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1

Introduction

1 Principles of mathematical modelling

By a mathematical model we understand an equation, or a set of equations, that describe some phe-
nomenon that we observe in science, engineering, economics, or some other area, that provides a quantitative
explanation and, ideally, prediction of observations.

Mathematical modelling is the process by which we formulate and analyze model equations and compare
observations to the predictions that the model makes.

Problem

in

nature

Model

Analysis

and

results

Data

comparison

Revision

Fig. 1.1. The process of mathematical modelling.

Note:

• Modelling is not mathematics – it is impossible to prove that a model is correct;

• One counterexample disproves the model. However, this not always means that the model is useless – it
may just require corrections.

A good model:

• has predictive powers – a model based on available observations gives correct answers in other cases:
– General Theory of Relativity – light deflection, perihelion precession of Mercury, gravitational waves,
– Dirac equations – existence of positrons;

• contains earlier working models as subcases:
– Newton’s mechanics is contained in Special/General Theory of Relativity for small velocities and away from
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large masses,
– Quantum mechanics yields the same results as Newton’s mechanics for large distances, large energies.

Descriptive versus explanatory models. Abundance of data often leads to statistical fitting the data
with formulae. One can get a variety of statistical information such as expectations, medians, variance,
correlations...
Remember: do not mistake correlations for causation!

Example: it has been observed that since the 1950s, both the atmospheric CO2 levels and obesity levels in
the US have increased sharply. Hence, obesity is caused by high levels of CO2.

We shall focus on models which try to understand the underlying reasons for the phenomena we observe.
Nevertheless, statistical analysis of the data is important as it separates their significant part from the noise.

Statistical (descriptive) models must not be mixed up with stochastic models. Stochastic modelling aims to
explain the underlying mechanisms of the observed phenomena taking into account inherent(?) randomness of
nature. Such models give probabilities of certain events and are indispensable in modeling small populations.
We shall focus, however, on deterministic models that sometimes can be thought as stochastic models
averaged over many individual trajectories (Law of Large Numbers) and giving answers in terms of the
evolution of the densities of the populations. Nevertheless, stochastic models are often used explicitly to
derive a deterministic model.

1.1 Conservation principles and constitutive relations

Conservation principles

Mathematical biology and epidemiology must obey laws of physics; in particular the balance law. Let Q be a
quantity of interest (the number of animals, mass of a pollutant, amount of heat energy, number of infected
individuals) in a fixed domain Ω. Over any fixed time interval in Ω we have

The change of Q = Inflow of Q−Outflow of Q

+ Creation of Q−Destruction of Q. (1.1.1)

In probabilistic approach this is the same as saying that the probability that one of all possible events occurs
equals one.

I

C

Q O

D

Fig. 1.2. Conservation law for the substance Q.
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Continuous and discrete time

Before we proceed, we must decide whether we model with the continuous time, or with the discrete
time.

We use discrete time models if we believe that significant changes in the system only occur during evenly
spaced short time intervals, or we only can observe the system at evenly spaced time instances and have a
reason to believe that essential parameters of the system remain unchanged between successive observations.

Then we use the time between the events/observations as the time unit and count time using the number of
elapsed events/observations and (1.1.1) can be written as

Q(k + 1)−Q(k) = I(k)−O(k) + C(k)−D(k). (1.1.2)

Quantities I(k), O(k), C(k), D(k) are the amounts of Q, respectively, that inflows, outflows, is created and
destroyed in the time interval [k, k + 1].

Examples. Many plants and animals breed only during a short, well-defined, breeding season. Also, often
the adult population dies soon after breeding. Such populations are ideal for modelling using discrete time
modelling. Let us consider a few typical examples.

(i) Monocarpic plants flower once and then die. Such plants may be annual but, for instance, bamboos grow
vegetatively for 20 years and then flower and die. (ii) Animals with such a life cycle are called semelparous.
a) Insects typically die after lying eggs but their life-cycle may range from several days (e.g. house flies) to
13–17 years (cicads).
b) Similar life cycle is observed in some species of fish, such as the Pacific salmon or European eel. The latter
lives 10-15 years in freshwater lakes, migrates to the Sargasso Sea, spawns and dies.
c) Some marsupials (antechinus) ovulate once per year and produce a single litter. There occurs abrupt and
total mortality of males after mating. The births are synchronized to within a day or two with a predictable
’bloom’ of insects.

(iii) A species is called iteroparous if it is characterized by multiple reproductive cycles over the course of its
lifetime. Such populations can be modelled by difference equations if the breeding only occurs during short,
regularly spaced breeding periods. It is typical for birds. For instance, females of the Greater Snow Geese lay
eggs between 8th–20th of June (peak occurs at 12th–17th of June) and practically all eggs hatch between
8th and 13th of July.

If the assumptions allowing us to use discrete time modelling are not satisfied, we use continuous time. This,
however requires some preparation, as all quantities may change at any instance of time. Thus, I, O,D,C
should be considered as the rates of inflow, outflow, destruction or creation, respectively; in other words,
the amount of Q at a given time t will be given by

Q(t) = Q(t0) +

t
∫

t0

I(s)ds−
t
∫

t0

O(s)ds +

t
∫

t0

C(s)ds−
t
∫

t0

D(s)ds,

where Q(t0) is the initial amount of Q.

Hence, assuming that I, O,D,C are continuous functions, so that Q is differentiable, we obtain the conser-
vation law in differential form,

dQ

dt
(t) = I(t)−O(t) + C(t)−D(t). (1.1.3)

Note 1. The meaning of I, O,C and D (and the dimension) in (1.1.3) is different than in (1.1.2).
Note 2. If we consider populations, then the value of Q always is a nonnegative integer. Such a function
can never be continuous. Thus already (1.1.3) is an approximation the validity of which requires that Q be
so large that it can be considered a continuum.

In epidemiology we are predominantly concerned with continuous time models.
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Constitutive relations.

Real modelling consists in determining the form of Q, I,O,C and D and the relations between them – these
are known as constitutive relations.

We try to build the functions I, O,D,C to encompass all we know about the process. However, this is usually
impossible.

There are known knowns. These are things we know that we know. There are known unknowns.
That is to say, there are things that we know we don’t know. But there are also unknown unknowns.
There are things we don’t know we don’t know.
Donald Rumsfeld

Nevertheless, let us try. The functions I, O,D,C may depend on

• other unknown quantities – this leads to systems of equations that are the main topic of the lectures;

• space or other independent quantities – this leads to partial differential equations that will be discussed
in the third lecture;

• explicitly on time – this results in non-autonomous equations which will be discussed later in this lecture;

• the unknown Q in
a) a nonlinear way, such as I(t) = I(Q(t)) = Q2(t), or
b) a linear way, such as I(t) = I(Q(t)) = 2Q(t),
in which case we talk, respectively, about autonomous nonlinear or linear equations.

Note. It is important to realize that non-autonomous equations often are derived from a larger systems of
autonomous nonlinear equations in which the coefficients depend on partial solutions of this system which
can be determined explicitly.

1.2 Basic unstructured continuous population models

Malthusian model.

If births and death rates are constant then, denoting the net growth rate by r we obtain

dP

dt
= rP. (1.1.4)

which has a general solution given by
P (t) = P (0)ert, (1.1.5)

where P (0) is the size of the population at t = 0. The U.S. Department of Commerce estimated that the
Earth population in 1965 was 3.34 billion and that the population was increasing at an average rate of 2%
per year during the decade 1960-1970. Thus P (0) = 3.34× 109 with r = 0.02, and

P (t) = 3.34× 109e0.02t. (1.1.6)

Then the population will double in
T = 50 ln 2 ≈ 34.6 years,

which is in a good agreement with the estimated value of 6070 billion inhabitants of Earth in 2000. It also
agrees relatively well with the observed data if we don’t go too far into the past. On the other hand, if we
try to extrapolate this model then in, say, 2515, the population would reach 199980 ≈ 200000 billion giving
each of us area of (86.3 cm× 86.3 cm) to live on.



1 Principles of mathematical modelling 9

Fig 1.1. Comparison of actual population figures (points) with those obtained from equation (1.1.6).

Nevertheless, the Malthusian model has its uses for short term prediction. It also provides a useful link about
the death rate and the expected life span of an individual.

Consider a population in which individuals die at a constant rate µ

P ′ = −µP.

Then the probability that an individual dies in a time interval ∆t is approximately equal to µ∆t. Let p(t)
be the probability that the individual is alive at time t. Then the probability p(t +∆t) of it being alive at
t+∆t provided he/she was alive at t is p(t+∆t) = (1− µ∆t)p(t) which, as above, yields

p′ = −µp

with p(0) = 1 (expressing the fact that the individual was born, and thus alive, at t = 0) yielding p(t) = e−µt.
The average life span is given by

L =

∞
∫

0

sm(s)ds,

where m(s) is the probability (density) of dying exactly at age s. Since the probability of dying at the age
between t and t+∆t is

1− p(t+∆t)− (1− p(t)) = −
t+∆t
∫

t

d

ds
p(s)ds

(one should be alive at t and dead at t+∆t, we have m(s) = − d
dsp(s) and

L = −
∞
∫

0

s
d

ds
e−µsds = µ

∞
∫

0

se−µsds =
1

µ
. (1.1.7)

Nonlinear models with size controlled growth

Logistic equation.

Passing to the limit in the discrete logistic equation valid between t and t+∆t,

P (t+∆t)− P (t) = r∆t

(

1− P (t)

K

)
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we obtain the continuous logistic model

dP

dt
= rP (t)

(

1− P

K

)

, (1.1.8)

which proved to be one of the most successful models for describing a single species population. The equation
has two constant solutions, P (t) = 0 and P (t) = K, with the latter being the carrying capacity of the
environment. Other solutions can be obtained by separation of variables:

P (t) =
P (0)K

P (0) + (K − P (0))e−rt
. (1.1.9)

We have
lim
t→∞

P (t) = K, P (0) > 0,

hence our model correctly reflects the initial assumption that K is the carrying capacity of the habitat. Next,
we obtain

dP

dt
> 0 if 0 < P (0) < K,

dP

dt
< 0 if P (0) > K,

thus, if P (0) < K, the population monotonically increases, whereas if P (0) > K, then such a population will
decrease until it reaches K. Also, for 0 < P (0) < K,

d2P

dt2
> 0 if 0 < P (t) < K/2,

d2P

dt2
< 0 if P (0) > K/2,

thus, as long as the population is small (less then half of the capacity), then the rate of growth increases,
whereas for larger population the rate of growth decreases. This results in the famous logistic or S-shaped
curve that describes saturation process. On the other hand, Verhulst in 1845 predicted, on the basis of the

Fig. 1.3. Logistic curves with P0 < K (dashed line) and P0 > K (solid line) for K = 10 and r = 0.02.

logistic equation, that the maximum population of Belgium is 6 600 000. However, already in 1930 it was
close to 8 100 000. This is attributed to the global change that happened for Belgium in the XIX century
- acquisition of Congo that provided resources to support increasing population (at the cost of the African
population of Congo).
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Fig. 1.4. Human population on Earth withK = 10.76 billion and r = 0.029 and P (1965) = 3.34 billion. Observational
data (points), exponential growth (solid line) and logistic growth (dashed line).

Fig. 1.5. Comparison of actual and logistic model population in the United States

A simplified logistic model

We have considered two basic demographical models, the Malthusian model and the logistic model. The
drawback of the Malthusian model is that it only can describes a very simple dynamics: the population
either decays to zero, or exponentially grows to infinity. The drawback of the logistic model is that it is
nonlinear and thus may create additional difficulties in analysis. For this reason an intermediate model is
often used in analysis. The model takes the form

N ′ = Λ− µN, (1.1.10)

where Λ is the total birth/recruitment rate and µ is per capita death rate. This is a linear nonhomogeneous
equation in N with the solution

N(t) = N0e
−µt +

Λ

µ
(1 − e−µt). (1.1.11)

It is easy to see that

N∗ =
Λ

µ
(1.1.12)

is the only equilibrium (!). It is globally asymptotically stable.
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Fig. 1.6. World population alongside the simplified logistic model prediction. The value P (1950) = 2556.5 × 106

billion people. The least square error is 703 483. However, the parameters are Λ = 68.5× 106 while µ = 5.54× 10−12.
This give the average lifespan of 1.8× 1011 years – completely unrealistic.

Holling II type argument.

Consider a sexually reproducing population. We begin with assumption, that over some time T , the number
of offspring p per individual in the population of size/density P is proportional to it but we take into account
the the reproduction happens only over some shorter period of time Tas over which individuals are sexually
active:

p = rPTas.

However, we have to take into account that adult individuals are not always sexually active, for instance
during the gestation period. If an adult spends time Tg per offspring for gestation/rearing and, apart from
that, it is ready for reproduction,

T = Tas + pTr = Tas + rPTasTg

then

Tas =
T

1 + rTrP

and hence, the birth rate; that is, the number of offspring per unit time, is given as

dP

dt
=
pP

T
=

rP 2

1 + rTrP
.

A similar argument can be used to derive a Holling type death term used in Allee type models. Consider a
population in which individuals must leave a refuge in order to mate. During this time they are exposed to
dangers and thus the number of deaths induced by this activity in some period of time T is

d = µPTexp, (1.1.13)

where µ is the additional rate of death due to this activity. Now

T = Ts + Texp,

where Ts is the time spend in a shelter. We assume that the time of an individual is divided between
searching for a mate and caring for the offspring. Hence, Ts can be obtained as the product of the number
of successful matings in T times Tr that is the average time spend on looking after the offspring. Now,
the number of successful matings is the product of the area searched in Texp, the density of males and the
efficiency of mating. We assume that the ratio of females and males is constant, so that the density of males
is proportional to P . Further, the searched area is proportional to the search time Texp so we can write

Ts = aPTexp

for some constant a. Hence, as before, we have
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dP

dt
= − d

T
= − µP

1 + aP
.

An analogous argument can be used in the population that is exposed to a generalist predator; that is, a
predator that can eat other prey, so that its number is not affected by the presence of the prey from this
particular population. In this case, (1.1.13) is replaced by

d = µNPThunt.

where N is the (constant) population of predators and Thunt is the hunting time of the predator. Then
T = Thunt + Thandld/N where Thandl is the handling time of a single prey. Hence Thunt = T/(1 + µThandlP )
and

dP

dt
= − µNP

1 + µThandlP
.

Gompertz model.

In the logistic equation we assumed r(P ) = 1− P/K, or

dr

dP
= − 1

K
, r(K) = 0.

A variety of models can be obtained by varying the equation for r. For instance if

dr

dP
= −α

P
, r(K) = 0, (1.1.14)

then we have the so-called Gompertz model.

The above equation can be easily solved giving

r(P ) = α ln

(

K

P

)

and thus the population equation takes the form

dP

dt
= α ln

(

K

P

)

P. (1.1.15)

We see that the equation has two equilibria, with P = K asymptotically stable.

One can derive another, possibly more instructive form of this equation. Using (1.1.14) and the Chain Rule,
we get

dr

dt
=

dr

dP

dP

dt
= − α

P
rP = −αr.

Hence the growth rate decays exponentially as r(t) = r0e
−αt and we can write (1.1.15) as

dP

dt
= (r0e

−αt)P = r0 · (e−αtP ). (1.1.16)

Different places of brackets indicate different interpretations - the left one suggests that the growth rate is
decreasing, while the right one suggests that the pool of fertile individuals is decreasing. That is why the
model has been quite successful in modelling cancer. The equation can be solved by separation of variables,
giving

P (t) = P (0)e
r0
α e−

r0
α
e−αt

. (1.1.17)

Since K is the only asymptotically stable equilibrium,

lim
t→∞

P (t) = P (0)e
r0
α = K

we can rewrite the solution in terms of the carrying capacity as

P (t) = Kee
−αt ln P (0)

K . (1.1.18)
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Allee type model

In all previous models with density dependent growth rates the bigger the population (or the higher the
density), the slower was the growth. However, in 1931 Warder Clyde Allee noticed that in small, or dispersed,
populations the intrinsic growth rate in individual chances of survival decrease which can lead to extinction of
the populations. This could be due to the difficulties of finding a mating partner or more difficult cooperation
in e.g., organizing defence against predators. Models having this property can also be built within the
considered framework by introducing two thresholds: the carrying capacity K and a parameter 0 < L < K
at which the behaviour of the population changes so that P ′ < 0 for 0 < P < L and P > K and P ′ > 0 for
L < P < K.

The simplest equation of this type has a cubic nonlinearity:

dP (t)

dt
= r(L − P (t))(P (t) −K))P (t). (1.1.19)

A more complex model
dP

dt
= λP

(

1− P

C
− A

1 +BP

)

, (1.1.20)

λ,C,A,B > 0, can be obtained by adding to the logistic growth the additional mortality term −λAP/(1 +
BP ) that, as we know from modelling of Holling type effects, can be caused by exposure to danger due to
search for mates, or by a presence of a generalist predator.

We have to prove that it indeed describes a behaviour required from the Allee model. Let us recall that for
this, the equation must have three equilibria, 0 and, say, 0 < L < K such that if the size of the population
P satisfies 0 < P < L, then P decreases to 0 and if L < P < K, then P increases to K. In the terminology
of this section, 0 and K should be asymptotically stable equilibria of (1.1.20) and L should be its unstable
equilibrium.

Since (1.1.20) is difficult to solve explicitly (though it is possible as it is a separable equation) we analyse it
using the ‘phase-plane’ argument. The equilibria are solutions to

f(P ) := P

(

1− P

C
− A

1 +BP

)

= 0. (1.1.21)

Clearly, P ≡ 0 is an equilibrium so, in particular, any solution originating from P (0) = P0 > 0 satisfies
P (t) > 0. We see that

f ′(P ) = 1− 2P

C
− A

(1 +BP )2
(1.1.22)

and since f ′(0) = 1 − A we obtain that if A > 1, then P = 0 is an asymptotically stable equilibrium. By
analysing the second derivative we can also state that if A = 1 and BC < 1, then P = 0 is semi-stable, that
is, it attracts trajectories originating from positive initial conditions but this case is not relevant in studying
the Allee type behaviour. Now we can focus on the other equilibria. For (1.1.20) to describe an Allee model
first we must show that

1− P

C
− A

1 +BP
= 0 (1.1.23)

has two positive solutions. It could be done directly but then the calculations become little messy so that
we follow a more elegant approach of [?] and use the above equation to define a function A(P ) by

A(P ) =
1

C
(C − P )(1 +BP )

and analyse it. It is an inverted parabola satisfying A(0) = 1. A(P ) takes its maximum at the point P ∗,
where

A′(P ) = − 1

C
+B − 2B

C
P = 0.
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This gives

P ∗ =
BC − 1

2B

with the maximum

A∗ =
(BC + 1)2

4BC
.

Now, the nonzero equilibria of (1.1.20) are the points at which the horizontal line A = const cuts the the

Out[6]=

2 4 6 8 10
P

-2

2

4

A

Fig. 1.7. The equilibria as a function of A.

graph of A(P ), see Fig. 1.7. First, we note that if BC < 1, then the stationary point P ∗ is negative and thus
there is a positive and a negative solution for 0 < A < 1, a negative and 0 solution for A = 1, two negative
solutions if 1 < A < A∗, one (double) negative solution if A = A∗ and no solutions if A > A∗. If BC = 1,
then we have one positive, one negative solution for 0 < A < 1, double 0 solution for A = A∗ = 1 and no
solutions for A > 1. Thus, in none case with BK ≤ 1 we can expect the Allee type behaviour. Let us focus
then on the case BK > 1. Since A > 0, we have the following cases

(a) If 0 < A < 1, then there are two solutions to (1.1.23), but only one is positive while the other is negative;

(b) If A = 1, then there is one 0 and one positive solution to (1.1.23);

(c) If 1 < A < A∗, then there are two distinct positive solutions to (1.1.23);

(d) If A = A∗, then there is a double positive solution to (1.1.23);

(e) If A > A∗, then there are no solutions to (1.1.23).

To determine the stability of the equilibria, we re-write (1.1.20) in the following form

dP

dt
= λP

(

1− P

C
− A

1 +BP

)

=
λBP

C(1 +BP )

(

−P 2 + P
BC − 1

B
+
C(1−A)

B

)

=
λBP

C(1 +BP )
(P − L)(K − P ). (1.1.24)

Using the results of the first part of this section, we can describe the dynamics of (1.1.20) as follows. Let
BC > 1. Then

(i) For 0 < A < 1, there is one negative, L, and two nonnegative equilibria of (1.1.20), 0 and K. Zero is
unstable and K is asymptotically stable;

(ii) At A = 1, the negative equilibrium L merges with 0. Zero becomes semi-stable (unstable for positive
trajectories) and K is asymptotically stable;



16 1 Introduction

(iii) For 1 < A < A∗, there are three nonnegative equilibria, 0 and 0 < L < K. 0 becomes a stable
equilibrium, L is unstable and K is asymptotically stable negative equilibrium L merges with 0. Zero
becomes semi-stable (unstable for positive trajectories) and K is asymptotically stable;

(iv) At A = A∗, there are two nonnegative equilibria, 0 and double L = K. 0 is stable and L = K becomes
semistable attracting trajectories from the right and repelling those from the left.

(v) For A > A∗, there is only one equilibrium at 0 which is globally attracting.

If BC ≤ 1, then we cannot have two positive equilibria so that the Allee effect cannot occur in this case.
However, to complete analysis, we note that if 0 < BC ≤ 1 then the only case in which there is a positive
equilibrium K is for 0 < A < 1 and in this case K is asymptotically stable while 0 is unstable. For all other
cases the only biologically relevant equilibrium is 0 and it is stable if 1 < A, semistable (attracting positive
trajectories) if A = 1 and BC < 1 and stable if A = 1 = BC. Summarizing, (1.1.20) describes the Allee
effect if and only if

BC > 1 and 1 < A <
(BC + 1)2

4BC
. (1.1.25)

In any other case with a positive equilibrium the dynamics described by (1.1.20) is similar to the dynamics
described by the logistic equation.
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Fig. 1.8. Trajectories P (t) of (1.1.20) for various initial conditions. Here A = 4, C = 10, B = 2, L = 2 (lower dashed
line), K = 7.5 (upper dashed line).

Another way of looking at the problem is to consider the number and stability of the equilibria as a function
of a parameter. This approach is known as the bifurcation theory. Here we focus on the case BC > 1 and
we select the parameter A, which can be regarded as representing the extra mortality, over the mortality
due to the overcrowding characteristic for the logistic model. Then, for small A ∈ (0, 1), 0 is an unstable
equilibrium and K is stable, as in the logistic model. When A moves through 1, a new positive equilibrium
L ‘bifurcates’ from 0 and the latter changes from being repelling to being attractive; K stays attractive and
we are in the ‘Allee region’. Finally, when A moves across A∗, K vanishes and 0 becomes globally attractive
– large mortality drives the population to extinction. The Allee phenomenon is of concern in many practical
applications. For instance, if we try to eradicate a pest whose population can be modelled by an Allee type
equation, then it is enough to create conditions if which the size of the population will be below L; the
population will then die out without any external intervention. Similarly, if by overhunting or overfishing we
drive a population below L, then it will become extinct even if we stop its exploitation.

1.3 Modelling interacting populations

Usually we split the system as
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I1

C1

P1 P2

O1

D1

f(P1, P2)

g(P1, P2)

I2

C2

O2

D2

Fig. 1.9. Interactions between populations P1 and P2.

dP1

dt
= Rate of change ofP1 without P2 + Impact of P2 on P1,

dP2

dt
= Rate of change ofP2 without P1 + Impact of P1 on P2.

P1 and P2 typically will be densities of the populations over a certain area. For the first terms in each line
we can use any suitable model from the first part.

The second terms require attention.

The simplest terms would be linear terms, e.g.

dP1

dt
= r1P1

(

1− P1

K1

)

+ a12P2

dP2

dt
= r2P2

(

1− P2

K2

)

+ a21P1.

This system could describe two populations with logistic vital dynamics each, where the additional rate
of change of one population due to the other would be directly proportional to the density of the later.
Understanding the interaction terms.
We could distinguish:

• competition, when a12, a21 < 0, as the presence of each species has a negative impact on the other;

• predator-prey interaction, when a12 > 0, a21 < 0, as the presence of species 2 (prey) has a positive impact
on the species 1 (predator) and the as the presence of species 1 has a negative impact on the species 2;

• mutualism, when a12, a21 > 0, as the presence of each species has a positive impact on the other.

In, say, the predator-prey case, the model above implies that the predator eats the same amount of prey per
unit time, irrespective of the prey density. This is unrealistic so the coefficients aij should depend on the
density of the ith species. Again, the simplest assumption is that a single predator will consume a proportion
of the available prey, leading to the term

α21P1P2, α21 < 0

that is called the mass action law, the term borrowed from chemical kinetics where it is assumed that the
rate of reactions is proportional to the product of the concentrations of substrats. Hence we have a family
of mass-action models of interactions between two species:

x′ = x(β1 + µ1x+ α12y),

y′ = y(β2 + µ2y + α21x),
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using which we can model various types of interactions and vital dynamics. For instance, assuming predator-
prey interactions, (α12 > 0, α21 < 0), we have β2 > 0, µ2 < 0 if the prey population follows the logistic
vital dynamics in the absence of predator. On the other hand, if we are to model a specialist predator,
β1 < 0, µ1 ≤ 0 but for a generalist we can have β1 > 0, µ1 < 0.

It is clear that the mass action law also is not realistic: for instance, it implies that the predator could eat an
arbitrary amount of prey in a unit time (if the density of prey is large enough). To be more realistic, we must
incorporate at least some saturation effect. We describe one such model, called Holling type 2 functional
response (mass action is termed Holling type 1 response).

We assume that the amount P of prey consumed by a single predator in time T is proportional to the prey
density and the time spent on hunting Th

P = cyTh.

The mass action law assumes that Th = T ; that is, the predator does not stop hunting while devouring the
prey. While it is sometimes possible (e.g. adult salmon eating its offspring), in most cases the time Te spent
on eating the prey is positive. If P is the number of prey caught in time T , then the time used on consuming
it is PTs and thus Th = T − PTs. Thus

P = cy(T − PTs)

and the density of prey eaten per unit time per predator is

P

T
=

cy

1 + cTsy
.

Adjusting the number of prey P to the density, we obtain the predation term of the form

−c1
xy

1 + c2y
,

with positive constants c1, c2.
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Basic Epidemiological Models

1 Basic epidemiological terminology

An infectious disease is an evident illness caused by microbial agent. The microbial agent can be:

bacteria: tuberculosis, pneumonia;

virus: HIV, influenza;

fungus: dermatomycosis;

parasite: malaria, bilharzia;

toxic protein or prions: Creutzfeldt-Jakob disease (mad cow disease).

