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Principles of mathematical modelling

By a mathematical model we understand an equation, or a set of

equations, that describe some phenomenon that we observe in

science, engineering, economics, or some other area, that provides

a quantitative explanation and, ideally, prediction of observations.

Mathematical modelling we mean the process by which we

formulate and analyze model equations and compare observations

to the predictions that the model makes.
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Figure: The process of mathematical modelling.
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Note:

Modelling is not mathematics – it is impossible to prove that

a model is correct;

One counterexample disproves the model.
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A good model:

has predictive powers – a model based on available

observations gives correct answers in other cases:

– General Theory of Relativity – light deflection, perihelion

precession of Mercury, gravitational waves,

– Dirac equations – existence of positrons;

contains earlier working models as subcases:

– Newton’s mechanics is contained in Special/General Theory of

Relativity for small velocities and away from large masses,

– Quantum mechanics yields the same results as Newton’s

mechanics for large distances, large energies.
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Descriptive versus explanatory models.

Abundance of data often leads to statistical fitting the data with

formulae. One can get a variety of statistical information such as

expectations, medians, variance, correlations...

Remember: do not mistake correlations for causation

Example: it has been observed that since the 1950s, both the

atmospheric CO2 levels and obesity levels in the US have increased

sharply. Hence, obesity is caused by high levels of CO2.
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We shall focus on models which try to understand the underlying

reasons for the phenomena we observe. Nevertheless, statistical

analysis of the data is important as it separates their significant

part from the noise.

Statistical (descriptive) models must not be mixed up with

stochastic models. Stochastic modelling aims to explain the

underlying mechanisms of the observed phenomena taking into

account inherent(?) randomness of nature. Such models give

probabilities of certain events and are indispensable in modeling

small populations.
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We shall focus, however, on deterministic models that sometimes

can be thought as stochastic models averaged over many

individual trajectories (Law of Large Numbers) and giving answers

in terms of the evolution of the densities of the populations.

Nevertheless, stochastic models are often used explicitly to derive a

deterministic model.
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Conservation principles and constitutive relations

Conservation principles: Mathematical biology and epidemiology

must obey laws of physics; in particular the balance law. Let Q be

a quantity of interest (the number of animals, mass of a pollutant,

amount of heat energy, number of infected individuals) in a fixed

domain Ω. Over any fixed time interval in Ω we have

The change of Q = Inflow of Q−Outflow of Q

+ Creation of Q−Destruction of Q. (1)

In probabilistic approach this is the same as saying that the

probability that one of all possible events occurs equals one.
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Figure: Conservation law for the substance Q.
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Real modelling consists in determining the form of Q, I ,O,C and

D and the relations between them – these are known as

constitutive relations.

However, before we proceed, we must decide whether we model

with continuous time, or discrete time.

We use discrete time models if we believe that significant

changes in the system only occur during evenly spaced short time

intervals, or we only can observe the system at evenly spaced time

instances and have a reason to believe that essential parameters of

the system remain unchanged between successive observations.
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Then we use the time between the events/observations as the time

unit and count time using the number of elapsed

events/observations and (1) can be written as

Q(k + 1)−Q(k) = I (k)−O(k) +C (k)−D(k). (2)

Quantities I (k),O(k),C (k),D(k) are the amounts of Q,

respectively, that inflows, outflows, is created and destroyed in the

time interval [k,k + 1].
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Examples. Many plants and animals breed only during a short,

well-defined, breeding season. Also, often the adult population dies

soon after breeding. Such populations are ideal for modelling using

discrete time modelling. Let us consider a few typical examples.

(i) Monocarpic plants flower once and then die. Such plants may

be annual but, for instance, bamboos grow vegetatively for 20

years and then flower and die.

J. Banasiak INTRODUCTION TO POPULATION MODELS



(ii) Animals with such a life cycle are called semelparous.

a) Insects typically die after lying eggs but their life-cycle may

range from several days (e.g. house flies) to 13–17 years (cicads).

b) Similar life cycle is observed in some species of fish, such as the

Pacific salmon or European eel. The latter lives 10-15 years in

freshwater lakes, migrates to the Sargasso Sea, spawns and dies.

c) Some marsupials (antechinus) ovulate once per year and

produce a single litter. There occurs abrupt and total mortality of

males after mating. The births are synchronized to within a day or

two with a predictable ’bloom’ of insects.
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(iii) A species is called iteroparous if it is characterized by multiple

reproductive cycles over the course of its lifetime. Such

populations can be modelled by difference equations if the breeding

only occurs during short, regularly spaced breeding periods. It is

typical for birds. For instance, females of the Greater Snow Geese

lay eggs between 8th–20th of June (peak occurs at 12th–17th of

June) and practically all eggs hatch between 8th and 13th of July.
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If the assumptions allowing us to use discrete time modelling are

not satisfied, we use continuous time. This, however requires

some preparation, as all quantities may change at any instance of

time. Thus, I ,O,D,C should be considered as the rates of inflow,

outflow, destruction or creation, respectively; in other words, the

amount of Q at a given time t will be given by

Q(t) = Q(t0) +

t∫
t0

I (s)ds−
t∫

t0

O(s)ds +

t∫
t0

C (s)ds−
t∫

t0

D(s)ds,

where Q(t0) is the initial amount of Q.
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Hence, assuming that I ,O,D,C are continuous functions, so that

Q is differentiable, we obtain the conservation law in differential

form,
dQ

dt
(t) = I (t)−O(t) +C (t)−D(t). (3)

Note 1. The meaning of I ,O,C and D (and the dimension) in (3)

is different than in (2).

Note 2. If we consider populations, then the value of Q always is

a nonnegative integer. Such a function can never be continuous.

Thus already (3) is an approximation the validity of which requires

that Q be so large that it can be considered a continuum.
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Constitutive relations.

We try to build the functions I ,O,D,C to encompass all we know

about the process. However, this is usually impossible.

There are known knowns. These are things we know that

we know. There are known unknowns. That is to say,

there are things that we know we don’t know. But there

are also unknown unknowns. There are things we don’t

know we don’t know.

Donald Rumsfeld
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Nevertheless, let us try. The functions I ,O,D,C may depend on

other unknown quantities – this leads to systems of equations

that will be discussed in the second lecture;

space or other independent quantities – this leads to partial

differential equations that will be discussed in the third

lecture;

explicitly on time – this results in non-autonomous equations

which will be discussed later in this lecture;
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the unknown Q in

a) a nonlinear way, such as I (t) = I (Q(t)) = Q2(t), or

b) a linear way, such as I (t) = I (Q(t)) = 2Q(t),

in which case we talk, respectively, about autonomous

nonlinear or linear equations.

It is important to realize that a non-autonomous equations often is

derived from a larger systems of autonomous nonlinear equations

in which the coefficients depend on partial solutions of this system

which can be determined explicitly.
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Unstructured population models

Models given by a single (scalar) autonomous equations –

discrete time.

To fix attention we shall focus on Q being the number P of

individuals occupying certain domain, or the population density.

What assumptions do we need to be able to describe this

population by a single equation

P(k + 1) = F (P(k)), (4)

with F (P) = P + I (P)−O(P) +C (P)−D(P)?
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In general, a single equation means that the population is

influenced by (but does not interact with) an unchanging

environment (possibly including other populations). Further, any

variations among individuals can be disregarded. In particular,

a) the ratio of females to males remains constant;

b) each member of the population produces on average the same

number of offspring;

c) each member has an equal chance of dying;

d) there are no age differences in the population;

e) the population is spatially homogenous.
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We consider a population with no migration (I = O = 0) and,

using a), we only track females.

In the simplest case of constant birth and death rates usually we

see the equation

P(k + 1) = P(k) + βP(k)−µP(k) (5)

where β is the average number of offspring per female in a single

breeding season and µ is the probability of dying in the unit time

interval. In general, this is a wrong interpretation.
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Let us assume that the census is taken just before each breeding

season and, to incorporate monocarpic/semelparous individuals we

introduce µ0 as the probability that an individual dies from natural

causes between the breeding seasons and µ1 as the probability of

death due to giving birth. Then, the population P(k + 1) just

before the k + 1st breeding season consists of

individuals present before the kth breeding season who

survived giving birth at k and then survived till k + 1,

(1−µ0)(1−µ1)P(k), and

surviving offspring of the population P(k), (1−µ0)βP(k).
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In mathematical terms

P(k + 1) = β (1−µ0)P(k)− (1−µ1)(1−µ0)P(k). (6)

The coefficient (1−µ0)β is the (effective) per capita birth rate It

is a very important parameter from the population point of view

since for the survival of the population it is not only important

what is the natural fertility of a female; that is, how many offspring

she can produce each season, but also how many of them survive

on average till the next breeding season.

J. Banasiak INTRODUCTION TO POPULATION MODELS



The standard interpretation only would apply if there is no

mortality between breeding seasons (µ0 = 0) and the death only

can occur immediately after giving birth. The case of

non-overlapping generations requires µ1 = 1.
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Mathematically, in any case we have the so-called Malthus model

P(k + 1) = rP(k), (7)

where r is called the net growth rate. Thus

P(k) = rkP(0)

where P(0) is the initial population, so the population either

decays to 0 (for r < 1), or stays constant (if r = 1), or quickly

increases to infinity (if r > 1).
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Basic nonlinear models

In real populations, the parameters depend on the population

density P. This is often the case for the survival probability,

S(P) = 1−µ0(P).

First we consider populations with no overlapping generations.

Then

P(k + 1) = F (P(k)) = R(P(k))P(k) = βS(P(k))P(k), (8)

k=0,1,. . . .
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The survival rate S in (8) reflects the intraspecific (within-species)

competition for some resource (typically, food or space). The three

main (idealized) forms of intraspecific competition are

(i) No competition; then S(P) = 1 for all P.

(ii) Contest competition: there is a finite number of units of

resource. An individual who obtains one of these units survives to

breed, and produces β offspring; all others die without producing

offspring. Thus S(P) = 1 for P ≤ Pc and S(P) = Pc/P for P > Pc

for some critical value Pc .
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(iii) Scramble competition: each individual gets an equal share of a

limited resource. If this amount is sufficient for survival, then all

individuals survive and produce R0 offspring each; if its is not

sufficient, then all of them die. Thus, S(P) = 1 for P ≤ PC and

S(P) = 0 if P > PC for a critical value PC (PC is different from

Pc).

These ideal situations do not occur in real populations: real data

are not easily classified in terms of the contest or scramble

competition. Threshold density is not usually seen, zero survival is

unrealistic, at least for large populations.
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Thus, a similar classification is done on the basis of asymptotic

behaviour of S(P) (or f (P)) as P → ∞. 1. Contest competition

corresponds tothe so-called exact compensation:

S(P)∼ cP−1, P → ∞, (9)

for some constant c . This describes the situation if the increased

mortality compensates exactly any increase in numbers and thus

only the predetermined number of individuals in the population can

survive.
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2. The other case is when

S(P)∼ c/Pb, P → ∞. (10)

Here we have

2a. Under-compensation if 0 < b < 1; that is, when the increased

mortality less than compensates for the increase in numbers;

2b. Over-compensation if b > 1.
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In general, if b ≈ 1, then we say that there is a contest, and a

scramble if b is large. Indeed, in the first case, F (P) eventually

levels-out at a nonzero level for large populations which indicates

that the population stabilizes by rejecting too many newborns. On

the other hand, for b > 1, F (P) tends to zero for large populations

which indicates that the resources are over-utilized leading to

eventual extinction.
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Beverton-Holt type models. To exhibit compensatory

behaviour, we should have PS(P)≈ const for large P. At the same

time, or small P, S(P) should be approximately 1 as we expect

very small intra-species competition so that the growth should be

exponential with the effective birth rate given by fertility β . A

simple model of this type is given

P(k + 1) =
βP(k)

1 +aP(k)
. (11)
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A generalization of this model is called the Hassell or again

Beverton-Holt model, and reads

P(k + 1) =
βP(k)

(1 +aP(k))b
. (12)

It exhibits all types of compensatory behaviour, depending on b.

For b > 1 the models describes scramble competition, while for

b = 1 we have contest.
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It is useful to introduce the per capita growth rate

∆P

P
:=

P(k + 1)−P(k)

P(k)
(13)

For the Beverton-Holt model we have

∆P

P
=

β −1 +aP

1 +aP

so that, provided β > 1, there is a unique value of P, denoted K ,

K =
β −1

a

such that if P(k) < K , then P(k + 1) > P(k), if P(k) > K , then

P(k + 1) < P(k) and if P(k) = K , then P(k + 1) = P(k).
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We call K , at this moment wishfully, the carrying capacity of the

environment and, since it has a biological meaning, we re-write the

Beverton-Holt model as

P(k + 1) =
βP(k)

1 + β−1
K P(k)

. (14)
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This concept has a wider meaning to which we return later. Here

we fix some terminology. For a difference equation

P(k + 1) = F (P(K ))

the carrying capacity is among solutions of the fixed point equation

P = F (P)

and can graphically be found by plotting together the lines y = x

and y = F (x):
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Figure: Finding the carrying capacity K .
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Other nonlinear equations.

Consider a general per capita growth relation

∆P

P
= f (P), (15)

where f is some function. For the Malthus model

∆P

P
= r ,

so the graph of the per capita growth rate is a horizontal line.
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If we want our model to exhibit the behaviour similar to the

Beverton-Holt model; that is, to have a single positive carrying

capacity, we have to replace r by a function f (P) that cuts the

vertical axis at a positive value, say r and the horizontal axis at

P = K .
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Discrete logistic equation.

The simplest function satisfying these requirements is a linear

function

f (P) = r

(
1− P

K

)
that gives

P(k + 1) = P(k)

(
1 + r

(
1− P(k)

K

))
, (16)

which is still one of the most often used discrete equations of

population dynamics.
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The substitution

x(k) =
rP(k)

(1 + r)K
, β = 1 + r

reduces (16) to a simpler form

x(k + 1) = βx(k)(1−x(k)) (17)

which is most often used in analysis.
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The problem with the discrete logistic equation is that large (close

to K ) populations can become negative in the next step. For

instance, for

P(k + 1) = 5P(k)(1−P(k)), P(0) = 0.6,

we obtain P(1) = 1.2 and P(2) =−1.2 < 0.

Although we could interpret a negative population as extinct, this

may not be the behaviour consistent with what we wanted to

model. Indeed, if we take P(0) = 0.99, P(1) = 0.0495 < 1 and

P(2) = 0.235249 so, despite being bigger, the latter population

persists for a longer time than the former.

J. Banasiak INTRODUCTION TO POPULATION MODELS



Ricker equation.

To remedy, we can consider other functions f (P) subject to

f (P) >−1. A possible choice is the exponential function

f (P) = ae−bP(k)−1.

If we introduce the carrying capacity K , then

b =
lna

K

and, letting for simplicity ρ = lna, we obtain the Ricker equation

P(k + 1) = P(k)eρ(1−P(k)
K ). (18)
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Figure: The function f (x) = eρ(1−x/K ) for r = 1.1 and K = 1.5.
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We note that if P(k) > K , then P(k + 1) < P(k) and if P(k) < K ,

then P(k + 1) > P(k). The intrinsic growth rate β is given by

β = eρ −1 but, using the Maclaurin formula, for small ρ we have

β ≈ ρ.

Note that the Ricker model is qualitatively different from the

Beverton-Holt model. For large P(k) the former produces very

small, but still positive, values of P(k + 1), while in the latter large

populations stay large but only reproduce slowly.

Since R(P) tends to zero faster than any power of P, we see that

the Ricker model describes a scramble competition.
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Allee type models.

In all previous models only the increase in the population density

could slow down the growth. However, in 1931 Warder Clyde Allee

noticed that in small, or dispersed, populations individual chances

of survival decrease which can lead to extinction of the

populations. This could be due to the difficulties of finding a

mating partner or more difficult cooperation in e.g., organizing

defence against predators.
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Models having this property can be built within the considered

framework by introducing two thresholds: the carrying capacity K

and a parameter 0 < L< K at which the behaviour of the

population changes so that

∆P/P < 0 for 0 < P < L and P > K

∆P/P > 0 for L< P < K .

and the required properties can be obtained by taking f (P)≤ 0 for

0 < P < L and P >K and f (P)≥ 0 for L< P <K . A simple model

like that is offered by choosing f (P) = (L−P)(P−K ) so that

P(k + 1) = P(k)(1 + (L−P(k))(P(k)−K )). (19)
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Figure: The relation P(k + 1) = P(k) +P(k)f (P(k)) for an Allee model
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Another model of this type can be justified by modelling looking of

a mating partner or introducing a generalist predator (that is,

preying also on other species), has the form

P(k + 1) = P(k)

(
1 + λ

(
1− P(k)

C
− A

1 +BP(k)

))
(20)

where λ > 0 and

1 < A<
(BC + 1)2

4CB
,BC > 1. (21)

as well as

A≤min

{
1 + λ

λ
,

C

K −L

}
. (22)
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Figure: Graph of the function 1.2x(1−x)− 0.03x
0.02+0.1x : we see three

equilibria, as required by the Allee model.
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Discrete nonlinear population models from first principles.

