate how the discrete age group
model described by equations (9.58) and (9.59) can be applied to populations
and infectious diseases.

9.6.1.1 A Two-Age-Group Population Model

There are many means by which individuals of a species might compete for
resources and by which intra-specific competition might express itself. Or-
ganisms which do not undergo such radical changes during their life cycles
(e.g., birds, mammals, most reptiles, fishes, and hemimetabolous insects such
as aphids, true bugs and grasshoppers) can experience considerable com-
petition between juveniles and adults for common resources. Intra-specific
competition can also occur to organisms with simple life cycles. The well
studied flour beetles of genus Tribolium whose adult and larval stages utilize
food resources in common provide a case in point [8].

Let J(t) and A(t) denote the densities of juveniles and adults at time t,
respectively. Using the model in (9.58) and (9.59), with n = 2, we have the
two age-group model

J ′(t) = β(J,A)A − (m(J,A) + µ1(J,A)) J,
A′(t) = m(J,A)J − µ2(J,A)A,

(9.60)

where ′ denotes d/dt, β is the birth rate of adults, µi, i = 1, 2, are death rates
for juveniles and adults, respectively, and m is the age progression rate.

Models similar to (9.60) have been studied intensively. Readers are referred
to [12,16,20,30,31,35,38,39].

9.6.1.2 A Multi-Age-Group Malaria Model

Malaria is by far the world’s most important tropical parasitic disease, which
kills more people than any other communicable disease with the exception
of tuberculosis. Approximately 10.5% (1,098,000) of deaths in children in
developing countries in 2002 were due to malaria. Generally children have
weaker immune systems, having not been as exposed to as much illness as
adults.
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It is known that there is acquired immunity in humans, even though the
mechanisms of immunity to malaria are not fully understood. The acquired
immunity appears to depend on both the duration and the intensity of past
exposure to infection. Recovery from a primary infection with malaria does
not imply fully protective immunity against reinfection. Immunity against
malaria evidently influences the production of gametocytes. Frequency and
intensity of gametocytemia decrease with increasing age until they reach a
minimum among adults [43].

Therefore, in modeling of malaria transmission, age-structured models are
more appropriate, and this can provide insight into the spread of malaria
among different age groups, and can help identify efficient disease control
strategies, for example, by targeting certain age-groups for vaccination.

Consider a human population in which malaria spreads. Divide the human
population into four classes: susceptibles, exposeds who are the individuals
infected but not yet transmitting the disease, infectives, and recovereds who
are recovered and also immune from re-infection. Denote them as S(a, t),
E(a, t), I(a, t), and R(a, t), respectively. We further divide the human pop-
ulation into n age groups such that Si, Ei, Ii, and Ri, i = 1, . . . , n, are the
susceptible, exposed, infective, and recovered individuals in age group i. Then
the malaria transmission dynamics in the human population are governed by
the system of ordinary differential equations

S′
1(t) = B(t) − (µ1 + η1)S1 − λ1(t)S1,

S′
j(t) = ηj−1Sj−1 − λj(t)Sj − (µj + ηj)Sj , j = 2, . . . , n,

E′
1(t) = λ1(t)S1 − (µ1 + ε1 + η1)E1,

E′
j(t) = λj(t)Sj + ηj−1Ej−1 − (µj + εj + ηj)Ej j = 2, . . . , n,

I ′1(t) = ε1E1 − (µ1 + γ1 + ω1 + η1)I1,

I ′j(t) = εjEj + ηj−1Ij−1 − (µj + γj + ωj + ηj)Ij j = 2, . . . , n,

R′
1(t) = γ1I1 − (µ1 + η1)R1,

R′
j(t) = ηj−1Rj−1 + γjIj − (µj + ηj)Rj j = 2, . . . , n,

(9.61)

where B(t) is a input flow into the susceptible class, µi the age specific nat-
ural death rates, ωi the age specific disease induced death rates, ηi the age
progression rate, εi the age specific disease progression rates, and γi the age
specific recovery rates.

The infection rates λj(t) for humans are related to the vector (mosquito)
population and are given by

λj(t) =
bNv(t)
N(t)

βj
Iv(t)
Nv(t)

=
bβjIv(t)

N(t)
, j = 1, . . . , n, (9.62)

where b is the number of bites on humans taken per mosquito in unit time, Nv

the total mosquito population, N =
∑n

j=1(Sj +Ej +Ij +Rj) the total human
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population, Iv the number of infective mosquitoes, and βj the probability of
infection for humans in group j.

Due to the short life span of the mosquito populations, age structure is not
incorporated into the mosquitoes. It is also assumed that all mosquitoes will
die before recovering from infection. Then Nv = Sv + Ev + Iv, where Sv and
Ev are the numbers of susceptible and exposed mosquitoes. The dynamics of
the mosquito population are described by the equations

S′
v(t) = Mv − λvSv − µvSv,

E′
v(t) = λv(Nv − Ev − Iv) − (µv + εv),

I ′v(t) = εvEv − µvIv,

(9.63)

where Mv is an input flow of susceptible mosquitoes, µv is the natural death
rate of mosquitoes, εv is the disease progression rate for exposed mosquitoes,
and λv is the infection rate for mosquitoes given by

λv(t) = b

n∑

j=1

(
βvj

Ij(t)
N(t)

)

. (9.64)

Here βvj
are the infection rate of mosquitoes by infected humans in group j.

System (9.61) is strongly coupled, which increases the difficulty of math-
ematical analysis. Readers are referred to [36] for preliminary studies.
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