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Chapter 1

Single species unstructured
models

1.1 Models leading to single difference equations

1.1.1 Background

Many plants and animals breed only during a short, well-defined, breeding
season.

(i) Monocarpic plants – flower once and the die. May be annual plants.
Bamboos grow vegetatively for 20 years and then flower and die.

(ii) Semelparity.

Insects: die after lying eggs. Day-flies, cicads have 13 or 17 years
cycles.

Fish: pacific salmon, European eel (lives 10-15 years in freshwater
European lakes, migrates to Sargasso Sea, spawns and dies).

Birds: Greater Snow Geese, egg-lying between 8-20 June (peaks
12-17 June), practically all hatchings occur between 8-13 July.

Mammals: some marsupials ovulate once per year and produce a
single litter. There occurs abrupt and total mortality of males after
mating. Births are synchronised to within a day or two in population
- related to the environment with predictable ’bloom’ of insects in a
given season of the year.

We have

• Cicads – non-overlapping generations – single difference equation
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Models leading to single difference equations Chapter 1

• Snow Geese - overlapping generations – age structured model to be
discussed later.

1.1.2 Insects and other species

We focus on insect-type populations. Insects often have well-defined annual
non-overlapping generations - adults lay eggs in spring/summer and then
die. The eggs hatch into larvae which eat and grow and then overwinter in
a pupal stage. The adults emerge from the pupae in spring. We take the
census of adults in the breeding seasons. It is then natural to describe the
population as the sequence of numbers

N0, N1, . . . , Nk

where Nk is the number of adults in the k-th breeding season.

The simplest assumption to make is that there is a functional dependence
between subsequent generations

Nn+1 = f(Nn), n = 0, 1, . . . (1.1.1)

Let us introduce the number R0, which is the average number of eggs laid
by an adult. R0 is called the basic reproductive ratio or intrinsic growth rate.
The simplest functional dependence in (1.1.1) is

Nn+1 = R0Nn, n = 0, 1, . . . (1.1.2)

which describes the situation that the size of the population is determined
only by its fertility.

Remark 1.1.1. The exponential (or Malthusian) equation (1.1.2) has a much
larger range of applications. Even in the population theory, the generations
can overlap. Looking at large populations in which individuals give birth to
new offspring but also die after some time, we can treat population as a whole
and assume that the population growth is governed by the average behaviour
of its individual members. Thus, we make the following assumptions:

• Each member of the population produces in average the same number
of offspring.

• Each member has an equal chance of dying (or surviving) before the
next breeding season.

• The ratio of females to males remains the same in each breeding season

We also assume
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Chapter 1 Models leading to single difference equations

• Age differences between members of the population can be ignored.

• The population is isolated - there is no immigration or emigration.

Suppose that on average each member of the population gives birth to the
same number of offspring, β, each season. The constant β is called per-
capita birth rate. We also define μ as the probability that an individual will
die before the next breeding season and call it the per-capita death rate.
Thus

(a) the number of individuals born in a particular breeding season is directly
proportional to the population at the start of the breeding season, and

(b) the number of individuals who have died during the interval between
the end of consecutive breeding seasons is directly proportional to the
population at the start of the breeding season.

Denoting by Nk the number of individuals of the population at the start of
the kth breeding season, we obtain

Nk+1 = Nk − μNk + βNk,

that is
Nk+1 = (1 + β − μ)Nk. (1.1.3)

This equation reduces to (1.1.2) by putting μ = 1 (so that the whole adult
population dies) and β = R0.

Equation (1.1.2) is easily solvable yielding

Nk = Rk
0N0, k = 0, 1, 2 . . . (1.1.4)

We see that the behaviour of the model depends on R0 If R0 < 1, then
the population decreases towards extinction, but with R0 > 1 it grows in-
definitely. Such a behaviour over long periods of time is not observed in
any population so that we see that the model is over-simplified and requires
corrections.

In a real populations, some of the R0 offspring produced by each adult will
not survive to be counted as adults in the next census. If we denote by
S(N) the survival rate; that is, fraction that survives, then the Malthusian
equation is replaced by

Nk+1 = R0S(Nk)Nk, k = 0, 1, . . . (1.1.5)

which may be alternatively written as

Nk+1 = F (Nk)Nk = f(Nk), k = 0, 1, . . . (1.1.6)
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where F (N) is per capita production of a population of size N . Such models,
with density dependent growth rate, lead to nonlinear equations. However,
before introducing basic examples, we discuss typical types of behavior in
such populations.

The survival rate S reflects the intraspecific (within-species) competition for
some resource (typically, food or space) which is in short supply. The three
main (idealized) forms of intraspecific competition

• No competition: then S(N) = 1 for all N .

• Contest competition: here there is a finite number of units of resource.
Each individual which obtains one of these units survives to breed,
and produces R0 offspring in the subsequent generations; all others
die without producing offspring. Thus S(N) = 1 for N ≤ Nc and
S(N) = Nc/N for N > Nc for some critical value Nc.

• Scramble competition: here each individual is assumed to get equal
share of a limited resource. If this amount is sufficient for survival
to breeding, then all survive and produce R0 offspring in the next
generation; if not, all die. Thus, S(N) = 1 for N ≤ Nc and S(N) = 0
if N > Nc for a critical value Nc (different from the above).

These ideal situations do not occur in real populations: real data are not
easily classified in terms of contest or scramble competition. Threshold
density is not usually seen, zero survival is unrealistic, at least for large
populations. Classification is done on the basis of asymptotic behaviour of
S(N) or f(N) as N → ∞.

1. Contest competition corresponds to exact compensation:

lim
N→∞

f(N) = c (1.1.7)

for some constant c (or S(N) ∼ cN−1 for large N). This describes the
situation if the increased mortality compensates exactly any increase
in numbers.

2. The other case is when

S(N) ∼ c/N b, N → ∞. (1.1.8)

Here we have

Under-compensation if 0 < b < 1 when the increased mortality
less than compensates for the increase for increase in numbers;

Over-compensation if b > 1.
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In general, if b ≈ 1, then we say that there is contest, and scramble if b
is large. Indeed, in the first case, f(N) eventually levels-out at a nonzero
level for large populations which indicates that the population stabilizes by
rejecting too many newborns. On the other hand, for b > 1 f(N) tends to
zero for large populations which indicates that the resources are over-utilized
leading to eventual extinction.

We introduce most typical nonlinear models.

Beverton-Holt type models.
Let us look at the model (1.1.6)

Nk+1 = F (Nk)Nk, k = 0, 1, . . . ,

where F (Nk) = R0S(Nk). To exhibit compensatory behaviour, we should
have NS(N) ≈ const. Also, for small N , S(N) should be approximately
1 as we expect very small intra-species competition and thus the growth
should be exponential with the growth rate R0. A simple function of this
form is

S(N) =
1

1 + aN

leading to

Nk+1 =
R0Nk

1 + aNk
.

If we introduce the concept of carrying capacity of the environment K and
assume that the population having reached K, will stay there; that is, if
Nk = K for some k, then Nk+m = K for all m ≥ 0, then

K(1 + aK) = R0K

leading to a = (R0−1)/K and the resulting model, called the Beverton-Holt
model, takes the form

Nk+1 =
R0Nk

1 + R0−1
K Nk

. (1.1.9)

As we said earlier, this model is compensatory.

A generalization of this model is called the Hassell or again Beverton-Holt
model, and reads

Nk+1 =
R0Nk

(1 + aNk)b
. (1.1.10)

It exhibits all types of compensatory behaviour, depending on b. For b > 1
the models describes scramble competition, while for b = 1 we have contest.

Substitution xk = aNk reduces the number of parameters giving

xk+1 =
R0xk

(1 + xk)b
(1.1.11)
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which will be analysed later.

The logistic equation.
The Beverton-Holt models are best applied to semelparous insect popula-
tions but was also used in the context of fisheries. For populations surviving
to the next cycle it it more informative to write the difference equation in
the form

Nk+1 = Nk +R(Nk)Nk, (1.1.12)

so that the increase in the population is given by R(N) = R0S(N)N . Here
we assume that no adults die (death can be incorporated by introducing
factor d < 1 in from of the first Nk.

As before, the function R can have different forms but must satisfy the
requirements:

(a) Due to overcrowding, R(N) must decrease as N increases until N equals
the carrying capacity K; then R(K) = 0 so that, as above, N = K
stops changing.

(b) Since for N much smaller than K there is small intra-species compe-
tition, we should observe an exponential growth of the population so
that R(N) ≈ R0 as N → 0; here R0 is called the unrestricted growth
rate of the population.

Constants R0 and K are usually determined experimentally.

In the spirit of mathematical modelling we start with the simplest function
satisfying these requirements. The simplest function is a linear function
which, to satisfy (a) and (b), must be chosen as

R(N) = −R0

K
N +R0.

Substituting this formula into (1.1.12) yields the so-called discrete logistic
equation

Nk+1 = Nk +R0Nk

(
1 − Nk

K

)
, (1.1.13)

which is still one of the most often used discrete equations of population
dynamics.

While the above arguments may seem to be of bunny-out-of-the-hat type it
could be justified by generalizing (1.1.3). Indeed, assume that the mortality
β is not constant but equals

β = μ0 + μ1N
θ,
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where μ0 corresponds to death of natural caused and μ1 could be attributed
to cannibalism where one adult eats/kills on average μ1 portion of the pop-
ulation. Then (1.1.3) can be written as

Nk+1 = (1 + β − μ0)Nk

(
1 − Nk

1+β−μ0

μ1

)
(1.1.14)

which is (1.1.13) with R0 = β−μ0 and K = 1 + β − μ0/μ1. A generalization
of this equation, called the Bernoulli equation is

Nk+1 = Nk +R0Nk

(
1 −

(
Nk

K

)θ
)
, (1.1.15)

In the context of insect population, where there are no survivors from the
previous generation, the above equation reduces to

Nk+1 = R0Nk

(
1 − Nk

K

)
. (1.1.16)

By substitution

xn =
1

1 +R0

Nk

K
, μ = 1 +R0

we can reduce (1.1.13) to a simpler form

xn+1 = μxn(1 − xn) (1.1.17)

We observe that the logistic equation, especially with S given by (1.1.18) is
an extreme example of the scramble competition.

Ricker equation
The problem with the discrete logistic equation is that large (close to K)
populations can become negative in the next step. Although we could in-
terpret a negative populations as extinct, this may not be the behaviour
that would actually happen. Indeed, the model was constructed so as to
have N = K as a stationary population. Thus, if we happen to hit exactly
K, then the population survives but if we even marginally overshot, the
population becomes extinct.

One way to avoid such problems with negative population is to replace the
density dependent survival rate by

S(Nk) =
(

1 − Nk

K

)
+

. (1.1.18)

to take into account that S cannot be negative. However, this model also
leads to extinction of the population if it exceeds K which is not always
realistic.
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Figure 1.1: The function f(x) = er(1−xn/K)

Another approach is to try to find a model in which large values of Nk

produce very small, but still positive, values of Nk+1. Thus, a population
well over the carrying capacity crashes to very low levels but survives. Let us
find a way in which this can be modelled. Consider the per capita population
change

ΔN
N

= f(N).

First we note that it is impossible for f to be less than −1 - this would mean
that an individual could die more than once. We also need a decreasing f
which is non-zero (= R0) at 0. One such function can be recovered from the
Beverton-Holt model, another simple choice is an exponential shifted down
by 1:

ΔN
N

= ae−bN − 1,

which leads to
Nk+1 = aNke

−bNk .

If, as before, we introduce the carrying capacity K and require it give sta-
tionary population, we obtain

b =
ln a
K

and, letting for simplicity r = ln a, we obtain the so-called Ricker equation

Nk+1 = Nke
r(1−Nk

K
). (1.1.19)

We note that if Nk > K, then Nk+1 < Nk and if Nk < K, then Nk+1 > Nk.
The intrinsic growth rate R0 is given by R0 = er−1 but, using the Maclaurin
formula, for small r we have R0 ≈ r.
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Figure 1.2: The relation xn+1 = xne
r(1−xn/K)

Allee type equations
In all previous models with density dependent growth rates the bigger the
population (or the higher the density), the slower the growth. However,
in 1931 Warder Clyde Allee noticed that in small, or dispersed, populations
the intrinsic growth rate in individual chances of survival decrease which can
lead to extinction of the populations. This could be due to the difficulties
of finding a mating partner or more difficult cooperation in e.g., organizing
defence against predators. Models having this property can also be built
within the considered framework by introducing two thresholds: the carrying
capacity K and a parameter 0 < L < K at which the behaviour of the
population changes so that ΔN/N < 0 for 0 < N < L and N > K and
ΔN/N > 0 for L < N < K. If

ΔN/N = f(N),

then the resulting difference equation is

Nk+1 = Nk +Nkf(Nk)

and the required properties can be obtained by taking f(N) ≤ 0 for 0 <
N < L and N > K and f(N) ≥ 0 for L < N < K. A simple model like
that is offered by choosing f(N) = (L−N)(N −K) so that

Nk+1 = Nk(1 + (L−Nk)(Nk −K). (1.1.20)

Another model of this type, which can be justified by modelling looking of a
mating partner or introducing a generalized predator (that is, preying also
on other species), has the form

Nk+1 = Nk

(
1 + λ

(
1 − Nk

K
− A

1 +BNk

))
(1.1.21)

9



Models leading to single difference equations Chapter 1

0.5 1.0 1.5 2.0 2.5 3.0
x

�0.6

�0.5

�0.4

�0.3

�0.2

�0.1

0.1

�
x

3
�

2

3 x� 1
� 1

Figure 1.3: The function 1 − Nk
K − A

1+BNk

0.5 1.0 1.5 2.0 2.5 3.0
Nk

0.5

1.0

1.5

2.0

2.5

3.0

Nk�1

Figure 1.4: The relation Nk+1 = Nk +Nkf(Nk)

10



Chapter 1Interlude: Continuous in time single species unstructured models I

where λ > 0 and

1 < A <
(BK + 1)2

4KB
, BK > 1. (1.1.22)

However, since x → (x + 1)2/4x is an increasing function for x > 1 and
equals 1 for x = 1, the second condition is redundant.

1.2 Interlude: Continuous in time single species

unstructured models I

At a first glance it appears that it is impossible to model the growth of
species by differential equations since the population of any species always
change by integer amounts. Hence the population of any species can never
be a differentiable function of time. However, if the population is large and
it increases by one, then the change is very small compared to a given pop-
ulation. Thus we make the approximation that large populations change
continuously (and even in a differentiable)in time and, if the final answer
is not an integer, we shall round it to the nearest integer. A similar jus-
tification applies to our use of t as a real variable: in absence of specific
breeding seasons, reproduction can occur at any time and for sufficiently
large population it is then natural to think of reproduction as occurring
continuously.

In this section we shall introduce continuous models derivation of which
parallels the derivation of discrete models above. We commence with expo-
nential growth.

Let N(t) denote the size of a population of a given isolated species at time t
and let Δt be a small time interval. As in the discrete case, the population
at time t+ Δt can be expressed as

N(t+ Δt) −N(t) = number of births in Δt− number of deaths in Δt.

It is reasonable to assume that the number of births and deaths in a short
time interval is proportional to the population at the beginning of this in-
terval and proportional to the length of this interval, so that introducing
birth and death rates β and μ, respectively, we obtain

N(t+ Δt) −N(t) = β(t,N(t))N(t)Δt− μ(t,N(t))N(t)Δt. (1.2.1)

Taking r(t,N) to be the difference between the birth and death rate coeffi-
cients at time t for the population of size N we obtain

N(t+ Δt) −N(t) = r(t,N(t))ΔtN(t).
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If we fix Δt and take it as a unit time interval and drop the dependence on
t, then the above equation is exactly (1.1.6) with F (N) = 1 + r(N). Here,
however, we assume that the change happens continuously, so dividing by
Δt and passing with Δt→ 0 we arrive at the continuous in time counterpart
of (1.1.6):

dN

dt
= r(t,N)N. (1.2.2)

To proceed, we have to specify the form of r.

Exponential growth

As before, the simplest possible r(t,N) is a constant and in fact such a
model is used in a short-term population forecasting. So let us assume that
r(t,N(t)) = r so that

dN

dt
= rN. (1.2.3)

which has a general solution given by

N(t) = N(t0)er(t−t0), (1.2.4)

where N(t0) is the size of the population at some fixed initial time t0.

To be able to give some numerical illustration to this equation we need the
coefficient r and the population at some time t0. We use the data of the U.S.
Department of Commerce: it was estimated that the Earth population in
1965 was 3.34 billion and that the population was increasing at an average
rate of 2% per year during the decade 1960-1970. Thus N(t0) = N(1965) =
3.34 × 109 with r = 0.02, and (1.2.4) takes the form

N(t) = 3.34 × 109e0.02(t−1965). (1.2.5)

To test the accuracy of this formula let us calculate when the population of
the Earth is expected to double. To do this we solve the equation

N(T + t0) = 2N(t0) = N(t0)e0.02T ,

thus
2 = e0.02T

and
T = 50 ln 2 ≈ 34.6 years.

This is an excellent agreement with the present observed value of the Earth
population and also gives a good agreement with the observed data if we
don’t go too far into the past. On the other hand, if we try to extrapolate
this model into a distant future, then we see that, say, in the year 2515, the
population will reach 199980 ≈ 200000 billion. To realize what it means,
let us recall that the Earth total surface area 167400 billion square meters,

12



Chapter 1Interlude: Continuous in time single species unstructured models I

Fig 1.1. Comparison of actual population figures (points) with those
obtained from equation (1.2.5).

80% of which is covered by water, thus we have only 3380 billion square
meters to our disposal and there will be only 0.16m2 (40cm × 40cm) per
person. Therefore we can only hope that this model is not valid for all
times. Indeed, as for discrete models, it is observed that the linear model
for the population growth often is in good agreement with observations as
long as the population is not too large. When the population gets very large
(with regard to its habitat), these models cannot be very accurate, since
they don’t reflect the fact that the individual members have to compete
with each other for the limited living space, resources and food available.
It is reasonable that a given habitat can sustain only a finite number K of
individuals, and the closer the population is to this number, the slower is it
growth.

Logistic equation

Again, the simplest way to take this into account is to take r(t,N) = r(K−
N) and then we obtain the so-called continuous logistic model

dN

dt
= rN

(
1 − N

K

)
, (1.2.6)

which proved to be one of the most successful models for describing a sin-
gle species population. Alternatively, as in the discrete case, we can obtain
(1.2.6) by taking in (1.2.1) constant birth rate β but introduce density de-

13



Interlude: Continuous in time single species unstructured models IChapter 1

pendent mortality rate
μ(N) = μ0 + μ1N.

The increase in the population over a time interval Δt is given by

N(t+ Δt) −N(t) = βN(t)Δt− μ0N(t)Δt− μ1N
2(t)Δt

which, upon dividing by Δt and passing with it to the limit, gives

dN

dt
= (β − μ0)N − μ1N

2

which is another form of (1.2.6).

A more general form of this equation is obtained by taking μ(N) = μ0+μ1N
θ

for some positive constant θ which leads to a continuous Bernoulli equation

dN

dt
= (β − μ0)N − μ1N

θ+1 (1.2.7)

Let us focus on the logistic equation (1.2.6). Since the right-hand side does
not contain t, it is a separable equation which, unlike its discrete counterpart,
can be solved explicitly.

Let us start with some qualitative features. The right-hand side vanishes
for N = 0 and N = K so that N(t) = 0 and N(t) = K are equilibria.
We shall focus on solutions with the initial condition N(t0) > 0. Then, if
N(t0) < K, then N(t) stays between 0 and K, exists for all t > t0 and is
an increasing function converging to K as t → ∞. If N(t0) > K, then the
solution decreases, exists for all t > 0 and also tends to K as t→ ∞.

Hence, let us proceed with solving the related Cauchy problem

dN

dt
= rN

(
1 − N

K

)
,

N(t0) = N0 (1.2.8)

Separating variables and integrating we obtain

K

r

N∫
N0

ds

(K − s)s
= t− t0.

To integrate the left-hand side we use partial fractions

1
(K − s)s

=
1
K

(
1
s

+
1

K − s

)

14
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which gives

K

r

N∫
N0

ds

(K − s)s
=

1
r

t∫
t0

(
1
s

+
1

K − s

)
ds

=
1
r

ln
N

N0

∣∣∣∣K −N0

K −N

∣∣∣∣ .
From the considerations preceding (1.2.8), if N0 < K, then N(t) < K for
any t, and if N0 > K, then N(t) > K for all t > 0. Therefore (K−N0)/(K−
N(t)) is always positive and

r(t− t0) = ln
N

N0

K −N0

K −N
.

Exponentiating, we get

er(t−t0) =
N(t)
N0

K −N0

K −N(t)

or
N0(K −N(t))er(t−t0) = N(t)(K −N0).

Bringing all the terms involving N to the left-hand side and multiplying by
−1 we get

N(t)
(
N0e

r(t−t0) +K −N0

)
= N0Ke

r(t−t0),

thus finally

N(t) =
N0K

N0 + (K −N0)e−r(t−t0)
. (1.2.9)

Let us examine (1.2.9) to see whether we obtained the population’s be-
haviour predicted by qualitative analysis (which helps to ensure that we
havn’t made any mistake solving the equation). First observe that we have

lim
t→∞N(t) = K,

hence our model correctly reflects the initial assumption that K is the max-
imal capacity of the habitat. Next, we obtain

dN

dt
=

rN0K(K −N0)e−r(t−t0)

(N0 + (K −N0)e−r(t−t0))2

thus, if N0 < K, the population monotonically increases, whereas if we start
with the population which is larger then the capacity of the habitat, then
such a population will decrease until it reaches K. Also

d2N

dt2
= r

d

dt
(N(K −N)) = N ′(K − 2N) = N(K −N)(K − 2N)

15
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from which it follows that, if we start from N0 < K, then the population
curve is convex down for N < K/2 and convex up for N > K/2. Thus,
as long as the population is small (less then half of the capacity), then the
rate of growth increases, whereas for larger population the rate of growth
decreases. This results in the famous logistic or S-shaped curve which is
presented below for particular values of parameters r = 0.02,K = 10 and
t0 = 0, resulting in the following function:

N(t) =
10N0

N0 + (10 −N0)e−0.2t
.

Fig 2.3 Logistic curves with N0 < K (dashed line) and N0 > K (solid line)
for K = 10 and r = 0.02.

To show how this curve compare with the real data and with the exponential
growth we take the experimental coefficients K = 10.76 billion and r =
0.029. Then the logistic equation for the growth of the Earth population
will read

N(t) =
N0(10.76 × 109)

N0 + ((10.76 × 109) −N0)e−0.029(t−t0)
.

We use this function with the value N0 = 3.34 × 109 at t0 = 1965. The
comparison is shown on Fig. 2.4.

From discrete to continuous models and back.

As we have seen, continuous models are obtained using the same principles
as corresponding discrete models. In fact, a discrete model (represented by
a difference equation) is an intermediate step in deriving a corresponding
differential equation. The question arises whether, under reasonable circum-
stances, discrete and continuous models are equivalent in the sense that they

16
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Fig 2.4 Human population on Earth. Comparison of observational data
(points), exponential growth (solid line) and logistic growth (dashed line).

give the same solutions (or at least, the same qualitative features of the so-
lution) and whether there is one-to-one correspondence between continuous
and discrete models.

There are several ways of discretization of differential equations. We shall
use two most commonly used. The first one is similar to standard numerical
analysis practice of replacing the derivative by a difference quotient:

df

dt
≈ f(t+ Δt) − f(t)

Δt
.

Another one is based on the observation that solutions of autonomous equa-
tions display the so-called semigroup property: Denote by x(t, x0) the solu-
tion to the equation

x′ = g(x), x(0) = x0,

then
x(t1 + t2, x0) = x(t1, x(t2, x0)).

Thus,
x((n+ 1)Δt, x0) = x(Δt, x(nΔt, x0)). (1.2.10)

This amounts to saying that the solution after n + 1 time steps can be
obtained as the solution after one time step with initial condition given as
the solution after n time steps. In other words, denoting xn = x(nΔt, x0)
we have

xn+1 = fΔt(xn)

where f is an operation of getting solution of the Cauchy problem at Δt
with initial condition as its argument.

17
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In further applications we shall take Δt = 1.

Exponential growth

Let us start with the exponential growth

N ′ = rN, N(0) = N0

having the solution
N(t) = N0e

rt.

The first discretization gives

Nk+1 −Nk = rNk

with the solution
Nk = (1 + r)kNk

and this discretization gives perfect agreement with the discrete model (and
r = 1 +R0).

On the other hand, consider the second discretization, which amounts to as-
suming that we take census of the population in evenly spaced time moments
t0 = 0, t1 = 1, . . . , tk = k, . . . so that

Nk = N(k) = erkN0 = (er)kN0.

Comparing this equation with (1.1.4), we see that it corresponds to the
discrete model with intrinsic growth rate

1 +R0 = er.

Thus we can state that if we observe a continuously growing population in
discrete unit time intervals and the observed (discrete) intrinsic growth rate
is R0, then the real (continuous) growth rate is given by r = ln(1 + R0).
However, the qualitative features are preserved.

18
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Logistic growth

Consider now the logistic equation

N ′ = rN

(
1 − N

K

)
.

The first type of discretization immediately produces the discrete logistic
equation (1.1.13)

Nk+1 = Nk + rNk

(
1 − Nk

K

)
,

solutions of which, as we shall see later, behave in a dramatically different
way that those of the continuous equation, unlike the exponential growth
equation.

To use the time-one map discretization, we re-write (1.2.9) as

N(t) =
N0e

rt

1 + ert−1
K N0

.

which, upon denoting er = R0 gives the time-one map

N(1, N0) =
N0R0

1 + R0−1
K N0

,

which, according to the discussion above, yields the Beverton-Holt model

Nk+1 =
NkR0

1 + R0−1
K Nk

,

with the discrete intrinsic growth rate related to the continuous one in the
same way as in the exponential growth equation.

1.2.1 Discrete models of seasonally changing population

So far we have considered models in which laws of nature are independent of
time. In many real processes we have to take into account phenomena which
depend on time such as seasons of the year. The starting point of modelling
is as before the balance equation. If we denote by B(t),D(t), E(t) and I(t)
rates of birth, death, emigration and immigration, so that e.g, the number

of births in time interval [t1, t2] equals
t2∫
t1

B(s)ds. Then, the change in the

size of the population in this interval is

N(t2) −N(t1) =

t2∫
t1

(B(s) −D(s) + I(s) − E(s))ds,
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or, in differential form

dN(t)
dt

= B(t) −D(s) + I(t) − E(t).

Processes of birth, death and emigration are often proportional to the size of
the population and thus it makes sense to introduce per capita coefficients so
that B(t) = b(t)N(t),D(t) = d(t)N(t), E(t) = e(t)N(t). Typically, it would
be unreasonable to assume that immigration is proportional to the number
of the target population (possibly rather to the inverse unless we consider
processes like gold rush), so that we leave I(t) unchanged and thus write
the rate equation as

dN(t)
dt

= (b(t) − d(s) + e(t))N(t) + I(t). (1.2.11)

This equation provides good description of small populations in which birth
and death coefficients are not influenced by the size of the population.

Our interest is in populations in which the coefficients change periodically
e.g. with seasons of the year. We start with closed populations; that is we do
not consider emigration and immigration. Then we define λ(t) = b(t)− d(t)
to be the net growth rate of the population and assume that it is a periodic
function with period T . Under this assumption we introduce the average
growth rate of the population by

λ̄ =
1
T

T∫
0

λ(t)dt. (1.2.12)

Thus, let us consider the initial value problem

dN(t)
dt

= λ(t)N(t), N(t0) = N0, (1.2.13)

where λ(t) is a continuous periodic function with period T . Clearly, the
solution is given by

N(t) = N0e

t∫
t0

λ(s)ds

. (1.2.14)

It would be tempting to believe that a population with periodically changing
growth rate also changes in a periodic way. However, we have

r(t+T ) :=

t+T∫
t0

λ(s)ds =

t∫
t0

λ(s)ds+

t+T∫
t

λ(s)ds = r(t)+

T∫
0

λ(s)ds = r(t)+λ̄T

so that
N(t+ T ) = N(t)eλ̄T
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and we do not have periodicity in the solution. However, we may provide a
better description of the evolution. Let us try to find what is ‘missing’ in
the function r so that it is not periodic. Assume that r̃(t) = r(t) + φ(t),
where φ is as yet an unspecified function, is periodic hence

r̃(t+T ) = r(t+T )+φ(t+T ) = r(t)+λ̄T+φ(t+T ) = r̃(t)+λ̄T+φ(t+T )−φ(t)

thus
φ(t+ T ) = φ(t) − λ̄T.

This shows that ψ = φ′ is a periodic function. To reconstruct φ from its
periodic derivative, first we assume that the average of ψ is zero. Then

F (t) =
t∫

t0

ψ(s)ds is periodic. Indeed, F (t + T ) =
t+T∫
t0

ψ(s)ds = F (t) +

t+T∫
t

ψ(s)ds = F (t) +
T∫
0

ψ(s)ds = F (t). Next, if the average of ψ is ψ̄, then

ψ − ψ̄ has zero average. Indeed,

t0+T∫
t0

(ψ(s) − ψ̄)ds = T ψ̄ − T ψ̄ = 0

Hence
t∫

t0

ψ(s)ds = g(t) + (t− t0)ψ̄

where g(t) is a periodic function. Returning to function φ, we see that

ψ(t) = g(t) + c(t− t0)

for some constant c and periodic function g. As we are interested in the sim-
plest representation, we put g(t) = 0 and so ψ(t) becomes a linear function
and

−λ̄T = φ(t+ T ) − φ(t) = c(t+ T − t0) − c(t− t0)

and so c = λ̄.

Using this result we write

N(t) = N0e

t∫
t0

λ(s)ds

= N0e
λ̄(t−t0)Q(t)

where

Q(t) = e

t∫
t0

λ(s)ds−λ̄(t−t0)

(1.2.15)

is a periodic function.
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In particular, if we observe the population in discrete time intervals of the
length of the period T , we get

N(k) = N(t0 + kT ) = N0e
λ̄TQ(t0 + kT ) = N0e

λ̄kTQ(t0) = N0[eλ̄T ]k,

which is the expected difference equation with growth rate given by eλ̄T .

Next let us consider an open population described by the equation

dN(t)
dt

= λ(t)N(t) + c(t) (1.2.16)

where λ(t) and c(t) are continuous and periodic functions with period T .
The constant λ̄ and the periodic function Q(t) are defined by (1.2.12) and
(1.2.15).

1.3 Methods of analysing single difference equa-

tions

The general form of a first order difference equation is

x(n+ 1) = f(n, x(n)), (1.3.1)

where f is any function of two variables defined on N0 × R, where N0 =
{0, 1, 2 . . .} is the set of natural numbers enlarged by 0. In theoretical con-
siderations we write x(n) instead of xn - this will simplify the notation
when dealing with systems of equations. In most cases we shall deal with
autonomous equations

x(n+ 1) = f(x(n)), (1.3.2)

1.3.1 Methods of solution

The simplest difference equations are these defining geometric and arith-
metic progressions:

x(n+ 1) = ax(n),

and
y(n+ 1) = y(n) + a,

respectively, where a is a constant. The solutions of these equations are
known to be

x(n) = anx(0),

and
y(n) = y(0) + na.
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We shall consider the generalization of both these equations: the general
first order difference equation,

x(n+ 1) = a(n)x(n) + g(n) (1.3.3)

with the an initial condition x(0) = x0. Calculating first few iterates, we
obtain

x(1) = a(0)x(0) + g(0),
x(2) = a(1)x(1) + g(1) = a(1)a(0)x(0) + a(1)g(0) + g(1),
x(3) = a(2)x(2) + g(2) = a(2)a(1)a(0)x(0) + a(2)a(1)g(0) + a(2)g(1) + g(2),
x(4) = a(3)x(3) + g(3)

= a(3)a(2)a(1)a(0)x(0) + a(3)a(2)a(1)g(0) + a(3)a(2)g(1) + a(3)g(2) + g(3).