The way we have introduced the equations may seem completely

ad hoc. It follows, however, that it can be derived from a set of

assumptions describing population in which the reproductive

success of an individual is adversely affected by other individuals

competing for the same resources. For this we need to introduce

some probabilistic tools. The workhorse is the Poisson distribution

describing the probability of exactly r events given we know their

average number.
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Interlude – Poisson distribution. Let us first assume that there are

n individuals in a population and let p be the probability that one

of them happens to be in your neighbourhood. Under usual

assumption of independence of individuals occurring in the

neighbourhood, the probability of having exactly r neighbours is

given by the binomial formula

b(n,p; r) =

 n

r

pr (1−p)n−r .
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Average number of neighbours is thus ω = np. This is intuitively

clear and also can be checked by direct calculation

ω =
n

∑
r=0

r

 n

r

pr (1−p)n−r

= np
n−1

∑
r=0

 n−1

r −1

pr−1(1−p)n−r = np.
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If we consider a potentially infinite population so that n grows to

infinity in such a way that the average number of neighbours ω

stays constant (so p goes to zero), then the probability of having

exactly r neighbours is given by

p(r) = lim
n→∞

b(n,ω/n; r) = lim
n→∞

n!

r !(n− r)!

ω r

nr

(
1− ω

n

)n−r
=

ω r

r !
lim
n→∞

n(n−1) · . . . · (n− r + 1)

nr

(
1− ω

n

)−r ((
1− ω

n

) n
ω

)ω

=
e−ωω r

r !
,

which is called the Poisson distribution.
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The Ricker model

Returning to our problem, we consider a population, the size of

which at time k is given by P(k). The standard growth equation is

(8)

P(k + 1) = R(P(k))P(k), k = 0,1, . . . , (23)

where R gives the average number of offspring in the cycle. We

assume that the number of offspring of an individual is adversely

affected by the number of its neighbours living in, say, a disc D of

area s. A simple possible model is that the number of offspring per

capita is given by bc r where b ≥ 0,0 < c < 1, where r is the

number of neighbours in D.
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If we assume that the population is uniformly distributed in an

environment with area A, then the average number of individuals

in D at time k is given by sP(k)/A and, using the Poisson

distribution, the probability of having r neighbours in D is

(sP(k))re−
sP(k)
A

Ar r !

and the average number of offspring per individual is

R(P(k)) = be−
sP(k)
A

∞

∑
r=0

(csP(k))r

Ar r !
= be−

s(1−c)P(k)
A .

Hence we obtain the Ricker model

P(k + 1) = bP(k)e−
s(1−c)P(k)

A .

J. Banasiak INTRODUCTION TO POPULATION MODELS



Comparing this expression with (18) we see that the carrying

capacity K can be expressed as

K =
A lnb

s(1− c)
.
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Ricker and Beverton-Holt equations.

Consider a habitat consisting of N resource sites. At time k a

population of P(k) individuals is distributed and then reproduce.

Let hl be the proportion of sites with l individuals. It is a function

of both P(l) and N. Once on site, the individuals reproduce and

the success of reproduction; that is, the number of offspring,

denoted by φ(l), only depends on the number of individuals at the

site. Then the difference equation governing the growth of the

population is

P(k + 1) = N
∞

∑
l=0

hlφ(l). (24)
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To be able to make use of this equation, we must specify the site

occupation function hl and the fecundity φ(l).

We consider two types of the site occupation function: uniform

and preferential. In what follows we assume that the population is

large, with a large number of sites, so that the expected

occupation can be written as ω = P(k)/N.
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Uniform distribution. If individuals are uniformly distributed, then

the probability of finding l individuals at any given site is Poisson

distributed:

hl =

(
P(k)
N

)l
e−

P(k)
N

l!
=

ω le−ω

l!

and (24) can be written as

P(k + 1) = Ne−ω
∞

∑
l=0

ω l

l!
φ(l). (25)
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Preferential distribution. Here we assume that the sites are

allocated at random a value, say t ∈ R+ which has a continuous

probability density f (t). Then, we assume that the average

occupation of a site with value t is tω. If t was known then, as

before, the number hl of occupants of the site would be Poisson

distributed: (ωt)le−ωt/l!. Since, however, the value of t is not

known, hl will be given by

hl =

∞∫
0

f (t)
(ωt)le−ωt

l!
dt. (26)
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The function f (t) is the probability density of the number of sites

with value t and must be selected for each particular case. Quite

often it is assumed to be Gamma distributed; that is,

f (t) =
λ λ

Γ(λ )
tλ−1e−λ t

where λ is a positive parameter.
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Then

hl =

∞∫
0

f (t)
(ωt)le−ωt

l!
dt =

λ λ

l!Γ(λ )ωλ

∞∫
0

tλ+l−1e−t
λ+ω

ω dt

=
λ λ ω l

l!Γ(λ )(λ + ω)λ+l

∞∫
0

sλ+l−1e−sds =
λ λ ω lΓ(l + λ )

l!Γ(λ )(λ + ω)λ+l

which is the so called negative binomial distribution.
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The formula for the growth of the population is then given by

P(k + 1) = N
λ λ

Γ(λ )(λ + ω)λ

∞

∑
l=0

ω lΓ(l + λ )

l!(λ + ω)l
φ(l). (27)

The next step is to specify the offspring outcome at each site.
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Scramble competition. Let as assume that each site contains

resources to support one individual. Then

φl =

 b if l = 1,

0 otherwise,

where b is the number of offspring produced by a site containing

only one individual.
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If the sites are distributed in a uniform way, substituting this into

(25), we obtain

P(k + 1) = bP(k)e−
P(k)
N , (28)

which is the Ricker model.
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On the other hand, the preferential distribution, resulting with the

negative binomial distribution, gives

P(k + 1) = b
λ λ+1P(k)

Γ(λ )(λ +P(k)/N)λ+1
, (29)

where we used Γ(λ + 1) = λγ(λ ). Since λ > 0, this is the

generalized Beverton–Holt model (14). Note, that since we have

scramble competition, we cannot get here the basic Beverton-Holt

model (λ = 0) which is compensatory and thus describes a contest

competition.

J. Banasiak INTRODUCTION TO POPULATION MODELS



Contest competition. Again we assume that each site can support

one individual but, in contrast to the scramble competition, if

there are more individuals at the site, only one emerges victorious

and the others perish. Thus, the function φl is given by

φl =

 b if l ≥ 1,

0 if l = 0,

where, as before, b is the number of offspring produced by one

individual.
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Then the uniform distribution gives

P(k + 1) = bNe−
P(k)
N

∞

∑
l=1

(P(k))l

N l l!
= bN

(
1− e−

P(k)
N

)
, (30)

which is the so-called Skellam model.
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Let us consider the preferential site distribution. We have

P(k + 1) = bN
λ λ

Γ(λ )(λ + ω)λ

∞

∑
l=1

ω lΓ(l + λ )

l!(λ + ω)l
. (31)

Now, using the fact that Γ(l + λ ) = λ (λ + 1) · . . . · (λ + l −1)Γ(λ )

and denoting z = ω/(λ + ω), we get

∞

∑
l=0

Γ(l + λ )

l!
z l = Γ(λ )

∞

∑
l=0

λ (λ + 1) · . . . · (λ + l −1)

l!
z l = Γ(λ )(1−z)−λ .
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Now,

1− z = 1− P(k)/N

λ +P(k)/N
=

λ

λ +P(k)/N

and thus (31) can be written as

P(k + 1) = bN
λ λ

Γ(λ )(λ +P(k)/N)λ

(
Γ(λ )λ

−λ (λ +P(k)/N)λ −Γ(λ )
)

= bN

(
1− λ λ

(λ +P(k)/N)λ

)
.
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If λ = 1, the above equation corresponds to the Beverton-Holt

model (14). Indeed, in this case

P(n+ 1) = bN

(
1− 1

(1 +P(n)/N)

)
=

bP(n)

1 +P(n)/N
.

We see that the carrying capacity is given by K = N(b−1); that

is, it is proportional to the number of sites as well as to the per

capita birth rate above the simple reproduction.
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Continuous time models.

Most discrete models introduced above have their continuous time

counterparts.

Malthusian model. If births and death rates are constant then,

denoting the net growth rate by r we obtain

dP

dt
= rP. (32)

which has a general solution given by

P(t) = P(0)ert , (33)

where P(0) is the size of the population at t = 0.
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The U.S. Department of Commerce estimated that the Earth

population in 1965 was 3.34 billion and that the population was

increasing at an average rate of 2% per year during the decade

1960-1970. Thus P(0) = 3.34×109 with r = 0.02, and

P(t) = 3.34×109e0.02t . (34)

Then the population will double in

T = 50ln2≈ 34.6 years,

which is in a good agreement with the estimated value of 6070

billion inhabitants of Earth in 2000. It also agrees relatively well

with the observed data if we don’t go too far into the past.
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Fig 1.1. Comparison of actual population figures (points) with

those obtained from equation (34).
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On the other hand, if we try to extrapolate this model then in, say,

2515, the population would reach 199980≈ 200000 billion giving

each of us area of (86.3cm×86.3cm) to live on.

Nevertheless, the Malthusian model has its uses for short term

prediction. It also provides a useful link about the death rate and

the expected life span of an individual.
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Consider a population in which individuals die at a constant rate µ

P ′ =−µP.

Then the probability that an individual dies in a time interval ∆t is

approximately equal to µ∆t. Let p(t) be the probability that the

individual is alive at time t. Then the probability p(t + ∆t) of it

being alive at t + ∆t provided he/she was alive at t is

p(t + ∆t) = (1−µ∆t)p(t) which, as above, yields

p′ =−µp

with p(0) = 1 (expressing the fact that the individual was born,

and thus alive, at t = 0) yielding p(t) = e−µt .
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The average life span is given by

L =

∞∫
0

sm(s)ds,

where m(s) is the probability (density) of dying exactly at age s.

Since the probability of dying at the age between t and t + ∆t is

−p(t + ∆) +p(t) =−
t+∆t∫
t

d

ds
p(s)ds

(one should be alive at t and dead at t + ∆t, we have

m(s) =− d
ds p(s) and

L =−
∞∫

0

s
d

ds
e−µsds = µ

∞∫
0

se−µsds =
1

µ
. (35)
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Logistic equation. Passing to the limit in the discrete logistic

equation valid between t and t + ∆t,

P(t + ∆t)−P(t) = r∆t

(
1− P(t)

K

)
we obtain the continuous logistic model

dP

dt
= rP(t)

(
1− P

K

)
, (36)

which proved to be one of the most successful models for

describing a single species population.
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The equation has two constant solutions, P(t) = 0 and P(t) = K ,

with the latter being the carrying capacity of the environment.

Other solutions can be obtained by separation of variables:

P(t) =
P(0)K

P(0) + (K −P(0))e−rt
. (37)
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We have

lim
t→∞

P(t) = K , P(0) > 0,

hence our model correctly reflects the initial assumption that K is

the carrying capacity of the habitat. Next, we obtain

dP

dt
> 0 if 0 < P(0) < K ,

dP

dt
< 0 if P(0) > K ,

thus, if P(0) < K , the population monotonically increases, whereas

if P(0) > K , then such a population will decrease until it reaches

K .

J. Banasiak INTRODUCTION TO POPULATION MODELS



Also, for 0 < P(0) < K ,

d2P

dt2
> 0 if 0 < P(t) < K/2,

d2P

dt2
< 0 if P(0) > K/2,

thus, as long as the population is small (less then half of the

capacity), then the rate of growth increases, whereas for larger

population the rate of growth decreases. This results in the famous

logistic or S-shaped curve that describes saturation process.
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Figure: Logistic curves with P0 < K (dashed line) and P0 > K (solid line)

for K = 10 and r = 0.02.
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Figure: Human population on Earth with K = 10.76 billion and r = 0.029

and P(1965) = 3.34 billion. Observational data (points), exponential

growth (solid line) and logistic growth (dashed line).
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Figure: Comparison of actual and logistic model population in the United

States
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On the other hand, Verhulst in 1845 predicted, on the basis of the

logistic equation, that the maximum population of Belgium is 6

600 000. However, already in 1930 it was close to 8 100 000. This

is attributed to the global change that happened for Belgium in

the XIX century - acquisition of Congo that provided resources to

support increasing population (at the cost of the African

population of Congo).
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Are discrete and continuous models essentially the same?

Malthus model. Let us consider the continuous Malthus model

P ′ = rP,

the solution of which is given by

P(t) = P(0)ert ,

and its discrete version

p(k + 1) = ρp(k)

with solution

p(k) = P(0)ρ
k .
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It is easily seen that if we take census of the continuous process at

evenly spaced time moments t0 = 0, t1 = 1, . . . , tk = k , . . . , we get

P(k) = erkP(0) = (er )k P(0)

which coincides with discrete model with ρ = er . Hence, discrete

and continuous Malthus processes are the same, up to an

adjustment of the growth rate.
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Logistic model. Consider the logistic differential equation

P ′ = aP(1−P) (38)

and the difference equation used to derive it:

P(t + ∆t) = P(t) +a∆t(1−P(t)). (39)
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If we fix ∆t and t = 0, then (39) generates the recurrence

p(k + 1) = p(k) +a∆tp(k)(1−p(k)), (40)

where p(k) = P(k∆t).

Can we claim that P(k) = p(k)?

If we take ∆t = 1 with, say, a = 4, we obtain the following picture.
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Figure: Comparison of solutions to (38) and (40) with a = 4 and ∆t = 1.
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The substitution

x(k) =
a∆t

1 +a∆t
p(k) (41)

reduces (40) to

x(k + 1) = µx(k)(1−x(k)), (42)

where µ = 1 +a∆t.
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By taking 1 +a∆t ≤ 3, we obtain the convergence of solutions

x(k) to the equilibrium x∗ = a∆t/(1 +a∆t) which, reverting to

(41), gives the discrete approximation yn which converges to 1, as

the solution to (38). However, this convergence is not monotonic,

hence the approximation is rather poor.
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Figure: Comparison of solutions to (38) with a = 4 and (42) with µ = 3

(∆t = 0.5).
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This can be remedied by taking 1 +a∆t ≤ 2, in which case the

qualitative features of P(t) and p(k) are the same.

Figure: Comparison of solutions to (38) with a = 4 and (42) with µ = 2

(∆t = 0.25).
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It follows that it is the Beverton-Holt model that exactly traces the

solution to the continuous logistic equation. Recall that

P(t) =
P(0)eat

1 + (eat −1)P(0)
.

We have

P(k + 1) =
P(0)ea(k+1)

1 + (ea(k+1)−1)P(0)

=

P(0)eak

1+(eak−1)P(0)
ea

1 + (ea−1) P(0)eak

1+(eak−1)P(0)

=
eaP(k)

1 + (ea−1)P(k)

in which we recognize the Beverton-Holt model with the intrinsic

growth rate related to the continuous logistic growth rate in the

same way as in the Malthusian model.
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Some explicitly solvable nonlinear population models.

Solvability of linear difference equations. We begin with the

general first order difference equation

x(k + 1) = a(k)x(k) +g(k) (43)

with an initial condition x(0) = x0. First few iterates are

x(1) = a(0)x(0) +g(0),

x(2) = a(1)x(1) +g(1) = a(1)a(0)x(0) +a(1)g(0) +g(1),

x(3) = a(2)x(2) +g(2)

= a(2)a(1)a(0)x(0) +a(2)a(1)g(0) +a(2)g(1) +g(2).
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We conjecture that the general form of the solution could be

x(k) = x(0)
k−1

∏
r=0

a(r) +
k−1

∑
r=0

g(r)
k−1

∏
i=r+1

a(i) (44)

where we adopted the convention that
k−1

∏
k

= 1 and
j

∑
r=j+1

= 0.
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Then

x(k + 1) = a(k)x(k) +g(k)

= a(k)

(
x(0)

k−1

∏
r=0

a(r) +
k−1

∑
r=0

g(r)
k−1

∏
i=r+1

a(i)

)
+g(k)

= x(0)
k

∏
r=0

a(r) +a(k)
k−1

∑
r=0

g(r)
k−1

∏
i=r+1

a(i) +g(k)

= x(0)
k

∏
k=0

a(r) +
k−1

∑
r=0

g(r)
k

∏
i=r+1

a(i) +g(k)
k

∏
i=k+1

a(i)

= x(0)
k

∏
k=0

a(r) +
k

∑
r=0

g(r)
k

∏
i=r+1

a(i)

and induction ends the proof.
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The formula simplifies if

x(k + 1) = ax(k) +g(k). (45)

Then

x(k) = akx(0) +
k−1

∑
r=0

ak−r−1g(r). (46)

If, in particular, g is constant, we obtain

x(k) =

 akx(0) +g ak−1
a−1 if a 6= 1,

x(0) +gk .
(47)
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The Beverton–Holt model. We recall that the Beverton–Holt

equation, Eq. (12), can be simplified to

x(k + 1) =
βx(k)

(1 + x(k))b
. (48)

While for general b this equation can display very rich dynamics,

for b = 1 it can be solved explicitly by the so-called logistic

substitution y(k) = 1/x(k). Then we obtain

y(k + 1) =
1

β
+

1

β
y(k)

and, by (47),
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y(k) =
1

β

β−k −1

β−1−1
+ β

−ky0 =
1−β k

β k(1−β )
+ β

−ky0

if β 6= 1 and, for β = 1,

y(k) = k + y0.