Communicable disease are infectious disease that can be transmitted from one infectious person to another,
directly or indirectly. There are infectious disease, such as tetanus, is infectious but not communicable. Trans-
mittable diseases are infectious diseases that can be transmitted from one person to another by unnatural
routes. For instance, mad cow disease can be passed from one person to another only through a surgical
intervention.

For modelling purposes we distinguish the following types of transmission:

direct: when the pathogen is transmitted from one person to another by personal contact, such as sexually
tramitted diseases, influenza, smallpox, measles, chickenpox, TB;

vector: when the pathogen is transmitted by a vector such as mosquito, tick or snail, that include malaria,
dengue, zika, Lyme disease;

environmental: when a human is infected by a pathogen present in environment, water or food, such as
cholera, salmonella, stomach flu;

vertical: mother-to-child transmission, such as HIV.

The following terminology is essential in epidemiological research:

Susceptible individuals: a member of a population who is at risk of becoming infected;

Exposed individuals: susceptible individuals that made a potentially disease-transmitting contact and
may, or may not, develop the disease;

Infected and infectious individuals: if a pathogen establishes itself in an individuals, then the individual
becomes infected. An infected individual who can transmit the disease is called infectious;

Latent individuals: individuals who are infected but not yet infectious;

Latent period: the time from infection to the moment the individual becomes infectious;



20 2 Basic Epidemiological Models

Incubation period: period between exposure to the pathogen to the onset of symptoms of the disease;

Incidence: the number of individuals who become ill during a specified time;

Prevalence: the number of people who have the disease at a specific time.

2 First models

2.1 SIR model

We begin with a simple model of a nonlethal disease in a homogeneous population divided into three classes:
susceptible S, infective I and recovered R. Let us denote

λ = the force of infection; that is the rate at which susceptibles become infected,

µ = the death rate,

ν = the recovery rate,

γ = the rate of immunity loss,

B = the birth rate of the population.

B S

µS

λS

I

µI

γR

νI

R

µR

Fig. 2.1. Compartments in the SIRS model

On the basis of the above diagram, we build the following system of equations

S′ = B(N)− λS + γR− µS,

I ′ = λS − νI − µI,

R′ = νI − γR− µR. (2.2.1)

S, I and R typically denote the number densities of, respectively, susceptibles, infectives and recovered, B
maybe any function describing the vital dynamics of a healthy population (here we tacitly assumed that
there is no vertical transmission of the disease or immunity).

Parameter interpretation

We showed that 1/µ gives the expected lifespan of an individual; in the same way 1/ν is the average duration
of the disease and 1/γ is the average period of the acquired immunity.

For a directly transmitted pathogen the force of infection λ is the product of

1. the contact rate;
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2. the proportion of these contacts that are with infective;

3. the proportion of such contacts that actually result in infection.

How should we model λ?

A simple assumption would be the mass action law - a single infective meets a fraction c1S of susceptibles
in a unit time and infects a fraction c2 of those met:

c2c1SI.

As before, this may be a reasonable assumption if the densities are low but for large densities we need to
take into account that contacts take time so that there can be only a finite time of contacts in a unit time
interval. Also, saturation may be caused by satiation which playes a role in sexual transmission, but also in
blood meals taken by mosquitoes.

In a population of size/density N we define C(N) to be the fraction of the population engaged in a contact
at any given time. Then NC(N) (precisely 0.5NC(N)) is the number of pairs in the population at any given
time. Since the probability of choosing at random a pair consisting of a susceptible and an infective is

S

N

I

N
,

the density of pairing that potentially can lead to infection is

C(N)
SI

N
.

The function C(N) should be nonnegative, nondecreasing, linear in N for small N and having a limit (≤ 1)
as N → ∞. Let us try to derive such a function using a Holling type argument. First, in a population of size
N we introduce the number of singles X and pairs P so that

N = X + 2P (2.2.2)

so that

S′ = −β2P SI

N2
.

Assume that an individual can be either an available single, or form a pair, and that the contact lasts some
time Th. Denote by Z the total number contacts over some time T and let Y = Z/T , the number of contacts
per unit time. As in the Holling derivation, we have

Z = ρXTs = ρX(T − ZTh), (2.2.3)

where ρ is a constant. However, contrary to the predator-prey, where prey was unlimited, here the number of
available singles is limited by time - singles are available only when they are not engaged in another contact.
For a given single, in T it is available for T −ZTh, and thus for the fraction 1−Y Th of time. In other words,
any given single at any given time is available for contact with probability p = 1− Y Th. Thus the expected
number of available singles at any given time is given by

X =

N
∑

k=0

k

(

N

k

)

pk(1 − p)N−k = Np

N−1
∑

l=0

(

N − 1

l

)

pl(1− p)N−1−l

= Np = N(1− Y Th).

Hence, from (2.2.3),
Z

T
= Y = ρN(1− Y Th)

2.

Using again (2.2.3), we find that the average number of pairs is
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P =
1

2
NY Th =

ρTh
2
N2(1 − Y Th)

2 =
ν

2
X2.

By (2.2.2),

P =
ν

2
(N − 2P )2,

or

P =
2νN + 1±

√
4νN + 1

4ν
and we have to select the negative sign,

P =
2νN + 1−

√
4νN + 1

4ν
,

to keep 2P < N . We re-write this as

P =
νN2

2νN + 1 +
√
4νN + 1

.

Finally,

S′ = −C(N)
SI

N
= − 2νβN

2νN + 1 +
√
4νN + 1

SI

N
.

However, most often we use one of the following simplifications:

• low density approximation C(N) ∼ N that leads to the mass action transmission rate βIS;

• constant approximation C(N) ∼ 1 that gives frequency dependent transmission rate βIS/N .

2.2 A malaria model

Sv

µvSv

λvS
Ev

µvEv

Bv

νvIv
Iv

µvIv

µhSh

Sh

λhSh

Eh

µhEh

νhEh

Ih

(µh + µd)Ih

Bh

γhIh
Rh

µRh

S′
h = Bh(Nh)− λhSh + ρhRh − µh(Nh)Sh,

E′
h = λhSh − νhEh − µh(Nh)Eh,

I ′h = νhEh − γhI − µh(Nh)Ih − δhIh,

R′
h = γhIh − ρhRh − µh(Nh)Rh,

S′
v = Bv(Nv)− λvSv − µv(Nv)Sv,

E′
v = λvSv − νvEv − µv(Nv)Ev,

I ′v = νvEv − µv(Nv)Iv. (2.2.4)
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Here, we have the state variables

Sh: number of susceptible humans,

Eh: number of exposed humans,

Ih: number of infectious humans,

Rh: number of recovered (immune and asymptomatic, but slightly infectious) humans,

Sv: number of susceptible mosquitoes,

Ev: number of exposed mosquitoes,

Iv: number of infectious mosquitoes,

Nh: total number of humans,

Nv: total number of mosquitoes,

and parameters

σv: number one mosquito could bite a human per unit time, if humans were freely available. This is a
function of the mosquito gonotropic cycle, its preference for human blood and time used for feeding.
Time−1.

σh: the maximum of mosquito bites a human can have per unit time. This is a function of the human’s
exposed area, awareness, etc. Time−1.

βhv: probability of infection from an infectious mosquito to a susceptible human, given that a contact
between the two occurs. Dimensionless.

βvh: probability of infection from an infectious human to a susceptible mosquito, given that a contact
between the two occurs. Dimensionless.

β̃hv: probability of infection from a recovered human to a susceptible mosquito, given that a contact between
the two occurs. Dimensionless.

νh: per capita rate of progression of humans from the exposed state to the infectious state. 1/νh is the
average duration of the latent period. Time−1.

νv: per capita rate of progression of mosquitoes from the exposed state to the infectious state. 1/νv is the
average duration of the latent period. Time−1.

γh: per capita recovery rate of. 1/γh is the average duration of the infectious period. Time−1.

ρh: per capita rate of the immunity loss of humans. 1/ρh is the average duration of the immune period.
Time−1.

δh: per capita disease induced death rate for humans. Time−1.

Modelling the infection rates

The infection rates are given by

λh = bh(Nh, Nv)βhv
Iv
Nv

, and λv = bv(Nv, Nh)

(

βvh
Ih
Nh

+ β̃vh
Rh
Nh

)

. (2.2.5)

In other words, λh is the product of the number of mosquito bites a human can have per unit time, bh, the
probability of the transmission of the infection, βhv and the probability that the bite comes from an infected
mosquito, Iv/Nv. Similarly, λv is the product the number of human bites a mosquito has per unit times
and the sum of probabilities that the bite comes from an infectious human and the transmission occurs. To



24 2 Basic Epidemiological Models

model the numbers of bites we first define the total number of bites that occur per unit time, b(Nh, Nv) so
that

b(Nh, Nv) = bh(Nh, Nv)Nh = bv(Nh, Nv)Nv.

To derive the formula, we use Holling type argument. In time T the total number of bites received by humans
can be written as

b(Nh, Nv)T = σhTavNh

where Tav is the time available for mosquitoes to bite. Thus

T = Tav + Tnav.

Now, a mosquito cannot bite if it had a meal, and in time T a mosquito has σhNhTav/Nv meals and the
mosquito is not available for 1/σv after each meal. Thus

T = Tav +
σhNhTav
σvNv

and hence

b(Nh, Nv) =
σvNvσhNh
σvNv + σhNh

. (2.2.6)

This gives

λh =
σvσh

σvNv + σhNh
βhvIv, and λv =

σvσh
σvNv + σhNh

(

βvhIh + β̃vhRh

)

. (2.2.7)

2.3 Warm-up – analysis of a simple SIR model

For short lasting diseases, such as flu or common cold, it is customary to discard demographical processes.
If the diseases induces immunity, at least in the time covered by the model, one of the simplest models is
the SIR Kermack-McKendrick model

S′ = −βSI,
I ′ = βSI − νI,

R′ = νI. (2.2.8)

As we see, we use the mass action transmission rate. The total population at time t is given by N(t) =
S(t) + I(t) +R(t) and, by adding the equations in (2.2.8), we obtain

N ′ = 0

hence N(t) = N(0), reflecting the assumption that there is no demographic processes included in the model.

The dynamics of the model can be fully analysed without any sophisticated tools.

Step 1. The model is well-posed; that is, for every (S(0), I(0), R(0)) = (S0, I0, R0) there is exactly one
solution defined at least on some interval (−τ, τ), τ > 0. This follows from the Picard theorem. We shall be
interested in t ≥ 0. Once we know that there is a solution (S(t), I(t), R(t)), t ∈ (0, τ), we can prove that it
is positive provided S(0), I(0) and R(0) are positive. Indeed, for instance for S, we see that it satisfies the
linear equation

S′(t) = −βI(t)S(t),

and hence S(t) = S(0)e−
∫

t

0
I(s)ds, where I is a known function. Hence, S(t) ≥ 0 as long as I(t) is defined.

Thus, we have 0 ≤ S(t), I(t), R(t) ≤ N(0) for t in any interval on which the solution is defined and hence
the solution is defined globally for t ≥ 0.

Step 2. We see that S′ < 0; that is, S is decreasing and bounded from below. Since it is defined for all t ≥ 0,
we have
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lim
t→∞

S(t) = S∞.

Similarly, R is growing and satisfies
lim
t→∞

R(t) = R∞.

Further, since S(t) + I(t) +R(t) = N(0), we must have

lim
t→∞

I(t) = I∞.

However, the number of infected individuals can increase or decrease depending on the sign of βS(t)− ν. In
particular, if βS(0)− ν > 0, or

βS(0)

ν
> 1,

then the number of infectives initially will increase. Then we say that we have an outbreak or epidemic.

The number βS(0)/ν has an important interpretation. The coefficient β gives the number of infections per
unit time induced by one infective, whereas 1/ν is the average time an infective remains infectious. The
number of susceptibles at the beginning is S(0). Thus, we have arrived at the common interpretation of R0

Definition 2.1. The basic reproduction number R0 is the number of infections that one infectious individual
will introduce in a population consisting only of susceptible individuals.

Next we estimate the limits. First, observe that I(t) 6= 0 for any finite t0. Otherwise (S(t0), 0, R(t0)) would
be a constant solution to the problem taking the same value as (S(t), I(t), R(t)) at t = t0, contradicting the
uniqueness of solutions. Hence t → R(t) is strictly increasing and we can consider t = t(R) on [R0, R∞).
Thus, we can consider S(R) = S(t(R)) and, using the Chain Rule and the derivative of the inverse function
formula, we get

dS

dR
=
dS

dt

dt

dR
= −βSI

νI
= −β

ν
S.

Hence
S(R) = S(R0)e

− β
ν
(R−R0) ≥ S(R0)e

β
ν
R0e−

β
ν
N(0) > 0

for any R. Therefore we must have S∞ > 0 which shows that no epidemic can infect all susceptibles.

Let us consider I∞. Integrating the first equation in (2.2.8) we obtain

S∞ − S0 =

∞
∫

0

S′(t)dt = −β
∞
∫

0

S(t)I(t)dt ≤ −βS∞

∞
∫

0

I(t)dt.

In other words
∞
∫

0

I(t)dt ≤ S0 − S∞

βS∞
<∞.

Since we know that I∞ exists and is nonnegative, we must have I∞ = 0.

Step 3. We note that (2.2.8) is really a two-dimensional system and we can find orbits in the (S, I) plane.
The two first equations are independent of R and can be solved separately yielding R = N − S − I. So, let
us focus on

S′ = −βSI,
I ′ = βSI − νI. (2.2.9)

From the above discussion, we know that S is a monotonic function of t for S, I > 0 and hence it can be
inverted t = t(S) allowing for writing I = I(S)

dI

dS
=
dI

dt

dt

dS
=
βSI − νI

−βSI = −1 +
ν

βS
.
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Separation of variables and integration yields

I − I0 = S0 − S +
ν

β
ln

S

S0
.

In particular, using that fact that limt→∞ I(t) = 0 and limt→∞ S(t) = S∞ we obtain

−I0 = S0 − S∞ +
ν

β
ln
S∞

S0

or
β

ν
=

ln S0

S∞

S0 + I0 − S∞
. (2.2.10)

Let us draw a few conclusions. First, since we know that S is a decreasing function, S(t) ≥ S∞ for any t ≥ 0.
Thus we obtain

S∞ ≤ S0 + I0.

An important information is the maximum number of infectives. This occurs for I ′ = 0 or at I(0) = I0.
I ′ = 0 if S = ν/β (and hence this can occur if S(0) > ν/β since S is decreasing). Thus

Imax = I0 + S0 −
ν

β
+
ν

β
ln

ν

βS0
. (2.2.11)

2.4 (Mis)-matching models

In 1978 there was a report with detailed statistics of a flu epidemic in a boys boarding school with a total
of 763 boys. Of these, 512 were confined to bed during the epidemic, which lasted from 22nd January to 4th
February 1978. It seems that one infected boy initiated the epidemic. When a boy was infected he was put
to bed and so we have I(t) directly from the data.

A best fit numerical technique was used directly on the equations

S′ = −βIS,
I ′ = βIS − νI,

R′ = νI. (2.2.12)

for comparison of the data. These gave β = 2.1810−3/day, ν = 0.44; that is, infectious period of 2.27 days,
and

R0 = 2.18 · 10−3 · 762 · 2.27 ≈ 3.77.

However, the above approach ignores that flu, like most other diseases, has a latent period – there is a delay
of 1 to 4 days in an infected becoming infective. The simplest way of incorporating the delay is to introduce
the exposed class(es). In the case discussed here

S′ = −βIS,
E′ = βIS − σE,

I ′ = σE − νI,

R′ = νI. (2.2.13)

How different can be SIR and SEIR models resulting from fitting the same data? We compare the estimated
R0 numbers. First, observe that for the SEIR model, RSIR

0 is given by the same formula

RSEIR
0 =

βS(0)

ν
.

We use A. Lloyd approach. If SIR and SEIR models give the same data, their initial growth rate of I should
be the same. For SIR initially
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Fig. 2.2. Parameter values are N = 763, S0 = 762, I0 = 1 and, fitted, β = 2.1810−3/day, ν = 0.44.

µS

SB E
λS

µE

σE
I

µI

γR

νI
R

µR

Fig. 2.3. Compartments in SEIRS model

Fig. 2.4. Solid curve: SIR model, dotted curve: SEIR model. The inset compares the initial behavior of the two
outbreaks. 1/ν = 5 days, R0 = 5, 1/σ = 2 days, N0 = S0 = 106.
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Fig. 2.5. SIR and SEIR models fitted to the available data (first half).

I ′ = βS(0)I − νI = ν(RSIR
0 − 1)I

initially I(t) = I0e
rt with r = ν(RSIR

0 − 1) or RSIR
0 = 1 + ν−1r. On the other hand, for SEIR

E′ = βS(0)I − σE,

I ′ = σE − νI.

and the initial growth rate r is the biggest root of the eigenvalue equation

r2 + (ν + σ)r − σν(RSEIR0 − 1) = 0

or
RSEIR

0 = (1 + ν−1r)(1 + σ−1r) = RSIR
0 (1 + σ−1r).

If we observe the same data and try to use SIR and SEIR models, the observable r

r = rSIR = rSEIR = 1.22.

If we add the latency period of 1 day

RSEIR
0 = RSIR

0 (1 + r) = 3.77 · 2.22 = 8.37.

2.5 Models reducible to one-dimensional problems

The SIS model

If the disease does not induce immunity but, instead, after recovery the infected individuals become again
susceptible, then the SIR model turns into the SIS model

S′ = −βSI + αI,

I ′ = βSI − αI, (2.2.14)

where α is the rate of recovery. Here, again, if we add the equations, we will find that the total population
N = S + I is constant in time. Thus, we can write

S = N − I

and thus (5.5.81) reduces to

I ′ = βI(N − I)− αI = (βN − α)I

(

1− I
βN−α
β

)

= rI

(

1− I

K

)

. (2.2.15)

This is the logistic equation that was analysed earlier. In particular, we have the following cases
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a) r = βN−α < 0, or βNα < 1, then the solution has only one nonnegative equilibrium, 0, that is attractive.
It can be easily seen as then K < 0 and thus

I ′ ≤ rI;

that is
I(t) ≤ I(0)ert.

Hence I(t) → 0 faster than ert and thus the disease will die out.

b) if r > 0, then the properties of the logistic equation shows that

lim
t→∞

I(t) = K =
βN − α

β
.

Hence, the disease will permanently stay in the population.

Remark 2.2. In any epidemiological model the equilibrium I = 0, that always exists, is called the disease free
equilibrium. A positive equilibrium, if it exists, is called an endemic equilibrium.

Remark 2.3. In both models there is a parameterR0 that determines the progression of the disease: ifR0 < 1,
the disease will die out and if R0 > 1 it will spread. In the SIR model we have

R0 =
βS(0)

ν

while in the SIS model

R0 =
βN

α
.

Seemingly these two constants are unrelated. However, let us look at their biological meaning. The coefficient
β gives the number of infections per unit time induced by one infective whereas 1/ν (respectively 1/α is the
average time an infective remains infectious. Finally, if we assume that consider a population that at time
t = 0 had no infective individuals, then the number of susceptibles at the beginning is S(0) in the first case
and N = N(0) in the second. Thus, we have arrived at the common interpretation of R0

SIS model with treatment

In many cases the return of an infective to the susceptible class is due to a treatment. In the simplest case we
can assume that the constant α in (5.5.81) represents the efficacy of the treatment. A more realistic model
takes into account that the treatment of a single patient takes some time and thus the rate of recovery should
be rather modelled by the Holling type functional response. As before, let the number of treated infectives
in time T by one nurse be given by

C = νγITa,

where the constant γ is the rate at which the infectives are treated (number per unit time), ν is the efficacy
of the treatment and Ta is the time available for administering the treatment. Since

T = Ta + γITaTt = Ta(1 + γITt),

where Tt is the average time of treatment,

C =
νγ

1 + γTtI
I.

However, γ = 1/Tt, hence we obtain the SIS model with saturated treatment as

S′ = −βSI + νγM

1 + I
I,

I ′ = βSI − νγM

1 + I
I, (2.2.16)
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where M is the number of the available medical personnel. By defining α = νγM, we have

S′ = −βSI + α

1 + I
I,

I ′ = βSI − α

1 + I
I. (2.2.17)

As in the previous subsection, N(t) = S(t) + I(t) = N = S0 + I0 is constant. Hence, substituting S(t) =
N − I(t) we obtain the single equation

I ′(t) = βI(N − I)− αI

1 + I
. (2.2.18)

Eqn (5.5.85) is in the form of the Allee model (1.1.20). It is a separable equation that, in principle, can be
solved. This, however, one one hand would produce a messy and difficult to analyse formula and, on the
other, would hide a general structure that can be utilised in cases when an explicit solution is not available.

We use general one dimensional ‘phase-plane’ analysis to find the properties of equilibria. Denote

F (I) = βI(N − I)− αI

1 + I
= I

(

β(N − I)− α

1 + I

)

= If(I).

Clearly, I = 0 is an equilibrium so, in particular, any solution originating from I(0) = I0 > 0 satisfies
I(t) > 0. We see that

F ′(I) = f(I) + If ′(I) (2.2.19)

and hence F ′(0) = f(0) = βN − α we obtain that if βN/α > 1, then I = 0 is a repelling equilibrium and if
βN/α < 1, it is an asymptotically stable equilibrium. In the expression

R0 =
βN

α

we recognize the basic reproduction number. Here it requires some explanation as the average duration of
the disease is I dependent. However, the definition requires the basic reproduction number to be calculated
in a population consisting only of susceptible individuals; that is, whenever in calculations of R0 we have an
I dependent term, we put I = 0.

To find stability for N = α/β, we use the geometrical argument. In this case

F (I) = − βI2

1 + I
(I +N − 1)

so F (I) < 0 for I < 0 (provided N > 1) and F (I) > 0 for I > 0. Hence, I = 0 is repelling. Conversely, if
0 < N < 1 (it is possible if N gives the density of the population and not the total population), then I = 0
becomes asymptotically stable. Finally, if N = 1, then F (I) behaves at I = 0 as the negative cubic and
I = 0 stays asymptotically stable.

Consider now endemic equilibria. These are the solutions to the quadratic equation

g(I) := (N − I)(1 + I) =
α

β
. (2.2.20)

The graph of g is the downward parabola with roots at I = −1 and I = N . The maximum of g is taken at

Imax =
N − 1

2

and equals

g(Imax) =
(N + 1)2

4
.

Clearly, if N < 1, then Imax < 0. Then, if N > α/β (that is, R0 > 1), then there is a unique positive
equilibrium and if R0 < 1, there is none. If N = 1, Imax = 0 and again, we have a unique positive
equilibrium when R0 > 1 and none for R0 ≤ 1.
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A different picture emerges when N > 1. Then, as before, for R0 ≥ 1 there is a unique positive solution to
(5.5.87), see Fig. 5.8. If, however, R0 < 1, (5.5.87) may have two, one, or no solutions. The first case occurs
if

N <
α

β
<

(N + 1)2

4
, (2.2.21)

see Fig. 5.9. Equivalently, in terms of R0,

4N

(N + 1)2
< R0 < 1. (2.2.22)

Then, if
α

β
=

(N + 1)2

4
, (2.2.23)

then again we have one positive equilibrium and, finally, for

α

β
>

(N + 1)2

4
(2.2.24)

there is no positive equilibrium, see Fig. 5.10.

Fig. 2.6. The graph of g(I) for N = 0.5 < 1

Fig. 2.7. The unique endemic equilibrium for R0 > 1 (N = 50 > 1 and α/β = 20.)

To find the stability of the equilibria, we write

F (I) =
βI

1 + I

(

(N − I)(1 + I)− α

β

)

=
βI

1 + I

(

g(I)− α

β

)

.
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Fig. 2.8. Two endemic equilibria in the case (5.5.88).

Fig. 2.9. No endemic equilibria in the case (5.5.91).

Let us denote by I∗2 the equilibrium larger than Imax, by I∗1 the one smaller than Imax and by I∗ the
equilibrium equal to Imax.

Case N ≤ 1.

R0 ≤ 1. There is only the disease free equilibrium. In this case F changes sign from positive to negative,
hence 0 is asymptotically stable. Since there is no other positive equilibrium, it is globally asymptotically
stable, see Figs. 2.10 and 5.15.

R0 > 1. There are a disease free and endemic equilibria. Here F changes sign at I = 0 from negative to
positive, hence 0 is repelling. At the endemic equilibrium I∗2 , the function F changes sign from positive
to negative and hence I∗2 is asymptotically stable (it is globally asymptotically stable for positive initial
conditions), see Fig. 2.12.

Case N > 1.

R0 < 1 and α/β > (N + 1)2/4. There is only the disease free equilibrium that, as above, is globally
asymptotically stable, see Fig. 5.14.

R0 < 1 and α/β = (N + 1)2/4. There is a disease free equilibrium and an endemic equilibrium I∗. The
disease free equilibrium is asymptotically stable, as above, but not globally asymptotically stable. The
endemic equilibrium is unstable (precisely, semi-stable – it repels solutions smaller than I∗ and attracts
solutions bigger than I∗, see Fig. 5.13.

R0 < 1 and α/β < (N + 1)2/4. There is a disease free equilibrium and two endemic equilibria I∗1 , I
∗
2 . The

disease free equilibrium is asymptotically stable, as above, but not globally asymptotically stable. The
endemic equilibrium I∗1 is unstable and I∗2 is asymptotically stable. Neither stable equilibrium is globally
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Fig. 2.10. The graph of F (I) for N = 0.5 < 1, β = 1, α = 1,R0 = 0.5

Fig. 2.11. The graph of F (I) for N = 0.5 < 1, β = 1, α = 0.5,R0 = 1

Fig. 2.12. The graph of F (I) for N = 0.5 < 1, β = 1, α = 0.2,R0 = 2.5

asymptotically stable: I = 0 attracts solutions in [0, I∗1 ) while I∗2 attracts solutions from (I∗1 ,∞). The
intervals [0, I∗1 ) and (I∗1 ,∞) are called basins of attraction of respective equilibria, see Fig. 5.12.

R0 ≥ 1. There is a disease free equilibrium and an endemic equilibrium I∗2 . The disease free equilibrium
is unstable. The endemic equilibrium is asymptotically stable (and globally asymptotically stable in
(0,∞)), see Fig. 5.11.