At this moment we have enough evidence to conjecture that the general
form of the solution could be

x(n) = x(0)
n−1∏
k=0

a(k) +
n−1∑
k=0

g(k)
n−1∏

i=k+1

a(i) (1.3.4)

where we adopted the convention that
n−1∏

n
= 1. Similarly, to simplify no-

tation, we agree to put
j∑

k=j+1

= 0. To fully justify this formula, we shall

use mathematical induction. Constructing (1.3.4) we have checked that the
formula holds for a few initial values of the argument. Assume now that it
is valid for n and consider

x(n+ 1) = a(n)x(n) + g(n)

= a(n)

(
x(0)

n−1∏
k=0

a(k) +
n−1∑
k=0

g(k)
n−1∏

i=k+1

a(i)

)
+ g(n)

= x(0)
n∏

k=0

a(k) + a(n)
n−1∑
k=0

g(k)
n−1∏

i=k+1

a(i) + g(n)

= x(0)
n∏

k=0

a(k) +
n−1∑
k=0

g(k)
n∏

i=k+1

a(i) + g(n)
n∏

i=n+1

a(i)

= x(0)
n∏

k=0

a(k) +
n∑

k=0

g(k)
n∏

i=k+1

a(i)

which proves that (1.3.4) is valid for all n ∈ N.

Two special cases
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There are two special cases of (1.3.3) that appear in many applications. In
the first, the equation is given by

x(n) = ax(n) + g(n), (1.3.5)

with the value x(0) given. In this case
k2∏

k=k1

a(k) = ak2−k1+1 and (1.3.4) takes

the form

x(n) = anx(0) +
n−1∑
k=0

an−k−1g(k). (1.3.6)

The second case is a simpler form of (1.3.5), given by

x(n) = ax(n) + g, (1.3.7)

with g independent of n. In this case the sum in (1.3.6) can be evaluated in
an explicit form giving

x(n) =
{
anx(0) + g an−1

a−1 if a 	= 1,
x(0) + gn.

(1.3.8)

Example 1.3.1. It turns out that the Hassell equation with b = 1 can be
solved explicitly. Let us recall this equation:

x(n+ 1) =
R0x(n)
1 + x(n)

(1.3.9)

Writing

x(n+ 1) =
R0

1 + 1
x(n)

we see that the substitution y(n) = 1/x(n) converts (1.3.9) to

y(n+ 1) =
1
R0

+
1
R0
y(n)

Using (1.3.8) we find

y(n) =
1
R0

R−n
0 − 1

R−1
0 − 1

+R−n
0 y(0) =

1 −Rn
0

Rn
0 (1 −R0)

+R−n
0 y(0)

if R0 	= 1 and
y(n) = n+ y(0)

for R0 = 1. From these equations we see that x(n) → R0 − 1 if R0 > 1
and x(n) → 0 if R0 ≤ 1. It is maybe unexpected that the population faces
extinction if R0 = 1 which means that every individual gives birth to one
offspring. However, the density depending factor causes some individuals to
die between reproductive seasons which mean the the population decreases
with every cycle.
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1.3.2 Equilibrium points

Most equations cannot be solved in closed form. One of the typical ques-
tions is the behaviour of the system after many iterations. The concept
of equilibrium point and stability of it plays a central role in the study of
dynamics of physical/biological systems.

Definition 1.3.2. A point x∗ in the domain of f is said to be an equilibrium
point of (1.3.2) if it is a fixed point of f ; that is f(x∗) = x∗.

In other words, x∗ is a constant solution of (1.3.2).

Graphically, an equilibrium point is the the x-coordinate of the point where
the graph of f intersects the diagonal y = x. This is the basis of the cob-web
method of finding equilibria and analyse their stability, which is described
later.

In differential equations, an equilibrium cannot be reached in finite time.
Difference equations do not share this property. This leads to the definition:

Definition 1.3.3. A point x in the domain of f is said to be an eventual
equilibrium of (1.3.2) if there is an equilibrium point x∗ of (1.3.2) and a
positive integer r such that x∗ = f r(x) and f r−1(x) 	= x∗.

Example 1.3.4. The Tent Map. Consider

x(n+ 1) = Tx(n)

where

T (x) =
{

2x for 0 ≤ x ≤ 1/2,
2(1 − x) for 1/2 < x ≤ 1.

There are two equilibrium points, 0 and 2/3. Looking for eventual equilibria
is not as simple. Taking x(0) = 1/8, we find x(1) = 1/4, x(2) = 1/2,
x(3) = 1 and x(4) = 0, and hence 1/8 (as well as 1/4, 1/2 and 1) are
eventual equilibria. It can be checked that all points of the form x = n/2k,
where n, k ∈ N satisfy 0 < n/2k < 1 are eventual equilibria.

Definition 1.3.5. (a) The equilibrium x∗ is stable if for given ε > 0 there
is δ > 0 such that for any x and for any n > 0, |x − x∗| < δ implies
|fn(x) − x∗| < ε for all n > 0. If x∗ is not stable, then it is called
unstable (that is, x∗ is unstable if there is ε > such that for any δ > 0
there are x and n such that |x− x∗| < δ and |fn(x) − x∗| ≥ ε.)

(b) The point x∗ is called attracting if there is η > 0 such that

|x(0) − x∗| < η implies lim
n→∞x(n) = x∗.

If η = ∞, x∗ is called a global attractor or globally attracting.
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Figure 1.5: The tent map
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Figure 1.6: Eventual equilibrium x = 1/8 for the tent map.
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(c) The point x∗ is called an asymptotically stable equilibrium if it is stable
and attracting. If η = ∞, then x∗ is said to be globally asymptotically
stable equilibrium.

Example 1.3.6. There are difference equations with attracting but not
stable equilibria. Consider the equation

x(n+ 1) = G(xn)

where

G(x) =
{ −2x for x < 1,

0 for x ≥ 1.

If x0 ≥ 0, x(n) = 0 for all n. If x0 < 1, then x(n) = (−2)nx0 as long as
(−2)nx0 < 1 and then x(n) = 0. Hence x = 0 is an attracting equilibrium
point. However, taking x0 = 1/(−2)k , we see that x0 can be arbitrarily close
to 0 but x(k) = 1 (with x(k + j) = 0 for all j ≥ 1).

It should be noted, however, that it can be proved that situation like that
cannot happen for a continuous scalar G; for this we need at least a 2
dimensional case.

The Cobweb Diagrams

We start with an important graphical method for analysing the stability of
equilibrium (and periodic) points of (1.3.2). Since x(n + 1) = f(x(n)), we
may draw a graph of f in the (x(n), x(n+ 1)) system of coordinates. Then,
given x(0), we pinpoint the value x(1) by drawing the vertical line through
x(0) so that it also intersects the graph of f at (x(0), x(1)). Next, draw a
horizontal line from (x(0), x(1)) to meet the diagonal line y = x at the point
(x(1), x(1)). A vertical line drawn from the point (x(1), x(1)) will meet the
graph of f at the point (x(1), x(2)). In this way we may find x(n). Analytic
criterion for stability

Theorem 1.3.7. Let x∗ be an equilibrium point of the difference equation

x(n + 1) = f(x(n)) (1.3.10)

where f is continuously differentiable at x∗. Then:

(i) If |f ′(x∗)| < 1, then x∗ is asymptotically stable;

(ii) If |f ′(x∗)| > 1, then x∗ is unstable.
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Figure 1.7: Cobweb diagram of a logistic difference equation
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Proof. Suppose |f ′(x∗)| < M < 1. Then |f ′(x)| ≤ M < 1 over some
interval J = (x∗− γ, x∗ + γ) by the property of local preservation of sign for
continuous function. Now, we have

|x(1) − x∗| = |f(x(0)) − f(x∗)|.

By the Mean Value Theorem, there is ξ ∈ [x(0), x∗] such that

|f(x(0)) − f(x∗)| = |f ′(ξ)||x(0) − x∗|.

Hence
|f(x(0)) − f(x∗)| ≤M |x(0) − x∗|,

and therefore
|x(1) − x∗| ≤M |x(0) − x∗|.

Since M < 1, the inequality above shows that x(1) is closer to x∗ than x(0)
and consequently x(1) ∈ J . By induction,

|x(n) − x∗| ≤Mn|x(0) − x∗|.

For given ε, define δ = ε/2M . Then |x(n) − x∗| < ε for n > 0 provided
|x(0) − x∗| < δ (since M < 1). Furthermore x(n) → x∗ and n → ∞ so that
x∗ is asymptotically stable.

To prove the second part of the theorem, we observe that, as in the first part,
there is ε > 0 such that on J = (x∗ − ε, x∗ + ε) on which |f ′(x)| ≥ M > 1.
Take arbitrary δ > 0 smaller than ε and x satisfying |x − x∗| < δ. Using
again the Mean Value Theorem

|f(x) − x∗| = |f ′(ξ)||x− x∗|

for some ξ between x∗ and x so that

|f(x) − x∗| ≥M |x− x∗|.

If f(x) is outside J , then we are done. If not, we can repeat the argument
getting |f2(x)−x∗| ≥M2|x− x∗|, that is, f2(x) which is further away from
x∗ than f(x). If it is in J we can continue the procedure till |fn(x)− x∗| ≥
Mn|x− x∗| > ε for some n. �
Equilibrium points with |f ′(x∗)| 	= 1 are called hyperbolic.

What happens if the equilibrium point is non-hyperbolic. We start with the
case f ′(x∗) = 1.

Theorem 1.3.8. Let x∗ be an isolated equilibrium with f ′(x∗) = 1. Then

(i) If f ′′(x∗) 	= 0, then x∗ is unstable.
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(ii) If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is unstable.

(iii) If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is asymptotically stable.

Proof. (i) If f ′′(x∗) 	= 0, then there is an interval J = (x∗ − η, x∗ + η) such
that either f ′′(x) > 0 or f ′′(x) < 0 on J . Thus over J the function f is
concave up (in the first case) or concave down (in the second). Writing

f(x) − f(x∗) = (x− x∗) +
1
2
f ′′(ξ)(x− x∗)2

for some ξ between x ∈ J and x∗ and noting that f(x∗) = x∗, we get

f(x) − x =
1
2
f ′′(ξ)(x− x∗)2

which shows that f(x) is above y = x in the first case and below in the second
for all x ∈ J . Let us concentrate on f ′(x∗) > 0 and take arbitrary J 
 x(0) >
x∗. Then f ′(x) > 1 for x in a one-sided neighbourhood (x∗, x∗ + η). We
can the following modification of the argument from the proof of Theorem
1.3.7: Putting x(1) = f(x(0)) we find that either x1 /∈ J , in which case
the proof ends, or J ′ 
 x(1) > x(0) (as otherwise there would be a point
y ∈ (x(0), x(1)) ⊂ J with f ′(y) = 1. Considering now J ′ = (x(0), x∗ + η),
we see that f ′(x) ≥ M for all x ∈ J ′ and some M > 1. Hence either
x(2) = f(x(1)) > x∗ + η, in which case the proof is over, or |x(2) − x(1)| =
|f(x(1))−f(x(0))| ≥M |x(1)−x(0)|. By induction, if x(n) ∈ J ′, then either
x(n + 1) = f(x(n)) > x∗ + η or |x(n + 1) − x(1)| = |f(x(n)) − f(x(0))| ≥
Mn−1|x(1) − x(0)| and for some n the iterate x(n) > x∗ + η, thus ending
the proof of instability of x∗.

To prove (ii) and (iii), we have as above

f(x) − x =
1
6
f ′′′(ξ)(x− x∗)3

for some ξ between x and x∗. Considering first (ii), we find J = (x∗ −
η, x∗ + η) over which f ′′′(x) > 0 and thus f(x) > x for x∗ < x < x∗ + η
and f(x) < x for x∗ − η < x < x∗. Let as fix x(0) ∈ (x∗, x∗ + η). Using
f ′′(x∗) = 0, we have

f ′′(x) =

x∫
x∗

f ′′′(s)ds > 0

for any x ∈ (x∗, x∗ + η) and is strictly increasing, therefore is bounded away
from 0 on [x0, x

∗ + η). Hence f ′(x) ≥ M > 1 on [x(0), x∗ + η) and we can
use the first part of the proof.

If (iii) is satisfied, we find find J = (x∗ − η, x∗ + η) over which f ′′′(x) < 0
and thus f(x) < x for x∗ < x < x∗ + η and f(x) > x for x∗ − η < x < x∗.
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hence, in particular, there is no other equilibrium in J . Since we can assume
that f ′ > 0 over J , we also have f(x) > x∗ = f(x∗) for x∗ < x < x∗ + η
and f(x) < x∗ = f(x∗) on x∗ − η < x < x∗. Thus, the iterations produce a
sequence x∗ < . . . f(x(n)) < f(x(n− 1)) < . . . < f(x(0)) < x(0) in the first
case and x(0) < f(x(0)) < . . . < f(x(n − 1)) < f(x(n)) < . . . < x∗. Hence,
both sequences converge to, say, l1 and l2. Using now continuity of f we
find

l1 = lim
n→∞x(n+ 1) = lim

n→∞ f(x(n)) = f( lim
n→∞x(n)) = f(l1).

Thus, l1 is a fixed point in J and, since x∗ is the only fixed point in J ,
l1 = x∗. The same argument applies for x∗. �
The case of f ′(x∗) = −1 is dealt with in the following theorem.

Theorem 1.3.9. Suppose that for an equilibrium point x∗ we have f ′(x∗) =
−1 and

S(x∗) = −f ′′′(x∗) − 3
2
(f ′′(x∗))2. (1.3.11)

Then x∗ is asymptotically stable if S(x∗) < 0 and unstable if S(x∗) > 0.

Proof. Consider the equation

x(n+ 1) = f(f(x(n)) = g(x(n)) (1.3.12)

We observe first that if x∗ is an equilibrium point of (1.3.2), that it is also an
equilibrium point of (1.3.12). Second, if such an x∗ is asymptotically stable
(unstable) for (1.3.12), then it is also asymptotically stable (unstable) for
(1.3.2). Indeed, consider stability. For any ε we find δ < ε such that from
|x − x∗| < δ it follows that |f(x) − x∗| < ε. Next, from stability for f2 it
follows that for this δ, we can find δ1 < δ such that |f2n(x) − x∗| < δ < ε.
Thus |f2n+1(x) − x∗| = |f(f2n(x)) − x∗| < ε whenever |x − x∗| < δ1. In
the same way we prove asymptotic stability. The instability statement is
obvious. Now

g′(x) = f ′(f(x))f ′(x)

so g′(x∗) = 1 and we are in the situation of the previous theorem. Further,

g′′(x) = f ′′(f(x))[f ′(x)]2 + f ′(f(x))f ′′(x)

and, since f(x∗) = x∗ and f ′(x∗) = −1,

g′′(x∗) = 0.

Using the chain rule once again, we find

g′′′(x∗) = −2f ′′′(x∗) − 3[f ′′(x∗)]2.

�
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Figure 1.8: Unstable character of the equilibrium x = 0. Initial point x0 =
0.5

Example 1.3.10. Consider the equation

x(n+ 1) = x2(n) + 3x(n).

Solving f(x) = x2 + 3x = x, we find that x = 0 and x = −2 are the
equilibrium points. Since f ′(0) = 3 > 1, we conclude that the equilibrium
at x = 0 is unstable. Next, f ′(−2) = −1. We calculate f ′′(−2) = 2 and
f ′′′(−2) = 0 so that S(−2) = −12 < 0. Hence, x = −2 is an asymptotically
stable equilibrium.

Remark 1.3.11. Analysing cob-web diagrams (or otherwise) we observe that
we can provide a further fine-tuning of the stability. Clearly, if f ′(x∗) < 0,
then the solution behaves in an oscillatory way around x∗ and if f ′(x∗) > 0,
it is monotonic. Indeed, consider (in a neighourhood of x∗ where f ′(x) < 0)
f(x) − f(x∗) = f(x) − x∗ = f ′(ξ)(x − x∗), where ξ is between x∗ and x.
Since f ′ < 0, f(x) > x∗ if x < x∗ and f(x) < x∗ if x > x∗, which means that
each iteration move the point to the other side of x∗. If |f ′| < 1 over this
interval, then fn(x) converge to x∗ in an oscillatory way, while if |f ′| > 1,
the iterations will move away from the interval, also in an oscillatory way.

Based on on this observation, we may say that the equilibrium is oscillatory
unstable or stable if f ′(x∗) < −1 or −1 < f ′(x∗) < 0, respectively, and
monotonically stable or unstable depending on whether 0 < f ′(x∗) < 1 or
f ′(x∗) > 1, respectively.

Periodic points and cycles
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Figure 1.9: Stable character of the equilibrium x = −2. Initial point x0 =
−2.9

Definition 1.3.12. Let b be in the domain of f . Then:

(i) b is called a periodic point of f if fk(b) = b for some k ∈ N. The periodic
orbit of b, O(b) = {b, f(b), f2(b), . . . , fk−1(b)} is called a k-cycle.

(ii) b is called eventually k-periodic if, for some integer m, fm(b) is a k-
periodic point.

Example 1.3.13. The Tent Map revisited. Consider

x(n+ 1) = T 2x(n)

where we have

T 2(x) =

⎧⎪⎪⎨
⎪⎪⎩

4x for 0 ≤ x ≤ 1/4,
2(1 − 2x) for 1/4 < x ≤ 1/2,
2x− 1 for 1/2 < x ≤ 3/4,
4(1 − x) for 3/4 < x ≤ 1.

There are four equilibrium points, 0, 0.4, 2/3 and 0.8, two of which are
equilibria of T . Hence {0, 4, 0.8} is the only 2-cycle of T . x∗ = 0.8 is not
stable. Calculation for T 3 shows that {2/7, 4/7, 6/7} is a 3-cycle. There is a
famous theorem by Šarkowski (rediscovered by Li and Yorke) that if a map
has a 3-cycle, then it has k-cycles for arbitrary k. This is one of symptoms
of chaotic behaviour.

Definition 1.3.14. Let b be a k-periodic point of f . Then b is said to be:

(i) stable if it is a stable fixed point of fk;
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Figure 1.10: 2-cycle for the tent map
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Figure 1.11: 3-cycle for the tent map
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(ii) asymptotically stable if it is an asymptotically stable fixed point of fk;

(iii) unstable if it is an unstable fixed point of fk.

It follows that if b is k-periodic, then every point of its k-cycle {x(0) =
b, x(1) = f(b), . . . , x(k − 1) = fk−1(b)} is also k-periodic. This follows from
fk(f r(b)) = f r(fk(b)) = f r(b), r = 0, 1, . . . , k − 1. Moreover, each such
point possesses the same stability property as b. Here, the stability of b
means that |fnk(x) − b| < ε for all n, provided x is close enough to b. To
prove the statement, we have to show that for any ε there is δ such that
|fnk(x)−f r(b)| < ε for any fixed r = 0, 1, . . . , k−1 and n ∈ N, if |x−f r(b)| <
δ. Let us take arbitrary ε > 0. From continuity of f (at thus of fk), there is
δ1 such that |x− f r(b)| < δ1 implies, by fk+r(b) = f r(fk(b)) = f r(b), that

|fk(x) − f r(b)| = |fk(x) − fk+r(b)| < ε. (1.3.13)

With the same ε, using continuity of f r we find δ2 such that |f r(z)−f r(b)| <
ε, provided |z− b| < δ2. For this δ2, we find δ3 such that if |y− b| < δ3, then
|fnk(y) − b| < δ2 for any n. Hence, for |y − b| < δ3, taking z = fnk(y), we
obtain

|f r+nk(y) − f r(b)| < ε (1.3.14)

for any n. On the other hand, for this δ3 we find δ4 such that if |x−f r(b)| <
δ4, then |fk−r(x) − fk(b)| = |fk−r(x) − b| < δ3 and, using y = fk−r(x) in
(1.3.14), we obtain

|f (n+1)k(x) − f r(b)| < ε (1.3.15)

for any n ≥ 1. Taking |x−f r(b)| < δ5 = min{δ4, δ1} and combining (1.3.13)
with (1.3.15), we get

|fnk(x) − f r(b)| < ε,

for any n ≥ 1.

The definition together with Theorem 1.3.7 yield the following classification
of stability of k-cycles.

Theorem 1.3.15. Let O(b) = {x(0) = b, x(1) = f(b), . . . , x(k − 1) =
fk−1(b)} be a k-cycle of a continuously differentiable function f . Then

(i) The k-cycle O(b) is asymptotically stable if

|f ′(x(0))f ′(x(1)) . . . f ′(x(k − 1))| < 1.

(ii) The k-cycle O(b) is unstable if

|f ′(x(0))f ′(x(1)) . . . f ′(x(k − 1))| > 1.

Proof. Follow from Theorem 1.3.7 by the Chain Rule applied to fk. �
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The Logistic Equation and Bifurcations Consider the logistic equa-
tion

x(n+ 1) = μx(n)(1 − x(n)), x ∈ [0, 1], μ > 0 (1.3.16)

which arises from iterating Fμ(x) = μx(1 − x). To find equilibrium point,
we solve

Fμ(x∗) = x∗

which gives x∗ = 0, (μ− 1)/μ.

We investigate stability of each point separately.

(a) For x∗ = 0, we have F ′
μ(0) = μ and thus x∗ = 0 is asymptotically stable

for 0 < μ < 1 and unstable for μ > 1. To investigate the stability for
μ = 1, we find F ′′

μ (0) = −2 	= 0 and thus x∗ = 0 is unstable in this
case. However, instability comes from negative values of x which we
discarded from the domain. If we restrict our attention to the domain
[0, 1], then x∗ = 0 is stable. Such points are called semi-stable.

(b) The equilibrium point x∗ = (μ− 1)/μ belongs to the domain [0, 1] only
if μ > 1. Here, F ′((μ−1)/μ) = 2−μ and F ′′((μ−1)/μ) = −2μ. Thus,
using Theorems 1.3.7 and 1.3.8 we obtain:

(i) x∗ is asymptotically stable if 1 < μ ≤ 3,

(ii) x∗ is unstable if 3 < μ.

We observe further that for 1 < μ < 2 the population approaches the carry-
ing capacity monotonically from below. However, for 2 < μ ≤ 3 the popu-
lation can go over the carrying capacity but eventually stabilizes around it.

What happens for μ = 3? Consider 2-cycles. We have F 2
μ(x) = μ2x(1 −

x)(1 − μx(1 − x)) so that we are looking for solutions to

μ2x(1 − x)(1 − μx(1 − x)) = x

We can re-write this equation as

x(μ3x3 − 2μ3x2 + μ2(1 + μ)x+ (1 − μ2) = 0.

To simplify the considerations, we observe that any equilibrium is also a
2-cycle (and any k-cycle for that matter). Thus, we can divide this equation
by x and x− (μ− 1)/μ, getting

μ2x2 − μ(μ+ 1)x+ μ+ 1 = 0.

36



Chapter 1 Methods of analysing single difference equations

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1.12: Asymptotically stable equilibrium x = 2/3 for μ = 3.

Solving this quadratic equation, we obtain 2-cycle

x(0) =
(1 + μ) −√(μ− 3)(μ+ 1)

2μ

x(1) =
(1 + μ) +

√
(μ− 3)(μ+ 1)
2μ

. (1.3.17)

Clearly, these points determine 2-cycle provided μ > 3 (in fact, for μ = 3
these two points collapse into the equilibrium point x∗ = 2/3. Thus, we see
that when the parameter μ passes through μ = 3, the stable equilibrium
becomes unstable and bifurcates into two 2-cycles.

The stability of 2-cycles can be determined by Theorem 1.3.15. We have
F ′(x) = μ(1 − 2x) so the 2-cycle is stable provided

−1 < μ2(1 − 2x(0))(1 − 2x(1)) < 1.

Using Viete’s formulae we find that the above yields

−1 < μ2 + 2μ+ 4 < 1

and solving this we see that this is satisfied if μ < −1 or μ > 3 and 1−√
6 <

μ < 1 +
√

6 which yields 3 < μ < 1 +
√

6.

In similar fashion we can determine that for μ1 = 1 +
√

6 the 2-cycle is still
attracting but becomes unstable for μ > μ1.

Remark 1.3.16. To find 4-cycles, we solve F 4
μ(x). However, in this case

algebra becomes unbearable and one should resort to a computer. It turns
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Figure 1.13: 2-cycle for x ≈ 0.765 and μ = 3.1.
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Figure 1.14: Asymptotic stability of the 2-cycle for x ≈ 0.765 and μ = 3.1.
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Figure 1.15: Chaotic orbit for x = 0.9 and μ = 4.

out that there is 4-cycle when μ > 1 +
√

6 which is attracting for 1 +
√

6 <
μ < 3.544090 . . . =: μ2. When μ = μ2, then 22-cycle bifurcates into a 23-
cycle, which is stable for μ2 ≤ μ ≤ μ3 := 3.564407.. Continuing, we obtain
a sequence of numbers (μn)n∈N such that the 2n-cycle bifurcates into 2n+1-
cycle passing through μn. In this particular case, limn→∞ μn = μ∞ = 3.57....
A remarkable observation is

Theorem 1.3.17. (Feigenbaum, 1978) For sufficiently smooth families Fμ

of mapping of an interval into itself, the number

δ = lim
n→∞

μn − μn−1

μn+1 − μn
= 4.6692016...

in general does not depend on the family of maps, provided they have single
maximum.

This theorem expresses the fact that the bifurcation diagrams for such maps
are equivalent to the bifurcation diagram of a unique mapping for which it
is exactly self-similar.

What happens for μ∞? Here we find a densely interwoven region with
both periodic and chaotic orbits. In particular, a 3-cycle appears and, as we
mentioned earlier, period 3 implies existence of orbits of any period. We can
easily prove that 3-cycles appear if μ = 4. Consider first F4(x). We have
F4(0) = F4(1) = 0 and F4(0.5) = 1. This shows that F 2

4 (0.5) = F4(1) = 0.
From the Darboux property, there are a1 ∈ (0, 0.5) and a2 ∈ (0.5, 1) such
that F4(ai) = 0.5 and F 2

4 (ai) = 1. Thus we have graph with two peaks
at 1 and attaining zero in between. This shows that F 2

4 (x) = x has four
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Figure 1.16: Comparison of solutions to (1.3.18) with a = 4 and (1.3.19).

solutions, two of which are (unstable) equilibria and two are (unstable) 2-
cycles. Repeating the argument there is b1 ∈ (0, a1) such that F4(b1) = a1

(since the graph is steeper than that of y = x) and thus F 3
4 (b1) = F 2

4 (a1) = 1.
Similarly, we get 3 other points in which F 3

4 = 1 and clearly F 3
4 (ai) =

F 3
4 (0.5) = 0. This means that y = x meets F 3

4 (x) at 8 points, two of which
are equilibria (2-cycles are not 3-cycles). So, we obtain two 3-cycles.

Euler scheme for the logistic equation Consider the logistic differen-
tial equation

y′ = ay(1 − y), y(0) = y0. (1.3.18)

We know that for, say, a = 4, the dynamics of the corresponding difference
equation

y(n+ 1) = y(n) + 4y(n)(1 − y(n)) (1.3.19)

is chaotic and thus the latter cannot be used for numerical calculations of
(1.3.18) as the solutions to (1.3.18) are monotonic. This is shown in Fig.
1.16. Let us, however, write down the complete Euler scheme:

y(n+ 1) = y(n) + aΔty(n)(1 − y(n)), (1.3.20)

where y(n) = y(nΔt) and y(0) = y0. Then

y(n+ 1) = (1 + aΔt)y(n)
(

1 − aΔ
1 + aΔt

y(n)
)
.

Substitution
x(n) =

aΔt
1 + aΔt

y(n) (1.3.21)

reduces (1.3.20) to
x(n+ 1) = μx(n)(1 − x(n)). (1.3.22)
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Figure 1.17: Comparison of solutions to (1.3.18) with a = 4 and (1.3.22)
with μ = 3 (Δt = 0.5).

Thus, the parameter μ which controls the long time behaviour of solutions
to the discrete equation (1.3.22) depends on Δt and, by choosing a suitably
small Δt we can get solutions of (1.3.22) to mimic the behaviour of solutions
to (1.3.18). Indeed, by taking 1+aΔt < 3 we obtain convergence of solutions
x(n) to the equilibrium

x =
aΔt

1 + aΔt
which, reverting (1.3.21 ), gives the discrete approximation y(n) which con-
verges to 1, as the solution to (1.3.18). However, as seen on Fig 1.17, this
convergence is not monotonic which shows that the approximation is rather
poor. This can be remedied by taking 1 + aΔt < 2 in which case the quali-
tative features of y(t) and y(n) are the same, see Fig. 1.18). We note that
above problems can be also solved by introducing the so-called non-standard
difference schemes which consists in replacing the derivatives and/or nonlin-
ear terms by more sophisticated expressions which, though equivalent when
the time step goes to 0 produce, nevertheless, qualitatively different discrete
picture. In the case of the logistic equation such a non-standard scheme can
be constructed replacing y2 not by y2(n) but by y(n)y(n+ 1).

y(n+ 1) = y(n) = aΔt(y(n) − y(n)y(n+ 1)).

In general, such a substitution yields an implicit scheme but in our case the
resulting recurrence can be solved for y(n+ 1) producing

y(n+ 1) =
(1 + aΔt)y(n)
1 + aΔty(n)

and we recognize the Beverton-Holt-Hassel equation with R0 = 1+aΔt (and
K = 1).
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Figure 1.18: Comparison of solutions to (1.3.18) with a = 4 and (1.3.22)
with μ = 2 (Δt = 0.25).

The Beverton-Holt-Hassell equation We conclude with a brief de-
scription of stability of equilibrium points for the Hassell equation.

Let us recall the equation

x(n + 1) = f(xn, R0, b) =
R0xn

(1 + xn)b
.

Writing
x∗(1 + x∗)b = R0x

∗

we find steady state x∗ = 0 and we observe that if R0 ≤ 1, then this is the
only steady state (at least for positive values of x). If R0 > 1, the there is
another steady state given by

x∗ = R
1/b
0 − 1.

Evaluating the derivative, we have

f ′(x∗, R0, b) =
R0

(1 + x∗)b
− R0bx

∗

(1 + x∗)b+1
= 1 − b+

b

R
1/b
0

Clearly, with R0 > 1, we always have f ′ < 1, so for the monotone stability
we must have

1 − b+
b

R
1/b
0

> 0

and for oscillatory stability

−1 < 1 − b+
b

R
1/b
0

< 0.
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Figure 1.19: Monotonic stability of the equilibrium for the Beverton-Holt
model with b = 3 and R0 = 2; see Eqn (1.3.23).
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Figure 1.20: Oscillatory stability of the equilibrium for the Beverton-Holt
model with b = 2 and R0 = 8; see Eqn (1.3.24).
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Figure 1.21: Regions of stability of the Beverton-Holt model described by
(1.3.23) and (1.3.24)

Solving this inequalities, we obtain that the borderlines between different
behaviours are given by

R0 =
(

b

b− 1

)b

(1.3.23)

and

R0 =
(

b

b− 2

)b

. (1.3.24)

Let us consider existence of 2-cycles. The second iteration of the map

Hx =
R0x

(1 + x)b

is given by

H(H(x)) =
R2

0x(1 + x)b
2−b

((1 + x)b +R0x)b

so that 2-cycles can be obtained from H(H(x)) = x which can be rewritten
as

xR2
0(1 + x)b

2−b = x((1 + x)b +R0x)b,

or, discarding the trivial equilibrium x = 0 and taking the bth root:

(1 + x)R
2
b
0 = (1 + x)b +R0x.

Introducing the change of variables z = 1 + x, we see that we have to
investigate existence of positive roots of

f(z) = zb − zb−1R
2
b
0 +R0z −R0.

Clearly we have f(R
1
b
0 ) = 0 as any equilibrium of H is also an equilibrium

of H2. First let us consider 1 < b < 2 (the case b = 1 yields explicit solution
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Figure 1.22: 2-cycles for the Beverton-Holt model with b = 3 and R0 = 28;
see Eqn (1.3.24).

(see Example 1.3.1) whereas the case b = 2 can be investigated directly and
is referred to the tutorial problems).

We have
f ′(z) = bzb−1 − (b− 1)zb−2R

2
b
0 +R0

and
f ′′(z) = (b− 1)zb−3(bz + (2 − b)R

2
b
0 )

and we see that f ′′ > 0 for all z > 0. Furthermore, f(0) = −R0 < 0. Hence,
the region Ω bounded from the left by the axis z = 0 and lying above the
graph of f for z > 0 is convex. Thus, the z axis, being transversal to the
axis z = 0 cuts the boundary of Ω in exactly two points, one being (0, 0)

and the other (R
1
b
0 , 0). Hence, there are no additional equilibria of H2 and

therefore H does not have 2-cycles for b ≤ 2.

Let us consider b > 3 (the case b = 3 is again referred to tutorials). In this
case f has exactly one inflection point

zi =
b− 2
b

R
2
b
0

The fact that the equilibrium x∗ = R
1
b
0 − 1 loses stability at R0 = (b/b− 2)b

suggests that a 2-cycle can appear when R0 increases passing through this
point. Let us first discuss the stable region R0 ≤ (b/b− 2)b. Then

zi ≤ b

b− 2
< 1,

that is, the inflection point occurs in the nonphysical region x = z − 1 < 0.