Thus

x(k) =


β k (β−1)x0

x0(β k−1)+β−1
if β 6= 1,

x0
1+x0k

.
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We see that

lim
k→∞

x(k) = β −1

if β > 1 and if β ≤ 1,

lim
k→∞

x(k) = 0.

Thus, in this case, the carrying capacity is asymptotically achieved.
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The logistic equation. In general, the discrete logistic equation

does not admit closed form solutions and also displays a very rich

dynamics. However, some special cases can be solved by an

appropriate substitution. We will look at two such cases. First

consider

x(k + 1) = 2x(k)(1−x(k)) (49)

with x0 ∈ [0,1]. Since f (x) = 2x(1−x) satisfies 0≤ f (x)≤ 1/2 on

[0,1], we see that 0≤ x(k)≤ 1 for any k = 1,2, . . .. We use the

substitution x(k) = 1/2−y(k).
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Then

1

2
−y(k + 1) = 2

(
1

2
−y(k)

)(
1

2
+ y(k)

)
=

1

2
−2(y(k))2,

so that

y(k + 1) = 2(y(k))2.
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We see that if y0 = 0, then y(k) = 0 for all k ≥ 1. Furthermore,

y(k) > 0 for k ≥ 1 and we can take the logarithm of both sides

getting

lny(k + 1) = 2lny(k) + ln2

which, upon substitution z(k) = lny(k), becomes the

inhomogeneous linear equation

z(k + 1) = 2z(k) + ln2.

Using (47), we find the solution to be

z(k) = 2kz0 + ln2(2k −1).
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Hence

y(k) = ez(k) = e2k ln |y0|e ln2(2k−1) = y2k

0 22k−1,

where we dropped the absolute value bars as we rise y0 to even

powers. Thus

x(k) =
1

2
−
(

1

2
−x0

)2k

22k−1.

We note that for x0 = 1/2 we have x(k) = 1/2 for all k so that we

obtain a constant solution. In other words, x = 1/2 is an

equilibrium point of (49). We observe that x = 0 is another

equilibrium with the property that if x0 = 1, then x(k) = 0 for

k ≥ 1. Otherwise, for x0 ∈]0,1[ we have

lim
k→∞

x(k) =
1

2
.
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Another particular logistic equation which can be solved by

substitution is

x(k + 1) = 4x(k)(1−x(k)). (50)

First we note that since f (x) = 4x(1−x)≤ 1 for 0≤ x ≤ 1, we

have 0≤ x(k + 1)≤ 1 if x(k) has this property. Thus, assuming

0≤ x0 ≤ 1, we can use the substitution

x(k) = sin2 y(k) (51)

which yields

x(k + 1) = sin2 y(k + 1) = 4sin2 y(k)(1− sin2 y(k))

= 4sin2 y(k)cos2 y(k) = sin2 2y(k).
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This gives the family of equations

y(k + 1) =±2y(k) +kπ, k ∈ Z.

Since our aim is to find x(k) given by (51), the periodicity and

symmetry of sin2 allows for discarding kπ and the minus sign.

Thus we consider y(k + 1) = 2y(k) and hence

y(k) = C2k ,

where C ∈ R is arbitrary, as the general solution. Hence

x(k) = sin2C2k .

A remarkable fact is that, despite being explicitly solvable, the

equation generates very irregular (chaotic) dynamics.
J. Banasiak INTRODUCTION TO POPULATION MODELS



Equilibrium points of difference equations. Consider the

autonomous first order difference equation

x(k + 1) = f (x(k)), k ∈ N0, (52)

with the initial condition x0. In what follows we shall assume that

f is at least continuous. It is clear that the solution to (52) is

given by iterations

x(k) = f (f (. . . f (x0))) = f k(x0). (53)
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A point x∗ in the domain of f is said to be an equilibrium point of

(52) if it is a fixed point of f , that is, if

f (x∗) = x∗.

Graphically, an equilibrium is the x-coordinate of a point, where

the graph of f intersects the diagonal y = x . This is the basis of

the cobweb method of finding and analysing equilibria, described in

the next subsection.
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Definition

1 The equilibrium x∗ is stable if for given ε > 0 there is δ > 0

such that for any x and for any k > 0, |x−x∗|< δ implies

|f k(x)−x∗|< ε for all k > 0. If x∗ is not stable, then it is

called unstable.

2 A point x∗ is called attracting if there is η > 0 such that

|x0−x∗|< η implies lim
k→∞

f k(x0) = x∗. If η = ∞, then x∗ is

called a global attractor or globally attracting.

3 The point x∗ is called an asymptotically stable equilibrium if it

is stable and attracting. If η = ∞, then x∗ is said to be a

globally asymptotically stable equilibrium.
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The cobweb diagrams. We describe an important graphical

method for analysing the stability of equilibrium (and periodic)

points of (52). Since x(k + 1) = f (x(k)), we may draw a graph of

f in the (x(k),x(k + 1)) system of coordinates. Then, given

x(0) = x0, we pinpoint the value x(1) by drawing a vertical line

through x(0) so that it also intersects the graph of f at

(x(0),x(1)). Next, we draw a horizontal line from (x(0),x(1)) to

meet the diagonal line y = x at the point (x(1),x(1)). A vertical

line drawn from the point (x(1),x(1)) will meet the graph of f at

the point (x(1),x(2)). In this way we may find any x(k).
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This is illustrated in Fig. 13, where we presented several steps of

drawing the cobweb diagram for the logistic equation

x(k + 1) = 3x(k)(1−x(k)), x0 = 0.2.

The equilibria are x1 = 0 and x2 = 2/3. On the basis of the

diagram we can conjecture that x2 = 2/3 is an asymptotically

stable equilibrium as the solution converges to it as k becomes

large. However, to be sure, we need to develop analytical tools for

analysing stability.
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Figure: Cobweb diagram of a logistic difference equation
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Analytic criterion for stability.

Theorem

Let x∗ be an isolated equilibrium point of the difference equation

x(n+ 1) = f (x(n)), (54)

where f is continuously differentiable in some neighbourhood of

x∗. Then,

(i) if |f ′(x∗)|< 1, then x∗ is asymptotically stable;

(ii) if |f ′(x∗)|> 1, then x∗ is unstable.
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Proof.

Suppose |f ′(x∗)|<M < 1. Then |f ′(x)| ≤M < 1 over some

interval J = (x∗− γ,x∗+ γ) by the property of local preservation of

sign for continuous functions. Let x0 ∈ J. We have

|x(1)−x∗|= |f (x0)− f (x∗)|

and, by the Mean Value Theorem, for some ξ ∈ [x0,x
∗],

|f (x0)− f (x∗)|= |f ′(ξ )||x0−x∗|.

Hence,

|x(1)−x∗|= |f (x0)− f (x∗)| ≤M|x0−x∗|.

Since M < 1, x(1) ∈ J.
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By induction,

|x(k)−x∗| ≤Mk |x0−x∗|.

For given ε, define δ = ε. Then |x(k)−x∗|< ε for n > 0 provided

|x0−x∗|< δ (since M < 1). Furthermore x(k)→ x∗ and k → ∞ so

that x∗ is (locally) asymptotically stable.
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To prove the converse, first observe that x∗ is unstable if there is

ε > 0 such that for any δ > 0 there are x and k such that

|x−x∗|< δ and |f k(x)−x∗| ≥ ε.

By the first part, there is ε > 0 such that on J = (x∗− ε,x∗+ ε)

we have |f ′(x)| ≥M > 1. Take an arbitrary δ > 0 smaller than ε

and choose x satisfying |x−x∗|< δ . Using again the Mean Value

Theorem, we get

|f (x)−x∗| ≥M|x−x∗|.

If f (x) is outside J, then we are done.
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If not, we can repeat the argument getting

|f 2(x)−x∗| ≥M2|x−x∗|,

that is, f 2(x) is further away from x∗ than f (x). If f 2(x) is still in

J, we continue the procedure. Since Mk → ∞ as k → ∞ there is k

such that f k−1(x) ∈ J but

|f k(x)−x∗| ≥Mn|x−x∗|> ε.

�
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Equilibrium x∗ with |f ′(x∗)| 6= 1 is called hyperbolic.

What happens if the equilibrium point x∗ is not hyperbolic? Let us

reflect on the geometry of the situation and assume that

f ′(x∗) > 0. The equilibrium x∗ is stable if the graph of f crosses

the line y = x from above to below as x increases. This ensures

that the cobweb iterations from the left are increasing, and from

the right are decreasing, while converging to x∗. In contrast, x∗ is

unstable if the graph of f crosses y = x from below – then the

cobweb iterations will move away from x∗.
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If f ′(x∗) = 1, then the graph of f is tangent to the line y = x at

x = x∗, but the stability properties follow from the geometry. If

f ′′(x∗) 6= 0, then f is convex (or concave) close to x∗ and the

graph of f will be (locally) either entirely above or entirely below

the line y = x . Therefore the picture is the same as in the unstable

case either to the left, or to the right, of x∗. Hence, x∗ is unstable

in this case (remember that for instability it is sufficient to display,

for any neighbourhood of x∗, only one diverging sequence of

iterations emanating from this neighbourhood).

J. Banasiak INTRODUCTION TO POPULATION MODELS



On the other hand, if f ′′(x∗) = 0, then x∗ is an inflection point and

the graph of f crosses the line y = x . This case is essentially the

same as when |f ′(x∗)| 6= 1: the equilibrium is stable if the graph of

f crosses y = x from above and unstable if it does it from below.

If f ′′′ exists around x∗, the former occurs when f ′′′(x∗) < 0, while

the latter if f ′′′(x∗).
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Theorem

Let x∗ be an isolated equilibrium with f ′(x∗) = 1 and let f be three

times continuously differentiable in a neighbourhood of x∗. Then,

(i) if f ′′(x∗) 6= 0, then x∗ is unstable,

(ii) if f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is unstable,

(iii) if f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is

asymptotically stable.
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The case of f ′(x∗) =−1 is more difficult. We observe more general

situation. First, we note that x∗ is also an equilibrium of

g(x) := f (f (x)) and it is a stable equilibrium of f if and only if it is

stable for g . This statement follows from the continuity of f : if x∗

is stable for g , then |gk(x0)−x∗|= |f 2k(x0)−x∗| is small for x0

sufficiently close to x∗. But then

|f 2n+1(x0)−x∗|= |f (f 2n)(x0)− f (x∗)|

is also small by continuity of f . The reverse is obvious.
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Then, since g ′(x∗) = 1, we can apply the previous theorem g ,

getting

Theorem

Suppose that at an equilibrium point x∗ we have f ′(x∗) =−1.

Define S(x∗) =−f ′′′(x∗)−3(f ′′(x∗))2/2. Then x∗ is asymptotically

stable if S(x∗) < 0 and unstable if S(x∗) > 0.
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We can provide a fine-tuning of the notion of stability by noting

that if f ′(x∗) < 0, then the solution behaves in an oscillatory way

around x∗ and if f ′(x∗) > 0, then it is monotonic. Indeed, consider

(in a neighbourhood of x∗ where f ′(x) < 0)

f (x)− f (x∗) = f (x)−x∗ = f ′(ξ )(x−x∗), ξ ∈ (x∗,x). Since f ′ < 0,

f (x) > x∗ if x < x∗ and f (x) < x∗ if x > x∗, hence each iteration

moves the point to the other side of x∗. If |f ′|< 1 over this

interval, then f n(x) converges to x∗ in an oscillatory way, while if

|f ′|> 1, the iterations will move away from the interval, also in an

oscillatory way.
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What happens if f ′(x∗) = 0? Clearly, if there is a local extremum

at x∗, then in some neighbourhood the derivative will have a fixed

sign and thus the behaviour of the iterates will be as above. Let,

on the other hand, f ′(x) < 0 is some one-sided neighbourhood of

x∗ and f ′(x) > 0 on the other side. Then, if the iterates start in

the latter, they will stay there, converging to x∗, while if the

iterates start in the former, they will begin converging to x∗ in an

oscillatory way until they reach the neighbourhood in which the

derivative is positive and then they will converge monotonically.
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Hence, we say that the equilibrium is oscillatory unstable or stable

if f ′(x∗) <−1 or −1 < f ′(x∗) < 0, respectively, and monotonically

stable or unstable depending on whether 0≤ f ′(x∗) < 1 or

f ′(x∗) > 1, respectively.
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Some applications.

Logistic model. Consider the logistic equation

x(k + 1) = Fβ (x(k)) := βx(k)(1−x(k)), x ∈ [0,1], β > 0. (55)

To find the equilibrium points, we solve

Fβ (x∗) = x∗

which gives

x∗0 = 0, x∗
β

= (β −1)/β .
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We investigate the stability of each point separately.

(a) For x∗0 = 0, we have F ′
β

(0) = β and thus x∗0 = 0 is

asymptotically stable for 0 < β < 1 and unstable for β > 1. To

investigate the stability for β = 1, we find F ′′
β

(0) =−2β 6= 0 and

thus x∗0 = 0 is unstable in this case. However, the instability comes

from the negative values of x , which we discarded from the

domain. If we restrict our attention to the domain [0,1], then

x∗0 = 0 is stable. Such points are called semi-stable.
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(b) The equilibrium point x∗
β

= (β −1)/β belongs to the domain

[0,1] only if β > 1. Here, F ′
β

((β −1)/β ) = 2−β and

F ′′
β

((β −1)/β ) =−2β . Thus, using the stability theorems, we

obtain that x∗
β

is asymptotically stable if 1 < β ≤ 3 and it is

unstable if β > 3.

Further, for 1 < β < 2 the population approaches the carrying

capacity monotonically from below. However, for 2 < β ≤ 3 the

population can go over the carrying capacity but it will eventually

stabilize around it.
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Figure: Asymptotically stable equilibrium x∗3 = 2/3 for β = 3.
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Sustainable fishing. Let us consider a population of fish which

grows according to the logistic equation with overlapping

generations,

N(k + 1) = N(k) + rN(k)

(
1− N(k)

K

)
.

This equation only can be solved in some particular cases.

However, even without solving it, we can draw some conclusions

relevant to the policies governing sustainable economy.

The basic idea of a sustainable economy is to find an optimal level

of fishing: too much harvesting would deplete the fish population

beyond recovery and too little would provide insufficient return for

the community.
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To maintain the population at a constant level, only the increase in

the population should be harvested during any one season. The

simplest model which includes fishing is

N(k + 1) = N(k) + rN(k)

(
1− N(k)

K

)
−qEN(k), (56)

where E is the so-called fishing effort, for instance the number of

fishing boats at sea, and q is the fishing efficiency, that is, the

fraction of the population caught by one boat in the unit time.

Here we should find find the amount of fish that can be caught

during a year to maintain the population at a constant level and

hence find the population for which the yield is optimal.
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To find a possible constant population level for a given level of

fishing we solve

N = N + rN

(
1− N

K

)
−qEN (57)

This gives N = 0 or

N∗ = K

(
1− qE

r

)
. (58)

The first solution is trivial and not interesting. The second solution

is positive if

qE < r .
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Let us suppose that for the given fishing rate qE the population is

kept at N∗ given by (58). Then the yield is Y (qE ) = qEN∗ or

Y (qE ) = qEK

(
1− qE

r

)
.

Thus the yield is a quadratic function of the fishing rate qE and

hence its maximum can be found as in the first part of the section.

Maximum of Y (qE ) is attained at E =
r

2q
which gives the

maximum sustainable yield as

Ymax(qE ) =
rK

4
.

Clearly, if we increase the fishing effort, E > r/2q, then the yield

will decrease (greed does not pay!).
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To understand why, let us summarize the mechanism described by

the model. For a given fishing rate qE , we find that the

equilibrium N∗, given by (58), is asymptotically stable provided∣∣∣∣ d

dN

(
N + rN

(
1− N

K

)
−qEN

)∣∣∣∣
N=N∗

∣∣∣∣=

∣∣∣∣1 + r − 2rN∗

K
−qE

∣∣∣∣< 1.

Using (58), this gives

r −2≤ qE < r .
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Thus, if the fishing rate satisfies the above condition, then the fish

population eventually will stabilize at N∗ and N∗ decreases if the

fishing rate increases. The yield is the product of the fishing rate

and the size of the population. Thus, if the fishing rate is too low,

then though N∗ is large, the product is not optimal. Similarly,

overfishing results in the population settling at a lower N∗ again

resulting in a suboptimal yield.
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One may wonder what is the significance of the condition

r −2≤ qE which puts an upper bound on r . A common sense

would suggest that the higher the net growth rate, the better the

yield. To explain this, we observe that (57) can be written as

N(k + 1) = (1 + r −qE )N(k)

(
1− N

K(1+r−qE)
r

)

and the stable equilibrium exists only if

1 + r −qE ≤ 3 iff r −2≤ qE .