Remark 2.4. It is a common (mis)perception that to control a disease if is sufficient to bring R0 below 1. We
have seen that, indeed, the disease free equilibrium is asymptotically stable in this case but, nevertheless,
the disease can persist – if the population of infectives is sufficiently large, then it will be attracted to the
endemic equilibrium and the disease will not be eradicated. Only by bringingR0 down below 4N/(N+1)2 we
will make the disease free equilibrium globally asymptotically stable and thus the disease will be eradicated.
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Fig. 2.13. The graph of F (I) for N = 50 > 1, β = 1, α = 10,R0 = 5

Fig. 2.14. The graph of F (I) for N = 50 > 1, β = 1, α = 200,R0 = 0.25

Fig. 2.15. The graph of F (I) for N = 50 > 1, β = 1, α = 650.25 = (N + 1)2/4,R0 = 0.077

Fig. 2.16. The graph of F (I) for N = 50 > 1, β = 1, α = 700,R0 = 0.0714
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Let us consider the implications of this observation. Assume that we have a disease that is spreading. We
found the basic reproduction number

R0 =
βN

α
=

βN

νγM
=
βNTt
νM

> 1.

To reduce R0 we can:

1. reduce β by e.g. using protective clothes (lower probability of transmission through contact);

2. reduce N by e.g. culling (mad cow disease, foot-and-mouth disease) or quarantine;

3. shortening the treatment time Tt;

4. improving the efficacy of the treatment ν;

5. increasing the number of medical personnel M .

Clearly, if we manage to bring R0 below 4N/(N + 1)2, then the disease will be eradicated as the disease
free equilibrium is then globally asymptotically stable. This is, however, often impossible or too costly. We
observe that the model suggests the following alternative. If we manage to make R0 < 1, then the progress
of the disease depends on the size of the infective population. If it is below I∗1 , that this alone will suffice to
eradicate the disease. If not, then without intervention the disease will settle at I∗2 . So one needs to bring
the number of infectives below I∗1 , e.g. by culling in animal diseases or the quarantine in the case of humans
– this may prove less costly than further reduction of R0.





3

SIR models with Demography

We combine SIR model with the demography described by (1.1.10). We assume that there is no verti-
cal transmission; that is, all individuals are born susceptible, and we assume law of mass action for the
transmission of the disease. Then we have

S′ = Λ− βSI − µS,

I ′ = βSI − νI − µI,

R′ = νI − µR. (3.0.1)

The evolution of the total population is given by (1.1.10); that is, N(t) is given by (1.1.11). Contrary to the
previous cases, it is not constant.

1 Non-dimensionalization

As before, the first two equations are independent of R and hence we shall work with

S′ = Λ− βSI − µS,

I ′ = βSI − νI − µI, (3.1.2)

and R(t) = N(t) − S(t) − I(t). To find the basic reproduction number, we must realize that here we deal
with a changing population so the definition requires some modification. We are interested in stability of the
disease free equilibrium so the fully susceptible population is given by N(0) = S(0) = Λ/µ. Hence

R0 =
Λβ

µ(ν + µ)
(3.1.3)

The next typical step is nondimensionalization of the system that also reduces the number of parameters.
First we observe that both sides must have dimension [number of people]/time. Usually to nondimensionalize,
we choose new variables as ratio of the old variables to some typical quantities of the same dimension. Here,
we have the average length of stay of an individual in the infective compartment 1/(ν+µ) for time and Λ/µ
for the size of the population. Thus, we define new time τ by

τ = (ν + µ)t

and Ŝ(τ) = S(t), Î(τ) = I(t). This gives

Ŝ′
τ =

1

ν + µ
S′
t, Î ′τ =

1

ν + µ
I ′t.

Then we introduce
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x(τ) =
µŜ(τ)

Λ
, y(τ) =

µÎ(τ)

Λ

which allows for writing (3.1.2) in the form

x′ = ρ(1− x)−R0xy,

y′ = (R0x− 1)y, (3.1.4)

where
ρ =

µ

ν + µ
.

We consider (3.1.4) writing t instead of τ as rescaling of time does not change the long term behaviour.

2 Basic phase-plane analysis

Since the LHS of the system is polynomial, it is locally (but not globally) Lipschitz continuous. Thus, we
have the local solvability.

Further, since the equation for y is in the form

y′ = φ(t)y

where φ is a given function (as we know that the solution to (3.1.4) exists), y(t) = y0e
∫

t

0
ψ(s)ds ≥ 0. The

equation for x is not of this form, but we can argue as follows. We have

x′ = −xψ(t) + ρ,

where ψ(t) = ρ+R0y(t) is a known function. So, the variation of constant formula gives

x(t) = x0e
−

∫
t

0
ψ(s)ds + ρe−

∫
t

0
ψ(s)ds

t
∫

0

e
∫

r

0
ψ(s)dsdr ≥ 0.

Hence (x(t), y(t)) ≥ 0 as long as they exist. But

(x+ y)′ = x′ + y′ = ρ(1− x)− y

or, putting z = x+ y
z′ = −ρz − (1 − ρ)y + ρ.

Since y(t) ≥ 0 and ρ ≤ 1, we can write
z′ ≤ −ρz + ρ;

that is
(zeρt)′ ≤ ρeρt

that, upon integration, yields

z(t) ≤ e−ρtz0 + (1− e−ρt) = 1 + (z0 − 1)e−ρt.

From this we see that if z0 ≤ 1 (equivalently, S(0) + I(0) ≤ Λ/µ), then z(t) ≤ 1 (equivalently, N(t) ≤ Λ/µ).
On the other hand, if z0 > 1, then

z(t) ≤ 1 + (z0 − 1)e−ρt ≤ z0

as the second term is decreasing with maximum attained at t = 0. Moreover, as the RHS of the inequality
converges to 1, we obtain

lim sup
t→∞

z(t) ≤ 1. (3.2.5)
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We say that the region
V = {(x, y); x ≥ 0, y ≥ 0, x+ y ≤ 1}

is positively invariant under the flow generated by (3.1.4). Also, due to (3.2.5), R2
+ is a basin of attraction

for V.

From these considerations we obtain that the solution (x(t), y(t)) exists globally.

Next we consider the equilibria of (3.1.4):

0 = ρ(1− x)−R0xy,

0 = (R0x− 1)y. (3.2.6)

Solving, gives (x∗0, y
∗
0) = (1, 0), or

(S∗
0 , I

∗
0 ) =

(

Λ

µ
, 0

)

which is the disease free equilibrium. We say that this is a boundary equilibrium as it is placed on the
boundary of the feasible region R+. Further, if y 6= 0, then we obtain x = 1/R0 and y = ρ(1− 1/R0). Thus,
we have the endemic equilibrium

(x∗, y∗) =

(

1

R0
, ρ

(

1− 1

R0

))

. (3.2.7)

We start with basic phase-plane analysis of (3.1.4) to get a better understanding of its dynamics.

We begin with sketching the nullclines of (3.1.4).

1. x-nullcline. x′ = 0 if and only if
ρ(1 − x)−R0xy = 0;

that is,

y =
ρ

R0

1− x

x
. (3.2.8)

2. y-nullcline. y′ = 0 if and only if

y = 0, or x =
1

R0
.

Clearly, the equilibria are given by the intersections of the nullclines. The x-nullcline intersects the y-nullcline
y = 0 at x = 1, as expected. Also, the x-nullcline intersects the y-nullcline x = 1/R0 at y = ρ(1 − 1/R0)
and this equilibrium is positive only if R0 > 0.

There are two cases to consider.

R0 < 1

In this case, the x-nullcline and the boundary of x+ y = 1 of the feasible region divide V into two subsets

V1 =

{

(x, y); x ≥ 0, y ≥ 0, y ≤ min

{

1− x,
ρ

R0

1− x

x

}}

and

V2 =

{

(x, y);
ρ

R0

1− x

x
≤ y ≤ 1− x

}

.

We observe that x′ > 0 and y′ < 0 in the interior of V1 and x′ < 0 and y′ < 0 in the interior of V2.

Let us assume that we have a trajectory that is in the interior of V1. Since we know that the trajectory cannot
escape through y = 0, x = 0, or the piece of the boundary given by y = 1−x, it can only escape through the
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Fig. 3.1. Streamlines for R0 = 0.5.

Fig. 3.2. Streamlines for R0 = 1.

isocline. The direction of the vector field along the x-nullcline; that is, the tangent to the trajectory, is given
by t = (x′, y′) = (0, (R0x− 1)y(x)), where y(x) is given by (3.2.8). At the same time, the normal vector at
this part of the boundary, pointing inward V1, is given by n = (−R0x

2/ρ,−1). We see that

t · n = (1 −R0x)y(x).

However, y > 0 along the nullcline (apart from the value at DFE and x < 1/R0 since R0 < 1. Thus t ·n > 0
along the nullcline and thus the trajectory cannot escape V1.

Since x′ > 0 and y′ < 0 in V1, x(t) is increasing and bounded, while y(t) is decreasing and bounded. Hence,
there is (x0, y0) ∈ V1 such that

lim
t→∞

x(t) = x0, lim
t→∞

y(t) = y0.

However, we have the following result.
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Fig. 3.3. Close up of the streamlines for close to the DFE for R0 = 1. Note that there are trajectories with x(t) > 1
for all t.

Lemma 3.1. Assume that x : [0,∞) → R
n is differentiable with x′ uniformly continuous on [0,∞). If x

satisfies limt→∞ x(t) = x0, then limt→∞ x′(t) = 0.

Proof. Let us take an arbitrary ǫ > 0. From uniform continuity of f we know that there is h > 0 such that

‖x′(t1)− x′(t2)‖ < ǫ

if only |t1 − t2| < h. Then from the Mean Value Theorem, for each i = 1, . . . , n, there is 0 ≤ τi(t) < h such
that

xi(t+ h)− xi(t) = x′i(t+ τ(t))h = x′i(t)h+ (x′i(t+ τ(t))− x′i(t))h.

Also, for that ǫ and h selected above, we can find t0 such that for all t ≥ t0 we have

|xi(t+ h)− xi(t)| ≤ |xi(t+ h)− xi,0|+ |xi(t)− xi,0| < 2ǫh.

Hence
|x′i(t)| ≤ h−1|xi(t+ h)− xi(t)|+ |(x′i(t+ τ(t)) − x′i(t))| < 3ǫ.

Thus limt→∞ x′(t) = 0. ⊓⊔

To use this lemma we observe that

x′′ = −ρx′ −R0x
′y −R0xy

′ = −(ρ+R0)(ρ(1 − x)−R0xy)−R0xy(R0x− 1)

y′′ = R0x
′y +R0xy

′ − y′ = R0(ρ(1− x)−R0xy) + y(R0x− 1)2

and since the solutions are bounded

‖(x′(t+ h), y′(t+ h))− (x′(t), y′(t))‖ ≤ ‖(x′′(τ), y′′(τ)‖h ≤ Kh

for some constant K, the derivative (x′, y′) is uniformly continuous. Passing now in

x′(t) = ρ(1− x(t)) −R0x(t)y(t),

y′(t) = (R0x(t)− 1)y(t),

with t to infinity and using the lemma, we obtain
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0 = ρ(1− x0)−R0x0y0,

0 = (R0x0 − 1)y0,

hence (x0, y0) is an equilibrium. Since, however, (1, 0) is the only equilibrium in this case, we have (x0, y0) = 0.
Next, if we have a solution originating in V2, then it cannot escape through x + y = 1 so it will either stay
in V2 or enter V1. If it stays in V2 then, as before, the derivatives x′ and y′ are of constants sign and, as the
solutions are bounded, they must converge within V2. By the same argument, the solution must converge to
the DFE. On the other hand, if the solution enters V1, then we can apply the argument of the first part.

Finally, assume that z(0) > 1 so that the trajectory starts outside V . By (3.2.5), lim supt→∞ z(t) ≤ 1.
There are two cases to consider. If lim inft→∞ z(t) < 1, then for some t0 we must have z(t0) < 1 and thus
the trajectory is inside V and the previous argument applies (by the flow property). On the other hand, if
lim inft→∞ z(t) = 1, then limt→∞ z(t) = 1. The argument below takes into account the fact that we may
have R0 = 1 and thus the y isocline could pass through the DFE. First we observe that along the line x = 1
the normal pointing to the left is given by n = (−1, 0) while the field is given by t = (−R0y, (R0 − 1)y) so

t · n = R0y > 0,

provided y > 0. However, the point (1, 0) is the equilibrium, so no trajectory can move from the region
{x ≤ 1} to {x > 1}. Hence, if z(0) > 1 with x(0) ≤ 1, we have y′(t) < 0 for t > 0 and thus y(t) converges.
Since z(t) converges and so must x(t). So, the last case to consider is when x(0) > 1 (this argument is
important only if x(0) > 1/R0, as then initially y′ > 0). If x(t) converges, then y(t) converges and the
limit must be the DFE, hence y(t) must converge to 0. Assume then that y(t) does not converge to 0. Then
y(tn) ≥ c > 0 for some tn → ∞. But since x(t)+ y(t) = z(t) → 1, then x(tn) < 1 for sufficiently large tn and
hence (x(t), y(t)) enters the region {x ≤ 1}, to which the previous argument applies.

R0 > 1

In this case we have two equilibria – the disease free equilibrium (DFE)

(x∗0, y
∗
0) = (1, 0)

and the endemic equilibrium (EE)

(x∗1, y
∗
1) =

(

1

R0
, ρ

(

1− 1

R0

))

.

Clearly, DFE cannot be globally stable (but it can be globally stable in the interior of the feasible domain).

Local stability.

We proceed by analysing the local stability of these equilibria. The Jacobian of the nondimensional model
(3.1.4) at an equilibrium (x∗, y∗) is

J (x∗, y∗) =

(

−ρ−R0y
∗ −R0x

∗

R0y
∗ R0x

∗ − 1

)

. (3.2.9)

Hence, at DFE (1, 0) we have

J (1, 0) =

(

−ρ −R0

0 R0 − 1

)

(3.2.10)

and, since the matrix is upper triangular, we immediately get eigenvalues

λ1 = −ρ, λ2 = R0 − 1.

The first eigenvalue is negative, while the second is negative if R0 < 1. As we observed earlier, in this
case there is no other equilibrium (in the biologically feasible domain) and we proved that DFE is globally
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Fig. 3.4. Streamlines and V as the basin of attraction for (3.1.4) with R0 > 1.

asymptotically stable. The same was proved to be true if R0 = 1 so we only need to to consider the case
R0 > 1. In this case DFE is a saddle and we move to investigating the endemic equilibrium. We have

J (x∗1, y
∗
1) =

(

−ρ−R0y
∗
1 −R0x

∗
1

R0y
∗
1 R0x

∗
1 − 1

)

. (3.2.11)

From the equation for EE we have R0x
∗
1 − 1 = 0 so

J (x∗1, y
∗
1) =

(

−ρ−R0y
∗
1 −1

R0y
∗
1 0

)

(3.2.12)

and we obtain the characteristic equation as

λ2 + (ρ+R0y
∗
1)λ+R0y

∗
1 = 0 (3.2.13)

Using y∗1 = ρ
(

1− 1
R0

)

, we find

ρ+R0y
∗
1 = ρ+R0ρ

(

1− 1

R0

)

= ρR0,

R0y
∗
1 = R0ρ

(

1− 1

R0

)

= ρ(R0 − 1),

so that (3.2.13) becomes
λ2 + ρR0λ+ ρ(R0 − 1) = 0. (3.2.14)

Thus, the roots of the characteristic equation are

λ1,2 =
−ρR0 ±

√
∆

2
, ∆ = (ρR0)

2 − 4ρ(R0 − 1).

Hence, if ∆ > 0, the characteristic equation has two negative real roots and therefore the endemic equilibrium
is a stable node. If ∆ < 0, then the characteristic equation has two complex conjugate roots with negative
real parts and therefore the endemic equilibrium is a stable focus.
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‘Global’ stability of the endemic equilibrium

We prove the following theorem.

Theorem 3.2. Assume R0 > 1. If y0 > 0, then

lim
t→∞

φ(t, (x0, y0)) = (x∗1, y
∗
1) =

(

1

R0
, ρ

(

1− 1

R0

))

.

In other words
ω(Γ(x0,y0)) = (x∗1, y

∗
1)

provided y0 > 0.

Proof. We know from the previous considerations that

ω(Γ(x0,y0)) ⊂ V = {(x, y); x ≥ 0, y ≥ 0, x+ y ≤ 1}.

Moreover, for the initial condition of the form (x0, y0) = (x0, 0), system (3.1.4) can be reduced to the single
equation

x′ = ρ(1− x), x(0) = x0

with the solution x(t) = 1+ (x0 − 1)e−ρt and hence the solution to (3.1.4) is (1 + (x0 − 1)e−ρt, 0). Therefore
the whole line y = 0 is a trajectory and ω(Γ(x0,0)) = (1, 0). First, we rule out periodic trajectories in V using
the Dulac–Bendixon criterion, Proposition 5.41. We observe that taking g = 1/y simplifies the coordinates
of the vector field and we gave

∂

∂x

ρ(1− x)−R0xy

y
+

∂

∂y

y(R0x− 1

y
= −ρ

y
−R0 < 0.

Hence, there are no periodic orbits for y > 0. However, if there was a periodic orbit with y = 0, then this
orbit and the orbit {y = 0} would intersect which is impossible.

Thus, we only have to prove that (1, 0) /∈ ω(Γ(x0,y0)) with y0 > 0. Assume to the contrary. Then there
is a sequence (tn)n∈N with tn → ∞ as n → ∞ such that (x(tn), y(tn)) → (1, 0). We can assume that
x(tn) > 1/R0 for all n. Then we have y′(tn) > 0 for any n. Let us take arbitrary n. Since y(tn) > 0 and
y(tn) → 0 as n → ∞, we cannot have y′(t) ≥ 0 for t ≥ tn. Thus, there is t′n > tn with y′(t′n) < 0. Then
there must be an index n′ > n such that y′(tn′) > 0. To avoid working with subsequences, we select from
(tn)n∈N a subsequence (without changing notation) in such a way that tn < t′n < tn+1 (that is, we throw
away from (tn)n∈N all elements with indices between n and n′ and rename n′ to be n+ 1). Then there must
be t̂n ∈ (t′n, tn+1) where y′(t̂n) = 0. Again, we select t̂n to be the largest t in (t′n, tn+1) with this property.
Then we have

0 ≤ y(t̂n) ≤ y(tn), x(t̂n) = 1/R0

as (x(t̂n), y(t̂n)) is on the y′ isocline and y′(t) > 0 for t ∈ (t̂n, tn+1). Thus, by the Sandwich Theorem,
y(t̂n) → 0 as n → ∞ and thus (1/R0, 0) ∈ ω(Γ(x0,y0). But then, by Lemma 5.25, p. 3, {y = 0} ∈ ω(Γ(x0,y0)

as {y = 0} is an orbit. On the other hand, as before,

(x+ y)′ = x′ + y′ = ρ(1− x)− y

hence
(x + y)′ ≥ −(x+ y) + ρ;

that is
(x+ y)(t) ≥ ρ+ (x0 + y0 − 1)e−t.

Thus, if (x, y) ∈ ω(Γ(x0,y0)), then x+ y ≥ ρ only points (x, 0) with x ≥ ρ could potentially be in ω(Γ(x0,y0)).
This contradicts the above result that {y = 0} ⊂ ω(Γ(x0,y0)). Hence DFE is not in ω(Γ(x0,y0)) and the
theorem is proved. ⊓⊔
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SEIR model and global stability by Lyapunov function

1 Local stability

Let us consider an SEIR model in which an infected person does not become infective for some time. Such a
person, infected but not infective, is called exposed; the class of exposed individuals accordingly is denoted
by E. Again, the simplest assumption is that exposed individuals move to the infective class at a constant
rate. Using the standard compartmental modelling argument with mass action infection force and constant
influx rate (as in (3.0.1), we arrive at the system

S′ = Λ− βSI − µS,

E′ = βSI − (µ+ γ)E,

I ′ = γE − (µ+ ν)I,

R′ = νI − µR, (4.1.1)

where, as before, Λ is a constant recruitment rate, β is the transmission coefficient, µ is the constant death
rate and ν is the recovery rate (that is, 1/ν is the average infectious time of an individual); the new parameter
γ is the rate at which the exposed individuals become infective.

The global solvability of (4.2.10), and positivity and boundedness of solutions can be done as in the SIR
model. Our main task is to determine long time behaviour of solutions. As usual, we begin with the equilibria.
For this we solve

0 = Λ − βSI − µS,

0 = βSI − (µ+ γ)E,

0 = γE − (µ+ ν)I,

0 = νI − µR. (4.1.2)

Clearly, we have the disease free equilibrium

E0 = (Λ/µ, 0, 0, 0). (4.1.3)

Now, we can define the basic reproduction number R0. The totally susceptible population at equilibrium is
Λ/µ and one infective will infect βΛ/µ susceptibles in the unit time. Now, the probability that an infected
person will become infective (that is, it will survive the exposed class) is γ/(µ + γ) and it is infective for
1/(µ+ ν) units of time. Thus

R0 =
Λβγ

(µ+ γ)(µ+ ν)µ
. (4.1.4)

To find the endemic equilibria, we see that

E =
µ+ ν

γ
I
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and then, taking into account that in an endemic equilibrium I 6= 0

S =
(µ+ γ)(µ+ ν)

γβ
.

Then, from the first equation

I =
Λ

βS
− µ

β
=
µ

β
(R0 − 1).

Re-writing the equilibria in terms of R0, we can formulate the first result.

Proposition 4.1. The SEIR system (4.2.10) has a unique disease free equilibrium

E0 =

(

Λ

µ
, 0, 0, 0

)

.

If R0 > 1, it has a unique endemic equilibrium

E∗ = (S∗, E∗, I∗, R∗), (4.1.5)

where

S∗ =
(µ+ γ)(µ+ ν)

γβ
,

E∗ =
µ+ ν

γ

µ

β
(R0 − 1),

I∗ =
µ

β
(R0 − 1),

R∗ =
ν

β
(R0 − 1).

To investigate local stability, we find the Jacobian of (4.2.10). We get

J =









−βI − µ 0 −βS 0
βI −(µ+ γ) βS 0
0 γ −(µ+ ν) 0
0 0 ν −µ









. (4.1.6)

At the DFE we have

J(E0) =









−µ 0 −βΛµ 0

0 −(µ+ γ) β Λµ 0

0 γ −(µ+ ν) 0
0 0 ν −µ









. (4.1.7)

Expanding the characteristic equation det(J(E0)− λI) = 0 we have

(λ+ µ)2
∣

∣

∣

∣

−(µ+ γ + λ) β Λµ
γ −(µ+ ν + λ)

∣

∣

∣

∣

= (λ+ µ)2
(

(µ+ γ + λ)(µ+ ν + λ)− γβΛ

µ

)

= 0.

The quadratic equation in brackets can be written as

λ2 + (2µ+ ν + γ)λ+ (µ+ γ)(µ+ ν)(1 −R0) = 0

from which it follows that if R0 < 0, then the equation has either two negative real roots or two complex
conjugate roots with negative real parts. If R0 > 1, then we have real roots of opposite sign. Hence we have

Proposition 4.2. If R0 < 1, then the disease free equilibrium is locally asymptotically stable. If R0 > 1,
then the disease free equilibrium is unstable.



2 Global stability 47

Let us turn our attention to the endemic equilibrium E∗. The characteristic equation is given by

det(J(E∗)− λI) =

∣

∣

∣

∣

∣

∣

∣

∣

−βI∗ − µ− λ 0 −βS∗ 0
βI∗ −(µ+ γ + λ) βS∗ 0
0 γ −(µ+ ν + λ) 0
0 0 ν −(µ+ λ)

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (4.1.8)

Adding the first row to the second, we obtain

∣

∣

∣

∣

∣

∣

∣

∣

−βI∗ − µ− λ 0 −βS∗ 0
−(µ+ λ) −(µ+ γ + λ) 0 0

0 γ −(µ+ ν + λ) 0
0 0 ν −(µ+ λ)

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Expanding by the last column yields

(µ+ λ)

∣

∣

∣

∣

∣

∣

−βI∗ − µ− λ 0 −βS∗

−(µ+ λ) −(µ+ γ + λ) 0
0 γ −(µ+ ν + λ)

∣

∣

∣

∣

∣

∣

= 0.

Hence, we obtain an eigenvalue λ = µ and, from the determinant, the cubic equation

(βI∗ + µ+ λ)(µ + γ + λ)(µ+ ν + λ) = βγS∗ = (µ+ γ)(µ+ ν)(µ + λ).

The sign of the real parts of the eigenvalues can be determined from Routh–Hurwitz criterion but often it
can be done in a simpler way, by some smart observation. By inspection we see that λ = −µ is not a root of
the above hence, dividing by the right hand side, we get

(

1 +
βI∗

µ+ λ

)(

1 +
λ

µ+ γ

)(

1 +
λ

µ+ ν

)

= 1. (4.1.9)

Now, if we have complex number 1 + z, then |1 + z| =
√

(1 + ℜz)2 + ℑz2 and |1 + z| ≥ 1 provided ℜz ≥ 0
with strict equality if ℜz > 0. Now,

ℜ βI∗

µ+ λ
=
βI∗(µ+ ℜλ)

|µ+ λ|2 > 0

and hence
∣

∣

∣

∣

(

1 +
βI∗

µ+ λ

)(

1 +
λ

µ+ γ

)(

1 +
λ

µ+ ν

)∣

∣

∣

∣

> 1

as long as ℜλ ≥ 0. Thus (4.1.9) cannot have solutions with ℜλ ≥ 0. Thus, we can formulate

Proposition 4.3. Let R0 > 1. Then the endemic equilibrium is locally asymptotically stable.

2 Global stability

2.1 Global stability of the disease free equilibrium

Proposition 4.4. If R0 < 1, then the disease free equilibrium is globally asymptotically stable (in the ad-
missible domain).

Proof. Since in (4.2.10) the first three equations are independent of the last one, if (0, 0, 0) is attracting in
R3

+, then also R(t) → 0 as t → ∞ for any nonnegative R(0). This follows from
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R(t) = e−µtR(0) + νe−µt
t
∫

0

eµsI(s)ds

and the l’Hôspital rule. Hence, consider

S′ = Λ− βSI − µS,

E′ = βSI − (µ+ γ)E,

I ′ = γE − (µ+ ν)I. (4.2.10)

A candidate for the Lyapunov function for such problems is

V (S,E, I) = κ

(

S − S∗ − S∗ ln
S

S∗

)

+
1

µ+ γ
E +

1

γ
, (4.2.11)

where κ is to be determined and S∗ = Λ
µ .

To establish that V > 0 for (S,E, I) 6= (Λ/µ, 0, 0) we see that it is sufficient to establish

S − S∗ − S∗ ln
S

S∗
> 0, S 6= S∗. (4.2.12)

For this we consider
g(x) = x− 1− lnx.