For z = 1 we have f(1) = 1−R
2
b
0 < 0 and we can argue as above, using the

line z = 1 instead of the axis z = 0. Thus, when the equilibrium x∗ = R
1
b
0 −1
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Figure 1.23: Function f for b = 3 and, from top to bottom, R0 = 8, 27, 30
Notice the emergence of 2-cycles represented here by new zeros of f besides
z = 3

√
R0.

is stable, there are no 2-cycles. Let us consider the case with R0 > (b/b−2)b.
At the equilibrium we find

f ′(R
1
b
0 ) = bR

b−1
b

0 − (b− 1)R
b−2

b
0 R

2
b
0 +R0

= bR
b−1

b
0 − (b− 2)R0 = R0(bR

− 1
b

0 − (b− 2))

and f ′(R
1
b
0 ) > 0 provided R0 > (b/b − 2)b. So, f takes negative values for

z > R
1
b
0 but, on the other hand, f(z) tends to +∞ for z → ∞ and therefore

there must be z∗ > R
1
b
0 for which f(z∗). Since R

1
b
0 − 1 and 0 were the only

equilibria of H, z∗ must give a 2-cycle.

With much more, mainly computer aided, work we can establish that, as
with the logistic equation, we obtain period doubling and transition to chaos.

Experimental results are in quite good agreement with the model. Most
models fell into the stable region. It is interesting to note that labora-
tory populations are usually less stable then the field ones. This is because
scramble for resources is confined and more homogeneous and low density-
independent mortality (high R0). Also, it is obvious that high reproductive
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ratio R0 and highly over-compensating density dependence (large b) are ca-
pable of provoking periodic or chaotic fluctuations in population density.
This can be demonstrated mathematically (before the advent of mathemat-
ical theory of chaos it was assumed that these irregularities are of stochastic
nature) and is observed in the fluctuations of the population of the Colorado
beetle.

The question whether chaotic behaviour do exist in ecology is still an area
of active debate. Observational time series are always finite and inherently
noisy and it can be argued that regular models can be found to fit these
data. However, several laboratory host-parasitoit systems do seem to exhibit
chaos as good fits were obtained between the data and chaotic mathematical
models.

1.4 A comparison of stability results for differen-

tial and difference equations

Let us consider a phenomenon is a static environment which can be de-
scribed in both continuous and discrete time. In the first case we have an
(autonomous) differential equation

y′ = f(y), y(0) = y0, (1.4.1)

and in the second case a difference equation

y(n+ 1) = g(y(n)), y(0) = y0. (1.4.2)

In all considerations of this section we assume that both f and g are suf-
ficiently regular functions so as not to have any problems with existence,
uniqueness etc.

First we note that while in both cases y is the number of individuals in the
population, the equations (1.4.1) and (1.4.2) refer to two different aspects
of the process. In fact, while (1.4.1) describes the (instantaneous) rate of
change of the population’s size, (1.4.2) give the size of the population after
each cycle. To be more easily comparable, (1.4.2) should be written as

y(n+ 1) − y(n) = −y(n) + g(y(n)) =: f̄(y(n)), y(0) = y0, (1.4.3)

which would describe the rate of change of the population size per unit cycle.
However, difference equations typically are written and analysed in the form
(1.4.2).

Let us recall the general result describing dynamics of (1.4.1). As mentioned
above, we assume that f is at least a Lipschitz continuous function on R and
the solutions exist for all t. An equilibrium solution is any solution y(t) ≡ y
satisfying f(y) = 0.
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Figure 1.24: Monotonic behaviour of solutions to (1.4.1) depends on the
right hand side f of the equation.

Theorem 1.4.1. (i) If y0 is not an equilibrium point, then y(t) never equals
an equilibrium point.
(ii) All non-stationary solutions are either strictly decreasing or strictly in-
creasing functions of t.
(iii) For any y0 ∈ R, the solution y(y) either diverges to +∞ or −∞, or
converges to an equilibrium point, as t→ ∞.

From this theorem it follows that if f has several equilibrium points, then
the stationary solutions corresponding to these points divide the (t, y) plane
into strips such that any solution remains always confined to one of them. If
we look at this from the point of phase space and orbits, first we note that
the phase space in the 1 dimensional case is the real line R, divided by equi-
librium points and thus and orbits are open segments (possibly stretching
to infinity) between equilibrium points.

Furthermore, we observe that if f(y) > 0, then the solution y(t) is increasing
at any point t when y(t) = y; conversely, f(y) < 0 implies that the solution
y(t) is decreasing when y(t) = y. This also implies that any equilibrium
point y∗ with f ′(y∗) < 0 is asymptotically stable and with f ′(y∗) > 0 is
unstable; there are no stable, but not asymptotically stable, equilibria.

If we look now at the difference equation (1.4.2), then at first we note some
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similarities. Equilibria are defined as

g(y) = y,

(or f̄(y) = 0) and, as in the continuous case we compared f with zero, in
the discrete case we compare g(x) with x: g(y) > y means that y(n+ 1) =
g(y(n)) > y(n) so that the iterates are increasing while if g(x) < x, then
they are decreasing. Also, stability of equilibria is characterized in a similar
way: if |g′(y∗)| < 1, then y∗ asymptotically stable and if |g′(y∗)| > 1, then y∗

unstable. In fact, if g′(y∗) > 0, then we have exact equivalence: y∗ is stable
provided f̄ ′(y∗) < 0 and unstable if f̄ ′(y∗) > 0. Indeed, in such a case, if we
start on a one side of an equilibrium y∗, then no iteration can overshot this
equilibrium as for, say y < y∗ we have f(y) < f(y∗) = y∗. Thus, as in the
continuous case, the solutions are confined to intervals between successive
equilibria.

However, similarities end here as the dynamics of difference equation is much
richer that that of the corresponding differential equation as the behaviour
of the solution near an equilibrium is also governed the sign of g itself.

First, contrary to Theorem 1.4.1 (i), solutions can reach an equilibrium in
a finite time, as demonstrated in Example 1.3.4.

Further, recalling Remark 1.3.11, we see that if −1 < g′(y∗) < 0, then the
solution can overshoot the equilibrium creating damped oscillations towards
equilibrium, whereas any reversal of the direction of motion is impossible in
autonomous scalar differential equations. Also, as we have seen, difference
equations may have periodic solutions which are precluded from occurring
in the continuous case. Finally, no chaotic behaviour can occur in scalar
differential equations (partly because they do not admit periodic solutions
abundance of which is a signature of chaos). In fact, in can be proved that
chaos in differential equations may occur only if the dimension of the state
space exceeds 3.
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Figure 1.25: Change of the type of convergence to the equilibrium from
monotonic if 0 < g′(y∗) < 1 to oscillatory for −1 < g′(y∗) < 0 .
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Chapter 2

Structured populations
leading to systems of linear
difference equations

So far we have neglected any population structure by implicitly assuming
that any member of the population is equally likely to die or give birth.
While for some populations, like insects, this leads to good results, for most
it is certainly not true: very young and very old individuals typically are
more likely to die and less likely to give birth, etc. We start with revisiting
the classical Fibonacci’s problem of rabbits.

2.1 Fibonacci’s rabbits

In his famous book, Liber abaci, published in 1202, he formulated the fol-
lowing problem:

A certain man put a pair of rabbits in a place surrounded on all
sides by a wall. How many rabbits can be produced from that
pair in a year if it is supposed that every month each pair begets
a new pair which from the second month on becomes productive?

To formulate a mathematical model, we assume that each pair consists of
one male and one female. We also assume that the monthly census of the
population is taken just before births for this month take place. Denoting
by y(k, n) the number of k-months old pairs of rabbits at time n and by
y(n) the total number of rabbits at time n, we find y(n) =

∑∞
k=1 y(k, n). It

should be noted that the series above is always finite but depends on the
initial condition; that is, how old were the pairs in the initial population.
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Since no rabbits ever die, all those who were k months old in month n, are
k + 1 months old in the month n+ 1; that is,

y(k + 1, n + 1) = y(k, n)

for n, k ≥ 0. There are as many one month old pairs at month n+1 as there
were pairs of at least two months old pairs at time n:

y(1, n + 1) = y(2, n) + y(3, n) + . . . .

Further, we assume that the first pair is juvenile, one month old. The initial
condition are thus the initial conditions are y(1, 0) = 1, y(2, 0) = 0 and
y(k, 0) = 0 for k > 2. Thus, for n ≥ 0, we use the above formulae we may
write

y(n+ 2) = y(1, n+ 2) + y(2, n + 2) + . . . ,

= (y(2, n + 1) + y(3, n+ 1) + . . .) + (y(1, n + 1) + y(2, n + 1) + . . . ,

= (y(1, n) + y(2, n) + . . .) + y(n+ 1)
= y(n) + y(n+ 1). (2.1.1)

Our single initial condition is not sufficient for solving this equation. How-
ever, it is easy to see that we have y(1, 1) = 0, y(2, 1) = 1, y(3, 1) = 0 and
y(k, 1) = 0 for k > 3 or, in other words, y(1) = 1. The resulting initial value
problem

y(n+ 2) = y(n+ 1) + y(n), y(0) = 1, y(0) = 1 (2.1.2)

can be easily solved using general theory of linear difference equations. The
characteristic equation r2 − r − 1 = 0 has the roots given by

r± =
1 ±√

5
2

and the general solution is

y(n) = C+r
n
+ + C−rn

−.

Using the initial conditions we find

y(n) =

(√
5 + 1
2
√

5

)
rn
+ +

(√
5 − 1
2
√

5

)
rn
−.

We further note that since r+ > r−, we have

lim
n→∞ r−n

+ yn =

(√
5 + 1
2
√

5

)
.
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So,

y(n) ≈
(√

5 + 1
2
√

5

)
rn
+ (2.1.3)

for large n.

Our aim here is not to reheat the classical Fibonacci equation but rather
use it to explain a more general structure which will be discussed below. To
make the present considerations useful for it, we will present an alternative
approach to the Fibonacci equation.

2.2 Leslie matrices

Fibonacci model is an example of an age-structured population model: in this
particular case each month the population is represented by two classes of
rabbits, adults v1(n) and juveniles v0(n). Thus the state of the population
is described by the vector

v(n) =
(
v1(n)
v0(n)

)

Since the number of juvenile (one-month old) pairs in month n+1 is equal to
the number of adults in the month n (remember, we take the census before
birth cycle in a given month, so these are newborns from a month before)
and the number of adults is the number of adults from a month before and
a number of juveniles from a month ago who became adults. In other words

v1(n+ 1) = v1(n) + v0(n)
v0(n+ 1) = v1(n) (2.2.1)

or, in a more compact form

v(n + 1) = Lv(n) :=
(

1 1
1 0

)
v(n). (2.2.2)

The solution can be found by iterations

v(n + 1) = Lv(n).

How do we generalize this? Assume that we are tracking only females and
not pairs and that census is taken immediately before the reproductive pe-
riod. Further, assume that there is an oldest age class n and if no individual
can stay in an age class for more than one time period (which is not the
case for Fibonacci rabbits). We introduce the survival rate si and the age
dependent maternity function mi; that is, si is probability of survival from
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age i − 1 to age i (or conditional probability of survival of an individual
to age i provided it survived till i − 1–this point of view will be explored
later), and each individual of age i produces mi offspring in average. Hence,
s1mi is the average number of offspring produced by each individual of age
i which survived to the census. In this case, the evolution of the population
can be described by the difference system

v(n + 1) = Lv(n)

where L is the n× n matrix

L :=

⎛
⎜⎜⎜⎜⎜⎝

s1m1 s1m2 · · · s1mn−1 s1mn

s2 0 · · · 0 0
0 s3 · · · 0 0
...

... · · · ...
...

0 0 · · · sn 0

⎞
⎟⎟⎟⎟⎟⎠ , (2.2.3)

The matrix of the form (2.2.3) is referred to as a Leslie matrix.

Remark 2.2.1. If the census is taken immediately after the reproduction
then the structure of the Leslie matrix is the same but the interpretation
of coefficients is slightly different. If we fix our attention on class i, in the
previous case we had vi individuals immediately before the reproduction
period, these vi individuals produced mivi class 1 individuals, s1mivi of
survived to the next census. In this case, we have vi individuals immediately
after the reproduction period, sivi of them survives as class i individuals till
the next reproduction moment producingmisivi individuals of class 1. Thus,
the Leslie matrix will take the form

L :=

⎛
⎜⎜⎜⎜⎜⎝

s1m1 s2m2 · · · sn−1mn−1 snmn

s2 0 · · · 0 0
0 s3 · · · 0 0
...

... · · · ...
...

0 0 · · · sn 0

⎞
⎟⎟⎟⎟⎟⎠ , (2.2.4)

Mathematically, both approaches are equivalent and, to avoid notational
complications, Leslie matrices often are written as

L :=

⎛
⎜⎜⎜⎜⎜⎝

f1 f2 · · · fn−1 fn

s2 0 · · · 0 0
0 s3 · · · 0 0
...

... · · · ...
...

0 0 · · · sn 0

⎞
⎟⎟⎟⎟⎟⎠ , (2.2.5)

where fi are referred to as the age specific fertility.
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A generalization of the Leslie matrix can be obtained by assuming that a
fraction τi of i-th population stays in the same population. This gives the
matrix

L :=

⎛
⎜⎜⎜⎜⎜⎝

f1 + τ1 f2 · · · fn−1 fn

s2 τ2 · · · 0 0
0 s3 · · · 0 0
...

... · · · ...
...

0 0 · · · sn τn

⎞
⎟⎟⎟⎟⎟⎠ , (2.2.6)

Such matrices are called Usher matrices.

In most cases fi 	= 0 only if α ≤ i ≤ β where [α, β] is the fertile period. For
example, for a typical mammal population we have three stages: immature
(pre-breeding), breeding and post-breeding. If we perform census every year,
then naturally a fraction of each class remains in the same class. Thus, the
transition matrix in this case is given by

L :=

⎛
⎝ τ1 f2 0

s2 τ2 0
0 s3 τ3

⎞
⎠ , (2.2.7)

On the other hand, in many insect populations, reproduction occurs only in
the final stage of life and in such a case fi = 0 unless i = n.

Leslie matrices fit into a more general mathematical structure describing
evolution of populations divided in states, or subpopulations, not necessarily
related to age. For example, we can consider clusters of cells divided into
classes with respect to their size, cancer cells divided into classes on the
basis of the number of copies of a particular gene responsible for its drug
resistance, or a population divided into subpopulations depending on the
geographical patch they occupy in a particular moment of time. Let us
suppose we have n states. Each individual in a given state j contributes on
average to, say, aij individuals in state j. Typically, this is due to a state j
individual:

• migrating to i-th subpopulation with probability pij;

• contributing to a birth of an individual in i-th subpopulation with
probability bij;

• dying with probability djΔt,

other choices and interpretations are, however, also possible. For instance,
if we consider size structured population of clusters of cells divided into
subpopulations according to their size i, an n-cluster can split into several
smaller clusters, contributing thus to ‘births’ of clusters in subpopulations
indexed by i < n. Hence, aij are non-negative but otherwise arbitrary
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numbers. Denoting, as before, by vi,k the number of individuals at time k
in state i, with vk = (v1,k, . . . , vn,k), we have

vk+1 = Avk, (2.2.8)

where

A :=

⎛
⎜⎜⎜⎝

a11 a12 · · · a1 n−1 a1n

a21 a22 · · · a2 n−1 a2n
...

... · · · ...
...

an1 an2 · · · an n−1 ann

⎞
⎟⎟⎟⎠ . (2.2.9)

Thus
vk = Akv0,

where v0 is the initial distribution of the population between the subpopu-
lations.

Example 2.2.2. Any chromosome ends with a telomer which protects it
agains damage during the DNA replication process. Recurring divisions of
cells can shorten the length of telomers and this process is considered to be
responsible for cell’s aging. If telomer is too short, the cell cannot divide
which explains why many cell types can undergo only a finite number of
divisions. Let us consider a simplified model of telomer shortening. The
length of a telomer is a natural number from 0 to n, so cells with telomer
of length i are in subpopulation i. A cell from subpopulation i can die
with probability μi and divide (into 2 daughters). Any daughter can have a
telomer of length i with probability ai and of length i− 1 with probability
1 − ai. Cells of 0 length telomer cannot divide and thus will die some time
later. To find coefficients of the transition matrix, we see that the average
production of offspring with telomer of length i by a parent of the same class
is

2a2
i + 2ai(1 − ai) = 2ai,

(2 daughters with telomer of length i produced with probability a2
i and 1

daughter with telomer of length i−1 produced with probability 2ai(1−ai)).
Similarly, average production of an daughters with length i − 1 telomer
is 2(1 − ai). However, to have offspring, the cell must survived from one
census to another which happens with probability 1 − μi. Hence, defining
ri = 2ai(1 − μi) and di = 2(1 − ai)(1 − μi), we have

A :=

⎛
⎜⎜⎜⎝

0 d1 0 · · · 0
0 r1 d2 · · · 0
...

...
... · · · ...

0 0 0 · · · rn

⎞
⎟⎟⎟⎠ . (2.2.10)

The model can be modified to make it closer to reality by allowing, for
instance, shortening of telomers by different lengthes or consider models
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with more telomers in a cell and with probabilities depending on the length
of all of them.

A particular version of (2.2.9) is obtained when we assume that the total
population has constant size so that no individual dies and no new individual
can appear, so that the the only changes occur due to migration between
states. In other words, bij = dj = 0 for any 1 ≤ i, j ≤ n and thus aij = pij

is the fraction of j-th subpopulation which, on average, moves to the i-
th subpopulation or, using a probabilistic language, probabilities of such a
migration. Then, in addition to the constraint pij ≥ 0 we must have pij ≤ 1
and, since the total number of individuals contributed by the state j to all
other states must equal to the number of individuals in this state, we must
have

vj =
∑

1≤i≤n

pijvj

we obtain ∑
1≤i≤n

pij = 1,

or

pii =
n∑

j=1

j �=i

pij, i = 1, . . . , n, (2.2.11)

In words, the sum of entries in each column must be equal to 1. This
expresses the fact that each individual must be in one of the n states at any
time.

Matrices of this form are called Markov matrices.

We can check that, indeed, this condition ensures that the size of the
population is constant. Indeed, the size of the population at time k is
N(k) = v1(k) + . . .+ vn(k) so that

N(k + 1) =
∑

1≤i≤n

vi(k + 1) =
∑

1≤i≤n

⎛
⎝ ∑

1≤j≤n

pijvj(k)

⎞
⎠

=
∑

1≤j≤n

vj(k)

⎛
⎝ ∑

1≤i≤n

pij

⎞
⎠ =

∑
1≤j≤n

vj(k) = N(k). (2.2.12)

Example 2.2.3. Suppose a forest is composed of two species of trees, with
Ak and Bk denoting the number of each species in the forest in year k. When
a tree dies, a new one grows in its place but may be of a different species.
Suppose that A are long living, with only 1% dying in average per year; on
the other hand, an average of 5% of B trees dies each year. However, it is
more likely that a free spot will be taken over by a B tree, say, 75% of free
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spots goes to the species B and only 25% to the species A. This can be
expressed as

An+1 = 0.99An + 0.25 × 0.01An + 0.25 × 0.05Bn

Bn+1 = 0.75 × 0.01An + 0.95Bn + 0.75 × 0.05Bn

or

An+1 = 0.9925An + 0.125Bn

Bn+1 = 0.0075An + 0.9875Bn,

that is (
An+1

Bn+1

)
=
(

0.9925 0.125
0.0075 0.9875

)(
An

Bn

)
, (2.2.13)

We see that each column sums to 1 expressing the fact that that the spot
belonging to each species must belong to some other species in the next
round.

Markov processes will be discussed later. Here, after necessary preliminaries
concerning general spectral properties of matrices, we shall focus on implica-
tions of the fact that all matrices discussed above have non-negative entries.

2.2.1 Interlude - transition matrices for continuous time pro-
cesses

Let us consider a model with population divided into n subpopulation but
with transitions between them happening in a continuous time. Note that
this in natural way excludes age structured populations discussed earlier as
those models were constructed assuming discrete time. Continuous time age
structure population models require a slightly different approach and will
be considered later.

Let vi(t) denotes the number of individuals in subpopulation i at time t and
consider the change of the size of this population in a small time interval
Δt. Over this interval, an individual from a j-th subpopulation can undergo
the same processes as in the discrete case; that is,

• move to i-th subpopulation with (approximate) probability pijΔt;

• contribute to the birth of an individual in i-th subpopulation with
probability bijΔt;

• die with probability djΔt.

Thus, the number of individuals in class i at time t+ Δt is:
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the number of individuals in class i at time t - the number of
deaths in class i + the number of births in class i do to in-
teractions with individuals in all other classes + the number of
individuals who migrated to class i from all other classes - the
number of individuals who migrated from class i to all other
classes,

or, mathematically,

vi(t+ Δt) = vi(t) − diΔtvi(t) +
n∑

j=1

bijΔtvj(t)

=
n∑

j=1

j �=i

(pijΔtvj(t) − pjiΔtvi(t)) , i = 1, . . . , n. (2.2.14)

To make the notation more compact, we denote qij = bij + pij for i 	= j and

qii = bii − di −
n∑

j=1

j �=i

pji.

Using this notation in (2.2.14), dividing by Δt and passing to the limit with
Δt→ 0 we obtain

v′i(t) =
n∑

j=1

qijvj(t), , i = 1, . . . , n, (2.2.15)

or

v′ = Qv, (2.2.16)

where Q = {qij}1≤i,j≤n.

Let us reflect for a moment on similarities and differences between continu-
ous and discrete time models. To simplify the discussion we shall focus on
processes with no births or deaths events: bij = dj = 0 for 1 ≤ i, j ≤ n.
As in the discrete time model, the total size of the population at any given
time t is given by N(t) = v1(t) + . . .+ vn(t). Then, the rate of change of N
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is given by

dN

dt
=

∑
1≤i≤n

dvi(t)
dt

=
n∑

i=1

⎛
⎝ n∑

j=1

qijvj(t)

⎞
⎠

=
n∑

i=1

qiivi(t) +
n∑

i=1

⎛
⎜⎜⎝

n∑
j=1

j �=1

qijvj(t)

⎞
⎟⎟⎠

= −
n∑

i=1

vi(t)

⎛
⎜⎜⎝

n∑
j=1

j �=i

pji

⎞
⎟⎟⎠+

n∑
i=1

⎛
⎜⎜⎝

n∑
j=1

j �=i

pijvj(t)

⎞
⎟⎟⎠

= −
n∑

i=1

vi(t)

⎛
⎜⎜⎝

n∑
j=1

j �=i

pji

⎞
⎟⎟⎠+

n∑
j=1

vj(t)

⎛
⎜⎝ n∑

i=1
i�=j

pij

⎞
⎟⎠

= −
n∑

i=1

vi(t)

⎛
⎜⎜⎝

n∑
j=1

j �=i

pji

⎞
⎟⎟⎠+

n∑
i=1

vi(t)

⎛
⎜⎜⎝

n∑
j=1

j �=i

pji

⎞
⎟⎟⎠ = 0, (2.2.17)

where we used the fact that i, j are dummy variables.

Remark 2.2.4. The change of order of summation can be justified as follows

n∑
i=1

⎛
⎜⎜⎝

n∑
j=1

j �=i

pijvj

⎞
⎟⎟⎠ =

n∑
i=1

⎛
⎝ n∑

j=1

pijvj

⎞
⎠−

n∑
i=1

piivi

=
n∑

j=1

(
n∑

i=1

pijvj

)
−

n∑
j=1

pjjvj =
n∑

j=1

vj

(
n∑

i=1

pij − pjj

)

=
n∑

j=1

vj

⎛
⎜⎝ n∑

i=1
i�=j

pij

⎞
⎟⎠ .

Hence, N(t) = N(0) for all time and the process is conservative. To certain
extent we can compare the increments in the discrete time process

v(k + 1) − v(k) = (−I + P)v(k) (2.2.18)

=

⎛
⎜⎜⎜⎝

−1 + p11 p12 · · · p1n

p21 −1 + p22 · · · p2n
...

... · · · ...
pn1 pn2 · · · −1 + pnn

⎞
⎟⎟⎟⎠v(k),
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Figure 2.1: Evolution of v1(k) (circles), v2(k) (squares) and v3(k) (rhom-
buses) for the initial distribution

◦
v= (1, 0, 3) and k = 1, . . . , 20.

so that the ‘increment’ matrix has the property that each row adds up to zero
due to (2.2.11). However, it is important to remember that the coefficients
pij in the continuous case are not probabilities and thus they do not add up
to zero. In fact, they can be arbitrary numbers and represent probability
rates with pijΔt being approximate interstate transition probabilities.

2.3 Long time behaviour of structured population

models

As usual, we are interested in the long time behaviour of solutions. Before
we embark on mathematical analysis, let us consider two numerical examples
which indicate what we should expect from the models.

Example 2.3.1. Population in discrete time
Let us consider a population divided into three classes, evolution of which
is modelled by the Leslie matrix

L =

⎛
⎝ 2 1 1

0.5 0 0
0 0.4 0

⎞
⎠ ,

so that the population v = (v1, v2, v3) evolves according to

v(k + 1) = Lv(k), k = 0, 1, 2 . . . ,

or
v(k) = Lk ◦

v,

where
◦
v is an initial distribution of the population. In Fig. 2.1 we observe

that each component grows very fast with k. However, if we compare growth
of v1(k) with v2(k) and of v2(k) with v3(k) (see Fig. 2.2) we see that the
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Figure 2.2: Evolution of v1(k)/v2(k) (top) and v2(k)/v3(k) (bottom) for the
initial distribution

◦
v= (1, 0, 3) and k = 1, . . . , 20.
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Figure 2.3: Evolution of v1(k)/v2(k) (top) and v2(k)/v3(k) (bottom) for the
initial distribution

◦
v= (2, 1, 4) and k = 1, . . . , 20.

ratios stabilize quickly around 4.5 in the first case and around 5.62 in the
second case. This suggests that there is a scalar function f(k) and a vector
e = (e1, e2, e3) = (25.29, 5.62, 1) such that for large k

v(k) ≈ f(k)e. (2.3.1)

Let us consider another initial condition, say,
◦
v= (2, 1, 4) and do the same

comparison. It turns out that the ratios stabilize at the same level which
further suggest that e does not depend on the initial condition so that (2.3.1)
can be refined to

v(k) ≈ f1(k)g(
◦
v))e, k → ∞ (2.3.2)

where g is a linear function. Anticipation the development of the theory, it
can be proved that f1(k) = λk where λ is the largest eigenvalue of L, e is the

62



Chapter 2 Long time behaviour of structured population models

�

� � � � � � � � �

�

� � � � � � � � �

� � � � � � � � � �
2 4 6 8 10

0.5

1.0

1.5

2.0

Figure 2.4: Evolution of v1(k)/λk) (circles), v2(k)/λk (squares)and v3(k)/λk

(rhombuses) for the initial distribution
◦
v= (1, 0, 3) and k = 1, . . . , 20.

eigenvector corresponding to λ and g(x) = g ·x with g being the eigenvector
of the transpose matrix corresponding to λ. In our case, λ ≈ 2.26035 and
the ratios vi(k)/λk stabilize as seen in Fig. 2.4.

The next example shows that structured population models in continuous
time have the same property.

Example 2.3.2. Population in continuous time.
Consider the following problem

dv
dt

= Av, (2.3.3)

where

A =

⎛
⎝ −1 1 1

0.5 −0.5 0
0 0.4 −1

⎞
⎠ .

We consider this equation with the initial conditions
◦
v= (1, 0, 3) and

◦
v=

(2, 1, 4).

As before we see that the components grow fast but v1(t)/v2(t) and v2(t)/v3(t)
stabilize quickly around 1.57631 and 0.970382, respectively, see Fig. 2.6 and
these ratios are independent of the initial conditions. Thus,

v(t) ≈ f(t)g(
◦
v)e

for large t, where e = (1.5296, 0.970382, 1) and g is a scalar linear function
of

◦
v. As illustrated in Fig. 2.7, f(t) = e0.288153t and the number 0.288153

is the largest eigenvalue of A.
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Figure 2.5: Solutions v1(t) (dotted), v2(t) (dashed) and v3(t) (continuous)
for the initial condition

◦
v= (2, 1, 4)
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Figure 2.6: Evolution of v1(t)/v2(t) (top) and v2(t)/v3(t) (bottom) for the
initial distributions

◦
v= (1, 0, 3) (continuous line) and

◦
v= (2, 1, 4) (dashed

line).

2 4 6 8 10

1.5

2.0

2.5

3.0

3.5

4.0

Figure 2.7: Evolution v1(t)/e0.288153t (dotted), v2(t)/e0.288153t (dashed) and
v3(t)/e0.288153t (continuous) for the initial condition

◦
v= (2, 1, 4).
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2.3.1 Spectral properties of a matrix.

To explain and be able to predict similar behaviour in population mod-
els, first we discuss basic facts concerning eigenvalues and eigenvectors of a
matrix. Let us start with discrete systems.

Systems of difference equations I. We are interested in solving

y(k + 1) = Ay(k), (2.3.4)

where A is an n× n matrix A = {aij}1≤i,j≤n; that is

A =

⎛
⎜⎝

a11 . . . a1n
...

...
an1 . . . ann

⎞
⎟⎠ ,

and y(k) = (y1(k), . . . , yn(k)).

Eq. (2.3.4) is usually supplemented by the initial condition y(0) = y0. It is
obvious, by induction, to see that the solution to (2.3.4) is given by

y(k) = Aky0, k = 1, 2, . . . . (2.3.5)

The problem with (2.3.5) is that it is rather difficult to give an explicit form
of Ak.

To proceed, we assume that the matrix A is nonsingular (this is not serious
restriction as then one can consider action of the matrix in a subspace). This
means, in particular, that if v1, . . . ,vn are linearly independent vectors, then
also Av1, . . . ,Avn are linearly independent. Since R

n is n-dimensional, it
is enough to find n linearly independent vectors vi, i = 1, . . . , n for which
Akvi can be easily evaluated. Assume for a moment that such vectors have
been found. Then, for arbitrary x0 ∈ R

n we can find constants c1, . . . , cn
such that

x0 = c1v1 + . . .+ cnvn.

Precisely, let V be the matrix having vectors vi as its columns

V =

⎛
⎝ | . . . |

v1 . . . vn

| . . . |

⎞
⎠ . (2.3.6)

Note, that V is invertible as the vectors vi are linearly independent. Denot-
ing c = (c1, . . . , cn), we obtain

c = V−1x0. (2.3.7)

65



Long time behaviour of structured population models Chapter 2

Thus, for an arbitrary x0 we have

Anx0 = An(c1v1 + . . .+ c2vn) = c1Anv1 + . . .+ ckAnvn. (2.3.8)

Now, if we denote by Ak the matrix whose columns are vectors Akv1, . . . ,Akvn,
then we can write

Akx0 = Anc = AkV−1x0. (2.3.9)

Hence, the problem is to find linearly independent vectors vi, i = 1, . . . , k,
on which powers of A can be easily evaluated. We shall use eigenvalues and
eigenvectors for this purpose. Firstly, note that if v1 is an eigenvector of A
corresponding to an eigenvalue λ1, that is, Av1 = λ1v1, then by induction

Akv1 = λk
1v

1.

Therefore, if we have n linearly independent eigenvectors v1, . . . ,vn cor-
responding to eigenvalues λ1, . . . , λn (not necessarily distinct), then from
(2.3.8) we obtain

Akx0 = c1λ
k
1v

1 + . . .+ cnλ
k
nv

n.

with c1, . . . , cn given by (2.3.7), or

Akx0 =

⎛
⎝ | . . . |

λk
1v

1 . . . λk
nv

n

| . . . |

⎞
⎠V−1x0 (2.3.10)

Systems of differential equations I. Considerations of the previous
paragraph to some extent can be repeated for systems of differential equa-
tions

y′ = Ay, (2.3.11)

where y(t) = (y1(t), . . . , yn(t)) and, as before, A = {aij}1≤i,j≤n is an n × n
matrix. The system (2.3.11) is considered together with the following initial
conditions

y(t0) =
◦
y . (2.3.12)

The question of solvability and uniqueness of (2.3.11), (2.3.12) is not as
easy as for difference equations but it follows from the Picard theorem.
We summarize the relevant properties of solutions in the following theorem
Thus, we can state

Theorem 2.3.3.

i. There exists one and only one solution of the initial value problem
(2.3.11), (2.3.12), which is defined for all t ∈ R.

ii. The set X of all solutions to (2.3.11) is a linear space of dimension n.
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iii. If y1(t), . . . ,yk(t) are linearly independent solutions of (2.3.11) and
let t0 ∈ R be an arbitrary number. Then, {y1(t), . . . ,yk(t)} form a
linearly independent set of functions if and only if {y1(t0), . . . ,yk(t0)}
is a linearly independent set of vectors in R

n.

