Methods of Hilbert Spaces Problem Sheet 2

- 1. Show that for any sequence $(x_n)_{n \in \mathbb{N}}$ in an inner product space H the conditions $||x_n|| \to ||x||$ and $\langle x_n, x \rangle$ imply $x_n \to x$.
- 2. Let $T : H \to H$ be a bounded linear operator on a complex inner product space H. Show that if $\langle Tx, x, = \rangle 0$ for any $x \in H$, then Tx =0 for any $x \in H$ (that is, T is the zero operator). Show that this statement fails in a real inner product spaces. *Hint. Consider a rotation* in \mathbb{R}^2 .
- 3. Which functionals below are scalar products on the real space of continuous functions on $\mathcal{C}([0, 2])$:

$$S(x,y) = \int_{0}^{2} |x(t)y(t)|,$$

 $S(x,y) = \int_{0}^{1} w(t)x(t)y(t)|$, where w is a continuous strictly positive function on [0,1];

$$S(x, y) = \int_{0}^{1} x(t) dt$$

$$S(x,y) = \int_{0}^{1} x(t)y(t).$$

- 4. Show that on the space C([0,1]) the norm $||x||_{\infty} = \sup_{t \in [0,1]}$ of C([0,1]) is stronger than the norm $||\cdot||_2$ induced by the inner product $\int_{0}^{1} x(t)\overline{y(t)}dt$.
- 5. Let w be a continuous function on [-1,1] satisfying $w_0 \le w(t) \le w_1$ for $t \in [-1,1]$ and some positive constants w_0, w_1 . Show that $\langle x, y \rangle_w = \int_{-1}^1 w(t)x(t)\overline{y(t)}dt$ generates norm equivalent to $\|\cdot\|_2$ on $\mathcal{C}([-1,1])$.
- 6. Which of the given sets B are orthogonal in respective inner spaces H

 $B = \{x^n\}_{n \in \mathbb{N} \cup \{0\}}$ in real $H = L_2([-\pi, \pi]);$

 $B = \{x_n\}_{n \in \mathbb{N}}$ in real $H = l_2$ where $x_{2k-1} = \{0, \dots, 0, 1, 1, 0, 0, \dots\}$ $x_{2k} = \{0, \dots, 0, 1, -1, 0, 0, \dots\}$ and we have 2k - 1 zeros at the beginning;

 $B = \{e^{int}\}_{n \in \mathbb{N} \cup \{0\}}$ in complex $H = L_2([-\pi, \pi])$

7. Let $M \subset H$. Show that $M^{\perp} = \overline{\mathcal{L}inM}^{\perp}$. Hence find the orthogonal complement to $\overline{\mathcal{L}in\{(\delta_{2,k})_{k\in\mathbb{N}}, (\delta_{3,k})_{k\in\mathbb{N}}\}}$.