We have g(x) → ∞ as x → 0+ and x → +∞. Further, g′(x) = 1 − 1/x, g′′(x) = 1/x2, hence the global
minimum is attained at x = 1 and it is equal to g(1) = 0. Using x = S/S∗, we see that (4.2.12) is satisfied.

Next,

d

dt
V = κ

(

1− S

S∗

)

S′ +
1

µ+ γ
E′ +

1

γ
I ′

= κ

(

1− S

S∗

)

(Λ − βSI − µS) +
βSI − (µ+ γ)E

µ+ γ
+
γE − (µ+ ν)I

γ

= 2κΛ− βκSI − κµS − Λ2κ

µS
+
Λβκ

µ
I +

β

µ+ γ
SI − µ+ ν

γ
I.

Choosing κ = 1/(µ+ γ) eliminates the cross term SI, giving in the last line

2κΛ− κµS − Λ2κ

µS
+
Λβκ

µ
I − µ+ ν

γ
I = −κΛ

(

Λ

µS
+
µS

Λ
− 2

)

+
µ+ ν

γ
(R0 − 1)I.

Since the last term is negative due to R0 < 1, we focus on the first term. The term inside the bracket can
be written as

x+
1

x
− 2 =

(x− 1)2

x
> 0, x 6= 1, x > 0.

Thus, V ′ < 0 if (S,E, I) 6= (S∗, 0, 0). Since V is radially unbounded in the admissible domain, we find that
(S∗, 0, 0) is globally stable. ⊓⊔

2.2 Global stability of the endemic equilibrium

Proposition 4.5. If R0 > 1, then the endemic equilibrium

E∗ = (S∗, E∗, I∗, R∗) =

(

(µ+ γ)(µ+ ν)

γβ
,
µ+ ν

γ

µ

β
(R0 − 1),

µ

β
(R0 − 1),

ν

β
(R0 − 1)

)

(4.2.13)

is globally asymptotically stable (in Rn+).
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Proof. As before, it is sufficient to consider the first three components, (S,E, I). We assume that they stay
in the positive orthant R3

+. We consider the candidate Lyapunov function

V (S,E, I) = κ1

(

S − S∗ − S∗ ln
S

S∗

)

+ κ2

(

E − E∗ − E∗ ln
E

E∗

)

+ κ3

(

I − I∗ − I∗ ln
I

I∗

)

, (4.2.14)

where κi, i = 1, 2, 3 are constants to be determined. As in the previous proof, V (S∗, E∗, I∗) = 0 and V > 0
otherwise. Moreover, V is radially unbounded in R3

+. So, it remains to determine the sign of V ′. We have

dV

dt
= κ1

(

1− S∗

S

)

S′ + κ2

(

1− E∗

E

)

E′ + κ3

(

1− I∗

I

)

I ′

= κ1

(

1− S∗

S

)

(Λ − βSI − µS) + κ2

(

1− E∗

E

)

(βSI − (µ+ γ)E) + κ3

(

1− I∗

I

)

(γE − (µ+ ν)I).

First we observe that
Λ = βS∗I∗ + µS∗

and thus

κ1

(

1− S∗

S

)

(Λ− βSI − µS) = −κ1µ
(S − S∗)2

S
+ κ1βS

∗I∗ − κ1βSI − κ1β
S∗2I∗

S
+ κ1βS

∗I.

Multiplying out the other brackets, we obtain

dV

dt
= −κ1µ

(S − S∗)2

S
+ κ1βS

∗I∗ − κ1βSI − κ1β
S∗2I∗

S
+ κ1βS

∗I

+κ2βSI − κ2(µ+ γ)E − κ2β
E∗

E
SI + κ2E

∗(µ+ γ)

+κ3γE − κ3(µ+ ν)I − κ3γ
I∗E

I
+ κ3I

∗(µ+ ν).

First, we observe that taking κ1 = κ2 = 1, we cancel the terms containing SI. Next, we group together
terms containing linear terms. We have

E(γκ3 − (µ+ γ))

I(βS∗ − κ3(µ+ ν)) = I(µ+ ν)

(

µ+ γ

γ
− κ3

)

,

where we used (4.2.13) to express S∗. Hence, putting

κ3 =
µ+ γ

γ

eliminates the linear terms leaving

dV

dt
= −µ (S − S∗)2

S
+ βS∗I∗ − β

S∗2I∗

S

−βE
∗

E
SI + E∗(µ+ γ)− (µ+ γ)

I∗E

I
+
µ+ γ

γ
I∗(µ+ ν).

Now, we use
βS∗I∗ = (µ+ γ)E∗

and again the formula for S∗ to get

dV

dt
= −µ (S − S∗)2

S
+ βS∗I∗

(

3− S∗

S
− E∗SI

ES∗I∗
− I∗E

IE∗

)

,

where again we used
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µ+ γ =
βS∗I∗

E∗
.

Let us denote

x1 =
S∗

S
, x2 =

E∗SI

ES∗I∗
, x3 =

I∗E

IE∗

and observe that
x1x2x3 = 1.

What is the maximum of x1 + x2 + x3 under this constraint? We can use the relation between the harmonic
and geometric means:

x1 + . . .+ xn
n

≥ n
√
x1 . . . xn, x1, . . . , xn ≥ 0

to ascertain that x1 + x2 + x3 ≥ 3 with the equality attained if x1 = x2 = x3 = 1. Hence we obtain

dV

dt
≤ 0

with
dV

dt
= 0

on the set
{

(S,E, I); S = S∗, I =
I∗

E∗
E

}

.

Now, along the line I = I∗E/E∗ the first two components of the field are given by Λ − βIS∗ − µS∗ and 0
whereas the direction along the line is (0, I∗, E∗). Thus, the only invariant set on the line is the equilibrium
(S∗, E∗, I∗) and, by the LaSalle principle, the ω limit set of any trajectory originating from initial conditions
not on the S axis consists of the endemic equilibrium. ⊓⊔
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Appendices

1 Stability of equilibria of autonomous differential equations

Consider the problem
x′ = f(x), x(t0) = x0. (5.1.1)

We recall that the word autonomous refers to the fact that f in (5.1.1) does not explicitly depend on time.
To have anything to talk about, we must ensure that (5.1.1) has solutions different from the equilibrium
solutions. This is settled by the Picard–Lindelöf theorem which asserts that if f is sufficiently regular, for
instance, differentiable on R, then the initial value problem has exactly one solution defined for t on some
interval (tmin, tmax) containing t0. Furthermore, if the solution is bounded at the endpoints, then it can be
extended to a larger interval. It is possible that the solution only is defined on a finite interval. However, if
we can show that the solution is bounded on each finite interval of its existence, then it is defined on R. In
other words, if a solution to (5.1.1) with differentiable f is defined only on an interval with a finite endpoint,
then it must be unbounded at this endpoint.

For further discussion we fix attention by assuming that f is an everywhere defined function satisfying all
assumptions of the Picard–Lindelöf theorem on R.

In many problems it is important to emphasize the dependence of the solution on the initial conditions.
Thus we introduce the notion of the flow x(t, t0, x0) of (5.1.1), which is the solution of the Cauchy problem
(5.1.1). Here we only use t0 = 0 and then we write x(t, 0, x0) = x(t, x0).

If (5.1.1) has a stationary solution x(t) ≡ x∗ that, by definition, is constant in time, then such a solution
satisfies x′(t) ≡ 0 and consequently

f(x∗) = 0. (5.1.2)

Conversely, if the equation f(x) = 0 has a solution, which we call an equilibrium point then, since f is
independent of time, such a solution is a number, say x∗. If we now consider a function defined by x(t) ≡ x∗,
then x′(t) ≡ 0. Consequently,

0 ≡ x′(t) ≡ (x∗)′ = f(x∗)

and such a function is a stationary solution. Summarizing, equilibrium points are solutions to the algebraic
equation (5.1.2) and, treated as constant functions, they are (the only) stationary, or equilibrium, solutions
to (5.1.1). Therefore usually we will not differentiate between these terms.

Next we give a definition of stability of an equilibrium.

Definition 5.1. 1. The equilibrium x∗ is stable if for given ǫ > 0 there is δ > 0 such that for any x0
|x0 − x∗| < δ implies |x(t, x0)− x∗| < ǫ for all t > 0. If x∗ is not stable, then it is called unstable.

2. A point x∗ is called attracting if there is η > 0 such that |x0 − x∗| < η implies lim
t→∞

x(t, x0) = x∗. If

η = ∞, then x∗ is called a global attractor or a globally attracting equilibrium.
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3. The equilibrium x∗ is called asymptotically stable if it is both stable and attracting. If x∗ is globally
attracting, then it is said to be a globally asymptotically stable equilibrium.

Equilibrium points play another important role for differential equations – they are the only limit points of
bounded solutions as t→ ±∞. To make this precise, we begin with the following lemma.

Lemma 5.2. If x0 is not an equilibrium point of (5.1.1), then x(t, x0) is never equal to an equilibrium point.
In other words, f(x(t, x0)) 6= 0 for any t for which the solution exists.

Proof. An equilibrium point x∗ generates a stationary solution, given by x(t) ≡ x∗. Thus, if x(t1, x0) = x∗

for some t1, then (t1, x0) belongs to two different solutions, which contradicts the Picard theorem. ✷

From the above lemma it follows that if f has several equilibrium points, then the stationary solutions
corresponding to these points divide the (t, x) plane into horizontal strips having the property that any
solution always remains confined to one of them. We shall formulate and prove a theorem that strengthens
this observation.

Theorem 5.3. Let x(t, x0) be a non-stationary solution of (5.1.1) with x0 ∈ R and let Imax = (t−, t+) be its
maximal interval of existence. Then x(t, x0) is either a strictly decreasing or a strictly increasing function of
t. Moreover, x(t, x0) either diverges to +∞ or to −∞, or converges to an equilibrium point, as t → t±. In
the latter case t± = ±∞.

Proof. Assume that for some t∗ ∈ Imax the solution x(t) := x(t, x0) has a local maximum or minimum
x∗ = x(t∗). Since x(t) is differentiable, we must have x′(t∗) = 0 but then f(x∗) = 0 which makes x∗ an
equilibrium point of f . This means that a non-stationary solution x(t, x0) reaches an equilibrium in finite
time, which contradicts Lemma 5.2. Thus, if x(t, x0) is not a stationary solution, then it cannot attain local
maxima or minima and thus must be either strictly increasing or strictly decreasing.

Since the solution is monotonic, it either diverges to ±∞ (depending on whether it decreases or increases)
or converges to finite limits as t → t±. Let us focus on the right end point t+ of Imax. If x(t, x0) converges
as t → t+, then t+ = ∞, by the property of the maximal interval of existence. Thus

lim
t→∞

x(t, x0) = x̄.

Without compromising generality, we further assume that x(t, x0) is an increasing function. If x̄ is not an
equilibrium point then, by continuity, we can use the intermediate value property to claim that the values
of x(t, x0) must fill the interval [x0, x̄). This interval cannot contain any equilibrium point as the existence
of such points would violate the Picard-Lindelöf theorem. Thus, for any x ≤ x̄, f(x) is strictly positive and
hence, separating variables and integrating, we obtain

t(x) − t(x0) =

x
∫

x0

ds

f(s)
. (5.1.3)

Passing with t to infinity (since t(x̄) = ∞), we see that the left hand side becomes infinite and so

x̄
∫

x0

ds

f(s)
= ∞.

By assumption, the interval of integration is finite so that the only way the integral could become infinite
is if 1/f(s) = ∞, that is, f(s) = 0, for some s ∈ [x0, x̄]. The only such point can be s = x̄, thus x̄ is an
equilibrium point. ✷

Remark 5.4. We note that Eq. (5.1.3) is of independent interest as it gives a formula for the blow up time
of the solution x(t, x0). To wit, let the interval [x0,∞) be free of equilibria and let x(t, x0) be increasing for
t > 0. Then limt→t+ x(t, x0) = ∞ so that, by (5.1.3),
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t+ − t(x0) =

∞
∫

x0

ds

f(s)

and, in particular, we see that if 1/f is integrable at +∞ (precisely, if the improper integral above exists),
then the maximal interval of existence is finite and we have the blow up of the solution in finite time. On
the other hand, if 1/f is not integrable, then tmax = +∞. We note that the latter occurs if f(s) does not
grow faster than s as s → ∞. This occurs, e.g., if the derivative of f bounded on R. On the other hand, If
f(s) behaves, say, as s2 for large s, then the integral on the right hand side is finite and thus tmax <∞.

Remark 5.5. Theorem 5.3 shows that for scalar differential equations with regular right hand sides, the
distinction between different properties of an equilibrium made in Definition 5.1 is superfluous. Indeed, if an
equilibrium x∗ is stable, then solutions originating close to it stay close to it. However, by Theorem 5.3, these
solutions are monotonic. Hence, the solutions are closer to x∗ than their initial conditions are. In particular,
they must be bounded and, being monotonic, they must converge as t → ∞. From the proof of Theorem
5.3 it follows that the limit point must be the equilibrium x∗. This implies that x∗ is attracting and hence
asymptotically stable. Also, by monotonicity of solutions, any attracting equilibrium must be stable and thus
asymptotically stable.

Remark 5.6. Theorem 5.3 usually is used in the following weaker form. Let f be continuously differentiable
function. Then the equilibrium x∗ is stable provided f ′(x∗) < 0 and unstable provided f ′(x∗) > 0. The proof
is obvious–if f ′(x∗) < 0, then f ′(x) < 0 in some neighbourhood of x∗, by continuity of f ′. Thus, f > 0
to the left and f < 0 to the right of x∗ and any solution originating in such a left neighbourhood of x∗

is increasing and must converge to x∗. Similarly, any solution originating in such a right neighbourhood of
x∗ is decreasing and also must converge to x∗. Thus x∗ is asymptotically stable. An analogous argument
shows that f ′(x∗) > 0 means that x∗ is unstable. However, Theorem 5.3 is much more general and allows to
ascertain stability or instability in the so called nonhyperbolic cases when f ′(x∗) by considering the sign of
f to the left and to the right of x∗.
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Fig. 5.1. Monotonic behaviour of solutions to (5.1.1) depends on the right hand side f of the equation.
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Application to the logistic equation

Consider the Cauchy problem for the logistic equation

y′ = y(1− y), y(0) = y0. (5.1.4)

Let us get as much information as possible about the solutions to this problem without actually solving it.
First, we observe that the right hand side is given by f(y) = y(1− y), which is a polynomial, and therefore
at each point of R2 the assumptions of Picard’s theorem are satisfied, that is, only one solution of (5.1.4)
passes through each point (t0, y0). However, f is not a globally Lipschitz function, so that this solution may
be defined only on a finite time interval.

The equilibrium points are found solving y(1 − y) = 0, hence y ≡ 0 and y ≡ 1 are the only stationary
solutions. Moreover, f(y) < 0 for y < 0 and y > 1 and f(y) > 0 for 0 < y < 1. Hence, from Lemma 5.2, it
follows that the solutions starting from y0 < 0 will stay strictly negative, those starting from 0 < y0 < 1 will
stay in this interval and those with y0 > 1 will be larger than 1, for all times of their respective existence, as
they cannot cross the equilibrium solutions. Then, from Theorem 5.3, we see that the solutions with negative
initial condition are decreasing and therefore tend to −∞ if time increases. In fact, they blow up in finite
time since, by integrating the equation, we obtain

t(y) =

y
∫

y0

dη

η(1 − η)

and we see, passing with y to −∞ on the right hand side, that we obtain a finite time of the blow up.

Next, solutions with 0 < y0 < 1 are bounded and thus they are defined for all times. They are increasing
and thus they must converge to the larger equilibrium, that is, limt→∞ y(t, y0) = 1. Finally, if we start with
y0 > 1, then y(t, y0) decreases and thus is bounded from below, satisfying again limt→∞ y(t, y0) = 1. The
shape of the solution curves can be determined as follows. By differentiating Eq. 5.1.4 with respect to time,
we obtain

y′′ = y′(1− y)− yy′ = y′(1− 2y).

Since for each solution (apart from the stationary ones), y′ has a fixed sign, we see that an inflection point
can exist only for solutions starting at y0 ∈ (0, 1) and it occurs at y = 1/2, where the solution changes from
being convex downward to being convex upward. In the two other cases, the second derivative is of constant
sign, giving the solution convex upward for negative solutions and convex downward for solutions larger than
1.

We see that we got the same picture as when solving the equation but with much less work.

2 Stability by linearization

2.1 Solvability of linear systems

We shall consider only linear systems of first order differential equations.

y′1 = a11y1 + a12y2 + . . .+ a1nyn + g1(t),

...
...
..., (5.2.5)

y′n = an1y1 + an2y2 + . . .+ annyn + gn(t),

where y1, . . . , yn are unknown functions, a11, . . . ann are constant coefficients and g1(t) . . . , gn(t) are known
continuous functions. If g1 = . . . = gn = 0, then the corresponding system (5.2.5) is called the associated
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homogeneous system. The structure of (5.2.5) suggest that a more economical way of writing is is to use the
vector-matrix notation. Denoting y = (y1, . . . , yn), g = (g1, . . . , gn) and A = {aij}1≤i,j≤n, that is

A =







a11 . . . a1n
...

...
an1 . . . ann






,

we can write (5.2.5) is a more concise notation as

y′ = Ay + g. (5.2.6)

Here we have n unknown functions and the system involves first derivative of each of them so that it is
natural to consider (5.2.6) in conjunction with the following initial conditions

y(t0) = y0, (5.2.7)

or, in the expanded form,
y1(t0) = y01 , . . . , yn(t0) = y0n, (5.2.8)

where t0 is a given argument and y0 = (y01 , . . . , y
0
n) is a given vector.

Let us denote by X the set of all solutions to the homogeneous system (5.2.5). Due to linearity of differ-
entiation and multiplication by A, it is easy to see that X is a vector space. We have two fundamental
results.

Theorem 5.7. The dimension of X is equal to n.

Theorem 5.8. Let y1, . . . ,yk be k linearly independent solutions of y′ = Ay and let t0 ∈ R be an arbitrary
number. Then, {y1(t), . . . ,yk(t)} for a linearly independent set of functions if and only if {y1(t0), . . . ,yk(t0)}
is a linearly independent set of vectors in R.

These two results show that if we construct solutions emanating from n linearly independent initial vectors,
then these solutions are linearly independent and therefore they span the space of all solutions to the
homogeneous system (5.2.5).

Let A be an n× n matrix. We say that a number λ (real or complex) is an eigenvalue of A is there exist a
non-zero solution of the equation

Av = λv. (5.2.9)

Such a solution is called an eigenvector of A. The set of eigenvectors corresponding to a given eigenvalue is a
vector subspace. Eq. (5.2.9) is equivalent to the homogeneous system (A−λI)v = 0, where I is the identity
matrix, therefore λ is an eigenvalue of A if and only if the determinant of A satisfies

det(A− λI) =

∣

∣

∣

∣

∣

∣

∣

a11 − λ . . . a1n
...

...
an1 . . . ann − λ

∣

∣

∣

∣

∣

∣

∣

= 0. (5.2.10)

Evaluating the determinant we obtain a polynomial in λ of degree n. This polynomial is also called the
characteristic polynomial of the system (5.2.5) (if (5.2.5) arises from a second order equation, then this is
the same polynomial as the characteristic polynomial of the equation). We shall denote this polynomial by
p(λ). From algebra we know that there are exactly n, possibly complex, root of p(λ). Some of them may be
multiple, so that in general p(λ) factorizes into

p(λ) = (λ1 − λ)n1 · . . . · (λk − λ)nk , (5.2.11)

with n1+ . . .+nk = n. It is also worthwhile to note that since the coefficients of the polynomial are real, then
complex roots appear always in conjugate pairs, that is, if λj = ξj + iωj is a characteristic root, then so is
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λ̄j = ξj − iωj. Thus, eigenvalues are roots of the characteristic polynomial of A. The exponent ni appearing
in the factorization (5.2.11) is called the algebraic multiplicity of λi. For each eigenvalue λi there corresponds
an eigenvector vi and eigenvectors corresponding to distinct eigenvalues are linearly independent. The set
of all eigenvectors corresponding to λi spans a subspace, called the eigenspace corresponding to λi which we
will denote by Eλi

. The dimension of Eλi
is called the geometric multiplicity of λi. In general, algebraic and

geometric multiplicities are different with geometric multiplicity being at most equal to the algebraic one.
Thus, in particular, if λi is a single root of the characteristic polynomial, then the eigenspace corresponding
to λ1 is one-dimensional.

If the geometric multiplicities of eigenvalues add up to n, that is, if we have n linearly independent eigenvec-
tors, then these eigenvectors form a basis for Rn. In particular, this happens if all eigenvalues are single roots
of the characteristic polynomial. If this is not the case, then we do not have sufficiently many eigenvectors
to span R

n and if we need a basis for R
n, then we have to find additional linearly independent vectors. A

procedure that can be employed here and that will be very useful in our treatment of systems of differential
equations is to find solutions to equations of the form (A − λiI)kv = 0 for 1 < k ≤ ni, where ni is the
algebraic multiplicity of λi. Precisely speaking, if λi has algebraic multiplicity ni and if

(A− λiI)v = 0

has only νi < ni linearly independent solutions, then we consider the equation

(A− λiI)2v = 0.

It follows that all the solutions of the preceding equation solve this equation but there is at least one more
independent solution so that we have at least νi + 1 independent vectors (note that these new vectors are
no longer eigenvectors). If the number of independent solutions is still less than n1, we consider

(A− λiI)3v = 0,

and so on, till we get a sufficient number of them. Note, that to make sure that in the step j we select solutions
that are independent of the solutions obtained in step j− 1 it is enough to find solutions to (A−λiI)jv = 0
that satisfy (A− λiI)j−1v 6= 0.

Matrix exponentials

The above theory can be used to provide a unified framework for solving systems of differential equations.

Recall that for a single equation y′ = ay, where a is a constant, the general solution is given by y(t) = eatC,
where C is a constant. In a similar way, we would like to say that the general solution to

y′ = Ay,

where A is an n× n matrix, is y = eAtv, where v is any constant vector in Rn. The problem is that we do
not know what it means to evaluate an exponential of a matrix. However, if we reflect for a moment that
the exponential of a number can be evaluated as the power (Maclaurin) series

ex = 1 + x+
x2

2
+
x3

3!
+ . . .+

xk

k!
+ . . . ,

where the only involved operations on the argument x are additions, scalar multiplications and taking integer
powers, we come to the conclusion that the above expression can be written also for a matrix, that is, we
can define

eA = I +A+
1

2
A2 +

1

3!
A3 + . . .+

1

k!
Ak + . . . . (5.2.12)

It can be shown that if A is a matrix, then the above series always converges and the sum is a matrix. For
example, if we take

A =





λ 0 0
0 λ 0
0 0 λ



 = λI,
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then
Ak = λkIk = λkI,

and

eA = I + λI +
λ2

2
I +

λ3

3!
I + . . .+

λk

k!
+ . . .

=

(

1 + λ+
λ2

2
+
λ3

3!
+ . . .+

λk

k!
+ . . .

)

I

= eλI. (5.2.13)

Unfortunately, in most cases finding the explicit form for eA directly is impossible.

Matrix exponentials have the following algebraic properties

(

eA
)−1

= e−A

and
eA+B = eAeB (5.2.14)

provided the matrices A and B commute: AB = BA.

Let us define a function of t by

etA = I + tA+
t2

2
A2 +

t3

3!
A3 + . . .+

tk

k!
Ak + . . . . (5.2.15)

It follows that this function can be differentiated with respect to t by termwise differentiation of the series,
as in the scalar case, that is,

d

dt
eAt = A+ tA2 +

t2

2!
A3 + . . .+

tk−1

(k − 1)!
Ak + . . .

= A
(

I + tA+
t2

2!
A2 + . . .+

tk−1

(k − 1)!
Ak−1 + . . .

)

= AetA = etAA,

proving thus that y(t) = etAv is a solution to our system of equations for any constant vector v. Since
y(0) = e0Av = v, from Picard’s theorem y(t) is a unique solution to the Cauchy problem

y′ = Ay, y(0) = v.

As we mentioned earlier, in general it is difficult to find directly the explicit form of etA. However, we can
always find n linearly independent vectors v for which the series etAv can be summed exactly. This is based
on the following two observations. Firstly, since λI and A− λI commute, we have by (5.2.13) and (5.2.14)

etAv = et(A−λI)etλIv = eλtet(A−λI)v.

Secondly, if (A− λI)mv = 0 for some m, then

(A− λI)rv = 0, (5.2.16)

for all r ≥ m. This follows from

(A− λI)rv = (A− λI)r−m[(A− λI)mv] = 0.

Consequently, for such a v

et(A−λI)v = v + t(A− λI)v + . . .+
tm−1

(m− 1)!
(A− λI)m−1v.
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and

etAv = eλtet(A−λI) = eλt
(

v + t(A− λI)v + . . .+
tm−1

(m− 1)!
(A− λI)m−1v

)

. (5.2.17)

Thus, to find all solutions to y′ = Ay it is sufficient to find n independent vectors v satisfying (5.2.16) for
some scalars λ. But these are precisely the eigenvectors or associated eigenvectors and we know that it is
possible to find exactly n of them.

Thus, for example, if λ = λ1 is a simple eigenvalue of A with a corresponding eigenvector v1, then (A −
λ1I)v1 = 1, thus m of (5.2.16) is equal to 1. Consequently, the sum in (5.2.17) terminates after the first
term and we obtain

y1(t) = eλ1v1.

From our discussion of eigenvalues and eigenvectors it follows that if λi is a multiple eigenvalue of A of
algebraic multiplicity ni and the geometric multiplicity is less then ni, that is, there is less than ni linearly
independent eigenvectors corresponding to λi, then the missing independent vectors can be found by solving
successively equations (A − λiI)kv = 0 with k running at most up to n1. Thus, we have the following
algorithm for finding n linearly independent solutions to y′ = Ay:

1. Find all eigenvalues of A;

2. If λ is a single real eigenvalue, then there is an eigenvector v so that the solution is given by

y(t) = eλtv (5.2.18)

3. If λ is a single complex eigenvalue λ = ξ + iω, then there is a complex eigenvector v = ℜv + iℑv such
that two solutions corresponding to λ (and λ̄) are given by

y1(t) = eξt(cosωtℜv − sinωtℑv)
y2(t) = eξt(cosωtℑv + sinωtℜv) (5.2.19)

4. If λ is a multiple eigenvalue with algebraic multiplicity k (that is, λ is a multiple root of the characteristic
equation, of multiplicity k), then we first find eigenvectors by solving (A − λI)v = 0. For these eigen-
vectors the solution is again given by (5.2.18) (or (5.2.19), if λ is complex). If we found k independent
eigenvectors, then our work with this eigenvalue is finished. If not, then we look for vectors that satisfy
(A− λI)2v = 0 but (A− λI)v 6= 0. For these vectors we have the solutions

etAv = eλt (v + t(A− λI)v) .