An important consequence of iii. is that solutions starting from linearly
independent initial conditions remain linearly independent. Note that this
is not necessarily the case in systems of difference equations–to have this
property we required A to be nonsingular.

Theorem 2.3.3 implies that there is matrix E(t) such that the solution y(t)
can be represented as

y(t) = E(t)
◦
y (2.3.13)

which satisfies E(0) = I (the identity matrix). Then we follow as in the
discrete case assuming that we can find n linearly independent vectors vi,
i = 1, . . . , n for which E(t)vi can be easily evaluated. Then, for arbitrary
◦
x∈ R

n we can find constants c1, . . . , cn such that

◦
y= c1v1 + . . .+ cnvn,

that is, denoting c = (c1, . . . , cn),

c = V−1x0, (2.3.14)

where V was defined in (2.3.6). Thus, for an arbitrary
◦
y we have

E(t)
◦
y= E(t)(c1v1 + . . .+ c2vn) = c1E(t)v1 + . . .+ ckE(t)vn. (2.3.15)

Now, if we denote by Ev(t) the matrix whose columns are vectors E(t)v1, . . . , E(t)vn,
then we can write

E(t)
◦
y= Ev(t)c = Ev(t)V−1 ◦

y . (2.3.16)

Hence, again, the problem lies in finding linearly independent vectors vi,
i = 1, . . . , k, on which powers of E can be easily evaluated. Mimicking the
scalar case, let us consider y(t) = eλtv for some vector v ∈ R

n. Since

d

dt
eλtv = λeλtv

and
A(eλtv) = eλtAv

as eλt is a scalar, y(t) = eλtv is a solution to (2.3.11) if and only if

Av = λv, (2.3.17)
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or in other words, y(t) = eλtv is a solution if and only if v is an eigenvector
of A corresponding to the eigenvalue λ.

Thus, for each eigenvector vj of A with eigenvalue λj we have a solution
yj(t) = eλjtvj. By Theorem 2.3.3, these solutions are linearly independent
if and only if the eigenvectors vj are linearly independent in R

n. Thus, if we
can find n linearly independent eigenvectors of A with eigenvalues λ1, . . . , λn

(not necessarily distinct), then the general solution of (2.3.24) is of the form

y(t) = c1e
λ1tv1 + . . .+ cne

λntvn. (2.3.18)

with c1, . . . , cn given by (2.3.7), or

E(t)
◦
y=

⎛
⎝ | . . . |

eλ1tv1 . . . eλntvn

| . . . |

⎞
⎠V−1 ◦

y . (2.3.19)

Unfortunately, in many cases there is insufficiently many eigenvectors to
generate all solutions.

Eigenvalues, eigenvectors and associated eigenvectors. Let A be
an n×n matrix. We say that a number λ (real or complex) is an eigenvalue
of A is there exist a non-zero solution of the equation

Av = λv. (2.3.20)

Such a solution is called an eigenvector of A. The set of eigenvectors corre-
sponding to a given eigenvalue is a vector subspace. Eq. (2.3.20) is equiv-
alent to the homogeneous system (A − λI)v = 0, where I is the identity
matrix, therefore λ is an eigenvalue of A if and only if the determinant of
A satisfies

det(A− λI) =

∣∣∣∣∣∣∣
a11 − λ . . . a1n

...
...

an1 . . . ann − λ

∣∣∣∣∣∣∣ = 0. (2.3.21)

Evaluating the determinant we obtain a polynomial in λ of degree n. This
polynomial is also called the characteristic polynomial of the system (2.3.11).
We shall denote this polynomial by p(λ). From algebra we know that there
are exactly n, possibly complex, roots of p(λ). Some of them may be mul-
tiple, so that in general p(λ) factorizes into

p(λ) = (λ1 − λ)n1 · . . . · (λk − λ)nk , (2.3.22)

with n1+. . .+nk = n. It is also worthwhile to note that since the coefficients
of the polynomial are real, then complex roots appear always in conjugate
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pairs, that is, if λj = ξj + iωj is a characteristic root, then so is λ̄j =
ξj − iωj . Thus, eigenvalues are the roots of the characteristic polynomial
of A. The exponent ni appearing in the factorization (2.3.22) is called the
algebraic multiplicity of λi. For each eigenvalue λi there corresponds an
eigenvector vi and eigenvectors corresponding to distinct eigenvalues are
linearly independent. The set of all eigenvectors corresponding to λi spans
a subspace, called the eigenspace corresponding to λi which we will denote
by Ẽλi

. The dimension of Ẽλi
is called the geometric multiplicity of λi. In

general, algebraic and geometric multiplicities are different with geometric
multiplicity being at most equal to the algebraic one. Thus, in particular,
if λi is a single root of the characteristic polynomial, then the eigenspace
corresponding to λi is one-dimensional.

If the geometric multiplicities of eigenvalues add up to n; that is, if we have
n linearly independent eigenvectors, then these eigenvectors form a basis
for R

n. In particular, this happens if all eigenvalues are single roots of
the characteristic polynomial. If this is not the case, then we do not have
sufficiently many eigenvectors to span R

n and if we need a basis for R
n,

then we have to find additional linearly independent vectors. A procedure
that can be employed here and that will be very useful in our treatment of
systems of differential equations is to find solutions to equations of the form
(A− λiI)kv = 0 for 1 < k ≤ ni, where ni is the algebraic multiplicity of λi.
Precisely speaking, if λi has algebraic multiplicity ni and if

(A− λiI)v = 0

has only νi < ni linearly independent solutions, then we consider the equa-
tion

(A− λiI)2v = 0.

Clearly all solutions of the preceding equation (eigenvectors) solve this equa-
tion but there is at least one more independent solution so that we have at
least νi + 1 independent vectors (note that these new vectors are no longer
eigenvectors). If the number of independent solutions is still less than ni,
then we consider

(A− λiI)3v = 0,

and so on, till we get a sufficient number of them. Note, that to make sure
that in the step j we select solutions that are independent of the solutions
obtained in step j − 1 it is enough to find solutions to (A− λiI)jv = 0 that
satisfy (A− λiI)j−1v 	= 0.

Vectors v obtained in this way for a given λi are called generalized or as-
sociated eigenvectors corresponding to λi and they span an ni dimensional
subspace called a generalized or associated eigenspace corresponding to λi,
denoted hereafter by Eλi

.
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Now we show how to apply the concepts discussed above to solve systems
of difference and differential equations.

Systems of difference equations II. Let us return to the system

y(k + 1) = Ay(k), y(0) =
◦
y .

As discussed, we need to find formulae for Akv for a selected n linearly
independent vectors v. Let us take as v the collection of all eigenvectors
and associated eigenvectors of A. We know that if vi is an eigenvector
associated to an eigenvalue λi, then Akvi = λk

i v
i. Thus, the question is

whether Ak can be effectively evaluated on associated eigenvectors.

Let vj be an associated eigenvector found as a solution to (A− λiI)jvj = 0
with j ≤ ni. Then, using the binomial expansion, we find

Akvj = (λiI + A− λiI)kvj =
k∑

r=0
λk−r

i

(
k
r

)
(A− λiI)rvj

=
(
λk

i I + kλk−1
i (A− λiI) + . . .

+
k!

(j − 1)!(k − j + 1)!
λk−j+1

i (A− λiI)j−1

)
vj, (2.3.23)

where (
k
r

)
=

k!
r!(k − r)!

is the Newton symbol. It is important to note that (2.3.23) is a finite sum
for any k; it always terminates at most at the term (A− λ1I)ni−1 where ni

is the algebraic multiplicity of λi.

We shall illustrate these considerations by several examples.

Example 2.3.4. Find Ak for

A =

⎛
⎝ 4 1 2

0 2 −4
0 1 6

⎞
⎠ .

We start with finding eigenvalues of A:

p(λ) =

∣∣∣∣∣∣
4 − λ 1 2

0 2 − λ −4
0 1 6 − λ

∣∣∣∣∣∣ = (4 − λ)(16 − 8λ+ λ2) = (4 − λ)3 = 0

gives the eigenvalue λ = 4 of algebraic multiplicity 3. To find eigenvectors
corresponding to λ = 4, we solve

(A− 4I)v =

⎛
⎝ 0 1 2

0 −2 −4
0 1 2

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .
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Thus, v1 is arbitrary and v2 = −2v3 so that the eigenspace is two dimen-
sional, spanned by

v1 =

⎛
⎝ 1

0
0

⎞
⎠ , v2 =

⎛
⎝ 0

−2
1

⎞
⎠ .

Therefore

Akv1 = 4k

⎛
⎝ 1

0
0

⎞
⎠ , Akv2 = 4k

⎛
⎝ 0

−2
1

⎞
⎠ .

To find the associated eigenvector we consider

(A− 4I)2v =

⎛
⎝ 0 1 2

0 −2 −4
0 1 2

⎞
⎠
⎛
⎝ 0 1 2

0 −2 −4
0 1 2

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠

=

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .

Any vector solves this equation so that we have to take a vector that is not
an eigenvalue. Possibly the simplest choice is

v3 =

⎛
⎝ 0

0
1

⎞
⎠ .

Thus, by (2.3.23)

Akv3 =
(
4kI + k4k−1(A− 4I)

)
v3

=

⎛
⎝
⎛
⎝ 4k 0 0

0 4k 0
0 0 4k

⎞
⎠+ k4k−1

⎛
⎝ 0 1 2

0 −2 −4
0 1 2

⎞
⎠
⎞
⎠
⎛
⎝ 0

0
1

⎞
⎠

=

⎛
⎝ 2k4k−1

−k4k

4k + 2k4−1

⎞
⎠ .

To find explicit expression for Ak we use (2.3.9). In our case

Ak =

⎛
⎝ 4k 0 2k4k−1

0 −2 · 4k −k4k

0 4k 4k + 2k4k−1

⎞
⎠ ,

further

V =

⎛
⎝ 1 0 0

0 −2 0
0 1 1

⎞
⎠ ,
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so that

V−1 =

⎛
⎝ 1 0 0

0 −1
2 0

0 1
2 1

⎞
⎠ .

Therefore

Ak = AkV−1 =

⎛
⎝ 4k k4k−1 2k4k−1

0 4k − 2k4k−1 −k4k

0 k4k−1 4k + 2k4k−1

⎞
⎠ .

The next example shows how to deal with complex eigenvalues. We recall
that if λ = ξ + iω is a complex eigenvalue, then also its complex conjugate
λ̄ = ξ − iω is an eigenvalue, as the characteristic polynomial p(λ) has real
coefficients. Eigenvectors v corresponding to a complex complex eigenvalue
λ will be complex vectors, that is, vectors with complex entries. Thus, we
can write

v =

⎛
⎜⎝

v1
1 + iv2

1
...

v1
n + iv2

n

⎞
⎟⎠ =

⎛
⎜⎝

v1
1
...
v1
n

⎞
⎟⎠+ i

⎛
⎜⎝

v2
1
...
v2
n

⎞
⎟⎠ = �v + i�v.

Since (A− λI)v = 0, taking complex conjugate of both sides and using the
fact that matrices A and I have only real entries, we see that

(A− λI)v = (A− λ̄I)v̄ = 0

so that the complex conjugate v̄ of the eigenvector v is an eigenvector corre-
sponding to the eigenvalue λ̄. Since λ 	= λ̄, as we assumed that λ is complex,
the eigenvectors v and v̄ are linearly independent and thus we obtain two
linearly independent complex valued solutions λkv and λ̄kv̄. Since taking
real and imaginary parts is a linear operations:

�(λkv) =
λkv + λ̄kv̄

2
, �(λkv) =

λkv − λ̄kv̄
2i

,

both �(λkv) and �(λkv) are real valued solutions. To find explicit expres-
sions for them we write λ = reiφ where r = |λ| and φ = Argλ. Then

λn = rneinφ = rn(cosnφ+ i sin nφ)

and

�(λnv) = rn(cosnφ�v − sinnφ�v),
�(λnv) = rn(sinnφ�v + cosnφ�v).
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Example 2.3.5. Find Ak if

A =
(

1 −5
1 −1

)
.

We have ∣∣∣∣ 1 − λ −5
1 −1 − λ

∣∣∣∣ = λ2 + 4

so that λ1,2 = ±2i. Taking λ1 = 2i, we find the corresponding eigenvector
by solving (

1 − 2i −5
1 −1 − 2i

)(
v1
v2

)
=
(

0
0

)
;

thus

v1 =
(

1 + 2i
1

)
and

x(k) = Anv1 = (2i)k
(

1 + 2i
1

)
.

To find real valued solutions, we have to take real and imaginary parts of
x(k). Since i = cos π

2 + i sin π
2 we have, by de Moivre’s formula,

(2i)k = 2k
(
cos

π

2
+ i sin

π

2

)k
= 2k

(
cos

kπ

2
+ i sin

kπ

2

)
.

Therefore

�x(k) = 2k

(
cos

kπ

2

(
1
1

)
− sin

kπ

2

(
2
0

))

�x(k) = 2k

(
cos

kπ

2

(
2
0

)
+ sin

kπ

2

(
1
1

))
.

The initial values for �x(k) and �x(k) are, respectively,
(

1
1

)
and

(
2
0

)
.

Since Ak is a real matrix, we have �Akv1 = Ak�v1 and �Akv1 = Ak�v1,
thus

Ak

(
1
1

)
= 2k

(
cos

kπ

2

(
1
1

)
− sin

kπ

2

(
2
0

))
= 2k

(
cos kπ

2 − 2 sin kπ
2

cos kπ
2

)

and

Ak

(
2
0

)
= 2k

(
cos

kπ

2

(
2
0

)
+ sin

kπ

2

(
1
1

))
= 2k

(
2 cos kπ

2 + sin kπ
2

sin kπ
2

)
.

To find Ak we use again (2.3.9). In our case

Ak = 2k

(
cos kπ

2 − 2 sin kπ
2 2 cos kπ

2 + sin kπ
2

cos kπ
2 sin kπ

2

)
,
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further

V =
(

1 2
1 0

)
,

so that

V−1 = −1
2

(
0 −2
−1 1

)
.

Therefore

Ak = AkV−1 = −2k−1

( −2 cos kπ
2 − sin kπ

2 5 sin kπ
2

− sin kπ
2 −2 cos kπ

2 + sin kπ
2

)
.

Systems of differential equations II. Let us return to the system

y′ = Ay. (2.3.24)

As before, our goal is to find n linearly independent solutions of (2.3.24).
For the solution matrix E(t) we do not have a natural expression as was
the case for the difference system. If all eigenvalues are simple, then we
have a sufficient number of eigenvector to define E(t) by (2.3.19). The same
formula is valid if there are multiple eigenvalues but algebraic and geometric
multiplicities of each eigenvalue are the same. However, it still remains
to find a formula for E(t) when A has less than n linearly independent
eigenvectors.

Recall that for a single equation y′ = ay, where a is a constant, the general
solution is given by y(t) = eatC, where C is a constant. In a similar way,
we would like to say that the general solution to (2.3.24) is y = eAtv, where
v is any constant vector in R

n. The problem is that we do not know what
it means to evaluate the exponential of a matrix. However, if we reflect for
a moment that the exponential of a number can be evaluated as the power
(Maclaurin) series

ex = 1 + x+
x2

2
+
x3

3!
+ . . .+

xk

k!
+ . . . ,

where the only involved operations on the argument x are additions, scalar
multiplications and taking integer powers, we come to the conclusion that
the above expression can be written also for a matrix, that is, we can define

eA = I + A +
1
2
A2 +

1
3!
A3 + . . .+

1
k!
Ak + . . . . (2.3.25)

The problem is that the sum is infinite and we have to define what it means
for a series of matrices to converge. This can be done but here we will avoid
this problem by showing that, in fact, the sum in (2.3.25) can be always
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replaced by a finite sum. We note, however, that in some simple cases we
can evaluate the infinite sum. For example, if we take

A =

⎛
⎝ λ 0 0

0 λ 0
0 0 λ

⎞
⎠ = λI,

then
Ak = λkIk = λkI,

and

eλI = I + λI +
λ2

2
I +

λ3

3!
I + . . .+

λk

k!
+ . . .

=
(

1 + λ+
λ2

2
+
λ3

3!
+ . . .+

λk

k!
+ . . .

)
I

= eλI. (2.3.26)

Unfortunately, in most cases finding the explicit form for eA directly is very
difficult.

To justify algebraic manipulations below, we note that, in general, matrix
exponentials have the following algebraic properties

(
eA
)−1

= e−A

and
eA+B = eAeB (2.3.27)

provided the matrices A and B commute: AB = BA. Furthermore, defining
a function of t by

etA = I + tA +
t2

2
A2 +

t3

3!
A3 + . . . +

tk

k!
Ak + . . . , (2.3.28)

and formally differentiating it with respect to t we find, as in the scalar case,
that

d

dt
etA = A + tA2 +

t2

2!
A3 + . . . +

tk−1

(k − 1)!
Ak + . . .

= A
(
I + tA +

t2

2!
A2 + . . . +

tk−1

(k − 1)!
Ak−1 + . . .

)
= AetA = etAA,

proving thus that y(t) = etAv is a solution to our system of equations for
any constant vector v (provided, of course, that we can justify all the above
operations in a rigorous way).
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As we mentioned earlier, in general it is difficult to find directly the explicit
form of etA. However, we can always find n linearly independent vectors
v for which the series etAv is finite. This is based on the following two
observations. Firstly, since λI and A − λI commute, we have by (2.3.26)
and (2.3.27)

etAv = et(A−λI)etλIv = eλtet(A−λI)v.

Secondly, if (A− λI)mv = 0 for some m, then

(A− λI)rv = 0, (2.3.29)

for all r ≥ m. This follows from

(A− λI)rv = (A− λI)r−m[(A− λI)mv] = 0.

Consequently, for such a v

et(A−λI)v = v + t(A− λI)v + . . .+
tm−1

(m− 1)!
(A− λI)m−1v.

and

etAv = eλtet(A−λI)v = eλt

(
v + t(A− λI)v + . . .+

tm−1

(m− 1)!
(A− λI)m−1v

)
.

(2.3.30)
Thus, to find all solutions to y′ = Ay it is sufficient to find n independent
vectors v satisfying (2.3.29) for some scalars λ. To check consistency of this
method with our previous consideration we observe that if λ = λ1 is a single
eigenvalue of A with a corresponding eigenvector v1, then (A−λ1I)v1 = 0,
thusm of (2.3.29) is equal to 1. Consequently, the sum in (2.3.30) terminates
after the first term and we obtain

y1(t) = eλ1tv1

in accordance with (2.3.18). From our discussion of eigenvalues and eigen-
vectors it follows that if λi is a multiple eigenvalue of A of algebraic multi-
plicity ni and the geometric multiplicity νi is less then ni; that is, there is
less than ni linearly independent eigenvectors corresponding to λi, then the
missing independent vectors can be found by solving successively equations
(A− λiI)kv = 0 with k running at most up to n1.

Remark 2.3.6. Let us mention here that the exponential function etA has
been introduced just as a guideline, to explain how the formula (2.3.30) was
arrived at. Once we have this formula, we can directly check that it gives a
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solution to (2.3.24). Indeed,

d

dt
eλt

(
v + t(A− λI)v + . . .+

tm−1

(m− 1)!
(A− λI)m−1v

)

= λeλt

(
v + t(A− λI)v + . . .+

tm−1

(m− 1)!
(A− λI)m−1v

)

+ eλt

(
(A− λI)v + t(A− λI)2v . . .+

tm−2

(m− 2)!
(A− λI)m−1v

)

= λeλt

(
v + t(A− λI)v + . . .+

tm−1

(m− 1)!
(A− λI)m−1v

)

+ eλt(A− λI)
(
v + t(A− λI)2v . . .+

tm−2

(m− 2)!
(A− λI)m−2v

)

= λeλt tm−1

(m− 1)!
(A− λI)m−1v

+ eλtA
(
v + t(A− λI)2v . . .+

tm−2

(m− 2)!
(A− λI)m−2v

)

= Aeλt tm−1

(m− 1)!
(A− λI)m−1v − (A− λI)eλt tm−1

(m− 1)!
(A− λI)m−1v

+ eλtA
(
v + t(A− λI)2v . . .+

tm−2

(m− 2)!
(A− λI)m−2v

)

− eλt tm−1

(m− 1)!
(A− λI)mv

+ eλtA
(
v + t(A− λI)2v . . .+

tm−1

(m− 1)!
(A− λI)m−1v

)

= eλtA
(
v + t(A− λI)2v . . .+

tm−1

(m− 1)!
(A− λI)m−1v

)

where we used (A− λI)mv = 0.

We illustrate the theory on a few examples.

Example 2.3.7. Find the general solution to

y′ =

⎛
⎝ 1 −1 4

3 2 −1
2 1 −1

⎞
⎠y.

To obtain the eigenvalues we calculate the characteristic polynomial

p(λ) = det(A− λI) =

∣∣∣∣∣∣
1 − λ −1 4

3 2 − λ −1
2 1 −1 − λ

∣∣∣∣∣∣
= −(1 + λ)(1 − λ)(2 − λ) + 12 + 2 − 8(2 − λ) + (1 − λ) − 3(1 + λ)
= −(1 + λ)(1 − λ)(2 − λ) + 4λ− 4 = (1 − λ)(λ− 3)(λ + 2),
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so that the eigenvalues of A are λ1 = 1, λ2 = 3 and λ3 = −2. All the
eigenvalues have algebraic multiplicity 1 so that they should give rise to 3
linearly independent eigenvectors.

(i) λ1 = 1: we seek a nonzero vector v such that

(A− 1I)v =

⎛
⎝ 0 −1 4

3 1 −1
2 1 −2

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .

Thus

−v2 + 4v3 = 0, 3v1 + v2 − v3 = 0, 2v1 + v2 − 2v3 = 0

and we get v2 = 4v3 and v1 = −v3 from the first two equations and
the third is automatically satisfied. Thus we obtain the eigenspace
corresponding to λ1 = 1 containing all the vectors of the form

v1 = C1

⎛
⎝ −1

4
1

⎞
⎠

where C1 is any constant, and the corresponding solutions

y1(t) = C1e
t

⎛
⎝ −1

4
1

⎞
⎠ .

(ii) λ2 = 3: we seek a nonzero vector v such that

(A− 3I)v =

⎛
⎝ −2 −1 4

3 −1 −1
2 1 −4

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .

Hence

−2v1 − v2 + 4v3 = 0, 3v1 − v2 − v3 = 0, 2v1 + v2 − 4v3 = 0.

Solving for v1 and v2 in terms of v3 from the first two equations gives
v1 = v3 and v2 = 2v3. Consequently, vectors of the form

v2 = C2

⎛
⎝ 1

2
1

⎞
⎠

are eigenvectors corresponding to the eigenvalue λ2 = 3 and the func-
tion

y2(t) = e3t

⎛
⎝ 1

2
1

⎞
⎠

is the second solution of the system.
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(iii) λ3 = −2: We have to solve

(A + 2I)v =

⎛
⎝ 3 −1 4

3 4 −1
2 1 1

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .

Thus

3v1 − v2 + 4v3 = 0, 3v1 + 4v2 − v3 = 0, 2v1 + v2 + v3 = 0.

Again, solving for v1 and v2 in terms of v3 from the first two equations
gives v1 = −v3 and v2 = v3 so that each vector

v3 = C3

⎛
⎝ −1

1
1

⎞
⎠

is an eigenvector corresponding to the eigenvalue λ3 = −2. Conse-
quently, the function

y3(t) = e−2t

⎛
⎝ −1

1
1

⎞
⎠

is the third solution of the system. These solutions are linearly inde-
pendent since the vectors v1,v2,v3 are linearly independent as eigen-
vectors corresponding to distinct eigenvalues. Therefore, every solu-
tion is of the form

y(t) = C1e
t

⎛
⎝ −1

4
1

⎞
⎠+ C2e

3t

⎛
⎝ 1

2
1

⎞
⎠+ C3e

−2t

⎛
⎝ −1

1
1

⎞
⎠ .

If we single complex eigenvalue λ with eigenvector v then, as explained
before Example 2.3.5, λ̄ is also an eigenvalue with corresponding eigenvector
v̄. Thus, we have two linearly independent (complex) solutions

z1(t) = eλtv, z2(t) = eλ̄tv̄ = z1(t).

Since the sum and the difference of two solutions are again solutions, by
taking

y1(t) =
z1(t) + z2(t)

2
=

z1(t) + z1(t)
2

= �z1(t)

and

y2(t) =
z1(t) − z2(t)

2i
=

z1(t) − z1(t)
2i

= �z1(t)
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we obtain two real valued (and linearly independent) solutions. To find
explicit formulae for y1(t) and y2(t), we write

z1(t) = eλtv = eξt(cos ωt+ i sinωt)(�v + i�v)
= eξt(cos ωt�v − sinωt�v) + ieξt(cosωt�v + sinωt�v)
= y1(t) + iy2(t)

Summarizing, if λ and λ̄ are single complex roots of the characteristic equa-
tion with complex eigenvectors v and v̄, respectively, then the we can use
two real linearly independent solutions

y1(t) = eξt(cos ωt�v − sinωt�v)
y2(t) = eξt(cos ωt�v + sinωt�v) (2.3.31)

Example 2.3.8. Solve the initial value problem

y′ =

⎛
⎝ 1 0 0

0 1 −1
0 1 1

⎞
⎠y, y(0) =

⎛
⎝ 1

1
1

⎞
⎠

The characteristic polynomial is given by

p(λ) = det(A− λI) =

∣∣∣∣∣∣
1 − λ 0 0

0 1 − λ −1
0 1 1 − λ

∣∣∣∣∣∣
= (1 − λ)3 + (1 − λ) = (1 − λ)(λ2 − 2λ+ 2)

so that we have eigenvalues λ1 = 1 and λ2,3 = 1 ± i.

It is immediate that

v =

⎛
⎝ 1

0
0

⎞
⎠

is an eigenvector corresponding to λ1 = 1 and thus we obtain a solution to
the system in the form

y1(t) = et

⎛
⎝ 1

0
0

⎞
⎠ .

Let us take now the complex eigenvalue λ2 = 1 + i. We have to solve

(A− (1 + i)I)v =

⎛
⎝ −i 0 0

0 −i −1
0 1 −i

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .

Thus
−iv1 = 0, −iv2 − v3 = 0, v2 − iv3 = 0.
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The first equation gives v1 = 0 and the other two yield v2 = iv3 so that each
vector

v2 = C2

⎛
⎝ 0

i
1

⎞
⎠

is an eigenvector corresponding to the eigenvalue λ2 = 1 + i. Consequently,
we obtain a complex valued solution

z(t) = e(1+i)t

⎛
⎝ 0

i
1

⎞
⎠ .

To obtain real valued solutions, we separate z into real and imaginary parts:

e(1+i)t

⎛
⎝ 0

i
1

⎞
⎠ = et(cos t+ i sin t)

⎛
⎝
⎛
⎝ 0

0
1

⎞
⎠+ i

⎛
⎝ 0

1
0

⎞
⎠
⎞
⎠

= et

⎛
⎝cos t

⎛
⎝ 0

0
1

⎞
⎠− sin t

⎛
⎝ 0

1
0

⎞
⎠+ i sin t

⎛
⎝ 0

0
1

⎞
⎠+ i cos t

⎛
⎝ 0

1
0

⎞
⎠
⎞
⎠

= et

⎛
⎝ 0

− sin t
cos t

⎞
⎠+ iet

⎛
⎝ 0

cos t
sin t

⎞
⎠ .

Thus, we obtain two real solutions

y1(t) = et

⎛
⎝ 0

− sin t
cos t

⎞
⎠

y2(t) = et

⎛
⎝ 0

cos t
sin t

⎞
⎠

and the general solution to our original system is given by

y(t) = C1e
t

⎛
⎝ 1

0
0

⎞
⎠+ C2e

t

⎛
⎝ 0

− sin t
cos t

⎞
⎠+ C3e

t

⎛
⎝ 0

cos t
sin t

⎞
⎠ .

We can check that all these solutions are independent as their initial values

⎛
⎝ 1

0
0

⎞
⎠ ,

⎛
⎝ 0

0
1

⎞
⎠ ,

⎛
⎝ 0

1
0

⎞
⎠ ,
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are independent. To find the solution to our initial value problem we set
t = 0 and we have to solve for C1, C2 and C3 the system

⎛
⎝ 1

1
1

⎞
⎠ = C1

⎛
⎝ 1

0
0

⎞
⎠+

⎛
⎝ 0

0
1

⎞
⎠+ C3

⎛
⎝ 0

1
0

⎞
⎠ =

⎛
⎝ C1

C2

C3

⎞
⎠ .

Thus C1 = C2 = C3 = 1 and finally

y(t) = et

⎛
⎝ 1

0
0

⎞
⎠+ et

⎛
⎝ 0

− sin t
cos t

⎞
⎠+ et

⎛
⎝ 0

cos t
sin t

⎞
⎠ = et

⎛
⎝ 1

cos t− sin t
cos t+ sin t

⎞
⎠ .

The last example deals with multiple eigenvalues.

Example 2.3.9. Find three linearly independent solutions of the differential
equation

y′ =

⎛
⎝ 1 1 0

0 1 0
0 0 2

⎞
⎠y.

To obtain the eigenvalues we calculate the characteristic polynomial

p(λ) = det(A− λI) =

∣∣∣∣∣∣
1 − λ 1 0

0 1 − λ 0
0 0 2 − λ

∣∣∣∣∣∣
= (1 − λ)2(2 − λ)

so that λ1 = 1 is eigenvalue of multiplicity 2 and λ2 = 2 is an eigenvalue of
multiplicity 1.

(i) λ = 1: We seek all non-zero vectors such that

(A− 1I)v =

⎛
⎝ 0 1 0

0 0 0
0 0 1

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .

This implies that v2 = v3 = 0 and v1 is arbitrary so that we obtain
the corresponding solutions

y1(t) = C1e
t

⎛
⎝ 1

0
0

⎞
⎠ .
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However, this is only one solution and λ1 = 1 has algebraic multiplicity
2, so we have to look for one more solution. To this end we consider

(A− 1I)2v =

⎛
⎝ 0 1 0

0 0 0
0 0 1

⎞
⎠
⎛
⎝ 0 1 0

0 0 0
0 0 1

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠

=

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠

so that v3 = 0 and both v1 and v2 arbitrary. The set of all solutions
here is a two-dimensional space spanned by

⎛
⎝ v1

v2
0

⎞
⎠ = v1

⎛
⎝ 1

0
0

⎞
⎠+ v2

⎛
⎝ 0

1
0

⎞
⎠ .

We have to select from this subspace a vector that is not a solution to
(A − λI)v = 0. Since for the later the solutions are scalar multiples
of the vector (1, 0, 0) we see that the vector (0, 1, 0) is not of this
form and consequently can be taken as the second independent vector
corresponding to the eigenvalue λ1 = 1. Hence

y2(t) = et (I + t(A− I))

⎛
⎝ 0

1
0

⎞
⎠ = et

⎛
⎝
⎛
⎝ 0

1
0

⎞
⎠+ t

⎛
⎝ 0 1 0

0 0 0
0 0 1

⎞
⎠
⎛
⎝ 0

1
0

⎞
⎠
⎞
⎠

= et

⎛
⎝ 0

1
0

⎞
⎠+ tet

⎛
⎝ 1

0
0

⎞
⎠ = et

⎛
⎝ t

1
0

⎞
⎠

(ii) λ = 2: We seek solutions to

(A− 2I)v =

⎛
⎝ −1 1 0

0 −1 0
0 0 0

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .

This implies that v1 = v2 = 0 and v3 is arbitrary so that the corre-
sponding solutions are of the form

y3(t) = C3e
2t

⎛
⎝ 0

0
1

⎞
⎠ .

Thus we have found three linearly independent solutions.
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2.3.2 Higher order difference and differential equations

Once we know how to solve systems of difference and differential equations,
it is easy to adopt the theory to cater for higher order scalar equations.