Thus, the case r > qE + 2 does not give a stable fish population

ensuring the sustainable constant yield.
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Biological pest control. Assume that we have to deal with an

insect population which invades our plantation. The insects

reproduce according to the Beverton-Holt model (11),

P(k + 1) =
βP(k)

1 +aP(k)
(59)

where β is the natural fertility of insects and a = (β −1)/K where

K is the capacity of the environment. As we learned, if β > 1, then

the population P(k) tends a nonzero equilibrium K = (β −1)/a;

that is, there is a nonzero stable population of insects.
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An ecological way of eradicating the pest is to decrease the birth

rate and one of the methods is to introduce a number S of sterile

insects into the population. We assume that S is under our control

and we can keep the number of the sterile insects constant in time.

Though suppressed in the model, insects reproduce sexually and

thus the effective birth rate depends on the probability of finding a

mate. If, say, S individuals are sterile, and P(k) is the number of

fertile insects, then the probability of picking a fertile insect is

P(k)/(P(k) +S).
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Thus, the Beverton-Holt model can be modified as

P(k + 1) = βP(k)
P(k)

S +P(k)

1

1 +aP(k)
= βP(k)f (P(k)). (60)

To find the equilibria of (60), we solve

P = βP
P

S +P

1

1 +aP

which gives P∗0 = 0 and the simplified equation

1 = β
P

S +P

1

1 +aP
.
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While the above equation can be solved for P∗1 , a faster way to

look at the functional relationship between P and S .

Thus, we solve the above equation for S as a function of P, getting

S(P) =
(β −1−aP)P

1 +aP
. (61)

We find that S(0) = 0 and the derivative is given by

S ′(P) =−1 + β/(1 +aP)2.

Hence, the maximum in the interval (0,(β −1)/a) is attained at

P = (
√

β −1)/a; the maximum is Smax = (
√

β −1)2/a.
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Figure: The graph of S(P), given by (61),for β = 2 and a = 0.001.
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Thus, we conclude that if S > Smax , the only equilibrium of (60) is

P∗0 = 0. Further,

β
d

dP
Pf (P) = β

P2(1 +aS) + 2PS

((P +S)(1 +aP))2
.

Hence, β
d
dPPf (P)|P=0 = 0 and the equilibrium P∗0 = 0 is

asymptotically stable (for any S).

To determine the stability of the other two equilibria that exist for

0 < S < Smax we use geometric considerations.
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First we notice that β
d
dPPf (P) > 0 for all P > 0 (provided S > 0).

This means that the derivative never equals −1. Let 0 < S < Smax.

The curve βPf (P) starts at zero below the diagonal and thus at

the smaller equilibrium it must cross the diagonal from below.

Hence, this equilibrium is unstable. At the second equilibrium, the

curve crosses the diagonal from above and, since the curve is

ascending, the derivative is between 0 and 1. Thus this equilibrium

is asymptotically stable. If S = Smax, we have a tangent point

which means that the (unique) positive equilibrium is semi-stable -

unstable from the left and stable from the right.
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Figure: The graphs of βPf (P), as in (60),for β = 2,a = 0.001 with

S = 300 (blue line) and S = 100 (red line).
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Summarizing, to eradicate the pest population we should introduce

the number S > Smax of sterile insects. Then the population will

converge to the extinction equilibrium provided the number S of

sterile insects is kept above Smax at each cycle (this may require

our intervention as the insects die of natural causes). Otherwise,

we need to drive the population of pest below the smaller

equilibrium – then the population will also converge to the

extinction equilibrium.
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Introducing structure

Projection matrices. In most applications the assumption that

the analysed population consists of undistinguishable individuals is

unrealistic – for instance the birth rate significantly depends on the

age. Thus, we divide the population into subpopulations with

regards to some feature of interest. For instance, we can consider

clusters of cells divided into classes with respect to their size,

cancer cells divided into classes on the basis of the number of

copies of a particular gene responsible for its drug resistance, or a

population divided into subpopulations depending on the

geographical patch they occupy in a particular moment of time.
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Let us suppose we have n states.

The state of the population at time k is described by a vector

v(k) = (v1(k), . . . ,vn(k)),

where vi gives the number of elements in the state i , i = 1, . . . ,n.

As before, we describe the changes of such a structured population

from one generation to another by considering what can happen

between subsequent censuses.
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Each individual in a given state j contributes on average to, say, aij

individuals in state j .

Typically, this occurs due to a state-j individual:

migrating to i-th subpopulation with probability pij ;

contributing to the birth of an individual in the i-th

subpopulation at the rate bij ;

dying with probability dj ,

other choices and interpretations are, however, also possible.
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Then

v(k + 1) = A v(k), (62)

where, with aij = pij +bij for i 6= j and aii = pii +bi −di ,

A :=


a11 a12 · · · a1n−1 a1n

a21 a22 · · · a2n−1 a2n

...
... · · ·

...
...

an1 an2 · · · ann−1 ann

 (63)

so that

v(k) = A kv0,

where v0 is the initial distribution.
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Example. Any chromosome ends with a telomer which protects it

against damage during the DNA replication process. Recurring

divisions of cells can shorten the length of telomers and this

process is considered to be responsible for cell’s aging. If telomer is

too short, the cell cannot divide which explains why many cell

types can undergo only a finite number of divisions. Let us

consider a simplified model of telomer shortening. The length of a

telomer is a natural number from 0 to n, so cells with telomer of

length i are in subpopulation i . A cell from subpopulation i can die

with probability µi and divide (into 2 daughters).
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Figure: The process of telomere shortening.
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Any daughter can have a telomer of length i with probability ai

and of length i−1 with probability 1−ai . Cells of 0 length telomer

cannot divide and thus will die some time later. To find coefficients

of the transition matrix, we see that the average production of

offspring with telomer of length i by a parent of the same class is

2a2
i + 2ai (1−ai ) = 2ai ,
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(2 daughters with telomer of length i produced with probability a2
i

and 1 daughter with telomer of length i −1 produced with

probability 2ai (1−ai )). Similarly, average production of daughters

with length i −1 telomer is 2(1−ai ). However, to have offspring,

the cell must have survived from one census to another, which

happens with probability 1−µi . Hence, defining ri = 2ai (1−µi )

and di = 2(1−ai )(1−µi ), we have
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A :=


1−µ0 d1 0 · · · 0

0 r1 d2 · · · 0
...

...
... · · ·

...

0 0 0 · · · rn

 , (64)

The model can be modified to make it closer to reality by allowing,

for instance, for shortening of telomers by different lengthes or

consider models with more telomers in a cell and with probabilities

depending on the length of all of them.
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Markov matrices. A particular version of (63) is obtained when

we model a population that has constant size. Then bij = dj = 0

for any 1≤ i , j ≤ n and thus aij = pij is the fraction of j-th

subpopulation which, on average, moves to the i-th subpopulation

in one unit of time. Then 0≤ pij ≤ 1 and

∑
1≤i≤n

pij = 1,

or

pii =
n

∑
j=1

j 6=i

pij , i = 1, . . . ,n. (65)
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Matrices of this form are called Markov matrices.

We can check that this condition ensures that the size of the

population is constant. Indeed, the size of the population at time

k is P(k) = v1(k) + . . .+ vn(k) so that

P(k + 1) = ∑
1≤i≤n

vi (k + 1) = ∑
1≤i≤n

(
∑

1≤j≤n
pijvj(k)

)

= ∑
1≤j≤n

vj(k)

(
∑

1≤i≤n
pij

)
= ∑

1≤j≤n
vj(k) = N(k).
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Leslie matrices Assume that we have a population in which

individuals only differ from each other by age: the population is

divided into age groups with the age of an individual in group i is

exactly i (in the chosen time units). Apart from this, we adopt all

other assumption of unstructured mode. In particular, we only

track females and that the census is taken immediately after the

reproductive period (the length of which is negligible). Further,

assume that there is an oldest age class n−1 and no individual can

stay in an age class for more than one time period.
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Finally, we introduce the si as the probability of survival from age i

to age i + 1 and the age dependent birth rate mi . Thus, say in the

kth breeding season, we have vi (k) individuals of age i , si of them

survives to the k + 1th breeding season; that is, to the age i + 1,

producing on average

fivi (k) := simi+1vi (k)

offspring. In this case, the evolution of the population can be

described by the difference system

v(k + 1) = L v(k),
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where L is the n×n matrix

L :=



f0 f1 · · · fn−2 fn−1

s0 0 · · · 0 0

0 s1 · · · 0 0
...

... · · ·
...

...

0 0 · · · sn−2 0


. (66)

The matrix of the form (66) is referred to as a Leslie matrix.
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A generalization of the Leslie matrix can be obtained by assuming

that a fraction τi of i-th population stays in the same population.

This gives the matrix

L :=



f0 + τ0 f1 · · · fn−2 fn−1

s0 τ1 · · · 0 0

0 s1 · · · 0 0
...

... · · ·
...

...

0 0 · · · sn−2 τn−1


. (67)

Such matrices are called Usher matrices
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In most cases fi 6= 0 only if α ≤ i ≤ β where [α,β ] is the fertile

period. For example, for a typical mammal population we have

three stages: immature (pre-breeding), breeding and post-breeding.

If we perform census every year, then naturally a fraction of each

class remains in the same class. Thus, the transition matrix in this

case is given by

L :=


τ0 f1 0

s0 τ1 0

0 s1 τ2

 . (68)
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On the other hand, in many insect populations, reproduction

occurs only in the final stage of life and in such a case fi = 0 unless

i = n.
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Long time behaviour of structured population models.

The main interest in population theory is to determine the long

time structure of the population.

Before we embark on mathematical analysis, let us consider two

numerical examples which indicate what we could expect from the

models.
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Example. Let us consider a population divided into three classes,

evolution of which is modelled by the Leslie matrix

L =


2 1 1

0.5 0 0

0 0.4 0

 ,

so that the population v = (v1,v2,v3) evolves according to
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v(k + 1) = L v(k), k = 0,1,2 . . . ,

or

v(k) = L k ◦v ,

where
◦
v is an initial distribution of the population.
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Figure: Evolution of v1(k) (blue), v2(k) (magenta) and v3(k) (brown) for

the initial distribution
◦
v= (1,0,3) and k = 1, . . . ,20.
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We may observe that each component grows very fast with k.

However, if we compare growth of v1(k) with v2(k) and of v2(k)

with v3(k) (next picture) we see that the ratios stabilize quickly

around 4.5 in the first case and around 5.62 in the second case.

This suggests that there is a scalar function f (k) and a vector

e = (e1,e2,e3) = (25.29,5.62,1) such that for large k

v(k)≈ f (k)e. (69)
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Figure: Evolution of v1(k)/v2(k) (top) and v2(k)/v3(k) (bottom) for the

initial distribution
◦
v= (1,0,3) and k = 1, . . . ,20.
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Let us consider another initial condition, say,
◦
v= (2,1,4):

Figure: Evolution of v1(k)/v2(k) (top) and v2(k)/v3(k) (bottom) for the

initial distribution
◦
v= (2,1,4).
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It turns out that the ratios stabilize at the same level which further

suggest that e does not depend on the initial condition so that

(69) can be refined to

v(k)≈ f1(k)g(
◦
v)e, k → ∞ (70)

where g is a linear function.
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Anticipating the development of the theory, it can be proved that

f1(k) = λ k where λ is the largest eigenvalue of L , e is the

eigenvector corresponding to λ and g(x) = g ·x with g being the

eigenvector of the transpose matrix corresponding to λ . In our

case, λ ≈ 2.26035 and the ratios vi (k)/λ k stabilize as expected

from numerical simulations.
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Figure: Evolution of v1(k)/λ k) (blue), v2(k)/λ k (magenta)and v3(k)/λ k

(brown) for the initial distribution
◦
v= (1,0,3) and k = 1, . . . ,20.
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The situation in which the structure of the population after long

time does not depend on the initial condition but only on the

intrinsic properties of the model (here the leading eigenvalue) is

called the asynchronous exponential growth (AEG) property.

Unfortunately, not all Leslie matrices enjoy this property.

Example. Consider a Leslie matrix given by

L =


0 0 3

0.5 0 0

0 0.4 0


and

◦
y= (2,3,4).
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Figure: Evolution of y1(k) (top) and y2(k) (middle) and y3(k) (bottom)

for the initial distribution
◦
v= (2,3,4) and k = 1, . . . ,10.
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The picture is completely different from that obtained in the

previous example. We observe some pattern but the ratios do not

tend to a fixed limit but oscillate, as shown on the next figure.
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Figure: Evolution of y1(k)/y2(k) (top) and y2(k)/y3(k) (bottom) for the

initial distribution
◦
v= (2,3,4) and k = 1, . . . ,20.
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This can be explained by the spectral decomposition that is

explained below in detail. The eigenvalues of L are given by

λ1 = 0.843433,λ2 =−0.421716 + 0.730434i ,λ2 =

−0.421716−0.730434i and we can check that

|λ1|= |λ2|= |λ3|= 0.843433 and thus we do not have the

dominant eigenvalue. The question we will try to answer in the

next chapter is what features of the population are responsible for

such behaviour.
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Spectral decomposition of a matrix and the solution of

matrix recurrences. To explain and to be able to predict similar

behaviours in population models, first we discuss basic facts

concerning eigenvalues and eigenvectors of a matrix.

We are interested in solving

x(k + 1) = A x(k), x(0) = x̊ (71)

where A is an n×n matrix A = {aij}1≤i ,j≤n and

x(k) = (x1(k), . . . ,xn(k)).
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It is obvious, by induction, to see that the solution to (71) is given

by

x(k) = A k x̊ , k = 1,2, . . . . (72)

The problem with (72) is that it is rather difficult to give an

explicit form of A k .

Since Rn is n-dimensional, it is enough to find n linearly

independent vectors v i , i = 1, . . . ,n, for which A kv i can be easily

evaluated.
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Assume for a moment that such vectors have been found. Then,

for arbitrary x̊ ∈ Rn we can find constants c1, . . . ,cn such that

x̊ = c1v1 + . . .+ cnvn.

Precisely, let V be the matrix having the vectors v i as its columns
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V =


| . . . |

v1 . . . vn

| . . . |

 . (73)

Note, that V is invertible as the vectors v i are linearly

independent. Denoting c = (c1, . . . ,cn), we obtain

c = V −1x̊ . (74)
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Thus, for an arbitrary x̊ we have

A nx̊ = A n(c1v1 + . . .+ c2vn) = c1A
nv1 + . . .+ ckA

nvn. (75)

Now, if

Ak =


| . . . |

A kv1 . . . A kvn

| . . . |

 .

the matrix whose columns are vectors A kv1, . . . ,A kvn, then

A k x̊ = Akc = AkV
−1x̊ . (76)
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Hence, the problem is to find linearly independent vectors v i ,

i = 1, . . . ,k , of which the powers of A can be easily evaluated. We

shall use eigenvalues and eigenvectors for this purpose. Firstly,

note that if v1 is an eigenvector of A corresponding to an

eigenvalue λ1, that is, A v1 = λ1v1, then by induction

A kv1 = λ
k
1 v1.
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Therefore, if we have n linearly independent eigenvectors v1, . . . ,vn

corresponding to eigenvalues λ1, . . . ,λn (not necessarily distinct),

then from (75) we obtain

A k x̊ = c1λ
k
1 v1 + . . .+ cnλ

k
n vn.

with c1, . . . ,cn given by (74), or

A k x̊ =


| . . . |

λ k
1 v1 . . . λ k

n vn

| . . . |

V −1x̊ (77)
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Eigenvalues, eigenvectors and associated eigenvectors. Let A

be an n×n matrix. We say that a number λ (real or complex) is

an eigenvalue of A is there exist a non-zero solution of the

equation

A v = λv . (78)

Such a solution is called an eigenvector of A . The set of

eigenvalues of A is called the spectrum of A and is denoted by

σ(A ). Eq. (78) is equivalent to the homogeneous system

(A −λI )v = 0, where I is the identity matrix.

J. Banasiak INTRODUCTION TO POPULATION MODELS



Therefore λ is an eigenvalue of A if and only if the determinant of

A satisfies

pA (λ ) = det(A −λI ) =

∣∣∣∣∣∣∣∣∣
a11−λ . . . a1n

...
...

an1 . . . ann−λ

∣∣∣∣∣∣∣∣∣= 0. (79)

Evaluating the determinant we obtain a polynomial in λ of degree

n. This polynomial is also called the characteristic polynomial of

the matrix A .
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From algebra we know that there are exactly n, possibly complex,

roots of pA (λ ) and, in general,

pA (λ ) = (λ1−λ )n1 · . . . · (λk −λ )nk , (80)

with n1 + . . .+nk = n. Since the coefficients of the polynomial are

real, then complex roots appear always in conjugate pairs; that is,

if λj = ξj + iωj is a characteristic root, then so is λ̄j = ξj − iωj .