If we still do not have k independent solutions, then we find vectors for which (A − λI)3v = 0 and
(A− λI)2v 6= 0, and for such vectors we construct solutions

etAv = eλt
(

v + t(A− λI)v +
t2

2
(A− λI)2v

)

.

This procedure is continued till we have k solutions (by the properties of eigenvalues we have to repeat
this procedure at most k times).

If λ is a complex eigenvalue of multiplicity k, then also λ̄ is an eigenvalue of multiplicity k and we obtain
pairs of real solutions by taking real and imaginary parts of the formulae presented above.

Fundamental solutions and nonhomogeneous problems

Let us suppose that we have n linearly independent solutions y1(t), . . . ,yn(t) of the system y′ = Ay, where
A is an n×n matrix, like the ones constructed in the previous paragraphs. Let us denote by Y(t) the matrix
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Y(t) =







y11(t) . . . y
n
1 (t)

...
...

y1n(t) . . . y
n
n(t)






,

that is, the columns of Y(t) are the vectors yi, i = 1, . . . , n. Any such matrix is called a fundamental matrix
of the system y′ = Ay.

We know that for a given initial vector y0 the solution is given by

y(t) = etAy0

on one hand, and, by Theorem 5.7, by

y(t) = C1y
1(t) + . . .+ Cny

n(t) = Y(t)C,

on the other, where C = (C1, . . . , Cn) is a vector of constants to be determined. By putting t = 0 above we
obtain the equation for C

y0 = Y(0)C
Since Y has independent vectors as its columns, it is invertible, so that

C = Y−1(0)y0.

Thus, the solution of the initial value problem

y′ = Ay, y(0) = y0

is given by
y(t) = Y(t)Y−1(0)y0.

Since etAy0 is also a solution, by the uniqueness theorem we obtain explicit representation of the exponential
function of a matrix

etA = Y(t)Y−1(0). (5.2.20)

Let us turn our attention to the non-homogeneous system of equations

y′ = Ay + g(t). (5.2.21)

The general solution to the homogeneous equation (g(t) ≡ 0) is given by

yh(t) = Y(t)C,

where Y(t) is a fundamental matrix and C is an arbitrary vector. Using the technique of variation of
parameters, we will be looking for the solution in the form

y(t) = Y(t)u(t) = u1(t)y
1(t) + . . .+ un(t)y

n(t) (5.2.22)

where u(t) = (u1(t), . . . , un(t)) is a vector-function to be determined so that (5.2.22) satisfies (5.2.21). Thus,
substituting (5.2.22) into (5.2.21), we obtain

Y ′(t)u(t) + Y(t)u′(t) = AY(t)u(t) + g(t).

Since Y(t) is a fundamental matrix, Y ′(t) = AY(t) and we find

Y(t)u′(t) = g(t).

As we observed earlier, Y(t) is invertible, hence

u′(t) = Y−1(t)g(t)
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and

u(t) =

t
∫

Y−1(s)g(s)ds +C.

Finally, we obtain

y(t) = Y(t)C+ Y(t)
t
∫

Y−1(s)g(s)ds (5.2.23)

This equation becomes much simpler if we take etA as a fundamental matrix because in such a case Y−1(t) =
(

etA
)−1

= e−tA, that is, to calculate the inverse of etA it is enough to replace t by −t. The solution (5.2.23)
takes then the form

y(t) = etAC+

∫

e(t−s)Ag(s)ds. (5.2.24)

Spectral Decomposition.

If v is an eigenvector of a matrix A corresponding to an eigenvalue λ, then the one dimensional eigenspace
space Ẽλ has an important property of being invariant under A as well as under etA; that is, if y ∈ Ẽλ, then
Ay ∈ Ẽλ (and etAy ∈ Ẽλ for all t > 0). In fact, in this case, y = αv for some α ∈ R and

Ay = αAv = αλv ∈ Ẽλ.

Similarly, etAy = eλtαv ∈ Ẽλ. Thus, if A is diagonalizable, then the evolution governed by A can be decom-
posed into n independent scalar evolutions occurring in eigenspaces of A. The situation is more complicated
when we have multiple eigenvalues as the one dimensional spaces spanned by generalized eigenvectors are not
invariant under A. However, we can show that the each generalized eigenspace spanned by all eigenvectors
and generalized eigenvectors corresponding to the same eigenvalue is invariant under A.

We start with the following property of Eλi
which is important in this context.

Lemma 5.9. Let Eλi
= Span{v1, . . . ,vni} be the generalized eigenspace corresponding to an eigenvalue λi

and let vr satisfy
(A− λiI)kvr = 0,

for some 1 < k < ni, while (A− λiI)k−1vr = 0. Then vr satisfies

(A− λiI)vr = vr
′

, (5.2.25)

where (A− λiI)k−1vr
′

= 0 and

(A− λiI)k−1vr = vr
′

, (5.2.26)

where vr
′

is an eigenvector.

Proof. Let Eλi
= Span{v1, . . . ,vnj} be grouped so that the first νi elements: {v1, . . . ,vνi} are the eigen-

vectors, {vρ}νi+1≤ρ≤r′ satisfy (A− λI)2vρ = 0, etc. Then vρ, νi + 1 ≤ ρ ≤ r′, satisfies

0 = (A− λI)2vρ = (A− λI)(A − λI)vρ.

Since vρ is not an eigenvector, 0 6= (A − λI)vρ must be an eigenvector so that any vρ with νi + 1 ≤ ρ ≤ r′

satisfies (after possibly multiplication by a scalar)

(A− λI)vρ = vj

for some eigenvector vj , j ≤ νi. If r
′ < ni, then the elements from the next group, {vρ}r′+1≤ρ≤r′′ satisfy

0 = (A− λI)3vρ = (A− λI)(A − λI)2vρ (5.2.27)
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and since vρ in this range does not satisfy (A− λI)2vρ = 0, we may put

(A− λI)2vρ = vj (5.2.28)

for some 1 ≤ j ≤ νi; that is, for some eigenvector vj . Alternatively, we can write (5.2.27) as

(A− λI)2(A− λI)vρ = 0

and since vρ is not an eigenvector,
(A− λI)vρ = vρ

′

(5.2.29)

for some ρ′ between νi + 1 and r′. By induction, we obtain a basis of Eλ consisting of vectors satisfying
(5.2.28) where on the right-hand side stands a vector of the basis constructed in the previous cycle. ✷

An important corollary of this lemma is

Corollary 5.10. Each generalized eigenspace Eλi
of A is invariant under A; that is, for any v ∈ Eλi

we
have Av ∈ Eλi

. It is also invariant under Ak, k = 1, 2, . . . and etA, t > 0.

Proof. We use the representation of Eλi
obtained in the previous lemma. Indeed, let x =

∑ni

j=1 ajv
j be an

arbitrary element of Eλi
. Then

(A− λiI)x =

ni
∑

j=1

aj(A− λiI)vj

and, by construction, (A − λiI)vj = vj
′

for some j′ < j (belonging to the previous ’cycle’). In particular,
(A− λiI)vj = 0 for 1 ≤ j ≤ νi (eigenvectors). Thus

Ax = λx−
∑

j′>νi

aj′v
j′ ∈ Eλ,

which ends the proof of the first part.

From the first part, by induction, we obtain that (A − λiI)kEλi
⊂ Eλi

. In fact, let x ∈ Eλi
and assume

(A−λiI)k−1x ∈ Eλi
. Then (A−λiI)kx = (A−λiI)(A−λiI)k−1x ∈ Eλi

by the induction assumption and
the first part.

For Ak we have

Akx = (A− λiI + λiI)kx =

ni
∑

j=1

aj(A− λiI + λiI)kvj

=

ni
∑

j=1

aj
k
∑

r=0
λk−ri

(

k
r

)

(A− λiI)rvj

where the inner sum must terminate at at most ni−1 term since vj are determined by solving (A−λI)νv = 0
with ν being at most equal to ni. From the previous part of the proof we see that (A− λiI)rvj ∈ Eλi

and
thus Akx.

The same argument works for etA. Indeed, for x ∈ Eλi
and using (5.2.17) we obtain

etAx = eλit
ni
∑

j=1

aje
t(A−λI)vj = eλit

ni
∑

j=1

aj

rj
∑

r=0

tr−1

(r − 1)!
(A− λI)r−1vj . (5.2.30)

with rj ≤ ni and the conclusion follows as above. ✷

This result suggests that the the evolution governed by A in both discrete and continuous case can be broken
into several simpler and independent pieces occurring in each generalized eigenspace. To write this in proper
mathematical terms, we need to introduce some notation.
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Let us recall that we have representation

etA
◦
x=





| . . . |
etAv1 . . . etAvn

| . . . |



V−1 ◦
x, (5.2.31)

where

V =





| . . . |
v1 . . . vn

| . . . |



 . (5.2.32)

Following our considerations, we select the vectors v1, . . . ,vn to be eigenvectors and generalized eigenvectors
of A as then the entries of the solution matrices can be evaluated explicitly with relative ease. We want to
split these expressions into generalized eigenspaces.

Let us introduce the matrix

Pi =





0 . . . | . . . 0
0 . . . vi . . . 0
0 . . . | . . . 0









| . . . |
v1 . . . vn

| . . . |





−1

. (5.2.33)

and note that, for x = c1v
1 + . . .+ cnv

n, Pix = civ
i; that is, Pi selects the part of x along vi. It is easy to

see, that
P2
i = Pi, PiPj = 0, (5.2.34)

Matrices with such properties are called projections; in particular Pi is a projection onto vi. Clearly,

I =

n
∑

i=1

Pi,

however, APix = ciAvi is in the span of vi only if vi is an eigenvector. Thus, as we said earlier, this
decomposition is not useful unless all vis are eigenvectors.

On the other hand, if we consider operators

Pλi
=

∑

j; vj∈Eλi

Pj, (5.2.35)

where Pi, then such operators again will be projections. This follows from (5.2.34) by termwise multiplication.
They are called spectral projections. Let σ(A) denote the set of all eigenvalues of A, called the spectrum of
A. The decomposition

I =
∑

λ∈σ(A)

Pλ, (5.2.36)

is called the spectral resolution of identity.

In particular, if all eigenvalues are simple (or semi-simple), we obtain the spectral decomposition of A in the
form

A =
∑

λ∈σ(A)

λPλ,

and for etA,

etA =
∑

λ∈σ(A)

eλtPλ. (5.2.37)

In general case, we use (5.2.36) to write

Ax =
∑

λ∈σ(A)

APλx, (5.2.38)
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where, by Corollary 5.10, we have APλx ∈ Eλ. Thus, using (5.2.34), we get Pλi
APλj

= 0 for i 6= j. Using
(5.2.35) and we obtain

PλAx = PλAPλx = APλx.
Thus, (5.2.38) defines a decomposition of the action of A into non-overlapping subspaces Eλ, λ ∈ σ(A),
which is called the spectral decomposition of A.

To give spectral decomposition of etA, generalizing (5.2.37), we observe that, by Corollary 5.10, alsoAkPλx ∈
Eλ and etAPλx ∈ Eλ. Therefore

etAx =
∑

λ∈σ(A)

eλtPλx =
∑

λ∈σ(A)

eλtqλ(t)x, (5.2.39)

where qλ are polynomials in t, of degree strictly smaller than the algebraic multiplicity of λ, and with vector
coefficients being linear combinations of eigenvectors and associated eigenvectors corresponding to λ.

Planar linear systems

In this section we shall present a complete description of all orbits of the linear differential system

y′ = Ay (5.2.40)

where y(t) = (y1(t), y2(t)) and

A =

(

a b
c d

)

.

We shall assume that A is invertible, that is, ad− bc 6= 0. In such a case y = (0, 0) is the only equilibrium
point of (5.2.40).

The phase portrait is fully determined by the eigenvalues of the matrix A. Let us briefly describe all possible
cases, as determined by the theory of the preceding section. The general solution can be obtained as a linear
combination of two linearly independent solutions. To find them, we have to find first the eigenvalues of A,
that is, solutions to

(λ− λ1)(λ − λ2) = (a− λ)(d − λ)− bc = λ2 − λ(d + a) + ad− bc.

Note that by the assumption on invertibility, λ = 0 is not an eigenvalue of A. We have the following
possibilities:

a) λ1 6= λ2. In this case each eigenvalue must be simple and therefore we have two linearly independent
eigenvectors v1, v2. The expansion etAvi for i = 1, 2 terminates after the first term. We distinguish two
cases.

⋄ If λ1, λ2 are real numbers, then the general solution is given simply by

y(t) = c1e
λ1tv1 + c2e

λ2tv2. (5.2.41)

⋄ If λ1, λ2 are complex numbers, then the general solution is still given by the above formula but the
functions above are complex and we would rather prefer solution to be real. To achieve this, we note that
λ1, λ2 must be necessarily complex conjugate λ1 = ξ + iω, λ2 = ξ − iω, where ξ and ω are real. It can
be also proved that the associated eigenvectors v1 and v2 are also complex conjugate. Let v1 = u+ iv;
then the real-valued general solution is given by

y(t) = c1e
ξt(u cosωt− v sinωt) + c2e

ξt(u sinωt+ v cosωt). (5.2.42)

This solution can be written in a more compact form

y(t) = eξt (A1 cos(ωt− φ1), A2 cos(ωt− φ2)) , (5.2.43)

for some choice of constants A1, A2 > 0 and φ1, φ2.
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b) λ1 = λ2 = λ. There are two cases to distinguish.

⋄ There are two linearly independent eigenvectors v1 and v2 corresponding to λ. In this case the
general solution is given by

y(t) = eλt(c1v
1 + c2v

2). (5.2.44)

⋄ If there is only one eigenvector, then following the discussion above, we must find a vector v2

satisfying (λI −A)v2 6= 0 and (λI −A)2v2 = 0. However, since we are in the two-dimensional space, the
latter is satisfied by any vector v2 and, since the eigenspace is one dimensional, from

(λI −A)2v2 = (λI −A)(λI −A)v2 = 0

it follows that (λI −A)v2 = kv1. Thus, the formula for eAtv2 simplifies as

etAv2 = eλt
(

v2 + t(λI −A)v2
)

= eλt
(

v2 + ktv1
)

.

Thus, the general solution in this case can be written as

y(t) = eλt
(

(c1 + c2kt)v
1 + c2v

2
)

. (5.2.45)

Remark 5.11. Before we embark on describing phase portraits, let us observe that if we change the direction
of time in (5.2.40): τ = −t and z(τ) = y(−τ) = y(t), then we obtain

z′τ = −Az

and the eigenvalues of −A are precisely the negatives of the eigenvalues of A. Thus, the orbits of solutions
corresponding to systems governed by A and −A or, equivalently, with eigenvalues that differ only by sign,
are the same with only difference being the direction in which they are traversed.

We are now in a position to describe all possible phase portraits of (5.2.40). Again we have to go through
several cases.

i) λ2 < λ1 < 0. Let v1 and v2 be eigenvectors of A with eigenvalues λ1 and λ2, respectively. In the y1 − y2
plane we draw four half-lines l1, l

′
1, l2, l

′
2 parallel to v1, −v1, v2 and −v2, respectively, and emanating

from the origin, as shown in Fig 2.1. Observe first that y(t) = ceλitvi, i = 1, 2, are the solutions to
(5.2.40) for any choice of a non-zero constant c and, as they are parallel to vi, the orbits are the half-
lines l1, l

′
1, l2, l2 (depending on the sign of the constant c) and all these orbits are traced towards the

origin as t→ ∞. Since every solution y(t) of (5.2.40) can be written as

y(t) = c1e
λ1tv1 + c2e

λ2tv2

for some choice of constants c1 and c2. Since λ1, λ2 < 0, every solution tends to (0, 0) as t → ∞, and
so every orbit approaches the origin for t → ∞. We can prove an even stronger fact – as λ2 < λ1, the
second term becomes negligible for large t and therefore the tangent of the orbit of y(t) approaches the
direction of l1 if c1 > 0 and of l′1 if c1 < 0. Thus, every orbit except that with c1 = 0 approaches the
origin along the same fixed line. Such a type of an equilibrium point is called a stable node. If we have
0 < λ1 < λ2, then by Remark 5.11, the orbits of (5.2.40) will have the same shape as in case i) but the
arrows will be reversed so that the origin will repel all the orbits and the orbits will be unbounded as
t→ ∞. Such an equilibrium point is called an unstable node.

ii) λ1 = λ2 = λ < 0. In this case the phase portrait of (5.2.40) depends on whether A has one or two
linearly independent eigenvectors. In the latter case, the general solution in given (see b) above) by

y(t) = eλt(c1v
1 + c2v

2),

so that orbits are half-lines parallel to c1v
1 + c2v

2. These half-lines cover every direction of the y1 − y2
plane and, since λ < 0, each solution will converge to (0, 0) along the respective line. Thus, the phase
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Fig. 2.1 Stable node

portrait looks like in Fig. 2.2a. If there is only one independent eigenvector corresponding to λ then, by
(5.2.45),

y(t) = eλt
(

(c1 + c2kt)v
1 + c2v

2
)

for some choice of constants c1, c2, k. Obviously, every solution approaches (0, 0) as t → ∞. Putting
c2 = 0, we obtain two half-line orbits c1e

λtv1 but, contrary to the case i), there are no other half-line
orbits. In addition, the term c1v

1 + c2v
2 becomes small in comparison with c2ktv

1 as t → ∞ so that
the orbits approach the origin in the direction of ±v1. The phase portrait is presented in Fig. 2.2b. The
equilibrium in both cases is called the stable degenerate node. If λ1 = λ2 > 0, then again by Remark

2.2 Stable degenerate node
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5.11, the picture in this case will be the same as in Fig. 2.a-b but with the direction of arrows reversed.
Such equilibrium point is called an unstable degenerate node.

iii) λ1 < 0 < λ2. As in case i), in the y1− y2 plane we draw four half-lines l1, l
′
1, l2, l

′
2 that emanate from the

origin and are parallel to v1, −v1, v2 and −v2, respectively, as shown in Fig 2.3. Any solution is given
by

y(t) = c1e
λ1tv1 + c2e

λ2tv2

for some choice of c1 and c2. Again, the half-lines are the orbits of the solutions: l1, l
′
1 for c1e

λ1tv1 with
c1 > 0 and c1 < 0, and l2, l

′
2 for c2e

λ2tv2 with c2 > 0 and c2 < 0, respectively. However, the direction of
arrows is different on each pair of half-lines: while the solution c1e

λ1tv1 converges towards (0, 0) along
l1 or l′1 as t→ ∞, the solution c2e

λ2tv2 becomes unbounded moving along l2 or l′2, as t→ ∞. Next, we
observe that if c1 6= 0, then for large t the second term c2e

λ2tv2 becomes negligible and so the solution
becomes unbounded as t → ∞ with asymptotes given by the half-lines l2, l

′
2, respectively. Similarly, for

t → −∞ the term c1e
λ1tv1 becomes negligible and the solution again escapes to infinity, but this time

with asymptotes l1, l
′
1, respectively. Thus, the phase portrait, given in Fig. 2.3, resembles a saddle near

y1 = y2 = 0 and, not surprisingly, such an equilibrium point is called a saddle. The case λ2 < 0 < λ1 is

A saddle point

of course symmetric.

iv) λ1 = ξ + iω, λ2 = ξ − iω. In (5.2.43) we derived the solution in the form

y(t) = eξt (A1 cos(ωt− φ1), A2 cos(ωt− φ2)) .

We have to distinguish three cases:

α) If ξ = 0, then

y1(t) = A1 cos(ωt− φ1), y2(t) = A2 cos(ωt− φ2),

both are periodic functions with period 2π/ω and y1 varies between −A1 and A1 while y2 varies between
−A2 and A2. Consequently, the orbit of any solution y(t) is a closed curve containing the origin inside
and the phase portrait has the form presented in Fig. 3.4a. For this reason we say that the equilibrium
point of (5.2.40) is a center when the eigenvalues of A are purely imaginary. The direction of arrows
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must be determined from the equation. The simplest way of doing this is to check the sign of y′2 when
y2 = 0. If at y2 = 0 and y1 > 0 we have y′2 > 0, then all the orbits are traversed in the anticlockwise
direction, and conversely.

β) If ξ < 0, then the factor eξt forces the solution to come closer to zero at every turn so that the
solution spirals into the origin giving the picture presented in Fig. 2.4b. The orientation of the spiral
must be again determined directly from the equation. Such an equilibrium point is called a stable focus.

γ) If ξ > 0, then the factor eξt forces the solution to spiral outwards creating the picture shown in
Fig. 4c. Such an equilibrium point is called an unstable focus.

Fig.4 Center, stable and unstable foci

2.2 Stability of equilibrium solutions

Linear systems

The discussion of phase-portraits for two-dimensional linear, given in the previous section allows to determine
easily under which conditions (0, 0) is stable. Clearly, the only stable cases are when real parts of both
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eigenvalues are nonnegative with asymptotic stability offered by eigenvalues with strictly negative ones (the
case of the centre is an example of a stable but not asymptotically stable equilibrium point).

Analogous results can be formulated for linear systems in higher dimensions. By considering formulae for
solutions we ascertain that the equilibrium point is (asymptotically stable) if all the eigenvalues have negative
real parts and is unstable if at least one eigenvalue has positive real part. The case of eigenvalues with zero real
part is more complicated as in higher dimension we can have multiple complex eigenvalues. Here, again from
the formula for solutions, we can see that if for each eigenvalue with zero real part of algebraic multiplicity
k there is k linearly independent eigenvectors, the solution is stable. However, if geometric and algebraic
multiplicities of at least such eigenvalue are different, then in the solution corresponding to this eigenvalue
there will appear a polynomial in t which will cause the solution to be unstable.

Nonlinear systems–stability by linearization

The above considerations can be used to determine stability of equilibrium points of arbitrary differential
equations

y′ = f(y). (5.2.46)

Let us first note the following result.

Lemma 5.12. If f has continuous partial derivatives of the first order in some neighbourhood of y0, then

f(x+ y0) = f(y0) +Ax+ g(x) (5.2.47)

where

A =







∂f1
∂x1

(y0) . . . ∂f1∂xn
(y0)

...
...

∂f1
∂xn

(y0) . . . ∂fn∂xn
(y0)






,

and g(x)/‖x‖ is continuous in some neighbourhood of y0 and vanishes at x = y0.

Proof. The matrix A has constant entries so that g defined by

g(x) = f(x + y0)− f(y0)−Ax

is a continuous function of x. Hence, g(x)/‖x‖ is also continuous for x 6= 0. Using now Taylor’s formula for
each component of f we obtain

fi(x+ y0) = fi(y
0) +

∂fi
∂x1

(y0)x1 + . . .+
∂fi
∂xn

xn(y
0) +Ri(x), i = 1, . . . , n,

where, for each i, the remainder Ri satisfies

|Ri(x)| ≤M(‖x‖)‖x‖

and M tends to zero is ‖x‖ → 0. Thus,

g(x) = (R1(x), . . . , Rn(x))

and
‖g(x)‖
‖x‖ ≤M(‖x‖) → 0 (5.2.48)

as ‖x‖ → 0 and, f(y0) = 0, the lemma is proved.

The linear system
x′ = Ax

is called the linearization of (5.5.78) around the equilibrium point y0.
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Theorem 5.13. Suppose that f is a differentiable function in some neighbourhood of the equilibrium point
y0. Then,

1. The equilibrium point y0 is asymptotically stable if all the eigenvalues of the matrix A have negative real
parts, that is, if the equilibrium solution x(t) = 0 of the linearized system is asymptotically stable. In
particular, for sufficiently small initial conditions the solutions are defined for all t.

2. The equilibrium point y0 is unstable if at least one eigenvalue has a positive real part.

3. If all the eigenvalues of A have non-negative real part but at least one of them has real part equal to 0,
then the stability of the equilibrium point y0 of the nonlinear system (5.5.78) cannot be determined from
the stability of its linearization.

Proof. To prove 1) we use the variation of constants formula applied to (5.5.78) written in the form of
Lemma 5.12 for y(t) = x(t) + y0:

x′ = y′ = f(y) = f(x + y0) = Ax+ g(x). (5.2.49)

Thus

x(t) = etAx(0) +

t
∫

0

e(t−s)Ag(x(s))ds.

Denoting by α′ the maximum of real parts of eigenvalues of A we observe that for any α > α′

‖etAx(0)‖ ≤ Keαt‖x(0)‖, t ≥ 0,

for some constant K ≥ 1. Note that in general we have to take α > α′ to account for possible polynomial
entries in etA. Thus, since α′ < 0, then we can take also α < 0 keeping the above estimate satisfied. From
the assumption on g, for any ǫ we find δ > 0 such that if ‖x‖ ≤ δ, then

‖g(x)‖ ≤ ǫ‖x‖. (5.2.50)

Assuming for a moment that for 0 ≤ s ≤ t we can keep ‖x(s)‖ ≤ δ, we can write

‖x(t)‖ ≤ ‖eAtx(0)‖ +
t
∫

0

‖eA(t−s)g(x(s))‖ds

≤ Keαtx(0) +Kǫ

t
∫

0

eα(t−s)‖x(s)‖ds

or, multiplying both sides by e−αt and setting z(t) = e−αt‖x(t)‖,

z(t) ≤ K‖x(0)‖+Kǫ

t
∫

0

z(s)ds. (5.2.51)

Using Gronwall’s lemma we obtain thus

‖x(t)‖ = eαtz(t) ≤ K‖x(0)‖e(Kǫ+α)t,

providing ‖x(s)‖ ≤ δ for all 0 ≤ s ≤ t. Let us take ǫ ≤ −α/2K, then the above can be written as

‖x(t)‖ ≤ K‖x(0)‖eαt
2 . (5.2.52)

Assume now that ‖x(0)‖ < δ/K ≤ δ where δ was fixed for ǫ ≤ α/2K. Then ‖x(0)‖ < δ and, by continuity,
‖x(t)‖ ≤ δ for some time. Let x(t) be defined on some interval I and t1 ∈ I be the first time for which
‖x(t)‖ = δ. Then for t ≤ t1 we have ‖x(t)‖ ≤ δ so that for all t ≤ t1 we can use (5.2.52) getting, in particular,
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‖x(t1)‖ ≤ δe
αt1
2 < δ;

that is, a contradiction. Thus ‖x(t)‖ < δ if ‖x(0)‖ < δ1 in the whole interval of existence but then, if the
interval was finite, then we could extend the solution to a larger interval as the solution is bounded at the
endpoint and the same procedure would ensure that the solution remains bounded by δ on the larger interval.
Thus, the extension can be carried out for all the values of t ≥ 0 and the solution exists for all t and satisfies
‖x(t)‖ ≤ δ for all t ≥ 0. Consequently, (5.2.52) holds for all t and the solution x(t) converges exponentially
to 0 as t→ ∞ proving the asymptotic stability of the stationary solution y0.