First consider the linear difference equation of order n:

y(k + n) + a1y(k + n− 1) + . . .+ any(k) = 0, n ≥ 0 (2.3.32)

where a1, . . . , an are known numbers. This equation determines the values
of y(N), N > n by n preceding values of y(k). Thus, it is clear that to
be able to solve this equation, that is, to start the recurrence procedure,
we need n initial values y(0), y(1), . . . , y(n − 1). Equation (2.3.32) can be
written as a system of first order equations of dimension n. We let

z1(k) = y(k),
z2(k) = y(k + 1) = z1(k + 1),
z3(k) = y(k + 2) = z2(k + 1),

...
...

...,
zn(k) = y(k + n− 1) = zn−1(k − 1), (2.3.33)

hence we obtain the system

z1(k + 1) = z2(k),
z2(k + 1) = z3(k),

...
...

...,
zn−1(k + 1) = zn(k),
zn(k + 1) = −anz1(k) − a2z2(k) . . . − a1zn(k),

or, in matrix notation,
z(k + 1) = Az(k)

where z = (z1, . . . , zn), and

A =

⎛
⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

−an −an−1 −an−2 . . . −a1

⎞
⎟⎟⎟⎠ .

The matrix A is often called the companion matrix of the equation (2.3.32).
It is clear that the initial values y(0), . . . , y(n − 1) give the initial vector
z0 = (y(0), . . . , y(n− 1)). Next we observe that the eigenvalues of A can be
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obtained by solving the equation
∣∣∣∣∣∣∣∣∣

−λ 1 0 . . . 0
0 −λ 1 . . . 0
...

...
...

...
...

−an −an−1 −an−2 . . . −a1 − λ

∣∣∣∣∣∣∣∣∣
= (−1)n(λn + a1λ

n−1 + . . .+ an) = 0.

We note that the characteristic polynomial of the companion matrix can
be obtained by just replacing y(k + n− i) in (2.3.32) by λn−i, i = 0, . . . , n.
Consequently, solutions of higher order equations can be obtained by solving
the associated first order systems but there is no need to repeat the whole
procedure. In fact, to solve an n×n system we have to construct n linearly
independent vectors v1, . . . ,vn so that the solution is given by z1(k) =
Akv1, . . . zn(k) = Akvn and coordinates of each zi are products of λi and
polynomials in k of degree strictly smaller than the algebraic multiplicity of
λi. Thus, to obtain ni solutions of the higher order equation corresponding
to the eigenvalue λi, by (2.3.33), we take only the first coordinates of all zi(k)
that correspond to λi. On the other hand, we must have here ni linearly
independent scalar solutions of this form and therefore we can use the set
{λk

i , kλ
k
i , . . . , k

ni−1λk
i } as a basis for the set of solutions corresponding to

λi, and the union of such sets over all eigenvalues to obtain a basis for the
set of all solutions.

Example 2.3.10. Consider the Fibonacci equation (2.1.2):

y(k + 2) = y(k + 1) + y(k) (2.3.34)

to be consistent with the notation of the present chapter. Introducing new
variables z1(k) = y(k), z2(k) = y(k + 1) = z1(k + 1) so that y(k + 2) =
z2(k + 1), we re-write the equation as the system

z1(k + 1) = z2(k),
z2(k + 1) = z1(k) + z2(k);

note that it is not the same form as (2.2.2). The eigenvalues of the matrix

A =
(

0 1
1 1

)

are obtained by solving the equation
∣∣∣∣ −λ 1

1 1 − λ

∣∣∣∣ = λ2 − λ− 1 = 0;
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they are λ1,2 = 1±√
5

2 . Since the eigenvalues are distinct, we immediately
obtain that the general solution of (2.3.34) is given by

y(n) = c1

(
1 +

√
5

2

)n

+ c2

(
1 −√

5
2

)n

.

Let us find the particular solution satisfying the initial conditions y(0) = 1,
y(1) = 2 (corresponding to one pair of adult rabbits initially). We substitute
these values and get the system of equations for c1 and c2

1 = c1 + c2,

2 = c1
1 +

√
5

2
+ c2

1 −√
5

2
,

the solution of which is c1 = 1 + 3
√

5/5 and c2 = −3
√

5/5.

Example 2.3.11. Gambler’s ruin A gambler plays a sequence of games
against an adversary. The probability that the gambler wins R 1 in any
given game is q and the probability of him losing R 1 is 1 − q. He quits
the game if he either wins a prescribed amount of N rands, or loses all his
money; in the latter case we say that he has been ruined. Let p(n) denotes
the probability that the gambler will be ruined if he starts gambling with n
rands. We build the difference equation satisfied by p(n) using the following
argument. Firstly, note that we can start observation at any moment, that
is, the probability of him being ruined with n rands at the start is the same
as the probability of him being ruined if he acquires n rands at any moment
during the game. If at some moment during the game he has n rands, he
can be ruined in two ways: by winning the next game and ruined with n+1
rand, or by losing and then being ruined with n− 1 rands. Thus

p(n) = qp(n+ 1) + (1 − q)p(n− 1). (2.3.35)

Replacing n by n+ 1 and dividing by q, we obtain

p(n+ 2) − 1
q
p(n+ 1) +

1 − q

q
p(n) = 0, (2.3.36)

with n = 0, 1 . . . , N . We supplement (2.3.36) with the (slightly untypical)
side (boundary) conditions p(0) = 1 and p(N) = 0.

The characteristic equation is given by

λ2 − 1
q
λ+

1 − q

q
= 0

and the eigenvalues are λ1 = 1−q
q and λ2 = 1. Hence, if q 	= 1/2, then the

general solution can be written as

p(n) = c1 + c2

(
1 − q

q

)n
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and if q = 1/2, then λ1 = λ2 = 1 and

p(n) = c1 + c2n.

To find the solution for the given boundary conditions, we denote Q =
(1 − q)/q so that for q 	= 1/2

1 = c1 + c2,

0 = c1 +QNc2,

from where

c2 =
1

1 −QN
, c1 = − QN

1 −QN

and

p(n) =
Qn −QN

1 −QN
.

Analogous considerations for q = 1/2 yield

p(n) = 1 − n

N
.

For example, if q = 1/2 and the gambler starts with n = 20 rands with the
target N = 1000, then

p(20) = 1 − 20
1000

= 0, 98,

that is, his ruin is almost certain.

In general, if the gambler plays a long series of games, which can be modelled
here as taking N → ∞, then he will be ruined almost certainly even if the
game is fair (q = 1

2).

Higher order differential equations can be dealt with in the same manner.
Indeed, any nth order linear equation

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = 0 (2.3.37)

can be written as a linear system of n first order equations by introducing
new variables z1 = y, z2 = y′ = z′1, z3 = y′′ = z′2, . . . zn = y(n−1) = z′n−1 so
that z′n = y(n) and (2.3.37) turns into

z′1 = z2,

z′2 = z3,

...
...

z′n = −an−1zn − an−2zn−1 − . . .− a0z1.
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Note that if (2.3.37) was supplemented with the initial conditions y(t0) =
y0, y

′(t0) = y1, . . . y
(n−1) = yn−1, then these conditions will become natural

initial conditions for the system as z1(t0) = y0, z2(t0) = y1, . . . zn(t0) = yn−1.
All comments made for higher order difference equations are thus valid one
must remember, however, to change λk

i for eλit in the set of fundamental
solutions and use {eλit, teλit, . . . , tni−1eλit}.

2.3.3 Spectral Decomposition.

If v is an eigenvector of a matrix A corresponding to an eigenvalue λ, then
the one dimensional eigenspace space Ẽλ has an important property of being
invariant under A as well as under Ak and etA; that is, if y ∈ Ẽλ, then
Ay ∈ Ẽλ (and Aky, etAy ∈ Ẽλ for all k = 1, 2, . . . and t > 0). In fact, in
this case, y = αv for some α ∈ R and

Ay = αAv = αλv ∈ Ẽλ.

Similarly, Aky = λkαv ∈ Ẽλ and etAy = eλtαv ∈ Ẽλ. Thus, if A is di-
agonalizable, then the evolution governed by A can be decomposed into n
independent scalar evolutions occurring in eigenspaces of A. The situation
is more complicated when we have multiple eigenvalues as the one dimen-
sional spaces spanned by generalized eigenvectors are not invariant under
A. However, we can show that the each generalized eigenspace spanned
by all eigenvectors and generalized eigenvectors corresponding to the same
eigenvalue is invariant under A.

We start with the following property of Eλi
which is important in this con-

text.

Lemma 2.3.12. Let Eλi
= Span{v1, . . . ,vni} be the generalized eigenspace

corresponding to an eigenvalue λi and vr satisfies

(A− λiI)kvr = 0,

for some 1 < k < ni, while (A− λiI)k−1vr = 0. Then vr satisfies

(A− λiI)vr = vr′ , (2.3.38)

where (A− λiI)k−1vr′ = 0 and

(A− λiI)k−1vr = vr′ , (2.3.39)

where vr′ is an eigenvector.

Proof. Let Eλi
= Span{v1, . . . ,vnj} be grouped so that the first νi

elements: {v1, . . . ,vνi} are the eigenvectors, {vρ}νi+1≤ρ≤r′ satisfy (A −
λI)2vρ = 0, etc. Then vρ, νi + 1 ≤ ρ ≤ r′ satisfies

0 = (A− λI)2vρ = (A− λI)((A− λI)vρ).
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Since vρ is not an eigenvector, 0 	= (A − λI)vρ must be an eigenvector so
that any vρ with νi + 1 ≤ ρ ≤ r′ satisfies (after possibly multiplication by a
scalar)

(A− λI)vρ = vj

for some eigenvector vj , j ≤ νi. If r′ < ni, then the elements from the next
group, {vρ}r′+1≤ρ≤r′′ satisfy

0 = (A− λI)3vρ = (A− λI)(A− λI)2vρ (2.3.40)

and since vρ in this range does not satisfy (A− λI)2vρ = 0, we may put

(A− λI)2vρ = vj (2.3.41)

for some 1 ≤ j ≤ νi; that is, for some eigenvector vj . Alternatively, we can
write (2.3.40) as

(A− λI)2(A− λI)vρ = 0

and since vρ is not an eigenvector,

(A− λI)vρ = vρ′ (2.3.42)

for some ρ′ between νi + 1 and r′. By induction, we obtain a basis of Eλ

consisting of vectors satisfying (2.3.41) where on the right-hand side stands
a vector of the basis constructed in the previous cycle. �
An important corollary of this lemma is

Corollary 2.3.13. Each generalized eigenspace Eλi
of A is invariant under

A; that is, for any v ∈ Eλi
we have Av ∈ Eλi

. It is also invariant under
Ak, k = 1, 2, . . . and etA, t > 0.

Proof. We use the representation of Eλi
obtained in the previous lemma.

Indeed, let x =
∑ni

j=1 ajvj be an arbitrary element of Eλi
. Then

(A− λiI)x =
ni∑

j=1

aj(A− λiI)vj

and, by construction, (A − λiI)vj = vj′ for some j′ < j (belonging to the
previous ’cycle’). In particular, (A − λiI)vj = 0 for 1 ≤ j ≤ νi (eigenvec-
tors). Thus

Ax = λx −
∑
j′>νi

aj′vj′ ∈ Eλ,

which ends the proof of the first part.

From the first part, by induction, we obtain that (A− λiI)kEλi
⊂ Eλi

. In
fact, let x ∈ Eλi

and assume (A − λiI)k−1x ∈ Eλi
. Then (A − λiI)kx =
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(A − λiI)(A − λiI)k−1x ∈ Eλi
by the induction assumption and the first

part.

For Ak we have

Akx = (A− λiI + λiI)kx =
ni∑

j=1

aj(A− λiI + λiI)kvj

=
ni∑

j=1

aj

k∑
r=0

λk−r
i

(
k
r

)
(A− λiI)rvj

where the inner sum must terminate at at most ni − 1 term since vj are
determined by solving (A − λI)νv = 0 with ν being at most equal to ni.
From the previous part of the proof we see that (A − λiI)rvj ∈ Eλi

and
thus Akx.

The same argument works for etA. Indeed, for x ∈ Eλi
and using (2.3.30)

we obtain

etAx = eλit
ni∑

j=1

aje
t(A−λI)vj = eλit

ni∑
j=1

aj

rj∑
r=0

tr−1

(r − 1)!
(A− λI)r−1vj.

(2.3.43)
with rj ≤ ni and the conclusion follows as above. �
This result suggests that the the evolution governed by A in both discrete
and continuous case can be broken into several simpler and independent
pieces occurring in each generalized eigenspace. To write this in proper
mathematical terms, we need to introduce some notation.

Let us recall that we have representations

Ak ◦
x=

⎛
⎝ | . . . |

Akv1 . . . Akvn

| . . . |

⎞
⎠V−1 ◦

x (2.3.44)

and

etA
◦
x=

⎛
⎝ | . . . |

etAv1 . . . etAvn

| . . . |

⎞
⎠V−1 ◦

x, (2.3.45)

where

V =

⎛
⎝ | . . . |

v1 . . . vn

| . . . |

⎞
⎠ . (2.3.46)

Following our considerations, we select the vectors v1, . . . ,vn to be eigen-
vectors and generalized eigenvectors of A as then the entries of the solution
matrices can be evaluated explicitly with relative ease. We want to split
these expressions into generalized eigenspaces.
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Let us introduce the matrix

Pi =

⎛
⎝ 0 . . . | . . . 0

0 . . . vi . . . 0
0 . . . | . . . 0

⎞
⎠
⎛
⎝ | . . . |

v1 . . . vn

| . . . |

⎞
⎠

−1

. (2.3.47)

and note that, for x = c1v1 + . . .+ cnvn, Pix = civi; that is, Pi selects the
part of x along vi. It is easy to see, that

P2
i = Pi, PiPj = 0, (2.3.48)

Matrices with such properties are called projections; in particular Pi is a
projection onto vi. Clearly,

I =
n∑

i=1

Pi,

however, APix = ciAvi is in the span of vi only if vi is an eigenvector.
Thus, as we said earlier, this decomposition is not useful unless all vis are
eigenvectors.

On the other hand, if we consider operators

Pλi
=

∑
j; vj∈Eλi

Pj , (2.3.49)

where Pi, then such operators again will be projections. This follows from
(2.3.48) by termwise multiplication. They are called spectral projections.
Let σ(A) denotes the set of all eigenvalues of A, called the spectrum of A.
The decomposition

I =
∑

λ∈σ(A)

Pλ, (2.3.50)

is called the spectral resolution of identity.

In particular, if all eigenvalues are simple (or semi-simple), we obtain the
spectral decomposition of A in the form

A =
∑

λ∈σ(A)

λPλ,

and, for Ak and etA,
Ak =

∑
λ∈σ(A)

λkPλ, (2.3.51)

and
etA =

∑
λ∈σ(A)

eλtPλ, (2.3.52)

which is another way of writing (2.3.10) and (2.3.19), respectively.
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In general case, we use (2.3.50) to write

Ax =
∑

λ∈σ(A)

APλx, (2.3.53)

where, by Corollary 2.3.13, we have APλx ∈ Eλ. Thus, using (2.3.48), we
get Pλi

APλj
= 0 for i 	= j. Using (2.3.49) and we obtain

PλAx = PλAPλx = APλx.

Thus, (2.3.53) defines a decomposition of the action of A into non-overlapping
subspaces Eλ, λ ∈ σ(A), which is called the spectral decomposition of A.

To give spectral decomposition of Ak and etA, generalizing (2.3.51) and
(2.3.52), we observe that, by Corollary 2.3.13, also AkPλx ∈ Eλ and etAPλx ∈
Eλ. Therefore

Akx =
∑

λ∈σ(A)

AkPλx =
∑

λ∈σ(A)

λkpλ(k), (2.3.54)

and
etAx =

∑
λ∈σ(A)

eλtPλx =
∑

λ∈σ(A)

eλtqλ(t), (2.3.55)

where pλ and qλ are polynomials in k and, respectively, in t, of degree
strictly smaller than the algebraic multiplicity of λ, and with vector coeffi-
cients being linear combinations of eigenvectors and associated eigenvectors
corresponding to λ.

Returning to our main problem, that is, to the long time behaviour of iterates
Ak and the exponential function etA, then, from (2.3.54) and (2.3.55), we see
that on each eigenspace the long time behaviour of Ak (respectively, of etA)
is determined by λn (respectively, etλ), possibly multiplied by a polynomial
of degree smaller than the algebraic multiplicity of λ.

The situation observed in Examples 2.3.1 and 2.3.2 corresponds to the sit-
uation when there is a real positive simple eigenvalue, say, λ1 satisfying
λ1 > |λ| in discrete time, or λ1 > �λ in continuous time, for any other λ.
Such an eigenvalue is called the principal or dominant eigenvalue. In such a
case, for any initial condition

◦
x for which Pλ1

◦
x	= 0, we have

Ak ◦
x≈ c1λ

k
1v

1

for large k in discrete time or, in continuous time,

etA
◦
x≈ c1e

λ1tv1,

for large t. In such a case the vector v1 is called a stable age structure. An
important question is to determine c1 (an possibly other coefficients of the
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spectral decomposition). Clearly, c1v1 = P1 but the definition of Pi involves
knowing all eigenvectors and associated eigenvectors of A and thus is not
particularly handy. Here we shall describe a simpler method.

Let us recall that the transposed matrix A∗ satisfies

< A∗x∗,y >=< x∗,Ay >

where < x∗,y >= x∗ · y =
∑n

i=1 x
∗
i yi Matrices A and A∗ have the same

eigenvalues and, though eigenvectors and associated eigenvectors are differ-
ent (unless A is symmetric), the structure of the generalized eigenspaces
corresponding to the same eigenvalue is identical (that is, the geometric
multiplicities of λ are equal and we have the same number of associated
eigenvectors solving (A − λI)νv = 0 and (A∗ − λI)νv∗ = 0). This fol-
lows from the fact that determinant, nullity and rank of a matrix and its
transpose are the same.

Theorem 2.3.14. Let Eλ and E∗
λ∗ be generalized eigenspaces of, respec-

tively, A and A∗, corresponding to different eigenvalues: λ 	= λ∗. If v∗ ∈
E∗

λ∗ and v ∈ Eλ, then
< v∗,v >= 0 (2.3.56)

Proof. We can assume that λ∗ 	= 0 since, if λ∗ = 0, then λ 	= 0 and we can
repeat the calculations below starting with λ instead of λ∗. We begin with
v ∈ Eλ and v∗ ∈ E∗

λ∗ being eigenvectors. Then

< v∗,v >=
1
λ∗

< A∗v∗,v >=
1
λ∗

< v∗,Av >=
λ

λ∗
< v∗,v > .

Thus,
(

λ
λ∗ − 1

)
< v∗,v >= 0 and, since λ 	= λ∗, we must have < v∗,v >= 0.

Next we assume, that v∗ is an eigenvector and v is an associated eigenvector
which solves (A − λI)kv = 0 with k > 1. Then, by Lemma 2.3.12, (A −
λI)v = v′, where (A− λI)k−1v′ = 0. We adopt induction assumption that
< v∗,v′ >= 0 for any v′ which satisfy (A− λI)k−1v′ = 0. Then, as above

< v∗,v >=
1
λ∗

< v∗,Av >=
1
λ∗

< v∗, λv + v′ >=
λ

λ∗
< v∗,v > .

and the proof follows as before. Finally, let (A∗ − λ∗I)kv∗ = 0 with k > 1.
Then λ∗v∗ = A∗v∗ − ṽ∗, where (A∗ − λ∗I)k−1ṽ∗ = 0. We can adopt
the induction assumption that < ṽ∗,v >= 0 for any ṽ∗ satisfying (A∗ −
λ∗I)k−1ṽ∗ = 0. Then

< v∗,v > =
1
λ∗

< λ∗v∗,v >=
1
λ∗

< A∗v∗ − ṽ∗,v >=
1
λ∗

< A∗v∗,v >

=
λ

λ∗
< v∗,Av > .
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�
Summarizing, to determine a long time behaviour of a population described
by either discrete y(k + 1) = Ay or continuous system y′ = Ay we have to

1. Find eigenvalues of A and determine whether there is the dominant
eigenvalue, that is, a simple real eigenvalue, say, λ1 satisfying λ1 > |λ|
in discrete time, or λ1 > �λ in continuous time, for any other λ.

2. If this is the case, we find the eigenvector v of A and v∗ of A∗ corre-
sponding to λ1.

3. The long time behaviour of the population is then described by

Akx ≈ λk
1 < v∗,x > v (2.3.57)

for large k in discrete time or, in continuous time, by

etAx ≈ eλ1t < v∗,x > v (2.3.58)

for large time, for any initial distribution of the population satisfying
< v∗,x > 	= 0.

We illustrate this result by finding the long time behaviour of solutions to
the system discussed in Example 2.3.7.

Example 2.3.15. Consider

y′ =

⎛
⎝ 1 −1 4

3 2 −1
2 1 −1

⎞
⎠y.

The eigenvalues of A are λ1 = 1, λ2 = 3 and λ3 = −2. We found eigenvectors
corresponding to this eigenvalues to be

v1 =

⎛
⎝ −1

4
1

⎞
⎠ , v2 =

⎛
⎝ 1

2
1

⎞
⎠ , v3 =

⎛
⎝ −1

1
1

⎞
⎠ ,

and the general solution

y(t) = C1e
t

⎛
⎝ −1

4
1

⎞
⎠+ C2e

3t

⎛
⎝ 1

2
1

⎞
⎠+ C3e

−2t

⎛
⎝ −1

1
1

⎞
⎠ .

Clearly, writing

y(t) = e3t

⎛
⎝C2

⎛
⎝ 1

2
1

⎞
⎠+ C1e

−2t

⎛
⎝ −1

4
1

⎞
⎠+ C3e

−5t

⎛
⎝ −1

1
1

⎞
⎠
⎞
⎠ . (2.3.59)
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we see that the dominant eigenvalue is λ2 = 3 and for large time

y(t) ≈ e3tC2

⎛
⎝ 1

2
1

⎞
⎠ , (2.3.60)

where C2 depends on the initial condition.

The transposed matrix is given by

A∗ =

⎛
⎝ 1 3 2

−1 2 1
4 −1 −1

⎞
⎠

and the eigenvector v∗ corresponding to λ = 3 can be calculated by

(A∗ − 3I)v =

⎛
⎝ −2 3 2

−1 −1 1
4 −1 −4

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠

and we get v2 = 0 and v1 = v3. Thus, v2
∗ = (1, 0, 1) and we can check that,

indeed, < v2
∗,v1 >=< v2

∗,v2 >= 0. Then, multiplying (2.3.59) by v2
∗

we obtain
< v2

∗,y(t) >= C2e
λ2t < v2

∗,v2 >

and, taking t = 0 we have

< v2
∗,

◦
x>= C2 < v2

∗,v2 >

and C2 = 1
2(

◦
x1 +

◦
x3). Clearly, long time picture of evolution given by

(2.3.60) will not be realized if
◦
x is orthogonal to v2

∗.

Example 2.3.16. Returning to Fibonacci rabbits, we see that the eigen-
values of L are exactly numbers

λ1,2 = r± =
1 ±√

5
2

and clearly, λ1 = (1 +
√

5)/2 is the dominant eigenvalue. The eigenvector
associated with this eigenvalue is v1 = (λ1, 1) = ((

√
5 + 1)/2, 1) and this

gives the stable age structure. Moreover, the matrix L is symmetric and
thus the eigenvectors of L∗ are the same as of L. Thus

v(k) =
(
v1(k)
v0(k)

)
≈ C1r

k
+

( √
5+1
2
1

)

where

C1 =
2
(
v1(0)

√
5+1
2 + v0(0)

)
5 +

√
5
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as < v1,v1 >= (5 +
√

5)/2.

Taking, for instance, the initial condition discussed in Section 2.1: v1(0) =
0, v0(0) = 1, we find C1 = 2/(5 +

√
5) and if we like to estimate the growth

of the whole population, we have

y(k) = v1(k)+v0(k) ≈ 2
5 +

√
5

(√
5 + 1
2

+ 1

)
rk
+ =

3 +
√

5
5 +

√
5
rk
+ =

1 +
√

5
2
√

5
rk
+,

in accordance with (2.1.3).

The question whether any matrix with nonnegative entries in discrete time
and with positive off-diagonal entries gives rise to such behaviour and, if not,
what models lead to AEG, is much more delicate and requires invoking the
Frobenius-Perron theorem which will be discussed in the next section. In the
meantime we consider an example which shows that some Leslie matrices
exhibit different behaviour.

Example 2.3.17. Consider a Leslie matrix given by

L =

⎛
⎝ 0 0 3

0.5 0 0
0 0.4 0

⎞
⎠

and a population evolving according to

y(k) = Lk ◦
y

with
◦
y= (2, 3, 4). The solution is given in Fig. 2.8. The picture is completely

different from that obtained in Example 2.3.1. We observe some pattern
but the ratios do not tend to a fixed limit but oscillate, as shown in Fig.
2.9. This can be explained using the spectral decomposition: indeed, the
eigenvalues are given by λ1 = 0.843433, λ2 = −0.421716 + 0.730434i, λ2 =
−0.421716 − 0.730434i and we can check that |λ1| = |λ2| = |λ3| = 0.843433
and thus we do not have the dominant eigenvalue. The question we will
try to answer in the next chapter is what features of the population are
responsible for such behaviour.
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Figure 2.8: Evolution of y1(k) (top) and y2(k) (middle) and y3(k) (bottom)
for the initial distribution

◦
v= (2, 3, 4) and k = 1, . . . , 10.
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Figure 2.9: Evolution of y1(k)/y2(k) (top) and y2(k)/y3(k) (bottom) for the
initial distribution

◦
v= (2, 3, 4) and k = 1, . . . , 20.
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2.4 Frobenius-Perron theorem

2.4.1 The issue of positivity

We have to extend the notion of positivity to vectors and functions. We say
that a vector x = (x1, . . . , xn) is non-negative, resp. positive, resp. strictly
positive, if for all i = 1, . . . , n, xi ≥ 0, resp. xi ≥ 0 with x 	= 0, resp. xi > 0.
We denote these as x ≥ 0,x > 0 and x >> 0, respectively.

Analogous definitions can be given for positivity of scalar and vector valued
functions and sequences; that is, e.g. a function [a, b] 
 t → f(t) ∈ R

n is
called nonnegative if fi(t) ≥ 0 for any t ∈ [a, b] and i = 1, . . . , n.

Similarly, we say that a matrix A = {aij}1≤i,j≤n is non-negative and write
A ≥ 0 if aij ≥ 0 for all i, j = 1, . . . , n.

If a given difference or differential equation/system of equations is to de-
scribe evolution of a population; that is, if the solution is the population
size or density, then clearly solutions emanating from non-negative data
must stay non-negative. If we deal with systems of equations, then non-
negativity must be understood in the sense defined above. We note that
there are models admitting negative solutions such as the discrete logistic
equation (see discussion preceding (1.1.18), but then the moment the solu-
tion becomes negative is interpreted as the extinction of the population and
the model ceases to be applicable for later times.

Let us first consider processes occurring in discrete time.

Proposition 2.4.1. The solution y(k) of

y(k + 1) = Ay(k), y(0) =
◦
y

satisfies y(k) ≥ 0 for any k = 1, . . . , for arbitrary
◦
y≥ 0 if and only if A ≥ 0.

Proof. The ‘if’ part is easy. We have yi(k) =
n∑

j=1
aijyj(k − 1) for k ≥ 1 so

if aij ≥ 0 and
◦
yj≥ for i, j = 1, . . . , n, then yi(1) ≥ 0 for all i = 1, . . . , n and

the extension for k > 1 follows by induction.

On the other hand, assume that aij < 0 for some i, j and consider
◦
y= ej =

(0, . . . , 0, 1, 0, . . . , 0), where 1 is on the jth place. Then A ◦
y= (a1j , . . . , aij , . . . , anj)

so the output is not non-negative. Thus, the condition A ≥ 0 is also neces-
sary. �
The proof of analogous result in continuous time is slightly more involved.
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Proposition 2.4.2. The solution y(t) of

y′ = Ay, y(0) =
◦
y

satisfies y(t) ≥ 0 for any t > 0 for arbitrary
◦
y≥ 0 if and only if A has

non-negative off-diagonal entries.

Proof. First let us consider A ≥ 0. Then, using the representation (2.3.28)

etA = I + tA +
t2

2
A2 +

t3

3!
A3 + . . . +

tk

k!
Ak + . . . ,

and the results of the previous proposition we see that etA ≥ 0. Next, we
observe that for any real a and

◦
y the function y(t) = eatetA

◦
y≥ 0 and

satisfies the equation

y′ = ay + Ay = (aI + A)y.

Hence if the diagonal entries of A, aii, are negative, then denoting r =
max1≤i≤n{−aii} we find that Ã = rI + A ≥ 0. Using the first part of the
proof, we see that

etA = e−rtetÃ ≥ 0. (2.4.1)

Let us write

etA = E(t) =

⎛
⎜⎝

ε11(t) . . . ε1n(t)
...

...
εn1(t) . . . εnn(t)

⎞
⎟⎠ ,

so εij(t) ≥ 0 for all i, j = 1, . . . , n, and consider E(t)ei = (ε1i(t), . . . , εii(t), . . . , εin(t)).
Then

(a1i, . . . , aii, . . . , ani) = AE(t)ei|t=0 =
d

dt
E(t)ei

∣∣∣∣
t=0

= lim
h→0+

(
ε1i(h)
h

, . . . ,
εii(h) − 1

h
, . . . ,

εni(h)
h

)
,

so that aji ≥ 0 for j 	= i. �
We identify the n× n matrix A with the linear operator on X = R

n associ-
ated with it.

2.4.2 Norm of an operator

We define a norm of an operator A by

‖A‖ = sup
‖x‖�=0

‖Ax‖
‖x‖ = sup

‖x=1‖�=0
‖Ax‖. (2.4.2)
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Further, the spectral radius of A is defined as

r(A) = sup
λ∈σ(A)

|λ|. (2.4.3)

From the definition, ‖A‖ ≥ r(A).

Consider solving the equation

x−Ax = y. (2.4.4)

If we try iterations, like in the proof of Picard’s theorem, we obtain the
scheme

xk+1 = y + Axk;

that is,
xk+1 = y + Ay + . . .+ Ak+1y

which suggest that the solution can be obtained by

x =
∞∑

k=0

Aky. (2.4.5)

If the series converges then, by direct calculation using linearity and con-
tinuity of A, it is a unique solution to (2.4.4). The series converges, in
particular, if ‖A‖ < 1. We provide a better characterization of the criteria
of convergence of this series below. The series is called the Neumann series.

2.4.3 The resolvent

We identify the n× n matrix A with the linear operator on X = R
n associ-

ated with it.

The spectrum σ(A) is the set of λ ∈ C, for which λI − A is not invertible.
The spectrum of A consists of finitely many (at most n) points. The (open)
complement of σ(A) is called the resolvent set of A. In other words, the
resolvent set ρ(A) is the set for which there exists the inverse matrix

R(λ) = (λI −A)−1.

We observe that the entries of R(λ) are given by fractions

(R(λ))ij = Mij(λ)/det(λI −A)

where Mij(λ) are corresponding minors of (λI−A). Thus, R(λ) is a rational
function of λ with poles exactly at the points of σ(A). Thus, R(λ) is bounded
if and only if λ ∈ ρ(A).

100



Chapter 2 Frobenius-Perron theorem

The resolvent satisfies the resolvent identity

R(λ) −R(μ) = (μ− λ)R(λ)R(μ) (2.4.6)

whenever λ, μ ∈ ρ(A).

The resolvent also can be characterized by the Neumann series. In fact,
using (2.4.5) we can write

(λI −A)−1 = λ−1
(
I − λ−1A)−1 = λ−1

∞∑
k=0

Anλ−n.

We recognize the series as the Laurent series of the function λ→ (λI−A)−1

at ∞. Using the Cauchy-Hadamard criterion, the series converges if λ >
lim

n→∞‖An‖1/n and diverges inside this circle. It can be proved that the upper
limit in this expression can be replaced by the normal limit. On the other
hand, the Cauchy formula for the coefficients of the Laurent expansion shows
that the radius of convergence is determined by the first singularity of the
function staring from the centre of expansion. Hence, in this case the radius
of convergence coincides with the spectral radius; that is

r(A) = lim
n→∞ ‖An‖1/n.

2.4.4 Positive vectors and matrices

We say that a vector x (resp. a matrix A) are non-negative, if xi ≥ 0 for
1 ≤ i ≤ n (resp. aij ≥ 0 for 1 ≤ i, j ≤ n). Similarly, x > 0 is all entries are
strictly positive and the same convention applies to matrices. x ≥ y (resp.
x > y) if xi ≥ yi (resp. xi > yi) with the analogous notation for matrices.
The absolute value is defined as |x| = (|xi|, . . . , |xn|}, etc. Clearly

|Ax| ≤ |A||x|.