Thus, eigenvalues are the roots of the characteristic polynomial of

A .
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The exponent ni appearing in the factorization (80) is called the

algebraic multiplicity of λi . For each eigenvalue λi there

corresponds an eigenvector v i and eigenvectors corresponding to

distinct eigenvalues are linearly independent. The set of all

eigenvectors corresponding to λi spans a subspace, called the

eigenspace corresponding to λi which we will denote by Ẽλi
. The

dimension of Ẽλi
is called the geometric multiplicity of λi . In

general, algebraic and geometric multiplicities are different with

geometric multiplicity being at most equal to the algebraic one.
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Thus, in particular, if λi is a single root of the characteristic

polynomial, then the eigenspace corresponding to λi is

one-dimensional.

If the geometric multiplicities of eigenvalues add up to n; that is, if

we have n linearly independent eigenvectors, then these

eigenvectors form a basis for Rn. In particular, this happens if all

eigenvalues are single roots of the characteristic polynomial.
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If this is not the case, then we do not have sufficiently many

eigenvectors to span Rn. A procedure that can be employed to find

the ‘missing’ vectors here is to find solutions to equations of the

form (A −λiI )kv = 0 for 1 < k ≤ ni , where ni is the algebraic

multiplicity of λi . Precisely speaking, if λi has algebraic

multiplicity ni and if

(A −λiI )v = 0

has only νi < ni linearly independent solutions, then we consider

the equation

(A −λiI )2v = 0.
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Clearly all eigenvectors solve the latter equation but there is at

least one more independent solution so that we have at least νi + 1

independent vectors (note that these new vectors are no longer

eigenvectors). If the number of independent solutions is still less

than ni , then we consider

(A −λiI )3v = 0,

and so on, till we get a sufficient number of them.
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Note, that to make sure that in the step j we select solutions that

are independent of the solutions obtained in step j−1, it is enough

to find solutions to (A −λiI )jv = 0 that satisfy

(A −λiI )j−1v 6= 0.

Vectors v obtained in this way for a given λi are called generalized

or associated eigenvectors corresponding to λi and they span an ni

dimensional subspace called a generalized or associated eigenspace

corresponding to λi , denoted hereafter by Eλi
.
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Back to the difference system. Now we show how to apply the

concepts discussed above to solve systems of difference equations.

Let us return to the system

x(k + 1) = A x(k), y(0) =
◦
y .

As discussed, we need to find formulae for A kv for a selected n

linearly independent vectors v1, . . . ,vn.
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Let us take as v the collection of all eigenvectors and associated

eigenvectors of A . We know that if v i is an eigenvector associated

to an eigenvalue λ i , then A kv i = λ k
i v i . Thus, the question is

whether A k can be effectively evaluated on associated

eigenvectors. Let v j be an associated eigenvector found as a

solution to (A −λiI )jv j = 0 with j ≤ ni . Then, using the

binomial expansion, we find
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A kv j = (λiI +A −λiI )kv j =
k

∑
r=0

λ
k−r
i

 k

r

(A −λiI )rv j

=
(

λ
k
i I +kλ

k−1
i (A −λiI ) + . . .

+
k!

(j−1)!(k− j + 1)!
λ
k−j+1
i (A −λiI )j−1

)
v j , (81)

where  k

r

=
k!

r !(k− r)!
=

1

r !
k(k−1) · . . .(k− r + 1)

is the Newton symbol; it is is a polynomial in k of order smaller

than j .
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It is important to note that (81) is a finite sum for any k ; it always

terminates at most at the term (A −λ1I )ni−1, where ni is the

algebraic multiplicity of λi . Thus

A kv j = λ
k
i

k

∑
r=0

λ
−r
i

 k

r

(A −λiI )rv j

= λ
k
i

(
I +kλ

−1
i (A −λiI )v j + . . .

+
k!

(j−1)!(k− j + 1)!
λ
−j+1
i (A −λiI )j−1v j

)
= λ

k
i pj(k ,v

λi )

where pj is a polynomial in k of order j < ni .
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Above we used the following result

Theorem

Each generalized eigenspace Eλi
of A is invariant under A ; that

is, for any v ∈ Eλi
we have A v ∈ Eλi

. It is also invariant under

A k ,k = 1,2, . . ..

This result suggests that the the evolution governed by A in both

discrete and continuous case can be broken into several simpler

and independent pieces occurring in each generalized eigenspace.

We will return to this idea after an example.
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Example. Find A k for

A =


4 1 2

0 2 −4

0 1 6

 .

We start with finding eigenvalues of A :

p(λ ) =

∣∣∣∣∣∣∣∣∣
4−λ 1 2

0 2−λ −4

0 1 6−λ

∣∣∣∣∣∣∣∣∣= (4−λ )3 = 0

gives the eigenvalue λ = 4 of algebraic multiplicity 3.
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To find eigenvectors corresponding to λ = 3, we solve

(A −4I )v =


0 1 2

0 −2 −4

0 1 2




v1

v2

v3

=


0

0

0

 .

Thus, v1 is arbitrary and v2 =−2v3 so that the eigenspace is two

dimensional, spanned by

v1 =


1

0

0

 , v2 =


0

−2

1

 .
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Therefore

A kv1 = 4k


1

0

0

 , A kv2 = 4k


0

−2

1

 .
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To find the last vector we consider

(A −4I )2v =


0 1 2

0 −2 −4

0 1 2




0 1 2

0 −2 −4

0 1 2




v1

v2

v3



=


0 0 0

0 0 0

0 0 0




v1

v2

v3

=


0

0

0

 .
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Any vector solves this equation so that we have to take a vector

that is not an eigenvalue. Possibly the simplest choice is

v3 =


0

0

1

 .
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Thus, by (81)

A kv3 =
(

4kI +k4k−1(A −4I )
)
v3

=




4k 0 0

0 4k 0

0 0 4k

+k4k−1


0 1 2

0 −2 −4

0 1 2





0

0

1



=


2k4k−1

−k4k

4k + 2k4k−1

 .
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To find explicit expression for A k we use (76). In our case

Ak =


| | |

A kv1 A kv2 A kv3

| | |

=


4k 0 2k4k−1

0 −2 ·4k −k4k

0 4k 4k + 2k4k−1

 ,

further

V =


1 0 0

0 −2 0

0 1 1

 and V −1 =


1 0 0

0 −1
2 0

0 1
2 1

 .
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Therefore

A k = AkV
−1 =


4k k4k−1 2k4k−1

0 4k −2k4k−1 −k4k

0 k4k−1 4k + 2k4k−1



= 4k


1 k

4
k
2

0 1− k
2 −k

0 k
4 1 + k

2



= 4k

k


0 1

4
1
2

0 −1
2 −1

0 1
4

1
2

+


1 0 0

0 1 0

0 0 1


 .
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On the basis of previous considerations we can write

A kx = ∑
λ∈σ(A )

λ
kpλ (k ,vλ ,x), (82)

where pλ are polynomials in k of degree strictly smaller than the

algebraic multiplicity of λ , and with vector coefficients being linear

combinations of eigenvectors and associated eigenvectors vλ

corresponding to λ and depending, in a linear way, on x .
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A special role is played by the spectral radius of A defined by

ρ(A ) = max
λ∈σ(A )

|λ |

and the peripheral spectrum

σp(A ) = {λ ∈ σ(A ); |λ |= ρ(A )}.

It is clear that if ρ(A ) < 1, then A k → 0 as k → ∞. In what

follows we assume ρ(A )≥ 1 and re-write (82) as(
A

ρ(A )

)k

x = ∑
λ∈σp(A )

(
λ

ρ(A )

)k

pλ (k,vλ ,x)

+ ∑
λ∈σ(A )\σp(A )

(
λ

ρ(A )

)k

pλ (k,vλ ,x),
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Since λ/ρ(A ) < 1 for λ ∈ σ(A )\σp(A ), we see that the long

term behaviour of A k is fully determined by the points on the

peripheral spectrum.

Since |λ/ρ(A )|= 1 for λ ∈ σp(A ), (A /ρ(A ))k will not have a

limit as k → ∞ if at least one λ ∈ σp(A ) has algebraic multiplicity

greater than geometric multiplicity.
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Otherwise, if all λ ∈ σp(A ) are semisimple, then(
A

ρ(A )

)k

x = ∑
λ∈σp(A )

(
λ

ρ(A )

)k

cλ (x)vλ

+ ∑
λ∈σ(A )\σp(A )

(
λ

ρ(A )

)k

pλ (k ,vλ ,x),

where vλ is an eigenvector corresponding to λ ∈ σ(A ).
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We see that for (A /ρ(A ))k to be convergent, we must have

σp(A ) = {ρ(A )}.

The eigenvalue, say λ1 = ρ(A ), satisfying λ1 > |λ | for any other

eigenvalue λ is called the dominant eigenvalue. Since λ1 is simple,

there corresponds to it a unique (up to a scalar multiple)

eigenvector, say v1 so that we can informally write

A kx ≈ c1(x)λ
k
1 v1

for large k , provided c1(x) 6= 0. We observed this situation in the

first numerical example.
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If, on the other hand, σp(A ) consists of more than one element,

asymptotically we have(
A

ρ(A )

)k

x ≈ ∑
λ∈σp(A )

(
λ

ρ(A )

)k

cλ (x)vλ

and we see that the solution keeps oscillating, as in the second

example.
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Finding c1 from the definition requires knowing all eigenvectors

and associated eigenvectors of A and thus is not particularly

handy. Here we shall describe a simpler method.

Let us recall that the transposed matrix A T satisfies

< A Tx∗,y >=< x∗,A y >

where < x∗,y >= x∗ ·y = ∑
n
i=1 x

∗
i yi .
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Matrices A and A T have the same eigenvalues and, though

eigenvectors and associated eigenvectors are different (unless A is

symmetric), the structure of the generalized eigenspaces

corresponding to the same eigenvalue is identical (that is, the

geometric multiplicities of λ are equal and we have the same

number of associated eigenvectors solving (A −λI )νv = 0 and

(A ∗−λI )νv ∗ = 0). This follows from the fact that determinant,

nullity and rank of a matrix and its transpose are the same.

J. Banasiak INTRODUCTION TO POPULATION MODELS



Theorem

Let Eλ and E ∗
λ ∗ be generalized eigenspaces of, respectively, A and

A T , corresponding to different eigenvalues: λ 6= λ ∗. If v ∗ ∈ E ∗
λ ∗

and v ∈ Eλ , then

< v ∗,v >= 0. (83)

Thus, to determine a long time behaviour of a population

described by the discrete system x(k + 1) = A x(k) we have to
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1 Find eigenvalues of A and determine whether there is a

dominant eigenvalue; that is, a simple real eigenvalue λ1

satisfying λ1 > |λ | for any other λ ;

2 If this is the case, find the eigenvectors v of A and v ∗ of A T

corresponding to λ1 normalized so as < v ∗,v >= 1.

3 The long time behaviour of the population is then described by

A kx ≈ λ
k
1 < v ∗,x > v (84)

for large k for any initial distribution of the population

satisfying < v ∗,x >6= 0.
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Example. Find the long term behaviour of the process described

by

x(k + 1) =


1 −1 4

3 2 −1

2 1 −1

x(k).

To obtain the eigenvalues we calculate the characteristic

polynomial
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p(λ ) = det(A −λI ) =

∣∣∣∣∣∣∣∣∣
1−λ −1 4

3 2−λ −1

2 1 −1−λ

∣∣∣∣∣∣∣∣∣
= −(1 + λ )(1−λ )(2−λ ) + 12 + 2−8(2−λ ) + (1−λ )−3(1 + λ )

= −(1 + λ )(1−λ )(2−λ ) + 4λ −4 = (1−λ )(λ −3)(λ + 2),

so that the eigenvalues of A are λ1 = 1, λ2 = 3 and λ3 =−2. All

the eigenvalues have algebraic multiplicity 1 so that they should

give rise to 3 linearly independent eigenvectors.
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(i) λ1 = 1: we seek a nonzero vector v such that

(A −1I )v =


0 −1 4

3 1 −1

2 1 −2




v1

v2

v3

=


0

0

0

 .

Thus

−v2 + 4v3 = 0, 3v1 + v2−v3 = 0, 2v1 + v2−2v3 = 0

and we get v2 = 4v3 and v1 =−v3 from the first two equations and

the third is automatically satisfied.
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Thus we obtain the eigenspace corresponding to λ1 = 1 containing

all the vectors of the form

v1 = C1


−1

4

1


where C1 is any constant.
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(ii) λ2 = 3: we seek a nonzero vector v such that

(A −3I )v =


−2 −1 4

3 −1 −1

2 1 −4




v1

v2

v3

=


0

0

0

 .

Hence

−2v1−v2 + 4v3 = 0, 3v1−v2−v3 = 0, 2v1 + v2−4v3 = 0.

Solving for v1 and v2 in terms of v3 from the first two equations

gives v1 = v3 and v2 = 2v3.
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Consequently, vectors of the form

v2 = C2


1

2

1


are eigenvectors corresponding to the eigenvalue λ2 = 3.
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(iii) λ3 =−2: We have to solve

(A + 2I )v =


3 −1 4

3 4 −1

2 1 1




v1

v2

v3

=


0

0

0

 .

Thus

3v1−v2 + 4v3 = 0, 3v1 + 4v2−v3 = 0, 2v1 + v2 + v3 = 0.
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Again, solving for v1 and v2 in terms of v3 from the first two

equations gives v1 =−v3 and v2 = v3 so that each vector

v3 = C3


−1

1

1


is an eigenvector corresponding to the eigenvalue λ3 =−2.
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The general solution is given by

x(k) = C11k


−1

4

1

+C23k


1

2

1

+C3(−2)k


−1

1

1



= 3k

C2


1

2

1

+C1

(
1

3

)k


−1

4

1

+C3

(
−2

3

)k


−1

1

1


 .
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The dominant eigenvalue is λ2 = 3 and for large time

x(k)≈ 3kC2


1

2

1

 , (85)

where C2 depends on the initial condition.
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The transposed matrix is given by

A ∗ =


1 3 2

−1 2 1

4 −1 −1


and the eigenvector v ∗ corresponding to λ = 3 can be calculated by

(A ∗−3I )v =


−2 3 2

−1 −1 1

4 −1 −4




v1

v2

v3

=


0

0

0

 .
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We get v2 = 0 and v1 = v3. Thus,

v2
∗ =


1

0

1


and we can check that, indeed, < v2

∗,v1 >=< v2
∗,v2 >= 0.
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Then, multiplying (85) by v2
∗ we obtain

< v2
∗,x(k) >= C23k < v2

∗,v2 >

and, taking k = 0 we have

< v2
∗,
◦
x>= C2 < v2

∗,v2 >,

hence C2 = 1
2 (
◦
x1 +

◦
x3). Clearly, long time picture of evolution

given by (85) will not be realized if
◦
x is orthogonal to v2

∗.
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Frobenius-Perron theorem. The question whether any matrix

with nonnegative entries gives rise to such a behaviour and, if not,

what models exhibit AEG, is much more delicate and requires

invoking the Frobenius-Perron theorem which will be now

discussed.

To make further progress, we have to formalize a number of

statements made in the previous sections and, in particular, the

meaning of the approximate equality (84). For this, we have to set

the problem in an appropriate mathematical framework.
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First, we note that in the context of population theory, if a given

difference equation/system of equations is to describe evolution of

a population; that is, if the solution is the population size or

density, then clearly solutions emanating from non-negative data

must stay non-negative. Thus we have to extend the notion of

positivity to vectors. We say that a vector x = (x1, . . . ,xn) is

non-negative (positive), if for all i = 1, . . . ,n, xi ≥ 0 (xi > 0),

denoted as x ≥ 0 (x > 0).
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Similarly, we say that the matrix A = {aij}1≤i ,j≤n is non-negative

(positive), and write A ≥ 0(A > 0), if aij ≥ 0 (aij > 0) for all

i , j = 1, . . . ,n.

It is easy to prove that

Proposition

The solution x(k) of

x(k + 1) = A x(k), x(0) =
◦
x

satisfies x(k)≥ 0 for any k = 1, . . . , for arbitrary
◦
x≥ 0 if and only if

A ≥ 0.
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The sequence (A k)k≥1 is a dynamical system in the state space

X = Rn (and in X+ if A ≥ 0). Essentially, (84) is a statement

about the limit of A k ◦x as k → ∞ so we must introduce a metric

structure on X . To make the metric consistent with the linear

structure of Rn, it is typically defined by a norm, that is, a

functional ‖ · ‖ : X → R+ satisfying, for any x ,y ∈ X ,α ∈ R,

‖x‖= 0 iff x = 0, ‖αx‖= |α|‖x‖, ‖x +y‖ ≤ ‖x‖+‖y‖.

There is a variety norms in Rn (all defining the same topology),

the most common being the Euclidean metric.
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However, bearing in mind the interpretation of our problems; that

is, that the solution vector of

x(k + 1) = A x(k),

x(k) = (x1(k), . . . ,xn(k)), defines the distribution of a population

among the states, we see that the most natural norm is

‖x‖=
n

∑
i=1

|xi | (86)

which, for x ≥ 0 simplifies to

‖x‖=
n

∑
i=1

xi (87)

which is the total population of the ensemble.
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Classification of projection matrices. The long time behaviour

of (A k)k≥1 is fully determined by whether A is a primitive

irreducible, imprimitive irreducible or a reducible matrix. These

concepts best can be explained in terms of graphs.