We shall prove Statement 2 only in the two dimensional case to avoid some algebraic technicalities. For a
given system of differential equations, let φ(t,x0) be the solution x(t) of this system satisfying x(0) = x0.
Let us recall that to prove that x = 0 is unstable for (5.2.49) it is enough to show that there is ǫ > such that
for any δ > 0 there is x0 and t0 <∞ such that ‖x0‖ ≤ δ and ‖φ(t0,x(t)‖ ≥ ǫ.

Thus, let λ1 and λ2 be the eigenvalues of A. There are two possible cases.

(i) Both ℜλ1,ℜλ2 > 0. If we replace t by τ = −t, then (5.2.49) takes the form

dz

dτ
= −Az− g(z). (5.2.53)

Since the eigenvalues of −A both have negative real parts, the equilibrium z = 0 is locally asymptotically
stable. This means, in particular, that there is ǫ > 0 such that if ‖z0‖ = ǫ, then the solution z(τ) = φ(τ, z0)
approaches z = 0 as τ → ∞.

Let us fix arbitrary δ > 0 and z0 with ‖z0‖ = ǫ. Then there is τ̂ such that ‖φ(τ, z0)‖ = ǫ. Consider now
(5.2.49) with x0 = φ(τ̂ , z0). Then x(t) = φ(−τ, φ(τ̂ , z0)) satisfies x(t̂) = φ(−τ̂ , φ(τ̂ , z0)) = z0. Thus, for any
δ > 0 we can find an initial condition x0 such that the solution x(t) emanating from this initial condition
will be at a fixed distance ǫ from the origin and hence the equilibrium x = 0 is unstable.

(ii) Assume now that only one eigenvalue has a positive real part. This implies that the eigenvalues are real
and thus the second one must be non-positive. In other words, we have λ1 ≤ 0 < λ2. Then, by a linear
change of coordinates, (5.2.49) can be written in the form

y′1 = λ1y1 + g1(y1, y2),

y′2 = λ2y2 + g2(y1, y2), (5.2.54)

where the function g = (g1, g2) has the required property (5.2.48). We observe that, in principle, the solution
can contract along the y1 axis and so we have to somehow enhance the expansion along the y2-axis. We use
an argument similar to the classical Lyapunov approach. Consider the function

V (y1, y2) =
1

2
(y22 − y21). (5.2.55)

This is a hyperboloid with level curves

1

2
(y22 − y21) = c, c ≥ 0, (5.2.56)

being hyperbolas in the sector |y2| ≥ |y1| (with two intersecting lines y2 = ±y1 for c = 0. Notice that the
larger the value of c in (5.2.56), the higher is the level curve. Let us consider how the function V behaves
along the solutions to (5.2.49). From (5.2.48) we see that for any m > 0 there is ǫ such that

‖g(y)‖ ≤ m‖y‖, (5.2.57)

provided ‖y(t)‖ < ǫ . Let us assume that ‖y‖ < ǫ. Then, using the Cauchy-Schwarz inequality,

−‖y‖‖g‖ ≤ −
√

y21 + y22

√

g21 + g22 ≤ y2g2 − y1g1 ≤
√

y21 + y22

√

g1 + g22 = ‖y‖‖g‖,

we have
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dV (y(t))

dt
= y2y

′
2 − y1y

′
1 = λ2y

2
2 + y2g2(y1, y2)− λ1y

2
1 − y1g1(y1, y2)

≥ λ2y
2
2 − ‖g‖‖y‖ − λ1y

2
1

≥ λ2y
2
2 −m‖y‖2 − λ1y

2
1

= (λ2 −m)y22 + (λ1 +m)y21 .

Consider now the set
Ω = {(y1, y2); y2 > |y2|}

that is the wedge above lines y2 = ±y1. Now, chose m < λ2 and corresponding ǫ so that (5.2.57) is satisfied.
Further, consider the ball Bǫ = {y; ‖y‖ < ǫ}. Then in Ω ∩Bǫ we have V (y) > 0 and

dV (y(t))

dt
≥ (λ2 −m)y22 > 0.

Let us consider arbitrary 0 < δ < ǫ and y0 ∈ Ω with ‖y0‖ = δ. Then y0,2 > δ/
√
2. Further, y0 ∈ V −1(c0) for

some c0 > 0. Since V (y(t)) is strictly increasing as long as y(t) ∈ Ω ∩Bǫ, we see that with increasing t the
solution y(t) will move upward, through level curves V −1(c) with an increasing c. This shows, in particular,
that y(t) cannot reach y2 = ±y1 within Ω∩Bǫ. Hence y2(t) > δ/

√
2 implying dV (y(t))/dt ≥ (λ1−m)δ/

√
2 >

0. In other words, c(t) = V (y(t)) is a strictly increasing function such that y(t) ∈ V −1(c(t)) for t ∈ y−1(Bǫ).
If we assume that ‖y(t)‖ < ǫ for all t, then c(t) diverges to infinity as t → ∞ since c′(t) is bounded away
from zero by a constant. But then ‖y(t)‖ → ∞ since ‖y(t)‖ ≥ inf ‖V −1(c(t))‖ =

√

2c(t). We arrived at a
contradiction, and thus ‖y(t)‖ = ǫ in finite time.

Fig. 5.2. Level sets of V , the circle ‖y‖ = δ and ‖y‖ = ǫ, and the solution y(t).

To prove 3., it is enough to display two systems with the same linear part and different behaviour of solutions.
Let us consider

y′1 = y2 − y1(y
2
1 + y22)

y′2 = −y1 − y2(y
2
1 + y22)

with the linearized system given by



72 5 Appendices

y′1 = y2

y′2 = −y1
The eigenvalues of the linearized system are ±i. To analyze the behaviour of the solutions to the non-linear
system, let us multiply the first equation by y1 and the second by y2 and add them together to get

1

2

d

dt
(y21 + y22) = −(y21 + y22)

2.

Solving this equation we obtain

y21 + y22 =
c

1 + 2ct

where c = y21(0)+ y22(0). Thus y
2
1(t)+ y22(t) approaches 0 as t→ ∞ and y21(t)+ y22(t) < y21(0)+ y22(0) for any

t > 0 and we can conclude that the equilibrium point 0 is asymptotically stable.

Consider now the system

y′1 = y2 + y1(y
2
1 + y22)

y′2 = −y1 + y2(y
2
1 + y22)

with the same linear part and thus with the same eigenvalues. As above we obtain that

y21 + y22 =
c

1− 2ct

with the same meaning for c. Thus, any solution with non-zero initial condition blows up at the time t = 1/2c
and therefore the equilibrium solution 0 is unstable.

Example 5.14. Find all equilibrium solutions of the system of differential equations

y′1 = 1− y1y2,

y′2 = y1 − y32 ,

and determine, if possible, their stability.

Solving equation for equilibrium points 1 − y1y2 = 0, y1 − y32 = we find two equilibria: y1 = y2 = 1 and
y1 = y2 = −1. To determine their stability we have to reduce each case to the equilibrium at 0. For the first
case we put u(t) = y1(t)− 1 and v(t) = y2 − 1 so that

u′ = −u− v − uv,

v′ = u− 3v − 3v2 − v3,

so that the linearized system has the form

u′ = −u− v,

v′ = u− 3v,

and the perturbing term is given by g(u, v) = (−uv,−3v2 + v3) and, as the right-hand side of the original
system is infinitely differentiable at (0, 0) the assumptions of the stability theorem are satisfied. The eigen-
values of the linearized system are given by λ1,2 = −2 and therefore the equilibrium solution y(t) ≡ (1, 1) is
asymptotically stable.

For the other case we set u(t) = y1(t) + 1 and v(t) = y2 + 1 so that

u′ = u+ v − uv,

v′ = u− 3v + 3v2 − v3,

so that the linearized system has the form

u′ = u+ v,

v′ = u− 3v,

and the perturbing term is given by g(u, v) = (−uv, 3v2 − v3). The eigenvalues of the linearized system are
given by λ1 = −1−

√
5 and λ2 = −1+

√
5and therefore the equilibrium solution y(t) ≡ (−1,−1) is unstable.
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Flows, orbits and limit sets

From now on our interest lies with the Cauchy problem for the autonomous system of equations in Rn

x′ = f(x), (5.2.58)

x(0) = x0 (5.2.59)

To simplify considerations, we assume that f satisfies the assumptions of the Picard theorem on Rn so that
the solutions exist for all −∞ < t <∞. The flow of (5.2.58) is the map

R× R
n ∋ (t,x0) → φ(t,x0) ∈ R

n

where x(t) = φ(t,x0) is the solution to (5.2.58) satisfying x(0) = x0. We note the following important
properties of the flow:

φ(0,x) = x, (5.2.60)

φ(t1, φ(t2,x)) = φ(t1 + t2,x) (5.2.61)

for any t1, t2 ∈ R and x ∈ R. Property (5.2.61) follows from the simple lemma which w note for further
reference

Lemma 5.15. If x(t) is a solution to
x′ = f(x),

then for any c the function x̂(t) = x(t+ c) also satisfies this equation.

Proof. Define τ = t+ c and use the chain rule for x̂. We get

dx̂(t)

dt
=
dx(t+ c)

dt
=
dx(τ)

dτ

dτ

dt
=
dx(τ)

dτ
= f(x(τ)) = f(x(t+ c)) = f(x̂(t)).

In terms of the flow we can rephrase the lemma by noting that u(t) := φ(t+ t2,x) is the solution of (5.2.58),
with u(0) = φ(t2,x), and thus, by Picard’s theorem and the definition of the flow, must coincide with
φ(t, φ(t2,x)).

Remark 5.16. Occasionally we could need solutions satisfying the initial condition at t = t0 6= 0. Then we
should use the notation φ(t, t0,x)(= φ(t+ t0,x)) so that the first property above is φ(t0, t0,x) = x.

Definition 5.17. The set
Γx0 = {x ∈ R

n; x = φ(t,x0), t ∈ R}
is called the trajectory, or orbit, of the flow through x0. If x0 plays no role in the considerations, we shall
drop it from the notation. By positive (negative) half-orbit we understand the curve

Γ±
x0

= {x ∈ R
n; x = φ(t,x0), t T 0}.

The n-dimensional y-space, in which the orbits are situated, is called the phase space of the solutions of
(5.2.58).

Theorem 5.18. Assume that the assumptions of the Picard theorem are satisfied on R
n. Then

(i) there exists one and only one orbit through every point x0 ∈ R2. In particular, if the orbits of two
solutions x(t) and y(t) have one point in common, then they must be identical.

(ii) Let x(t) be a solution to (5.2.58). If for some T > 0 and some t0 we have x(t0 + T ) = x(t0), then
x(t + T ) = x(t) for all t. In other words, if a solution x(t) returns to its starting value after a time
T > 0, then in must be periodic (that is, it must repeat itself over every time interval of length T ).
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Proof. ad (i) Let x0 be any point in R2. Then, from the Picard theorem, we know that there is a solution of
the problem x′ = f(x),x(0) = x0 and the orbit of this solution passes through x0 from the definition of the
orbit. Assume now that there is another orbit passing through x0, that is, there is a solution y(t) satisfying
y(t0) = x0 for some t0. From Lemma 5.15 we know that ŷ(t) = y(t + t0) is also a solution. However, this
solution satisfies ŷ(0) = y(t0) = x0, that is, the same initial condition as x(t). By the uniqueness part of
Picard theorem we must then have x(t) = ŷ(t) = y(t+ t0) for all t for which the solutions are defined. This
implies that the orbits are identical. In fact, if ξ is an element of the orbit of x, then for some t′ we have
x(t′) = ξ. However, we have also ξ = y(t′ + t0) so that ξ belongs to the orbit of y(t). Conversely, if ξ belongs
to the orbit of y so that ξ = y(t′′) for some t′′, then by ξ = y(t′′) = x(t′′ − t0), we see that ξ belongs to the
orbit of x.

ad (ii) Assume that for some numbers t0 and T > 0 we have x(t0) = x(t0 +T ). The function y(t) = x(t+T )
is again a solution satisfying y(t0) = x(t0 + T ) = x(t0), thus from Picard Theorem, x(t) = y(t) for all t for
which they are defined and therefore x(t) = x(t+ T ) for all such t.

Example 5.19. A curve in the shape of a figure 8 cannot be an orbit. In fact, suppose that the solution passes
through the intersection point at some time t0, then completing the first loop returns after time T , that is,
we have x(t0) = x(t0 + T ). From (ii) it follows then that this solution is periodic, that is, it must follow the
same loop again and cannot switch to the other loop.

Corollary 5.20. A solution x(t) of (5.2.58) is periodic if and only if its orbit is a closed curve in R.

Proof. Assume that x(t) is a periodic solution of (5.2.58) of period T , that is x(t) = t + T . If we fix t0,
then, as t runs from t0 to t0 + T , the point x(t) = (x1(t), x2(t)) traces a curve, say C, from ξ = x(t) back to
the same point ξ without intersections and, if t runs from −∞ to ∞, the curve C is traced infinitely many
times.

Conversely, suppose that the orbit C is a closed curve (containing no equilibrium points). The orbit is
parametrically described by x(t), −∞ < t <∞ in a one-to-one way (as otherwise we would have x(t′) = x(t′′)
for some t′ 6= t′′ and, by the previous theorem, the solution would be periodic). Consider a sequence (tn)n∈N

with tn → ∞. Since the sequence x(t) is bounded, we find a subsequence t′n → ∞ such that x(t′n) → x ∈ C.
Then, however, x = x(t0) for some finite t0 since C does not contain equilibria. Consider a neighbourhood
of x(t0) which is the image of some interval (t0 − ǫ, t0 + ǫ). Since x(t′n) → x(t0), t

′
n ∈ (t0 − ǫ, t0 + ǫ) for

sufficiently large n which contradicts t′n → ∞.

Definition 5.21. The ω-limit set of the trajectory Γx0 is the set of all points p ∈ Rn such that there is a
sequence (tn)n∈N such that tn → ∞ as n→ ∞ for which

lim
n→∞

φ(tn,x0) = p.

Similarly, the α-limit set of the trajectory Γx0 is the set of all points q ∈ R
n such that there is a sequence

(tn)n∈N such that tn → −∞ as n→ ∞ for which

lim
n→∞

φ(tn,x0) = q.

Since for a given equation (5.2.58)) any trajectory is uniquely determined by any point on it (and conversely),
sometimes we shall use the notation ω(x0) instead of ω(Γx0) (and the same for α-limit sets).

Example 5.22. If v0 is an equilibrium, then Γv0 = {v0} = ω(Γv0) = α(Γv0). The only ω and α limit sets of
scalar equations are equilibria.

Example 5.23. Consider the system in polar coordinates

r′ = r(1 − r2),

θ′ = 1.
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Since r′ > 0 if r ∈ (0, 1) and r′ < 0 if r > 1, trajectories which start with 0 < r < 1 and r > 1
tend to r = 1 which, since θ′ 6= 0, is a periodic orbit. The origin r = 0 is a stationary point and so
ω({r = 0}) = α({r = 0}) = (0, 0). If r 6= 0, then

ω(Γ(r,θ)) = {(r, θ); r = 1},
and

ω(Γ(r,θ)) =

{

{(r, θ); r = 0} for r < 1,
does not exist for r > 1

We start with two observations often used in the sequel. They are seemingly obvious but require some
reflection.

Remark 5.24. 1. How do we prove that φ(t,x0) → x as t→ ∞? We take arbitrary sequence (tn)n∈N and show
that it contains a subsequence with φ(tnk

,x0) → x. In fact, assume that the above holds but φ(t,x0) 9 x.
Then there must be a sequence (tn)n∈N for which ‖φ(tn,x0)−x‖ ≥ r for some r. But such a sequence cannot
contain a subsequence converging to x, so we proved the thesis.

2. Consider a bounded sequence yn = φ(tn,x0) with tn → ∞. Then, as we know, we have a subsequence ynk

converging to, say, y. Can we claim that y ∈ ω(Γx0); that is, there is a sequence (t′n)n∈N converging to ∞
such that φ(t′n,x0)) → y? The reason it is not obvious is that by selecting ynk

= φ(tnk
,x0) we could create

a sequence {tn1 , . . . , tnk
. . .} which does not diverge to ∞ as we do not have any control on how the latter is

ordered with respect to the former. First, we note that we can assume that tn − tn−1 ≥ 1 for any n. Indeed,
(tn)n∈N must contain a subsequence with this property so, if necessary, we can select such a subsequence for
further analysis. Next, we note that we can assume that yn 6= ym for n 6= m as otherwise, by Theorem 5.18,
the orbit would be periodic since tn 6= tm and in the case of periodic orbit with period T we can take tn = nT .
Thus, ynk

6= ynl
and hence tnk

6= tnl
for k 6= l. Now, (nk)k∈N is an infinite sequence of mutually different

natural numbers and thus we can select a monotonic subsequence (nkl)l∈N.

Consider a nested sequence of balls B(y, 1/N). For each N there is nN such that ynk
= φ(tnk

,x0) for all
nk ≥ nN . In particular, each set {tnk

; nk ≥ nN} is infinite. Now, the crucial observation is that an infinite
subset of a sequence (tn)n∈N converging to ∞ must be unbounded and thus must contain a subsequence
converging to ∞. Indeed, from the definition of convergence to ∞, for each M only finite number of elements
of the sequence is smaller that M . If so, having selected φ(tN ,x0) in B(y, N−1), we select φ(tN+1,x0) in
B(y, (N +1)−1) with tN+1 > tN +1 as an infinite collection of tnk

s corresponding to ynk
∈ B(y, (N +1)−1)

must contain arbitrary large tnk
s. This shows that we have φ(tN ,x0) → y0 with tN → ∞ as N → ∞.

Lemma 5.25. ω-limit sets have the following properties:

1. If Γ is bounded, then ω(Γ ) is non-empty;

2. An ω-limit set is closed;

3. If y ∈ ω(Γ ), then Γy ⊂ ω(Γ ); that is, ω(Γ ) is invariant.

4. If Γ is bounded, then ω(Γ ) is connected;

5. If z ∈ ω(Γ ) and Γ ∩ ω(Γ ′) 6= ∅, then z ∈ ω(Γ ′).

6. If Γy is bounded, then φ(t,y) → ω(Γy) as t → ∞ in the sense that for each ǫ > 0 there is t > 0 such
that for every t′ > t there is p ∈ ω(Γy) (possibly depending on t) which satisfies ‖φ(t,y)− p‖ < ǫ.

The same properties are valid for α-limit sets.

Proof. ad 1) Let x ∈ Γ . Taking e.g. φ(n,x) we obtain a bounded sequence of points which must have a
converging subsequence with the limit in ω(Γ ) by Remark 5.24.

ad 2) Let (pn)n∈N be a sequence of points of ω(Γx) converging to p ∈ Rn. We must prove that there is a
sequence tn → ∞ such that φ(tn,x) → p. We proceed as follows. For ǫ = 1/2 we can find pn1 and tn1 such
that
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‖p− φ(tn1 ,x)‖ ≤ ‖p− pn1‖+ ‖pn1 − φ(tn1 ,x)‖ ≤ 1/2 + 1/2 = 1

Similarly, for ǫ = 1/4 we can find pn2 and tn2 > tn1 + 1 such that

‖p− φ(tn2 ,x)‖ ≤ ‖p− pn2‖+ ‖pn2 − φ(tn2 ,x)‖ ≤ 1/4 + 1/4 = 1/2,

and, by induction, for any given k we can find pnk
and tnk

> tnk−1
+ 1 such that

‖p− φ(tnk
,x)‖ ≤ ‖p− pnk

‖+ ‖pnk
− φ(tnk

,x)‖ ≤ 1/2k + 1/2k = 1/k.

Since the sequence (tnk
)k∈N is infinite and increasing by 1 at each step, it must diverge to infinity. Thus,

p ∈ ω(Γx).

ad 3) Let y ∈ ω(Γx) and consider arbitrary q ∈ Γy. Thus q = φ(t′,y). Since y is in the ω-limit set,

y = lim
tn→∞

φ(tn,x).

But
φ(tn + t′,x) = φ(t′, φ(tn,x)) → φ(t′,y) = q

by continuity of the flow with respect to the initial value. Since t′ + tn → ∞, we obtain that q ∈ ω(Γy) and
since q ∈ ω(Γx) was arbitrary, the thesis follows.

ad 4.) By 1.), the set ω(Γ ) is bounded and closed. Thus, if it was not connected, then ω(Γ ) = A ∪ B with
A,B closed bounded and a distance d > 0 apart. Fix x ∈ Γ and chose v ∈ A. There is tn → ∞ such that
xn := φ(tn,x) → v. Thus, for sufficiently large n, the distance between xn and B is not less than 3d/4. Let
w ∈ B. For each xn we can find t′n > 0 such that the distance between yn = φ(t′n,xn) = φ(tn + t′n,x) and
w is not greater than d/4, thus the distance between A and yn is at least 3d/4. On the other hand, from
the continuity of the flow, for each n there is a point zn = φ(t′′n,x) whose distance from A is d/2. The set of
such points is bounded and thus have a convergent subsequence whose limit z ∈ ω(Γ ) is at the distance d/2
from A, which contradicts the assumption that the components of ω(Γ ) are d apart.

ad 5.) Let y ∈ ω(Γ ) and y = limt′n→∞ φ(t′n,x) with x ∈ Γ ′. Let us fix ǫ > 0. From continuity of the flow with
respect to the initial condition, we know that for a given ǫ and T , there is δT,ǫ such that ‖φ(t,x1)−φ(t,x2)‖ < ǫ
provided ‖x1 − x2‖ < δT,ǫ for all 0 ≤ t ≤ T .

For this given ǫ > 0 we find tn such that ‖z − φ(tn,y)‖ < ǫ and also t′n such that ‖y − φ(t′n,x0)‖ < δtn,ǫ
(since y ∈ ω(Γ ′)). Hence

‖z− φ(tn, φ(t
′
n,x0))‖ ≤ ‖z− φ(tn,y)‖ + ‖φ(tn,y)− φ(tn, φ(t

′
n,x0))‖ < 2ǫ

but since φ(tn, φ(t
′
n,x0)) = φ(tn + t′n,x0), we see that z ∈ ω(Γ ′) (we note that the sequence τn := tn + t′n

can be made increasing with n and thus convergent to ∞ as tn and t′n are).

ad 6.) Suppose that the statement is false; that is, there is ǫ > 0 and a sequence tn → ∞ with ‖φ(tn,y)−p‖ > ǫ
for all p ∈ ω(Γy). This means that the sequence φ(tn,y) stays at least ǫ away from ω(Γy). But the orbit
is bounded so, by Remark 5.24, there is a converging subsequence φ(tnk

,y) of this sequence which, by the
definition of ω(Γy) must belong to it.

3 The Poincaré-Bendixon Theory

The linearization theorem, Theorem 5.13, may suggest that locally nonlinear dynamics is the same as linear.
This is, however, false even in 2 dimensions. The Poincaré-Bendixon theory provides a complete description
of two-dimensional dynamics by giving full classification of possible limit sets for planar autonomous systems.
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3.1 Preliminaries

Let φ(t,x) be the flow generated by the system

y′ = f(y), (5.3.62)

where y = (y1, y2) ∈ R
2. Throughout this chapter we assume that f is a differentiable function. By a local

transversal to φ we mean a line segment L which all trajectories cross from one side. In other words, the
field f always forms either an acute or an obtuse angle with the normal to L.

Lemma 5.26. If x0 is not a stationary point of (5.3.62), then there is always possible to construct a local
transversal in a neighbourhood of x0.

Proof. If x0 is not stationary point, then v = f(x0) 6= 0. Take coordinate system with origin at x0 and
axes parallel to v and w ⊥ v. Let (v, w) be the coordinates of a point in this system. Then (5.3.62) can be
written as

v′ = a+O(‖(v, w) − x0‖),
w′ = O(‖(v, w) − x0‖).

Here a 6= 0 is the norm of v. Now we can chose line L through x0 along w. As long as we are close to x0,
v′ 6= 0 and the trajectories cross L in the same direction (positive if a > 0 and negative otherwise). ✷

Having found a local transversal L at x we can construct a flow box around x by taking a collection of
trajectories with starting points at L and t running from −δ to δ with δ small enough that all trajectories
exist over this time interval; that is

Vx = {y; y = φ(t, z), z ∈ L, t ∈ (−δ, δ)}.

An important property of flow box is that if a trajectory starts close enough to x, it crosses L (either forward
or backward). Precisely speaking, we have

Lemma 5.27. Let L be a transversal at x. There is a neighbourhood D of x such that for any y ∈ D there
are t1 < t2 such that the trajectory segment Γt1,t2 = {z; z = φ(t,y), t ∈ (t1, t2)} ⊂ D and Γt1,t2 ∩ L 6= ∅.

Proof. We chose coordinates (z1, z2) as in the proof of Lemma 5.26 so that x = (0, 0) and f(x) = (a, 0)
where we select a > 0. Then L is on the x2 axis. Let Dδ be the ball ‖(z1, z2)‖ = |z1| + |z2| < δ (that is a
square with diagonals on L and f(x). We can chose δ small enough for the following condition to hold:

a) The slope of f(z) is strictly between −1 and 1; that is, |f2(z)/f1(z)| < 1,

b) f1(z) > a/2,

for z ∈ Dδ. This is possible by continuity of f in a neighbourhood of x. Notice, in particular, that f is always
transversal to the sides of Dδ and pointing outward at the righ-hand side and inward at the left-hand side
of it. Hence, a trajectory can only leave Dδ at the right and enter at the left. Now, clearly, for any solution
z(t)

z1(t)− z1(0) =

t
∫

0

f1(z(s))ds >
a

2
t.

Since the maximum value of z1(t) − z1(0) is 2δ, the solution starting from any point z0 ∈ Dδ must leave it
in time shorter than 4δ/a. Let t2 be the smallest value at which φ(t, z0) intersects the right-hand side of Dδ.
Similarly, φ(t, z0) intersects the left-hand side of Dδ at some time t ∈ (−4δ/a, 0) nd hence there is t1 < 0
at which this happens for the first time (going backward). Hence the segment Γt1,t2 = {z; z = φ(t,y), t ∈
(t1, t2)} ∈ D and also Γt1,t2 ∩ L 6= ∅. ✷



78 5 Appendices

Lemma 5.28. If a trajectory Γx intersects a local transversal several times, the successive crossings points
move monotonically along the transversal.