It follows that ‖x‖ = ‖|x|‖ and consequently

‖A‖ = ‖|A|‖.

For nonnegative matrices we obtain

|R(λ)| =

∣∣∣∣∣λ−1
∞∑

k=0

Anλ−n

∣∣∣∣∣ ≤ |λ|−1
∞∑

k=0

An|λ|−n = R(|λ|). (2.4.7)

Theorem 2.4.3. The spectral radius of a positive matrix A is an eigenvalue
of A.
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Proof. We know that there is an eigenvalue λ0 with |λ0| = r(A). Consider
the real sequence λn = r(A) + 1/n which converges to r(A). Clearly, λn ∈
ρ(A) thus R(λn) are well defined. If we consider the sequence (μn)n∈N

defined as μn = λnλ0/|λ0|. Then ρ(A) 
 μn → λ0 with |μn| = λn. Using
(2.4.7) we get

R(λn) = R(|μn|) ≥ |R(μn)|.

If r(A) belonged to the resolvent set of A, we would have R(λn) converging
to a finite limit. However, |R(μn)| is unbounded as λ0 is a pole. This
contradiction proves the theorem. �
This result can be significantly strengthen but for this we need to better
understand the structure of the resolvent. Since r := r(A) is an eigenvalue,
we can expand R(λ) into the Laurent series around λ = r:

R(λ) =
∞∑

k=−h

Ak(λ− r)k. (2.4.8)

Since R(λ) is a rational function, λ = r is a pole and thus the principal part
of the Laurent series terminates at finite place, denoted here by −h. The
coefficient Ah 	= 0 and is given by

A−h = lim
λ→r+

(λ− r)hR(λ). (2.4.9)

Lemma 2.4.4. The coefficients Ak satisfy the relation

AkAm =

⎧⎨
⎩

−Ak+m+1 for k,m ≥ 0,
0 for k < 0,m ≥ 0,
Ak+m+1 for k,m < 0.

(2.4.10)

Proof. We may assume r = 0. We have the Cauchy formula

Ak =
1

2πi

∫
C

R(λ)
λk+1

dλ

where C is a circle enclosing 0, but not other eigenvalues, traversed coun-
terclockwise.

Using two such circles C1 and C2 with radii r1 < r2, we obtain, using the
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resolvent identity,

AkAm =
−1

22π2

∫
C1

∫
C2

R(λ)R(μ)
λk+1μm+1

dλdμ

=
1

22π2

∫
C1

∫
C2

R(λ) −R(μ)
λk+1μm+1(λ− μ)

dλdμ

=
1

2πi

∫
C1

R(λ)
λk+1

⎛
⎝ 1

2πi

∫
C2

dμ

μm+1(μ− λ)

⎞
⎠ dλ

+
1

2πi

∫
C2

R(μ)
μm+1

⎛
⎝ 1

2πi

∫
C1

dλ

λk+1(μ− λ)

⎞
⎠ dμ

However, we have general formulae for integration counterclockwise along
the circle |z| = r

1
2πi

∫
C

dz

zj(z − w)
dz =

⎧⎪⎪⎨
⎪⎪⎩

0 if j ≤ 0, |w| > r,
− 1

wj if j > 0, |w| > r,
1

wj if j ≤ 0, |w| < r,

0 if j > 0, |w| < r.

and so the lemma follows by inspection of the formula for AkAm. E.g., if
k < 0 and m ≥ 0, then both final integrals are 0. If both k,m < 0, then

1
2πi

∫
C2

dμ

μm+1(μ− λ)
=

1
λm+1

while the inner integral in the second term is 0, giving

AkAm =
1

2πi

∫
C1

R(λ)
λk+m+1

dλ.

�
With this auxiliary result we can prove the following improvement of The-
orem 2.4.3

Proposition 2.4.5. The eigenspace Er(A) contains non-negative vectors.

Proof. We use (2.4.8) composed with A−h

R(λ)A−h =
∞∑

k=−h

(λ− r)kAkA−h.
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Now, if k ≥ 0, then AkA−h = 0 by the lemma. Otherwise, since −l−h+1 ≤
−h, we obtain A−lA−h = A−l−h+1 = 0 unless −l = 1 as A−h is the lowest
non-zero term of the Laurent expansion. Thus

R(λ)A−h = (λ− r)−1A−1A−h = (λ− r)−1A−h

or equivalently
AA−h = rA−h

Since A−h is non-negative and non-zero, each non-zero column of A−h is a
non-negative eigenvector of A. �
These two results haven’t answered the basic question: is there a dominant
and uniquely determined pattern in long time evolution of a system gov-
erned by a non-negative matrix. In fact, there can be multiple eigenvectors
corresponding to the eigenvalue λ = r(A) as well as there is a possibility
of complex eigenvalues on the circle |λ| = r(A) which would give rise to
oscillatory behaviour.

To make this step we have to demand more from the matrix A. Let us at
first assume that A is positive; that is, all entries are greater than 0. Under
this assumption we have

Theorem 2.4.6. Assume that A > 0. Then r(A) > 0 is a simple eigen-
value; that is, the eigenspace Er(A) is one-dimensional and is spanned by
a positive eigenvector. Furthermore, r(A) is dominant; that is, all other
eigenvalues are smaller in absolute value.

Proof. Assume A > 0 and let v be a non-negative eigenvector belonging
to the spectral radius (necessarily non-zero). Then r(A)v = Av > 0, hence
r(A) > 0 and v > 0. Thus, every non-zero (and, clearly, non-negative)
column of A−h is a strictly positive eigenvector belonging to r(A). On the
other hand, A−hA−h = A−2h+1 = 0 if h > 1 which is impossible as A−h has
strictly positive columns. Thus h = 1 - the pole at λ = r(A) has order 1.

Furthermore, the non-zero elements of the range of A−1 (spanned by non-
zero columns of A−1) are eigenvectors of A belonging to λ = r(A). Con-
versely, let v be an eigevector of A associated with r(A); that is, Av =
r(A)v. Hence, for λ close to r(A) we obtain

R(λ)v = (λ− r(A))−1v

and, by the uniqueness of the Laurent expansion,

A−1v = r(A)v,

hence the eigenspace of A associated with λ = r(A) coincides with the range
of A−1 and its dimension is 1. In fact, if v1 and v2 be two non-zero (hence
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necessarily positive) columns which are not scalar multiples of each other,
then there would be first t for which v1 − tv2 would have one entry equal to
zero an other non-negative. However, such a combination is a non-negative
eigenvector and, by the preceding argument, must be strictly positive. So,
the eigenspace is one-dimensional.

This argument does not rule out r(A) having associated eigenvectors. For
this, there would be v = (r(A)I −A)x belonging to r(A). However, then

v = A−1v = A−1(r(A)I −A)x = (r(A)I −A)A−1x = 0

as the range of A−1 consists of eigenvectors. However, v 	= 0 which shows
that r(A) is a simple eigenvalue.

Finally, consider A− εI for ε small enough so that A− εI > 0. Clearly, the
largest positive eigenvalue is r(A)−ε which, by Theorem 2.4.3, is its spectral
radius. Hence, all other eigenvalues of A−εI are within the (possibly closed)
circle with radius r(A) − ε. Translating this circle back, we obtain that all
eigenvalues of A are within the circle with centre at ε and radius r(A) − ε
which is tangent to the circle |λ| = r(A) only at r(A). �
We note that if λ is an eigenvalue of A, then λk is an eigenvalue of B = Ak

with the same eigenvector. This follows from

(λkI −A)x =

(
k−1∑
i=0

λiAk−i

)
(λI −A)x. (2.4.11)

Conversely, to any μ ∈ σ(B) there corresponds λ ∈ σ(A) such that λk = μ.
In fact, denote by μj, j = 0, 1, . . . , k − 1 the k-th roots of μ so that

Ak − μI =
k−1∏
j=0

(A− μjI).

Let v0 an eigenvector of A belonging to μ and consider v1 = (A− μ0I)v0.
If v1 = 0, then we are done, if v1 	= 0, then we consider v2 = (A − μ1I)v1.
Since after k steps we obtain zero, there must be k0 such that vk0 	= 0 but
(A− μk0I)vk0 = 0 so that μk0 is an eigenvalue of A.

Theorem 2.4.7. The statement of Theorem 2.4.6 remains valid if A in
non-negative with Ak > 0 for some k.

Proof. Denote B = Ak > 0. Clearly r(B) = r(A)k. Then B has a simple
positive eigenvalue equal to its spectral radius with associated positive eigen-
vector with all other (n − 1, properly counted) eigenvalues having strictly
smaller moduli. By the comment above, r(A) must be also a strictly dom-
inant eigenvalue. Indeed, if λ is another eigenvalue with |λ| = r(A), then
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|λk| = r(B) and there are two possibilities. First, that λk 	= r(B) but
this would contradict r(B) being dominant. If λk = r(B) then eigenvec-
tors corresponding to r(A) and λ would be eigenvectors of B by (2.4.11)
and, since eigenvectors corresponding to different eigenvalues are linearly
independent, we would have the eigenspace corresponding to r(B) at least
two-dimensional.

Moreover, if the eigenspace corresponding to r(A) was multi-dimensional,
then also the eigenspace of B corresponding to λ = r(B) would be multi-
dimensional. Finally, if there was a vector x such that

v = (r(A)I −A)x

was an eigenvector, then, using the fact that no other k-th root of r(B) is an
eigenvalue of A, we obtain that (λk − Ak)x = v′ 	= 0. On the other hand,
by commutativity, (λk −Ak)2x = 0, which contradicts simplicity of λk. �
Remark 2.4.8. Frobenius-Perron Theorem often is formulated in terms of
irreducibility and primitivity of matrices: these concepts are more easily
interpreted in the context of population dynamics.

For a matrix A = {aij}1≤i,j≤n, we say that there is an arc from i to j if
aij > 0; a path from i to j is a sequence of arcs starting from i and ending
in j. A loop is a path from i to itself. A non-negative matrix is irreducible
if, for each i and j, there is a path from i to j. Otherwise, we say that
it is reducible. In terms of age-structured population dynamics, a matrix
is irreducible if each stage i can contribute to any other stage j. E.g., the
matrix ⎛

⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 1

⎞
⎟⎟⎠

is reducible as the last state cannot contribute to any other state and fertility
is only concentrated in one state.

An irreducible matrix is called primitive if the greatest common divisor
divisor of all loops is 1; otherwise it is called imprimitive. In population
dynamics, a matrix is imprimitive if the population has a single reproductive
stage. E.g., the matrix ⎛

⎝ 0 0 1
1 0 0
0 1 0

⎞
⎠

describing a semelparous population is imprimitive.

For irreducible matrices the first part of Theorem 2.4.6 is valid; that is, r(A)
is a simple positive eigenvalue with strictly positive eigenvector. To see this,
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we note that the eigenvectors are non-negative. Take such an eigenvector
0 	= v ≥ 0 and consider

Av = r(A)v.

Let vi 	= 0. If r(A) = 0, then, since all entries are non-negative, Av = 0
yields aji = 0 for any j and thus there can be no path leading from state i
to any other state. Similarly, if v is non-negative but not strictly positive,
then vi > 0 and vj = 0 for some i, j. Suppose there is a path from i to
j, then, for some m, (Am)ji > 0 and thus vj > 0 which is a contradiction.
Thus, v > 0 and all eigenvectors in this case are positive hence the proof
goes as in the first part of Theorem 2.4.6. However, one cannot rule out
eigenvalues on the spectral circle.

Primitive matrices can have zero entries. E.g., the matrix⎛
⎝ 1 0 1

1 0 0
0 1 0

⎞
⎠

is primitive.

It can be proved that an irreducible matrix A is primitive if and only if
Ak > 0 for some k.

2.4.5 Examples

Let us consider the Leslie matrix

L :=

⎛
⎜⎜⎜⎜⎜⎝

f1 f2 · · · fn−1 fn

s2 0 · · · 0 0
0 s3 · · · 0 0
...

... · · · ...
...

0 0 · · · sn 0

⎞
⎟⎟⎟⎟⎟⎠ , (2.4.12)

and find under what conditions the population exhibits asynchronous expo-
nential growth.

Let us first assume that fj > 0 for j = 1, . . . , n, that is, any age group
is capable of reproduction. Let us consider arbitrary initial state j. Then
there is an arc between j and 1 (a1j = fj > 0) and then from state 1 one can
reach any state i in exactly i− 1 steps (s2s3 · . . . · si). Thus, there is a path
joining j and i of length i which still depends on the target state. However,
there is an arc from 1 to itself, so we can wait at 1 for any number of steps.
In particular we can wait for n − i steps so that j can be connected with i
is n steps. In other words

sisi−1 · · · · · s3s2f1 · . . . · f1fj > 0
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where f1 occurs n− i times. Hence Ln > 0.

This result assumes too much - typically young individuals cannot reproduce.
If fact, it can be strengthened - it suffices to assume that fn−1 > 0 and
fn > 0. First we observe that [Ln−1]11 > and [Ln]11 > 0 as starting from 1
we return to 1 either by following 1 → 2 → . . . n− 1 → 1 (which gives loop
of length n− 1) 1 → 2 → . . . n− 1 → n→ 1 (which gives loop of length n).
Next, to pass from state j to state i with j ≥ i we take n− j steps to reach
n, one step to go to 1 and i− 1 steps to reach from 1 to i. If i > j, then we
need i− j steps but we can add the full loop of n steps and in both cases we
can reach i from j in n− j+ i steps. We have to show that we must be able
to cycle at 1 appropriate number of steps k to eliminate the dependence on
j and i. Since 1 ≤ i, j ≤ n, we have −n+ 1 ≤ −j + i ≤ n− 1. Clearly that
[Lk]11 > 0 for any

k = α(n − 1) + βn (2.4.13)

with natural, or 0, α and β.

We observe that if α =
[

k
n−1

]
n − k and β = k −

[
k

n−1

]
(n − 1), where [·]

denotes the integer part of a number, then the above identity is satisfied.
However, it is not clear that α > 0. We write k = r(n− 1) + s with integer
r and integer s satisfying 0 ≤ s < n − 1 so that

[
k

n−1

]
= r. Thus, we must

have

r ≥ r

(
1 − 1

n

)
+

s

n− 1

for any s as above, so that we get r ≥ n− 1 and the representation is valid
for any k ≥ (n − 1)2

Then, we write

n− j + i+ k = n− j + i+ (n− 1)2 + l = n2 − n− j + i+ l

for some l ≥ 0 and observe that n + j − i ≥ 0 so that taking l = n + j − i
and k = (n− 1)2 + l we see that

n− j + i+ k = n2

for some k expressible through (2.4.13) Thus, one can reach any i from any
j in n2 steps: n− j steps from j to n, 1 step to state 1, ’cycling’ for k times
around 1 and then going from 1 to i in i− 1 steps.

Let us consider a more complicated case where the fertility is restricted to
some interval [n1, n2], that is, when bj > 0 for j ∈ [n1, n2]. First we note
that if n2 < n, the matrix cannot be primitive as there is no communica-
tion between postreproductive stages and the reproductive ones. This can
be also check by direct multiplication of matrices as the last column of any
power will be always zero. Consequently, if we start only with individuals in
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postreproductive age, the population will die out in finite time. Neverthe-
less, if n1 < n2 then the population still displays asynchronous exponential
growth with slight modification which we shall explain below.

To analyse this model, we note that since we cannot move from stages with
j > n2 to earlier stages, the part of the population with j ≤ n2 evolves
independently from postreproductive part (but feeds into it.) Assume that
n1 < n2 and introduce the restricted matrix

L̃ =

⎛
⎜⎜⎜⎜⎜⎝

f1 f2 · · · fn2−1 fn2

s2 0 · · · 0 0
0 s3 · · · 0 0
...

... · · · ...
...

0 0 · · · sn2 0

⎞
⎟⎟⎟⎟⎟⎠

and the matrix providing (one-way) link from reproductive to postreproduc-
tive stages is given by

R =

⎛
⎜⎝

0 · · · sn2+1 0 · · · 0 0
... · · · ...

... · · · ...
...

0 · · · 0 0 · · · sn 0

⎞
⎟⎠

For the matrix L̃, fn2 > 0 and fn2−1 > 0 and we can apply considerations
of the previous part. Thus, for some λ > 0 there are sequences x∗ =
(x∗1, . . . x∗n2

) and y∗ = (y∗1 , . . . y∗n2
) such that L̃x∗ = λx∗ and

lim
k→∞

λ−kL̃x = x∗ < y∗,x >, x ∈ R
n2. (2.4.14)

For n2 ≤ j < n, k ≥ 0, we have xj+1(k + 1) = sk+1xj(k). Hence, starting
from xn2(k) we get xn2+i(k + i) = cixn2(k), where ci = sn2+isn2+1−i · . . . ·
sn2+1, as long as i ≤ n− n2. So

lim
k→∞

λ−kxn2+i(k + i) = cix
∗
n2
< y∗,x >, x ∈ R

n2,

and hence, changing k + i into k

lim
k→∞

λ−kxn2+i(k) = ciλ
−ix∗n2

< y∗,x >, x ∈ R
n2,

for any i = 1, . . . , n− n2.

Hence, we see that the formula (2.3.57) is satisfied if we take

x∗ = (x∗1, . . . x
∗
n2
, c1λ

−1x∗n2
, . . . , cn−n2λ

−(n−n2)x∗n2
)

y∗ = (y∗1, . . . y
∗
n2
, 0, . . . , 0).

Finally, we observe that if only one fj is positive (semelparous population),
then we do not have asynchronous exponential growth. Indeed, in this case
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starting from initial population in one class we will have a cohort of individ-
uals in the same age group moving through the system. We have observed
such a behaviour in Example 2.3.17.

Finally, let us consider the continuous model

v′i(t) =
N∑

j=1

qijvj(t), , i = 1, . . . , n, (2.4.15)

with non-negative off-diagonal entries. It turns out that to get asynchronous
exponential growth it is enough to assume a weaker property of Q, namely
irreducibility. In graph terms it mean each state communicate with any
other but not necessarily in the same number of steps, as was the case for
primitive matrices. Algebraically, we assume that for i 	= j, qij ≥ 0 and
there is a sequence of indices i1, . . . , im such that

aii1ai1i2 · . . . · aim−1imaimj > 0. (2.4.16)

To prove this statement first we observe that Q̃ = Q + rI, where r >
max1≤i≤N{|qii|}, has all its diagonal entries positive. Arguing as in the
discrete case, we see that Q̃ is primitive. Indeed, we can go from j to 1 in
mj1 steps and from m1i steps. Let M = maxi,j{mj1,m1i}. If for some (j′, i′)
we have mj′1+m1i′ < M , then we can wait in state 1 for any number of steps
as q11 +r > 0. Thus, Q̃M > 0. Hence, Q̃ has a simple dominant eigenvalue λ̃
and the corresponding positive eigenvector x∗ as well as positive eigenvector
y∗ of the transposed matrix. Therefore, as in (2.3.58), we have

lim
t→∞ e−λ̃tetQ̃x = x∗ < y∗,x >,

but λ̃ = λ+r and etQ̃ = ertetQ, where λ is simple eigenvalue larger then real
part of any other eigenvalue. Indeed, λ̃ is real and positive with all other
eigenvalues λ̃′ of Q̃ satisfying λ̃ ≥ |λ̃′|. But then λ̃ > �λ̃′ as the line �z = λ̃
is tangent to the circle |z| ≤ λ̃ and λ̃ is simple. Thus, the same is true for
λ = λ̃− r. Hence, by (2.4.1),

x∗ < y∗,x >= lim
t→∞ e−λ̃tetQ̃x = lim

t→∞ e−λte−tretretQx = lim
t→∞ e−λetQx

(2.4.17)
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2.5 Other ways of modelling age-structured pop-
ulations

2.5.1 Continuous time - Lotka integral equation

We track female births in time (though we can also track males or pairs).
Let B(t) denotes the birth rate; that is,

B(t)Δt is approximately the number of female births that occur
in the time interval [t, t+ Δt)

We shall need several parameters of the population to derive the model.
First, let

n(a, t) - the density of females of age a at time t; that is, n(a, t)Δa
is the number of females of age [a, a+ Δa).

Next, we must have information about the age-specific survivorship and
fertility. We let

l(a) = fraction of newborn females surviving to age a.

Here we assume that l(a) is continuous and piecewise differentiable. Fur-
thermore, l must be non-increasing and there is some maximum age of sur-
vivorship ω. Finally, we denote

m(a)Δa = number of females born, on average, to a female of
age between a and a+ Δa.

The rate m(a) is referred to as a maternity function. We assume that m is
continuous and piecewise smooth and that there is a minimum age of repro-
duction α (menarche) and a maximum age of reproduction β (menopause).

Let us derive the Lotka equation for B. The number of birth in the time
interval [t, t+Δt) is, as we know, B(t)Δt. On the other hand, the births can
be divided into two classes: one class attributed to females born between
time 0 and t and the other due to females which were alive at time 0. Females
that are of age a at time t were born at time t− a. The number of females
born around t− a is given by B(t− a)Δt. The number of them that survive
till the age a (that is, till time t) is l(a)B(t− a)Δt and thus the number of
births by females of age circa a is l(a)B(t− a)Δtm(a)Δa. Summing up, we
obtain

Δt

t∫
0

B(t− a)l(a)m(a)da.
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To find the contribution of the females who were present at time t = 0 we
begin with taking the number of females of age c. a present at t = 0; that
is, n(a, 0)Δa. Now, these females must live till the age t + a, that is we
must take survival rate till t+a, l(t+a) conditioned upon the female having
survived till a. Since

l(a+ t) = l(a) · {fraction of age a females surviving till t+ a}

we see that n(a, 0)l(a + t)/l(a)Δa females survived till time t. These gave
birth to m(a+t)n(a, 0)l(a+t)/l(a)Δa new females. To find the number of all
births due to females older then t we again integrate over all ages. However,
no individual survives beyond ω so the integration terminates at ω − t (no
female older that ω− t at time t = 0 will survive till t. Combining these two
formulae and dropping Δt we obtain the basic Lotka renewal equation

B(t) =

t∫
0

B(t− a)l(a)m(a)da +G(t) (2.5.1)

where

G(t) =

ω−t∫
0

m(a+ t)n(a, 0)
l(a + t)
l(a)

da, (2.5.2)

is a known function.

Note, that the ’age’ a in both integrals is measured from 0. To be able to
think about it in a continuous way, we have to change a+ t→ a and in this
way we obtain

G(t) =

ω∫
t

m(a)n(a− t, 0)
l(a)

l(a − t)
da. (2.5.3)

Previous considerations allow to express the population density as

n(a, t) =

{
n(a− t, 0) l(a)

l(a−t) for a > t,

B(t− a)l(a) for a < t,
(2.5.4)

and thus we also can express B in terms of n by combining both integrals
in (2.6.14)

B(t) =

ω∫
0

n(a, t)m(a)da. (2.5.5)
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2.5.2 Discrete time - Lotka difference equation

We can obtain similar equation in discrete time. In analogy with the previ-
ous subsection

Bt = number of female births at time t
na,t = number of females of age a at time t
la = fraction of females surviving from birth to age a
ma = number of females born on average to a female of age a.

Here, a and t are integer valued. Arguing as before, we obtain the discrete
renewal equation

Bt =
t∑

a=1

Bt−alama +Gt, (2.5.6)

where

Gt =
ω−t∑
a=1

na,0
la+t

la
ma+t =

ω∑
a=t+1

na−t,0
la
la−t

ma.

Using these notation, we can also write the difference equation for the age
distribution na,t. We assume that births occur at t + 1 if females (of one
age class or more) survive from time t and reproduce. Starting from na,t we
project to na,t+1 as follows. For neonates we have

n0,t+1 = n0,tl1m1 + n1,t
l2
l1
m2 + . . .+ nω−1,t

lω
lω−1

mω,

whereas older females (a > 0) will be found at time t+ 1 only if females of
age a− 1 survived; that is

na,t+1 = na−1,t
la
la−1

, a = 1, . . . , ω − 1.

Denoting nt = (n0,t, . . . , nω−1,t), we obtain an evolution governed by Leslie
matrix

nt+1 = Lnt

where

L :=

⎛
⎜⎜⎜⎜⎜⎝

l1m1 m2l2/l1 · · · mω−1lω−1/lω−2 mωlω/lω−1

l1 0 · · · 0 0
0 l2/l1 · · · 0 0
...

... · · · ...
...

0 0 · · · lω−1/lω−2 0

⎞
⎟⎟⎟⎟⎟⎠ . (2.5.7)
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2.5.3 McKendrick-von Vorester partial differential equation

Yet another way of modelling age-structured population is to look at the
population as if it was ’transported’ through stages of life. Taking into
account that n(a, t)Δa is the number of females in the age group [a, a+Δa)
at time t, we may write that the rate of change of this number

∂

∂t
[n(a, t)Δa]

equals rate of entry at a minus rate of exit at a + Δa -deaths. Denoting
per capita mortality rate for individuals by μ(a, t), the last term is simply
−μ(a, t)n(a, t)Δt. The first two terms require introduction of the ’flux’
of individuals J describing ’speed’ of ageing. Thus, passing to the limit
Δa→ 0, we get

∂n(a, t)
∂t

+
∂J(a, t)
∂a

= −μ(a, t)n(a, t).

Let us determine the flux in the simplest case when ageing is just the passage
of time measured in the same units. Then, if the number of individuals in the
age bracket [a, a+Δa) is n(a, t)Δa, then after Δt we will have n(a, t+Δt)Δa.
On the other hand, u(a − Δt, t)Δt individuals moved in while u(a + Δa −
Δt)Δt moved out, where we assumed, for simplicity, Δt < Δa. Thus

n(a, t+Δt)Δa−n(a, t)Δa = u(a−Δt, t)Δt−u(a+Δa−Δt)Δt−μ(a, t)n(a, t)ΔaΔt

or, using the Mean Value Theorem (0 ≤ θ, θ′ ≤ 1)

nt(a, t+ θΔt)ΔaΔt = −na(a+ θ′Δa, t)ΔaΔt− μ(a, t)n(a, t)ΔaΔt

and, passing to the limit with Δt,Δa→ 0, we obtain

∂n(a, t)
∂t

+
∂n(a, t)
∂a

= −μ(a, t)n(a, t). (2.5.8)

This equation is defined for a > 0 and the flow is to the right hence we need
a boundary condition. In this model the birth rate enters here: the number
of neonates (a = 0) is the number of births across the whole age range:

n(0, t) =

ω∫
0

n(a, t)m(a, t)da,

where m is the maternity function. Eq. (2.5.8) also must be supplemented
by the initial condition

n(a, 0) = n0(a)

describing the initial age distribution.
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2.6 Rudimentary mathematical analysis of the mod-
els

2.6.1 Discrete Lotka equation

In this subsection we analyse the equation

Bt =
t∑

a=1

Bt−alama +Gt, (2.6.1)

where

Gt =
ω−t∑
a=1

na,0
la+t

la
ma+t =

ω∑
a=t+1

na−t,0
la
la−t

ma.

We assume that there is largest survival rate ω and the minimum and max-
imum reproduction ages (α and β, respectively). Looking at (2.6.1), we see
that it splits into two classes t ≥ β and t < β. For t > ω ≥ β, the inho-
mogeneity satisfies Gt = 0 (in fact, summation goes as β + 1, β + 2, . . . and
m1+β = m2+β = . . . = 0. Hence the problem reduces to

Bt =
β∑

a=α

Bt−alama +Gt, (2.6.2)

which is just a homogeneous linear difference equation of order n = β−α+1.

Long time behaviour

If we are only interested in long time behaviour of the solution, we can focus
on (2.6.2). In this case, we know that the solution is spanned by n linearly
independent solutions determined by solutions of the characteristic equation
which, in the above notation, takes the form

β∑
a=α

λ−alama = 1. (2.6.3)

Remark 2.6.1. We observe that the characteristic equation of the Leslie
matrix (2.5.7), associated with this model, is

λω −
β∑

a=1

λω−alama = 0

which is exactly (2.6.3) if we take into account menarche and menopause
and divide by λω. Thus, analysis can be done by Frobenius-Perron theory
but in this case it is instructive do the work from scratch. Also, as we will
see in the forthcoming example, validity of Eq. (2.6.3) can be stretched to
include more general situations.
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Example 2.6.2. The Northern Spotted Owl has the following characteris-
tics:

ma =
{

0 for a < 3,
0.24 for a ≥ 3,

l3 = 0.0722 and P = la+1/la = 0.942 for a ≥ 3 hence, in principle, we have
infinitely many reproductive classes. nevertheless, it turns out that (2.6.3)
still makes sense: denoting m3 = m for a ≥ 3, we have

1 =
∞∑

a=3

λ−alama =
l3m

λ3
+
l3Pm

λ4
+
l3P

2m

λ5
+ . . .

=
l3m

λ3

∞∑
a=0

(
P

λ

)a

=
l3m

λ3

1
1 − P/λ

,

which can be re-written as

λ3 − Pλ2 − l3m = 0.

Using, say, Mathematica, we get {λ → 0.960772}, {λ → −0.00938594 +
0.133968i} and {λ → −0.00938594 − 0.133968i}. We note the the complex
roots are not the roots of the original equation as for them P/|λ| > 1 and
the series would be divergent. So, λ = 0.960772 is the only root outside
|λ| = P .

Sensitivity analysis The dominant real eigenvalue gives an indication of
the rate of growth for large times of the population. The characteristic
equation can be used to find out how sensitive this parameter is with re-
spect to environmental changes. The dominant eigenvalue can be thought
of as a function of the parameters P, l3,m determined implicitly through the
equation

λ3(P, l3,m) − Pλ2(P, l3,m) − l3m = 0.

Sensitivity of a function with respect to a parameter is given by the value of
the partial derivative of the function with respect to this parameter. In this
case we can find the derivatives differentiating the above equation implicitly.
Thus,

3λ2 ∂λ

∂P
− λ2 − P2λ

∂λ

∂P
= 0

or
∂λ

∂P
=

λ2

3λ2 − 2Pλ
which, evaluated at P = 0.942 and λ = 0.96, gives

∂λ

∂P
= 0.962.
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In the same way,
∂λ

∂l3
= 0.254

and
∂λ

∂m
= 0.075.

We see that the growth rate of the population is most sensitive to changes
in adult annual survival, less to so to survival to breeding stage, and only
lastly to average reproductive rate.

Let us turn our attention to question what we can say in general about the
roots of the equation (2.6.3). We prove the following result.

Proposition 2.6.3. Equation (2.6.3) has exactly one positive real root, λ =
λ0, of algebraic multiplicity 1.

Proof. We define

ψ(λ) =
β∑

a=α

λ−alama (2.6.4)

so that (2.6.3) reads
ψ(λ) = 1.

Since all coefficients are non-negative we have

lim
λ→0

ψ(λ) = ∞

and
lim

λ→∞
ψ(λ) = 0.

Furthermore, ψ is strictly decreasing:

dψ(λ)
dλ

= −
β∑

a=α

aλ−a−1lama < 0.

So, ψ is continuous, strictly decreasing and thus it can cross any horizontal
line in the upper half-plane, including ψ(λ) = 1, only once. In particular,
there is only one positive real solution λ = λ0 of ψ(λ) = 1. The proposition
is proved. �
All other roots λj are either complex or negative and if, for instance, they
are simple, we can write

Bt = c0λ
t
0 +

∑
j=1

cjλ
t
j , t ≥ β.
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However, as we noted, solutions to ψ(λ) = 1 are the eigenvalues of the
corresponding Leslie matrix L and, in general, if L is not primitive, there
are other eigenvalues λ satisfying |λ| = λ0. In the current context, we can
improve the statement of the Frobenius-Perron theorem.

Consider the maternity function (sequence) m(a) ad assume that for some
as, m(a) = 0. Consider the set of all ages a for which m(a) > 0 and let
d be the greatest common divisor of these ages. If d > 1, we say that the
maternity function is periodic with period d. Otherwise, ma is aperiodic.

Proposition 2.6.4. No other root λj can be greater than λ0 in modulus. If
the maternity function is periodic with period d, then there are d− 1 other
eigenvalues with the same modulus as λ0. Otherwise, λ0 is strictly dominant
eigenvalue.