A graph is a nonempty finite set of vertices and (possibly empty)

set of edges (edge can be interpreted as a unordered pair of

vertices). An directed graph or a digraph is a graph with directed

edges (a directed edge is then an ordered pair of vertices).

A path is a finite sequence of directed edges

((i1, i2),(i2, i3), . . . ,(ik−1, ik)) in which no vertex is repeated apart

from possibly i1 = ik ; in the latter case the path is called a cycle.
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We say that a diagraph is strongly connected if there is a path

between any two vertices of it.

By the incidence matrix associated to a nonnegative matrix A we

understand the matrix D = (dij)1≤i ,j≤n where dij = 1 if aij > 0 and

dij = 0 otherwise. There is a one to one correspondence between

diagraphs and incidence matrices (up to a permutation). For a

given D we take {1, . . . ,n} as the set of vertices and we draw a

directed from j to i whenever dij > 0. Conversely, given a diagraph

with n vertices, we number them {1, . . . ,n} and set dij = 1

whenever there is an edge from j to i .
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We say that A is irreducible if and only if the digraph associated

with the incidence matrix of A is strongly connected.

An equivalent, but more algebraic, condition must be preceded by

some notation. We write

A k = (a
(k)
i ,j )1≤i ,j≤n.

It is easy to see that

a
(k)
i ,j = ∑

1≤ir≤n,r=1,...,k−1

ai ,i1ai1,i2 · . . . ·aik−1,j
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If some ai ,i1ai1,i2 · . . . ·aik−1,j 6= 0 then there is a path starting from j

and passing through ik−1, . . . , i1 to i . Since the matrix elements are

nonnegative, for a
(k)
i ,j to be non-zero it is enough that there exists

at least one such path. Thus, A is irreducible if for each pair (i , j)

there is k such that a
(k)
i ,j > 0.
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If the matrix A is not irreducible, then we say that it is reducible.

Thus, a matrix is reducible if the associated graph is not strongly

connected, that is, if there are vertices i and j such that i is not

accessible from j . An equivalent definition is that A is reducible if,

by simultaneous permutation of rows and columns, it can be

brought to the form  A 0

B C

 ,

where A and C are square matrices.
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In terms of age-structured population dynamics, a matrix is

irreducible if each stage i can contribute to any other stage j . E.g.,

the Usher matrix 
0 0 1 0

1 0 0 0

0 1 0 0

0 0 1 1


is reducible as the last state cannot contribute to any other state

and fertility is only concentrated in one state.
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Irreducible matrices are subdivided into two further classes. An

irreducible matrix A is called primitive if

A k > 0

for some k > 0; otherwise it is called imprimitive.

Note the difference between irreducibility and primitivity. For

irreducibility we require that for each (i , j) there is k such that

a
(k)
i ,j > 0 but for primitivity there must be k such that a

(k)
i ,j > 0 for

all (i , j).
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In population dynamics, if the population has a single reproductive

stage, then its projection matrix is imprimitive. E.g., the matrix

A =


0 0 1

1 0 0

0 1 0


describing a semelparous population is imprimitive. Indeed

A 3 =


1 0 0

0 1 0

0 0 1


and thus none A k > 0.
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Perron-Frobenius theorem.

Let A be a nonnegative matrix.

(a) There exists a real nonnegative eigenvalue λmax = ρ(A ) such

that λmax ≥ |λ | for any λ ∈ σ(A ). There is an eigenvector (called

the Perron eigenvector) corresponding to λmax which is real and

nonnegative.
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(b) If, in addition, A is irreducible, then λmax is simple and

strictly positive, λmax ≥ |λ | for λ ∈ σ(A ). The eigenvector

corresponding to λmax may be chosen to be strictly positive.

(i) If A additionally is primitive, then λmax > |λ |;

(ii) If A is imprimitive, then there is d > 1 such that

λj = λmaxe
2π i j

d , j = 0, . . . ,d −1,

are simple eigenvalues of A .
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Let us apply the Perron-Frobenius theorem in a population context.

Suppose that our population is divided into n classes and the state

of the population is given by the vector x = (x1, . . . ,xn) giving the

number of individuals (or density) in each class. Let x0 ≥ 0 denote

the initial distribution of the population among the classes. Then

x(k) = A kx0

is the distribution after k periods and

P(k,x) = ‖A kx0‖=
n

∑
i=1

(A kx0)i =
n

∑
i=1

xi (k) = ‖x(k)‖

is the total population at time k evolving from the initial

distribution x0.
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If A is nonnegative, irreducible or primitive, then the transpose

A T has the same property. Let λmax be the dominant eigenvalue

of both matrices and v and v ∗ be the corresponding strictly

positive eigenvectors of, respectively, A and A T , corresponding to

λmax . We normalize v so that ‖v‖= 1 and v ∗ so that

< v ∗,v >= 1.

Combining the Perron-Frobenius theorem with the spectral

decomposition we arrive at the following result.
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Fundamental Theorem of Demography. Suppose that the

projection matrix A is irreducible and primitive and let λmax be

the strictly positive dominant eigenvalue of A , v the strictly

positive eigenvector of A and v ∗ strictly positive eigenvector of

A T corresponding to λmax . Then, for any x0 ≥ 0,

(a) A has the AEG property

lim
k→∞

λ
−k
maxA

kx0 =< v ∗,x0 > v . (88)
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(b)

lim
k→∞

x(k)

P(k ,x0)
= lim

k→∞

A kx0

P(k ,x0)
= v . (89)

(c) If λmax < 1, then

lim
k→∞

P(k,x0) = 0

and

lim
k→∞

P(k ,x0) = ∞

if λmax > 1.
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Proof.

(a) We use (82), (84) and Perron-Frobenius Theorem 1.(i):

A kx0 = ∑
λ∈σ(A )

λ
kpλ (k ,vλ ,x0) = λ

k
max < v ∗,v > v

+ ∑
λ∈σ(A )\{λmax}

λ
kpλ (k ,vλ ,x0). (90)

By primitivity of A , λmax > |λ | for any λ ∈ σ(A \{λmax}) and

pλ (k ,vλ ,x0) are polynomials in k , we have∥∥∥∥∥
(

λ

λmax

)k

pλ (k ,vλ ,x0)

∥∥∥∥∥→ 0, k → ∞

and (a) is proved.
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For (b) we see that, by (a),

lim
k→∞

P(k ,x0)

λ k
max

= lim
k→∞

‖A kx0‖
λ k
max

= lim
k→∞

∥∥∥∥A kx0

λ k
max

∥∥∥∥
= |< v ∗,v > |> 0. (91)

Hence, by (a) and (91),

lim
k→∞

A kx0

P(k,x0)
= lim

k→∞

λ−kmaxA
kx0

λ
−k
maxP(k ,x0)

= v ,

which gives (89).
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To prove (c) we observe that

P(k ,x0) =

∥∥∥∥A k

(
x0

P(k−1,x0)

)∥∥∥∥P(k−1,x0)

= λk−1P(k−1,x0)

where

λk−1 =

∥∥∥∥A k

(
x0

P(k−1,x0)

)∥∥∥∥= λmax

∥∥∥∥∥ λ−kmaxA
kx0

λ
−(k−1)
max P(k−1,x0)

∥∥∥∥∥
→ λmax

‖v‖
|< v ∗,v > |

= λmax , as k → ∞

by (a), (b) and the normalization of v ,v ∗.
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Thus, if λmax < 1, then we can pick λ̄ < 1 such that λk−1 ≤ λ̄ for

all k larger than some k0 and

P(k0 + i ,x0)≤ λ̄
iP(k0,x0)→ 0 as i → ∞.

Similarly, if λmax > 1, then we can pick λ̃ > 1 such that λk−1 ≥ λ̃

for all k larger than some k0 and

P(k0 + i ,x0)≥ λ̃
iP(k0,x0)→ ∞ as i → ∞,

as P(k0,x0) 6= 0 for any finite k0. Indeed, otherwise from

nonnegativity we would have x(k0) = 0 and thus x(k) = 0 for

k ≥ k0, contradicting (a). �
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If we note that for each 1≤ i ≤ n

(A kx)i
P(k ,x)

is the fraction of the population in the state i at time k , then the

result above states that for large times the fraction of the

population in the state i approximately is given by the i coordinate

of the Perron eigenvector and is independent of the initial

distribution x . Moreover v is approached (or departed from) at an

exponential rate, hence the name asynchronous exponential

growth.
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Population model with transition matrix of indefinite

sign

Natchez social structure. Many societies are divided into classes

membership of which is largely hereditary. A way to prevent

watering down of the elite is endogamy; that is, marrying within

one’s own class. Some societies, however, practice an open class

system to prevent stagnation of the structure. An example is

offered by the civilization of Natchez.

Natchez were Native Americans who lived in the lower Mississipi in

North America. The civilisation ceased to exist after the so-called

Natchez massacre in 1731 when they were defeated and then

dispersed or were enslaved.
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Natchez created a complex system of open class structure based

on the exogamous marriages so that the power is passed between

people born to different social classes. The society was divided into

two main classes – nobility and commoners (so-called Stinkards).

The nobility was further divided into subclasses (casts): Suns,

Nobles and Honoured People. A member of nobility only could

marry a Stinkard.

We simplify the analysis by merging Nobles and Honoured into one

class – say Nobles.
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The table below summarizes the permissible marriages and

inherited statuses.

Mother/Father Sun Noble Stinkard

Sun Sun

Noble Noble

Stinkard Noble Stinkard Stinkard

Table: Possible marriages in the Natchez population and the status of

their offspring
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We adopt the following simplifying assumptions.

1 There is the same number of males and females in each class

in each generation – we track only males.

2 Each person marries only once and the spouse is from the

same generation.

3 Each pair has exactly one son and one daughter.

Let the population (of males) in the kth generation be described by

x(k) = (x1(k),x2(k),x3(k))

with the classes numbered as follows: 1 -Sun, 2 -Noble, 3

-Stinkard.
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Since a Sun son only can be born to a Sun mother and there is no

other way to become a Sun, using the fact that the number of

female Suns equals the number of male Suns we can write

x1(k + 1) = x1(k).

A Noble son only can be born to Sun father or to Noble mother,

using the parity of males and females in the Noble class we get

x2(k + 1) = x1(k) + x2(k).
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Finally, the number of male offspring in the Stinkard class is equal

to the number of Stinkard males who are not married to females

from the nobility plus the number of sons of Stinkard mothers and

Noble fathers (remember that the son of a Stinkard father and a

Noble mother is a Noble but then the son of a Stinkard mother

and a Noble father is a Stinkard). Hence

x3(k + 1) =−x1(k)−x2(k) + x2(k) + x3(k) =−x1(k) + x3(k).
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Writing the model in matrix form, we have

x(k + 1) = A x(k) = (I +B)x(k),

where

A =


1 0 0

1 1 0

−1 0 1

 B =


0 0 0

1 0 0

−1 0 0

 .

We see that B2 = 0. Hence, A k = I +kB, or

A k =


1 0 0

k 1 0

−k 0 1

 .
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If x1(0) = 0, the structure of the population does not change since

x(k) = (0,x2(0),x3(0)).

If, however, originally we have some members of the Sun class,

then the size of the Stinkard becomes negative in finite time.

Indeed x3(k) =−kx1(0) +x3(0) and thus x1(0) > 0 yields x3(k) < 0

for k > x3(0)/x1(0). For instance, if the ratio of Stinkards and

Suns is 5 at the beginning, Stinkards will become extinct after four

generations. Thus, nobody from the nobility will be able to marry

and thus the population will become extinct. Since, according to

the historical records, the Natchez civilisation survived for several

hundred years, the model in the presented form cannot be correct.
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Luenberger solution. In many societies it is observed that the birth

rate depends on the status of the parents. Can we find a birth rate

for each combination of parents in the Natchez community which

will result in its a stable class distribution? Consider the following

the intermarriage/fecundity scheme,

Mother/Father Sun Noble Stinkard

Sun Sun α1

Noble Noble α3

Stinkard Noble α2 Stinkard α4 Stinkard α5

where αi gives the average number of male offspring from such a

marriage.
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Modelling as before leads to

x(k + 1) = A x(k),

where

A =


α1 0 0

α2 α3 0

−α5 (α4−α5) α5

 (92)

As in the Perron-Frobenius theorem, we will try to find a positive

eigenvector of A associated with the largest positive eigenvalue.

Such a vector would correspond to a stable population structure to

which the system would converge and, once attained, would not

change. The total population would change as powers of the

eigenvalue.
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Since the matrix A is triangular, its eigenvalues are given by α1,

α3 and α5. If α5 is the dominant eigenvalue, then the long term

structure is given by

(0,0,1);

that is, the population will only consists of Stinkards. While it is

certainly possible, we are interested in survival of the community

as a whole which is not possible if α5 is the dominant eigenvalue.

A similar outcome is obtained if we assume that α3 is the

dominant eigenvalue. Then the stable population structure is

e = (0,1,(α4−α5)/(α3−α5)),

provided α4 > α5.
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If α1 is the dominant eigenvalue, then the stable population

structure is given by(
1,

α2

(α1−α3)
,

1

α1−α5

(
−α5 + α2

α4−α5

α1−α3

))
and it is positive if and only if

α2(α4−α5) > α5(α1−α3). (93)

To complete our considerations, we must show that in the stable

structure we have sufficiently many Stinkards for Suns and Nobles

to marry. Thus we require that the components of the stable

distribution vector additionally satisfy

x3 ≥ x1 + x2. (94)
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Substituting here the formulae for x2 and x3, which were derived

earlier, we obtain

1

α1−α5

(
−α5 + α2

α4−α5

α1−α3

)
≥ 1 +

α2

(α1−α3)
. (95)

This inequality will be satisfied if α4 is sufficiently large. In other

words, to ensure that in the stable population distribution we have

sufficiently many Stinkards, the fecundity in marriages of Stinkard

mothers and Noble fathers should be sufficiently large.
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Full solution. We observe that the provided analysis is not

complete. It only shows that there is a structure of the society

which can persist in a stable way. However, we do not know

whether any positive initial population satisfying (94) will be be

positive and satisfy (94) in each generation and will eventually

stabilize at the structure determined by the eigenvector found

above. Fortunately, the problem allows for a more detailed solution

which confirms the results obtained by the analysis of the

dominant eigenvalue and the corresponding eigenvector. For the

solution with
◦
x1,

◦
x2> 0 we have

x1(k) = α
k
1
◦
x1> 0 x2(k) = α

k
3
◦
x2 +α2

◦
x1

αk
1 −αk

3

α1−α3
> 0.
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Further

x3(k) = α
k
5
◦
x3 +

αk
3 −αk

5

α3−α5
(α4−α5)

(
◦
x2 −

◦
x1

α2

α1−α3

)
+

αk
1 −αk

5

α1−α5

(
α2(α4−α5)

α1−α3
−α5

)
◦
x1 . (96)

Hence x3(k) is positive provided (93) is satisfied and

◦
x1
◦
x2

≤ α1−α3

α2
. (97)

In other words, for the solution to remain positive, the ratio of the

initial population of Suns and Nobles must be smaller that the ratio

of these populations in the stable population distribution vector.
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One can prove from (96) that

x3(k)≥ x1(k) + x2(k) (98)

is satisfied for any k but there is a smarter way.

Polar sets. The polar set S∗ of a non-empty set S in Rn is defined

to be

S∗ = {z ∈ Rn; (z ,y)≥ 0 for all y ∈ S}.

It follows that if C is a closed, convex and generating cone in Rn,

then so is C ∗. Furthermore, C ∗∗ = C .

Proposition

Let C be a cone in Rn and A be an n×n matrix. Then

A C ⊆ C if and only if (z ,A y)≥ 0 for all y ∈ C ,z ∈ C ∗.
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Polyhedral cones. Let a1, . . . ,ar be some vectors in Rn. We say

that a cone C ⊂ Rn is polyhedral if

C = {x ; (aj ,x)≥ 0, j = 1, . . . , r}

and that it is finitely generated if

C = {x ; x =
r

∑
j=1

µjaj , µj ≥ 0, j = 1, . . . , r}=: cone({a1, . . . ,ar}).

Farkas–Minkowski–Weyl theorem. If C = cone({a1, . . . ,ar}),

then

C ∗ = {x ; (aj ,x)≥ 0, j = 1, . . . , r};

{x ; (aj ,x)≥ 0, j = 1, . . . , r}∗ = C .

Furthermore, a cone is polyhedral if and only if it is finitely

generated.
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In our case we consider

C = {(x1,x2,x3); x1 ≥ 0,− α2

α1−α3
x1 + x2 ≥ 0,x3 ≥ x1 + x2};

equivalently

C = cone

({(
1,

α2

α1−α3
,1 +

α2

α1−α3

)
,(0,1,1) ,(0,0,1)

})
.