Proof. Consider two successive crossings y1 = φ(t1,x) and y2 = φ(t2,x) with, say, t1 < t2 and a closed
curve S composed of the piece Γ ′ of the trajectory between y1 and y2 and the piece L′ of the transversal
between these two points. Using Jordan’s theorem, S divides R2 into two disjoint open sets with one, say D1,
bounded the other, sayD2, unbounded. We can assume that the flow through L is from D1 into D2. Consider
y3 = φ(t3,x) ∈ L with t3 > t2 and first assume y3 ∈ D2. Taking t

′ = t2+ǫ with ǫ sufficiently small we can be
sure that φ(t′,x) is outside D1. If we assume that y3 ∈ L′, then there is ǫ′ such that φ(t3−ǫ′,x) ∈ D1. Hence,
the trajectory between t′ and t3 − ǫ′ joins points of D1 and D2. However, it cannot cross Γ

′ as trajectories
cannot cross; also it cannot enter D1 through L′ by its definition. By similar argument, y3 cannot belong
to the sub-segment of L which is inside D1 (we note that this sub-segment cannot stick outside D1 as this
would require that a point moves along a piece of trajectory in two directions at once). Thus, it must belong
to subsegment with y2 as the end-point. ✷

An important corollary is:

Corollary 5.29. If x ∈ ω(Γx0) is not a stationary point and x ∈ Γx0 , then Γx(= Γx0) is a closed curve.

Proof. Since x ∈ Γx0 , ω(Γx0) = ω(Γx) (the limit set depends on the trajectory and not on the initial point).
Hence, x ∈ ω(Γx). Chose L to be a local transversal at x. By Lemma 5.27, for sufficiently large T we have
an increasing sequence ti > ti−1 ≥ T such that φ(ti,x) → x as ti → ∞ and φ(ti,x) ∈ L (see Lemma 5.27).
Also, φ(0,x) = x. Suppose φ(ti,x) 6= x, ti > T , then successive intercepts are bounded away from x which
contradicts the fact that x ∈ ω(Γx). Hence φ(t1,x) = x for some t and, by Theorem 5.18, the solution is
periodic. ✷

Theorem 5.30. If an orbit Γx0 enters and does not leave a closed bounded domain Ω which contains no
equilibrium points, then ω(Γx0) is a closed orbit.

Proof. First we prove that ω(Γx0) contains a closed orbit. Let x ∈ ω(Γx0). There are two possibilities.

(i) If x ∈ Γx0 , then by Corollary 5.29, Γx0 is a closed orbit.

(ii) If x /∈ Γx0 , then since x ∈ ω(Γx0), the orbit Γx ⊂ ω(Γx0) by Lemma 5.25 (3) and, because ω(Γx0) is closed,
ω(Γx) ⊂ ω(Γx0). Let x

∗ ∈ ω(Γx) ⊂ ω(Γx0). If x
∗ ∈ Γx then, again by Corollary 5.29, Γx ⊂ ω(Γx0) is a closed

orbit. This leaves the only possibility that x∗ /∈ Γx. Consider a local transversal L at x∗. Arguing as in the
proof of Corollary 5.29 we have a sequence (pi)i∈N, pi = φ(ti,x) ∈ L with pi → x∗ as ti → ∞ in a monotonic
way. On the other hand, pi ∈ ω(Γx0) and L is also a local transversal at each pi. This means that there are
sequences on the trajectory Γx0 converging monotonically to, say, pi and pi+1. Assume ‖pi −pi+1‖ < ǫ We
have, say, ‖φ(t1,x0) − pi‖ < ǫ/4, then there must be t2 > t1 such that ‖φ(t2,x0) − pi+1‖ < ǫ/4 but then
the next t3 at which Γx0 intersects L must be closer than ǫ/4 to both pi and pi+1, by Lemma 5.28. This is
a contradiction, which shows that x∗ ∈ Γx and thus ω(Γx0) contains a closed orbit.

The final step of the proof is to show that this orbit, say, Γ is equal to ω(Γx0). To do this, we must show that
φ(t,x0) → Γ as t → ∞ in the sense of Lemma 5.25(6); that is, that for each ǫ > 0 there is t > 0 such that
for every t′ > t there is p ∈ Γ (possibly depending on t) which satisfies ‖φ(t,x0) − p‖ < ǫ. The argument
again uses the properties of a local transversal. Let z ∈ Γ ⊂ ω(Γx0) and consider a local transversal L at z.
Using Lemmas 5.27 and 5.28 we find a sequence t0 < t1 < . . . tn → ∞ such that xn = φ(tk,x0) ∈ L, xn → z
(in a monotonic way along L). Moreover, we select the sequence (tn)n∈N to be subsequent intercepts of Γx0

with L so that φ(t,x0) /∈ L for tn < t < tn+1. Thus, we must estimate what happens to φ(t,x0) for t 6= tn.
For any δ there is n0 such that for n ≥ n0 ‖φ(tn,x0) − z‖ < δ. Hence, We by continuity of the flow with
respect to the initial condition, for any fixed T an any ǫ there is n0 such that for any n ≥ n0 and 0 ≤ t′ ≤ T

‖φ(t′,xn)− φ(t′, z)‖ = ‖φ(t′ + tn,x0)− φ(t′, z)‖ < ǫ.

Now, we observe that if t′ changes from 0 to tn+1 − tn, the point xn = φ(t′ + tn,x0) moves from xn to xn+1

which is even closer to z than xn and the trajectory after xn+1 will again stay close to Γ for some finite
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time T . However, at each cycle the trajectory may wander off when t′ > T So, the problem is to determine
whether it is possible for tn+1 − tn to become arbitrary large. We know that Γ is closed, hence it is an
orbit of a periodic solution, say, φ(λ, z) = z. Using again continuity of the flow with respect to the initial
condition, for any xn sufficiently close to z (that is, for all sufficiently large n), φ(λ,xn) will be in some some
neigbourhood Dδ of z (described in Lemma 5.27). But then for all such n, there is t′n ∈ (−δ, δ) such that
φ(λ + t′n,x0) ∈ L. This means that tn+1 − tn ≤ λ + δ and the time interval T can be chosen independently
of n. Precisely, let us fix ǫ > 0, then there is η such that for all ‖xn − z‖ ≤ η and |t| < λ+ δ we have

‖φ(t′,xn)− φ(t′, z)‖ = ‖φ(t′ + tn,x0)− φ(t′, z)‖ < ǫ.

For given η and δ there is n0 such that for all n ≥ n0 we have both ‖xn − z‖ < η and tn+1 − tn ≤ λ + δ.
Hence, taking t > tn0 and selecting n with tn ≤ t ≤ tn+1 we have, using t = t′ + tn with 0 < t′ < λ+ δ

‖φ(t,x0)− φ(t− tn, z‖ = ‖φ(t− tn,xn)− φ(t− tn, z‖ < ǫ

and the proof of the theorem is complete. ✷

Remark 5.31. The proof of Theorem 5.30 actually shows that a stronger result is valid. Namely, if x ∈ ω(Γx0)
is such that ω(Γx) contains a non-stationary point, then ω(Γx) is a closed orbit. This fact will be used in the
proof of the following corollary.

Corollary 5.32. Let Γx be a bounded trajectory of the system y′ = f(y) with C1 planar field for which
equilibria are isolated. Then the following three possibilities hold:

1. ω(Γx) is an equilibrium,

2. ω(Γx) is a periodic orbit,

3. ω(Γx) consists of a finite number of equilibria p1, . . . ,pk connected by trajectories Γ with α(Γ ) = pi and
ω(Γ ) = pj.

Proof. By Lemma 5.25(1), the set ω(Γx) is bounded an closed and thus can contain only finite number
of equilibria. If it contains only equilibria, then it contains only one of them, since ω(Γx) is connected by
Lemma 5.25(4), which covers the first possibility. If this is not the case, then ω(Γx) contains non-equilibria
and, by Lemma 5.25(3) (invariance), it contains trajectories through these points. Let u ∈ ω(Γx) be an
arbitrary non-equilibrium. If ω(Γu) and α(Γu) are equilibria, then case 3. holds. Assume then that ω(Γu)
contains a non-equilibrium point, say, z. Then, arguing as in the proof of Theorem 5.30 (which is possible as
z is a non-equilibrium, Γu is a periodic orbit, which means that ω(Γx) contains a periodic orbit. But then,
by the second part of the proof of Theorem 5.30, the whole ω(Γx) is a periodic orbit. The same argument
applies if α(Γu) contains a non-equilibrium point. ✷

Remark 5.33. Case 3 of the previous corollary can be fine-tuned. Namely, if p1 and p2 are two equilibria in
ω(Γx), then there is at most one trajectory Γ ⊂ ω(Γx) with α(Γ ) = p1 and ω(Γ ) = p2. Indeed, assume to
the contrary that we have two trajectories Γ1, Γ2 with this property and take points q1 ∈ Γ1 close to p1 and
q2 ∈ Γ2 close to p2. Since qi are not equilibria, there are local transversals L1 and L2 at these points. Since
Γi, i = 1, 2 are in ω(Γx) the trajectory Γx crosses L1 in the same direction as Γ1 and L2 in the direction of
Γ2. Since the direction of the field along the transversals is the same as of the above trajectories, the region
bounded by L1, the segment of Γx between L1 and L2, L2, and corresponding segments of Γ2 and Γ1, is
positively invariant (that is the trajectory Γx must stay inside). But this is a contradiction as the segments
of trajectories Γ1 and Γ2 outside this region form a part of the limit set for Γx.

Hence, if ω(Γx) contains two equilibria, then they must be joined either by a single trajectory, or two trajec-
tories running in opposite directions (and thus forming, together with the equilibria, a loop).

We say that a closed orbit Γ is a limit cycle if for some x /∈ Γ we have Γ ⊂ ω(Γx) (ω-limit cycle) or
Γ ⊂ α(Γx) (α-limit cycle).
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In the proof of Theorem 5.30 we showed that a limit cycle Γ enjoys the following property: there is x /∈ Γ
such that

φ(t,x) → Γ, t→ ∞.

Geometrically it means that some trajectory spirals towards Γ as t→ ∞ (or t→ −∞). It follows that limit
cycles have certain (one-sided) stability property.

Proposition 5.34. Let Γ be an ω-limit cycle such that Γ ⊂ ω(Γx), x /∈ Γ . Then there is a neighourhood V
of x such that for any y ∈ V we have Γ ∈ ω(Γy).

Proof. Let Γ be an ω-limit cycle and let φ(t,x) spirals toward Γ as t→ ∞. Take z ∈ Γ and a transversal L
at z. Take t0 < t1 such that x0 = φ(t0,x),x1 = φ(t1,x) ∈ L with φ(t,x) /∈ L for t0 < t < t1. For sufficiently
large t0 the segment Lx0,x1 of L between x0 and x1 does not intersect Γ . Then the region A bounded by Γ ,
the part of Γx between x0 and x1 and Lx0,x1 is forward invariant, as is the set B = A \ Γ . For sufficiently
large t > 0, φ(t,x) is in the interior of A. But than, the same is true for φ(t,y) for y sufficiently close to x.
Such φ(t,y) stays in A and by the Poincareé-Bendixon theorem, must spiral towards Γ . ✷

Corollary 5.35. Let Γ be a closed orbit enclosing an open set Ω (contained in the domain of f). Then Ω
contains an equilibrium.

Proof. Assume Ω contains no equilibrium. Our first step is to show that there must be the ‘smallest’ closed
orbit. We know tat orbits don’t intersect so if we have a collection of closed orbits Γn, then the regions Ωn
enclosed by them form a nested sequence with decreasing areas An. We also note that if we have a sequence
xn of points on Γn converging to x ∈ Ω, then x also is on a closed orbit. Otherwise, by Poincaré-Bendixon
theorem, φ(t,x) would spiral towards a limit cycle but then this would be true for φ(t,xn) for sufficiently
large n, by virtue of the previous result, which contradict the assumption that xn is on a closed orbit.

Let 0 ≤ A be an infimum of all areas of regions enclosed by closed orbits. Then A = lim
n→∞

An for some

sequence of Γn. Let xn ∈ Γn; since Ω ∪ Γ is compact, we may assume xn → x and, by the previous part,
x belongs to a closed orbit Γ0. By using the standard argument with transversal at x we find that Γn get
arbitrarily close to Γ0 so A is the area enclosed by Γ0. Since Γ0 does not reduce to a point, A > 0. But then the
region enclosed by Γ0 contains neither equilibria nor closed orbit, which contradicts the Poincaré-Bendixon
theorem. ✷

A difficult part in applying the Poincareé-Bendixon theorem is to find the trapping region; that is, the closed
and bounded region which contains no equilibria and which trajectories cannot leave. Quite often this will
be an annular region with the equilibrium (source) in the hole, so that the trajectories can enter through
the inner boundary and the outer boundary chosen in such a way that the vector field there always points
inside the region. We illustrate this in the following example:

Example 5.36. Show that the second order equation

z′′ + (z2 + 2(z′)2 − 1)z′ + z = 0

has a nontrivial periodic solution. We start with writing this equation as the system

x′ = y,

y′ = −x+ y(x2 + 2y2 − 1)

Clearly, (0, 0) is an equilibrium and by linearization we see that this is an unstable equilibrium hence there is
a chance that the flow in a small neighbourhood of the origin will be outward. Thus, let us write the equation
in polar coordinates. We get

d

dt
(x2 + y2) = 2xx′ + 2yy′ = 2y2(1− x2 − 2y2).

We observe that 1 − x2 − 2y2 > 0 for x2 + y2 < 1/2 and 1 − x2 − 2y2 < 0 for x2 + y2 > 1. Hence, any
solution which starts in the annulus 1/2 < x2 + y2 < 1 must stay there. Since the annulus does not contain
an equilibrium, there must be a periodic orbit inside it.
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Let us consider a more sophisticated example.

Example 5.37. Glycolysis is a fundamental biochemical process in which living cells obtain energy by breaking
down sugar. In many cells, such as yeast cells, glycolysis can proceed in an oscillatory fashion.

A simple model of glycolysis presented by Sel’kov reads

x′ = −x+ ay + x2y,

y′ = b− ay − x2y, (5.3.63)

where x and y are, respectively, concentrations of ADP (adenosine diposphate) and F6P (fructose-6-
phosphate), and a, b > 0 are kinetic parameters. We shall show that under certain assumptions there are,
indeed, periodic solutions to the system.

First we find nullclines (that is, curves along which one or the other time derivative is zero). Note that an
equilibria are the intersection points of nullclines. We obtain that x′ = 0 along the curve y = x/(a + x2)
and y′ = 0 along y = b/(a+ x2). The nullclines are sketched on Figure 5.3, along with some representative
vectors.

Fig. 5.3. Isoclines of (5.3.63)

Our first step is to construct a trapping region. First we observe that the trajectory cannot escape across
any coordinate axis and also, since y′ < 0 above both nullclines, no trajectory can cross a horizontal line in
this region going upward. This leaves only the question of closing this region from the right. We note that
x′ + y′ = b − x < 0 as long as x > b. Thus, in this region y′ < −x′ and, since x′ > 0, we have y′/x′ < −1
which geometrically means that the slope is steeper than any straight line with slope −1. In other words, any
trajectory in this region will cross a line with the slope −1 from above-right to below-left. Hence, if we draw
such a line crossing the horizontal line y = b/a at x = b, then trajectories from the left will not be able to
escape through it. Finally, we continue the line till it intersects with the nullcline y = x/(a + x2) and note
that below this nullcline x′ < 0 so that we can close the region by a vertical segment to obtain a trapping
region, see Fig 5.4: Can we conclude that there is a periodic trajectory? Well, no as there is an equilibrium
(b, b/(a+ b2)) inside the region. However, this is not necessarily a bad news. If the equilibrium is a repeller
(real parts of all eigenvalues are negative), then there is a neighbourhood V of the equilibrium such that any
trajectory starting from V will eventually reach a sphere of a fixed radius (see the proof of point 2 of Theorem
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Fig. 5.4. Trapping region for (5.3.63).

5.13. Thus, the boundary of V can be taken as the inner boundary of the required set. So, we need to prove
that (b, b/(a+ b2)) is a repeller. The Jacobi matrix at for (5.3.63) at (x0, y0) is

J =

(

−1 + 2x0y0 a+ x0
−2x0y0 −(a+ x20)

)

.

The Jacobian at the equilibrium is a+ b2 and the trace τ is

τ = −b
2 + (2a− 1)b2 + (a+ a2)

a+ b2
.

Hence, the equilibrium is unstable τ > 0, and stable τ > 0. The dividing line τ = 0 occurs when

b2 =
1

2
(1− 2a±

√
1− 4a)

and this curve is shown on Fig. 5.6. For parameters in the region corresponding to τ > 0 we are sure that
there is a closed orbit of the system.

4 Other criteria for existence and non-existence of periodic orbit

When we were discussing the Liapunov function, we noted the cases such that if V was constant on trajec-
tories, then the trajectories are closed so that the solutions are periodic. It turns out that this is a general
situation for conservative systems. To be more precise, let us consider the system

y′ = f(y). (5.4.64)

We say that there is a conservative quantity for this system if there exists a scalar continuous function E(x)
which is constant along trajectories; that is d

dtE(φ(t,x0)) = 0. To avoid trivial examples, we also require
E(x) to be nonconstant on every open set. We have the following result.
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Fig. 5.5. Repelling character of equilibrium (5.3.63)

Fig. 5.6. Bifurcation curve for (5.3.63)



84 5 Appendices

Fig. 5.7. Closed orbit for (5.3.63)

Proposition 5.38. Assume that there is a conserved quantity of the system (5.4.64), where y ∈ R2, and
that y∗ is an isolated fixed point of (5.4.64). If y∗ is a local minimum of E, then there is a neighbourhood of
y∗ in which all trajectories are closed.

Proof. Let Bδ = B(y∗, δ) be a closed neighbourhood of y∗ in which y∗ is absolute minimum. We can assume
E(y∗) = 0. Since E is constant on trajectories, each trajectory is contained in a level set of E:

Ec = {(y1, y2); E(y1, y2) = c} ∩Bδ.

Ec is a nonempty bounded closed set for all sufficiently small 0 < c ≤ c0. We use Theorem 5.30. For each
c there are two possibilities: either the trajectory stays in Ec in which case also its ω-limit set is in Ec and
thus it is a closed orbit or the trajectory leaves Ec so that there is a point y on the trajectory with E(y) = c
and y = δ.

If the second case happens for some cn → 0, then we have a sequence yn with ‖yn‖ = δ for which E(yn)cn →
0. But then, by continuity of E we find a point y0 with E(y0) = 0, contradicting the assumption that y∗ is
an absolute minimum in Bδ. ✷

Another case is concerned with ‘time reversible’ systems. We say that the system

y′1 = f1(y1, y2),

y′2 = f2(y1, y2), (5.4.65)

is time reversible, if it is invariant under t → −t and y → −y. If f is odd in y2 and f2 is even in y2, then
such system is ‘time-reversible’.

Proposition 5.39. Suppose y∗ = (0, 0) is the center for the linearization of a reversible system (5.4.65).Then
sufficiently close to the origin all trajectories are closed curves.

Proof. Change coordinates we can write (5.4.65) as

x′1 = −x2 + ω1(x1, x2),

x′2 = x1 + ω2(x1, x2), (5.4.66)
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Let A denotes the matrix of the linearization. Then

x(t) = etAx0 + etA
t
∫

0

e−sAω(x(s))ds,

where ω = (ω1, ω2). The trajectories of the linear part are circles traversed anticlockwise and so ‖etAx0‖ =
‖x0‖ for any t. Hence

‖x(t)‖ ≤ ‖x0‖+
t
∫

0

‖ω(x(s))‖ds,

Our aim is to show that the trajectory of the nonlinear system follows closely the trajectory of the linear
system and thus starting from x0 on the positive horizontal semiaxis, it will cross the negative positive
semiaxis. First, let us fix ξ > 1 satisfying ln ξ < 1/ξ. Next, from the properties of linearization, for any ǫ we
find δ such that ‖ω(x)‖ ≤ ǫ‖x‖ as long as ‖x‖ ≤ δ. Next, select x0 with ‖x0‖ = δ/ξ. Then, by the Gronwall
inequality

‖x(t)‖ ≤ ‖x0‖eǫt ≤ δ

as long as t ≤ ln ξ/ǫ > 0. Next, calculate the norm of the difference z(t) between the nonlinear and linear
solution starting from x0 over the time interval [0, ln ξ/ǫ]. We obtain

‖z(t)‖ ≤
t
∫

0

‖ω(y(s)‖ds ≤ ǫtδ ≤ δ ln ξ < δ/ξ < δ.

Hence, x(t) stays in the annulus surrounding the circle of radius δ/ǫ with the inner radius δ(1/ξ − ln ξ). In
particular, taking ǫ sufficiently small, we can take t = 3π/2 in which case x(t) must be necessarily below
the horizontal axis. Thus, there mast be a point t′ > 0 with x1(t

′) < 0 and x2(t
′) = 0. Now, trajectories

are invariant with respect to the change t → −t and y → −y and hence we can complete the constructed
trajectory to a closed one.

Since δ can be taken arbitrarily small, we see that all trajectories close to (0, 0) are closed. ✷

Sometimes it is equally important to show that there are no periodic orbits in certain regions. We have
already seen one such criterion related to Lyapunov functions: if there is a strict Lyapunov function in
certain region surrounding an equilibrium, then there are no periodic orbits in this region. Here we consider
two more ‘negative’ criteria.

Consider a system y′ = f(y) where f = −∇V in some region Ω for a scalar function V . Such systems are
called gradient systems with potential function V . We have

Proposition 5.40. Closed orbits are impossible in gradient systems with V 6= const.

Proof. Suppose that there is a closed orbit Γ corresponding to a periodic solution with period T . Define
∆V to be the change of V along Γ . Clearly, ∆V = 0 as the the orbit is closed and V is continuous. On the
other hand

∆V =

T
∫

0

dV

dt
dt =

T
∫

0

∇V · y′dt = −
T
∫

0

‖y′‖2dt < 0

as the trajectory is not an equilibrium due to V 6= const. This contradiction proves the statement. ✷

To illustrate this result, consider the system

y′1 = sin y2,

y′2 = y1 cos y2.

This is a gradient system with V (y1, y2) = −y1 sin y2, so there are no periodic solutions.
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Note. The above criterion works in arbitrary dimension.

Next we consider the so-called Dulac criterion.

Proposition 5.41. Consider a planar system y′ = f(y) with continuously differentiable f . Suppose that
there is a scalar differentiable function g : R2 → R such that div(gf) 6= 0 on some simply connected domain
Ω. Then there are no periodic orbits of this system which lie in Ω.

Proof. Suppose Γ ⊂ Ω is a periodic orbit. Using Green’s theorem and the assumption

0 6=
∫ ∫

A

div(gf)dx1dx2 =

∮

Γ

gfndσ

where n is the normal to Γ and dσ the line element along Γ . However, since n is normal to Γ , we have
n · f = 0 as f is tangent to any trajectory. Thus the left hand side is zero and we obtain a contradiction. ✷

We can illustrate this criterion on a variant of Lotka-Volterra model

y′1 = y1(A− a1y1 + b1y2),

y′2 = y2(B − a2y2 + b2y1).

with ai > 0 (to model the effect of overcrowding. Using the function g = 1/y1y2 we can prove that there are
no periodic orbits in the first quadrant.

5 Stability through the Lyapunov function

Consider again the system (5.2.58) in Rn. Suppose that it has an isolated equilibrium at x0. Then, by writing
(5.2.58) as

y′ = (y − x0)
′ = x′ = f(x+ x0) = f̃(x),

we obtain an equivalent system for which x = 0 becomes an isolated equilibrium. Thus there is no loss of
generality to consider (5.2.58) with x = 0 as its equilibrium.

Let Ω be an open neighbourhood of 0 and let V : Ω → R be a continuously differentiable function. We
define the derivative of V along trajectories of (5.2.58) by the chain rule

V ′ =
dV

dt
= x′ · ∇V = f · ∇V =

n
∑

i=1

fi
∂V

∂xi
(5.5.67)

Example 5.42. In this example we provide another point of view at the result formulated in Proposition 5.40.
Let us consider a system

y′ = f(y)

with f being a potential field; that is, there is a scalar function V satisfying

f(x) = −gradV (x).

In general, not every vector field has a potential. An exception is offered by one dimensional fields when we
have

V (x) = −
x
∫

a

f(z)dz

for some fixed a (the potential of a field is determined up to a constant). We note that since dV/dx = −f ,
the stationary points of V correspond to equilibria of f . Furthermore, if t → x(t) is any solution of the
equation x′ = f(x) then we have
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V ′(x(t)) =
dV (x(t))

dt
=
dV

dx
(x(t))

dx

dt
= −f(x(t))f(x(t)) < 0,

so that V (x(t)) strictly decreases along trajectories. In other words, the point x(t) moves always in the
direction of decreasing V and thus equilibria corresponding to minima of V are asymptotically stable and
corresponding to maxima are unstable.

In this section we shall discuss a generalization of the above concept.

Definition 5.43. A continuously differentiable function V on Ω ∋ 0 is called a Lyapunov function for
(5.2.58) if

1. V (0) = 0 and V (x) > 0 on Ω;

2. V ′ ≤ 0 on Ω.

Theorem 5.44. Assume that there exists a Lyapunov function defined on a neighbourhood Ω of an equilib-
rium x = 0 of system (5.2.58). Then the solutions originating from Ω are globally defined (for all t ≥ 0) and
the equilibrium x = 0 is stable.

Proof. There is a ball B(0, r) ⊂ Ω (centred at 0 with radius r) such that 0 < V (x) on B(0, r)\0 and V ′ ≥ 0
on B(0, r). Let us take 0 6= x0 ∈ B(0, r) and consider the flow φ(t,x0). Let [0, tmax) be the maximal interval
of existence of the trajectory. We do not know whether tmax is finite or not. Since V is decreasing along
trajectories, we have

0 < V (φ(t,x0)) ≤ V (x0), t ∈ [0, tmax),

where the left-hand side inequality follows from the fact that φ(t,x0) 6= 0 (by Theorem 5.18(i)) and strict
positivity of V away from 0). Let µ = min‖y‖=r V (y). Since V (x) → 0 as ‖x‖ → 0, we can find ball B(0, δ)
with δ < r such that V (x) < µ for x ∈ B(0, δ). Then, for ‖y0‖ < δ we have

0 < V (φ(t,y0)) ≤ V (y0) < µ, t ∈ [0, tmax),

(with tmax is not necessarily the same as above). By the definition of µ and continuity of the flow, ‖φ(t,y0)‖ ≤
r for [0, tmax). Indeed, otherwise there would be t′ > 0 with ‖φ(t′,y0)‖ > r and, by continuity, for some t′′

we would have ‖φ(t′′,y0)‖ = r so that V (φ(t′′,y0)) ≥ µ.