Proof. Let us suppose that

λj = |λj |eiθ, θ 	= 2πn,

is a negative or complex root to ψ(λ) = 1. Then,

β∑
a=α

|λj |−ae−iaθlama = 1 (2.6.5)

or, taking real and imaginary part,

β∑
a=α

|λj|−a cos(aθ)lama = 1 (2.6.6)

β∑
a=α

|λj |−a sin(aθ)lama = 0 (2.6.7)

Now, ifm(a) is periodic, then the only nonzero terms correspond to multiples
of d. Taking θn = 2πn/d, n = 0, 1, . . . , d− 1, we see cos aθn = 1, sin aθn = 0
and so, if the above equations are satisfied by λ0, they are also satisfied for
any λn = λ0e

θn , so that the second statement if proved. If m(a) is aperiodic,
then for some as we have cos aθ < 1. But then, if (2.6.6) is satisfied, we
must have

β∑
a=α

|λj|−alama > 1,

On the other hand, since

β∑
a=α

λ−a
0 lama = 1,

we obtain |λj | < λ0, thus proving the first and third assertion of the propo-
sition. �
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Example 2.6.5. Consider semelparous reproduction defined by

ma =

⎧⎨
⎩

0 for a = 1,
0 for a = 2,
6 for a = 3,

and

la =

⎧⎨
⎩

1 for a = 1,
1/2 for a = 2,
1/6 for a = 3.

The greatest common divisor is 3. The Euler-Lotka equation reduces to

1
λ3

= 1

so that

λ0 = 1, λ1,2 = −1
2
±

√
3

2
i,

with all roots of modulus 1. However, if we introduce immature reproduction

ma =

⎧⎨
⎩

1/4 for a = 1,
0 for a = 2,
6 for a = 3,

and

la =

⎧⎨
⎩

1 for a = 1,
1/2 for a = 2,
1/6 for a = 3,

we have aperiodic maternity function and the Euler-Lotka equation is

1
4

1
λ

+
1
λ3

= 0,

yielding λ0 = 1.09, λ1,2 = −0.42 ± 0.86i with |λ1,2| = 0.957. Hence, the
single positive root is dominant.

For aperiodic maternity schedule (and simple roots)

Bt = c0λ
t
0 +

∑
cjλ

t
j = c0λ

t
0

(
1 +

∑ cj
c0

(
λj

λ0

)t
)
,

where the sum is finite. If λj are not simple, then solutions are of the form∑
λt−k

j tk and also are of lower order than λt
0 for large t. Thus,

Bt ≈ c0λ
t
0

as t → ∞. After the death of founder females, the number of females in
each age class is given by

na,t = Bt−ala
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so that

na,t ≈ c0λ
t
0

(
la
λa

0

)
. (2.6.8)

Now, it can be proved (Tutorial problems) that the stable age distribution
for a Leslie matrix is (

l1
λ0
,
l2
λ2

0

, . . . ,
lω
λω

0

)
so that the fraction in (2.6.8) is the relative proportion of a-years-old to
newborns for the stable age distribution.

General solution

Let us consider the full equation

Bt =
t∑

a=1

Bt−alama +Gt, (2.6.9)

for t < β. One of the method used to solve (2.6.9), which utilizes its convo-
lution structure, is the Z-transform.

Mathematical interlude-the Z-transform For a sequence (ft)t∈N we
define

f̂(λ) = Z(ft) =
∞∑
t=0
ftλ

−t (2.6.10)

Z(f) is a Laurent series convergent for |λ| > R where

R = lim
t→∞

t
√

|ft|.

Z transform is a linear operation. A crucial property for applications in
difference equations is

Z(ft+k)(λ) = λkf̂(λ) −
k−1∑
r=0

frλ
k−r (2.6.11)

Indeed, taking k = 1, we have

Z(ft+1)(λ) = f1 + f2λ
−1 + . . . = λ(f0 + f1λ

−1 + f2λ
−2 + . . .) − λf0

= λZ(ft) − λf0

and the formula for larger values of k can be derived by induction.

The most important property is the Z-transform of a convolution of two
sequences, defined by

(f ∗ g)(t) =
t∑

a=0

ft−aga =
t∑

a=0

fagt−a.
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We have

Z(f ∗ g)(λ) =
∞∑
t=0

(
t∑

a=0
ft−aga

)
λ−t

=
∞∑
t=0

(
t∑

a=0
ft−aλ−(t−a)ga

)
λ−a

=
∞∑

a=0
gaλ

−a

( ∞∑
t=a
ft−aλ

−(t−a)

)

=
∞∑

a=0
gaλ

−a
∞∑

b=0

fbλ
−b

= Z(ft)Z(gt)

Suppose we know that a given function f(λ) is the Z-transform of a se-
quence (ft)t∈N. How we can find this sequence. First, we observe that by
uniqueness of Laurent expansion, no two different sequences can have the
same Z transform. To find (ft)t∈N we can use one of the following method:

a) power series method;

b) partial fraction method;

c) inversion integral method.

In the power series method, we find the Laurent expansion of f(λ); then the
coefficients of the expansion give the required series. Clearly, this is a long
and not very satisfactory method. In many cases, f(λ) can be written in
terms of partial fractions. Then we can use the fact that

Z(at) =
∞∑

t=0

(a
λ

)t
=

λ

λ− a
, |λ| > a (2.6.12)

to invert the Z-transform.

Example 2.6.6. Solve the difference equation

ft+2 + 3ft+1 + 2ft = 0, f0 = 1, f1 = −4

Applying the Z transform, we obtain

λ2f̂(λ)−f(0)λ2−f(1)λ+3λf̂(λ)−3f(0)λ+2f̂ (λ) = f̂(λ)(λ2+3λ+2)−λ2+λ = 0

and
f̂(λ)
λ

=
λ− 1

(λ+ 1)(λ + 2)
.

The partial fraction representation is

f̂(λ) =
−2λ
λ+ 1

+
3λ
λ+ 2

,

so that, by (2.6.12),
ft = −2(−1)t + 3(−2)t.
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The general way of finding (ft)t∈N is through the complex integration. Writ-
ing

f̂(λ)λt−1 = f0λ
t−1 + f1λ

t−2 + . . .+ ftλ
−1 + ft+1λ

−2 + . . .

and, by the Cauchy theorem,

ft =
1

2πi

∫
C

f̂(λ)λt−1dλ (2.6.13)

where C is a circle centred at the origin and enclosing all singularities of
f̂(λ)λt−1. If f̂(λ)λt−1 has only poles inside the circle of integration, ft can
be evaluated by summing up all residues of f̂(λ)λt−1.

Let us turn back our attention to (2.6.9) and take the Z-transform of both
side. We get

B̂(λ) = B̂(λ)f̂ (λ) + Ĝ(λ)

where f is the net maternity function, defined as fa = lama. Thus

B̂(λ) =
Ĝ(λ)

1 − f̂(λ)

where, as we easily note f̂(λ) =
β∑

a=α
λ−afa so that zeroes of the denominator

are exactly the solutions of the Euler-Lotka equation.

To simplify further presentation, we assume that the solutions of the Euler-
Lotka equation are simple (λ0, λ1, . . . , λβ−1) and therefore, by (2.6.13) and
the comment below it,

Bt =
β−1∑
j=0

resλ=λj

λt−1Ĝ(λ)

1 − f̂(λ)
.

Using the assumption that the poles are simple, we get

resλ=λj

λt−1Ĝ(λ)

1 − f̂(λ)
=
λt−1

j Ĝ(λj)

−f̂ ′(λj)
= λt

j

β−1∑
r=0

λ−r
j Gr

β∑
a=α

aλ−alama

and thus we have

Bt =
β−1∑
j=0

cjλ
t
j,

where

cj =

β−1∑
r=0

λ−r
j Gr

β∑
a=α

aλ−alama

.
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To conclude, we note that λ0 > 1 if and only if

R0 = ψ(1) =
β∑

a=α

lama > 1.

This follows since ψ is a strictly decreasing function and if at λ = 1 is bigger
than 1, then it will be 1 for some λ > 1. Conversely, if ψ(λ) = 1 for some
λ < 1, then ψ(1) < 1. The number ψ(1) is easily seen to be the average
number of (female) offspring produced by a female during her lifetime. Thus,
R0 is the basic reproductive ratio and the population will grow if and only
if R0 > 1.

2.6.2 Continuous Lotka equation

Let us recall the integral renewal equation

B(t) =

t∫
0

B(t− a)l(a)m(a)da +G(t) (2.6.14)

where

G(t) =

ω−t∫
0

m(a+ t)n(a, 0)
l(a + t)
l(a)

da, (2.6.15)

is a known function. The existence of solutions to (2.6.14) can be proved,
under mild assumptions, using Picard iterations. Under our assumptions l
and m are only non-zero on finite intervals as, assuming they are piecewise
continuous, they are bounded. Using this fact, we obtain, by Gronwall’s
inequality, that B is exponentially bounded.

Therefore we can apply the Laplace transform to solve (2.6.14). The Laplace
transform is defined by

f̂(λ) = (Lf)(λ) =

∞∫
0

e−λtf(t)dt,

and f̂ is defined and analytic in the right half-plane (determined by the rate
of growth of f . We also note that if the f is non-zero only over a finite
interval [a, b], then its Laplace transform is defined and analytic everywhere
in C. Such functions are called entire.

We use the property of the Laplace transform which is similar to that of
the Z-transform: convolution is transformed into algebraic product. In this
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context, the convolution of two functions is defined by

(f ∗ g)(t) =

t∫
0

f(t− s)g(s)ds =

t∫
0

f(s)g(t− s)ds

Using the definition of the Laplace transform and changing the order of
integration in a similar way we changed the order of summation in the
discrete case of the Z-transform, we obtain

[L(f ∗ g)](λ) = (Lf)(λ) · (Lg)(λ) (2.6.16)

Using this result, we obtain from (2.6.14)

B̂(λ) = B̂(λ)f̂ (λ) + Ĝ(λ) (2.6.17)

where f is, as before the net maternity rate f(a) = m(a)g(a). Hence,

B̂(λ) =
Ĝ(λ)

1 − f̂(λ)
(2.6.18)

As we noted above, Ĝ is an entire function so the only singularities of B̂
are due to zeroes of 1 − f̂ . Since f̂ is an entire function, these zeroes are
isolated of finite order (thus giving rise to poles of B̂ and with no finite
accumulation point. However, there may be infinitely many of them and
this requires some care with handling the inverse. It is known that if ĝ is
the Laplace transform of a continuous function g, then

g(t) =
1

2πi

c+i∞∫
c−i∞

eλtĝ(λ)dλ

where integration is carried along any vertical line in the domain of analyt-
icity of ĝ. In the case of isolated poles in λj , we can write

1
2πi

c+iR∫
c−iR

eλtĝ(λ)dλ+
1

2πi

∫
ΓR

eλtĝ(λ)dλ =
∑

j

resλ=λj
f̂(λ),

where ΓR is the left semicircle of radius R with centre at c, which does not
pass through any of the poles, and the summation is carried over all poles
enclosed by this circle and the segment of the line c ± i∞. If the sum of
residues converges (or equivalently, the integrals over ΓR converge to zero,
then we can write

g(t) =
1

2πi

c+i∞∫
c−i∞

eλtĝ(λ)dλ =
∞∑

j=1

resλ=λj
f̂(λ).
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If we assume that all the zeroes of 1− f̂ are of first order; that is, the poles
are simple, giving

resλ=λj

eλtĜ(λ)

1 − f̂(λ)
= lim

λ→λj

(λ− λj)
eλtĜ(λ)

1 − f̂(λ)
= Cje

λjt

where

Cj =

β∫
0

e−λjsG(s)ds

−f̂ ′(λj)
=

β∫
0

e−λjsG(s)ds

β∫
α
ae−λjal(a)m(a)ds

and the above assumptions are satisfied, we can write

B(t) =
∞∑

j=1

Cje
λjt. (2.6.19)

If the poles are not simple, then instead of purely exponential terms, we
have combinations of exponents and powers of t but general picture remains
the same.

As usual, we ask the standard question of population dynamics: is there a
dominant trend in the evolution of the population. If we assume that the
above expression for B is valid, this question boils down to the existence of
dominant real solution to the equation

1 =

β∫
α

e−λam(a)l(a)da (2.6.20)

As in the discrete case, we introduce

ψ(λ) =

β∫
α

e−λam(a)l(a)da

and we note

lim
λ→−∞

ψ(λ) = ∞,

lim
λ→∞

ψ(λ) = 0.

Moreover,

ψ′(λ) = −
β∫

α

ae−λal(a)m(a)da < 0,

ψ′′(λ) =

β∫
α

a2e−λal(a)m(a)da > 0,
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so that ψ is strictly decreasing and concave up function. Since it is con-
tinuous, it takes on every positive value exactly once. Thus, we proved the
counterpart of the discrete case result

Proposition 2.6.7. Equation (2.6.20) has exactly one real root, λ = λ0, of
algebraic multiplicity 1.

Remark 2.6.8. The continuity of ψ is a consequence of the boundeness of the
domain of integration. If we allow β = ∞ and consider, say, l(a) = (1+a2)−1

and m(a) = const < 2/π

ψ(λ) =

∞∫
α

e−λam(a)
1 + a2

dt

then ψ(λ) is finite for λ ≥ 0 but ψ(λ) = ∞ for λ < 0 and ψ(λ) < 1 for all
λ ≥ 0 and Eq. (2.6.20) has no real solution.

The function ψ crosses the ordinate at

R0 := ψ(0) =

β∫
α

l(a)m(a)da (2.6.21)

As before, R0 is called the net reproductive rate. It is the lifetime repro-
ductive potential of a female corrected for mortality. R0 must exceed 1 for
λ0 to be positive, If R0 = 1 if and only if λ0 = 0 and, finally, R0 < 1 if and
only if λ0 < 0.

The next step is, however, different from the discrete case. Namely, we have

Proposition 2.6.9. All other roots λj of (2.6.20) occur as complex conju-
gates (real root is its own conjugate). Moreover, �λj < λ0 for any j.

Proof. Suppose λj = u+ iv is a root of (2.6.20). Then

1 =

β∫
α

e−va(cos(−ua) + i sin(−ua))m(a)l(a)da

and, taking real and imaginary part

β∫
α

e−va cos(ua)m(a)l(a)da = 1,

β∫
α

e−va sin(va)m(a)l(a)da = 0
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and these two equation are invariant under the change v → −v so that
λ̄j = u− iv also satisfies (2.6.20).

To prove the second part, we note that, since the variable a is continuous,
there must be a range of a between [α, β] over which cos va < 1. Thus, from
nonnegativity of the integrand

β∫
α

e−vam(a)l(a)da > 1.

However
β∫

α

e−λ0am(a)l(a)da = 1,

and direct comparison of these two integrals yields λ0 > v = �λj. �
Thus, we re-write the formula (2.6.19) for B as

B(t) = C0e
λ0t

⎛
⎝1 +

∞∑
j=1

Cj

C0
e(λj−λ0)t

⎞
⎠

where |eλj−λ0 | = e�λj−λ0 < 1. Hence, each term of the series tends to zero as
t→ ∞ which, unfortunately, does not yield that the whole series converges
to zero. This can be proved under some mild assumptions and so we accept
here that this is the case; that is, indeed

B(t) ≈ C0e
λ0t, t→ ∞ (2.6.22)

with

C0 =

β∫
0

e−λ0sG(s)ds

β∫
α
ae−λ0al(a)m(a)ds

After the death of founder females, the whole population grows according
to

N(t) =

ω∫
0

B(t− a)l(a)da

thus, for large times, we have

N(t) ≈ C0e
λ0

ω∫
0

e−λ0al(a)da, t→ ∞,

so that the population will eventually grow with exponential rate.
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Similarly, the number of females in some small age range Δa is given by

n(a, t)Δa = B(t− a)l(a)Δa (2.6.23)

(using Δa = Δt) so that

n(a, t)Δa ≈ C0e
λ0 [e−λ0al(a)]Δa t→ ∞.

If we denote the fraction of females in the age range Δa by

c(a, t) =
n(a, t)Δa
N(t)

,

then

c(a, t) ≈ c∗(a) :=
[e−λ0al(a)]Δa
ω∫
0

e−λ0al(a)da
, t→ ∞

is asymptotically independent of t for large t. In other words, the population
tens towards a stable age distribution.

2.6.3 McKendrick-van Foerster equation

We analayse the initial-boundary value problem

∂n(a, t)
∂t

+
∂n(a, t)
∂a

= −μ(a)n(a, t)

n(0, t) =

ω∫
0

n(a, t)m(a, t)da = B(t),

n(a, 0) = n0(a).

We use the method of characteristics; that is, we introduce new variables
one of which will be running along characteristics while the other will label
particular characteristic. In our case, characteristics are straight lines η =
t−a. As the complementary variable we take a = ξ which gives a nonsingular
change of variables. Denoting by ñ(ξ, η) = n(a, t) we obtain

na = ñξξa + ñηηa = ñξ − ñη,

nt = ñξξt + ñηηt = ñη

so that (2.6.24) turns into

ñξ(ξ, η) = −μ(ξ)ñ(ξ, η)

whose general solution is given by

ñ(ξ, η) = C(η)e
−

ξ∫
0

μ(s)ds
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where C is an arbitrary function to be determined by initial and boundary
conditions. Returning to the original variables, we have

n(a, t) = C(t− a)e
−

a∫
0

μ(s)ds
(2.6.24)

Now, using the initial condition at t = 0 and a > 0 (so that η = t− a < 0),
we get

n0(a) = n(a, 0) = C(−a)e
−

a∫
0

μ(s)ds

that is, introducing dummy variable r

C(r) = n0(−r)e
−r∫
0

μ(s)ds

so that, returning to (2.6.24),

n(a, t) = n0(a− t)e

a−t∫
0

μ(s)ds
e
−

a∫
0

μ(s)ds
= n0(a− t)e

−
a∫

a−t

μ(s)ds

(2.6.25)

for t− a < 0. On the other hand, for a = 0 and t > 0; that is η = t− a > 0,
we have

B(t) = n(0, t) = C(t)

so that, by (2.6.23),

n(a, t) = B(t− a)e
−

a∫
0

μ(s)ds
= n(0, t− a)e

−
a∫
0

μ(s)ds
,

(the number of births at time t is equal to the number of neonates at time
t). Let us relate the integrals above with the definitions introduced earlier.
If μ is the per capita death rate, then the age a population satisfies

N ′(a) = −μ(a)N(a)

so that

N(a) = N(0)e
−

a∫
0

μ(s)ds

so that the fraction of newborns surviving till the age a is precisely

l(a) =
N(a)
N(0)

e
−

a∫
0

μ(s)ds
.

Thus, we can write down our solution as

n(a, t) =

{
n(0, t− a)l(a) for t > a,

n(a− t, 0) l(a)
l(a−t) for a > t,

(2.6.26)

129



Birth-and-death type problems Chapter 2

in accordance with (2.5.4).

Of course, this is not a complete solution as we do not know n(0, t − a) =
B(t− a). However, using again the boundary condition, we get

B(t) = n(0, t) =

ω∫
0

n(a, t)m(a)da

=

t∫
0

B(t− a)l(a)m(a)da +

ω∫
t

n(a− t, 0)
l(a)

l(a− t)
m(a)da

=

t∫
0

B(t− a)l(a)m(a)da +

ω−t∫
0

n(a, 0)
l(a+ t)
l(a)

m(a+ t)da

which is precisely the integral Lotka equation. Hence, all conclusions derived
earlier are also valid for solutions of the McKendrick-van Foerster model

2.7 Birth-and-death type problems

Consider a population consisting of N(t) individuals at time t. We allow
stochasticity to intervene in the process so that N(t) becomes a random
variable. Accordingly, we denote by

pn(t) = P [N(t) = n], n = 1, 2, . . . (2.7.1)

the probability that the population has n individuals at t.

2.7.1 Birth process

At first, we consider only births and we assume that each individual gives
births to a new one independently of others. For a single individual, we
assume that

P{1 birth in (t, t+ Δt]|N(t) = 1} = βΔt+ o(Δ), (2.7.2)
P{more than 1 birth in (t, t+ Δt]|N(t) = 1} = o(Δt), (2.7.3)
P{0 births in (t, t+ Δt]|N(t) = 1} = 1 − βΔt+ o(Δt). (2.7.4)

If we have n individuals, than 1 births will occur if exactly one of them give
birth to one offspring and the remaining n− 1 produce 0. This can happen
in n ways. Thus

P{1 birth in (t, t+ Δt]|N(t) = n} = n(βΔt+ o(Δt))(1 − βΔt+ o(Δt))n−1

= nβΔt+ o(Δt). (2.7.5)
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Similarly, more then one birth can occur if one individual give births to
more than 1 offspring or at least two individuals give birth to one new one.
Considering all possible combinations, we end up with finite sum each term
of which is multiplied by Δt or its higher powers. Thus

P{more than 1 birth in (t, t+ Δt]|N(t) = n} = o(Δt). (2.7.6)

Finally, no birth occurs if none individual produces an offspring; that is

P{0 births in (t, t+ Δt]|N(t) = n} = (1 − βΔt+ o(Δt))n

= 1 − nβΔt+ o(Δt). (2.7.7)

We can set up the equation describing evolution of pn(t). There can be n
individuals at time t+ Δt if there were n− 1 individuals at time t and one
births occurred or if there were n individuals and zero births occurred, or
less than n − 1 individuals and more than 1 birth occurred. However, the
last event occurs with probability o(Δt) and will be omitted. Using the
theorem of total probabilities

pn(t+ Δt) = pn−1(t)P{1 birth in (t, t+ Δt]|N(t) = n− 1}
+pn(t)P{0 births in (t, t+ Δt]|N(t) = n} (2.7.8)

that is, using the formulae

pn(t) = (n− 1)βΔtpn−1 + (1 − nβΔt)pn(t) + o(Δ) + o(Δt). (2.7.9)

After some algebra, we get

pn(t+ Δt) − pn(t)
Δt

= −nβpn(t) + (n− 1)βpn−1(t) +
o(Δt)
Δt

and, passing to the limit

dpn(t)
dt

= −nβpn(t) + (n− 1)βpn−1(t). (2.7.10)

This is an infinite chain of differential equations which must be supplemented
by an initial condition. The population at t = 0 had to have some number
of individuals, say, n0. Hence,

pn(0) =
{

1 for n = n0,
0 for n 	= n0.

(2.7.11)

Since this is purely birth process, pn(0) = 0 for t > 0 and n < n0.

Since the rate of change of pn depends only on itself and on the preceding
pn−1(t), we have

dpn0(t)
dt

= −n0βpn0(t), (2.7.12)
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so that
pn0(t) = e−βn0t.

For pn0+1(t) we obtain nonhomogeneous equation

dpn0+1(t)
dt

= −(n0 + 1)βpn0+1(t) + βn0e
−βn0t.

Using integrating factor eβ(n0+1)t we obtain(
pn0+1(t)eβ(n0+1)t

)′
= βn0e

βt

or
pn0+1(t) = (n0e

βt + C)e−β(n0+1)t

so, using the initial condition pn0+1(0) = 0, we obtain

pn0+1(t) = n0(1 − e−βt)e−βn0t

In general, it can be proved that

pn0+m(t) =
(
n0 +m− 1
n0 − 1

)
e−βn0t(1 − e−βt)m.

Indeed, we proved the validity of the formula for m = 1. Next

dpn0+m+1(t)
dt

= −(n0+m+1)βpn0+m+1(t)+β
(
n0 +m− 1
n0 − 1

)
e−βn0t(1−e−βt)m.

and, as before(
pn0+m+1(t)eβ(n0+m+1)t

)′
= β

(
n0 +m− 1
n0 − 1

)
eβt(1 − e−βt)m.

and, integrating

pn0+m+1(t)eβ(n0+m+1)t

= C + β(n0 +m)
(
n0 +m− 1
n0 − 1

)∫
eβ(m+1)t(1 − e−βt)mdt

= C + β(n0 +m)
(
n0 +m− 1
n0 − 1

)∫
eβt(eβt − 1)mdt

= C + (n0 +m)
(
n0 +m− 1
n0 − 1

)∫
umdu

= C +
n0 +m

m+ 1

(
n0 +m− 1
n0 − 1

)
(eβt − 1)m+1

= C +
(
n0 +m
n0 − 1

)
(eβt − 1)m+1

Using the initial condition pn0+m+1(0) = 0 we find C = 0 and so

pn0+m+1(t) =
(
n0 +m
n0 − 1

)
e−βn0t(1 − e−βt)m+1.
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2.7.2 Birth-and-death system

The obvious drawback of the system discussed above is that individuals
never die. We can easily remedy this by adding possibility of dying in the
same way as we modelled births. Accordingly,

P{1 birth in (t, t+ Δt]|N(t) = 1} = βΔt+ o(Δ), (2.7.13)
P{1 death in (t, t+ Δt]|N(t) = 1} = δΔt+ o(Δ), (2.7.14)
P{no change in (t, t+ Δt]|N(t) = 1} = 1 − (β + δ)Δt+ o(Δt).(2.7.15)

Possibility of more then one births or death occurring in (t, t+Δt] is assumed
to be or order o(Δt) and will be omitted in the discussion.

As before, we assume that in the population of n individuals births and
deaths occur independently. The probability of 1 birth is given by

P{1 birth in (t, t+ Δt]|N(t) = n}
= n(βΔt+ o(Δt))(1 − (β + δ)Δt+ o(Δt))n−1

= nβΔt+ o(Δt). (2.7.16)

Similarly, probability of 1 (net) death in the population

P{1 birth in (t, t+ Δt]|N(t) = n}
= n(δΔt+ o(Δt))(1 − (β + δ)Δt+ o(Δt))n−1

= nδΔt+ o(Δt). (2.7.17)

and, finally,

P{no change in (t, t+ Δt]|N(t) = n} = (1 − (β + δ)Δt+ o(Δt))n

= 1 − n(β + δ)Δt+ o(Δt).(2.7.18)

We can set up the equation describing evolution of pn(t). Arguing as before

pn(t) = (n− 1)βΔtpn−1 + (n+ 1)δΔtpn+1 + (1 − n(β + δ)Δt)pn(t) + o(Δt)
(2.7.19)

and, finally

dpn(t)
dt

= −n(β + δ)pn(t) + (n− 1)βpn−1(t) + (n+ 1)δpn+1(t). (2.7.20)

This system has to be supplemented by the initial condition

pn(0) =
{

1 for n = n0,
0 for n 	= n0.

(2.7.21)
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Remark 2.7.1. Equations similar to (2.7.20) can occur in many other ways,
not necessarily describing stochastic processes. In general, we can consider
population consisting of individuals differentiated by a single feature, e.g.,
we can consider cells having n copies of a particular gen. Here, un(t) will be
the number of individuals having n copies of this gen. Due to mutations or
other environmental influence, the number of genes can increase or decrease.
We may assume that at sufficiently small period of time only one change
may occur. Denoting by βn and δn the rates of increasing (resp. decreasing)
the number of genes if there are n of them, by the argument used above, we
have

u′n(t) = −(βn + δn)un(t) + δn+1un+1(t) + βn−1un−1(t), n ≥ 0.

Contrary to (2.7.10), the system (2.7.20) is much more difficult to solve. In
fact, even proving that there is a solution to it is a highly nontrivial exercise.
In what follows, we assume that (p0(t), p1(t), . . . , ) exists and describes a
probability; that is

∞∑
n=0

pn(t) = 1, t ≥ 0. (2.7.22)

Then, we will be able to find formulae for pn by the generating function
method. We define

F (t, x) =
∞∑

n=0
pn(t)xn

Since pn ≥ 0, by (2.7.22), the generation function is defined in the closed
circle |x| ≤ 1 and analytic in |x| < 1. The generating function has the
following properties:

(1) The probability of extinction at time t, p0(t), is given by

p0(t) = F (t, 0). (2.7.23)

(2) The probabilities pn(t) are given by

pn(t) =
1
n!
∂nF

∂xn

∣∣∣∣
x=0

(2.7.24)

If F (t, x) is analytic in a little larger circle, containing x = 1, we can use
F to find other useful quantities. The expected value of N(t) at time t is
defined by

E(N(t)) =
∞∑

n=0
npn(t)

On the other hand,
∂F

∂x
(t, x) =

∞∑
n=0

npn(t)xn−1
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so that

E[N(t)] =
∞∑

n=0
npn(t) =

∂F

∂x

∣∣∣∣
x=1

(2.7.25)

Similarly, the variance is defined by

V ar[N(t)] = E[N2(t)] − (E[N(t)])2.

On the other hand,

∂2F

∂x2
(t, x)

∣∣∣∣
x=1

=
∞∑

n=0
n(n− 1)pn(t) = E[N2(t)] − E[N(t)].

Combining these formulae, we get

V ar[N(t)] =

(
∂2F

∂x2
+
∂F

∂x
−
(
∂F

∂x

)2
)∣∣∣∣∣

x=1

(2.7.26)

Let us find the equation satisfied by F . Using (2.7.20) and remembering
that p−1 = 0, we have

∂F

∂t
(t, x) =

∞∑
n=0

n
dpn

dt
(t) = −(β + δ)

∞∑
n=0

npn(t)xn

+β
∞∑

n=0
(n− 1)pn−1(t)xn + δ

∞∑
n=0

(n + 1)pn+1(t)xn

= −(β + δ)x
∂F

∂x
(t, x) + βx2 ∂F

∂x
(t, x) + δ

∂F

∂x
(t, x).

That is, to find F we have to solve the equation

∂F

∂t
=
(
βx2 − (β + δ)x+ δ

) ∂F
∂x

. (2.7.27)

supplemented by the initial condition

F (0, x) = xn0 .

The equation can be solved by characteristics. This problem is slightly
simpler than the McKendrick-van Foerster equation: F is constant along
characteristics, which are given by

dx

dt
= −(βx− δ)(x− 1)

that is

−t+ C =
∫

dt

(βx− δ)(x− 1)
=

1
β − δ

(
−
∫

dx

x− δ
β

+
∫

dx

x− 1

)

=
1

β − δ
ln

∣∣∣∣∣ x− 1
x− δ

β

∣∣∣∣∣
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provided β 	= δ and x 	= 1, δ/β. This gives∣∣∣∣βx− δ

x− 1

∣∣∣∣ = Cert

where r = β − δ. Thus, we have the general solution

F (t, x) = G

(
e−rt

∣∣∣∣βx− δ

x− 1

∣∣∣∣
)
,

where G is an arbitrary function. Using the initial condition, we get

xn0 = G

(∣∣∣∣βx− δ

x− 1

∣∣∣∣
)

Assume x < min{1, δ/β} or x > max{1, δ/β} so that we can drop absolute
value bars. Solving

s =
βx− δ

x− 1
we get

x =
s− δ

s− β

so that

G(s) =
(
s− δ

s− β

)n0

.

Thus, the solution is given by

F (x, t) =

(
e−rt βx−δ

x−1 − δ

e−rt βx−δ
x−1 − β

)n0

=
(
ertδ(1 − x) + (βx− δ

ertβ(1 − x) + (βx− δ)

)n0

(2.7.28)

Consider zero of the denominator:

x =
ert − δ

β

ert − 1

If δ/β < 1, then r > 0 and we see that x > 0 and, as t→ ∞, x moves from
+∞ to 1 and thus F is analytical in the circle stretching from the origin
to the first singularity, which is bigger than 1 for any finite t. If δ/β > 1,
then r < 0 and x above is again positive and moves from infinity to δ/β > 1
so again F is analytic in a circle with radius bigger than 1. Since we know
that the generating function (defined by the series, coincides with F defined
above for |x| < min{1, δ/β}, by the principle of analytic continuation, the
generation function coincides with F in the whole domain of its analyticity
(note that this is not necessarily solution of the equation (2.7.27) outside
this region as we have removed the absolute value bars).
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Consider now the case β = δ. Then the characteristic equation is

dx

dt
= −β(x− 1)2

solving which we obtain
1

x− 1
= βt+ ξ,

or

ξ =
1 − xβt+ βt

x− 1
.

Hence, the general solution is given by

F (t, x) = G

(
1 − xβt+ βt

x− 1

)
.

Using the initial condition, we have

xn0 = G

(
1

x− 1

)
.

Defining

s =
1

x− 1
or

x = 1 +
1
s
.

Hence

G(s) =
(

1 +
1
s

)n0

.

Therefore

F (t, x) =
(

1 +
x− 1

1 − xβt+ βt

)n0

=
(
βt+ (1 − βt)x
1 − xβt+ βt

)n0

.

Summarizing,

F (t, x) =

⎧⎨
⎩
(

ertδ(1−x)+(βx−δ)
ertβ(1−x)+(βx−δ)

)n0

if β 	= δ(
βt+(1−βt)x
1−xβt+βt

)n0

if β = δ
(2.7.29)

Let us complete this section by evaluating some essential parameters. The
probability of extinction at time t is given by

p0(t) = F (t, 0) =

⎧⎨
⎩
(

δ(ert−1
ertβ−δ

)n0

if β 	= δ(
βt

1+βt

)n0

if β = δ.
(2.7.30)
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Hence, the asymptotic probability of extinction is given by

lim
t→∞ p0(t) =

{ (
δ
β

)n0

if β > δ

1 if β ≤ δ.
(2.7.31)

We note that even for positive net growth rates β > δ the probability of
extinction is non-zero. Populations with small initial numbers are especially
susceptible to extinction.