Then

C ∗ =

{
(y1,y2,y3); y1 +

α2

α1−α3
y2 +

(
1 +

α2

α1−α3

)
y3 ≥ 0,

y2 + y3 ≥ 0,y3 ≥ 0
}
.
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Figure: The viability cone C
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We need to prove (y ,A x)≥ 0 for all y ∈ C ∗,x ∈ C . It is

equivalent to

α1x1 ≥ 0

− α2

α1−α3
x1 + α2x1 + α3x3 ≥ 0

−α1x1−α2x1−α3x2−α5x1 + (α4−α5)x2 + α5x3 ≥ 0

for all (x1,x2,x3) ∈ C . In particular, it is sufficient to consider

vectors that span C .
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substituting (x1,x2,x3) = (0,0,1) gives α5 ≥ 0;

substituting (x1,x2,x3) = (0,1,1) gives α3 ≥ 0 and α4 ≥ α5;

substituting (x1,x2,x3) =
(

1, α2
α1−α3

,1 + α2
α1−α3

)
gives

α1 ≥ 0,

α4 ≥ α1(α1−α3 + α2)

α2
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We see that (93) is automatically satisfied. Indeed

1

α1−α5

(
−α5 + α2

α4−α5

α1−α3

)
≥ 1

α1−α5

(
−α5 +

α2

α1−α3

(
α1(α1−α3 + α2

α2
−α5

))
=

1

α1−α5

(
−α5(α1 + α2−α3)

α1−α3
+

α1(α1 + α2−α3)

α1−α3

)
=

α1 + α2−α3

α1−α3
= 1 +

α2

α1−α3
≥ 0.
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Summarizing

Theorem

Let αi , i = 1, . . . ,5, be positive, q := max{α3,α5}/α1 < 1 and

α4 ≥
α1(α1−α3 + α2)

α2
.

Then the cone

C = {(x1,x2,x3); x1 ≥ 0,− α2

α1−α3
x1 + x2 ≥ 0,x3 ≥ x1 + x2};

is invariant under A and, for x̊ ∈ IntC ,

A k ◦x
α5

1

= x̊1

(
1,

α2

(α1−α3)
,

1

α1−α5

(
−α5 + α2

α4−α5

α1−α3

))
+O(qk).
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Leslie matrices. Let us consider the Leslie matrix

L :=



f0 f1 · · · fn−2 fn−1

s0 0 · · · 0 0

0 s1 · · · 0 0
...

... · · ·
...

...

0 0 · · · sn−2 0


, (99)

and find under what conditions the population described by L

exhibits asynchronous exponential growth.
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Irreducible case.

First we observe that for irreducibility we need all

si 6= 0,0≤ i ≤ n−2. Indeed, if for some i the coefficient si = 0,

then there would be no path from k ≤ i to k > i . In other words,

there would be no way of reaching the age k > i . Assuming this,

L is irreducible if and only if fn−1 > 0. Clearly, if fn−1 = 0, then

there is no communication from class n−1 to any other class and

thus L is reducible.
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Now, let fn−1 > 0 and pick a (i , j). If j < i , then there is a path

(j , j + 1)...(i −1, i) ensured by the survival coefficients

sj ,sj+1, . . .si−1. If j ≥ i , then the survival coefficients ensure that

we reach the last class n−1, then since fn−1 > 0 we reach the class

0 and then we arrive at i by aging, that is

(j , j + 1) . . .(n−2,n−1)(n−1,0)(0,1), . . .(i −1, i).
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The question of primitivity is more complicated. Let us first

assume that fj > 0 for j = 0, . . . ,n−1, that is, that any age group

is capable of reproduction. Let us consider arbitrary initial state j .

Then there is an arc between j and 0 (a0j = fj > 0) and then from

state 0 one can reach any state i in exactly i steps (s0s1 · . . . · si ).

Thus, there is a path joining j and i of length i + 1 which still

depends on the target state.
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However, there is an arc from 0 to itself, so we can wait at 0 for

any number of steps. In particular we can wait for n− i steps so

that j can be connected with i is n+ 1 steps. In other words

si−1 · · · · · s1s0f0 · . . . · f0fj > 0

where f1 occurs n− i times. Hence L n > 0.

Remark. The above argument shows that any irreducible matrix in

which at least one diagonal entry is not equal to zero is primitive.
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This result assumes too much - typically young individuals cannot

reproduce. We will strengthen this result. Let

0 = det(L −λ I ) = λ
n +an1λ

n1 + . . .ani λ
ni (100)

with n > n1 > .. . > ni , ank 6= 0,k = 1, . . . , i be the characteristic

equation of L .
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It follows that if L is imprimitive of index d , then d is the greatest

common divisor of n−n1,n1−n2, . . . ,ni−1−ni . This is related to

the fact that λ d − rd is a factor of the characteristic polynomial

but full proof requires more subtle characterization of the spectrum

of imprimitive matrices.

For Leslie matrices the characteristic equation can be calculated

explicitly and it has its own biological interpretation. Also the

above criterion can be proved directly.
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Recall that si = li+1/li with l0 = 1, where li is the probability of

surviving from birth to age i and fi = mi+1si . Consider the

eigenvalue-eigenvector equation for a Leslie matrix

L v =



f0 f1 · · · fn−2 fn−1

s0 0 · · · 0 0

0 s1 · · · 0 0
...

... · · ·
...

...

0 0 · · · sn−2 0





v0

v1

v2

...

vn−1


= λ



v0

v1

v2

...

vn−1


.
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The equations from the second row down read

s0v0 = λv1, s1v1 = λv2, . . .sn−2vn−2 = λvn−1.

Taking v0 = 1, we obtain

v1 =
s0

λ
, v2 =

s0s1

λ 2
, . . .vn−1 =

s0s1 . . .sn−2

λ n−1
.

Now, the first row gives the equation

λ =

(
f0 +

f1s0

λ
+

f2s0s1

λ 2
+ . . .+

fn−1s0s1 . . .sn−2

λ n−1

)
.
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We use si = li+1/li where li is probability of survival till the i + 1st

reproductive cycle from birth (thus si is conditional probability of

survival to the next reproductive cycle if one survived till i from

birth) and fi = mi+1si to rewrite the above as

1 =

(
m1l1

λ
+

m2l2
λ 2

+
m3l3
λ 3

+ . . .+
mnln
λ n

)
,

where we used l0 = 1. Using the criterion mentioned above, a

Leslie matrix is irreducible and primitive if e.g. the fertility of the

oldest generation mn is not zero and two subsequent generations

have nonzero fertility.
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Relative simplicity of the characteristic equation allows to

strengthen this result even more. In fact, L is imprimtive if and

only if the maternity function is periodic, that is, if the greatest

common divisor of ages of positive reproduction, called the period,

is greater than 1. For instance, m2,m4,m6... has period 2. In

particular, the period is equal to the imprimitivity index. Indeed,

suppose that

λj = re iθ , θ 6= 2πn,

is a negative or complex root to

ψ(λ ) = λ
−1m1l1 + . . .+ λ

n−1mn−1ln−1 + λ
nmnln

=
n

∑
k=1

λ
−kmk lk = 1. (101)
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Then
n

∑
k=1

r−ke−ikθ lkmk = 1 (102)

or, taking real and imaginary parts,

n

∑
k=1

r−k cos(kθ)lkmk = 1, (103)

n

∑
k=1

r−k sin(kθ)lkmk = 0. (104)

J. Banasiak INTRODUCTION TO POPULATION MODELS



If mk is periodic, then the only nonzero terms correspond to

multiples of d , mk1d ,mk2d ,mk3d , . . .. Taking θj = 2π j/d ,

j = 0,1, . . . ,d −1, we see coskldθj = 1, sinkldθj = 0 and so, if the

above equations are satisfied by r , they are also satisfied for any

λj = re iθj .

If mk is aperiodic, then for some k we have coskθ < 1. But then,

if (103) is satisfied, we must have
n

∑
k=1

|λj |−k lkmk > 1.

On the other hand, since
n

∑
k=1

r−k lkmk = 1,

we obtain |λj |< r .
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If mk is periodic, then the only nonzero terms correspond to

multiples of d , mk1d ,mk2d ,mk3d , . . .. Taking θj = 2π j/d ,

j = 0,1, . . . ,d −1, we see coskldθj = 1, sinkldθj = 0 and so, if the

above equations are satisfied by r , they are also satisfied for any

λj = re iθj .

If mk is aperiodic, then for some k we have coskθ < 1. But then,

if (103) is satisfied, we must have
n

∑
k=1

|λj |−k lkmk > 1.

On the other hand, since
n

∑
k=1

r−k lkmk = 1,

we obtain |λj |< r .
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Reducible case. Let us consider a more complicated case where the

fertility is restricted to some interval [n1,n2], that is, when fj > 0

for j ∈ [n1,n2]. As we noted earlier, if n2 < n, the matrix cannot be

irreducible as there is no communication between postreproductive

stages and the reproductive ones. Consequently, if we start only

with individuals in postreproductive age, the population will die

out in finite time. Nevertheless, if n1 < n2 then the population still

displays asynchronous exponential growth, albeit with a slight

modification, as explained below.
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To analyse this model, we note that since we cannot move from

stages with j > n2 to earlier stages, the part of the population with

j ≤ n2 evolves independently from postreproductive part (but feeds

into it.) Assume that n1 < n2 and introduce the restricted matrix

L̃ =



f0 f1 · · · fn2−1 fn2

s0 0 · · · 0 0

0 s1 · · · 0 0
...

... · · ·
...

...

0 0 · · · sn2−1 0
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and the matrix providing (one-way) link from reproductive to

postreproductive stages is given by

R =


0 · · · sn2 0 · · · 0 0
... · · ·

...
... · · ·

...
...

0 · · · 0 0 · · · sn−2 0
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For the matrix L̃ , fn2 > 0 and fn2−1 > 0 and we can apply the

considerations of the previous section and the Fundamental

Theorem of Demography. Thus, there is r > 0 there are vectors

v = (v0, . . .vn2) and v ∗ = (v∗0 , . . .v
∗
n2

) such that L̃ v = rv and

lim
k→∞

r−kx(k + 1) = lim
k→∞

r−kL̃ kx0 =v < v ∗,x0 >, 0≤ x0 ∈ Rn2 .

(105)
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For n2 ≤ j < n,k ≥ 0, we have xj+1(k + 1) = sjxj(k). Hence,

starting from xn2(k) we get xn2+i (k + i) = cixn2(k), where

ci = sn2+i−1 · . . . · sn2 , as long as i ≤ n−n2−1. So

lim
k→∞

λ
−kxn2+i (k + i) = civn2 < v ∗,x0 >, 0≤ x0 ∈ Rn2 ,
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and hence, changing k + i into k

lim
k→∞

λ
−kxn2+i (k) = ciλ

−ivn2 < v ∗,x0 >, 0≤ x0 ∈ Rn2 ,

for any i = 1, . . . ,n−n2−1.
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Hence, we see that the formula (84) is satisfied if we take

v = (v0, . . .vn2 ,c1λ
−1vn2 , . . . ,cn−n2−1λ

−(n−n2−1)vn2)

v ∗ = (v∗0 , . . .v
∗
n2
,0, . . . ,0).
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Finally, we observe that if only one fj is positive (semelparous

population), then we do not have asynchronous exponential

growth. Indeed, in this case starting from initial population in one

class we will have a cohort of individuals in the same age group

moving through the system. We have observed such a behaviour in

the second numerical example.
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McKendrick model.

From discrete Leslie model to continuous McKendrick

problem. In the classical Leslie model the census is taken in equal

intervals equal, for convenience, to the unit of time. If the time

between censuses and the length of each age class are instead

taken to be h > 0 then, starting from some time t the Leslie model

would take the form
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x0(t +h)

xh(t +h)

x2h(t +h)
...

x(n−1)h(t +h)


(106)

=



f0(h) fh · · · f(n−2)h(h) f(n−1)h(h)

s0(h) 0 · · · 0 0

0 sh(h) · · · 0 0
...

... · · ·
...

...

0 0 · · · s(n−2)h(h) 0





x0(t)

xh(t)

x2h(t)
...

x(n−1)h(t)


.
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The maximum age of individuals ω = nh is thus divided into n age

intervals [0,h), [h,2h) . . . [(n−1)h,nh) with the convention that if

the age a of an individual is in [kh,(k + 1)h) is considered to be

kh. In this definition, as in the discrete case, nobody actually lives

till exactly ω. Thus, xa(t) denotes the number of individuals of

age a, sa = la+h/la is the probability of survival to the age of a+h

conditioned upon surviving up to age a with l0 = 1 and

fa = ma+hsh is the effective fecundity with ma+h being the average

fertility of females of age a+h. We note that (1− sa)xa(t) is the

number of individuals who do not survive from a to a+h.
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We make the following assumptions and notation: for any a≥ 0

lim
h→0+

sa(h) = sa(0) = 1, (107)

lim
h→0+

1− sa(h)

h
= µ(a), (108)

lim
h→0+

fa(h)

h
= β (a). (109)

To explain these notation, we note that probability of survival over

a very short period of time should be close to 1, as in Eq. (107).
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Further, using subsection on the average life span, we note that if

death rate µ is constant, then the probability of surviving over a

short time interval h approximately is sa(h) = 1−µh for any a and

thus the limit in Eq. (108) can serve as a more general definition of

the age dependant death rate. Similarly, if the average number of

births per female over a unit time is a constant β then the number

of births over h will be βh and the last equation gives the general

definition of the age dependent birth rate which, moreover, is

independent of the survival rate by Eq. (107).
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Finally, we assume that there is a density function n(a, t)

xa(t) =

a+h∫
a

n(α, t)dα. (110)

We are going to derive a differential equation for n. Consider a

fixed age a = ih > 0. From (106) we see that

xa+h(t +h) = sa(h)xa(t), a = 0,h, . . . ,(n−2)h. (111)
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Using (110)

xa+h(t +h) =

a+2h∫
a+h

n(α, t +h)dα =

a+h∫
a

n(α +h, t +h)dα,

thus (111) can be written as

a+h∫
a

n(α +h, t +h)dα = sa(h)

a+h∫
a

n(α, t)dα.
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We re-write it as

1

h2

 a+h∫
a

n(α +h, t +h)dα−
a+h∫
a

n(α, t)dα


=−1− sa(h)

h2

a+h∫
a

n(α, t)dα.

Assuming that the directional derivative

Dn(a, t) = lim
h→0+

n(a+h, t +h)−n(a, t)

h

exists, under some technical assumptions we can pass to the limit

above arriving, by (108), at

Dn(a, t) =−µ(a)n(a, t), a> 0, t > 0.
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Assuming that the partial derivatives ∂tn,∂an at (a, t) exist, we

can further transform the last equation to

∂tn(a, t) + ∂an(a, t) =−µ(a)n(a, t), a> 0, t > 0.

This is the most commonly used form of the equation for n

though, as we shall see later, not the best for its analysis and, in

fact, false in many cases as the differentiability assumptions are

often not satisfied.
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Now consider the class of neonates in the Leslie formulation:

x0(t +h) =
n−1

∑
j=0

fjhxjh(t)

which can be rewritten as

1

h
x0(t +h) =

n−1

∑
j=0

1

h
fjh(h)

1

h
xjh(t)h.

Now, if n is continuous and f is differentiable at 0, then

1

h
xjh(t) =

1

h

(j+1)h∫
jh

n(α, t)dα = n(jh+ θjh)
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and
fjh(h)

h
= β (jh+ θ

′
jh).

for some 0 < θj ,θ
′
j < 1. Thus

n(θjh, t) =
n−1

∑
j=0

n(jh+ θjh)β (jh+ θ
′
jh)h.
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If we further assume that β is a continuous function, then the

right hand side is the Riemann sum and we can pass to the limit as

h→ 0+ getting

n(0, t) =

ω∫
0

β (α)n(α, t)dα.

Thus, we arrived at the classical formulation of the McKendrick

model

∂tn(a, t) + ∂an(a, t) = −µ(a)n(a, t), a> 0, t > 0,(112)

n(0, t) =

ω∫
0

β (α)n(α, t)dα, t > 0, (113)

n(a,0) = n0(a), (114)

where the last equation provides the initial distribution of the

population. J. Banasiak INTRODUCTION TO POPULATION MODELS



If ω < +∞ then we have to ensure that n(a, t) = 0 for t ≥ 0,a≥ ω,

which can be done either by imposing an additional boundary

condition on n or by introducing assumptions on the coefficients

which ensure that no individual survives beyond ω. If ω = ∞ then,

instead of such an additional condition, we impose some

requirements on the behaviour of the solution at ∞, e.g. that they

are integrable over [0,∞).
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Linear constant coefficient case

Before we embark on more advanced analysis of (112)–(114) let us

get a taste of the structure of the problem by solving the simplest

case with µ(a) = µ and β (a) = β :

∂tn(a, t) + ∂an(a, t) =−µn(a, t). (1)

coupled with the boundary condition

n(0, t) = β

∞∫
0

n(a, t)da,

and the initial condition

n(a,0) = n0(a).
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Interlude - solving first order partial differential equations

Let us consider more general linear first order partial differential

equation (PDE) of the form:

aut +bux = 0, t,x ∈ R (2)

where a and b are constants. This equation can be written as

Dvu = 0, (3)

where v = aj +bi (j and i are the unit vectors in, respectively, t

and x directions), and Dv = ∇u ·v denotes the directional

derivative in the direction of v .
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This means that the solution u is a constant function along each

line having direction v ; that is, along each line of equation

bt−ax = ξ . Along each such a line the value of the parameter ξ

remains constant. However, the solution can change from one line

to another, therefore the solution is a function of ξ , that is the

solution to Eq. (2) is given by

u(x , t) = f (bt−ax), (4)

where f is an arbitrary differentiable function. Such lines are called

the characteristic lines of the equation.
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Example. To obtain a unique solution we must specify the initial

value for u. Hence, let us consider the initial value problem for Eq.