This means that the maximal interval of existence is infinite and, at the same time, yields stability, as r was
arbitrary.

Example 5.45. Consider the equation
u′′ + g(u) = 0

where g is a continuously differentiable function for |u| < k, with some constant k > 0, and ug(u) > 0
for u 6= 0. Thus, by continuity, g(0) = 0. Particular examples include g(u) = ω2u which gives harmonic
oscillator of frequency ω, or g(u) = sinu: the undamped simple pendulum. Writing the equation as a system,
we get

x′1 = x2,

x′2 = −g(x1). (5.5.68)

It is clear that (0, 0) is an isolated equilibrium point. To construct Lyapunov function we employ mechanical
interpretation of the model to find the energy of the system. If we think of g as the restoring force of a spring,
the potential energy of the particle at a displacement u = x1 from equilibrium is given by

x1
∫

0

g(σ)dσ.
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On the other hand, the kinetic energy is
1

2
x22

as x2 = u′ which is the velocity of the particle. This suggests to take the total energy of the system as a
Lyapunov function

V (x1, x2) =
1

2
x22 +

x1
∫

0

g(σ)dσ.

This function is defined on the region

Ω = {(x1, x2); |x1| < k, x2 ∈ R}.
Clearly, V is positive definite on Ω. Let us calculate the derivative of V along trajectories. We have

V ′(x1, x2) = x2x
′
2 + g(x1)x

′
1 = −g(x1)x2 + g(x1)x2 = 0.

Thus, V is a Lyapunov function for (5.5.68) and the equilibrium at (0, 0) is stable.

Actually, we have proved more. For any x0 = (x1,0, x2,0) ∈ Ω, we obtain

V (φ(t,x0)) = V (x0)

for any t. Thus, the orbits are given by implicit equation

1

2
x22 +

x1
∫

0

g(σ)dσ = V (x0).

Because of the hypotheses on g the integral is positive for both x1 > 0 and x1 < 0; moreover it is an increasing
function of |x1|, which is zero at x1 = 0. On the other hand, V (x0) → 0 as ‖x0‖ → 0. This means that, for

sufficiently small ‖x0‖ (V (x0) < sup|x1|<k

x1
∫

0

g(σ)dσ) the orbits are closed orbits symmetric with respect to

the y2 axis and thus solutions are periodic. Hence, (0, 0) is stable but not asymptotically stable.

It is rare to be able to find a Lyapunov function in one go. For left hand side of polynomial type, the method
of undetermined coefficients is often employed.

Example 5.46. Consider the system

x′1 = x2,

x′2 = −cx2 − ax1 − bx31, (5.5.69)

where a, b, c are positive constants. We are looking for a Lyapunov function as a polynomial in two variables.
Let us try

V (x1, x2) = αx21 + βx41 + γx31,

with α, β, γ > 0. Clearly, V (x) > 0 for x 6= 0. Differentiating V along trajectories, we have

V ′(x) = (2αx1 + 4βx31)x
′
1 + 2γx2x

′
2

= (2αx1 + 4βx31)x2 + 2γx2(−cx2 − ax1 − bx31) = (2α− 2γa)x1x2 + (4β − 2γb)x31x2 − 2γcx22.

Since c, γ > 0 the last term is non-positive. The first two terms are more difficult, but we have freedom to
chose free parameters α and β. Fixing γ > 0 and setting

α = aγ, β =
γb

2
=
αb

2α

we obtain
V ′(x) = −2γcx22 ≤ 0.

Hence V (x) is a Lyapunov function on any open bounded set of R2 which contains (0, 0) and hence (0, 0) is
a stable equilibrium point.
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The first Liapunov theorem, Theorem 5.47, ensures stability but not asymptotic stability. From Example
5.45 we see that a possible problem is created by trajectories along which V is constant as these could give
rise to periodic orbits which prevent asymptotic stability. The next theorem shows that indeed, preventing
the possibility of V being constant in a neighborhood of zero solves the problem, at least partially.

Theorem 5.47. Assume that there exists a Lyapunov function defined on a neighbourhood Ω of an equilib-
rium x = 0 of system (5.2.58), which additionally satisfies

V ′ < 0 in Ω \ {0}. (5.5.70)

Then x = 0 is asymptotically stable.

Definition 5.48. A Lyapunov function satisfying assumptions of this theorem is called strict Lyapunov
function.

Proof. Using the notation of the previous proof, we consider φ(t,y0) with ‖y0‖ < δ so that the solution
stays in the closed ball B(0, r). Since this set is compact, we have sequence (tn)n∈N, tn → ∞ as n→ ∞ such
that φ(tn,y0) → z ∈ B(0, r). We have to prove that z = 0. To this end, first observe that V (φ(t,y0)) > V (z)
for all t as V decreases along trajectories and V (φ(tn,y0)) → V (z) by continuity of V . If z 6= 0 (and there
are no other equilibria in B(0, r)), we consider φ(t, z) which must satisfy V (φ(t, z) < V (z). By continuity of
the flow with respect to the initial condition and continuity of V , if x is close enough to z, then for some
t > 0 (not necessarily all) we will have also V (φ(t,x)) < V (z). We take x = φ(tn,y0) for tn large enough.
But then we obtain

V (z) > V (φ(t, φ(tn,y0))) = V (φ(t+ tn,y0)) > V (z)

which is a contradiction. Thus z = 0. This shows asymptotic stability. Indeed, if there was a sequence
(tn)n∈N converging to infinity, for which φ(t,y0) was not converging to zero (that is, staying outside some
ball B(0, r0)), then as above we could pick a subsequence of φ(tn,y0) converging to some z which, by the
above, must be 0.

Example 5.49. Consider the system

x′1 = −x1 + x21 − 2x1x2,

x′2 = −2x2 − 5x1x2 + x22, (5.5.71)

The point (0, 0) clearly is a stationary point. Let us investigate its stability. We try the simplest Lyapunov
function

V (x1, x2) =
1

2
(x21 + x22).

We obtain

V ′(x1, x2) = x1x
′
1 + x2x

′
2 = x1(−x1 + x21 − 2x1x2) + x2(−2x2 − 5x1x2 + x22)

= −x21(1− x1 + 2x2)− x22(2 + 5x1 − x2).

Hence V is a strict Lyapunov function provided 2+5x1−x2 > 0 and 1−x1+2x2 > 0 in some neighbourhood
of (0, 0). We see that this set, say Ω, is a sector containing (0, 0). Hence, the origin is asymptotically stable.

Let us consider another example which, in conjunction with the previous one, provide background for a
refinement of the theory developed so far.

Example 5.50. Consider a more realistic version of the nonlinear oscillator equation, which includes resis-
tance of the medium proportional to the velocity.

u′′ + u′ + g(u) = 0.
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This equation is called the Liénard equation. We adopt the same assumptions as before: g is a continuously
differentiable function for |u| < k, with some constant k > 0, and ug(u) > 0 for u 6= 0. Thus, by continuity,
g(0) = 0. Writing the equation as a system, we get

x′1 = x2,

x′2 = −g(x1)− x2. (5.5.72)

Again, (0, 0) is an isolated equilibrium point. Since this equation differs from the previously considered one
by a dissipative term, the total energy of the system is a good initial guess for a Lyapunov function. Hence,
we take

V (x1, x2) =
1

2
x22 +

x1
∫

0

g(σ)dσ.

This function is defined and positive on the region

Ω = {(x1, x2); |x1| < k, x2 ∈ R},

with the derivative along trajectories given by

V ′(x1, x2) = −x22 + x2x
′
2 + g(x1)x

′
1 = −x22 − g(x1)x2 + g(x1)x2 = −x22.

Thus, again V is a Lyapunov function for (5.5.72) and the equilibrium at (0, 0) is stable. However, it fails
to be a strict Lyapunov function as there is no neighbourhood of (0, 0) on which V ′ is strictly positive. Now,
if we look closer at this example, we see that we should be able to prove something more. Namely, if we
can ensure that a trajectory stays away from L = {(x1, x2); x2 = 0, x1 6= 0} then, following the proof of
Theorem 5.47, we obtain that it must converge to (0, 0). On the other hand, at any point of L the vector
field is transversal to L so the trajectory cannot stay on L as then the field would have to be tangent to L.
Thus, it is to be expected that the trajectory must eventually reach (0, 0). We shall provide a rigorous and
more general result of this type below.

Theorem 5.51. (La Salle invariance principle) Let y = 0 be a stationary point of (5.2.58) and let V be a
Lyapunov function on some neighbourhood Ω ∋ 0. If, for x ∈ Ω, Γ+

x is bounded with limit points in Ω and
M is the largest invariant set of

E = {x ∈ Ω; V ′(x) = 0}, (5.5.73)

then
φ(t,x) →M, t→ ∞. (5.5.74)

Proof. By assumptions, for any x ∈ Ω satisfying the assumption of the theorem, ∅ 6= ω(Γx) ⊂ Ω. Since V
is a Lyapunov function, V (φ(t,x)) in a non-increasing function of t which is bounded below by zero. Hence,
there is c ≥ 0 such that

lim
t→∞

V (φ(t,x)) = c.

Now let y ∈ ω(Γx). Then, for some (tn)n∈N converging to ∞ as n→ ∞ we have φ(tn,x) → y. On the other
hand, by continuity of V , we have

lim
t→∞

V (φ(tn,x)) = c.

Consequently, V is constant on ω(Γx).

Now, by Lemma 5.25(3), ω(Γx) is invariant so that if y ∈ ω(Γx), then φ(t,y) ∈ ω(Γx) for all t. Thus,
V (φ(t,y)) = c for all t and y ∈ ω(Γx). Thus,

V ′(y) = 0, for y ∈ ω(Γx)

and so
ω(Γx) ⊂M ⊂ E.

But φ(t,x) → ω(Γx) as t→ ∞, so φ(t, z) →M as t→ ∞ for all z ∈ Ω satisfying ω(Γz) ⊂ Ω.
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Remark 5.52. A class of sets in Ω with forward trajectories in Ω is given by

Vk = {x; V (x) < k}.
Indeed, since V is non-increasing along trajectories, V (φ(t,x)) ≤ V (x) < k provided x ∈ Vk.

Remark 5.53. La Salle principle gives immediate proof of Theorem 5.47. Indeed, in the domain of applicability
of this theorem, M = E = {0}.

Corollary 5.54. Assume that there is a Lyapunov function for (5.2.58) defined on the whole Rn which
satisfies additionally V (y) → ∞ as ‖y‖ → ∞. If 0 is the only invariant set of E = {x ∈ Rn; V ′(x) = 0},
then 0 is globally asymptotically stable.

Proof. From the properties of the Lyapunov function, we have

V (φ(t,y)) ≤ V (y), y ∈ R
n,

independently of t. From the assumption on the behaviour of V at infinity, φ(t,y) must stay bounded and
thus exist for all t. But then the limit points must belong to the set Ω = Rn and the La Salle principle can
be applied.

Example 5.55. Consider the so-called van der Pol equation

z′′ − az′(z2 − 1) + z = 0, (5.5.75)

where a > 0 is a constant. In this case it is easier to work with the so-called Liènard coordinates which are
applicable to any equation of the form

x′′ + f(x)x′ + g(x) = 0.

Let us define F (x) =
∫ x

f(ξ)dξ. Then
dF/dt = f(x)x′.

Hence, if we define x1 = x and x2 = x′1+F (x1), then x
′
2 = x′′1 +f(x1)x

′
1 = −g(x1). The differential equation

can then be written as

x′1 = x2 − F (x1),

x′2 = −g(x1).
In our case, we obtain

x′1 = x2 + a

(

1

3
x31 − x1

)

,

x′2 = −x1.
Let us use the standard Lyapunov function

V (x1, x2) =
1

2
(x21 + x22).

With this choice we get

V ′(x1, x2) = x1

(

x2 + a

(

1

3
x31 − x1

))

− x1x2 = ax21

(

1

3
x21 − 1

)

.

Thus, V ′ ≤ 0 for x21 < 3. The largest domain of the form

Vk = {(x1, x2); V (x1, x2) < k}
which lies entirely in the region {(x1, x2); V ′ ≤ 0} is given by V3/2. Furthermore, V ′ = 0 on x1 = 0 and
on this line x′1 = x2. Hence, the trajectories will stay on this line only if the x1-coordinate of the tangent is
zero; that is, only of x′1 = x2 = 0. Thus, the largest invariant subset of V3/2 ∩ {(x1, x2); V ′ = 0} is (0, 0).
Thus, by the La Salle principle, (0, 0) is asymptotically stable and V3/2 is a basin of attraction.



92 5 Appendices

Example 5.56. Consider the equation
z′′ + 2az′ + z + z3 = 0, (5.5.76)

where a is a constant satisfying 0 < a < 1. Equivalent system is given by

x′1 = x2,

x′2 = −x1 − 2ax2 − x31. (5.5.77)

The origin (0, 0) is the only equilibrium. If a = 0, then (5.5.76) is the same as in the Example ?? and thus
we know that

V (x1, x2) =
x22
2

+
x21
2

+
x41
4

is the first integral (energy) and V ′ = 0 on the trajectories. The addition of 2az′ makes the system dissipative
and thus it is reasonable to take V as the trial Lyapunov function for (5.5.77). We get

V ′(x1, x2) = −2ax22 ≤ 0

for any (x1, x2). Let us apply Corollary 5.54. It is clear that V (x1, x2) → ∞ as ‖(x1, x2)‖ → ∞. Furthermore,
V ′ = 0 on x2 = 0. We have to find the largest invariant subset of this set. To stay on x2 = 0 we must have
x′2 = 0. But, if x2 = 0, then x′1 = 0 hence x1 = constant. This, from the second equation of (5.5.77) we
obtain x1 = 0. Consequently, (0, 0) is the largest invariant subset of {(x1, x2); V ′ = 0} and thus (0, 0) is
globally asymptotically stable.

Example 5.57. Stability by linearization. W shall give a proof of Theorem 5.13 1 using the Lyapunov
function method. Consider again

y′ = f(y). (5.5.78)

If f has continuous partial derivatives of the first order in some neighbourhood of y0, then

f(x+ y0) = f(y0) +Ax+ g(x) (5.5.79)

where

A =







∂f1
∂x1

(y0) . . . ∂f1∂xn
(y0)

...
...

∂f1
∂xn

(y0) . . . ∂fn∂xn
(y0)






,

and g(x)/‖x‖ is continuous in some neighbourhood of y0 and vanishes at x = y0. This follows from the
Taylor expansion theorem. Note that if y0 is an equilibrium of (5.5.78), then f(y0) = 0 and we can write

x′ = Ax+ o(‖x‖). (5.5.80)

where x = y − y0.

Theorem 5.58. Suppose that f is differentiable function in some neighbourhood of the equilibrium point y0.
Then, the equilibrium point y0 is asymptotically stable if all the eigenvalues of the matrix A have negative
real parts, that is, if the equilibrium solution x(t) = 0 of the linearized system is asymptotically stable.

Proof. We shall give the proof for the case when A has distinct eigenvalues. The general case also can be
proved using Lyapunov function method but it is much more involved.

Let {λ1, . . . , λn} be distinct eigenvalues of A with {e1, . . . , en} being the corresponding eigenvalues (since
the eigenvalues are distinct, they must be simple so that to each there corresponds exactly one eigenvector).
Now, denoting by < ·, · > the dot product in Cn

< x,y >=

n
∑

i=1

xiyi,
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we have
< y,Ax >=< ATy,x >

where AT is the transpose of A = {aij}1≤i,j≤n, AT {aji}1≤i,j≤n (thanks to the fact that entries of A are
real). AT has the same eigenvalues as A; denote by {f1, . . . , fn} the corresponding eigenvectors. It is easy to
see that < fj , ei >= 0 provided j 6= i. Indeed,

λi < fi, ej >=< AT fi, ej >=< fi, Aej >= λj < fi, ej >

so that (λi − λj) < fi, ej >= 0 and the statement follows if λi 6= λj . It is then possible to normalize the
eigenvectors so that

< fi, ej >= δij ,

(that is, 1 for i = 1 and 0 for i 6= j). We can expand any x as

x =

n
∑

i=1

< fi,x > ei.

Then

x′ =

n
∑

i=1

d

dt
< fi,x > ei,

and

Ax =

n
∑

i=1

λi < fi,x > ei

so that
d

dt
< fi,x >= λi < fi,x > +o(‖x‖)

(as multiplying o(‖x‖) by e does not change the asymptotic behaviour of the ‘o(·)′ symbol).

This allows to define a Lyapunov function. Let α1, . . . , αn be positive numbers and put

V (x) =

n
∑

i=1

αi< fi,x > < fi,x > .

This is clearly differentiable function which is positive for x 6= 0. Differentiating along trajectories, we get

V ′(x) =

n
∑

i=1

αi

(

d

dt
< fi,x > < fi,x >

)

= +
n
∑

i=1

αi

((

d

dt
< fi,x >

)

< fi,x > +< fi,x >

(

d

dt
< fi,x >

))

=

n
∑

i=1

αi
(

λ̄i + λi
)

< fi,x > < fi,x > +o(‖x‖2).

Since λ̄i + λi = 2ℜλi < 0, the first term is negative of second order and the other term is of higher order
than 2,and thus for sufficiently small ‖x‖ the derivative V ′(x) is strictly negative in some neighbourhood
Ω of 0. Hence, 0 is asymptotically stable. Constants αi can be changed to fine-tune the estimate a basin of
attraction.
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The SIS model

If the disease does not induce immunity but, instead, after recovery the infected individuals become again
susceptible, then the SIR model turns into the SIS model

S′ = −βSI + αI,

I ′ = βSI − αI, (5.5.81)

where α is the rate of recovery. Here, again, if we add the equations, we will find that the total population
N = S + I is constant in time. Thus, we can write

S = N − I

and thus (5.5.81) reduces to

I ′ = βI(N − I)− αI = (βN − α)I

(

1− I
βN−α
β

)

= rI

(

1− I

K

)

. (5.5.82)

This is the logistic equation that was analysed earlier. In particular, we have the following cases

a) r = βN−α < 0, or βNα < 1, then the solution has only one nonnegative equilibrium, 0, that is attractive.
It can be easily seen as then K < 0 and thus

I ′ ≤ rI;

that is
I(t) ≤ I(0)ert.

Hence I(t) → 0 faster than ert and thus the disease will die out.

b) if r > 0, then the properties of the logistic equation shows that

lim
t→∞

I(t) = K =
βN − α

β
.

Hence, the disease will permanently stay in the population.

Remark 5.59. In any epidemiological model the equilibrium I = 0, that always exists, is called the disease
free equilibrium. A positive equilibrium, if it exists, is called an endemic equilibrium.

Remark 5.60. In both models there is a parameter R0 that determines the progression of the disease: if
R0 < 1, the disease will die out and if R0 > 1 it will spread. In the SIR model we have

R0 =
βS(0)

ν

while in the SIS model

R0 =
βN

α
.

Seemingly these two constants are unrelated. However, let us look at their biological meaning. The coefficient
β gives the number of infections per unit time induced by one infective whereas 1/ν (respectively 1/α is the
average time an infective remains infectious. Finally, if we assume that consider a population that at time
t = 0 had no infective individuals, then the number of susceptibles at the beginning is S(0) in the first case
and N = N(0) in the second. Thus, we have arrived at the common interpretation of R0

Definition 5.61. The basic reproduction number R0 is the number of infections that one infectious individual
will introduce in a population consisting only of susceptible individuals.

For such a defined parameterR0, the conditionR0 ≶ 1 determines the stability of the disease free equilibrium.
It is easy to understand from the biological point of view: if one infective is producing less than one secondary
infection, then the disease cannot spread, whereas if it is more than one than the disease will spread at the
geometrical rate.
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SIS model with treatment

In many cases the return of an infective to the susceptible class is due to a treatment. In the simplest case we
can assume that the constant α in (5.5.81) represents the efficacy of the treatment. A more realistic model
takes into account that the treatment of a single patient takes some time and thus the rate of recovery should
be rather modelled by the Holling type functional response. As before, let the number of treated infectives
in time T by one nurse be given by

C = νγITa,

where the constant γ is the rate at which the infectives are treated (number per unit time), ν is the efficacy
of the treatment and Ta is the time available for administering the treatment. Since

T = Ta + γITaTt = Ta(1 + γITt),

where Tt is the average time of treatment,

C =
νγ

1 + γTtI
I.

However, γ = 1/Tt, hence we obtain the SIS model with saturated treatment as

S′ = −βSI + νγM

1 + I
I,

I ′ = βSI − νγM

1 + I
I, (5.5.83)

where M is the number of the available medical personnel. By defining α = νγM, we have

S′ = −βSI + α

1 + I
I,

I ′ = βSI − α

1 + I
I. (5.5.84)

As in the previous subsection, N(t) = S(t) + I(t) = N = S0 + I0 is constant. We assume N > 1 (note that
if N denoted the density, this assumption would not be obvious).

Hence, substituting S(t) = N − I(t) we obtain the single equation

I ′(t) = βI(N − I)− αI

1 + I
. (5.5.85)

Eqn (5.5.85) is in the form of the Allee model. It is a separable equation that, in principle, can be solved.
This, however, one one hand would produce a messy and difficult to analyse formula and, on the other, would
hide a general structure that can be utilised in cases when an explicit solution is not available.

We use general one dimensional ‘phase-plane’ analysis to find the properties of equilibria. Denote

F (I) = βI(N − I)− αI

1 + I
= I

(

β(N − I)− α

1 + I

)

= If(I).

Clearly, I = 0 is an equilibrium so, in particular, any solution originating from I(0) = I0 > 0 satisfies
I(t) > 0. We see that

F ′(I) = f(I) + If ′(I) (5.5.86)

and hence F ′(0) = f(0) = βN − α we obtain that if βN/α > 1, then I = 0 is a repelling equilibrium and if
βN/α < 1, it is an asymptotically stable equilibrium. In the expression

R0 =
βN

α

we recognize the basic reproduction number. Here it requires some explanation as the average duration of
the disease is I dependent. However, the definition requires the basic reproduction number to be calculated
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in a population consisting only of susceptible individuals; that is, whenever in calculations of R0 we have an
I dependent term, we put I = 0.

To find stability for N = α/β, we use the geometrical argument. In this case

F (I) = − βI2

1 + I
(I +N − 1)

so F (I) < 0 for I < 0 (as N > 1). Hence, I = 0 is repelling.

Consider now endemic equilibria. These are the solutions to the quadratic equation

g(I) := (N − I)(1 + I) =
α

β
. (5.5.87)

The graph of g is the downward parabola with roots at I = −1 and I = N . The maximum of g is taken at

Imax =
N − 1

2

and equals

g(Imax) =
(N + 1)2

4
.

We observe that for R0 ≥ 1 there is a unique positive solution to (5.5.87), see Fig. 5.8. If, however, R0 < 1,
(5.5.87) may have two, one, or no solutions. The first case occurs if

N <
α

β
<

(N + 1)2

4
, (5.5.88)

see Fig. 5.9. Equivalently, in terms of R0,

4N

(N + 1)2
< R0 < 1. (5.5.89)

Then, if
α

β
=

(N + 1)2

4
, (5.5.90)

then again we have one positive equilibrium and, finally, for

α

β
>

(N + 1)2

4
(5.5.91)

there is no positive equilibrium, see Fig. 5.10.

To find the stability of the equilibria, we write

F (I) =
βI

1 + I

(

(N − I)(1 + I)− α

β

)

=
βI

1 + I

(

g(I)− α

β

)

.

Let us denote by I∗2 the equilibrium larger than Imax, by I∗1 the one smaller than Imax and by I∗ the
equilibrium equal to Imax.

R0 < 1 and α/β > (N + 1)2/4. There is only the disease free equilibrium that, as above, is globally
asymptotically stable, see Fig. 5.14.

R0 < 1 and α/β = (N + 1)2/4. There is a disease free equilibrium and an endemic equilibrium I∗. The
disease free equilibrium is asymptotically stable, as above, but not globally asymptotically stable. The
endemic equilibrium is unstable (precisely, semi-stable – it repels solutions smaller than I∗ and attracts
solutions bigger than I∗, see Fig. 5.13.
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Fig. 5.8. The unique endemic equilibrium for R0 > 1 (N = 50 > 1 and α/β = 20.)

Fig. 5.9. Two endemic equilibria in the case (5.5.88).

Fig. 5.10. No endemic equilibria in the case (5.5.91).

R0 < 1 and α/β < (N + 1)2/4. There is a disease free equilibrium and two endemic equilibria I∗1 , I
∗
2 . The

disease free equilibrium is asymptotically stable, as above, but not globally asymptotically stable. The
endemic equilibrium I∗1 is unstable and I∗2 is asymptotically stable. Neither stable equilibrium is globally
asymptotically stable: I = 0 attracts solutions in [0, I∗1 ) while I∗2 attracts solutions from (I∗1 ,∞). The
intervals [0, I∗1 ) and (I∗1 ,∞) are called basins of attraction of respective equilibria, see Fig. 5.12.

R0 ≥ 1. There is a disease free equilibrium and an endemic equilibrium I∗2 . The disease free equilibrium
is unstable. The endemic equilibrium is asymptotically stable (and globally asymptotically stable in
(0,∞)), see Fig. 5.11.

Remark 5.62. It is a common (mis)perception that to control a disease if is sufficient to bring R0 below 1.
We have seen that, indeed, the disease free equilibrium is asymptotically stable in this case but, nevertheless,
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Fig. 5.11. The graph of F (I) for N = 50 > 1, β = 1, α = 10,R0 = 5

Fig. 5.12. The graph of F (I) for N = 50 > 1, β = 1, α = 200,R0 = 0.25

Fig. 5.13. The graph of F (I) for N = 50 > 1, β = 1, α = 650.25 = (N + 1)2/4,R0 = 0.077

Fig. 5.14. The graph of F (I) for N = 50 > 1, β = 1, α = 700,R0 = 0.0714
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the disease can persist – if the population of infectives is sufficiently large, then it will be attracted to the
endemic equilibrium and the disease will not be eradicated. Only by bringingR0 down below 4N/(N+1)2 we
will make the disease free equilibrium globally asymptotically stable and thus the disease will be eradicated.

Question: Assume that we have a disease that is spreading. We found the basic reproduction number

R0 =
βN

α
=

βN

νγM
=
βNTt
νM

> 1.

What interventions can the health authorities undertake to stop the disease?