To derive the expected size of the population we use (2.7.25). We have

E[N(t)] =
∂F

∂x

∣∣∣∣
x=1

= n0

(
ertδ(1 − x) + (βx− δ)
ertβ(1 − x) + (βx− δ)

)n0−1

(−ertδ + β)(ertβ(1 − x) + (βx− δ)) + β(ert − 1)(ertδ(1 − x) + (βx− δ))
(ertβ(1 − x) + (βx− δ))2

∣∣∣∣
x=1

= n0
(−ertδ + β)(β − δ) + β(ert − 1)(β − δ)

(β − δ)2

= n0e
rt

To get the variance, we have to find the second derivative. It is given by

∂2F

∂x2

= n0

(
xβ − δ + ert(1 − x)δ
ert(1 − x)β + xβ − δ

)−1+n0

(
− 2(β − ertβ)(β − ertδ)

(ert(1 − x)β + xβ − δ)2
+

2(β − ertβ)2(xβ − δ + ert(1 − x)δ)
(ert(1 − x)β + xβ − δ)3

)
+

(−1 + n0)n0

(
xβ − δ + ert(1 − x)δ
ert(1 − x)β + xβ − δ

)−2+n0

(
β − ertδ

ert(1 − x)β + xβ − δ
− (β − ertβ)(xβ − δ + ert(1 − x)δ)

(ert(1 − x)β + xβ − δ)2

)2

Hence

V ar[N(t)] =

(
∂2F

∂x2
+
∂F

∂x
−
(
∂F

∂x

)2
)∣∣∣∣∣

x=1

= n0

(
2(β − ertβ)2

(β − δ)2
− 2(β − ertβ)(β − ertδ)

(β − δ)2

)
+ n0

(
−β − ertβ

β − δ
+
β − ertδ

β − δ

)

+(−1 + n0)n0

(
−β − ertβ

β − δ
+
β − ertδ

β − δ

)2

− n0
2

(
−β − ertβ

β − δ
+
β − ertδ

β − δ

)2

=
ert(−1 + ert)n0(β + δ)

β − δ

138



Chapter 2 Birth-and-death type problems

for β 	= δ, while for β = δ we obtain

V (t) = 2n0βt.
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Discrete time non-linear
models for interacting
species and age structured
populations

System of discrete equations occur when we have two, or more, interacting
species. However, we also have seen systems in age structured one-species
models. They were linear but can be easily generalized to non-linear by
introducing density dependent coefficients (such as logistic growth). We
have discuss two such systems, next we introduce tools for their analysis,
and finally provide stability analysis of them.

3.1 Models

3.1.1 Host-parasitoid system

Discrete difference equation models apply most readily to groups such as
insect population where there is rather natural division of time into discrete
generations. A model which has received a considerable attention from ex-
perimental and theoretical biologists is the host-parasitoid system. Let us
begin by introducing definition of a parasitoid. Predators kill their prey,
typically for food. Parasites live in or on a host and draw food, shelter, or
other requirements from that host, often without killing it. Female para-
sitoids, in turn, typically search and kill, but do not consume, their hosts.
Rather, they oviposit (deposit eggs) on, in, or near the host and use it as
a source of food and shelter for the developing youngs. There are around
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50000 species of wasp-like parasitoids, 15000 of fly-type parasitoids and 3000
species of other orders.

Typical of insect species, both host and parasitoid have a number of life-
stages that include eggs, larvae, pupae and adults. In most cases eggs are
attached to the outer surface of the host during its larval or pupal stage,
or injected into the host’s flesh. The larval parasitoids develop and grow at
the expense of their host, consuming it and eventually killing it before they
pupate.

A simple model for this system has the following set of assumptions:

1. Hosts that have been parasitized will give rise to the next generation
of parasitoids.

2. Hosts that have not been parasitized will give rise to their own prodigy.

3. The fraction of hosts that are parasitized depends on the rate of en-
counter of the two species; in general, this fraction may depend on the
densities of one or both species.

It is instructive to consider this minimal set of interactions first and examine
their consequences. We define:

• Nt – density (number) of host species in generation t,

• Pt – density (number) of parasitoid in generation t,

• f = f(Nt, Pt) – fraction of hosts not parasitized,

• λ – host reproductive rate,

• c – average number of viable eggs laid by parasitoid on a single host.

Then our assumptions 1)–3) lead to:

Nt+1 = λNtf(Nt, Pt),
Pt+1 = cNt(1 − f(Nt, Pt). (3.1.1)

To proceed we have to specify the rate of encounter f . One of the earliest
models is the Nicholson-Bailey model.

The Nicholson-Bailey model

Nicholson and Bailey added two assumptions to to the list 1)-3).
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4. Encounters occur randomly. The number of encounters Ne of the host
with the parasitoid is therefore proportional to the product of their
densisties (numbers):

Ne = αNtPt,

where α is a constant, which represents the searching efficiency of the
parasitoids. (This kind of assumption presupposing random encoun-
ters is is known as the law of mass action. )

5. Only the first encounter between a host and parasitoid is significant
(once the host has been parasitized it gives rise exactly c parasitoid
progeny; a second encounter with an egg laying parasitoid will not
increase or decrease this number.

Based on the latter assumption, we have to distinguish only between those
hosts that have had no encounters and those that had n encounters, n ≥ 1.
Because the encounters are random, one can represent the probability of r
encounters by some distribution based on the average number of encounters
that take place per unit time.

Poisson distribution One of the simplest distributions used in such a
context is the Poisson distribution. It is a limiting case of the binomial
distribution: if the probability of an event occurring in a single trial is p and
we perform n trials, then the probability of exactly r events is

b(n, p; r) =
(
n
r

)
pr(1 − p)n−r.

Average number of events in μ = np. If we assume that the number of trials
n grows to infinity in such a way that the average number of events μ stays
constant (so p goes to zero), then the probability of exactly r events is given
by

p(r) = lim
n→∞ b(n, μ/n; r) = lim

n→∞
n!

r!(n− r)!
μr

nr

(
1 − μ

n

)n−r
=
e−μμr

r!
,

which is the Poisson distribution. In the case of host-parasitoid interaction,
the average number of encounters per host per unit time is

μ =
Ne

Nt
,

that is, by 4.,
μ = aPt.

Hence, the probability of a host not having any encounter with parasitoid is

p(0) = e−aPt .
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Assuming that the parasitoids search independently and their searching ef-
ficiency is constant a, leads to the Nicholson-Bailey system

Nt+1 = λNte
−aPt ,

Pt+1 = cNλ(1 − e−aPt) (3.1.2)

3.1.2 Non-linear age structured model.

Consider a single species population with two age classes: juveniles and
adults. Let Xt be the number of juveniles at time t and Yt be the number of
adults. We assume that the fertility rate for adults is b, c is the survival rate
of juveniles; that is a fraction c of juveniles present at time t become adults
at t + 1 and the rest dies. In each time period only the density dependent
fraction s −DYt of the adult population survives. These assumptions lead
to the system

Xt+1 = bYt,

Xt+1 = cXt + Yt(s −DYt). (3.1.3)

We re-write this equation in a form which is more convenient for analysis
by introducing new unknowns Xt = bX̂t/D and Yt = Ŷt/D, which converts
(3.1.3) into

X̂t+1 = Ŷt,

X̂t+1 = aX̂t + Ŷt(s− Ŷt), (3.1.4)

where a = cb > 0.

3.1.3 SIR model

Let us consider the population divided into three classes: susceptibles S,
infectives I and removed (immune or dead) R. We do not consider any births
in the process. Within one cycle from time k to time k+1 the probability of
an infective meeting someone is α′ and thus meeting a susceptible is α′S/N
where N is the size of the population at time k; further a fraction α′′ of
these encounters results in an infection. We denote α = α′α′′. Moreover,
we assume that a fraction β of individuals (except from class S) can become
susceptible (could be reinfected) and a fraction γ of infectives move to R.
This results in the system

S(k + 1) = S(k) − α

N
I(k)S(k) + β(I(k) +R(k))

I(k + 1) = I(k) +
α

N
I(k)S(k) − γI(k) − βI(k)

R(k + 1) = R(k) − βR(k) + γI(k) (3.1.5)
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We observe that

S(k + 1) + I(k + 1) +R(k + 1) = S(k) + I(k) +R(k) = const = N

so that the total population does not change in time.

This can be used to reduce the (3.1.5) to a two dimensional system

S(k + 1) = S(k) − α

N
I(k)S(k) + β(N − S(k))

I(k + 1) = I(k)(1 − γ − β) +
α

N
I(k)S(k). (3.1.6)

The modelling indicates that we need to assume 0 < γ+β < 1 and 0 < α < 1.

3.2 Stability analysis

In both cases (that is, for the host-parasitoid models of for the age structured
population model) our interest is in finding and determining stability of the
equilibria. For this, however, we have to do some mathematics.

We shall be concerned with autonomous systems of difference equations

x(n+ 1) = f(x(n)), (3.2.1)

where x(0) = x0 is given. Here, x = (x1, . . . , xN ) and f(t) = {f1(t), . . . , fN (t)}
is a continuous function from R

N into R
N . In what follows, ‖ ·‖ is any norm

on R
N , unless specified otherwise.

As in the scalar case, x∗ ∈ R
N is called an equilibrium point of (3.2.1) if

x∗ = f(x∗) (3.2.2)

The definition of stability is analogous to the scalar case.

Definition 3.2.1. (a) The equilibrium x∗ is stable if for given ε > 0 there
is δ > 0 such that for any x and for any n > 0, ‖x − x∗‖ < δ implies
‖fn(x) − x∗| < ε for all n > 0. If x∗ is not stable, then it is called
unstable (that is, x∗ is unstable if there is ε > such that for any δ > 0
there are x and n such that ‖x − x∗‖ < δ and ‖fn(x) − x∗‖ ≥ ε.)

(b) The point x∗ is called attracting if there is η > 0 such that

‖x(0) − x∗‖ < η implies lim
n→∞x(n) = x∗.

If η = ∞, then x∗ is called a global attractor or globally attracting.

(c) The point x∗ is called an asymptotically stable equilibrium if it is stable
and attracting. If η = ∞, ten x∗ is said to be globally asymptotically
stable equilibrium.

It is worthwhile to note that in higher dimension we may have unstable and
attracting equilibria.

145



Stability analysis Chapter 3

3.2.1 Stability of linear systems

We consider the linear autonomous system

x(n + 1) = Ax(n), x(0) =
◦
x, (3.2.3)

We assume that A is non-singular. The origin 0 is always an equilibrium
point of (3.2.3). We have the following result:

Theorem 3.2.2. The following statements hold:

1. The zero solution of (3.2.3) is stable if and only if the spectral radius
of A satisfies ρ(A) ≤ 1 and the eigenvalues of unit modulus are semi-
simple;

2. The zero solution is asymptotically stable if and only if ρ(A) < 1.

Proof. Let λ1, . . . , λk be distinct eigenvalues of A, each with algebraic
multiplicity ni so that n1 + . . . + nk = N . We assume that |λ1| ≥ |λ2| ≥
. . . |λk| > 0. For each 1 ≤ r ≤ k, let v1

r , . . . ,v
nr
r be the set of eigenvectors

and associated eigenvectors belonging to λr. Each vj
r is a solution to

(A− λrI)m
r
j vj

r = 0

for some 1 ≤ mr
j ≤ nr (some (even all) js may correspond to the same mr

j .
Then we can write the solution as

Anx0 =
k∑

r=1

(
nr∑

j=1
cjrAnvj

r

)
(3.2.4)

where cjr are coefficients of the expansion of x0 in the basis consisting of vj
r,

1 ≤ r ≤ k, and 1 ≤ j ≤ nr and

Anvj
r = (λrI + A− λrI)nvj

r =
n∑

l=0

λn−l
r

(
n
l

)
(A− λrI)lvj

r

=
(
λn

r I + nλn−1
r (A− λrI) + . . .

+
n!

(mr
j − 1)!(n −mr

j + 1)!
λ

n−mr
j+1

r (A− λrI)m
r
j−1

)
vj

r,(3.2.5)

It is important to note that (3.2.5) is a finite sum for any n as the term
(A−λrI)m

r
jvj

r and all subsequent ones are zero. Using the triangle inequality
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for norms, we obtain

‖Anvj
r‖ (3.2.6)

≤ |λr|n
(
1 + n|λr|−1(‖A‖ + |λr|) + . . .

+ Pmr
j−1(n)|λr|−mr

j+1(|A| + |λr|)mr
j−1
)
‖vj

r‖
= |λr|nnmr

j−1
(
n−mr

j+1 + nmr
j−2|λr|−1(‖A‖ + |λr|) + . . .

+
Pmr

j−1(n)

nmr
j−1

|λr|−mr
j+1(‖A‖ + |λr|)mr

j−1

)
‖vj

r‖

≤ Cr
j |λr|nnmr

j−1 ≤ Cr
j |λr|nnnr−1,

where the constant Cr
j does not depend on n and we used mr

j ≤ nr. Next
we observe that the vector � consisting of constants cjr is given by

c =

⎛
⎝ | . . . |

v1
1 . . . vnk

k

| . . . |

⎞
⎠

−1

x0

and thus, for some constant M

‖c‖ ≤M‖x0‖. (3.2.7)

Assume now that ρ(A) < 1; that is all eigenvalues have absolute values
smaller than 1. Then

‖Anx0‖ ≤
k∑

r=1

|λr|nnnr−1

(
nr∑
j=1

|cjr|Cr
j

)
≤M ′‖x0‖

k∑
r=1

|λr|nnnr−1

where
M ′ = M max

1≤r≤k

nr∑
j=1

Cr
j

and we used the fact that in (3.2.7) we can use ‖c‖ = max{|cjr|}. From
ρ(A) < 1 we infer that 1 > |λ1| ≥ |λ2| ≥ . . . ≥ |λk| and hence there is
1 > η > |λ1|. With this η, we have |λi|η−1 ≤ η0 < 1 for any i = 1, . . . , k and

‖Anx0‖ ≤M ′k‖x0‖ηnηn
0n

N−1

Now, for any a < 1 and k > 0 we have lim
n→∞annk = 0 so that annk ≤ L for

some constant L. Thus, there is are constants K > 0 and 0 < η < 1 such
that

‖Anx0‖ ≤ K‖x0‖ηn (3.2.8)

and the zero solution is asymptotically stable.
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If there are eigenvalues of unit modulus but they are semi-simple, then the
expansions (3.2.7) reduce to first term (j1 = 1 in each case) so that in such
a case

‖Anvj
r‖ ≤ Cr

j

and the solution is stable (but not asymptotically stable).

If an eigenvalue λr is not semi-simple, then some mr
j is bigger then 1 and

we have polynomial entries in (3.2.5). Consider an associated eigenvector
vj

r corresponding to this case. Then

‖Anvj
r‖

= ‖vj
r + nλ−1

r (A− λr)vj
r + . . .+ Pmr

j−1(n)λ
−mr

j+1
r (A− λr)m

r
j−1vj

r‖
≥ nmr

j−1
∣∣∣n−mr

j+1|Pmr
j−1(n)|‖(A− λr)m

r
j−1vj

r‖
− n−1‖n−mr

j+2vj
r + n−mr

j+3λ−1
r (A− λr)vj

r + . . . ‖
∣∣∣

The coefficient ‖(A − λr)m
r
j−1vj

r‖ is non-zero and the first term inside the
absolute value bars converges to a finite limit (1/(mr

j − 1)!) and the second
to zero, hence ‖Anvj

r‖ diverges to infinity. Thus, taking initial conditions of
the form εvl

r we see that we can take arbitrarily small initial condition, the
resulting solution is unbounded and thus the zero solution is unstable.

Finally, if |λ1| > 1, then argument as above gives instability of the zero
solution. �

3.2.2 Stability by linearisation

Let us first note the following result.

Lemma 3.2.3. If f has continuous partial derivatives of the first order in
some neighbourhood of y0, then

f(x + y0) = f(y0) + Ax + g(x) (3.2.9)

where

A =

⎛
⎜⎝

∂f1

∂x1
(y0) . . . ∂f1

∂xn
(y0)

...
...

∂f1

∂xn
(y0) . . . ∂fn

∂xn
(y0)

⎞
⎟⎠ ,

and g(x)/‖x‖ is continuous in some neighbourhood of y0 and vanishes at
x = y0.

If A be the matrix defined above. We say that

yt+1 = Ayt (3.2.10)
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is the linearization of (3.2.1) around an equilibrium x∗.

We also note that to solve the nonhomogeneous system of equations

x(n+ 1) = Ax(n) + g(n), (3.2.11)

where x = (y1, . . . , yk), g = (g1, . . . , gk) and A = {aij}1≤i,j≤k. Exactly as
in Subsection 1.3.1 we find that the solution to (3.2.11) satisfying the initial
condition x(0) = x0 is given by the formula

x(n) = Anx0 +
n−1∑
r=0

An−r−1g(r). (3.2.12)

We shall need a discrete version of Gronwall’s lemma.

Lemma 3.2.4. Let z(n) and h(n) be two sequences of real numbers, n ≥
n0 > 0 and h(n) ≥ 0.. If

z(n) ≤M

(
z(n0) +

n−1∑
j=n0

h(j)z(j)

)
(3.2.13)

for some M > 0, then

z(n) ≤ z(n0)
n−1∏
j=n0

(1 +Mh(j)) (3.2.14)

z(n) ≤ z(n0) exp
n−1∑
j=n0

Mh(j) (3.2.15)

Proof. Consider the equation

u(n) = M

(
u(n0) +

n−1∑
j=n0

h(j)u(j)

)
, u(n0) = z(n0).

From non-negativity, by induction we obtain z(n) ≤ u(n) for n ≥ n0. Hence

u(n+ 1) − u(n) = Mh(n)u(n)

or, equivalently,
u(n+ 1)) = (1 +Mh(n))u(n)

so

u(n) = u(n0)
n−1∏
j=n0

(1 +Mh(j))

which proves (3.2.14). The second follows from the formula 1 + Mh(j) ≤
exp(Mh(j)). �
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Theorem 3.2.5. Assume that f is a C1 function and x∗ is an equilibrium
point. If the zero solution of the linearised system (3.2.10) is asymptotically
stable, then the equilibrium x∗ is asymptotically stable.

Proof. We have

x(n+ 1) = f(x(n)) = f(x(n)) − f(x∗) + x∗.

Denoting y(n) = x(n) − x∗ and using Lemma 3.2.3 we obtain

y(n + 1) = Ay(n) + g(yn),

so that, by (3.2.12),

y(n) = Any(0) +
n−1∑
r=0

An−r−1g(y(r)).

Since the condition (3.2.8) is equivalent to asymptotic stability of the lin-
earized system, we get

‖y(n)‖ ≤ Kηn‖y(0)‖ +Kη−1
n−1∑
r=0

ηn−r‖g(y(r))‖.

For a given ε > 0, there is δ > 0 such that ‖g(y)‖ < ε‖y‖ whenever ‖y‖ < δ.
So, as long as we can keep ‖y(r)‖ < δ for r ≤ n− 1

η−n‖y(n)‖ ≤ K‖y(0)‖ +Kε
n−1∑
r=0

η−r−1‖y(r)‖.

Applying the Gronwall inequality for z(n) = η−n‖y(n)‖ we obtain

η−n‖y(n)‖ ≤ ‖y(0)‖
n−1∏
j=0

(1 +Kεη−1).

Thus

‖y(n)‖ ≤ ‖y(0)‖(η +Kε)n.

Choose ε < (1− η)/K so that η +Kη < 1. Thus, by induction, ‖y(0)‖ < δ,
we have ‖y(n)‖ < ‖y(0)‖ < δ and the equilibrium is asymptotically stable.

�
It can be also proved that if ρ(A) > 1, then the equilibrium is unstable but
the proof is more involved.
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3.3 Stability analysis of models

3.3.1 SIR model

Let us start with finding the equilibria of (3.1.6). These are solutions of

S = F1(S, I) = S − α

N
IS + β(N − S)

I = F21(S, I) = I(1 − γ − β) +
α

N
IS. (3.3.1)

I = 0 is a solution of this system with corresponding S = N so this is a
disease-free equilibrium. If I 	= 0, then dividing the second equation by I we
find S = Nδ/α which yields I = βN(α− δ)/αδ which is an endemic disease
equilibrium. Thus

E∗
1 = (N, 0), E∗

2 =
(
Nδ

α
,
βN(α− δ)

αδ

)
.

To find the Jacobian, we calculate

F1,S(S, I) = 1 − α

N
I − β, F1,I(S, I) = − α

N

F2,S(S, I) =
α

N
I, F2,I(S, I) = 1 − δ +

α

N
S,

thus we have

JE∗
1

=
(

1 − β −α
0 1 − δ + α

)

and

JE∗
2

=
(

1 − αβ
δ −δ

αβ
δ − β 1

)
.

To determine whether the magnitude of the eigenvalues is smaller or larger
than 1 we could find the eigenvalues and directly compute their magnitude
but this is in general time consuming and not always informative. There are
other, easier methods.

Interlude: How to determine whether eigenvalues of a 2×2 matrix
have magnitude less then 1 without solving the quadratic equation.
Consider the equation

λ2 −Bλ+A = 0

where B and A are real coefficients. The roots are given by

λ1,2 =
B ±√

B2 − 4A
2

.
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We consider two cases. First, let B2 − 4A > 0 so that the roots are real.
Then we must have

−2 −B <
√
B2 − 4A < 2 −B

and
−2 −B < −

√
B2 − 4A < 2 −B

Squaring the second inequality in the former expression, we obtain

1 −B +A > 0.

Similarly, squaring the first inequality in the second expression, we get

1 +B +A > 0.

Next, we get 2 − B > 0 from the first and −2 − B < 0 from the second
inequality, hence |B| < 2 and, since B2−4A ≥ 0, we have A < 1. Combining,
we can write

|B| < 1 +A < 2 (3.3.2)

Conversely, from (3.3.2) we get −1 < B/2 < 1 so that the midpoint between
the roots is indeed inside (−1, 1). Now, if B > 0, then we must only make
sure that

B

2
+

√
B2 − 4A

2
< 1.

This is equivalent to the following chain of inequalities (as 1 −B/2 > 0)
√
B2 − 4A

2
< 1 − B

2
⇐⇒ B2 − 4A

4
< 1 −B +

B2

4
⇐⇒ B < 1 +A

Similarly, if B < 0, then we must only make sure that

B

2
−

√
B2 − 4A

2
> −1.

This is equivalent to the following chain of inequalities (as 1 +B/2 > 0)
√
B2 − 4A

2
< 1 +

B

2
⇐⇒ B2 − 4A

4
< 1 +B +

B2

4
⇐⇒ −B < 1 +A.

Hence, (3.3.2) is sufficient.

Assume now that 4A − B2 > 0 so that the roots are complex conjugate.
Since absolute values of complex conjugate numbers are equal, and A is the
product of the roots, we must have A < 1 (in fact, 0 < A < 1 from the
condition on the discriminant). We must prove that

1 − |B| +A > 0. (3.3.3)
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But in this case, |B| < 2
√
A so that if

1 − 2
√
A+A > 0

holds on (0, 1), than (3.3.3) holds as well. But the former is nothing but
(1 −√

A)2 > 0 on this open interval. Hence, (3.3.3) is proved.

Conversely, assume (3.3.2) holds. Since in the first part we already proved
that it yields the desired result if 4A−B2 ≤ 0, we can assume that 4A−B2 >
0. This yields A > 0 and hence 0 < A < 1 yields λλ̄ = |λ|2 = A < 1.

For a matrix

A =
(
a11 a12

a21 a22

)

its eigenvalues are determined by solving

0 = det

(
a11 − λ a12

a21 a22 − λ

)

=
(
a11 a12

a21 a22

)
−
(
λ a12

0 a22

)
−
(
a11 0
a21 λ

)
= λ2 − λ(a11 + a22) + detA = λ2 − λtrA + detA

Hence, the condtion for stability can be expressed as

|trA| < 1 + detA < 2 (3.3.4)

Returning to our model, we find

|trJE∗
1
| = |2 − β − δ + α| = 2 − β − δ + α

by assumptions on coefficients and

detJE∗
1

= 1 − δ + α− β(1 − δ + α)

so that condition (3.3.4) can be written as

2 − β − δ + α < 2 − δ + α− β(1 − δ + α) < 2

Subtracting from both sides we obtain

0 < β(δ − α) < δ − α+ β.

This gives δ−α < 0 while the second condition is automatically satisfied as
0 < β < 1 and (δ − α) > 0 yields β(δ − α) < δ − α < β + (δ − α). Hence,
the equilibrium (N, 0) is asymptotically stable if

β + γ > α.

153



Stability analysis of models Chapter 3

Consider the equilibrium at E∗
2 . Here we have

|trJE∗
2
| =

∣∣∣∣2 − βα

δ

∣∣∣∣ = 2 − βα

δ
,

as 2(γ + β) − βα = 2γ + β(2 − α) > 0, and

detJE∗
2

= 1 − βα

δ
+ αβ − δβ

so that condition (3.3.4) can be written as

2 − βα

δ
< 2 − βα

δ
+ αβ − δβ < 2

Subtracting from both sides, we get

0 < β(α− δ) <
βα

δ

from where α− δ > 0. The second condition is equivalent to (α− δ) < α/δ;
that is, δ(α−δ) < α but this is always satisfied as δ < 1. Hence, the endemic
disease equilibrium (

Nδ

α
,
βN(α − δ)

αδ

)
is asymptotically stable provided

α > γ + δ.

We note that these conditions are consistent with the modelling process.
The disease free equilibrium is stable if the infection rate is smaller than the
rate of removal of infected individuals. On the other hand, in the opposite
case we have an endemic disease.

3.3.2 Nicholson-Bailey model

Recall that the model is given by

Nt+1 = λNte
−aPt ,

Pt+1 = cNt(1 − e−aPt). (3.3.5)

The equilibria are obtained by solving

N = λNe−aP ,

P = cN(1 − e−aP ).

This gives either trivial equilibrium N = P = 0 or

λ = eaP̄ ;
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that is,

P̄ =
lnλ
a
, (3.3.6)

and hence

N̄ =
λ ln λ

(λ− 1)ac
. (3.3.7)

Clearly, λ > 1 for N̄ to be positive. To analyse stability, we define

F (N,P ) = Ne−aP , G(N,P ) = cN(1 − e−aP ).

Then, FN (N,P ) = e−aP , FP (N,P ) = −aNe−aP and GN (N,P ) = c(1 −
e−aP ), GP (N,P ) = cNe−aP and we obtain the Jacobi matrix at (0, 0) as

A|0,0 =
(

1 0
0 0

)

and

A|N̄,P̄ =
(

1 −aN̄
c
(
1 − 1

λ

)
caN̄

λ

)

In the subsequent considerations we use (3.3.4). At (N̄ , P̄ ). We obtain

trA = 1 +
λ

λ− 1
,

detA =
caN̄

λ
+ caN̄

(
1 − 1

λ

)
= caN̄ =

λ lnλ
λ− 1

We know that λ > 1. Consider the function

S(λ) = λ− 1 − λ lnλ.

We have S(1) = 0, S′(λ) = 1− lnλ− 1 = − lnλ so that S′(λ) < 0 for λ > 1.
Thus, S(λ) < 0 for λ > 1 and thus

λ ln λ > λ− 1, λ > 1.

Consequently,
detA > 1

for any λ and the equilibrium is not stable.

Most natural parasitoid-host systems in nature are more stable than the
Nicholson-Bailey seems to indicate and thus the model is not a satisfac-
tory representation of real systems. We shall try to improve the system by
modifying some parameters to see whether this could introduce stabilizing
factors. We shall discuss the following modification:
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In the absence of parasitoids, the host population grows to some
limited density (determined by the carrying capacity K of the en-
vironment). Thus, the original system (3.3.5) would be amended
as follows:

Nt+1 = λ(Nt)Nte
−aPt ,

Pt+1 = cNt(1 − e−aPt), (3.3.8)

where for λ(Nt) we might adopt

λ(Nt) = exp r
(

1 − Nt

K

)
,

where r > 0. With this choice, we obtain a modified Nicholson-
Bailey system

Nt+1 = Nt exp
(
r

(
1 − Nt

K

)
− aPt

)
,

Pt+1 = cNt(1 − exp(−aPt)), (3.3.9)

We simplify this system by introducing nt = Nt/K and pt = aPt.
This converts (3.3.9) into

nt+1 = nt exp (r(1 − nt) − pt) ,
pt+1 = Kcant(1 − exp(−pt)), (3.3.10)

and, in what follows, we denote Kca = C.

The equilibria are obtained by solving solving

n = n exp (r (1 − n) − p) ,
p = Cn(1 − exp(−p)).

We discard the trivial equilibrium (0, 0) so that we are left with

1 = exp (r (1 − n) − p) , (3.3.11)
p = Cn(1 − exp(−p)). (3.3.12)

The equilibrium value q = n̄ = N̄/K is of interest in modelling
as being the ratio of the steady-state host densities with and
without parasitoid present. This gives

p̄ = r (1 − n̄) = r(1 − q), (3.3.13)

Cn̄ =
p̄

1 − exp(−p̄) . (3.3.14)
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It is clear that one non-trivial equilibrium point is given by n̄1 =
1 (N̄1 = K), P̄1 = 0. Is there any other equilibrium point? To
answer this question, we re-write (3.3.14) as

p̄ = Cn̄ (1 − exp (−r (1 − n̄)))

so that n̄ satisfies

r (1 − n̄)
Cn̄

= 1 − exp
(
r

(
1 − N̄

K

))

Define two functions

f1(n) =
r (1 − n)
Cn

=
r

C

(
1
n
− 1
)
,

f2(n) = 1 − exp (−r (1 − n))

First, we observe that, indeed, f1(1) = f2(1) = 0, which gives
the equilibrium obtained above. Next,

f ′1(n) = − r

Cn2
, f ′2(n) = −r exp (−r (1 − n))

hence both functions are decreasing for n > 0. Furthermore,
f ′1(1) = − r

C and f ′2(K) = −r. If we assume C ≥ 1, then the
graph of f1 is below the graph of f2 for n smaller than and close
to n = 1. Furthermore, f2(0) = 1 − exp(−r) and f1(N) → +∞
as n → 0+. This implies the existence of at least one more
equilibrium (n̄2, p̄2). To show that there are no others, we find

f ′′1 (n) =
2r
Cn3

, f ′′2 (n) = −r2 exp (−r (1 − n))

so that f1 is convex down and f2 is convex down. In other words,
g(n) = f1(n) − f2(n) satisfies g′′(n) > 0 which means that g′(n)
is strictly increasing and thus g(n) can have at most two zeros.
Thus, we found all possible equilibria of the system.

Let us focus on the last equilibrium describing coexistence of
the parasitoid and the host. Let us consider stability of this
equilibrium. The first step is to linearize the system around the
equilibrium. To this end, we return to (3.3.9) and define

F (n, p) = n exp (r (1 − n) − p) , G(n, p) = Cn(1 − exp(−p)),
and thus

Fn(n, p) = (1 − rn) exp (r (1 − n) − p) ,
Fp(n, p) = −n exp (r (1 − n) − p) ,
Gn(n, p) = C(1 − exp(−p)),
Gp(n, p) = Cn exp(−p).
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At (n̄2, p̄2) we find, by (3.3.11),

Fn(n̄2, p̄2) = (1 − rn2) = 1 − rq

Fp(n̄2, p̄2) = −n̄2 = −q,

For the other two derivatives we find, by (3.3.12) and (3.3.11),
that

1 − e−p̄2 =
p̄2

Cn̄2
=
r (1 − n̄2)
Cn̄2

=
r (1 − q)
Cq

and thus
e−p̄2 =

Cq − r(1 − q)
Cq

.

Hence

Gn(n̄2, p̄2) =
r(1 − q)

q
,

Gp(n̄2, p̄2) = Cq − r(1 − q),

Thus, the Jacobi matrix is given by(
1 − rq −q
r(1−q)

q Cq − r(1 − q)

)

The trace of the matrix is given by 1−r+Cq and the determinant
is

q(C(1 − rq) + r2(1 − q)).

The condition for stability is

|1 − r + Cq| < q(C(1 − rq) + r2(1 − q)) + 1 < 2.

By computer simulations it can be found that there is a range of parameters
for which this equilibrium is stable.
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