(2): find u satisfying both

aut +bux = 0 x ∈ R, t > 0,

u(x ,0) = g(x) x ∈ R, (5)

where g is an arbitrary given function. From Eq. (4) we find that

u(x , t) = g

(
−bt−ax

a

)
. (6)

We note that the initial shape propagates without any change

along the characteristic lines.
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Example Let us consider a variation of this problem and try to

solve the initial- boundary value problem

aut +bux = 0 x ∈ R, t > 0,

u(x ,0) = g(x) x > 0, (7)

u(0, t) = h(t) t > 0, (8)

for a,b > 0 From the previous example we have the general

solution of the equation in the form

u(x , t) = f (bt−ax).
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Putting t = 0 we get f (−ax) = g(x) for x > 0, hence

f (x) = g(−x/a) for x < 0. Next, for x = 0 we obtain f (bt) = h(t)

for t > 0, hence f (x) = h(x/b) for x > 0. Combining these two

equations we obtain

u(x , t) =

 g(−bt−ax
a ) for x > bt/a

h(bt−axb ) for x < bt/a
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Solution of the McKendrick equation

First, let us simplify the equation (1) by introducing the

integrating factor

∂t(e
µan(a, t)) =−∂a(eµan(a, t))

and denote u(a, t) = eµan(a, t). Then

u(0, t) = n(0, t) = β

∞∫
0

e−µau(a, t)da

with u(a,0) = eµan0(a) =: u0(a). If we knew ψ(t) = u(0, t), then

u(a, t) =

 u0(a− t), t < a,

ψ(t−a), a< t.
(9)
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The boundary condition can be rewritten as

ψ(t) = β

∞∫
0

e−µau(a, t)da = β

t∫
0

e−µa
ψ(t−a)da+ β

∞∫
t

e−µau0(a− t)da

= βe−µt

t∫
0

eµσ
ψ(σ)dσ + βe−µt

∞∫
0

e−µru0(r)dr

which, upon denoting φ(t) = ψ(t)eµt and using the original initial

value, can be written as

φ(t) = β

t∫
0

φ(σ)dσ + β

∞∫
0

n0(r)dr . (10)
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Now, if we differentiate both sides, we get

φ
′ = βφ

which is just a first order linear equation. Letting t = 0 in (10), we

obtain the initial value for φ : φ(0) = β

∞∫
0
n0(r)dr . Then

φ(t) = βeβ t

∞∫
0

n0(r)dr

and

ψ(t) = βe(β−µ)t

∞∫
0

n0(r)dr .
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Then

n(a, t) = e−µau(a, t) = e−µt


n0(a− t), t < a,

βeβ(t−a)
∞∫
0
n0(r)dr , a< t.
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Observe that

lim
a→t+

n(a, t) = e−µtn0(0)

and

lim
a→t−

n(a, t) = βe−µt

∞∫
0

n0(r)

so that the solution is continuous only if the initial condition

satisfies the following compatibility condition

n0(0) = β

∞∫
0

n0(r)dr . (11)

Thus, as we noted earlier, we must be very careful with using

(112)-(114) in the differential form and interpreting the solution.
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Figure: Discontinuity of the population density n(a, t).
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General linear McKendrick problem The ideas used to solve the

McKendrick case in this simple case also is used in more general

situations but, unfortunately, the resulting integral equation (10)

cannot be explicitly solved. Before, however, we discuss solvability

of more general cases, let us introduce certain functions related to

(112)-(114) which are relevant to the population dynamics.
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Demographic parameters of the McKendrick problems

Consider again the general McKendrick problem

∂tn(a, t) + ∂an(a, t) =−µ(a)n(a, t)

n(0, t) =

ω∫
0

β (α)n(α, t)dα,

n(a,0) = n0(a)
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We recall that β (a) is the age specific fertility which is the number

of newborns, in one time unit, coming from a single individual

whose age is in a small age interval [a,a+da). So, the number of

births coming from all individuals in the population aged between

a1 and a2 in a one time unit is

a2∫
a1

β (α)n(α, t)da

and we can define the total birth rate as

B(t) =

ω∫
0

β (α)n(α, t)da

which gives the total number of newborns in a unit time.

J. Banasiak INTRODUCTION TO POPULATION MODELS



Let us consider the death rate µ(a) which is average number of

deaths per unit of population aged a. We can relate µ(a) to a

number of vital characteristics of the population. Similarly to the

discrete case, we introduce the survival probability S(a) as the

proportion of the initial population surviving to age a. We can

relate µ and S by the following argument.
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Consider a population beginning with n0 individuals of age 0. Then

n0(a)S(a)(= n(a)) is the average number of individuals that

survived to age a. The decline in the population over a short age

period [a,a+da] is n0(a)S(a)−n0(a)S(a+da). On the other

hand, this decline can only be attributed to deaths: if the death

rate is µ, then in this age interval we will have approximately

n0(a)S(a)µ(a)da deaths.
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Equating and passing to the limit as da→ 0 yields

dS

da
=−Sµ

or

S(a) = S(0)e
−

a∫
0

µ(σ)dσ

.
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Since, however, the probability of surviving to age 0 is 1, we have

S(a) = e
−

a∫
0

µ(σ)dσ

. (12)

We note that if no individuals can survive beyond ω, we must have

S(ω) = 0 or, equivalently,

ω∫
0

µ(σ)dσ = ∞. (13)
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These considerations can be used to find the average life span of

individuals in the population. In fact, the average life span is the

mean value of the length of life in the population, which can be

expressed as

L =

ω∫
0

ap(a)da

where p(a) is the probability (density) of an individual dying at age

a. The probability of dying in the age interval [a1,a2) is

a2∫
a1

p(a)da = S(a1)−S(a2) =−
a2∫

a1

dS

da
(a)da

and hence p(a) = S(a)µ(a).

J. Banasiak INTRODUCTION TO POPULATION MODELS



Thus

L =

ω∫
0

aµ(a)e
−

a∫
0

µ(s)ds
da =−

ω∫
0

a
d

da
e
−

a∫
0

µ(s)ds
da =

ω∫
0

S(a)da

where we used integration by parts and S(ω) = 0.
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Further, we introduce

K (a) = β (a)S(a) (14)

which is called the maternity function and describes the rate of

birth relative to the surviving fraction of the population and is the

continuous equivalent to the coefficients f0, f1, . . . , fn−1. Further,

R =

ω∫
0

β (a)S(a)da (15)

and call it net reproduction rate of the population. It is the

expected number of offspring produced by an individual during her

reproductive life.
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Solution of the general linear McKendrick problem

One of the easiest way of analysing the general McKendrick model

∂tn(a, t) + ∂an(a, t) =−µ(a)n(a, t)

n(0, t) =

ω∫
0

β (a)n(a, t)da,

n(a,0) = n0(a) (16)

is to reduce it to an integral equation in the same way as we

proceeded previously, though the technicalities are slightly more

involved due to age dependence of the mortality and maternity

functions.
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First, we simplify (16) by introducing the integrating factor

∂t

(
e

a∫
0

µ(σ)dσ

n(a, t)

)
=−∂a

(
e

a∫
0

µ(σ)dσ

n(a, t)

)
(17)

and denote u(a, t) = e

a∫
0

µ(σ)dσ

n(a, t). Then

u(0, t) = n(0, t) =

ω∫
0

β (a)e
−

a∫
0

µ(σ)dσ

u(a, t)da =

ω∫
0

K (a)u(a, t)da,

where we recognized that the kernel in the integral above is the

maternity function introduced in (14). Further,

u(a,0) = e

a∫
0

µ(s)ds
n0(a) =: u0(a). Also, the right hand side defines

the total birth rate B(t).
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Now, if we knew B(t) = u(0, t), then

u(a, t) =

 u0(a− t), t < a,

B(t−a), a< t.
(18)
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The boundary condition can be rewritten as

B(t) =

∞∫
0

β (a)e
−

a∫
0

µ(σ)dσ

u(a, t)da

=

t∫
0

β (a)e
−

a∫
0

µ(σ)dσ

B(t−a)da+

∞∫
t

β (a)e
−

a∫
0

µ(σ)dσ

u0(a− t)da

=

t∫
0

K (t−a)B(a)da+

∞∫
0

β (a+ t)e
−

a+t∫
0

µ(σ)dσ

e

a∫
0

µ(s)ds
n0(a)da,

where to shorten notation we extended coefficients by zero beyond

a = ω.
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Summarizing, we arrived at the integral equation for the total birth

rate

B(t) =

t∫
0

K (t−a)B(a)da+G (t) (19)

where

G (t) =

∞∫
0

β (a+ t)
S(a+ t)

S(a)
n0(a)da, (20)

is a known function.
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Explicitly, we have

B(t) =

t∫
0

K (t−a)B(a)da+

ω−t∫
0

β (a+ t)
S(a+ t)

S(a)
n0(a)da

=

t∫
0

K (t−a)B(a)da+

ω∫
t

β (a)
S(a)

S(a− t)
n0(a− t)da (21)

for 0≤ t ≤ ω and

B(t) =

ω∫
0

K (t−a)B(a)da (22)

for t > ω.
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Unlike in the constant coefficients case, this equation cannot be

solved explicitly and we have to use more abstract approach. For

this we have to introduce a proper mathematical framework. As in

the discrete case, the natural norm will be

‖n‖1 =

ω∫
0

|n(α)|dα

which in the current context, with n ≥ 0 being the density of the

population distribution with respect to age, is the total population.

Thus, the state space is the space X0 = L1([0,ω)) of Lebesgue

integrable functions on [0,ω).
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Since we are dealing with functions of two variables, we often

consider (a, t)→ n(a, t) as a function t→ u(t, ·), that is, for each t

the value of this function is a function with a argument. For such

functions, we consider the space C ([0,T ],L1([0,ω])) of

L1([0,ω])-valued continuous functions. For functions f bounded

on [0,ω] we introduce ‖f ‖∞ = sup0≤a≤ω |f (a)|. We make the

following assumptions.
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(i)

β ≥ 0 is bounded on [0,ω], (23)

(ii)

0≤ µ ∈ L1([0,ω ′]) for any ω
′ < ω (24)

with
ω∫

0

µ(α)dα = ∞, (25)

(iii)

0≤ n0 ∈ L1([0,ω]). (26)
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Now, if (23)-(26) are satisfied, then we can show that K is a

non-negative bounded function which is zero for t ≥ ω and G is a

continuous function which also is zero for t ≥ ω. If, additionally

n0 ∈W 1,1([0,ω]) and µn0 ∈ L1([0,ω]), (27)

(here by W 1
1 we denote the Sobolev space of functions from L1

with generalized derivatives in L1), then G is differentiable with

bounded derivative.
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Indeed, let us look at G for t < ω

G (t) =

ω∫
t

β (a)
S(a)

S(a− t)
n0(a− t)da =

ω∫
t

β (a)e
−

a∫
a−t

µ(s)ds
n0(a− t)da
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If we formally differentiate using the Leibniz rule, we get

G ′(t) = −β (t)S(t)n0(0) +

ω∫
t

β (a)e
−

a∫
a−t

µ(s)ds
µ(a− t)n0(a− t)da

+

ω∫
t

β (a)e
−

a∫
a−t

µ(s)ds
n′0(a− t)da

so we see that for existence of the integrals we need integrability of

µn0 and differentiability of n0. Then we can prove the main result
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Theorem

If (23)-(26) are satisfied, then (19) has a unique continuous and

nonnegative solution. If, additionally, (27) is satisfied, then B is

differentiable with B ′ bounded on bounded intervals.
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Proof.

We define iterates

B0(t) = G (t),

Bk+1(t) = G (t) +

t∫
0

K (t− s)Bk(s)ds. (28)
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Take T > 0. Then, for any t ∈ [0,T ] we have

|B1(t)−B0(t)|=
t∫

0

|K (t− s)F (s)|ds ≤ tKmFm

where Km = sup0≤t≤T |K (s)| and Lm = sup0≤t≤T |F (s)|. Then

|B2(t)−B1(t)| ≤ Km

t∫
0

|B1(s)−B0(s)|ds ≤ K 2
mFm
2

t2

and, by induction,

J. Banasiak INTRODUCTION TO POPULATION MODELS



|Bk+1(t)−Bk(t)| ≤ Km

t∫
0

|Bk(s)−Bk−1(s)|ds ≤ K k+1
m Fm

(k + 1)!
tk+1.

(29)

J. Banasiak INTRODUCTION TO POPULATION MODELS



Further

lim
k→∞

Bk+1(t) = G (t) + lim
k→∞

k

∑
i=0

(B i+1(t)−B i (t))

with

sup
0≤t≤T

∣∣∣∣∣ k

∑
i=0

(B i+1(t)−B i (t))

∣∣∣∣∣ ≤ k

∑
i=0

sup
0≤t≤T

∣∣B i+1(t)−B i (t)
∣∣

≤ Fm
k

∑
i=0

(TKm)k+1

(k + 1)!
.

The series on the right hand side converges to Fme
TKm and thus

(Bk(t))k≥0 converges uniformly to a continuous solution B of

(19). Uniqueness follows by the Gronwall inequality.
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If, in addition, (27) is satisfied, then Bk can be differentiated with

respect to t and

V k :=
d

dt
Bk

satisfy the recurrence

V k+1(t) = F ′(t) +K (t)F (0) +

t∫
0

K (t− s)V k(s)ds

which converges uniformly to some continuous function V which,

by the theorem of uniform convergence of derivatives, must be the

derivative of B. �
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Once we have B, we can recover n by (18) and back substitution

n(a, t) = e
−

a∫
0

µ(σ)dσ

u(a, t) =


S(a)

S(a−t)n0(a− t), t < a,

S(a)B(t−a), a< t.
(30)
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Thus, if (27) is satisfied in addition to (23)-(26), then it is easy to

see that n defined above satisfies the equation (112) everywhere

except the line a = t. Along this line we have, as before

lim
a→t+

n(a, t) = S(0)n0(0) = n0(0)

and

lim
a→t−

n(a, t) = S(0)B(0) =

ω∫
0

β (a)n0(a)da

and, to ensure at least continuity of the solution we need to

assume the compatibility condition

n0(0) =

ω∫
0

β (a)n0(a)da. (31)
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We note that if a function is continuous at a point and

differentiable in both one sided neighbourhoods, then it is a

Lipschitz function and it is in fact differentiable almost everywhere

(in the sense that the function can be recovered from its

derivative). On the other hand, if a function has a jump at a point,

then its derivative at this point is of a Dirac delta type. Thus, we

can state that if (31) is satisfied, then the solution is continuous

and satisfies (112) almost everywhere.
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If we do not assume (31) then we can still claim that the solution

satisfies

Dn(a, t) = lim
h→0+

n(a+h, t +h)−n(a, t)

h
=−µ(a)n(a, t), a> 0, t > 0.
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Furthermore, both the birth rate B and the solution n itself grow

at most at an exponential rate. Consider again (19)

B(t) =

t∫
0

K (t−a)B(a)da+G (t).

with G given by (20).

S(a) = e
−

a∫
0

µ(σ)dσ

.

and K (a) = β (a)S(a)
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We see that K (t)≤ ‖β‖∞ and G (t)≤ ‖β‖∞‖n0‖1 so that

B(t) ≤ max
0≤a≤ω

β (a)

t∫
0

B(s)ds + max
0≤a≤ω

β (a)

ω∫
0

n0(s)ds

=: ‖β‖∞

t∫
0

B(s)ds +‖β‖∞‖n0‖1,

which, by Gronwall’s inequality, yields

B(t)≤ ‖β‖∞‖n0‖1e
t‖β‖∞ . (32)
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This gives the estimate for n:

‖n(·, t)‖1 ≤
t∫

0

B(t− s)S(s)ds +

∞∫
t

S(s)

S(s− t)
n0(s− t)ds

≤ ‖β‖∞‖n0‖1

 t∫
0

e(t−s)‖β‖∞ds + 1

 ,

where we used S(s)/S(s− t)≤ 1. Then, by integration

‖n(·, t)‖1 ≤ ‖n0‖1 +‖n0‖1e
t‖β‖∞(1− e−t‖β‖∞) = ‖n0‖1e

t‖β‖∞ . (33)
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